WO2010023752A1 - Elongated antenna - Google Patents

Elongated antenna Download PDF

Info

Publication number
WO2010023752A1
WO2010023752A1 PCT/JP2008/065546 JP2008065546W WO2010023752A1 WO 2010023752 A1 WO2010023752 A1 WO 2010023752A1 JP 2008065546 W JP2008065546 W JP 2008065546W WO 2010023752 A1 WO2010023752 A1 WO 2010023752A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
base material
power feeding
longitudinal
outer peripheral
Prior art date
Application number
PCT/JP2008/065546
Other languages
French (fr)
Japanese (ja)
Inventor
雅美 鈴木
智之 藤枝
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/065546 priority Critical patent/WO2010023752A1/en
Priority to JP2010526472A priority patent/JPWO2010023752A1/en
Priority to EP08809613A priority patent/EP2330686A1/en
Publication of WO2010023752A1 publication Critical patent/WO2010023752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material

Definitions

  • the present invention relates to a small antenna.
  • film antennas are often used as terrestrial digital broadcast receiving antennas in vehicles.
  • Patent Documents 1 and 2 describe examples of small antennas used for mobile phones and the like.
  • the longitudinal antenna according to the first aspect of the present invention has a longitudinal shape and is at least in contact with the first base material having a different dielectric constant between the outer peripheral portion and the central portion, and the outer peripheral portion of the first base material. And it is provided with the feed element arrange
  • a longitudinal antenna according to a preferred embodiment of the present invention has a longitudinal shape, and is at least in contact with a first base material having a different permittivity between an outer peripheral portion and a central portion, and an outer peripheral portion of the first base material. And a power feeding element disposed along the shape of the outer peripheral portion, and a non-excitation element disposed close to the power feeding element.
  • the first base material is made of a dielectric material such as ceramic, and the outer peripheral portion and the central portion have different dielectric constants.
  • the power feeding element is at least partially in contact with the outer peripheral portion, and is disposed along the shape of the outer peripheral portion. And a non-excitation element is arrange
  • the power feeding element is disposed on the outer peripheral portion of the base material, that is, outside the central portion of the base material.
  • the power feeding part and the tip of the power feeding element come close to each other, and electromagnetic coupling may occur between them.
  • the dielectric constant of the center portion of the base material interposed between the power feeding portion and the power feeding element is different from that of the outer peripheral portion, such electromagnetic coupling can be suppressed.
  • the dielectric constant at the center of the substrate is preferably smaller than the dielectric constant at the outer periphery.
  • the central portion of the first base material is hollowed out. Therefore, the presence of air in the central portion suppresses electromagnetic coupling between the power feeding portion and the tip portion of the power feeding element.
  • the first base material has a slot-shaped planar shape in which only the central portion is cut out.
  • the first base material has a C-shaped planar shape in which a part of the outer peripheral portion at the center in the longitudinal direction is further cut.
  • the feeding element has a width of a portion in contact with the outer peripheral portion in the short direction of the first base material, and the outer periphery in the longitudinal direction of the first base material. It is larger than the width of the part in contact with the part.
  • the feeding element has a plurality of portions in contact with the outer peripheral portion in the short direction of the first base material.
  • the longitudinal antenna includes a second base material having a dielectric constant lower than a dielectric constant of an outer peripheral portion of the first base material, and the feed element and the non-excitation element include the first base 2 base materials.
  • the feeding element and the non-excitation element are formed on the second base material, and the dielectric base material is disposed thereon. If a feed element or a non-excitation element is formed on a dielectric substrate, the manufacturing cost increases. By forming the power feeding element and the non-excitation element on the second base material, the manufacturing cost can be reduced.
  • the feeding portion of the feeding element and the two end portions of the feeding element are arranged to face each other in the vicinity of the center position in the longitudinal direction of the second base material. ing.
  • electromagnetic coupling is likely to occur between the feeding portion and the two end portions of the feeding element, but such a coupling is effective because the dielectric constant of the central portion of the substrate is different from that of the outer peripheral portion. To be suppressed.
  • the power feeding element is in contact with the first base material in the vicinity of two ends of the power feeding element or in a place excluding the vicinity of the power feeding part.
  • the longitudinal antenna is enclosed in a resin case.
  • corrosion of conductor parts such as a feed element and a non-excitation element, can be prevented.
  • the above longitudinal antenna is disposed close to a dielectric having an area larger than the area of the first base material.
  • the resonance frequency of the antenna can be lowered, and the antenna can be downsized accordingly.
  • FIG. 1A is a perspective view of an antenna according to the first embodiment.
  • the antenna 100 includes a longitudinal base 1, a feed element 2, and a non-excitation element 3.
  • the length and width of the feed element 2 and the non-excitation element 3 and the length, width, and thickness of the base material 1 are determined so that terrestrial digital broadcasting can be received satisfactorily.
  • the substrate 1 has a longitudinal shape (plate shape, stick shape) and is made of a dielectric material such as ceramic.
  • the dielectric constant of the substrate 1 is about 20
  • the length of the substrate 1 is about 100 to 150 mm
  • the thickness of the substrate 1 is about 3 to 5 mm.
  • the center part of the base material 1 is hollowed out in a rectangular shape, and a cutout part 1c is provided. Moreover, the substantially center part in the longitudinal direction of the base material 1 is cut
  • the cut-out portion 1c corresponds to the “center portion” of the base material in the present invention, and the portion of the base material 1 on the outer periphery of the cut-out portion 1c corresponds to the “outer peripheral portion” of the base material.
  • the power feeding element 2 is an element that is electrically excited from the outside, and is formed by arranging a linear element by bending a plurality of elements along the outer periphery of the substrate 1.
  • the power feeding element 2 has a power feeding portion 2 s at the center in the longitudinal direction of the substrate 1.
  • a signal received by the antenna 100 is extracted from the power feeding unit 2s.
  • the feed element 2 has straight portions 2a, 2b, 2c and 2d.
  • the straight portion 2 a extends from the power supply portion 2 s to the both ends in the longitudinal direction of the base 1 from the upper surface 1 a of the base 1.
  • the straight portion 2b extends along the both ends of the base material 1 in the short direction of the base material 1, and further extends on the side surface 1b of the base material 1 to the bottom surface side.
  • the straight line portion 2 c is provided on the inner side of the end portion in the longitudinal direction of the substrate 1 and substantially parallel to the straight line portion 2 b.
  • the straight portion 2d extends on the side surface 1b of the substrate 1 along the bottom surface in the center direction of the substrate 1.
  • the feed element 2 is arranged so as to surround the cut-out portion 1c.
  • the two front end portions 2t of the power feeding element 2 are arranged in positions near the power feeding portion 2s through the cutout portion 1c in the vicinity of the center of the base 1 in the longitudinal direction.
  • the straight portions 2b and 2c of the feed element 2 are branched between the straight portions 2a and 2d, but the thickness of one straight portion is increased by adjusting the interval between the straight portions 2b and 2c. The same effect as the case can be obtained.
  • the non-excitation element 3 is a linear element, and is provided on the upper surface 1 a of the substrate 1.
  • the non-excitation element 3 is disposed in the vicinity of the straight line portion 2 a of the power feeding element 2 and substantially parallel to the straight line portion 2 a.
  • the non-exciting element 3 has a role of setting the antenna characteristics to the two-resonance state and expanding the band in which transmission and reception can be performed by being arranged close to the feeding element 2.
  • the antenna 100 includes a power feeding element 2 that is electrically excited from the outside and a non-excitation element 3 that is disposed in the vicinity thereof. Two resonance characteristics are provided in the frequency band.
  • the pattern of the feeding element 2 is obtained by bending a plurality of linear elements in accordance with the shape of the substrate 1. Thereby, the length of the feed element in the longitudinal direction can be shortened, and the entire antenna 100 can be reduced in size.
  • the feed element 2 when the feed element 2 is arranged along the outer peripheral shape of the longitudinal base material 1, the feed part 2s and the tip part 2t of the feed element 2 are close to each other. There is a problem that electromagnetic coupling occurs between the two and the characteristics of the antenna deteriorate. Therefore, in the present invention, in order to suppress the electromagnetic coupling between the power feeding portion 2s and the tip portion 2t of the power feeding element 2, the central portion of the longitudinal base material 1 is cut out to provide the cutout portion 1c. . When air is interposed between the power feeding unit 2s and the tip 2t of the power feeding element 2, the electromagnetic coupling between the two can be weakened. As a result, it is possible to suppress the deterioration of the characteristics of the intermediate portion between the two resonance characteristics, and an antenna having stable characteristics can be realized.
  • FIG. 1B is a perspective view of an antenna 110 according to a comparative example.
  • the antenna 110 of the comparative example has the same structure as the antenna 100 except that the cut-out portion 1c is not provided.
  • FIG. 2A shows the impedance characteristics of the antenna 100 of the first embodiment of the present invention
  • FIG. 2B shows the impedance characteristics of the antenna 110 of the comparative example.
  • the horizontal axis represents frequency
  • the vertical axis represents impedance.
  • the graph Re in the figure shows the real number (Real) component of the impedance
  • the graph Im shows the imaginary number (Imaginary) component.
  • the maximum value of the real component Re is smaller and the change of the imaginary component Im is smaller in the antenna 100 of the first embodiment. That is, the antenna 100 of the first embodiment is more stable with less change in impedance characteristics.
  • FIG. 3 (a) shows the VSWR (Voltage Standing Wave Ratio) of the antenna 100 of the first embodiment
  • FIG. 3 (b) shows the VSWR of the antenna 110 of the comparative example. Since the antenna 100 of the first embodiment has a smaller change in impedance characteristics, a change in VSWR within a desired band is smaller. In particular, it can be seen that the characteristic deterioration between the two resonance points is suppressed. As a result, even if the reception frequency band changes, there is no significant difference in the reception power, and there is an advantage that the reception level becomes almost flat.
  • the antenna 100 shown in FIG. 1 (a) has a C-shaped planar shape. However, as in the antenna 100a shown in FIG. It is good also as a shape. Also in this case, an effect of suppressing electromagnetic coupling between the power feeding portion 2s and the tip portion 2t of the power feeding element 2 can be obtained by the cutout portion 1c.
  • the non-exciting element 3 may be provided on the inner side of the feeding element 2, that is, on the cut-out portion 1c side. 4B shows an example of a slot antenna, the non-exciting element 3 may be provided inside the feeding element 2 in the C-shaped antenna 100 shown in FIG.
  • the antenna 100 by enclosing the antenna 100 in the resin case 7, it is possible to prevent the user from directly touching a conductor portion constituting the element. Thereby, corrosion of the element due to rust or the like can be prevented.
  • the antennas 100a and 100b may be similarly enclosed in a resin case.
  • the antenna 100 when the antenna 100 is disposed close to the dielectric material 8 having an area relatively larger than the size of the antenna 100, the antenna 100 is installed alone (the periphery is covered with air). The resonance frequency can be lowered compared to the case of Thereby, the antenna can be further reduced in size. The same applies to the antennas 100a and 100b. At this time, the antenna may or may not be enclosed in the resin case 7.
  • the dielectric material 8 in the case of a vehicle-mounted antenna, for example, a windshield of a vehicle, a dashboard, and the like can be cited.
  • FIG. 6A is a perspective view of an antenna according to the second embodiment.
  • the antenna 200 includes a longitudinal base 11, a feeding element 12, and a non-excitation element 13.
  • the length and width of the power feeding element 12 and the non-excitation element 13 and the size, such as the length, width, and thickness of the base material 11 are determined so that terrestrial digital broadcasting can be satisfactorily received.
  • the substrate 11 has a longitudinal shape and is made of a dielectric material such as ceramic.
  • the dielectric constant of the substrate 1 is about 20
  • the length of the substrate 11 is about 100 to 150 mm
  • the thickness of the substrate 11 is about 3 to 5 mm.
  • the center part of the base material 11 is hollowed out in a rectangular shape, and a cutout part 11c is provided.
  • the base material 11 has a slot-type planar shape.
  • the cutout portion 11c corresponds to the center portion of the base material, and the portion of the base material 11 on the outer periphery of the cutout portion 11c corresponds to the outer peripheral portion of the base material.
  • the power feeding element 12 is formed by arranging a linear element by bending a plurality of elements along the outer periphery of the substrate 11.
  • the power feeding element 12 has a power feeding portion 12 s at the center in the longitudinal direction of the base material 11.
  • the power feeding element 12 has a plurality of linear portions 12 a, 12 b, 12 c and 12 d provided on the upper surface 11 a of the substrate 11.
  • the straight line portion 12a extends from the power supply portion 12s to the vicinity of both ends of the cutout portion 11c in the longitudinal direction of the base material 11.
  • the straight portion 12b extends along the outer periphery of the base material 11 to the end in the longitudinal direction.
  • the straight portion 12 c extends in the short direction of the base material 11 at both ends in the longitudinal direction of the base material 11.
  • the straight portion 12d extends from the longitudinal end of the substrate 11 in the central direction.
  • the power feeding element 12 is disposed so as to surround the cut-out portion 11c.
  • the power feeding element 12 is formed only on the upper surface 11a of the base material 11, and is not formed on the side surface of the base material 11. Can be easily formed, and the manufacturing cost can be reduced.
  • the non-excitation element 13 is a linear element, and is provided on the upper surface 11 a of the substrate 11.
  • the non-excitation element 13 is disposed in the vicinity of the straight line portion 12a of the power feeding element 12 and substantially parallel to the straight line portion 12a.
  • a central portion of the longitudinal base 11 is cut out to provide a cutout portion 11c. Yes.
  • the electromagnetic coupling between the two can be weakened.
  • the antenna 210 of the comparative example has the same structure as the antenna 200 except that the cut-out portion 1 c is not provided.
  • the following characteristics are shown in FIGS. 6B and 6C, in which the antennas 200 and 210 are enclosed in the resin case 7, and a dielectric material having a relatively large area as shown in FIG. 8 is obtained when it is arranged close to 8.
  • FIG. 7A shows the impedance characteristics of the antenna 200 of the second embodiment of the present invention
  • FIG. 7B shows the impedance characteristics of the antenna of the comparative example.
  • the horizontal axis represents frequency
  • the vertical axis represents impedance.
  • the graph Re in the figure shows the real component of the impedance
  • the graph Im shows the imaginary component.
  • the antenna 200 of the second embodiment has a smaller maximum value of the real component Re and a smaller change of the imaginary component Im. That is, the antenna 200 of the second embodiment is more stable with less change in impedance characteristics.
  • FIG. 8A shows the VSWR of the antenna 200 of the second embodiment
  • FIG. 8B shows the VSWR of the antenna of the comparative example. Since the antenna 200 of the second embodiment has a smaller change in impedance characteristics, a change in VSWR within a desired band is smaller. In particular, it can be seen that the characteristic deterioration between the two resonance points is suppressed. As a result, even if the reception frequency band changes, there is no significant difference in the reception power, and there is an advantage that the reception level becomes almost flat.
  • the characteristic deterioration of the intermediate portion of the two resonance characteristics can be reduced also by making the widths of the respective linear portions 12a to 12d constituting the feeding element 12 different. Suppressed.
  • the non-excitation element 13 may be provided on the inner side of the feeding element 12, that is, on the cut-out portion 11c side.
  • the antenna 200 is an example of a slot-shaped antenna
  • the base material 11 may have a C-shaped planar shape as in the antenna 100 shown in FIG.
  • the resonance frequency can be increased as compared with the case where the antenna 200 is installed alone. Can be lowered. Thereby, the antenna can be further reduced in size. At this time, the antenna may or may not be enclosed in the resin case 7.
  • FIG. 9A is a perspective view of an antenna according to the third embodiment
  • FIG. 9B is an exploded perspective view thereof.
  • the antenna 300 includes a longitudinal substrate 21, a power feeding element 22, a non-excitation element 23, and a longitudinal base material 24.
  • the external dimensions of the substrate 21 and the base material 24 are substantially the same.
  • the lengths and widths of the power feeding element 22 and the non-excitation element 23 and the sizes such as the lengths, widths, and thicknesses of the substrate 21 and the base material 24 are determined so that digital terrestrial broadcasting can be received satisfactorily.
  • the substrate 21 is a low dielectric constant substrate, and an example thereof includes an FR4 printed circuit board used for pattern wiring of an electronic circuit. As shown in FIG. 9B, the feeding element 22 and the non-excitation element 23 are formed on the substrate 21. The substrate 21 is not formed with a cut-out portion or the like.
  • the feeding element 22 is formed by arranging a linear element by bending a plurality of elements along the outer periphery of the substrate 21.
  • the power feeding element 22 has a power feeding portion 22 s at the center in the longitudinal direction of the substrate 21.
  • the power feeding element 22 has a plurality of linear portions 22 a, 22 b and 22 c provided on the upper surface of the substrate 21.
  • the straight portion 22 a extends from the power supply portion 22 s to both ends of the substrate 21 in the longitudinal direction of the substrate 21.
  • the straight portion 22b extends along the outer periphery of the substrate 21 to the end in the short direction.
  • the straight portion 22 c extends from the longitudinal end of the substrate 21 in the central direction.
  • the non-excitation element 23 is a linear element and is provided on the upper surface of the substrate 21.
  • the non-excitation element 23 is disposed in the vicinity of the linear portion 22a of the power feeding element 22 and substantially parallel to the linear portion 22a.
  • the base material 24 has a longitudinal shape and is made of a dielectric material such as alumina.
  • the base material 24 is disposed on the surface of the substrate 21 on which the power feeding element 22 and the non-excitation element 23 are formed, and functions as a dielectric cover.
  • the dielectric constant of the base material 24 is higher than the dielectric constant of the substrate 21.
  • the relative dielectric constant of the substrate 21 using the FR4 printed circuit board is about 4 to 5
  • the relative dielectric constant of the base material 24 is about 8 to 10.
  • the length of the substrate 21 and the base material 24 is about 100 to 150 mm
  • the thickness of the substrate 21 is about 1 mm
  • the thickness of the base material 24 is about 2 mm.
  • the central portion of the base material 24 is cut into a rectangular shape, and a cutout portion 24c is provided.
  • the base material 24 has a slot-type planar shape.
  • the cutout portion 24c corresponds to the center portion of the base material, and the portion of the base material 24 in the outer periphery of the cutout portion 24c corresponds to the outer peripheral portion.
  • the pattern of the feeding element 22 and the non-excitation element 23 is formed on the substrate 21 such as a low-cost high-frequency circuit substrate instead of the dielectric base material 24, and the dielectric is not formed thereon.
  • a body substrate 24 is placed. Since the cost of forming the element on the substrate 21 is lower than that of forming the element on the dielectric substrate itself, the cost for manufacturing the antenna can be reduced.
  • a central portion of the longitudinal base material 24 is cut out to provide a cutout portion 24c. Yes.
  • the electromagnetic coupling between the power feeding portion 22s and the tip portion 22t of the power feeding element 22 can be weakened.
  • the substrate 21 is not provided with a hollow portion in the present embodiment, so that the substrate 21 exists between the power feeding portion 22s and the tip portion 22t of the power feeding element 22. Will do.
  • the dielectric constant of the substrate 21 is sufficiently lower than the dielectric constant of the base member 24 as described above, even when the substrate 21 is present, the electromagnetic coupling between the power feeding portion 22s and the tip portion 22t of the power feeding element 22 is achieved. The effect which suppresses is acquired.
  • the dielectric constant of the printed circuit board of FR4 used as the substrate 21 is about 4.5, and electromagnetic coupling can occur when the received signal frequency is a high frequency of about several GHz.
  • this embodiment assumes reception of terrestrial digital broadcasting, and if the relative permittivity of this base material 21, there is almost no electromagnetic coupling to signals in the band of terrestrial digital broadcasting. Therefore, it is not necessary to form a cutout portion in the substrate 21.
  • the characteristics of the antenna of the third embodiment will be described. The following characteristics were obtained when the antenna 200 of the third embodiment was enclosed in the resin case 7 and further placed close to the dielectric material 8 having a relatively large area as shown in FIG. Is.
  • FIG. 10A shows impedance characteristics of the antenna 300 according to the third embodiment of the present invention.
  • FIG. 10B shows the impedance characteristics of the antenna of the second embodiment of the present invention.
  • the horizontal axis represents frequency, and the vertical axis represents impedance.
  • the graph Re in the figure shows the real component of the impedance, and the graph Im shows the imaginary component.
  • the antenna 300 of the third embodiment also has a small maximum value of the real component Re and a small change in the imaginary component Im.
  • FIG. 11A shows the VSWR of the antenna 300 of the third embodiment.
  • FIG. 10B shows the VSWR of the antenna 200 of the second embodiment. Both show stable two-resonance characteristics within the frequency band of terrestrial digital broadcasting.
  • the width of each of the linear portions 22a to 22c constituting the feeding element 22 is also made different, so that the intermediate portion of the two resonance characteristics can be obtained. Deterioration of characteristics is suppressed.
  • the non-excitation element 23 may be provided on the inner side of the feeding element 22, that is, on the side of the cutout portion 24c.
  • the antenna 200 is an example of a slot-shaped antenna
  • the base member 24 may have a C-shaped planar shape like the antenna 100 shown in FIG.
  • the antenna 300 when the antenna 300 is disposed close to the dielectric material 8 having an area relatively larger than the size of the antenna 300, when the antenna 300 is installed alone (the periphery is covered with air).
  • the resonance frequency can be lowered as compared with the case of Thereby, the antenna can be further reduced in size.
  • the antenna may or may not be enclosed in the resin case 7.
  • the amplifier circuit 27 can be mounted inside the cutout portion 24c of the base material 24. Thereby, the thickness of the antenna 300 including the amplifier circuit 27 can be reduced.
  • a signal received by the elements 22 and 23 of the antenna 300 and output from the power feeding unit 22s is amplified by the amplifier circuit 27 and supplied to an external circuit through the cable 27a.
  • the amplifier circuit 28 may be formed on the substrate 21 as shown in FIG. That is, after the feeding element 22, the non-excitation element 23 and the amplifier circuit 28 are formed on the substrate 21, the dielectric base material 24 is mounted on the substrate 21. Also by this, since the electronic components included in the amplifier circuit 28 are accommodated in the cutout portion 24c of the substrate 24, the thickness of the antenna 300 itself including the amplifier circuit 28 can be reduced.
  • FIGS. 13A to 13C show modifications of the dielectric base material 24.
  • the base material 24 should just cover the place where the wavelength contraction effect is effectively obtained on the pattern of the power feeding element 22 formed on the substrate 21.
  • the place where the wavelength contraction effect is effectively obtained refers to a portion where the electromagnetic field coupling between the patterns is strong, and this portion may be covered. This location is determined by simulation or experiment. For example, the vicinity of the end portion of the power feeding element and the vicinity of the power feeding portion are not necessarily covered. Therefore, the substrate 24 has a C-shape as shown in FIG. 13A, a concave shape as shown in FIG. 13B, and a slot shape shown in FIG. Such a concave character can be divided into two.
  • all of the dielectric bases 1, 11, and 24 have a rectangular planar shape, but the application of the present invention is not limited to this. If the length in one direction is a longitudinal shape that is sufficiently longer than the length in the direction perpendicular thereto, an elliptical shape or a rhombic planar shape may be used.
  • the hollow portions 1c, 11c, and 24c formed in the dielectric base materials 1, 11, and 24 are spaces, and air is present.
  • a dielectric having a dielectric constant sufficiently lower than the dielectric constant of the base materials 1, 11, 24 may be disposed inside the cut-out portions 1 c, 11 c, 24 c.
  • the power feeding elements 2, 12, and 22 are all in contact with the dielectric base materials 1, 11, and 24, but this is not essential, and the dielectric base material is the power feeding element. It is only necessary to cover a portion where the above wavelength contraction effect can be obtained. Therefore, the arrangement may be such that a part of the feed element is not in contact with the dielectric substrate.
  • the feed elements 2, 12, and 22 are all linear, but the application of the present invention is not limited to this.
  • the power feeding element may have a zigzag shape or a meander shape.
  • the shape of the dielectric bases 1, 11, and 24 is a rectangular parallelepiped, but the present invention is not limited to this.
  • the base material may have an elliptical shape or a rhombus shape in plan view.
  • the power feeding element may be disposed along the outer periphery of the shape, or may be disposed in a rectangular shape.
  • the present invention can be used for a receiving antenna for terrestrial digital broadcasting mounted on a vehicle. It can also be used as an antenna for receiving terrestrial digital broadcasts for small portable devices such as portable TVs and portable game machines.

Abstract

An elongated antenna has a base material, a feeding element and a nonexciting element. The base material is elongated and the permittivity is different in the outer peripheral portion and the central portion. The feeding element is in contact with at least the outer peripheral portion and arranged along the profile of the outer peripheral portion. The nonexciting element is arranged in proximity to the feeding element. The feeding element is thereby arranged in the outer peripheral portion of the base material, i.e. on the outside of the central portion thereof. When the feeding element is arranged along the outer peripheral portion of the elongated base material, the feeding portion approaches the distal end of the feeding element and coupling of electromagnetic field takes place between them. But since the central portion of the base material is dug out suitably and the permittivity is low as compared with the outer peripheral portion, such coupling of electromagnetic field can be suppressed.

Description

長手形状アンテナLongitudinal antenna
 本発明は、小型アンテナに関する。 The present invention relates to a small antenna.
 現在、車両での地上波デジタル放送受信用アンテナとしてはフィルムアンテナがよく用いられている。 Currently, film antennas are often used as terrestrial digital broadcast receiving antennas in vehicles.
 しかし、フィルムアンテナは、一度貼り付けてしまうと貼り替えがほとんどできない。従って、ユーザや車用品販売店の作業者は取付作業に過剰な慎重さが要求される。また、作業時間も長くなってしまう。このように、フィルムアンテナは非常に取り扱いにくい。 However, once a film antenna is pasted, it can hardly be replaced. Therefore, the user and the operator of the vehicle supply store are required to be excessively careful in the installation work. In addition, the work time becomes longer. Thus, the film antenna is very difficult to handle.
 また、一度剥がしたフィルムアンテナはほとんど再利用できず、廃棄せざるを得ない。貼り付けに失敗すると即廃棄しなければならないという性質は、環境保護の観点から好ましくない。 Also, once peeled off the film antenna can hardly be reused and must be discarded. The property that it must be discarded immediately if the pasting fails is undesirable from the viewpoint of environmental protection.
 なお、携帯電話などに使用される小型アンテナの例が特許文献1、2に記載されている。 In addition, Patent Documents 1 and 2 describe examples of small antennas used for mobile phones and the like.
特開2002-217628号公報JP 2002-217628 A 特開2005-303637号公報JP 2005-303637 A
 本発明が解決しようとする課題としては、上記のようなものが例として挙げられる。本発明は、車両に搭載しても目立たない程度に小型であり、地上波デジタル放送の周波数帯域をカバーできる広帯域な非フィルムタイプの小型アンテナを提供することを課題とする。 Examples of problems to be solved by the present invention include the above. It is an object of the present invention to provide a wide-band non-film type small antenna that is small enough to be inconspicuous even when mounted on a vehicle and can cover the frequency band of terrestrial digital broadcasting.
 請求項1に記載の発明による長手形状アンテナは、長手形状であり、外周部と中心部とで誘電率が異なる第1の基材と、前記第1の基材の外周部と少なくとも接しており、かつ、前記外周部の形状に沿うように配置されている給電素子と、前記給電素子と近接配置されている非励振素子と、を備えることを特徴とする。 The longitudinal antenna according to the first aspect of the present invention has a longitudinal shape and is at least in contact with the first base material having a different dielectric constant between the outer peripheral portion and the central portion, and the outer peripheral portion of the first base material. And it is provided with the feed element arrange | positioned so that the shape of the said outer peripheral part may be followed, and the non-excitation element arrange | positioned in proximity to the said feed element.
第1実施例及び比較例のアンテナの斜視図である。It is a perspective view of the antenna of the 1st example and a comparative example. 第1実施例及び比較例のアンテナのインピーダンス特性である。It is the impedance characteristic of the antenna of 1st Example and a comparative example. 第1実施例及び比較例のアンテナのVSWR特性である。It is a VSWR characteristic of the antenna of a 1st Example and a comparative example. 第1実施例の変形例によるアンテナの斜視図である。It is a perspective view of the antenna by the modification of 1st Example. 第1実施例の変形例によるアンテナの斜視図である。It is a perspective view of the antenna by the modification of 1st Example. 第2実施例及び比較例のアンテナの斜視図である。It is a perspective view of the antenna of 2nd Example and a comparative example. 第2実施例及び比較例のアンテナのインピーダンス特性である。It is the impedance characteristic of the antenna of 2nd Example and a comparative example. 第2実施例及び比較例のアンテナのVSWR特性である。It is a VSWR characteristic of the antenna of 2nd Example and a comparative example. 第3実施例のアンテナの斜視図である。It is a perspective view of the antenna of 3rd Example. 第3実施例及び第2実施例のアンテナのインピーダンス特性である。It is the impedance characteristic of the antenna of 3rd Example and 2nd Example. 第3実施例及び第2実施例のアンテナのVSWR特性である。It is the VSWR characteristic of the antenna of 3rd Example and 2nd Example. 第3実施例の変形例のアンテナの斜視図である。It is a perspective view of the antenna of the modification of 3rd Example. 第3実施例における誘電体基材の形状の例である。It is an example of the shape of the dielectric base material in 3rd Example.
符号の説明Explanation of symbols
 1、11、24 基材
 2、12、22 給電素子
 3、13、23 非励振素子
 7 樹脂ケース
 8 誘電体素材
 21 基板
 27、28 アンプ回路
 100、200、300 アンテナ
1, 11, 24 Base material 2, 12, 22 Feeding element 3, 13, 23 Non-excitation element 7 Resin case 8 Dielectric material 21 Substrate 27, 28 Amplifier circuit 100, 200, 300 Antenna
 本発明の好適な実施形態による長手形状アンテナは、長手形状であり、外周部と中心部とで誘電率が異なる第1の基材と、前記第1の基材の外周部と少なくとも接しており、かつ、前記外周部の形状に沿うように配置されている給電素子と、前記給電素子と近接配置されている非励振素子と、を備える。 A longitudinal antenna according to a preferred embodiment of the present invention has a longitudinal shape, and is at least in contact with a first base material having a different permittivity between an outer peripheral portion and a central portion, and an outer peripheral portion of the first base material. And a power feeding element disposed along the shape of the outer peripheral portion, and a non-excitation element disposed close to the power feeding element.
 上記のアンテナでは、第1の基材は例えばセラミックなどの誘電体により構成され、外周部と中心部とで誘電率が異なる。給電素子は、外周部と少なくとも一部で接しており、かつ、外周部の形状に沿って配置されている。そして、給電素子に近接して非励振素子が配置される。給電素子は、基材の外周部、つまり基材の中心部の外側に配置されている。長手形状の基材の外周部に沿って給電素子を配置すると、給電部と給電素子の先端部とが接近し、両者間に電磁界的結合が生じうる。しかし、上記のアンテナでは、給電部と給電素子との間に介在する基材の中心部は外周部と誘電率が異なるので、そのような電磁界的結合を抑制することができる。 In the above antenna, the first base material is made of a dielectric material such as ceramic, and the outer peripheral portion and the central portion have different dielectric constants. The power feeding element is at least partially in contact with the outer peripheral portion, and is disposed along the shape of the outer peripheral portion. And a non-excitation element is arrange | positioned in proximity to a feed element. The power feeding element is disposed on the outer peripheral portion of the base material, that is, outside the central portion of the base material. When the power feeding element is disposed along the outer periphery of the longitudinal base material, the power feeding part and the tip of the power feeding element come close to each other, and electromagnetic coupling may occur between them. However, in the antenna described above, since the dielectric constant of the center portion of the base material interposed between the power feeding portion and the power feeding element is different from that of the outer peripheral portion, such electromagnetic coupling can be suppressed.
 基材の中心部の誘電率は、外周部の誘電率より小さいことが好ましい。好適な例では前記第1の基材は、前記中心部がくりぬかれている。よって、中心部に空気が介在することにより、給電部と給電素子の先端部との電磁界的結合が抑制される。好適な例では、第1の基材は、中心部のみがくり抜かれたスロット型の平面形状を有する。他の好適な例では、第1の基材は、さらに長手方向の中央における前記外周部の一部が切断されたC字型の平面形状を有する。 The dielectric constant at the center of the substrate is preferably smaller than the dielectric constant at the outer periphery. In a preferred example, the central portion of the first base material is hollowed out. Therefore, the presence of air in the central portion suppresses electromagnetic coupling between the power feeding portion and the tip portion of the power feeding element. In a preferred example, the first base material has a slot-shaped planar shape in which only the central portion is cut out. In another preferred example, the first base material has a C-shaped planar shape in which a part of the outer peripheral portion at the center in the longitudinal direction is further cut.
 上記の長手形状アンテナの一態様では、前記給電素子は、前記第1の基材の短手方向において前記外周部と接している部分の幅が、前記第1の基材の長手方向において前記外周部と接している部分の幅より大きい。給電素子を構成する複数の部分の幅を異ならせることにより、インピーダンス特性を所望の特性となるように調整することができる。 In one aspect of the longitudinal antenna, the feeding element has a width of a portion in contact with the outer peripheral portion in the short direction of the first base material, and the outer periphery in the longitudinal direction of the first base material. It is larger than the width of the part in contact with the part. By varying the widths of the plurality of portions constituting the power feeding element, the impedance characteristics can be adjusted to have desired characteristics.
 上記の長手形状アンテナの他の一態様では、前記給電素子は、前記第1の基材の短手方向において前記外周部と接している部分が複数に分岐している。給電素子の分岐している部分の間隔を適切に設定することにより、インピーダンス特性を所望の特性となるように調整することができる。 In another aspect of the above long antenna, the feeding element has a plurality of portions in contact with the outer peripheral portion in the short direction of the first base material. By appropriately setting the interval between the branched portions of the feed element, the impedance characteristic can be adjusted to a desired characteristic.
 上記の長手形状アンテナの他の一態様は、前記第1の基材の外周部の誘電率より低い誘電率を有する第2の基材を備え、前記給電素子及び前記非励振素子は、前記第2の基材に形成されている。この態様では、第2の基材上に給電素子及び非励振素子が形成され、その上に誘電体の基材が配置される。給電素子や非励振素子を誘電体の基材に形成すると製造コストが高くなる。給電素子及び非励振素子を第2の基材に形成することにより、製造コストを下げることができる。 Another aspect of the longitudinal antenna includes a second base material having a dielectric constant lower than a dielectric constant of an outer peripheral portion of the first base material, and the feed element and the non-excitation element include the first base 2 base materials. In this aspect, the feeding element and the non-excitation element are formed on the second base material, and the dielectric base material is disposed thereon. If a feed element or a non-excitation element is formed on a dielectric substrate, the manufacturing cost increases. By forming the power feeding element and the non-excitation element on the second base material, the manufacturing cost can be reduced.
 上記の長手形状アンテナの他の一態様では、前記給電素子の給電部と、前記給電素子の2つの端部とは、前記第2の基材の長手方向における中央位置近傍で相互に対向配置されている。この場合、特に給電部と給電素子の2つの端部との間に電磁界的結合が生じやすくなるが、基材の中心部の誘電率が外周部と異なるので、そのような結合が効果的に抑制される。 In another aspect of the longitudinal antenna, the feeding portion of the feeding element and the two end portions of the feeding element are arranged to face each other in the vicinity of the center position in the longitudinal direction of the second base material. ing. In this case, in particular, electromagnetic coupling is likely to occur between the feeding portion and the two end portions of the feeding element, but such a coupling is effective because the dielectric constant of the central portion of the substrate is different from that of the outer peripheral portion. To be suppressed.
 上記の長手形状アンテナの好適な例では、前記給電素子は、前記給電素子の2つの端部付近又は前記給電部付近を除く場所において、前記第1の基材と接している。 In a preferred example of the above longitudinal antenna, the power feeding element is in contact with the first base material in the vicinity of two ends of the power feeding element or in a place excluding the vicinity of the power feeding part.
 好適な例では、上記の長手形状アンテナは、樹脂製のケースに封入される。これにより、給電素子及び非励振素子などの導体部分の腐食を防止することができる。 In a preferred example, the longitudinal antenna is enclosed in a resin case. Thereby, corrosion of conductor parts, such as a feed element and a non-excitation element, can be prevented.
 好適な例では、上記の長手形状アンテナは、前記第1の基材の面積よりも広い面積を有する誘電体に近接配置される。これにより、アンテナの共振周波数を下げることができ、その分アンテナを小型化することが可能となる。 In a preferred example, the above longitudinal antenna is disposed close to a dielectric having an area larger than the area of the first base material. As a result, the resonance frequency of the antenna can be lowered, and the antenna can be downsized accordingly.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [第1実施例]
 図1(a)は、第1実施例に係るアンテナの斜視図である。アンテナ100は、長手形状の基材1と、給電素子2と、非励振素子3とを備える。なお、給電素子2及び非励振素子3の長さや幅、基材1の長さ、幅、厚さなどのサイズは、地上波デジタル放送を良好に受信できるように決定されている。
[First embodiment]
FIG. 1A is a perspective view of an antenna according to the first embodiment. The antenna 100 includes a longitudinal base 1, a feed element 2, and a non-excitation element 3. The length and width of the feed element 2 and the non-excitation element 3 and the length, width, and thickness of the base material 1 are determined so that terrestrial digital broadcasting can be received satisfactorily.
 基材1は、長手形状(板状、スティック状)を有し、セラミックなどの誘電体により構成される。本実施例では、基材1の誘電率は20程度であり、基材1の長さは100~150mm程度であり、基材1の厚さは3~5mm程度である。 The substrate 1 has a longitudinal shape (plate shape, stick shape) and is made of a dielectric material such as ceramic. In this embodiment, the dielectric constant of the substrate 1 is about 20, the length of the substrate 1 is about 100 to 150 mm, and the thickness of the substrate 1 is about 3 to 5 mm.
 基材1の中心部は矩形にくりぬかれ、くり抜き部1cが設けられている。また、基材1の長手方向における略中央部は切断され、空間1dが形成されている。その結果、基材1はC字型の平面形状を有している。本実施例では、くり抜き部1cが本発明における基材の「中心部」に相当し、くり抜き部1cの外周における基材1の部分が基材の「外周部」に相当する。 The center part of the base material 1 is hollowed out in a rectangular shape, and a cutout part 1c is provided. Moreover, the substantially center part in the longitudinal direction of the base material 1 is cut | disconnected, and the space 1d is formed. As a result, the substrate 1 has a C-shaped planar shape. In this embodiment, the cut-out portion 1c corresponds to the “center portion” of the base material in the present invention, and the portion of the base material 1 on the outer periphery of the cut-out portion 1c corresponds to the “outer peripheral portion” of the base material.
 給電素子2は、外部から電気的に励振される素子であり、直線状の素子を基材1の外周部に沿って複数回折り曲げて配置することにより形成されている。給電素子2は、基材1の長手方向における中央に給電部2sを有する。アンテナ100により受信された信号は給電部2sから取り出される。給電素子2は、直線部分2a、2b、2c及び2dを有する。直線部分2aは、基材1の上面1aを、給電部2sから基材の1の長手方向に両端まで延びている。直線部分2bは、基材1の両端に沿って、基材1の短手方向に延び、さらに基材1の側面1b上を底面側まで延びている。直線部分2cは、基材1の長手方向の端部より内側で、直線部分2bと略平行に設けられている。直線部分2dは、基材1の側面1b上を底面に沿って基材の1の中央方向へ延びている。こうして、給電素子2は、くり抜き部1cを取り囲むように配置されている。給電素子2の2つの先端部2tは、基材の1の長手方向の中央付近において、くり抜き部1cを介して、給電部2sとほぼ対向する位置に配置されている。 The power feeding element 2 is an element that is electrically excited from the outside, and is formed by arranging a linear element by bending a plurality of elements along the outer periphery of the substrate 1. The power feeding element 2 has a power feeding portion 2 s at the center in the longitudinal direction of the substrate 1. A signal received by the antenna 100 is extracted from the power feeding unit 2s. The feed element 2 has straight portions 2a, 2b, 2c and 2d. The straight portion 2 a extends from the power supply portion 2 s to the both ends in the longitudinal direction of the base 1 from the upper surface 1 a of the base 1. The straight portion 2b extends along the both ends of the base material 1 in the short direction of the base material 1, and further extends on the side surface 1b of the base material 1 to the bottom surface side. The straight line portion 2 c is provided on the inner side of the end portion in the longitudinal direction of the substrate 1 and substantially parallel to the straight line portion 2 b. The straight portion 2d extends on the side surface 1b of the substrate 1 along the bottom surface in the center direction of the substrate 1. Thus, the feed element 2 is arranged so as to surround the cut-out portion 1c. The two front end portions 2t of the power feeding element 2 are arranged in positions near the power feeding portion 2s through the cutout portion 1c in the vicinity of the center of the base 1 in the longitudinal direction.
 なお、給電素子2の直線部分2bと2cは直線部分2aと2dの間で分岐しているが、直線部分2bと2cの間隔を調整することにより、1本の直線部分の太さを太くした場合と同様の効果を得ることができる。 The straight portions 2b and 2c of the feed element 2 are branched between the straight portions 2a and 2d, but the thickness of one straight portion is increased by adjusting the interval between the straight portions 2b and 2c. The same effect as the case can be obtained.
 非励振素子3は、直線状の素子であり、基材1の上面1aに設けられている。非励振素子3は、給電素子2の直線部分2aの近傍に、直線部分2aとほぼ平行に配置されている。非励振素子3は、給電素子2に近接配置されることにより、アンテナ特性を2共振の状態とし、送受信可能な帯域を広げる役割を有する。 The non-excitation element 3 is a linear element, and is provided on the upper surface 1 a of the substrate 1. The non-excitation element 3 is disposed in the vicinity of the straight line portion 2 a of the power feeding element 2 and substantially parallel to the straight line portion 2 a. The non-exciting element 3 has a role of setting the antenna characteristics to the two-resonance state and expanding the band in which transmission and reception can be performed by being arranged close to the feeding element 2.
 本実施例のアンテナ100は、外部から電気的に励振される給電素子2と、その近傍に配置される非励振素子3により構成されており、それらの全長を適宜調整することにより、所望の動作周波数帯域内で2つの共振特性を持たせている。給電素子2のパターンは、基材1の形状に合わせて、直線状の素子を複数回折り曲げたものとなっている。これにより、給電素子の長手方向の長さを短くすることができ、アンテナ100全体を小型化することができる。 The antenna 100 according to the present embodiment includes a power feeding element 2 that is electrically excited from the outside and a non-excitation element 3 that is disposed in the vicinity thereof. Two resonance characteristics are provided in the frequency band. The pattern of the feeding element 2 is obtained by bending a plurality of linear elements in accordance with the shape of the substrate 1. Thereby, the length of the feed element in the longitudinal direction can be shortened, and the entire antenna 100 can be reduced in size.
 本実施例のように、長手形状の基材1に対して、給電素子2をその外周形状に沿うように配置した場合、給電部2sと給電素子2の先端部2tとが近接してしまうため、両者間に電磁界的な結合が起こり、アンテナの特性が悪化してしまうという問題がある。そこで、本発明では、給電部2sと給電素子2の先端部2tとの間の電磁界的な結合を抑制するため、長手形状の基材1の中央部をくり抜いてくり抜き部1cを設けている。給電部2sと給電素子2の先端部2tとの間に空気が介在することにより、両者間の電磁界的な結合を弱めることができる。その結果、2つの共振特性の中間部の特性悪化を抑制することが可能となり、特性の安定したアンテナを実現可能となる。 As in the present embodiment, when the feed element 2 is arranged along the outer peripheral shape of the longitudinal base material 1, the feed part 2s and the tip part 2t of the feed element 2 are close to each other. There is a problem that electromagnetic coupling occurs between the two and the characteristics of the antenna deteriorate. Therefore, in the present invention, in order to suppress the electromagnetic coupling between the power feeding portion 2s and the tip portion 2t of the power feeding element 2, the central portion of the longitudinal base material 1 is cut out to provide the cutout portion 1c. . When air is interposed between the power feeding unit 2s and the tip 2t of the power feeding element 2, the electromagnetic coupling between the two can be weakened. As a result, it is possible to suppress the deterioration of the characteristics of the intermediate portion between the two resonance characteristics, and an antenna having stable characteristics can be realized.
 以下、この点について、比較例と比較しつつ考察する。図1(b)は比較例に係るアンテナ110の斜視図である。比較例のアンテナ110は、くり抜き部1cを設けない点以外は、アンテナ100と同一構造である。 Hereafter, this point will be considered in comparison with the comparative example. FIG. 1B is a perspective view of an antenna 110 according to a comparative example. The antenna 110 of the comparative example has the same structure as the antenna 100 except that the cut-out portion 1c is not provided.
 図2(a)は本発明の第1実施例のアンテナ100のインピーダンス特性を示し、図2(b)は比較例のアンテナ110のインピーダンス特性を示す。横軸は周波数を示し、縦軸はインピーダンスを示す。図中のグラフReはインピーダンスの実数(Real)成分を示し、グラフImは虚数(Imaginary)成分を示す。図2(a)と図2(b)を比較するとわかるように、第1実施例のアンテナ100の方が、実数成分Reの極大値が小さく、虚数成分Imの変化も小さい。つまり、第1実施例のアンテナ100の方が、インピーダンス特性の変化が少なく、安定している。 2A shows the impedance characteristics of the antenna 100 of the first embodiment of the present invention, and FIG. 2B shows the impedance characteristics of the antenna 110 of the comparative example. The horizontal axis represents frequency, and the vertical axis represents impedance. The graph Re in the figure shows the real number (Real) component of the impedance, and the graph Im shows the imaginary number (Imaginary) component. As can be seen by comparing FIG. 2A and FIG. 2B, the maximum value of the real component Re is smaller and the change of the imaginary component Im is smaller in the antenna 100 of the first embodiment. That is, the antenna 100 of the first embodiment is more stable with less change in impedance characteristics.
 図3(a)は第1実施例のアンテナ100のVSWR(Voltage Standing Wave Ratio:電圧定在波比)を示し、図3(b)は比較例のアンテナ110のVSWRを示す。第1実施例のアンテナ100の方がインピーダンス特性の変化が小さいため、所望の帯域内でのVSWRの変化が小さくなる。とりわけ、2つの共振点の間の特性悪化が抑制されていることがわかる。これにより、受信周波数帯が変化しても受信電力に大きな差が生じなくなり、受信レベルがフラットに近くなるという利点が得られる。 FIG. 3 (a) shows the VSWR (Voltage Standing Wave Ratio) of the antenna 100 of the first embodiment, and FIG. 3 (b) shows the VSWR of the antenna 110 of the comparative example. Since the antenna 100 of the first embodiment has a smaller change in impedance characteristics, a change in VSWR within a desired band is smaller. In particular, it can be seen that the characteristic deterioration between the two resonance points is suppressed. As a result, even if the reception frequency band changes, there is no significant difference in the reception power, and there is an advantage that the reception level becomes almost flat.
 図1(a)に示すアンテナ100はC字型の平面形状を有するが、図4(a)に示すアンテナ100aのように基材1に対してくり抜き部1cのみを設けて、スロット状の平面形状としてもよい。この場合も、くり抜き部1cにより給電部2sと給電素子2の先端部2tとの間の電磁界的結合を抑制する効果が得られる。 The antenna 100 shown in FIG. 1 (a) has a C-shaped planar shape. However, as in the antenna 100a shown in FIG. It is good also as a shape. Also in this case, an effect of suppressing electromagnetic coupling between the power feeding portion 2s and the tip portion 2t of the power feeding element 2 can be obtained by the cutout portion 1c.
 図4(b)に示すアンテナ100bのように、非励振素子3を給電素子2より内側、即ちくり抜き部1c側に設けてもよい。なお、図4(b)はスロット状のアンテナの例であるが、図1に示すC字型のアンテナ100において、非励振素子3を給電素子2より内側に設けることとしてもよい。 As in the antenna 100b shown in FIG. 4B, the non-exciting element 3 may be provided on the inner side of the feeding element 2, that is, on the cut-out portion 1c side. 4B shows an example of a slot antenna, the non-exciting element 3 may be provided inside the feeding element 2 in the C-shaped antenna 100 shown in FIG.
 図4(c)に示すように、アンテナ100を樹脂ケース7に封入することにより、ユーザが素子を構成する導体部分に直接触れることを防止できる。これにより、錆などによる素子の腐食を防止できる。なお、アンテナ100a、100bを同様に樹脂ケースに封入してもよい。 As shown in FIG. 4C, by enclosing the antenna 100 in the resin case 7, it is possible to prevent the user from directly touching a conductor portion constituting the element. Thereby, corrosion of the element due to rust or the like can be prevented. The antennas 100a and 100b may be similarly enclosed in a resin case.
 また、図5に示すように、アンテナ100を、その大きさよりも相対的に広い面積を有する誘電体素材8に近接させて配置させれば、単独で設置した場合(周囲が空気で覆われている場合)と比較して共振周波数を下げることができる。これにより、さらにアンテナを小型化することができる。アンテナ100a、100bなどについても同様である。このとき、アンテナは樹脂ケース7に封入されていても、されていなくてもよい。なお、誘電体素材8としては、車載用アンテナの場合、例えば車両のフロントガラス、ダッシュボードなどが挙げられる。 In addition, as shown in FIG. 5, when the antenna 100 is disposed close to the dielectric material 8 having an area relatively larger than the size of the antenna 100, the antenna 100 is installed alone (the periphery is covered with air). The resonance frequency can be lowered compared to the case of Thereby, the antenna can be further reduced in size. The same applies to the antennas 100a and 100b. At this time, the antenna may or may not be enclosed in the resin case 7. In addition, as the dielectric material 8, in the case of a vehicle-mounted antenna, for example, a windshield of a vehicle, a dashboard, and the like can be cited.
 [第2実施例]
 図6(a)は、第2実施例に係るアンテナの斜視図である。アンテナ200は、長手形状の基材11と、給電素子12と、非励振素子13とを備える。なお、給電素子12及び非励振素子13の長さや幅、基材11の長さ、幅、厚さなどのサイズは、地上波デジタル放送を良好に受信できるように決定されている。
[Second Embodiment]
FIG. 6A is a perspective view of an antenna according to the second embodiment. The antenna 200 includes a longitudinal base 11, a feeding element 12, and a non-excitation element 13. The length and width of the power feeding element 12 and the non-excitation element 13 and the size, such as the length, width, and thickness of the base material 11 are determined so that terrestrial digital broadcasting can be satisfactorily received.
 基材11は、長手形状を有し、セラミックなどの誘電体により構成される。本実施例では、基材1の誘電率は20程度であり、基材11の長さは100~150mm程度であり、基材11の厚さは3~5mm程度である。 The substrate 11 has a longitudinal shape and is made of a dielectric material such as ceramic. In this embodiment, the dielectric constant of the substrate 1 is about 20, the length of the substrate 11 is about 100 to 150 mm, and the thickness of the substrate 11 is about 3 to 5 mm.
 基材11の中心部は矩形にくりぬかれ、くり抜き部11cが設けられている。その結果、基材11はスロット型の平面形状を有している。本実施例では、くり抜き部11cが基材の中心部に相当し、くり抜き部11cの外周における基材11の部分が基材の外周部に相当する。 The center part of the base material 11 is hollowed out in a rectangular shape, and a cutout part 11c is provided. As a result, the base material 11 has a slot-type planar shape. In this embodiment, the cutout portion 11c corresponds to the center portion of the base material, and the portion of the base material 11 on the outer periphery of the cutout portion 11c corresponds to the outer peripheral portion of the base material.
 給電素子12は、直線状の素子を基材11の外周部に沿って複数回折り曲げて配置することにより形成されている。給電素子12は、基材11の長手方向における中央に給電部12sを有する。給電素子12は、基材11の上面11aに設けられた複数の直線部分12a、12b、12c及び12dを有する。直線部分12aは、給電部12sから基材11の長手方向にくり抜き部11cの両端付近まで延びている。直線部分12bは、基材11の外周に沿って長手方向の端部まで延びている。直線部分12cは基材11の長手方向の両端において、基材11の短手方向に延びている。直線部分12dは、基材11の長手方向の端部から中央方向へ延びている。このように、給電素子12は、くり抜き部11cを取り囲むように配置されている。なお、第2実施例では、第1実施例と比較して、給電素子12が基材11の上面11aのみに形成されており、基材11の側面には形成されていないので、給電素子12の形成が容易となり、製造コストの低減が可能となる。 The power feeding element 12 is formed by arranging a linear element by bending a plurality of elements along the outer periphery of the substrate 11. The power feeding element 12 has a power feeding portion 12 s at the center in the longitudinal direction of the base material 11. The power feeding element 12 has a plurality of linear portions 12 a, 12 b, 12 c and 12 d provided on the upper surface 11 a of the substrate 11. The straight line portion 12a extends from the power supply portion 12s to the vicinity of both ends of the cutout portion 11c in the longitudinal direction of the base material 11. The straight portion 12b extends along the outer periphery of the base material 11 to the end in the longitudinal direction. The straight portion 12 c extends in the short direction of the base material 11 at both ends in the longitudinal direction of the base material 11. The straight portion 12d extends from the longitudinal end of the substrate 11 in the central direction. Thus, the power feeding element 12 is disposed so as to surround the cut-out portion 11c. In the second embodiment, as compared with the first embodiment, the power feeding element 12 is formed only on the upper surface 11a of the base material 11, and is not formed on the side surface of the base material 11. Can be easily formed, and the manufacturing cost can be reduced.
 非励振素子13は、直線状の素子であり、基材11の上面11aに設けられている。非励振素子13は、給電素子12の直線部分12aの近傍に、直線部分12aとほぼ平行に配置されている。 The non-excitation element 13 is a linear element, and is provided on the upper surface 11 a of the substrate 11. The non-excitation element 13 is disposed in the vicinity of the straight line portion 12a of the power feeding element 12 and substantially parallel to the straight line portion 12a.
 第2実施例においても、給電部12sと給電素子12の先端部12tとの間の電磁界的な結合を抑制するため、長手形状の基材11の中央部をくり抜いてくり抜き部11cを設けている。給電部12sと給電素子12の先端部12tとの間に空気が介在することにより、両者間の電磁界的な結合を弱めることができる。その結果、2つの共振特性の中間部の特性悪化を抑制することが可能となり、特性の安定したアンテナを実現可能となる。 Also in the second embodiment, in order to suppress electromagnetic coupling between the power feeding portion 12s and the tip end portion 12t of the power feeding element 12, a central portion of the longitudinal base 11 is cut out to provide a cutout portion 11c. Yes. When air is interposed between the power feeding part 12s and the tip part 12t of the power feeding element 12, the electromagnetic coupling between the two can be weakened. As a result, it is possible to suppress the deterioration of the characteristics of the intermediate portion between the two resonance characteristics, and an antenna having stable characteristics can be realized.
 以下、この点について、比較例と比較しつつ考察する。比較例のアンテナ210は、図6(c)に示すように、くり抜き部1cを設けない点以外は、アンテナ200と同一構造とする。なお、以下の特性は、図6(b)及び6(c)に示すように、アンテナ200及び210を樹脂ケース7に封入し、さらに図5のように相対的に広い面積を有する誘電体素材8に近接させて配置した場合に得られたものである。 Hereafter, this point will be considered in comparison with the comparative example. As shown in FIG. 6C, the antenna 210 of the comparative example has the same structure as the antenna 200 except that the cut-out portion 1 c is not provided. The following characteristics are shown in FIGS. 6B and 6C, in which the antennas 200 and 210 are enclosed in the resin case 7, and a dielectric material having a relatively large area as shown in FIG. 8 is obtained when it is arranged close to 8.
 図7(a)は本発明の第2実施例のアンテナ200のインピーダンス特性を示し、図7(b)は比較例のアンテナのインピーダンス特性を示す。横軸は周波数を示し、縦軸はインピーダンスを示す。図中のグラフReはインピーダンスの実数成分を示し、グラフImは虚数成分を示す。図7(a)と図7(b)を比較するとわかるように、第2実施例のアンテナ200の方が、実数成分Reの極大値が小さく、虚数成分Imの変化も小さい。つまり、第2実施例のアンテナ200の方が、インピーダンス特性の変化が少なく、安定している。 7A shows the impedance characteristics of the antenna 200 of the second embodiment of the present invention, and FIG. 7B shows the impedance characteristics of the antenna of the comparative example. The horizontal axis represents frequency, and the vertical axis represents impedance. The graph Re in the figure shows the real component of the impedance, and the graph Im shows the imaginary component. As can be seen by comparing FIG. 7A and FIG. 7B, the antenna 200 of the second embodiment has a smaller maximum value of the real component Re and a smaller change of the imaginary component Im. That is, the antenna 200 of the second embodiment is more stable with less change in impedance characteristics.
 図8(a)は第2実施例のアンテナ200のVSWRを示し、図8(b)は比較例のアンテナのVSWRを示す。第2実施例のアンテナ200の方がインピーダンス特性の変化が小さいため、所望の帯域内でのVSWRの変化が小さくなる。とりわけ、2つの共振点の間の特性悪化が抑制されていることがわかる。これにより、受信周波数帯が変化しても受信電力に大きな差が生じなくなり、受信レベルがフラットに近くなるという利点が得られる。 FIG. 8A shows the VSWR of the antenna 200 of the second embodiment, and FIG. 8B shows the VSWR of the antenna of the comparative example. Since the antenna 200 of the second embodiment has a smaller change in impedance characteristics, a change in VSWR within a desired band is smaller. In particular, it can be seen that the characteristic deterioration between the two resonance points is suppressed. As a result, even if the reception frequency band changes, there is no significant difference in the reception power, and there is an advantage that the reception level becomes almost flat.
 また、第2実施例では、図6(a)に示すように、給電素子12を構成する各直線部分12a~12dの幅を異ならせることによっても、2つの共振特性の中間部の特性悪化を抑制している。 Further, in the second embodiment, as shown in FIG. 6A, the characteristic deterioration of the intermediate portion of the two resonance characteristics can be reduced also by making the widths of the respective linear portions 12a to 12d constituting the feeding element 12 different. Suppressed.
 第2実施例においても、図4(b)に示すアンテナ100bと同様に、非励振素子13を給電素子12より内側、即ちくり抜き部11c側に設けてもよい。また、アンテナ200はスロット状のアンテナの例であるが、図1に示すアンテナ100のように、基材11をC字型の平面形状としてもよい。 Also in the second embodiment, similarly to the antenna 100b shown in FIG. 4B, the non-excitation element 13 may be provided on the inner side of the feeding element 12, that is, on the cut-out portion 11c side. Further, although the antenna 200 is an example of a slot-shaped antenna, the base material 11 may have a C-shaped planar shape as in the antenna 100 shown in FIG.
 図6(b)に示すように、アンテナ200を樹脂ケース7に封入することにより、ユーザが素子を構成する導体部分に直接触れることを防止できる。これにより、錆などによる素子の腐食を防止できる。 As shown in FIG. 6B, by enclosing the antenna 200 in the resin case 7, it is possible to prevent the user from directly touching the conductor portion constituting the element. Thereby, corrosion of the element due to rust or the like can be prevented.
 また、図5の例と同様に、アンテナ200を、その大きさよりも相対的に広い面積を有する誘電体素材8に近接させて配置させれば、単独で設置した場合と比較して共振周波数を下げることができる。これにより、さらにアンテナを小型化することができる。このとき、アンテナは樹脂ケース7に封入されていても、されていなくてもよい。 Similarly to the example of FIG. 5, if the antenna 200 is disposed close to the dielectric material 8 having an area relatively larger than the size, the resonance frequency can be increased as compared with the case where the antenna 200 is installed alone. Can be lowered. Thereby, the antenna can be further reduced in size. At this time, the antenna may or may not be enclosed in the resin case 7.
 [第3実施例]
 図9(a)は第3実施例に係るアンテナの斜視図であり、図9(b)はその分解斜視図である。アンテナ300は、長手形状の基板21と、給電素子22と、非励振素子23と、長手形状の基材24とを備える。基板21と基材24の外形寸法はほぼ同一である。なお、給電素子22及び非励振素子23の長さや幅、基板21及び基材24の長さ、幅、厚さなどのサイズは、地上波デジタル放送を良好に受信できるように決定されている。
[Third embodiment]
FIG. 9A is a perspective view of an antenna according to the third embodiment, and FIG. 9B is an exploded perspective view thereof. The antenna 300 includes a longitudinal substrate 21, a power feeding element 22, a non-excitation element 23, and a longitudinal base material 24. The external dimensions of the substrate 21 and the base material 24 are substantially the same. The lengths and widths of the power feeding element 22 and the non-excitation element 23 and the sizes such as the lengths, widths, and thicknesses of the substrate 21 and the base material 24 are determined so that digital terrestrial broadcasting can be received satisfactorily.
 基板21は低誘電率の基板であり、一例としては電子回路のパターン配線で使用されるFR4プリント基板などが挙げられる。図9(b)に示されるように、給電素子22及び非励振素子23は基板21上に形成される。なお、基板21にはくり抜き部などは形成されない。 The substrate 21 is a low dielectric constant substrate, and an example thereof includes an FR4 printed circuit board used for pattern wiring of an electronic circuit. As shown in FIG. 9B, the feeding element 22 and the non-excitation element 23 are formed on the substrate 21. The substrate 21 is not formed with a cut-out portion or the like.
 給電素子22は、直線状の素子を基板21の外周部に沿って複数回折り曲げて配置することにより形成されている。給電素子22は、基板21の長手方向における中央に給電部22sを有する。給電素子22は、基板21の上面に設けられた複数の直線部分22a、22b及び22cを有する。直線部分22aは、給電部22sから基板21の長手方向に基板21の両端まで延びている。直線部分22bは、基板21の外周に沿って短手方向の端部まで延びている。直線部分22cは、基板21の長手方向の端部から中央方向へ延びている。 The feeding element 22 is formed by arranging a linear element by bending a plurality of elements along the outer periphery of the substrate 21. The power feeding element 22 has a power feeding portion 22 s at the center in the longitudinal direction of the substrate 21. The power feeding element 22 has a plurality of linear portions 22 a, 22 b and 22 c provided on the upper surface of the substrate 21. The straight portion 22 a extends from the power supply portion 22 s to both ends of the substrate 21 in the longitudinal direction of the substrate 21. The straight portion 22b extends along the outer periphery of the substrate 21 to the end in the short direction. The straight portion 22 c extends from the longitudinal end of the substrate 21 in the central direction.
 非励振素子23は、直線状の素子であり、基板21の上面に設けられている。非励振素子23は、給電素子22の直線部分22aの近傍に、直線部分22aとほぼ平行に配置されている。 The non-excitation element 23 is a linear element and is provided on the upper surface of the substrate 21. The non-excitation element 23 is disposed in the vicinity of the linear portion 22a of the power feeding element 22 and substantially parallel to the linear portion 22a.
 基材24は、長手形状を有し、アルミナなどの誘電体により構成される。基材24は、給電素子22及び非励振素子23が形成された基板21の面上に配置され、誘電体カバーとして機能する。基材24の誘電率は基板21の誘電率より高い。例えば、FR4プリント基板を用いた基板21の比誘電率が4~5程度であるのに対して、基材24の比誘電率は8~10程度である。また、本実施例では、基板21及び基材24の長さは100~150mm程度、基板21の厚さは1mm程度、基材24の厚さは2mm程度である。 The base material 24 has a longitudinal shape and is made of a dielectric material such as alumina. The base material 24 is disposed on the surface of the substrate 21 on which the power feeding element 22 and the non-excitation element 23 are formed, and functions as a dielectric cover. The dielectric constant of the base material 24 is higher than the dielectric constant of the substrate 21. For example, the relative dielectric constant of the substrate 21 using the FR4 printed circuit board is about 4 to 5, while the relative dielectric constant of the base material 24 is about 8 to 10. In this embodiment, the length of the substrate 21 and the base material 24 is about 100 to 150 mm, the thickness of the substrate 21 is about 1 mm, and the thickness of the base material 24 is about 2 mm.
 基材24の中心部は矩形にくりぬかれ、くり抜き部24cが設けられている。その結果、基材24はスロット型の平面形状を有している。本実施例では、くり抜き部24cが基材の中心部に相当し、くり抜き部24cの外周における基材24の部分が外周部に相当する。 The central portion of the base material 24 is cut into a rectangular shape, and a cutout portion 24c is provided. As a result, the base material 24 has a slot-type planar shape. In this embodiment, the cutout portion 24c corresponds to the center portion of the base material, and the portion of the base material 24 in the outer periphery of the cutout portion 24c corresponds to the outer peripheral portion.
 本実施例では、誘電体の基材24ではなく、低コストの高周波回路用基板などの基板21に給電素子22及び非励振素子23のパターンを形成し、その上に素子を形成していない誘電体の基材24を配置する。誘電体基材そのものに素子を形成するより、基板21に素子を形成する方がコストが低いので、アンテナを製造するコストを低減することができる。 In the present embodiment, the pattern of the feeding element 22 and the non-excitation element 23 is formed on the substrate 21 such as a low-cost high-frequency circuit substrate instead of the dielectric base material 24, and the dielectric is not formed thereon. A body substrate 24 is placed. Since the cost of forming the element on the substrate 21 is lower than that of forming the element on the dielectric substrate itself, the cost for manufacturing the antenna can be reduced.
 第3実施例においても、給電部22sと給電素子22の先端部22tとの間の電磁界的な結合を抑制するため、長手形状の基材24の中央部をくり抜いてくり抜き部24cを設けている。これにより、給電部22sと給電素子22の先端部22tとの間の電磁界的な結合を弱めることができる。その結果、2つの共振特性の中間部の特性悪化を抑制することが可能となり、特性の安定したアンテナを実現可能となる。なお、第1及び第2実施例と比較すると、本実施例では基板21にはくり抜き部が設けられていないので、給電部22sと給電素子22の先端部22tとの間には基板21が存在することになる。しかし、前述のように基板21の誘電率は基材24の誘電率より十分に低いので、基板21が存在していても、給電部22sと給電素子22の先端部22tとの電磁界的結合を抑制する効果は得られる。 Also in the third embodiment, in order to suppress electromagnetic coupling between the power feeding portion 22s and the tip end portion 22t of the power feeding element 22, a central portion of the longitudinal base material 24 is cut out to provide a cutout portion 24c. Yes. Thereby, the electromagnetic coupling between the power feeding portion 22s and the tip portion 22t of the power feeding element 22 can be weakened. As a result, it is possible to suppress the deterioration of the characteristics of the intermediate portion between the two resonance characteristics, and an antenna having stable characteristics can be realized. Compared with the first and second embodiments, the substrate 21 is not provided with a hollow portion in the present embodiment, so that the substrate 21 exists between the power feeding portion 22s and the tip portion 22t of the power feeding element 22. Will do. However, since the dielectric constant of the substrate 21 is sufficiently lower than the dielectric constant of the base member 24 as described above, even when the substrate 21 is present, the electromagnetic coupling between the power feeding portion 22s and the tip portion 22t of the power feeding element 22 is achieved. The effect which suppresses is acquired.
 なお、基板21として使用するFR4のプリント基板の比誘電率は4.5程度であり、受信信号周波数が数GHz程度の高周波である場合には電磁界的な結合が生じうる。しかし、本実施例は地上波デジタル放送の受信を想定しており、この基材21の比誘電率ならば、地上波デジタル放送の帯域の信号に対しては電磁界的な結合がほとんど起こらないので、基板21にくり抜き部を形成する必要はない。 Note that the dielectric constant of the printed circuit board of FR4 used as the substrate 21 is about 4.5, and electromagnetic coupling can occur when the received signal frequency is a high frequency of about several GHz. However, this embodiment assumes reception of terrestrial digital broadcasting, and if the relative permittivity of this base material 21, there is almost no electromagnetic coupling to signals in the band of terrestrial digital broadcasting. Therefore, it is not necessary to form a cutout portion in the substrate 21.
 以下、第3実施例のアンテナの特性について説明する。なお、以下の特性は、第3実施例のアンテナ200を樹脂ケース7に封入し、さらに図5のように相対的に広い面積を有する誘電体素材8に近接させて配置した場合に得られたものである。 Hereinafter, the characteristics of the antenna of the third embodiment will be described. The following characteristics were obtained when the antenna 200 of the third embodiment was enclosed in the resin case 7 and further placed close to the dielectric material 8 having a relatively large area as shown in FIG. Is.
 図10(a)は本発明の第3実施例のアンテナ300のインピーダンス特性を示す。参考として、図10(b)に本発明の第2実施例のアンテナのインピーダンス特性を示す。横軸は周波数を示し、縦軸はインピーダンスを示す。図中のグラフReはインピーダンスの実数成分を示し、グラフImは虚数成分を示す。図10(a)と図10(b)が示すように、第3実施例のアンテナ300も実数成分Reの極大値が小さく、虚数成分Imの変化も小さい。 FIG. 10A shows impedance characteristics of the antenna 300 according to the third embodiment of the present invention. For reference, FIG. 10B shows the impedance characteristics of the antenna of the second embodiment of the present invention. The horizontal axis represents frequency, and the vertical axis represents impedance. The graph Re in the figure shows the real component of the impedance, and the graph Im shows the imaginary component. As shown in FIGS. 10A and 10B, the antenna 300 of the third embodiment also has a small maximum value of the real component Re and a small change in the imaginary component Im.
 図11(a)は第3実施例のアンテナ300のVSWRを示す。参考として、図10(b)に第2実施例のアンテナ200のVSWRを示す。いずれも地上波デジタル放送の周波数帯域内で安定した2共振の特性を示している。 FIG. 11A shows the VSWR of the antenna 300 of the third embodiment. For reference, FIG. 10B shows the VSWR of the antenna 200 of the second embodiment. Both show stable two-resonance characteristics within the frequency band of terrestrial digital broadcasting.
 第3実施例では、図9(a)及び9(b)に示すように、給電素子22を構成する各直線部分22a~22cの幅を異ならせることによっても、2つの共振特性の中間部の特性悪化を抑制している。 In the third embodiment, as shown in FIGS. 9 (a) and 9 (b), the width of each of the linear portions 22a to 22c constituting the feeding element 22 is also made different, so that the intermediate portion of the two resonance characteristics can be obtained. Deterioration of characteristics is suppressed.
 第3実施例においても、図4(b)に示すアンテナ100bと同様に、非励振素子23を給電素子22より内側、即ちくり抜き部24c側に設けてもよい。また、アンテナ200はスロット状のアンテナの例であるが、図1に示すアンテナ100のように、基材24をC字型の平面形状としてもよい。 Also in the third embodiment, similarly to the antenna 100b shown in FIG. 4B, the non-excitation element 23 may be provided on the inner side of the feeding element 22, that is, on the side of the cutout portion 24c. Further, although the antenna 200 is an example of a slot-shaped antenna, the base member 24 may have a C-shaped planar shape like the antenna 100 shown in FIG.
 図6(b)に示すように、アンテナ300を樹脂ケース7に封入することにより、ユーザが素子を構成する導体部分に直接触れることを防止できる。これにより、錆などによる素子の腐食を防止できる。 As shown in FIG. 6B, by enclosing the antenna 300 in the resin case 7, it is possible to prevent the user from directly touching the conductor portion constituting the element. Thereby, corrosion of the element due to rust or the like can be prevented.
 また、図5の例と同様に、アンテナ300を、その大きさよりも相対的に広い面積を有する誘電体素材8に近接させて配置させれば、単独で設置した場合(周囲が空気で覆われている場合)と比較して共振周波数を下げることができる。これにより、さらにアンテナを小型化することができる。このとき、アンテナは樹脂ケース7に封入されていても、されていなくてもよい。 Similarly to the example of FIG. 5, when the antenna 300 is disposed close to the dielectric material 8 having an area relatively larger than the size of the antenna 300, when the antenna 300 is installed alone (the periphery is covered with air). The resonance frequency can be lowered as compared with the case of Thereby, the antenna can be further reduced in size. At this time, the antenna may or may not be enclosed in the resin case 7.
 また、第3実施例では、図12(a)に示すように、基材24のくり抜き部24c内部にアンプ回路27を実装することができる。これにより、アンプ回路27を含めたアンテナ300の厚さを薄くすることができる。図12(a)の例では、アンテナ300の素子22及び23により受信され、給電部22sから出力された信号がアンプ回路27により増幅され、ケーブル27aを通じて外部の回路へ供給される。 In the third embodiment, as shown in FIG. 12A, the amplifier circuit 27 can be mounted inside the cutout portion 24c of the base material 24. Thereby, the thickness of the antenna 300 including the amplifier circuit 27 can be reduced. In the example of FIG. 12A, a signal received by the elements 22 and 23 of the antenna 300 and output from the power feeding unit 22s is amplified by the amplifier circuit 27 and supplied to an external circuit through the cable 27a.
 また、他の例では、図12(b)に示すように、アンプ回路28を基板21に形成してもよい。即ち、基板21に給電素子22、非励振素子23及びアンプ回路28を形成した後、誘電体の基材24を基板21上に装着する。これによっても、アンプ回路28に含まれる電子部品は基板24のくり抜き部24c内に収まるので、アンプ回路28を含めたアンテナ300自体の厚さを薄くすることができる。 In another example, the amplifier circuit 28 may be formed on the substrate 21 as shown in FIG. That is, after the feeding element 22, the non-excitation element 23 and the amplifier circuit 28 are formed on the substrate 21, the dielectric base material 24 is mounted on the substrate 21. Also by this, since the electronic components included in the amplifier circuit 28 are accommodated in the cutout portion 24c of the substrate 24, the thickness of the antenna 300 itself including the amplifier circuit 28 can be reduced.
 図13(a)~(c)に誘電体の基材24の変形例を示す。基材24は、基板21上に形成された給電素子22のパターン上の、波長収縮効果が効果的に得られる場所をカバーすればよい。波長収縮効果が効果的に得られる場所とは、パターン間の電磁界結合が強い部分を指し、この部分をカバーすればよい。この場所はシミュレーションまたは実験により決定される。例えば、給電素子の端部付近や給電部付近は必ずしもカバーされる必要はない。よって、基材24は、図12(b)に示すスロット型以外にも、図13(a)のようなC字型、図13(b)のような凹字型、図13(c)のような凹字を2分割した形状などとすることができる。 FIGS. 13A to 13C show modifications of the dielectric base material 24. FIG. The base material 24 should just cover the place where the wavelength contraction effect is effectively obtained on the pattern of the power feeding element 22 formed on the substrate 21. The place where the wavelength contraction effect is effectively obtained refers to a portion where the electromagnetic field coupling between the patterns is strong, and this portion may be covered. This location is determined by simulation or experiment. For example, the vicinity of the end portion of the power feeding element and the vicinity of the power feeding portion are not necessarily covered. Therefore, the substrate 24 has a C-shape as shown in FIG. 13A, a concave shape as shown in FIG. 13B, and a slot shape shown in FIG. Such a concave character can be divided into two.
 [変形例]
 上記の実施例では、誘電体の基材1、11、24はいずれも長方形の平面形状であるが、本発明の適用はこれには限られない。一方向の長さが、それと垂直な方向の長さより十分に長い長手形状であれば、楕円形状や菱形の平面形状であってもよい。
[Modification]
In the above embodiment, all of the dielectric bases 1, 11, and 24 have a rectangular planar shape, but the application of the present invention is not limited to this. If the length in one direction is a longitudinal shape that is sufficiently longer than the length in the direction perpendicular thereto, an elliptical shape or a rhombic planar shape may be used.
 上記の実施例では、誘電体の基材1、11、24に形成されるくり抜き部1c、11c、24cの内部は空間となっており、空気が存在している。その代わりに、くり抜き部1c、11c、24c内部に、その基材1、11、24の誘電率より十分に低い誘電率を有する誘電体を配置してもよい。 In the above embodiment, the hollow portions 1c, 11c, and 24c formed in the dielectric base materials 1, 11, and 24 are spaces, and air is present. Instead, a dielectric having a dielectric constant sufficiently lower than the dielectric constant of the base materials 1, 11, 24 may be disposed inside the cut-out portions 1 c, 11 c, 24 c.
 上記の実施例では、給電素子2、12、22は全ての部分が誘電体の基材1、11、24に接触しているが、これは必須ではなく、誘電体の基材は、給電素子上の波長収縮効果が得られる部分をカバーしていればよい。よって、給電素子の一部が誘電体の基材と接触していないような配置であっても構わない。 In the above embodiment, the power feeding elements 2, 12, and 22 are all in contact with the dielectric base materials 1, 11, and 24, but this is not essential, and the dielectric base material is the power feeding element. It is only necessary to cover a portion where the above wavelength contraction effect can be obtained. Therefore, the arrangement may be such that a part of the feed element is not in contact with the dielectric substrate.
 上記の実施例では、給電素子2、12、22はいずれも直線状であるが、本発明の適用はこれには限られない。例えば、給電素子はジグザグ形状やメアンダ(meander)形状であってもよい。 In the above embodiment, the feed elements 2, 12, and 22 are all linear, but the application of the present invention is not limited to this. For example, the power feeding element may have a zigzag shape or a meander shape.
 上記の実施例では、誘電体の基材1、11、24の形状は直方体となっているが、本発明はこれには限定されない。基材は平面形状が楕円形や菱形などでも構わない。その場合、給電素子はその形状の外周に沿って配置されてもよく、長方形に配置されてもよい。 In the above embodiment, the shape of the dielectric bases 1, 11, and 24 is a rectangular parallelepiped, but the present invention is not limited to this. The base material may have an elliptical shape or a rhombus shape in plan view. In that case, the power feeding element may be disposed along the outer periphery of the shape, or may be disposed in a rectangular shape.
 本発明は、車両に搭載される地上波デジタル放送の受信アンテナに利用することができる。また、ポータブルTV、ポータブルゲーム機など、小型携帯機器用の地上波デジタル放送受信用アンテナとして利用することができる。 The present invention can be used for a receiving antenna for terrestrial digital broadcasting mounted on a vehicle. It can also be used as an antenna for receiving terrestrial digital broadcasts for small portable devices such as portable TVs and portable game machines.

Claims (10)

  1.  長手形状であり、外周部と中心部とで誘電率が異なる第1の基材と、
     前記第1の基材の外周部と少なくとも接しており、かつ、前記外周部の形状に沿うように配置されている給電素子と、
     前記給電素子と近接配置されている非励振素子と、を備えることを特徴とする長手形状アンテナ。
    A first base material having a longitudinal shape and having a different dielectric constant between an outer peripheral portion and a central portion;
    A power feeding element that is at least in contact with the outer peripheral portion of the first base material and is arranged so as to follow the shape of the outer peripheral portion;
    A longitudinal antenna, comprising: the feed element and a non-excitation element arranged in proximity.
  2.  前記第1の基材は、前記中心部がくりぬかれていることを特徴とする請求項1に記載の長手形状アンテナ。 The longitudinal antenna according to claim 1, wherein the central portion of the first base material is hollowed out.
  3.  前記第1の基材は、長手方向の中央における前記外周部の一部が切断されたC字型平面形状を有することを特徴とする請求項2に記載の長手形状アンテナ。 3. The longitudinal antenna according to claim 2, wherein the first base material has a C-shaped planar shape in which a part of the outer peripheral portion at the center in the longitudinal direction is cut.
  4.  前記給電素子は、前記第1の基材の短手方向において前記外周部と接している部分の幅が、前記第1の基材の長手方向において前記外周部と接している部分の幅より大きいことを特徴とする請求項1乃至3のいずれか一項に記載の長手形状アンテナ。 In the power feeding element, the width of the portion in contact with the outer peripheral portion in the short direction of the first base material is larger than the width of the portion in contact with the outer peripheral portion in the longitudinal direction of the first base material. The longitudinal antenna according to claim 1, wherein the antenna is a longitudinal antenna.
  5.  前記給電素子は、前記第1の基材の短手方向において前記外周部と接している部分が複数に分岐していることを特徴とする請求項1乃至4のいずれか一項に記載の長手形状アンテナ。 5. The longitudinal direction according to claim 1, wherein a portion of the power feeding element that is in contact with the outer peripheral portion in a short direction of the first base material is branched into a plurality of portions. Shape antenna.
  6.  前記第1の基材の外周部の誘電率より低い誘電率を有する第2の基材を備え、
     前記給電素子及び前記非励振素子は、前記第2の基材に形成されていることを特徴とする請求項1乃至5のいずれか一項に記載の長手形状アンテナ。
    Comprising a second substrate having a dielectric constant lower than the dielectric constant of the outer periphery of the first substrate;
    The longitudinal antenna according to claim 1, wherein the feeding element and the non-excitation element are formed on the second base material.
  7.  前記給電素子の給電部と、前記給電素子の2つの端部とは、前記第2の基材の長手方向における中央位置近傍で相互に対向配置されていることを特徴とする請求項1乃至7のいずれか一項に記載の長手形状アンテナ。 The power feeding portion of the power feeding element and the two end portions of the power feeding element are arranged to face each other in the vicinity of the center position in the longitudinal direction of the second base material. The longitudinal antenna according to any one of the above.
  8.  前記給電素子は、前記給電素子の2つの端部付近又は前記給電部付近を除く場所において、前記第1の基材と接していることを特徴とする請求項1乃至7のいずれか一項に記載の長手形状アンテナ。 8. The feed element according to claim 1, wherein the feed element is in contact with the first base material at a place near two end portions of the feed element or near the feed section. 9. The described longitudinal antenna.
  9.  樹脂製のケースに封入されていることを特徴とする請求項1乃至8のいずれか一項に記載の長手形状アンテナ。 The longitudinal antenna according to any one of claims 1 to 8, wherein the antenna is encapsulated in a resin case.
  10.  前記第1の基材の面積よりも広い面積を有する誘電体に近接配置されていることを特徴とする請求項1乃至9のいずれか一項に記載の長手形状アンテナ。 The longitudinal antenna according to any one of claims 1 to 9, wherein the antenna is disposed close to a dielectric having an area larger than an area of the first base material.
PCT/JP2008/065546 2008-08-29 2008-08-29 Elongated antenna WO2010023752A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/065546 WO2010023752A1 (en) 2008-08-29 2008-08-29 Elongated antenna
JP2010526472A JPWO2010023752A1 (en) 2008-08-29 2008-08-29 Longitudinal antenna
EP08809613A EP2330686A1 (en) 2008-08-29 2008-08-29 Elongated antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065546 WO2010023752A1 (en) 2008-08-29 2008-08-29 Elongated antenna

Publications (1)

Publication Number Publication Date
WO2010023752A1 true WO2010023752A1 (en) 2010-03-04

Family

ID=41720941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065546 WO2010023752A1 (en) 2008-08-29 2008-08-29 Elongated antenna

Country Status (3)

Country Link
EP (1) EP2330686A1 (en)
JP (1) JPWO2010023752A1 (en)
WO (1) WO2010023752A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025785B1 (en) * 1969-10-09 1975-08-26
JPS60129708U (en) * 1984-02-09 1985-08-30 日本アンテナ株式会社 antenna
JPH0738325A (en) * 1993-07-19 1995-02-07 Hitachi Cable Ltd Wide band dipole antenna
WO2001018909A1 (en) * 1999-09-09 2001-03-15 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
JP2002217628A (en) 2001-01-16 2002-08-02 Furukawa Electric Co Ltd:The Miniature antenna
JP2004032776A (en) * 2002-06-27 2004-01-29 Harris Corp Dipole antenna using dielectric substrate of composite material
JP2005303637A (en) 2004-04-09 2005-10-27 Furukawa Electric Co Ltd:The Multi-frequency common antenna and miniaturized antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324310A (en) * 2002-05-01 2003-11-14 Furukawa Electric Co Ltd:The Small-sized antenna
JP3825400B2 (en) * 2002-12-13 2006-09-27 京セラ株式会社 Antenna device
JP2006303946A (en) * 2005-04-21 2006-11-02 Ngk Spark Plug Co Ltd Antenna and antenna adjusting method
JP4132063B2 (en) * 2006-05-29 2008-08-13 京セラ株式会社 Surface mount antenna, antenna device, and resonance frequency adjusting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025785B1 (en) * 1969-10-09 1975-08-26
JPS60129708U (en) * 1984-02-09 1985-08-30 日本アンテナ株式会社 antenna
JPH0738325A (en) * 1993-07-19 1995-02-07 Hitachi Cable Ltd Wide band dipole antenna
WO2001018909A1 (en) * 1999-09-09 2001-03-15 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
JP2002217628A (en) 2001-01-16 2002-08-02 Furukawa Electric Co Ltd:The Miniature antenna
JP2004032776A (en) * 2002-06-27 2004-01-29 Harris Corp Dipole antenna using dielectric substrate of composite material
JP2005303637A (en) 2004-04-09 2005-10-27 Furukawa Electric Co Ltd:The Multi-frequency common antenna and miniaturized antenna

Also Published As

Publication number Publication date
JPWO2010023752A1 (en) 2012-01-26
EP2330686A1 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US9246210B2 (en) Antenna with cover radiator and methods
US6903692B2 (en) Dielectric antenna
EP0829110B1 (en) Printed monopole antenna
US7978141B2 (en) Couple-fed multi-band loop antenna
EP0757405B1 (en) Antenna
KR100707242B1 (en) Dielectric chip antenna
US6995714B2 (en) Internal triple-band antenna
JP4332494B2 (en) Antenna device
US7821469B2 (en) Printed antenna
JP2007089234A (en) Antenna
US20050174296A1 (en) Antenna and wireless communications device having antenna
WO2010007823A1 (en) Multi-resonant antenna
EP1459410B1 (en) High-bandwidth multi-band antenna
US20200295449A1 (en) Antenna device
JP2011035519A (en) Antenna device
WO2001099228B1 (en) An antenna for a portable communication apparatus, and a portable communication apparatus comprising such an antenna
US7542002B1 (en) Wideband monopole antenna
GB2409772A (en) Low profile antenna with end fed antenna trace formed upon a dielectric block mounted above PCB ground plane
JP4992762B2 (en) Automotive integrated antenna
JP2009194783A (en) Pattern antenna and antenna apparatus with pattern antenna mounted on master substrate
US20100253580A1 (en) Printed antenna and electronic device employing the same
WO2010023752A1 (en) Elongated antenna
JP2003133838A (en) Monopole antenna
JP5461248B2 (en) antenna
WO2021214959A1 (en) Array antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526472

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008809613

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE