WO2010022602A1 - Method and apparatus for generating quasi-cyclic low-density parity-check codes and encoding - Google Patents

Method and apparatus for generating quasi-cyclic low-density parity-check codes and encoding Download PDF

Info

Publication number
WO2010022602A1
WO2010022602A1 PCT/CN2009/071489 CN2009071489W WO2010022602A1 WO 2010022602 A1 WO2010022602 A1 WO 2010022602A1 CN 2009071489 W CN2009071489 W CN 2009071489W WO 2010022602 A1 WO2010022602 A1 WO 2010022602A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
sub
column
check
block
Prior art date
Application number
PCT/CN2009/071489
Other languages
French (fr)
Chinese (zh)
Inventor
原进宏
宁军
刘玥
王光健
严茜
曾雁星
梁伟光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010022602A1 publication Critical patent/WO2010022602A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices

Definitions

  • the present invention relates to the field of error correction coding techniques for communication and information systems, and more particularly to a method and apparatus for generating quasi-cyclic low density parity check codes and codes.
  • Low density parity check code (LDPC, low dens i ty par ty check) is a linear block code proposed by Galler in 1962. Because of the small number of "1" in its check matrix, It is called a low density parity check code. The LDPC code was re-proposed and improved by Mackay in 1996.
  • the Tanner graph (see Figure 1) can be used to represent the LDPC code.
  • the Tanner graph and the check matrix are directly corresponding, consisting of variable nodes, check nodes, and edges connecting them.
  • Each check node Z i corresponds to the i-th row of the check matrix
  • each variable node Xj corresponds to the j-th column of the check matrix.
  • the jth bit in the codeword participates in the i-th check equation, that is, the element at the position of the i-th row and the j-th column in the check matrix takes a value of 1, the check node and the variable node in FIG. Connected.
  • the degree of this node For each node, the number of edges connected to it is called the degree of this node.
  • the length of the smallest ring in the Tanner diagram is called the girth.
  • the LDPC code is an error correction coding technique that currently uses more excellent performance. Its main feature is to support iterative decoding, and the performance is close to the Shannon capacity limit.
  • the LDPC code has lower decoding complexity and supports parallel decoding and the like, thereby facilitating the improvement of decoder throughput, and is a superior error correction coding scheme in the next generation high-speed data communication system.
  • p is a cyclic shift matrix of zxz or a zero matrix.
  • element 1 When the binary base matrix is expanded, element 1 is replaced with a zxz right cyclic shift matrix, and element 0 is replaced with a zxz zero matrix.
  • Each cyclic unit array in H ⁇ can be determined by its rightward cyclic shift amount, and the binary base check matrix information and the cyclic shift information can be integrated into a base check matrix, denoted as H b .
  • Replace 0 in H b with -1 define zxz zero matrix, and replace 1 element with cyclic shift amount.
  • H mxn can be obtained directly from H b by spreading factor expansion.
  • the inventors have found that at least the following problems exist in the prior art: Due to the excessive constraints of the structure corresponding to the check bit portion in the existing linearly coded check matrix, the degree of the final designed code is made. The distribution deviates from the optimal degree distribution.
  • the existing PEG (Progressive Edge Growth) algorithm for constructing quasi-cyclic LDPC codes is considered from the perspective of a single element in each column of the basic matrix, and the non-zero element position of the basic matrix is set only from the basic matrix. The perspective is considered, so this may result in a weaker performance of the code resulting from the final search.
  • the embodiment of the invention provides a method for constructing an effective multi-element LDPC code applied in a quasi-cyclic structure, which fully considers the problem of ring overlap in the basic matrix, so that the resulting code effectively weakens the influence of ring overlap. .
  • An embodiment of the present invention provides a method for generating a quasi-cyclic low-density parity check code, where the method includes:
  • the resulting basic matrix is expanded into a check matrix.
  • the embodiment of the present invention further provides a method for encoding using a quasi-cyclic low-density parity check code, where the method is:
  • the information sequence to be encoded is S
  • the information sequence is S according to the block matrix result
  • the low density parity check code is used.
  • the check equation obtains p 2
  • P1 is obtained by using the value of p 2 and a special matrix sub-block using a check equation of a low-density parity check code, and the special matrix sub-block is expanded without a column weight in the obtained check matrix.
  • an embodiment of the present invention further provides a quasi-cyclic low-density parity check code encoder, where the encoder includes:
  • the check matrix generating unit is configured to design a check matrix of the quasi-cyclic low-density parity check code, wherein the check matrix is expanded by the basic matrix, and the check matrix H obtained by the basic matrix expansion is used by the sub-matrix! ⁇ and submatrix H p composition, the submatrix! ⁇ corresponding to the system information bit portion of the codeword, the sub-matrix H p corresponds to the check bit portion of the code word, wherein the sub-matrix H p includes a special sub-block P se , and the sub-block P se is expanded and the check is expanded. There are no blocks with a column weight of 1 in the matrix.
  • an embodiment of the present invention provides an apparatus for generating a quasi-cyclic low-density parity check code, where the apparatus includes:
  • a degree distribution determining unit configured to determine a degree distribution sequence according to a code rate code length requirement and a system requirement of the low density parity check code to be designed
  • a column resetting unit configured to set a column weight of each column of the basic matrix according to the selected degree distribution sequence
  • a basic matrix determining unit configured to reset a position and a value of each column of non-zero elements in the basic matrix according to the basic matrix column to obtain a basic matrix
  • An extension unit for expanding the resulting base matrix into a check matrix on a binary domain or a multivariate domain further provides an apparatus for encoding using a quasi-cyclic low-density parity check code, where the apparatus includes:
  • a check matrix processing unit for performing block processing on the check matrix
  • the check equation obtains p 2
  • the parity check matrix obtained by expanding the special matrix sub-block P se is obtained by using the value of p 2 and a special matrix sub-block P se , using the check equation of the low-density parity check code.
  • Figure 1 is a Tanner diagram representation of the LDPC code
  • FIG. 2 is a structural diagram of a check matrix of a quasi-cyclic LDPC code
  • FIG. 3 is a flowchart of a method for generating a quasi-cyclic LDPC code according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of a case where the basic structure of the H matrix is a lower triangle in the embodiment
  • FIG. 5 is a structural diagram of a matrix in which the basic structure of the H matrix is a lower triangular matrix in the embodiment
  • FIG. 6 is a P se matrix in which the elements in the matrix have the same value when the basic structure of the H matrix is lower triangular in the embodiment
  • FIG. 7 is a structural diagram of a matrix applied in a binary domain when the basic structure of the H matrix is a lower triangle in the embodiment;
  • FIG. 9 is a structural diagram of a matrix in which the basic structure of the H matrix is an upper triangular matrix in the embodiment;
  • FIG. 10 is a P Se applied in the binary domain when the basic structure of the H matrix is the lower triangular expression in the embodiment. a structural diagram of the matrix;
  • Figure 11 is a diagram showing the basic structure of an H matrix in the third embodiment.
  • Figure 12 is a structural diagram of a matrix in an H matrix in the third embodiment
  • Figure 13 is a basic structural diagram of the H matrix in the fourth embodiment.
  • Figure 14 is a structural diagram of a matrix in an H matrix in the fourth embodiment.
  • 15 is a structural block diagram of a device for generating a quasi-cyclic low density parity check code
  • 16 is a structural block diagram of a quasi-cyclic low density parity check code encoder
  • 17 is a structural block diagram of an apparatus for quasi-cyclic low density parity check code encoding.
  • Embodiments of the present invention are solutions to the field of error correction coding in communication and information systems.
  • a basic matrix having a specific structure is proposed.
  • the basic matrix is used for channel coding, by which the coded data is channel coded.
  • the basic matrix can flexibly adjust the degree distribution to adapt to the requirements of various degrees of distribution, and includes a quasi-cyclic matrix of a specific structure in the basic matrix, so as to avoid occurrence of a column weight of 1 in the parity check matrix after expansion.
  • the embodiment of the present invention provides a method for generating a quasi-cyclic LDPC code with excellent performance.
  • FIG. 3 a flowchart of a method for generating a quasi-cyclic LDPC code according to an embodiment of the present invention is shown.
  • the selection of the degree distribution sequence is carried out using a method of density evolution.
  • This embodiment prepares to generate a basic matrix, and the basic matrix is expanded by the parity matrix H from the sub-matrix! And sub-matrix H p , the sub-matrix corresponding to the system information bit portion of the code word, the sub-matrix corresponding to the check bit portion of the code word, wherein the sub-matrix ⁇ ⁇ includes a special sub-block P se , the sub-block P After se is expanded, there is no block with a column weight of 1 in the parity check matrix obtained by the expansion.
  • the basic matrix H b can be obtained by setting the position and value of each column of non-zero elements in the basic matrix in the order of the basic matrix column weights from small to large (also from large to small). The criteria for setting and searching there are such that the check matrix of the resulting code is as optimal as possible in terms of minimum loop length and ring distribution.
  • the element for each column, select the position of the row of the first non-zero element of the column, the element should be placed in the row with the smallest row weight in all rows, if there are multiple rows with the smallest row, then random Place it in one of the rows, and then set the value of the first non-zero element in the column to a non-negative integer less than the size of the expansion factor.
  • traversing is placed to other locations where non-zero elements are not placed, and traversing sets the value of the non-zero element to determine the position and value of the non-zero element, the determining non-zero element
  • the position and value of the finalized matrix is maximized and the minimum number of rings is minimized, and then the position of the non-zero element is moved to another position where no non-zero elements are placed, and
  • the method selects the optimal value corresponding to the different positions, and finally selects a position and a value that maximizes the girth value of the final expanded check matrix among all the possible positions and corresponding values. Repeat the above steps until all non-zero elements in the column are finalized.
  • the application expands the basic matrix into a check matrix on a binary domain or a multivariate domain as needed.
  • the sub-matrix H p is designed as a matrix having a lower triangular form, and the scheme is introduced as a first embodiment.
  • the bottom right corner is set to a special sub-block P se , which is a specific cyclic array SC (Spec if ied C i rcul ant), and the structure with the lower triangle and the specific cyclic array is called an SC-A structure.
  • SC-A structure the basic structure of the H matrix can be a lower triangle, as shown in FIG.
  • check matrix is processed in the following form:
  • A is a submatrix of (Of-l)xZ)x((NM)xZ)
  • B is an all-zero matrix of ((Ml)xZ)xZ
  • T is a (( ⁇ - ⁇ ) ⁇ ⁇ ( ⁇ - ⁇ ) ⁇ ⁇ ;) grouping the lower triangular matrix
  • C is a
  • a matrix of Zx((N-M)xZ;), D is a ZxZ SC matrix, and E is a matrix of ⁇ (( ⁇ -1) ⁇ ;).
  • Method 1 There are two ways to get it, Method 1:
  • JL z , z then have:
  • El is a vector of (Zl)xl. If we define Piz-i Pz
  • the calculation process can be expressed as:
  • Hp is designed as a matrix having an upper triangular form, and a structure having an upper triangular form and a specific cyclic array is referred to as an SC-B structure. Then the structure of the H matrix is as shown in FIG.
  • the P se matrix in the upper triangular cyclic LDPC structure in FIG. 8 a few shown in FIG. 9 can be used.
  • FIG. 9 Forms.
  • the P SE structure can be in the form shown in FIG.
  • a check matrix structure similar to the double diagonal form can be used, in which case we design H P as a matrix with the lower double diagonal form, and we will have the lower double diagonal form
  • the structure of the specific cyclic array is called the SC-C structure, and the structure of the H matrix is as shown in FIG.
  • the P SE matrix in its structure we can use several forms as shown in Figure 12.
  • H P is designed as a matrix having an upper double diagonal form, and a structure having an upper double diagonal form and a special subarray cyclic array is referred to as an SC-D structure. Then the basic structure of the H matrix can represent the upper double diagonal form as shown in FIG.
  • sub-blocks of the sub-matrices H P except the special sub-blocks are expanded to:
  • the elements on the diagonal are different from each other; if g ⁇ Z -l , then the ⁇ 1 diagonal contains all non-zero elements in the multivariate domain, where q is the order of the multivariate domain, Expansion factor.
  • a fifth embodiment of the present invention further provides an apparatus for implementing the above method.
  • a device 15 for generating a quasi-cyclic low density parity check code the device comprising:
  • the degree distribution determining unit 151 is configured to determine a degree distribution sequence according to a code rate code requirement and a system requirement of the low density parity check code to be designed, and the selection of the degree distribution sequence is performed by a density evolution method.
  • a column resetting unit 152 is configured to set a column weight of each column of the basic matrix according to the selected degree distribution sequence.
  • the column resetting unit 152 resets the column by: the generated check matrix H is composed of a sub-matrix and a sub-matrix HP, the sub-matrix corresponding to the system information bit portion of the codeword, and the sub-matrix H P corresponding to the code word A parity bit portion, wherein the sub-matrix H P includes a block having a special sub-block P SE , and the parity check matrix obtained by expanding the sub-block P se has no column weight of 1.
  • a basic matrix determining unit 153 for resetting each of the basic matrices according to the basic matrix column The position and value of the non-zero element of the column gives the basic matrix.
  • the basic matrix determining unit 153 includes a first non-zero element processing unit for selecting a position of a row in which the first non-zero element of the column is located, and the row in which the first non-zero element is located in all rows The minimum is small, and the first non-zero element in the column is set to a non-negative integer less than the expansion factor value; other non-zero element processing units are used for other non-zero elements of the column, placed to other The position of the non-zero element is not placed, and the value of the non-zero element is set by the traversal, the position and value of the non-zero element are determined, and the position and value of the non-zero element are determined such that the final expanded check matrix Maximize the circumference value.
  • An extension unit 154 is for expanding the resulting base matrix into a check matrix on a binary domain or a multivariate domain.
  • the portion of the basic matrix obtained by the basic matrix determining unit in the application of the apparatus is expanded by the special sub-block P se as shown in FIG. 5.
  • a sixth embodiment of the present invention is a quasi-cyclic low density parity check code encoder 16, and the encoder 16 includes:
  • the check matrix generating unit 160 is configured to design a check matrix of the quasi-cyclic low-density parity check code, and the check matrix is expanded by the basic matrix, and the check matrix H obtained by the basic matrix expansion is used by the sub-matrix! And sub-matrix H p , the sub-matrix corresponding to the system information bit portion of the code word, the sub-matrix Hp corresponding to the check bit portion of the code word, wherein the sub-matrix H p includes a special sub-block P se , the sub-matrix
  • the parity check matrix obtained by block expansion has no block with a column weight of 1.
  • the portion obtained by expanding the special sub-block in the encoder 160 is as shown in FIG.
  • a seventh embodiment of the present invention is an apparatus 17 for encoding a quasi-cyclic low-density parity check code
  • the apparatus 17 for encoding the quasi-cyclic low-density parity check code includes:
  • the check matrix processing unit 171 is configured to perform block processing on the check matrix, and divide the check matrix of ⁇ ⁇ ⁇ into one ((M_l)xZX(N_)xZ;) when performing block processing on the check matrix.
  • A one (( ⁇ _1) ⁇ ) ⁇ all zero matrix B, — 1) ⁇ ) ⁇ (( ⁇ -1) ⁇ ) grouping lower triangular matrix T, a matrix C of Zx((N_)xZ), a special sub-array P sc of E, E is a matrix E of Zx((M_l)xZ), where the special sub-matrix is decomposed into one with only the first element a non-zero value ⁇ - 1 ) vector - a lower triangular matrix ⁇ ⁇ of (z - 1 ) ⁇ 2 - 1 ), a non-zero element A, a vector E lD calculation unit 172 of (z- 1 ), which is used for The coded information is calculated and coded.
  • the information sequence to be coded is s
  • the information sequence is s encoded according to the check matrix block result
  • the resulting check matrix has no blocks with a weight of one.
  • the position and cyclic shift value of the non-zero elements in each column of the basic matrix are set, and the problem of overlapping the rings in the basic matrix is fully considered.
  • the method and apparatus provided by the embodiments of the present invention enable the finally obtained codeword to effectively weaken the influence of the ring overlap.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

The embodiments of present invention disclose a method and an apparatus for generating quasi-cyclic low-density parity-check (QC-LDPC) codes and encoding, which refer to the error-correction coding technical field of communication and information system. The method includes the following steps: determining a sequence of degree distribution according to the requirements of code rate and code length of LDPC codes to be designed and system requirements; configuring column weight of each column in a base matrix according to the selected sequence of degree distribution; configuring positions and values of non-zero elements of each column in the base matrix according to the column weights of the base matrix to obtain the base matrix; extending the obtained base matrix to generate a check matrix. A method for encoding by using the QC-LDPC codes is also disclosed. The methods and the apparatus provided by embodiments of present invention enable the finally obtained codeword to reduce the influence caused by cycle overlapping effectively.

Description

生成准循环低密度奇偶校验码及编码的方法与装置 本申请要求于 2008 年 8 月 26 日提交中国专利局、 申请号为 200810142175. 0, 发明名称为 "生成准循环 LDPC码及编码的方法与装置" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。  Method and apparatus for generating quasi-cyclic low-density parity check code and encoding The present application claims to be filed on August 26, 2008, the Chinese Patent Office, application number 200810142175. 0, the invention name is "generating quasi-cyclic LDPC code and encoding method" The priority of the Chinese Patent Application, the entire disclosure of which is incorporated herein by reference.
技术领域 Technical field
本发明涉及通信与信息系统的纠错编码技术领域, 特别涉及一种生成准循 环低密度奇偶校验码及编码的方法与装置。  The present invention relates to the field of error correction coding techniques for communication and information systems, and more particularly to a method and apparatus for generating quasi-cyclic low density parity check codes and codes.
背景技术 Background technique
低密度奇偶校验码 ( LDPC , low dens i ty par i ty check )是 Ga l lager 于 1962年提出的一种线性分组码, 由于它的校验矩阵中 " 1 " 的个数较少, 因此被称为低密度奇偶校验码。该 LDPC码由 Mackay在 1996年重新提出并 加以改进。  Low density parity check code (LDPC, low dens i ty par ty check) is a linear block code proposed by Galler in 1962. Because of the small number of "1" in its check matrix, It is called a low density parity check code. The LDPC code was re-proposed and improved by Mackay in 1996.
除了可以用校验矩阵表示 LDPC码之外, 还可以用 Tanner图(见图 1) 表示 LDPC码。 Tanner 图和校验矩阵是直接对应的, 由变量节点、 校验节 点和连接它们的边构成。 每个校验节点 Z i对应于校验矩阵的第 i行, 每个 变量节点 Xj对应于校验矩阵的第 j列。 当码字中第 j个比特参与第 i个校 验方程, 即校验矩阵中第 i行第 j列所在位置的元素取值为 1时, 图 1中 的校验节点和变量节点之间存在连线。 对于每个节点, 与之相连的边数称 为这个节点的度数。 Tanner图中最小环的长度称为围长。  In addition to the LDPC code, the Tanner graph (see Figure 1) can be used to represent the LDPC code. The Tanner graph and the check matrix are directly corresponding, consisting of variable nodes, check nodes, and edges connecting them. Each check node Z i corresponds to the i-th row of the check matrix, and each variable node Xj corresponds to the j-th column of the check matrix. When the jth bit in the codeword participates in the i-th check equation, that is, the element at the position of the i-th row and the j-th column in the check matrix takes a value of 1, the check node and the variable node in FIG. Connected. For each node, the number of edges connected to it is called the degree of this node. The length of the smallest ring in the Tanner diagram is called the girth.
LDPC码是目前采用较多的性能优良的一种纠错编码技术, 它的主要特点 是支持迭代译码, 且性能接近香农容量限。 LDPC码具有较低的译码复杂度, 并且支持并行译码等优点, 因此有利于提高译码器吞吐量, 是下一代高速数 据通信系统中一种较优的纠错编码方案。  The LDPC code is an error correction coding technique that currently uses more excellent performance. Its main feature is to support iterative decoding, and the performance is close to the Shannon capacity limit. The LDPC code has lower decoding complexity and supports parallel decoding and the like, thereby facilitating the improvement of decoder throughput, and is a superior error correction coding scheme in the next generation high-speed data communication system.
目前使用较多的是基于循环移位矩阵设计的准循环 LDPC码, 其校验矩阵 Hmx n如图 2 所示, "是码长, w是码字中校验比特的个数, 信息比特个数为 k = n— m。 其中 p 是 zxz的循环移位矩阵或者是零矩阵。 校验矩阵 Hmxn可 以看作是由大小为 的二元基校验矩阵 按照扩展因子 Z扩展而来, 其 中 " = ζχ"δ, m = z mb, z为整数。 二元基矩阵扩展时, 元素 1用 zxz右 循环移位矩阵替换, 元素 0用 zxz零阵替换。 H ^中每个循环单位阵可由其 向右循环移位量确定, 可以把二元基校验矩阵信息和循环移位信息整合到一 个基校验矩阵中, 记为 Hb。 将 Hb中的 0换成 -1, 定义成 zxz零阵, 1元素换 成循环移位量。 由 Hb可直接通过扩展因子扩展得到 Hmxn。 在构造准循环 LDPC 码时, 以基校验矩阵为基础, 通过确定循环移位矩阵的位置和循环移位量的 大小以优化环分布来进行构造。 At present, more commonly used is a quasi-cyclic LDPC code based on a cyclic shift matrix design. The check matrix H mx n is as shown in Fig. 2, "is the code length, w is the number of check bits in the code word, information bits The number is k = n — m. Where p is a cyclic shift matrix of zxz or a zero matrix. The check matrix H mxn can be regarded as being extended by the expansion factor Z from the binary base check matrix of size, where " = ζχ" δ , m = zm b , z is an integer. When the binary base matrix is expanded, element 1 is replaced with a zxz right cyclic shift matrix, and element 0 is replaced with a zxz zero matrix. Each cyclic unit array in H ^ can be determined by its rightward cyclic shift amount, and the binary base check matrix information and the cyclic shift information can be integrated into a base check matrix, denoted as H b . Replace 0 in H b with -1, define zxz zero matrix, and replace 1 element with cyclic shift amount. H mxn can be obtained directly from H b by spreading factor expansion. When the quasi-cyclic LDPC code is constructed, based on the basis check matrix, the position of the cyclic shift matrix and the magnitude of the cyclic shift amount are determined to optimize the loop distribution.
在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 由于现有可线性编码的校验矩阵中检验位部分对应的结构的限制条件过 多, 使得最终设计的码的度分布偏离了最优的度分布。 现有构造准循环 LDPC 码的渐近边增长(PEG: Progressive Edge Growth) 算法是从基本矩阵每列 中的单个元素的角度来考虑, 并且设置基本矩阵的非零元素位置时仅仅是从 基本矩阵的角度进行考虑 , 因此这样可能会使得最终搜索得到的码的性能有 所减弱。  In the process of implementing the present invention, the inventors have found that at least the following problems exist in the prior art: Due to the excessive constraints of the structure corresponding to the check bit portion in the existing linearly coded check matrix, the degree of the final designed code is made. The distribution deviates from the optimal degree distribution. The existing PEG (Progressive Edge Growth) algorithm for constructing quasi-cyclic LDPC codes is considered from the perspective of a single element in each column of the basic matrix, and the non-zero element position of the basic matrix is set only from the basic matrix. The perspective is considered, so this may result in a weaker performance of the code resulting from the final search.
发明内容 Summary of the invention
本发明实施例提出了一种应用于准循环结构下的有效的多元 LDPC码的构 造方法, 该方法充分考虑到基本矩阵中环重叠的问题, 使最终得到的码有效 的削弱环重叠带来的影响。  The embodiment of the invention provides a method for constructing an effective multi-element LDPC code applied in a quasi-cyclic structure, which fully considers the problem of ring overlap in the basic matrix, so that the resulting code effectively weakens the influence of ring overlap. .
本发明实施例提供一种生成准循环低密度奇偶校验码的方法, 所述方法包 括:  An embodiment of the present invention provides a method for generating a quasi-cyclic low-density parity check code, where the method includes:
根据所要设计的低密度奇偶校验码的码率及码长需求和系统需求, 确定 度分布序列;  Determining a degree distribution sequence according to the code rate and code length requirement and system requirement of the low density parity check code to be designed;
根据所选择的度分布序列, 设置基本矩阵每列的列重;  Setting the column weight of each column of the basic matrix according to the selected degree distribution sequence;
按照所述基本矩阵列重设置基本矩阵中每列非零元素的位置和取值, 得 到基本矩阵; Resetting the position and value of each column of non-zero elements in the basic matrix according to the basic matrix column, To the basic matrix;
将所得到的基本矩阵扩展成校验矩阵。  The resulting basic matrix is expanded into a check matrix.
同时本发明实施例进一步提供一种利用准循环低密度奇偶校验码编码的 方法, 所述方法为:  At the same time, the embodiment of the present invention further provides a method for encoding using a quasi-cyclic low-density parity check code, where the method is:
对校验矩阵进行分块处理;  Perform block processing on the check matrix;
如果待编码的信息序列为 S ,根据校验矩阵分块结果对信息序列为 S进行 编码, 编码后的码字 X为 x = [s,p2Pl], 利用低密度奇偶校验码的校验方程获 得 p2, 通过 p2的值以及一特殊矩阵子块利用低密度奇偶校验码的校验方程获 得 Pl, 所述特殊矩阵子块扩展后在所得的校验矩阵中无列重为 1的块。 If the information sequence to be encoded is S, the information sequence is S according to the block matrix result, and the coded code word X is x = [s, p 2 , Pl ], and the low density parity check code is used. The check equation obtains p 2 , and P1 is obtained by using the value of p 2 and a special matrix sub-block using a check equation of a low-density parity check code, and the special matrix sub-block is expanded without a column weight in the obtained check matrix. A block of 1.
自然的, 本发明实施例还提供一种准循环低密度奇偶校验码编码器, 所 述编码器包括:  Naturally, an embodiment of the present invention further provides a quasi-cyclic low-density parity check code encoder, where the encoder includes:
校验矩阵生成单元, 用于设计准循环低密度奇偶校验码的校验矩阵, 所述 校验矩阵通过基本矩阵扩展而成, 所采用的基本矩阵扩展所得的校验矩阵 H 由子矩阵!^及子矩阵 Hp组成, 所述子矩阵!^对应码字的系统信息位部分, 子 矩阵 Hp对应码字的校验位部分, 其中子矩阵 Hp中包含一特殊子块 Pse, 该子块 Pse扩展后在扩展所得的校验矩阵中无列重为 1的块。 The check matrix generating unit is configured to design a check matrix of the quasi-cyclic low-density parity check code, wherein the check matrix is expanded by the basic matrix, and the check matrix H obtained by the basic matrix expansion is used by the sub-matrix! ^ and submatrix H p composition, the submatrix! ^ corresponding to the system information bit portion of the codeword, the sub-matrix H p corresponds to the check bit portion of the code word, wherein the sub-matrix H p includes a special sub-block P se , and the sub-block P se is expanded and the check is expanded. There are no blocks with a column weight of 1 in the matrix.
进一步, 本发明实施例提供一种生成准循环低密度奇偶校验码的装置, 所 述装置包括:  Further, an embodiment of the present invention provides an apparatus for generating a quasi-cyclic low-density parity check code, where the apparatus includes:
度分布确定单元, 其用于根据所要设计的低密度奇偶校验码的码率码长需 求和系统需求, 确定度分布序列;  a degree distribution determining unit, configured to determine a degree distribution sequence according to a code rate code length requirement and a system requirement of the low density parity check code to be designed;
列重设置单元, 其用于根据所选择的度分布序列, 设置基本矩阵每列的 列重;  a column resetting unit, configured to set a column weight of each column of the basic matrix according to the selected degree distribution sequence;
基本矩阵确定单元, 其用于按照所述基本矩阵列重设置基本矩阵中每列 非零元素的位置和取值, 得到基本矩阵;  a basic matrix determining unit, configured to reset a position and a value of each column of non-zero elements in the basic matrix according to the basic matrix column to obtain a basic matrix;
扩展单元, 其用于将所得到的基本矩阵扩展成二元域或多元域上的校验 矩阵。 本发明实施例再提供一种利用准循环低密度奇偶校验码编码的装置, 所 述装置包括: An extension unit for expanding the resulting base matrix into a check matrix on a binary domain or a multivariate domain. An embodiment of the present invention further provides an apparatus for encoding using a quasi-cyclic low-density parity check code, where the apparatus includes:
检验矩阵处理单元, 其用于对校验矩阵进行分块处理;  a check matrix processing unit for performing block processing on the check matrix;
计算单元, 其用于对待编码信息进行计算完成编码, 如果待编码的信息 序列为 s , 同时得到编码后的码字 X为 X = [s , P2, P , 利用低密度奇偶校 验码的校验方程获得 p2 , 通过 p2的值以及一特殊矩阵子块 Pse, 利用低密度奇 偶校验码的校验方程获得 所述特殊矩阵子块 Pse扩展所得的校验矩阵无列 重为 1的块。 方法, 该方法在构造基本矩阵时, 从最优化扩展后所得到的校验矩阵的角度 出发, 在设置基本矩阵每列中非零元素的位置和循环移位值, 充分考虑到了 基本矩阵中环重叠的问题。 采用本发明实施例提供的方法与装置使得最终得 到的码字能有效的削弱环重叠带来的影响。 a calculating unit, configured to perform encoding calculation on the coded information, if the information sequence to be encoded is s, and at the same time, obtain the encoded codeword X as X = [s , P 2 , P , using low density parity check code The check equation obtains p 2 , and the parity check matrix obtained by expanding the special matrix sub-block P se is obtained by using the value of p 2 and a special matrix sub-block P se , using the check equation of the low-density parity check code. A block of 1. Method, when constructing the basic matrix, from the perspective of the check matrix obtained after the optimization is extended, setting the position and cyclic shift value of the non-zero element in each column of the basic matrix, fully taking into account the ring overlap in the basic matrix The problem. The method and apparatus provided by the embodiments of the present invention enable the finally obtained codeword to effectively weaken the influence of the ring overlap.
附图说明 DRAWINGS
图 1为 LDPC码的 Tanner图表示;  Figure 1 is a Tanner diagram representation of the LDPC code;
图 2为准循环 LDPC码的校验矩阵结构图;  2 is a structural diagram of a check matrix of a quasi-cyclic LDPC code;
图 3为本发明实施例生成准循环 LDPC码方法流程图;  3 is a flowchart of a method for generating a quasi-cyclic LDPC code according to an embodiment of the present invention;
图 4为实施例中 H矩阵的基本结构为下三角形式时的结构图;  4 is a structural diagram of a case where the basic structure of the H matrix is a lower triangle in the embodiment;
图 5为实施例中 H矩阵的基本结构为下三角形式时 矩阵的结构图; 图 6为实施例中 H矩阵的基本结构为下三角形式时矩阵内部的元素的取 值相同情况下 Pse矩阵的结构图; 5 is a structural diagram of a matrix in which the basic structure of the H matrix is a lower triangular matrix in the embodiment; FIG. 6 is a P se matrix in which the elements in the matrix have the same value when the basic structure of the H matrix is lower triangular in the embodiment; Structure diagram
图 7为实施例中 H矩阵的基本结构为下三角形式时应用在二元域中 矩 阵的结构图;  7 is a structural diagram of a matrix applied in a binary domain when the basic structure of the H matrix is a lower triangle in the embodiment;
图 8为实施例中 H矩阵的基本结构为上三角形式时的结构图;  8 is a structural diagram of the case where the basic structure of the H matrix is an upper triangular form in the embodiment;
图 9为实施例中 H矩阵的基本结构为上三角形式时 矩阵的结构图; 图 1 0为实施例中 H矩阵的基本结构为下三角形式时应用在二元域中 Pse 矩阵的结构图; 9 is a structural diagram of a matrix in which the basic structure of the H matrix is an upper triangular matrix in the embodiment; FIG. 10 is a P Se applied in the binary domain when the basic structure of the H matrix is the lower triangular expression in the embodiment. a structural diagram of the matrix;
图 11为第三实施例中 H矩阵的基本结构图;  Figure 11 is a diagram showing the basic structure of an H matrix in the third embodiment;
图 12为第三实施例中 H矩阵中的 矩阵的结构图;  Figure 12 is a structural diagram of a matrix in an H matrix in the third embodiment;
图 1 3为第四实施例中 H矩阵的基本结构图;  Figure 13 is a basic structural diagram of the H matrix in the fourth embodiment;
图 14为第四实施例中 H矩阵中的 矩阵的结构图;  Figure 14 is a structural diagram of a matrix in an H matrix in the fourth embodiment;
图 15为生成准循环低密度奇偶校验码装置的结构框图;  15 is a structural block diagram of a device for generating a quasi-cyclic low density parity check code;
图 16为准循环低密度奇偶校验码编码器的结构框图;  16 is a structural block diagram of a quasi-cyclic low density parity check code encoder;
图 17为准循环低密度奇偶校验码编码的装置的结构框图。  17 is a structural block diagram of an apparatus for quasi-cyclic low density parity check code encoding.
具体实施方式 detailed description
本发明实施例为通信与信息系统的纠错编码技术领域的方案, 首先提出 一种具有特定结构的基本矩阵。 该基本矩阵用于信道编码, 通过该基本矩阵 对待编码数据进行信道编码。 并且, 该基本矩阵可以灵活调整度分布, 以便 适应于各种度分布的需求, 在基本矩阵中包含一个特定结构的准循环矩阵, 这样可以避免扩展后校验矩阵中出现具有一个列重为 1 的块; 然后在这种基 本矩阵的基本结构之上, 本发明实施例给出一个性能优异的准循环 LDPC码的 生成方法。  Embodiments of the present invention are solutions to the field of error correction coding in communication and information systems. First, a basic matrix having a specific structure is proposed. The basic matrix is used for channel coding, by which the coded data is channel coded. Moreover, the basic matrix can flexibly adjust the degree distribution to adapt to the requirements of various degrees of distribution, and includes a quasi-cyclic matrix of a specific structure in the basic matrix, so as to avoid occurrence of a column weight of 1 in the parity check matrix after expansion. Then, based on the basic structure of the basic matrix, the embodiment of the present invention provides a method for generating a quasi-cyclic LDPC code with excellent performance.
如图 3所示, 本发明实施例生成准循环 LDPC码方法流程图。  As shown in FIG. 3, a flowchart of a method for generating a quasi-cyclic LDPC code according to an embodiment of the present invention is shown.
51 01 , 根据所要设计的低密度奇偶校验码的码率及码长需求和系统需求, 确定度分布序列。  51 01. Determine the degree distribution sequence according to the code rate and code length requirements and system requirements of the low density parity check code to be designed.
该度分布序列的选择使用密度进化的方法进行。  The selection of the degree distribution sequence is carried out using a method of density evolution.
51 02 , 根据所选择的度分布序列, 设置基本矩阵每列的列重。  51 02 , Set the column weight of each column of the basic matrix according to the selected degree distribution sequence.
本实施例准备生成一基本矩阵, 该基本矩阵扩展所得的校验矩阵 H 由子 矩阵!^及子矩阵 Hp组成, 所述子矩阵对应码字的系统信息位部分, 子矩阵 对应码字的校验位部分, 其中子矩阵 Ηρ中包含一特殊子块 Pse, 该子块 Pse扩展 后在扩展所得的校验矩阵中无列重为 1的块。 This embodiment prepares to generate a basic matrix, and the basic matrix is expanded by the parity matrix H from the sub-matrix! And sub-matrix H p , the sub-matrix corresponding to the system information bit portion of the code word, the sub-matrix corresponding to the check bit portion of the code word, wherein the sub-matrix ρ ρ includes a special sub-block P se , the sub-block P After se is expanded, there is no block with a column weight of 1 in the parity check matrix obtained by the expansion.
51 03 , 按照所述基本矩阵列重设置基本矩阵中每列非零元素的位置和取 值, 得到基本矩阵。 51 03, resetting the position and the position of each column of non-zero elements in the basic matrix according to the basic matrix column Value, get the basic matrix.
按照基本矩阵列重从小到大(也可从大到小) 的顺序设置基本矩阵中每 列非零元素的位置和取值, 可以得到基本矩阵 Hb。 该处的设置和搜索的准则 是使得最终得到的码的校验矩阵在最小环长和环分布上都是尽可能优。 The basic matrix H b can be obtained by setting the position and value of each column of non-zero elements in the basic matrix in the order of the basic matrix column weights from small to large (also from large to small). The criteria for setting and searching there are such that the check matrix of the resulting code is as optimal as possible in terms of minimum loop length and ring distribution.
在具体的应用中, 对于每一列选取该列的第一个非零元素所在行的位置, 该元素应放置在所有行中行重最小的行, 如果有多个行重最小的行, 则随机 的放置到其中的一行中, 然后将该列中第一个非零元素取值设置为一个小于 扩展因子大小的非负整数。 对于该列的其它非零元素, 遍历的放置到其它未 放置非零元素的位置, 并且遍历的设置该非零元素的取值, 确定非零元素的 位置和取值, 所述确定非零元素的位置和取值使得最终扩展后的校验矩阵的 围长值最大化和最小环数目最小化, 然后再将该非零元素的位置移动到其它 未放置非零元素的位置, 并且按照上面同样的方法选择不同位置对应的最优 取值, 最后在这些所有可能位置和相应的取值中, 选择一个使得最终扩展后 的校验矩阵的围长值最大化的位置和取值。 重复上述步骤直到该列所有非零 元素都确定完毕。 之后再将该列第一个非零元素的取值遍历所有可能的取值, 然后再重新按照上面的步骤设置其它元素位置和相应的取值。 最后选择一组 使得最终扩展后的校验矩阵的围长值最大化的各个元素的位置和取值。  In a specific application, for each column, select the position of the row of the first non-zero element of the column, the element should be placed in the row with the smallest row weight in all rows, if there are multiple rows with the smallest row, then random Place it in one of the rows, and then set the value of the first non-zero element in the column to a non-negative integer less than the size of the expansion factor. For other non-zero elements of the column, traversing is placed to other locations where non-zero elements are not placed, and traversing sets the value of the non-zero element to determine the position and value of the non-zero element, the determining non-zero element The position and value of the finalized matrix is maximized and the minimum number of rings is minimized, and then the position of the non-zero element is moved to another position where no non-zero elements are placed, and The method selects the optimal value corresponding to the different positions, and finally selects a position and a value that maximizes the girth value of the final expanded check matrix among all the possible positions and corresponding values. Repeat the above steps until all non-zero elements in the column are finalized. Then traverse all the possible values of the first non-zero element of the column, and then follow the steps above to set the other element positions and corresponding values. Finally, a set of positions and values of the respective elements that maximize the girth value of the final expanded check matrix are selected.
S1 04 , 将所得到的基本矩阵扩展成校验矩阵。  S1 04, expanding the obtained basic matrix into a check matrix.
应用中根据需要将基本矩阵扩展成二元域或多元域上的校验矩阵。 将子 矩阵 Hp设计成一种具有下三角形式的矩阵,作为第一实施例对方案进行介绍。 设定最右下角为一特殊子块 Pse , 其为一个特定循环阵 SC (Spec i f ied C i rcul ant) , 将具有下三角形式和特定循环阵的结构称为 SC-A结构。 则 H矩 阵的基本结构可以为下三角形式, 如图 4所示。 The application expands the basic matrix into a check matrix on a binary domain or a multivariate domain as needed. The sub-matrix H p is designed as a matrix having a lower triangular form, and the scheme is introduced as a first embodiment. The bottom right corner is set to a special sub-block P se , which is a specific cyclic array SC (Spec if ied C i rcul ant), and the structure with the lower triangle and the specific cyclic array is called an SC-A structure. Then the basic structure of the H matrix can be a lower triangle, as shown in FIG.
针对上述中下三角形式的循环 LDPC SC结构中的 Pse矩阵, 我们可以使用 图 5所示的几种形式中的一种。 For the P se matrix in the above-mentioned middle and lower triangular cyclic LDPC SC structure, we can use one of several forms shown in FIG.
其中 为 q元域中的元素。如果使得编码进一步简单化, 我们可以 4叚设矩 阵内部的元素的取值相同, 则 Pse矩阵的结构可以表示为图 6中的一种。 当1» 为循环移位阵, 应用在二元域时 Psc矩阵的结构可以表示为图 7中 的一种。 Where is the element in the q-ary field. If the coding is further simplified, we can set the moment The elements inside the array have the same value, and the structure of the P se matrix can be expressed as one of FIG. When 1» is a cyclic shift array, the structure of the P sc matrix when applied to the binary domain can be expressed as one of FIG.
下面讲述编码的方法。 针对图 4 中的下三角循环 LDPC SC-A结构, 我们 可以使用下面的编码方法进行编码。  The method of encoding is described below. For the lower triangular cyclic LDPC SC-A structure in Figure 4, we can use the following encoding method for encoding.
首先将校验矩阵按照下面的形式进行分块处理:
Figure imgf000009_0003
First, the check matrix is processed in the following form:
Figure imgf000009_0003
其中 A是一个 (Of-l)xZ)x((N-M)xZ)的子矩阵, B是一个 ((M-l)xZ)xZ的 全零矩阵, T 是一个((Μ-ι)χζχ( ί-ι)χζ;)的分组下三角矩阵, C 是一个 Where A is a submatrix of (Of-l)xZ)x((NM)xZ), B is an all-zero matrix of ((Ml)xZ)xZ, and T is a ((Μ-ι) χ ζχ ( ί -ι) χ ζ;) grouping the lower triangular matrix, C is a
Zx((N-M)xZ;)的矩阵, D是一个 ZxZ的 SC矩阵, E是一个 Ζχ((Μ-1)χΖ;)的矩 阵。 A matrix of Zx((N-M)xZ;), D is a ZxZ SC matrix, and E is a matrix of Ζχ((Μ-1)χΖ;).
如果假设待编码的信息序列为 S, 同时得到编码后的码字可以表示为 X = [S,P2Pl], 其中 ρι对应着 H中的 HD,部分, p2对应着 H中的 HD,部分。 因此 按照校验方程, 我们可以得 If it is assumed that the information sequence to be encoded is S, the codeword obtained at the same time can be expressed as X = [S, P 2 , Pl ], where ρι corresponds to H D in H, and part, p 2 corresponds to H in H D , part. So according to the check equation, we can get
Figure imgf000009_0001
Figure imgf000009_0001
AsJ +Tp2 +Bp =0 As J +Tp 2 +Bp =0
Csr+Ep【+Dp【 =0 由于 B是一个全零的子矩阵, 则有: Cs r +Ep [+Dp[ =0 Since B is an all-zero submatrix, there are:
Asr + Tp【 = 0 此时 ρ2可以通过对上式进行后向递推的方式计算得到。但是 的求解是需 要一些处理的, 由于在求 pj†p2和 s是已经得到的量, 因此有式:
Figure imgf000009_0002
因为 D具有特定的 SC结构, 我们以图 5中的一个?为例进行分析, 对于 其它形式的 SC结构, 具有类似的处理方法。 此时有:
As r + Tp [ = 0 ρ 2 can be calculated by backward recursion of the above formula. However, the solution requires some processing. Since pj†p 2 and s are the quantities already obtained, there are formulas:
Figure imgf000009_0002
Since D has a specific SC structure, let's take one of Figure 5? example for analysis, other forms for the SC structure, having a similar processing method. At this time there are:
定义 w二 可以写为: Definition w two can be written as:
Figure imgf000010_0001
Figure imgf000010_0001
从上式中可以发现, 当 中的第一个元素 Pi的取值确定后, 则其它的元素 就可以通过后向递推的方法得到。  It can be found from the above formula that after the value of the first element Pi is determined, other elements can be obtained by a backward recursive method.
的获得可以有两种方法, 方法 1 :  There are two ways to get it, Method 1:
通过上式我们可以得到:
Figure imgf000010_0002
Through the above formula we can get:
Figure imgf000010_0002
所以有:
Figure imgf000010_0003
因为 q域上的加法和减法是相同的操作, 所以
Figure imgf000010_0004
So have:
Figure imgf000010_0003
Because the addition and subtraction on the q domain are the same operation,
Figure imgf000010_0004
α + βρλ Z-l z α + βρ λ Zl z
a  a
, - 1  , - 1
,·=1  ,·=1
Z Z
-1 -1
.=2 得 Pl
Figure imgf000011_0001
.=2 got Pl
Figure imgf000011_0001
并且有 1+t^0。 为了高效的确定出 , 对于上面"中的两个乘积 fid 和 ή , 项, 可以使用迭代得方法计算: And there is 1+t ^ 0. In order to determine efficiently, the two products fi d and ή , in the above " can be calculated using the iterative method:
i=k+\ rt 可以基于 n 和 Γ - i基石出之上得到。 因此计算 的复杂度将是线性的,而且将是当 A已知时使用后向递推的三 倍复杂度。 同时上面计算复杂度可以通过对 sc矩阵进一步限制而降低, 比如 将 sc中的元素限制图 2中的一种形式:  i=k+\ rt can be obtained based on the n and Γ - i base stones. So the computational complexity will be linear and will be three times the complexity of using backward recursion when A is known. At the same time, the above computational complexity can be reduced by further limiting the sc matrix, such as limiting the elements in sc to a form in Figure 2:
Figure imgf000011_0002
Figure imgf000011_0002
JL zz 那么有: JL z , z then have:
Z-l Z-l 二, +1 j
Figure imgf000011_0003
计算 ^的第二种方法为: 我们也可以将 SC矩阵 D分解成下面的形式:
Zl Zl two, +1 j
Figure imgf000011_0003
The second way to calculate ^ is: We can also decompose the SC matrix D into the following form:
1 E1 1 E 1
D 其中 是一个 (z-1)的向量, L是一个 (z-1)^2-1)的下三角矩阵, 是 D where is a vector of (z- 1 ), L is a lower triangular matrix of (z- 1 )^ 2 - 1 ),
-个非零元素, El是一个 (Z-l)xl的向量。 如果我们定义 Piz-i Pz - A non-zero element, El is a vector of (Zl)xl. If we define Piz-i Pz
Pi "' Pz-i] ? |^么有
Figure imgf000012_0001
Pi "' Pz-i] ? |^
Figure imgf000012_0001
所以有:
Figure imgf000012_0002
So have:
Figure imgf000012_0002
计算过程可以表述为:  The calculation process can be expressed as:
计算 Asr Csr; 根据式 A^ + TP^O, 使用反向递推法计算 P【; Calculate As r Cs r ; Calculate P[; using the inverse recursion method according to the formula A^ + TP^O;
计算 Cs^Ep 使用后向递推的方法计算 -B - 和 yy^ + wz )时; 计算 ^ = (-Β,Τ 'Ε, + A )和 Φ—、时; Calculate Cs^Ep using the backward recursive method to calculate -B - and yy^ + w z ); calculate ^ = (-Β,Τ 'Ε, + A ) and Φ—, time;
基于以上结果, 计算 +wz);Based on the above results, calculate +w z );
Figure imgf000012_0003
Figure imgf000012_0003
使用式 ΕιΡζ +
Figure imgf000012_0004
= 后向递推的计算 P ι,ζ-ΐ。
Use Ε Ρζ Ρζ +
Figure imgf000012_0004
= Backward recursive calculation P ι, ζ-ΐ.
本发明的第二实施例, 将 Hp设计成一种具有上三角形式的矩阵, 将具有上 三角形式和特定循环阵的结构称为 SC-B结构。 则 H矩阵的结构如图 8所示。 针对图 8中上三角形式的循环 LDPC结构中的 Pse矩阵,可以使用图 9所示的几 种形式。 当应用在二元域中时, PSE结构可以为图 10所示的形式。 In a second embodiment of the present invention, Hp is designed as a matrix having an upper triangular form, and a structure having an upper triangular form and a specific cyclic array is referred to as an SC-B structure. Then the structure of the H matrix is as shown in FIG. For the P se matrix in the upper triangular cyclic LDPC structure in FIG. 8, a few shown in FIG. 9 can be used. Forms. When applied in a binary domain, the P SE structure can be in the form shown in FIG.
作为本发明的第三实施例, 可以使用类似于双对角形式的校验矩阵结构, 此时我们将 HP设计成一种具有下双对角形式的矩阵, 并且我们将具有下双对 角形式和特定循环阵的结构称为 SC-C结构, 则 H矩阵的结构如图 11所示。 则其结构中的 PSE矩阵, 我们可以使用图 12所示的几种形式。 As a third embodiment of the present invention, a check matrix structure similar to the double diagonal form can be used, in which case we design H P as a matrix with the lower double diagonal form, and we will have the lower double diagonal form The structure of the specific cyclic array is called the SC-C structure, and the structure of the H matrix is as shown in FIG. Then in the P SE matrix in its structure, we can use several forms as shown in Figure 12.
本发明的第四实施例, 将 HP设计成一种具有上双对角形式的矩阵, 并且将 具有上双对角形式和特殊子阵循环阵的结构称为 SC-D结构。 则 H矩阵的基本 结构可以表示如图 1 3所示的上双对角形式。 In a fourth embodiment of the present invention, H P is designed as a matrix having an upper double diagonal form, and a structure having an upper double diagonal form and a special subarray cyclic array is referred to as an SC-D structure. Then the basic structure of the H matrix can represent the upper double diagonal form as shown in FIG.
则其中 PSE矩阵, 可以使用图 14所示的几种形式。 Then, in the P SE matrix, several forms as shown in Fig. 14 can be used.
在上述实施例中, 子矩阵 HP中除特殊子块 外的子块 扩展为: In the above embodiment, the sub-blocks of the sub-matrices H P except the special sub-blocks are expanded to:
为对角阵每行元素向右循环移位 i位得到的矩阵, 并且 是一个对角 L素分别为 的对角阵,
Figure imgf000013_0001
a matrix obtained by cyclically shifting the i-bits of each element of the diagonal matrix to the right, and is a diagonal matrix of diagonal L-forms,
Figure imgf000013_0001
如果 q>Z-l , 则 对角线上元素互不相同; 如果 g≤Z -l , 则 Ρ1对角线上包含了 多元域中所有的非零元素, 其中 q为多元域的阶数, 表示扩展因子。 If q>Zl, the elements on the diagonal are different from each other; if g≤Z -l , then the Ρ 1 diagonal contains all non-zero elements in the multivariate domain, where q is the order of the multivariate domain, Expansion factor.
本发明第五实施例, 进一步提供实现上述方法的装置。 如图 15 所示, 生 成准循环低密度奇偶校验码的装置 15 , 所述装置包括:  A fifth embodiment of the present invention further provides an apparatus for implementing the above method. As shown in FIG. 15, a device 15 for generating a quasi-cyclic low density parity check code, the device comprising:
度分布确定单元 151 , 其用于根据所要设计的低密度奇偶校验码的码率码 长需求和系统需求, 确定度分布序列, 该度分布序列的选择使用密度进化的 方法进行。  The degree distribution determining unit 151 is configured to determine a degree distribution sequence according to a code rate code requirement and a system requirement of the low density parity check code to be designed, and the selection of the degree distribution sequence is performed by a density evolution method.
列重设置单元 152 , 其用于根据所选择的度分布序列, 设置基本矩阵每列 的列重。 该列重设置单元 152列重设置的原则为: 使生成的校验矩阵 H由子 矩阵 ^及子矩阵 HP组成, 所述子矩阵对应码字的系统信息位部分, 子矩阵 HP 对应码字的校验位部分, 其中子矩阵 HP中包含一具有特殊子块 PSE, 该子块 Pse 扩展所得的校验矩阵无列重为 1的块。 A column resetting unit 152 is configured to set a column weight of each column of the basic matrix according to the selected degree distribution sequence. The column resetting unit 152 resets the column by: the generated check matrix H is composed of a sub-matrix and a sub-matrix HP, the sub-matrix corresponding to the system information bit portion of the codeword, and the sub-matrix H P corresponding to the code word A parity bit portion, wherein the sub-matrix H P includes a block having a special sub-block P SE , and the parity check matrix obtained by expanding the sub-block P se has no column weight of 1.
基本矩阵确定单元 153 , 其用于按照所述基本矩阵列重设置基本矩阵中每 列非零元素的位置和取值, 得到基本矩阵。 a basic matrix determining unit 153 for resetting each of the basic matrices according to the basic matrix column The position and value of the non-zero element of the column gives the basic matrix.
该基本矩阵确定单元 153包括第一个非零元素处理单元, 其用于选取该列 的第一个非零元素所在的行的位置, 所述第一个非零元素所在的行在所有行 中行重最小, 并将该列中第一个非零元素取值设置为一个小于扩展因子值的 非负整数; 其他非零元素处理单元, 其用于对于该列的其它非零元素, 放置 到其它未放置非零元素的位置, 并且遍历的设置该非零元素的取值, 确定非 零元素的位置和取值, 所述确定非零元素的位置和取值使得最终扩展后的校 验矩阵的围长值最大化。  The basic matrix determining unit 153 includes a first non-zero element processing unit for selecting a position of a row in which the first non-zero element of the column is located, and the row in which the first non-zero element is located in all rows The minimum is small, and the first non-zero element in the column is set to a non-negative integer less than the expansion factor value; other non-zero element processing units are used for other non-zero elements of the column, placed to other The position of the non-zero element is not placed, and the value of the non-zero element is set by the traversal, the position and value of the non-zero element are determined, and the position and value of the non-zero element are determined such that the final expanded check matrix Maximize the circumference value.
扩展单元 154 , 其用于将所得到的基本矩阵扩展成二元域或多元域上的校 验矩阵。  An extension unit 154 is for expanding the resulting base matrix into a check matrix on a binary domain or a multivariate domain.
在该装置的应用中基本矩阵确定单元得到的基本矩阵中由所述特殊子块 Pse扩展所得的部分如图 5所示。 The portion of the basic matrix obtained by the basic matrix determining unit in the application of the apparatus is expanded by the special sub-block P se as shown in FIG. 5.
本发明第六实施例, 如图 16 所示, 一种准循环低密度奇偶校验码编码器 16 , 所述编码器 16包括:  A sixth embodiment of the present invention, as shown in FIG. 16, is a quasi-cyclic low density parity check code encoder 16, and the encoder 16 includes:
校验矩阵生成单元 160 , 用于设计准循环低密度奇偶校验码的校验矩阵, 所述校验矩阵通过基本矩阵扩展而成, 所采用的基本矩阵扩展所得的校验矩 阵 H由子矩阵!^及子矩阵 Hp组成, 所述子矩阵对应码字的系统信息位部分, 子矩阵 Hp对应码字的校验位部分, 其中子矩阵 Hp中包含一具有特殊子块 Pse, 该子块 扩展所得的校验矩阵无列重为 1的块。 The check matrix generating unit 160 is configured to design a check matrix of the quasi-cyclic low-density parity check code, and the check matrix is expanded by the basic matrix, and the check matrix H obtained by the basic matrix expansion is used by the sub-matrix! And sub-matrix H p , the sub-matrix corresponding to the system information bit portion of the code word, the sub-matrix Hp corresponding to the check bit portion of the code word, wherein the sub-matrix H p includes a special sub-block P se , the sub-matrix The parity check matrix obtained by block expansion has no block with a column weight of 1.
该编码器 160中所述特殊子块 扩展后所得的部分如图 5所示。  The portion obtained by expanding the special sub-block in the encoder 160 is as shown in FIG.
如图 17 所示, 本发明第七实施例一种利用准循环低密度奇偶校验码编码 的装置 17 , 所述准循环低密度奇偶校验码编码的装置 17包括:  As shown in FIG. 17, a seventh embodiment of the present invention is an apparatus 17 for encoding a quasi-cyclic low-density parity check code, and the apparatus 17 for encoding the quasi-cyclic low-density parity check code includes:
检验矩阵处理单元 171 , 其用于对校验矩阵进行分块处理, 在对校验矩阵 进行分块处理时将 Μ χ Ν 的校验矩阵分为一 ((M_l)xZX(N_ )xZ;)的子矩阵 The check matrix processing unit 171 is configured to perform block processing on the check matrix, and divide the check matrix of Μ χ 一 into one ((M_l)xZX(N_)xZ;) when performing block processing on the check matrix. Submatrix
A,一 ((Μ_1)χΖ)χΖ的全零矩阵 B, — 1)χΖ) χ((Μ- 1)χΖ)的分组下三角矩阵 T,一 Zx((N_ )xZ)的矩阵 C,一 ΖχΖ的特殊子阵 Psc, E是一个 Zx((M_l)xZ) 的矩阵 E, 其中特殊子阵 分解为一只有第一个元素取非零值的 ^-1)向 量 — (z-1)^2-1)的下三角矩阵 τι , 一非零元素 A , — (z-1) 的向量 ElD 计算单元 172,其用于对待编码信息进行计算完成编码,如果待编码的信 息序列为 s, 根据校验矩阵分块结果对信息序列为 s进行编码,, 得到编码后 的码字 X可以表示为 x = [s, P2, PJ, 利用低密度奇偶校验码的校验方程获 得 P2, 通过 P2的值以及一特殊矩阵子块利用低密度奇偶校验码的校验方程获 得 Pl 所述特殊矩阵子块扩展所得的校验矩阵无列重为 1 的块。 该计算单元A, one ((Μ_1)χΖ)χΖ all zero matrix B, — 1) χΖ) χ((Μ-1)χΖ) grouping lower triangular matrix T, a matrix C of Zx((N_)xZ), a special sub-array P sc of E, E is a matrix E of Zx((M_l)xZ), where the special sub-matrix is decomposed into one with only the first element a non-zero value ^ - 1 ) vector - a lower triangular matrix τ ι of (z - 1 )^ 2 - 1 ), a non-zero element A, a vector E lD calculation unit 172 of (z- 1 ), which is used for The coded information is calculated and coded. If the information sequence to be coded is s, the information sequence is s encoded according to the check matrix block result, and the coded code word X can be expressed as x = [s, P 2 , PJ, obtaining a P 2 using a check equation of a low-density parity check code, obtaining a special matrix sub-block extension of P l by using a value of P 2 and a special matrix sub-block using a check equation of a low-density parity check code The resulting check matrix has no blocks with a weight of one. The calculation unit
172计算?及^的方法为: 根据公式^ + 1 【=0, 使用反向递推法计算 P【, 然后获得 P2;
Figure imgf000015_0001
172 calculation? And ^ method is: according to the formula ^ + 1 [= 0 , using the inverse recursive method to calculate P [, and then obtain P 2 ;
Figure imgf000015_0001
Pi叫 Ρΐ,Ζ— i Ρζ P  Pi called Ρΐ,Ζ—i Ρζ P
w = [wr wz] , W3 W Ά w2 … wZ 1,Z-1 [Pi Pi Jz-\\
Figure imgf000015_0002
w = [w r w z ] , W 3 W Ά w 2 ... w Z 1,Z-1 [Pi Pi J z-\\
Figure imgf000015_0002
法, 该方法在构造基本矩阵时, 从最优化扩展后校验矩阵的角度出发, 在设 置基本矩阵每列中非零元素的位置和循环移位值, 充分考虑到了基本矩阵中 环重叠的问题。 采用本发明实施例提供的方法与装置使得最终得到的码字能 有效的削弱环重叠带来的影响。 In the method of constructing the basic matrix, from the perspective of optimizing the expanded check matrix, the position and cyclic shift value of the non-zero elements in each column of the basic matrix are set, and the problem of overlapping the rings in the basic matrix is fully considered. The method and apparatus provided by the embodiments of the present invention enable the finally obtained codeword to effectively weaken the influence of the ring overlap.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体 ( Random Access Memory, RAM )等。  A person skilled in the art can understand that all or part of the process of implementing the above embodiment method can be completed by a computer program to instruct related hardware, and the program can be stored in a computer readable storage medium. In execution, the flow of an embodiment of the methods as described above may be included. The storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。 The above description is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited. In this regard, any person skilled in the art can easily conceive changes or substitutions within the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the appended claims.

Claims

权利要求 书 Claim
1、一种生成准循环低密度奇偶校验码的方法,其特征在于,所述方法包括: 根据所要设计的低密度奇偶校验码的码率及码长需求和系统需求, 确定度 分布序列;  A method for generating a quasi-cyclic low-density parity check code, the method comprising: determining a degree distribution sequence according to a code rate and a code length requirement and a system requirement of a low-density parity check code to be designed ;
根据所选择的度分布序列, 设置基本矩阵每列的列重;  Setting the column weight of each column of the basic matrix according to the selected degree distribution sequence;
按照所述基本矩阵列重设置基本矩阵中每列非零元素的位置和取值, 得到 基本矩阵;  Resetting the position and value of each column of non-zero elements in the basic matrix according to the basic matrix column to obtain a basic matrix;
将所得到的基本矩阵扩展成校验矩阵。  The resulting basic matrix is expanded into a check matrix.
2、 如权利要求 1所述的方法, 其特征在于, 所述按照基本矩阵列重设置基 本矩阵中每列非零元素的位置和取值, 得到基本矩阵的过程包括:  2. The method according to claim 1, wherein the resetting the position and the value of each non-zero element in the basic matrix according to the basic matrix column, the process of obtaining the basic matrix comprises:
对于每一列:  For each column:
选取该列的第一个非零元素所在的行的位置, 所述第一个非零元素在行重 最小的行;  Select the position of the row in which the first non-zero element of the column is located, the first non-zero element having the smallest row in the row;
将该列中第一个非零元素取值设置为一个小于扩展因子值的非负整数; 对于该列的其它非零元素, 遍历地放置到其它未放置非零元素的位置, 并 且遍历地设置该非零元素的取值, 确定非零元素的位置和取值, 所述确定非零 元素的位置和取值使得最终扩展后的校验矩阵的围长值最大化和最小环数目最 小化。  Set the first non-zero element value in the column to a non-negative integer less than the expansion factor value; for other non-zero elements of the column, traverse to other locations where non-zero elements are not placed, and traverse the settings The value of the non-zero element determines the position and value of the non-zero element, and the position and value of the non-zero element are determined such that the girth value of the final expanded check matrix is maximized and the minimum number of rings is minimized.
3、 如权利要求 1所述的方法, 其特征在于, 所述基本矩阵扩展所得的校验 矩阵 H由子矩阵!^及子矩阵 HP组成,所述子矩阵 对应码字的系统信息位部分, 子矩阵 ΗΡ对应码字的校验位部分, 其中子矩阵 HP中包含一特殊子块 PSE ,该子块 PSE扩展后在所述扩展所得的校验矩阵中无列重为 1的块。 3. The method according to claim 1, wherein the parity matrix H obtained by the basic matrix expansion is composed of sub-matrices! And sub-matrix HP, the sub-matrix corresponding to the system information bit portion of the codeword, the sub-matrix Ρ Ρ corresponding to the check bit portion of the codeword, wherein the sub-matrix H P includes a special sub-block P SE , the sub-block After the P SE is expanded, there is no block with a column weight of 1 in the check matrix obtained by the expansion.
4、 如权利要求 3所述的方法, 其特征在于, 所述特殊子块 PSE扩展后为:
Figure imgf000018_0001
其中 为多元域中的元素。
4. The method according to claim 3, wherein the special sub-block P SE is expanded to:
Figure imgf000018_0001
Among them are elements in the multivariate domain.
5、 如权利要求 3所述的方法, 其特征在于, 在二元域下所述特殊子块 P; 扩展后为:
Figure imgf000019_0001
5. The method according to claim 3, wherein the special sub-block P is in the binary domain ; the extension is:
Figure imgf000019_0001
、 如权利要求 3所述的方法, 其特征在于, 所述特殊子块 Pse扩展后为
Figure imgf000019_0002
dl, 2 0 - • 0 0
The method according to claim 3, wherein the special sub-block P se is expanded
Figure imgf000019_0002
d l, 2 0 - • 0 0
0 d2, 2 d2, 3 . • 0 0 0 d 2, 2 d 2, 3 . • 0 0
0 d33 - • 0 00 d 3 , 3 - • 0 0
Figure imgf000020_0001
Figure imgf000020_0001
0 . : :  0 . : :
- 0 0 - • ^Ζ-Ι, Ζ-Ι dz-i,z  - 0 0 - • ^Ζ-Ι, Ζ-Ι dz-i,z
0 0 0 - • 0 dzz 0 0 0 - • 0 d z , z
7、 如权利要求 3所述的方法, 其特征在于, 在二元域下所述特殊子块 SC 7. The method of claim 3, wherein the special sub-block SC is in a binary domain
P' 扩展后为:  After P' is expanded, it is:
Figure imgf000020_0002
Figure imgf000020_0002
8、 如权利要求 3所述的方法, 其特征在于, 子矩阵 Hp中除特殊子块 外 的子块 Pi扩展为: 8. The method according to claim 3, wherein the sub-blocks Pi of the sub-matrices Hp except the special sub-blocks are expanded to:
Pi为对角阵每行元素向右循环移位 i位得到的矩阵, 并且 Pi是一个对角元 素分别为 的对角阵, 如果
Figure imgf000020_0003
Pi is a matrix obtained by cyclically shifting the i-bits of each element of the diagonal matrix to the right, and Pi is a diagonal matrix of diagonal elements, respectively.
Figure imgf000020_0003
q>Z-l , 则 对角线上元素互不相同; 如果 g≤Z -l , 则 Ρ1对角线上包含了多元 域中所有的非零元素, 其中 q为多元域的阶数, 表示扩展因子。 q>Zl, the elements on the diagonal are different from each other; if g≤Z -l , then the Ρ 1 diagonal contains all non-zero elements in the multivariate domain, where q is the order of the multivariate domain, indicating expansion factor.
9、 一种利用准循环低密度奇偶校验码编码的方法, 其特征在于, 所述方法 包括: 9. A method of encoding using a quasi-cyclic low density parity check code, characterized in that the method Includes:
对校验矩阵进行分块处理;  Perform block processing on the check matrix;
如果待编码的信息序列为 S, 根据校验矩阵分块结果对信息序列为 S进行 编码, 编码后的码字 X为 x = [s,p2Pl], 利用低密度奇偶校验码的校验方程获得If the information sequence to be encoded is S, the information sequence is S according to the parity check result, and the encoded codeword X is x = [s, p 2 , Pl ], and the low density parity check code is used. Check equation
P2,通过 P2的值以及一特殊矩阵子块利用低密度奇偶校验码的校验方程获得 Pi, 所述特殊矩阵子块扩展后在所得的校验矩阵中无列重为 1的块。 P 2 , obtaining a Pi by using a value of P 2 and a special matrix sub-block using a check equation of a low-density parity check code, wherein the special matrix sub-block is expanded without a block having a column weight of 1 in the obtained check matrix .
10、 如权利要求 9所述的方法, 其特征在于, 所述对校验矩阵进行分块处 理为: 将 M X N 的校验矩阵分为一((M-l)xz;)x((N-M)xZ;)的子矩阵 A , —The method according to claim 9, wherein the block processing is performed by dividing the check matrix into: ((Ml) x z;) x ((NM) xZ ;) submatrix A, —
((Μ_1)χΖ)χΖ的全零矩阵 B ,一 ((Λ/-1)χΖ)χ((Λ/-1)χΖ)的分组下三角矩阵 Τ ,一((Μ_1)χΖ)χΖ's all-zero matrix B, one ((Λ/-1)χΖ)χ((Λ/-1)χΖ) grouped lower triangular matrix Τ , one
Zx((7V— M)xZ)的矩阵 c,一 ZxZ的特殊子阵 Pse, E是一个 Zx((M-1)xZ)的 矩阵, 其中特殊子阵? 分解为一 lx(Z-l)的向量 B —(Z-1)^2-1)的下三角矩 阵 1\, 一非零元素 Dl 一 (Z-l)xl的向量 ElD A matrix c of Zx((7V-M)xZ), a special sub-array P se of ZxZ, E is a matrix of Zx ( (M - 1)xZ ), where a special sub-array? Decomposed into a lx(Zl) vector B - (Z- 1 )^ 2 - 1 ) lower triangular matrix 1\, a non-zero element D l - (Zl)xl vector E lD
11、 如权利要求 10所述的方法, 其特征在于, 计算 1及 的方法为: 根 据公式 As + Tp=0, 使用反向递推法计算 P【, 然后获得 p2; 11. The method according to claim 10, wherein the method of calculating 1 and is: according to the formula As + Tp [ =0 , using the inverse recursive method to calculate P [, and then obtaining p 2 ;
根据公式 ρζ{) ,
Figure imgf000021_0001
According to the formula ρ ζ{ )
Figure imgf000021_0001
τ  τ
Pl =1·2-1 ^], w = [wr wz] , WT=[M M Ρι,ζ-ι = [ PI ■■■ Pz-x Pl =1 · 2 - 1 ^], w = [w r w z ] , W T = [MM Ρι, ζ-ι = [ PI ■ ■ ■ Pz-x
WZ-1 W Z-1
TiP +
Figure imgf000021_0002
=
TiP +
Figure imgf000021_0002
=
12、 一种准循环低密度奇偶校验码编码器, 其特征在于, 所述编码器包括: 校验矩阵生成单元, 用于设计准循环低密度奇偶校验码的校验矩阵, 所述校 验矩阵通过基本矩阵扩展而成, 所采用的基本矩阵扩展所得的校验矩阵 H由子 矩阵!^及子矩阵 Hp组成, 所述子矩阵 ^对应码字的系统信息位部分, 子矩阵 Hp对应码字的校验位部分, 其中子矩阵 Hp中包含一特殊子块 Pse, 该子块 扩 展后在扩展所得的校验矩阵中无列重为 1的块。 12. A quasi-cyclic low density parity check code encoder, wherein: the encoder comprises: a check matrix generating unit, configured to design a check matrix of a quasi-cyclic low density parity check code, the school The matrix is expanded by the basic matrix, and the parity matrix H obtained by the basic matrix expansion is composed of sub-matrices! And the sub-matrix H p , the sub-matrix corresponding to the system information bit portion of the code word, the sub-matrix H p corresponding to the check bit portion of the code word, wherein the sub-matrix H p includes a special sub-block P se , After the sub-block is expanded, there is no block with a column weight of 1 in the parity check matrix obtained by the expansion.
13、 如权利要求 12所述的编码器, 其特征在于, 该编码器中所述特殊 子块 Pse扩展后为: The encoder according to claim 12, wherein the special sub-block P se in the encoder is expanded to:
:
Figure imgf000022_0001
Figure imgf000022_0001
0 0 0 0  0 0 0 0
d22 d22 0 0 0 d 2 , 2 d 2 , 2 0 0 0
d23 d3, 3 … 0 d 2 , 3 d 3 , 3 ... 0
0 0  0 0
0 0 ^Z-1, Z-1  0 0 ^Z-1, Z-1
0 0 0 ^Z, Z-1 dzz 0 0 0 ^Z, Z-1 d z , z
14、 一种生成准循环低密度奇偶校验码的装置,其特征在于,所述装置包括: 度分布确定单元,其用于根据所要设计的低密度奇偶校验码的码率码长需求 和系统需求, 确定度分布序列; 14. An apparatus for generating a quasi-cyclic low density parity check code, the apparatus comprising: a degree distribution determining unit for using a code rate code length requirement of a low density parity check code to be designed System requirements, a sequence of deterministic distributions;
列重设置单元,其用于根据所选择的度分布序列,设置基本矩阵每列的列重; 基本矩阵确定单元,其用于按照所述基本矩阵列重设置基本矩阵中每列非零 元素的位置和取值, 得到基本矩阵; a column resetting unit configured to set a column weight of each column of the basic matrix according to the selected degree distribution sequence; a basic matrix determining unit configured to reset each column in the basic matrix to be non-zero according to the basic matrix column The position and value of the element, to get the basic matrix;
扩展单元, 其用于将所得到的基本矩阵扩展成二元域或多元域上的校验矩 阵。  An extension unit for expanding the resulting base matrix into a check matrix on a binary domain or a multivariate domain.
15、 如权利要求 14所述的装置, 其特征在于, 基本矩阵确定单元包括: 第一个非零元素处理单元,其用于选取该列的第一个非零元素所在的行的位 置, 所述第一个非零元素放置在所有行中行重最小的行, 并将该列中第一个非 零元素取值设置为一个小于扩展因子值的非负整数;  15. The apparatus according to claim 14, wherein the basic matrix determining unit comprises: a first non-zero element processing unit for selecting a position of a row of the first non-zero element of the column, The first non-zero element is placed in the row with the smallest row weight in all rows, and the value of the first non-zero element in the column is set to a non-negative integer less than the expansion factor value;
其他非零元素处理单元, 其用于对于该列的其它非零元素, 并且遍历的放置 到其它未放置非零元素的位置, 并且遍历的设置该非零元素的取值, 确定非零 元素的位置和取值, 所述确定非零元素的位置和取值使得最终扩展后的校验矩 阵的围长值最大化和最小环数目最小化。  Other non-zero element processing units for other non-zero elements of the column, and traversed to other locations where non-zero elements are not placed, and traversing the value of the non-zero element, determining the non-zero element Position and value, the determining the location and value of the non-zero element minimizes the girth value and the minimum number of rings of the final expanded check matrix.
16、 如权利要求 14所述的装置, 其特征在于, 所述列重设置单元中列重设 置的原则为使生成的基本矩阵扩展所得的校验矩阵 H 由子矩阵!^及子矩阵 Hp 组成, 所述子矩阵对应码字的系统信息位部分, 子矩阵 Hp对应码字的校验位部 分, 其中子矩阵 中包含一具有特殊子块 Pse, 该子块 Pse扩展后在扩展所得的 校验矩阵中无列重为 1的块。 The apparatus according to claim 14, wherein the principle of column resetting in the column resetting unit is to make the parity matrix H obtained by expanding the generated basic matrix from the sub-matrix! And sub-matrix H p , the sub-matrix corresponding to the system information bit portion of the code word, the sub-matrix H p corresponding to the check bit portion of the code word, wherein the sub-matrix includes a special sub-block P se , the sub-block After P se is expanded, there is no block with a column weight of 1 in the parity check matrix obtained by the expansion.
17、 如权利要求 16所述的装置, 其特征在于, 所述基本矩阵确定单元得到 的二元基本矩阵中由所述特殊子块 Pse扩展所得的部分为: The device according to claim 16, wherein the part of the binary basic matrix obtained by the basic matrix determining unit that is extended by the special sub-block P se is:
1 0 0  1 0 0
1 1 0  1 1 0
0 1 1  0 1 1
0 0 0 0 0 0
0 0 0 或 0 0 0 or
, 或
Figure imgf000024_0001
, or
Figure imgf000024_0001
1 1 0 - - 0 0  1 1 0 - - 0 0
0 1 1 - - 0 0  0 1 1 - - 0 0
0 1 - - 0 0  0 1 - - 0 0
0  0
0 0 - - 1 1  0 0 - - 1 1
0 0 0 - - 0 1  0 0 0 - - 0 1
18、 一种利用准循环低密度奇偶校验码编码的装置, 其特征在于, 所述装置 包括: 18. An apparatus for encoding using a quasi-cyclic low density parity check code, the apparatus comprising:
检验矩阵处理单元, 其用于对校验矩阵进行分块处理;  a check matrix processing unit for performing block processing on the check matrix;
计算单元, 其用于对待编码信息进行计算完成编码, 如果待编码的信息序 列为 s, 根据校验矩阵分块结果对信息序列为 s进行编码,, 得到编码后的码字 X为 X = [s, P2, PJ, 利用低密度奇偶校验码的校验方程获得 p2, 通过 p2的值 以及一特殊矩阵子块 Pse, 利用低密度奇偶校验码的校验方程获得 pl 所述特殊 矩阵子块 扩展所得的校验矩阵无列重为 1的块。 a calculation unit, configured to perform coding for encoding the information to be encoded, and if the information sequence to be encoded is s, encode the information sequence as s according to the block matrix result, and obtain the coded code word X as X=[ s, P 2 , PJ, obtain p 2 using the check equation of the low density parity check code, obtain the p l by using the check value of the low density parity check code by the value of p 2 and a special matrix sub-block P se The check matrix obtained by the expansion of the special matrix sub-block has no block with a column weight of 1.
19、 如权利要求 18所述装置, 其特征在于, 所述检验矩阵处理单元在对校 验矩阵进行分块处理时将 Μ χ Ν 的校验矩阵分为一 ( ^^ ^的子矩阵 Α, — (Af-l)ZxZ的全零矩阵 B , — (M-l)Zx(M-l)Z的分组下三角矩阵 τ, 一 ZxKZ的 矩阵 的特殊子阵 Psc, E是一个 sc C , 一 ZxZ Z^M-1)2的矩阵 E, 其中特殊子阵 P' 分解为一个 (z-1)的向量 Bl — (z-1)^2-1)的下三角矩阵 1\, 一非零元素 Dl — (z-^1的向量 ElD The apparatus according to claim 18, wherein the check matrix processing unit divides the check matrix of Μ χ 一 into a submatrix ^ (^^^) when performing block processing on the check matrix. – (Af-l) ZxZ's all-zero matrix B, — (Ml)Zx(Ml)Z grouping lower triangular matrix τ, a ZxKZ The special sub-matrix P sc of the matrix, E is a matrix E of sc C , a ZxZ Z^M - 1 ) 2 , where the special sub-array P' is decomposed into a vector of (z- 1 ) B l — (z- 1 )^ 2 - 1 ) lower triangular matrix 1\, a non-zero element D l — (z-^ 1 vector E lD
20、 如权利要求 18所述装置, 其特征在于, 所述计算单元计算?及 P2的 方法为: 根据公式^ 1^^0, 使用反向递推法计算 P【, 然后获得 P2;20. The apparatus of claim 18, wherein the computing unit calculates? And the method of P 2 is: according to the formula ^ 1 ^ ^ 0 , using the inverse recursive method to calculate P [, and then obtain P 2 ;
Dj , ,  Dj, ,
Figure imgf000025_0001
Figure imgf000025_0001
PCT/CN2009/071489 2008-08-26 2009-04-27 Method and apparatus for generating quasi-cyclic low-density parity-check codes and encoding WO2010022602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810142175 CN101662290B (en) 2008-08-26 2008-08-26 Method and device for generating and coding quasi-cyclic LDPC code
CN200810142175.0 2008-08-26

Publications (1)

Publication Number Publication Date
WO2010022602A1 true WO2010022602A1 (en) 2010-03-04

Family

ID=41720808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071489 WO2010022602A1 (en) 2008-08-26 2009-04-27 Method and apparatus for generating quasi-cyclic low-density parity-check codes and encoding

Country Status (2)

Country Link
CN (1) CN101662290B (en)
WO (1) WO2010022602A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070022A1 (en) * 2011-11-11 2013-05-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
CN107733442A (en) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 The processing method and processing device of structured LDPC code
CN109150197A (en) * 2017-06-27 2019-01-04 华为技术有限公司 The method, apparatus and communication equipment of information processing
CN110535474A (en) * 2017-05-05 2019-12-03 华为技术有限公司 The method of information processing, communication device
CN111052615A (en) * 2017-06-27 2020-04-21 华为技术有限公司 Information processing method and device and communication equipment
US11996863B2 (en) 2017-06-15 2024-05-28 Huawei Technologies Co., Ltd. Method and apparatus for low density parity check channel coding in wireless communication system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870330B (en) * 2010-04-27 2015-03-25 日本电气株式会社 Coding device, error-correction code configuration method, and program thereof
CN102457286B (en) * 2010-10-21 2013-08-28 航天信息股份有限公司 Encoding method and device for quasi-cyclic LDPC (Low Density Parity Check) code and generating method for check matrix
CN103053116B (en) * 2011-06-28 2016-10-05 华为技术有限公司 The coded method of low density parity check code and device
CN102904582B (en) * 2011-07-27 2016-05-11 无锡物联网产业研究院 The building method of LDPC code check matrix and device
CN103427848B (en) * 2012-08-03 2017-03-22 上海数字电视国家工程研究中心有限公司 Method for constructing LDPC codes and codes
CN104104393A (en) * 2013-04-02 2014-10-15 盐城师范学院 Quasi-cycle LDPC code design method with simple iterative code structure
CN105099467B (en) * 2014-04-21 2019-02-01 华为技术有限公司 The coding method of QC-LDPC code and code device
CN103944587B (en) * 2014-05-07 2017-01-04 四川大学 A kind of m-ary LDPC code check matrix building method of ordered arrangement nonzero element
CN104168030B (en) * 2014-07-14 2017-11-14 北京邮电大学 A kind of LDPC code building method based on two generation members of basis domain cyclic group
CN105071818A (en) * 2015-08-31 2015-11-18 四川特伦特科技股份有限公司 Low-complexity LDPC code coding method
CN109644005B (en) * 2016-08-25 2021-08-27 华为技术有限公司 Low-density parity check code base matrix generation method and device
WO2018128559A1 (en) 2017-01-09 2018-07-12 Huawei Technologies Co., Ltd. Efficiently decodable qc-ldpc code
CN108347297B (en) * 2017-01-25 2021-06-08 华为技术有限公司 Encoding method, decoding method, encoding device and decoding device
CN109150191A (en) * 2017-06-15 2019-01-04 华为技术有限公司 The method, apparatus and communication equipment of information processing
CN114257250A (en) * 2020-09-25 2022-03-29 中兴通讯股份有限公司 LDPC code encoding method, apparatus, network device and storage medium
CN117040543B (en) * 2023-10-09 2024-02-20 苏州元脑智能科技有限公司 Error correction coding check matrix generation method, device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770640A (en) * 2004-11-04 2006-05-10 中兴通讯股份有限公司 Coder/decoder for low-density parity check code and its forming method
CN1794621A (en) * 2006-01-12 2006-06-28 北京大学 Construction method of non-regular permutation matrix LDPC code and its device
EP1901433A1 (en) * 2006-09-18 2008-03-19 Availink, Inc. A family of LDPC codes for video broadcasting applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770640A (en) * 2004-11-04 2006-05-10 中兴通讯股份有限公司 Coder/decoder for low-density parity check code and its forming method
CN1794621A (en) * 2006-01-12 2006-06-28 北京大学 Construction method of non-regular permutation matrix LDPC code and its device
EP1901433A1 (en) * 2006-09-18 2008-03-19 Availink, Inc. A family of LDPC codes for video broadcasting applications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MYUNG, SEHO ET AL.: "Quasi-Cyclic LDPC Codes for Fast Encoding.", IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 51, no. 8, August 2005 (2005-08-01), pages 2894 - 2901 *
RICHARDSON, TOMAS J. ET AL.: "Efficient Encoding of Low-Density Parity-Check Codes.", IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 47, no. 8, February 2001 (2001-02-01), pages 638 - 656 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070022A1 (en) * 2011-11-11 2013-05-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
US8918697B2 (en) 2011-11-11 2014-12-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
US9059741B2 (en) 2011-11-11 2015-06-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
US9800267B2 (en) 2011-11-11 2017-10-24 Samsung Electronics Co., Ltd Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
CN107733442B (en) * 2016-08-12 2022-12-02 中兴通讯股份有限公司 Method and device for processing structured LDPC code
CN107733442A (en) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 The processing method and processing device of structured LDPC code
CN110535474A (en) * 2017-05-05 2019-12-03 华为技术有限公司 The method of information processing, communication device
CN110999091A (en) * 2017-05-05 2020-04-10 华为技术有限公司 Information processing method and communication device
CN110535474B (en) * 2017-05-05 2023-06-06 华为技术有限公司 Information processing method and communication device
US11777521B2 (en) 2017-05-05 2023-10-03 Huawei Technologies Co., Ltd. Apparatus and method for channel coding in communication system
CN110999091B (en) * 2017-05-05 2024-06-04 华为技术有限公司 Information processing method and communication device
US11996863B2 (en) 2017-06-15 2024-05-28 Huawei Technologies Co., Ltd. Method and apparatus for low density parity check channel coding in wireless communication system
CN109150197A (en) * 2017-06-27 2019-01-04 华为技术有限公司 The method, apparatus and communication equipment of information processing
CN111052615A (en) * 2017-06-27 2020-04-21 华为技术有限公司 Information processing method and device and communication equipment
CN109150197B (en) * 2017-06-27 2024-05-14 华为技术有限公司 Information processing method, device and communication equipment

Also Published As

Publication number Publication date
CN101662290A (en) 2010-03-03
CN101662290B (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2010022602A1 (en) Method and apparatus for generating quasi-cyclic low-density parity-check codes and encoding
KR101789959B1 (en) Encoding Method, Decoding Method, Encoding device and Decoding Device for Structured LDPC
KR100849044B1 (en) Inspection matrix generation method, data transmission system, encoding device, decoding device, and inspection matrix generation program
KR102229233B1 (en) Structured LDPC encoding and decoding method and apparatus
JP5752317B2 (en) Method for obtaining quasi-cyclic low density parity check code and system for encoding data based on quasi-cyclic low density parity check code
CN102394659B (en) Low density parity check (LDPC) code check matrix construction method and corresponding matrix multiply operation device
JP5774237B2 (en) Error correction encoding method and error correction encoding apparatus
WO2010057407A1 (en) Method and device for encoding or decoding variable code length ldpc codes and encoder and decoder
KR20090092892A (en) Method of performing decoding using LDPC code
EP3556021A1 (en) Efficiently decodable qc-ldpc code
CN113612486B (en) Base matrix method, system and device for constructing PBRL LDPC code and storage medium
WO2015135298A1 (en) Method, device, and computer storage medium supporting low bit rate encoding
KR102019893B1 (en) Apparatus and method for receiving signal in communication system supporting low density parity check code
JP4832447B2 (en) Decoding apparatus and method using channel code
JP2019208269A (en) Receiver unit and reception method
KR101077552B1 (en) APPARATUS AND METHOD OF DECODING LOW DENSITY PARITY CHECK CODE USING MUlTI PROTOTYPE MATRIX
CN112204888A (en) QC-LDPC code with high-efficiency coding and good error code flat layer characteristic
CN107947802B (en) Method for coding and decoding rate compatible low density parity check code and coder
Porcello Designing and implementing low density parity check (ldpc) decoders using fpgas
CN105071818A (en) Low-complexity LDPC code coding method
CN105871385B (en) A kind of LDPC convolutional-code building method
JP5510447B2 (en) Decoding device and decoding method
JP5391253B2 (en) Transmitting apparatus and transmitting method
CN111384970A (en) Decoding method, device and communication equipment
WO2009078514A1 (en) Apparatus and method for generating parity check matrix for ldpc code and ldpc encoding/decoding appartus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809187

Country of ref document: EP

Kind code of ref document: A1