WO2010021392A1 - In vitro fluorescence observation method for mammal embryo, and method for selecting mammal embryo reduced in risk of implantation failure or abortion - Google Patents

In vitro fluorescence observation method for mammal embryo, and method for selecting mammal embryo reduced in risk of implantation failure or abortion Download PDF

Info

Publication number
WO2010021392A1
WO2010021392A1 PCT/JP2009/064681 JP2009064681W WO2010021392A1 WO 2010021392 A1 WO2010021392 A1 WO 2010021392A1 JP 2009064681 W JP2009064681 W JP 2009064681W WO 2010021392 A1 WO2010021392 A1 WO 2010021392A1
Authority
WO
WIPO (PCT)
Prior art keywords
embryo
embryos
mammalian
fluorescence
protein
Prior art date
Application number
PCT/JP2009/064681
Other languages
French (fr)
Japanese (ja)
Inventor
一夫 山縣
照彦 若山
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Publication of WO2010021392A1 publication Critical patent/WO2010021392A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material

Definitions

  • the present invention relates to a fluorescence observation method for a mammalian embryo without damage to embryo development.
  • the present invention also relates to a method for selecting a mammalian embryo with a low risk of implantation failure or miscarriage.
  • a part of the blastomeres constituting polar bodies or advanced embryos are removed by biopsy and fluorescence in situ hybridization (FISH) method is used.
  • FISH fluorescence in situ hybridization
  • chromosome aneuploidy is known to stop embryogenesis before and after implantation, and is considered one of the causes of implantation failure and miscarriage.
  • Non-patent Document 3 A method has been reported that uses electrophysiological techniques to measure the respiratory activity of individual embryos in a non-invasive manner and to use the correlation between respiratory activity and subsequent embryo development to select embryos with good development.
  • the present inventors have been developing fluorescent imaging techniques that can observe various phenomena observed during early embryogenesis alive, and apply mRNA encoding fluorescent proteins to unfertilized eggs and embryos immediately after fertilization.
  • a laser beam is scanned by a fluorescent microscope using a mercury lamp or a xenon lamp as a light source, or a scanning type (for example, a galvanoscan device using a galvanomirror) to the object to be observed.
  • a scanning type for example, a galvanoscan device using a galvanomirror
  • these methods result in too much light hitting the sample and / or too long the exposure time, causing embryogenesis to stop during the imaging, or death of the embryo, Although in situ observation is possible, it has been found that individuals cannot be generated from the embryo after long-term fluorescence observation.
  • Non-Patent Document 6 reports that mitochondrial fluorescence was observed in hamster embryos using a two-photon excitation microscope, and that offspring were obtained from the embryos.
  • the object of the present invention is to develop a method for observing chromosome dynamics in early embryos in detail while suppressing damage to the embryo as much as possible.
  • a further object of the present invention is to apply this method and develop a technique for selecting embryos that are safe and reliably generated with good development.
  • a nippo disc confocal unit In order to reduce the amount of light striking the embryo to the limit, a nippo disc confocal unit is used to irradiate the target embryo with laser light through a hole in the rotating nippo disc for a very short time.
  • An ultra-sensitive EM-CCD camera was attached to obtain the maximum possible. Equipped with an automatic control filter to enable multicolor observation, and by combining an electric XY stage and Z-axis motor, three-dimensional observation and simultaneous observation of multiple embryos, that is, a total of 6 dimensions (X-axis, Y-axis, Z-axis, time, multicolor, multisample) can be imaged.
  • the present invention relates to the following.
  • a method for in vitro fluorescence observation of a mammalian embryo comprising acquiring fluorescence images of a fluorescently labeled mammalian embryo over time with a confocal fluorescence microscope equipped with a laser light source and a nipou disc confocal unit.
  • a fluorescently labeled mammalian embryo is obtained by injecting RNA into the embryo that encodes the fluorescent protein and can be translated into the fluorescent protein in the embryo.
  • the method according to [2] wherein the amount of RNA to be injected is a sufficient amount for obtaining a fluorescence image, and is 2.5 pg or less per embryo.
  • a method for selecting a mammalian embryo having a low risk of implantation failure or miscarriage comprising the following steps: (I) preparing a mammalian embryo that expresses a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein; (II) Obtaining a fluorescence image of the mammalian embryo obtained in (I) over time by a confocal fluorescence microscope equipped with a laser light source and a Niipou disc type confocal unit; and (III) obtained in (II) Based on the obtained fluorescence image, an embryo that does not exhibit abnormal chromosomal morphology is selected as a mammalian embryo having a low risk of implantation failure or miscarriage.
  • the mammalian embryo of step (I) encodes a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein, and is translated into the fusion protein in the embryo
  • the method according to [7] which is prepared by injecting the obtained RNA into the embryo.
  • the method according to [7], wherein the mammalian embryo of step (I) is a 1-cell stage or 2-cell stage embryo.
  • the method according to [7] wherein the mammalian embryo is produced by intracytoplasmic sperm injection (ICSI) or circular sperm cell injection (ROSI).
  • ICSI intracytoplasmic sperm injection
  • ROSI circular sperm cell injection
  • the method of the present invention it is possible to observe the early embryo in detail while suppressing damage to the embryo as much as possible.
  • the method of the present invention it is possible to continuously observe fluorescence while keeping a mammalian embryo alive, and furthermore, the embryo can be individually generated without any problem. And the subsequent ontogeny can be directly linked and evaluated.
  • observing chromosome dynamics during the first somatic cell division using the method of the present invention it is possible to identify embryos at a very early stage, up to the 2-cell stage, at a high risk of miscarriage in the future. It becomes. And it becomes possible to improve a pregnancy rate significantly by removing the identified abnormal embryo from the transplant object.
  • FIG. 2 is an original color photograph. Fluorescence microscopy of embryos injected with various concentrations of mRNA. Various combinations of equal amounts of mRNA encoding EGFP- ⁇ -tubulin (tubulin, green) and mRNA encoding H2B-mRFP1 (H2B, red) were added to the second meiotic / end-stage IVF embryo. At a concentration of 0-250 ng / ⁇ L.
  • FIG. 3 is an original color photograph.
  • FIG. 4 is an original color photograph.
  • Abnormal chromosome segregation in embryos created by intracytoplasmic sperm injection ICSI.
  • NCS normal chromosome segregation
  • ACS abnormal chromosome segregation
  • Keywords m, male pronucleus: f, female pronucleus; pb, polar body.
  • Df Immunostaining of 2-cell embryos with ACS.
  • Histone H2B-mRFP1 mRNA was injected into the embryo, and anti-lamin B antibody (lamin B; d), anti-phosphorylated histone H3 Ser10 antibody (pH3 ser10; e) and anti-phosphorylated H2A. Stained with X antibody (pH 2A.X; f).
  • Arrows indicate chromosome fragments that are abnormally separated during the process of somatic cell division. Arrowheads indicate micronuclei.
  • FIG. 5 is an original color photograph. Abnormal chromosome segregation occurs before and after implantation.
  • A, b Long-term imaging of embryos with ACS.
  • A Embryo with ACS that is developing to morula.
  • FIG. 6 is an original color photograph.
  • FIG. 7 is an original color photograph.
  • Kid ⁇ / ⁇ female oocytes were microinjected with fresh sperm from a sexually mature BDF1 male.
  • FIG. 8 is an original color photograph. Nucleus / chromosome abnormality observed in monkey microinsemination embryonic somatic cell division.
  • A Chromosome partitioning abnormality frequently observed in mouse microinseminated embryos (see FIGS. 5b and c). Part of the chromosome was misplaced during distribution (arrow).
  • B Multinucleated embryo. An abnormality in which two or more nuclei are formed in the two-cell stage without having a single chromosome after distribution.
  • C Embryo showing chromosome fragmentation.
  • Chromosomes are not already aligned in the equator plane of the spindle in the metaphase (metaphase), and the chromosomes are dispersed after distribution to both poles (arrows). As a result, countless nuclear and chromosomal signals are observed in the 2-cell stage. Is done.
  • the present invention relates to a method for in vitro fluorescence observation of a mammalian embryo (this book), comprising acquiring fluorescence images of a fluorescently labeled mammalian embryo over time by a confocal fluorescence microscope equipped with a laser light source and a nipou disc confocal unit.
  • Inventive method I is provided.
  • the embryo used in the method I of the present invention is derived from a mammal.
  • mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees.
  • Mammalian embryos can be generated in vitro using reproductive techniques known per se, such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), circular sperm cell injection (ROSI), and the like. is there.
  • IVF in vitro fertilization
  • ICSI intracytoplasmic sperm injection
  • ROSI circular sperm cell injection
  • any developmental stage mammalian embryo can be used as an observation target.
  • the method I of the present invention it is possible to carry out detailed fluorescence observation of the embryo while minimizing damage to embryo development, and the embryo after observation can be used as a pseudopregnant mammal uterus or oviduct When transferred to, normal implantation will occur and offspring derived from the embryo will be born. Therefore, the method I of the present invention is advantageous for observing embryos in a preimplantation stage, particularly embryos that are scheduled to be transferred to the uterus and oviduct of a pseudopregnant mammal in the future. Examples of embryos at the stage before implantation include embryos at the 1-cell stage, 2-cell stage, 4-cell stage, 8-cell stage, morula stage, blastocyst stage, etc., but are not limited thereto. It is not a thing.
  • the mammalian embryo used in the method I of the present invention is fluorescently labeled by a desired method so that it can be detected by a fluorescent microscope.
  • the fluorescent labeling method include expression of fluorescent protein in the embryo, staining with a fluorescent substance (for example, FITC) binding antibody that specifically recognizes the antigen in the embryo, injection of a fluorescent nucleic acid probe, and the like.
  • a fluorescent substance for example, FITC
  • fluorescent proteins those known per se, for example, GFP, RFP, CFP, YFP, and their improved variants (eg, EGFP, EYFP, etc.) can be used.
  • the fluorescent protein of the color can be selected.
  • a fusion protein of a desired protein and the fluorescent protein in the embryo, the technology for observing the localization of the protein in the embryo and the morphology of the in-embryonic microtissue where the protein is localized is observed.
  • fluorescent fusion proteins are also useful for fluorescent labeling of mammalian embryos.
  • the embryo is fluorescently labeled by expressing in a mammalian embryo a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein.
  • a fusion protein of a chromosomal component protein and a fluorescent protein is expressed in a mammalian embryo, the fluorescent fusion protein is localized in the chromosome, so that a detailed fluorescent image of the morphology and structure of the chromosome of the mammalian embryo can be obtained. Is possible.
  • a fusion protein of a spindle protein and a fluorescent protein when expressed in a mammalian embryo, the fluorescent fusion protein is localized throughout the spindle and the cytoplasm. Can be traced in detail by fluorescence observation. Further, by using a combination of a fusion protein (A) of a chromosomal component protein and a fluorescent protein and a fusion protein (B) of a spindle component protein and a fluorescent protein, the dynamics of the chromosome in the embryo development process can be determined. It becomes possible to track in detail over time through time and at rest.
  • the emission wavelength of the fluorescent protein contained in the fusion protein (A) is different from the emission wavelength of the fluorescent protein contained in the fusion protein (B) so that the two types of fusion proteins can be distinguished.
  • an embodiment in which the fusion proteins (A) and (B) are combined in this way is preferable, but the chromosome segregation abnormality can also be detected using only the fusion protein (A).
  • a chromosome constituent protein histone (H1, H2A, H2B, H3, H4, etc.) can be used, but is not limited thereto.
  • the spindle component protein tubulin ( ⁇ , ⁇ ) or the like can be used, but is not limited thereto.
  • a fusion protein of a protein having a property of binding to the chromosome itself or its constituent components and a fluorescent protein for example, EGFP-MBD-, which is a fluorescent probe that binds to methylated DNA previously developed by the present inventor
  • NLS Gensis, 43, 71-79 (2005)
  • Methods for expressing fluorescent proteins in mammalian embryos include the following: (A) introduction of an expression vector capable of expressing a fluorescent protein in a mammalian embryo into the mammalian embryo; (B) injection of RNA encoding a fluorescent protein and capable of being translated into the fluorescent protein in a mammalian embryo into a mammalian unfertilized egg or mammalian embryo; and (C) the fluorescent protein gene is in the embryo Use of embryos from transgenic mammals integrated into the genome in an expressible manner.
  • the method (A) is one of the most popular methods.
  • expression vectors plasmid vectors, viral vectors, etc.
  • the introduced DNA is integrated into the genome of the mammalian embryo.
  • a transgenic mammal may be generated.
  • RNA is directly injected into an embryo, so that there is theoretically no risk of producing a transgenic mammal. Therefore, when the generation of a transgenic animal from a mammalian embryo to be observed is not desired (for example, use in the medical or livestock field), the method (B) is advantageous.
  • the RNA (mRNA) used in the method (B) includes a translation initiation region on the 5 'side of the coding region of the fluorescent protein so that it can be translated into the fluorescent protein in the mammalian embryo.
  • the RNA may also contain a cap structure at the 5 'end so that it can be stabilized in the embryo and translated efficiently. It is also preferred that the RNA has a poly A region at the 3 'end so that the RNA can be stabilized in the embryo and translated efficiently.
  • the length of the poly A is usually 65 or more, preferably 80 or more (for example, 83).
  • the RNA used in the method (B) is the DNA of the target fluorescent probe in the plasmid (pcDNA3.1-poly (A83), Gensis, 43, 71-79 (2005)) previously developed by the inventors. Can be obtained by in vitro transcription using a commercially available kit using this as a template, and isolating and purifying the RNA fraction (mRNA) from the transcript. To avoid the risk of transgenic animal development due to DNA contamination, the transcript is preferably subjected to DNase treatment.
  • the RNA used in the method (B) may be produced by chemical synthesis. For the specific preparation method of RNA used in the method (B), see Gensis, 43, 71-79 (2005).
  • RNA may be injected into either an unfertilized egg or embryo of a mammal.
  • embryos are created in vitro (eg IVF, ICSI, ROSI, etc.)
  • embryos often die during the process of creating embryos. Therefore, fertilization is performed rather than injecting RNA into unfertilized eggs. It is preferable to inject RNA into the surviving embryo later because the labor of the injection operation can be reduced.
  • an insemination operation with a male gamete (sperm, sperm cell, etc.) must be performed thereafter.
  • an amount of RNA sufficient to obtain a fluorescence image of a mammalian embryo by a fluorescence microscope and with minimal damage to embryo development is injected into an unfertilized egg or embryo.
  • the Specifically, as the amount of RNA sufficient for obtaining a fluorescence image For example, 0.1 pg (equivalent to 10 ng / ⁇ l ⁇ 10 picoliter) or more per embryo is exemplified.
  • the amount of RNA in which damage to embryonic development is suppressed is as follows: 2.5 pg per embryo (250 ng / ⁇ L ⁇ 10 picoliter equivalent) or less, Preferably, 0.5 pg (50 ng / ⁇ L ⁇ 10 picoliter equivalent) or less is exemplified. Therefore, in the method (B), Usually 0.1pg to 2.5pg, Preferably 0.1pg to 0.5pg Of RNA is injected into one unfertilized egg or embryo.
  • the mammalian embryo is cultured for 3 to 5 hours in an appropriate medium in order to translate a sufficient amount of fluorescent protein to obtain a fluorescent image, and then subjected to observation with a confocal microscope.
  • Method I of the present invention a fluorescently labeled mammalian embryo is observed with a confocal fluorescence microscope equipped with a laser light source and a Niipou disc confocal unit, and a fluorescence image is acquired over time.
  • the mammalian embryo is placed in a drop of a suitable medium (eg, CZB medium) on a suitable culture vessel (eg, glass bottom dish).
  • a suitable medium eg, CZB medium
  • a suitable culture vessel eg, glass bottom dish
  • mineral oil is preferably overlaid on the medium drop.
  • the culture vessel is placed in a microscope CO 2 incubator placed on an observation table of a fluorescence microscope, and is at a temperature suitable for embryo development (eg 37 ° C., 38 ° C. for monkey embryos) and humidity (eg 100%).
  • the embryos are cultured under conditions of CO 2 concentration (eg, 5%).
  • FIG. 1 is a simple schematic diagram for explaining the configuration of a [confocal fluorescence microscope including a laser light source and a Niipou disc confocal unit] used in the present invention. In the figure, in order to explain the principle, detailed depiction of the optical system is omitted. As shown in FIG.
  • the laser light source 1 is an excitation light source for exciting a fluorescent substance.
  • the Niipou disc type confocal unit 2 focuses the laser light L1 from the light source 1 on the observation object S through the Nipo disc that rotates at high speed, and focuses on the emitted light source of the emitted fluorescence L2.
  • the confocal microscope in the excitation light irradiation, a rotating nipou disk (also referred to as a Nipo plate, a Nipkow disc, or a pinhole plate) 22 which rotates laser light (excitation light) L1 from the light source 1 22
  • a rotating nipou disk also referred to as a Nipo plate, a Nipkow disc, or a pinhole plate
  • the observation object S is irradiated with the laser beam L1 while being focused at a predetermined depth locally.
  • the irradiation point receives and synthesizes fluorescence as one pixel (or a scanning line in which the pixels are connected by movement of the through-hole) emitted from there. It is a microscope.
  • the Nipkow disk is a known scanning disk, and as shown in FIG. 1, a disk 22 configured to block the laser light is configured to be rotatable by a motor for rotation driving, and on the surface of the disk.
  • a disk 22 configured to block the laser light is configured to be rotatable by a motor for rotation driving, and on the surface of the disk.
  • Each through hole from the rotation center side to the outer peripheral side corresponds to each scanning line constituting the image.
  • the A local image of an observation object obtained by irradiating a laser beam having a specific beam cross section through a focus through a through-hole (in the present invention, an image based on fluorescence emitted from the object, not just reflected light) Can be synthesized through focusing on the same through-hole, and a clear image with good contrast can be synthesized.
  • the condensing disk 21 is provided on the laser light source side of the nipo disk so that the laser beam can preferably pass through the through hole (not shown in the figure) of the nipo disk 22.
  • the condensing disk 21 is a disk that rotates integrally with the Nipkow disk 22, and a lens is provided on the plate surface at a position corresponding to the through hole of the Nipkow disk. Further, in the apparatus configuration of FIG.
  • the fluorescence L2 emitted from the observation object S returns again through the through-hole of the Nipkow disk 22 through which the excitation light has passed, and the light branching means (for example, a dichroic mirror inclined at 45 degrees) )
  • the direction is changed by 23 and the image pickup apparatus 3 is directed.
  • excitation light irradiation and fluorescence imaging not only one plane irradiation / imaging with a fixed depth of the irradiation point (focal point) (also referred to as a height with respect to the stage surface of the microscope), but also the depth.
  • a three-dimensional image of the observation object can be obtained by sequentially irradiating and imaging a multilayer plane and combining the obtained plane pixels of each layer.
  • Niipou disc confocal unit and a confocal fluorescence microscope technology for imaging fluorescence by irradiating a laser beam using the same are known per se.
  • a confocal microscope using a Nipo disc This is described in detail in JP-A-5-60980.
  • the prior art may also be referred to as appropriate for the detailed configuration of the optical system, such as using polarized light for the laser light.
  • the specifications of the irradiated laser light (output, wavelength, beam diameter (that is, the irradiation area on the plate surface), and the shape of the irradiation area) can suppress damage to the embryo and enable preferable fluorescence observation. Thus, a preferable combination may be appropriately selected.
  • a preferred example of the specifications of the Nipkow disk is the Nipkow disk scanning confocal unit (CSU10) manufactured by Yokogawa Electric Corp.
  • the number, the opening shape, and the opening area of the through holes of the Niipou disc may be determined in consideration of the damage to the embryo and the resolution of the target image.
  • the through holes are provided in an arrangement pattern that draws a spiral on the plate surface at a position corresponding to the number of scanning lines corresponding to the number of scanning lines.
  • a known technique may be referred to within a range in which damage to the embryo can be suppressed.
  • the wavelength and output of the laser light may be selected so as to suppress damage to the embryo so as to be excitation light appropriate for the fluorescent substance and in association with the specifications of the Niipou disk as described above.
  • the wavelength of the laser light is excitation light of an available fluorescent substance, for example, those having a peak near 488 nm for EGFP and those near 561 nm for mRFP1 are preferable.
  • Examples of a laser light source (laser device) that can emit laser light having such a wavelength include a krypton argon gas laser light source (emits light with wavelengths of 488 nm, 568 nm, 647 nm, and 752 nm).
  • krypton argon gas laser can oscillate laser light in a relatively wide wavelength range, it is possible to obtain many types of fluorescent signals with one laser device by labeling embryos with fluorescent probes of various excitation wavelengths. There are also benefits.
  • the laser output is preferably 20 to 70 mW, particularly 20 to 25 mW. is there.
  • fluorescent images are taken by “top shot” at intervals of a certain time or more.
  • fluorescent images are continuously acquired at intervals of 3.75 minutes or more, preferably 7.5 minutes or more (for example, intervals of 3.75 to 60 minutes, preferably 7.5 to 30 minutes).
  • the duration of exposure of the embryo to the excitation light in one image is usually in the range of 100 ms to 500 ms, preferably 100 ms to 200 ms, depending on the laser output and the type of laser. Is within.
  • the focal point is moved in the Z-axis direction (that is, the height direction with respect to the stage surface of the microscope) at any step interval. It is important how many sections of the embryo are acquired. In other words, abnormal chromosome fragments observed during embryonic division are very small, about 1 to 3 ⁇ m. Therefore, when performing confocal observation, a minute interval in the Z-axis direction (for example, 2 as described later). If it is not photographed at intervals of 3 ⁇ m, there is a possibility of being overlooked.
  • mammalian embryos are very thick cells (mouse embryos are about 100 ⁇ m, monkeys and human embryos are about 150 ⁇ m), so it is necessary to photograph nearly 50 images in the Z-axis direction to capture the whole. It becomes.
  • intervals of 3 ⁇ m or less for example, at intervals of 2 to 3 ⁇ m
  • a detection device capable of detecting even weak fluorescence is used when acquiring a fluorescent image.
  • Examples of such a detection device include an ultra-sensitive EM-CCD camera.
  • embryo development from the 1-cell stage to the 2-cell stage about 20 hours in mice
  • the 4-cell stage about 40 hours in mice, about 60 hours in monkeys
  • the blastocyst stage about 70 hours in mice
  • Method II of the present invention further provides a method for selecting a mammalian embryo with a low risk of implantation failure or miscarriage (Method II of the present invention) comprising the following steps: (I) preparing a mammalian embryo that expresses a fusion protein of a chromosome constituent protein or a spindle constituent protein and a fluorescent protein; (II) Obtaining fluorescence images of a fluorescently labeled mammalian embryo over time by a confocal fluorescence microscope equipped with a laser light source and a Niipou disc type confocal unit; and (III) Fluorescence images obtained in (II) Based on the above, an embryo that does not exhibit an abnormal chromosomal morphology is selected as a mammalian embryo with a low risk of miscarriage.
  • step (I) is performed according to the method described in the section (1. In vitro fluorescence observation method of mammalian embryo).
  • a fusion protein of a chromosomal component protein and a fluorescent protein or a fusion protein of a spindle component protein and a fluorescent protein is encoded, and By injecting RNA that can be translated into a fusion protein into the embryo, a mammalian embryo that expresses a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein is prepared.
  • step (I) in order to achieve detailed analysis of chromosome morphology, it is preferable to use a combination of a fusion protein of a chromosome constituent protein and a fluorescent protein and a fusion protein of a spindle constituent protein and a fluorescent protein. .
  • a combination of a fusion protein of a chromosome constituent protein and a fluorescent protein and a fusion protein of a spindle constituent protein and a fluorescent protein it is preferable to use a combination of a fusion protein of a chromosome constituent protein and a fluorescent protein and a fusion protein of a spindle constituent protein and a fluorescent protein.
  • the mammalian cell embryo to be used is preferably an unfertilized ovum or a 1-cell stage or 2-cell stage embryo, most preferably a 1-cell stage embryo.
  • step (II) is performed according to the method described in the section (1. In vitro fluorescence observation method of mammalian embryo).
  • step (III) based on the fluorescence image obtained in step (II), an embryo that does not exhibit an abnormal chromosomal morphology is selected as a mammalian embryo with a low risk of miscarriage.
  • abnormal chromosome forms include the following: (A) Abnormal chromosome segregation during somatic cell division (B) Chromosome aneuploidy such as trisomy.
  • Embryos with such abnormal chromosomal morphology cannot be developed normally, even if they develop in vitro to the stage of morula and blastocyst, and even after implantation into pseudopregnant females, Almost everything is miscarried. Therefore, by eliminating embryos that have observed abnormal chromosome morphology by fluorescence observation, the remaining embryos (that is, embryos that do not exhibit abnormal chromosome morphology) are obtained as embryos with a low risk of implantation failure or miscarriage. be able to.
  • (A) include the following: i) Separation of chromosomes accompanying somatic cell division, such as “forgetting” some chromosomes between chromosomes. Misplaced chromosomes remain floating in the cytoplasm after somatic cell division. ii) A phenomenon in which some chromosomes protrude when male and female chromosomes are grouped together in a metaphase plate. Chromosomes that protrude in this way can be incorporated into one nucleus during somatic cell division. iii) A combination of i) and ii).
  • the frequency of abnormal chromosome segregation during somatic cell division is significantly higher in embryos produced by ICSI or ROSI than in embryos obtained by IVF, which is a lower rate of successful birth after ICSI or ROSI.
  • the method II of the present invention is advantageous particularly when selecting an embryo with a low risk of implantation failure or miscarriage from embryos produced by ICSI or ROSI.
  • the mammalian embryo obtained by the method II of the present invention has been observed for fluorescence under the condition that damage to the embryogenesis is suppressed to a minimum, and further, an abnormal chromosomal morphology and an embryo with a high risk of miscarriage are removed. Therefore, by transferring this embryo to the uterus or oviduct of a pseudopregnant female, offspring derived from the embryo are born with high efficiency. Therefore, the method II of the present invention is useful as a technique for preventing implantation failure and miscarriage due to assisted reproduction (Artifical Reproductive Technology, ⁇ ART) and improving the pregnancy rate in the fields of reproductive medicine and livestock.
  • assisted reproduction Artifical Reproductive Technology, ⁇ ART
  • Example 1 Collection of gametes Female BDF1 mice (7) by intraperitoneal injection of 5 IU pregnant mare serum gonadotropin (PMSG) and 5 IU human chorionic gonadotropin (hCG) (Imperial Organ, Tokyo, Japan) at 48 hour intervals. -12 weeks old) were superovulated. Oocytes with cumulus cells were harvested 13-15 hours after hCG injection. Sperm were harvested from the epididymis tail of BDF1 male mice (> 12 weeks) into 0.2 mL drops of TYH medium to obtain fertility by incubation at 37 ° C. for 2 hours under 5% CO 2 . Freeze-thawed sperm was prepared by freezing sperm that acquired fertilizing ability in TYH medium (Jpn J Anim Reprod, 16, 147-151, 1971) at ⁇ 25 ° C. and thawing immediately before use.
  • PMSG pregnant mare serum gonadotropin
  • hCG human chorionic gonadotropin
  • In vitro fertilization Oocytes with cumulus cells were collected in 0.2 mL of TYH medium and fertilized with sperm that acquired fertility (final concentration 100 / ⁇ L). After incubation for 2 hours at 37 ° C. under 5% CO 2 , cumulus cells were dispersed by a short treatment with hyaluronidase (type IS, 150 units / mL, Sigma-Aldrich, St Louis, MO, USA).
  • hyaluronidase type IS, 150 units / mL, Sigma-Aldrich, St Louis, MO, USA.
  • Intracytoplasmic sperm injection ICSI
  • MII Second meiotic metaphase II oocytes were prepared by brief incubation in Chatot-Ziomek-Bavister (CZB) medium (Biol Reprod, 42, 432-440, 1990) containing hyaluronidase.
  • 1 microliter suspension of sperm that has acquired fertilizing ability in TYH medium contains 12% (w / v) polyvinylpyrrolidone (PVP, Wako Pure Chemical Industries, Ltd, Osaka, Japan) in a micromanipulation chamber Mixed with 9 ⁇ L of HEPES buffered CZB medium.
  • PVP polyvinylpyrrolidone
  • the head of each sperm was separated from the tail by applying a pulse to the head-tail junction by means of a piezo-driven pipette (PrimeTech, Ibaraki, Japan). Only the sperm head was injected into the cytoplasm of each MII oocyte.
  • ROSI Round sperm cell injection
  • RiboMAX TM Large Scale RNA Production Systems-T7 (Promega, MRNA was synthesized using Madison, WI, USA.
  • Ribo m7G CapAnalog (Promega) according to the manufacturer's protocol.
  • the reaction mixture for in vitro transcription was treated with RQ-1 RNase-free DNase I (Promega).
  • RNA was treated with phenol-chloroform and subsequently subjected to ethanol precipitation. After dissolution in RNase-free water, the mRNA was subjected to gel filtration using a MicroSpin TM G-25 column (Amersham Biosciences, Piscataway, NJ, USA) to remove unreacted substrate and stored at ⁇ 80 ° C. until use. .
  • Each mRNA synthesized by mRNA microinjection was diluted to an appropriate concentration using Milli-Q ultrapure water (Millipore Corp., Madison, Wis., USA), and the aliquot was placed on a micromanipulation chamber. Transfer the second meiotic / end-stage oocyte (approximately 2 hours after insemination or activation) to the HEPES-CZB medium on the chamber and use a piezo manipulator with a thin glass pipette (1-3 ⁇ m in diameter). mRNA was injected. The mRNA solution was once sucked into a pipette, and the zona pellucida and cell membrane were broken by applying a piezo pulse to the oocyte.
  • Milli-Q ultrapure water Milli-Q ultrapure water
  • excitation and absorption filter wheels (Ludl) just before the laser output side and the camera, multi-color observation is possible by automatic control.
  • a Z-axis motor Mac5000, Ludl Electronic Products
  • 3D observation is possible.
  • the imaging device has an automatic XY stage that can monitor a large number of embryos (usually imaged over 100 embryos) in a single assay. Control of the apparatus and image analysis were performed using MetaMorph software (Universal Imaging).
  • a KrAr (krypton argon) gas laser (Melles Griot) was used as a laser light source.
  • the total output of the laser light source body was adjusted while measuring the respective light amounts of 488 nm and 561 nm emitted from the lens using Yokogawa's TB200 Optical power meter.
  • the detector set is installed in a dark room where the temperature is kept around 30 degrees, and the temperature of the CO 2 incubator for microscope (Tokai Hit, MI-IBC) is set so that the temperature of the observed medium is 37 ° C. It was. 5% CO 2 gas was introduced into the incubator at a flow rate of 160 ml / min.
  • Mulberry embryos and blastocysts were transplanted into the mother's oviduct on day 0.5 of pseudopregnancy or the mother's womb on day 2.5 of pseudopregnancy.
  • EGFP- ⁇ -tubulin (Yamagata K. et al., Genesis, 43, 71-79, 205) and histone H2B-mRFP1 (Yamazaki T. et al.) Inserted into pcDNA3.1 poly (A83) vector. , Reprod Dev, 53, 1035-1041, 2007), an mRNA plasmid was constructed as described previously.
  • EGFP- ⁇ -actin was made by fusion of EGFP to the N-terminus of the full-length mouse ⁇ -actin cDNA.
  • PCR amplification was performed using a single-stranded cDNA derived from mouse testis as a template and the following primer set. 5'-TGGATCCCGAGCTATGGATGACGATATCGCTGCGCTG-3 '(SEQ ID NO: 1) 5'-AAGCGGCCGCCTAGAAGCACTTGCGGTGCACGAT-3 '(SEQ ID NO: 2)
  • the amplified fragment was co-inserted with the EGFP fragment into the EcoRI and NotI sites of the pcDNA3.1-poly (A83) vector.
  • PCR was performed under conditions of 35 cycles of 95 ° C. for 10 seconds, 58 ° C. for 30 seconds, and 72 ° C. for 60 seconds.
  • the primer sets used are as follows. (For amplification of translation region of EGFP) 5'-AATCTAGAATGGTGAGCAAGGGCGAG-3 '(SEQ ID NO: 3) 5'-AATCTAGACTTGTACAGCTCGTCCATG-3 '(SEQ ID NO: 4) (For amplification of ⁇ -actin gene as a PCR control) 5'-AAAAGCTTGGCGCTTTTGACTCAGGA-3 '(SEQ ID NO: 5) 5'-GGAATTCAAGTCAGTGTACAGGCCAG-3 '(SEQ ID NO: 6) Chromosomal DNA from B6D2F1 and GOF18-GFP transgenic mice (Dev Growth Differ, 41, 675-684, 1999) were used as negative and positive controls, respectively.
  • Embryos created by ICSI using immunostained freeze-thawed sperm were fixed with 4% paraformaldehyde (in PBS) at the 2-cell stage or blastocyst stage, and 0.25% Triton X100 / PBS Permeabilized.
  • the zona pellucida was peeled using an acidic tyrode solution before fixation.
  • anti-Oct3 / 4 antibody sc-9081, Santa Cruz Biotechnology, Santa Cruz, CA, USA
  • anti-Cdx2 antibody CDX2-88, BioGenex , San Ramon, CA, USA
  • anti-lamin B antibody sc-6217, Santa Cruz Biotechnology
  • anti-phosphorylated histone H3 antibody Ser 10
  • Antibody X Ser 139
  • embryos were incubated with secondary antibody (Alexa dyes, Invitrogen, Carlsbad, CA, USA), washed again and observed.
  • a mRNA was injected into late / terminal IVF embryos in the second meiosis, incubated for about 78 hours after insemination, and transplanted.
  • a fluorescence photograph was taken immediately before embryo transfer and is shown in FIG. b
  • c Compacted embryos with more than 8 nuclei were evaluated as morula / blastocyst stage.
  • Embryos were transferred to the uterus of pseudopregnant females 2.5 days after intercourse.
  • Embryos were transferred to the uterus or oviduct of pseudopregnant females 2.5 or 0.5 days after intercourse. e The percentage of offspring was calculated as follows: (number of offspring) ⁇ (number of morula / blastocyst embryo)
  • H2B-mRFP1 A small dot-like H2B-mRFP1 signal was detected along the microtubule bundle between late and late mitosis, which remained in the cytoplasm even in the stationary phase of the 2-cell embryo (FIG. 5b). Although there was no ectopic H2B-mRFP1 signal at the two-cell stage, another unusual pattern was also observed in which chromosome fragments were detached from metaphase plates and reattached during division (FIG. 5c). . In some embryos, a combination of the above two patterns was seen. In this study, all these abnormalities were classified as abnormal chromosome segregation (ACS) and the rest were collectively classified as normal chromosome segregation (NCS) (FIG. 5a). The frequency of ACS in ICSI embryos (10.4% -46.7%) was significantly higher compared to IVF embryos (1.7%) (Table 3).
  • a mRNA was injected into the 2nd meiotic / end-stage embryo and 6-dimensional imaging was performed. Imaging was performed by the 2-cell stage, embryos were classified into their respective categories and transferred to pseudopregnant recipients.
  • b FT freeze thaw.
  • c Operator W was a skilled micromanipulator and Y was a beginner at that time.
  • d Embryos with 1 or 3 pronuclei (PN) were excluded from the analysis.
  • e Embryos were classified into NCS and ACS based on the images in FIGS. 5a-c.
  • Two-cell embryos of each category were transplanted into the oviducts of pseudopregnant females 0.5 days after intercourse.
  • the g value was calculated as the ratio of the total number of offspring to the total number of transplanted 2-cell embryos. h 65% of 2PN embryos had one large female pronucleus and one very small male pronucleus. The frequency of i, j ACS was significantly higher than that after IVF ( i P ⁇ 0.01, j P ⁇ 0.05, Student's t-test) nd, untested.
  • the present inventors investigated the prevalence of ACS in other ART models using PDI.
  • round sperm cells are haploid like mature sperm
  • ROSI round sperm cell injection
  • Imaging results show that many ROSI pronuclear stage embryos contain one very large female pronucleus and one very small male pronucleus ( Figure 8a), which is consistent with previous reports ( Development 121, 2397-2405 (1995)).
  • These embryos exhibited severe ACS in first somatic division (Fig.
  • ROSI is an experimental model of low pregnancy, presumably due to sperm immaturity.
  • the present inventors also examined chromosomal abnormalities derived from maternal factors.
  • Chromokinesin Kid / kinesin-10 plays a key role in chromosome segregation by localizing at the boundaries of anaphase and metaphase chromosomes and mediating shortening of mitotic chromosome clusters along the spindle axis. (Mol Biol Cell 16, 5455-5463 (2005)). Kid ⁇ / ⁇ females are poorly fertile and are probably thought to be partly due to abnormal chromosome segregation of first somatic division (Cell 132, 771-782 (2008)).
  • the present inventors performed PDI on embryos created by ICSI using Kid-/-oocytes. As reported in Cell 132, 771-782 (2008), many single-cell embryos have multiple pronuclei, after which the nuclear envelope has collapsed and all chromosomes have assembled into metaphase plates. Later, it normally split into two nuclei (FIG. 8b). However, 33.8% of these embryos showed ACS (FIG. 8b), almost all of which failed to develop after transplantation (Table 3), while 66.2% showed NCS, which 28.6% occurred to the end (Table 3).
  • Example 2 The same test as in Example 1 was performed using monkeys as models. Microinsemination (ICSI) was performed on unfertilized eggs collected from cynomolgus monkey ovaries. As an unfertilized egg, an egg recovered from the ovary that was stopped in the second metaphase (metaphase II) was used. Sperm collected by electrical stimulation of the penis were suspended in the medium after centrifugal washing and incubated for 1 hour to acquire fertility, and only those that increased after centrifugation were used for microinsemination.
  • ICSI Microinsemination
  • EGFP-tubulin and Histone H2B-mRFP1 mRNAs adjusted to 5 ng / ⁇ l each were injected into embryos immediately before the pronuclear phase at about 20 to 30 picoliters per embryo. After 3 hours of incubation, imaging was started from the pronuclear phase. For embryos that had two male and female pronuclei and showed normal cytokinesis during first somatic division, the dynamics of nuclei and chromosomes during the first somatic division were observed.
  • the conditions for live cell imaging of monkey embryos were the same as for mice except for the following points.
  • the incubator temperature was set at 38 degrees.
  • the shooting time interval was 15 minutes.
  • the method of the present invention it is possible to observe the early embryo in detail while suppressing damage to the embryo as much as possible.
  • the method of the present invention it is possible to continuously observe fluorescence while keeping a mammalian embryo alive, and furthermore, the embryo can be individually generated without any problem. And the subsequent ontogeny can be directly linked and evaluated.
  • the method of the present invention it is possible to identify embryos at a very early stage, up to the 2-cell stage, at a high risk of miscarriage in the future. And it becomes possible to improve a pregnancy rate significantly by removing the identified abnormal embryo from the transplant object.

Abstract

Disclosed is an in vitro fluorescence observation method for a mammal embryo, which comprises obtaining fluorescence images of the mammal embryo that has been fluorescently labeled over a period of time by means of a confocal fluorescence microscope equipped with a laser light source and a Nipkow-disk type confocal unit.  Also disclosed is a method for selecting a mammal embryo that is reduced in the risk of implantation failure or abortion by utilizing the in vitro fluorescence observation method.

Description

哺乳動物胚のインビトロ蛍光観察方法及び着床不全又は流産のリスクの低い哺乳動物胚の選択方法Method for in vitro fluorescence observation of mammalian embryo and method for selecting mammalian embryo with low risk of implantation failure or miscarriage
 本発明は、胚発生に対するダメージの無い、哺乳動物胚の蛍光観察方法に関する。また、本発明は、着床不全又は流産のリスクの低い哺乳動物胚の選択方法に関する。 The present invention relates to a fluorescence observation method for a mammalian embryo without damage to embryo development. The present invention also relates to a method for selecting a mammalian embryo with a low risk of implantation failure or miscarriage.
 日本をはじめとする先進諸国では少子化が深刻な問題となっている。これには社会的な要因もさることながら、不妊症の増加も少なからず影響している。現在、不妊で悩むカップルは10組に1~1.5組と言われ、必ずしもマイナーな症状とはいえない。そのため、体外授精(IVF)や細胞質内精子注入法(ICSI)などの生殖補助医療(Artificial Reproductive Technology、ART)が開発・実施されているが、未だに着床不全や流産が高頻度で起きているのが現状である。これらの原因としては、ARTの技術的な問題に加えて、胚の染色体異常などが挙げられる。さらに、近年では多胎妊娠による母体への危険性を回避する意味で、胚を一つだけ移植する「単一胚盤胞移植」が強く推奨されている。このような背景から、流産を減らして妊娠率を向上させるために、移植・着床前に胚を診断し、安全かつ確実に発生が良好な胚を選別する技術の開発が望まれている。 In Japan and other advanced countries, the declining birthrate is a serious problem. This is not only due to social factors, but also an increase in infertility. Currently, couples suffering from infertility are said to be 1-1.5 out of 10 pairs, which is not necessarily a minor symptom. Therefore, assisted reproduction (Artificial Reproductive Technology, ART) such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) has been developed and implemented, but implantation failure and miscarriage still occur frequently. is the current situation. These causes include embryonic chromosomal abnormalities in addition to the technical problems of ART. Furthermore, in recent years, “single blastocyst transfer” in which only one embryo is transferred has been strongly recommended in order to avoid the risk to the mother due to multiple pregnancy. From such a background, in order to reduce miscarriage and improve the pregnancy rate, it is desired to develop a technique for diagnosing embryos before transplantation / implantation and selecting embryos that are safely and reliably generated.
 現在世界中で行われている着床前遺伝子診断法の一つとして、極体又は発生の進んだ胚を構成する一部の割球をバイオプシーにより摘出し、蛍光in situハイブリダイゼーション(FISH)法により染色体に異常がある胚を特定する方法がある(非特許文献1)。この方法は、染色体の異数性、例えばダウン症におけるトリソミー(染色体の3倍体)を着床前に特定出来るので、非常に効果的である。一方、染色体の異数性は胚発生を着床前後で停止させることが知られており、着床不全や流産の原因の一つと考えられている。そのため、この診断法で正常と判断された胚だけ偽妊娠動物内へ移植することで、結果的に妊娠率を向上させることが期待されている。しかし、FISHの結果が割球ごとに異なったり、バイオプシー操作の胚へのダメージが高かったりすることから、FISHは妊娠率の向上にはつながらないという報告もなされている(非特許文献2)。 As one of the preimplantation genetic diagnosis methods currently being carried out all over the world, a part of the blastomeres constituting polar bodies or advanced embryos are removed by biopsy and fluorescence in situ hybridization (FISH) method is used. There is a method for identifying an embryo having an abnormality in a chromosome (Non-patent Document 1). This method is very effective because chromosomal aneuploidy, such as trisomy (Chromosome triploid) in Down's syndrome, can be identified before implantation. On the other hand, chromosome aneuploidy is known to stop embryogenesis before and after implantation, and is considered one of the causes of implantation failure and miscarriage. Therefore, it is expected that only the embryos judged to be normal by this diagnostic method are transplanted into pseudopregnant animals, and as a result, the pregnancy rate is improved. However, it has been reported that FISH does not lead to an improvement in pregnancy rate because the result of FISH varies from blastomere to each other or the damage to the embryo of biopsy manipulation is high (Non-patent Document 2).
 電気生理学的手法を用いて個々の胚の呼吸活性を非侵襲的に測定し、呼吸活性とその後の胚発生との間の相関性を利用し、発生の良好な胚を選別する方法が報告されている(非特許文献3)。しかし、この方法を利用しても、染色体の異常の有無を決定することは困難である。 A method has been reported that uses electrophysiological techniques to measure the respiratory activity of individual embryos in a non-invasive manner and to use the correlation between respiratory activity and subsequent embryo development to select embryos with good development. (Non-patent Document 3). However, even if this method is used, it is difficult to determine the presence or absence of a chromosomal abnormality.
 光学的な技術を用いて、卵子中の紡錘体の形状や位置を、染色を行わずに観察する技術が報告されており、この技術を胚の選別に用いる試みがなされている(非特許文献4)。 A technique for observing the shape and position of a spindle in an ovum without staining using an optical technique has been reported, and attempts have been made to use this technique for selection of embryos (non-patent literature). 4).
 胚の選別技術を完成させるためには、観察後の胚発生への悪影響を排除するために、胚へのダメージを出来る限り抑制しながら、詳細に初期発生胚を観察する方法を開発することが必須である。特に、流産の主たる原因である染色体異常を検出できる技術が有効となる。 In order to complete embryo selection technology, in order to eliminate the adverse effects on embryo development after observation, it is necessary to develop a method for observing early embryos in detail while suppressing damage to the embryo as much as possible. It is essential. In particular, a technique capable of detecting a chromosomal abnormality that is the main cause of miscarriage is effective.
 本発明者らはこれまでに初期胚発生時に見られる様々な現象を生きたまま観察できる蛍光イメージング技術の開発を行ってきており、蛍光タンパク質をコードしたmRNAを未受精卵や受精直後の胚にマイクロインジェクションし、該胚を数時間インキュベートした後、蛍光顕微鏡上の培養装置に移し、得られるシグナルの時間変化を観察することを特徴とする、胚のライブセルイメージング技術を報告している(非特許文献5)。 The present inventors have been developing fluorescent imaging techniques that can observe various phenomena observed during early embryogenesis alive, and apply mRNA encoding fluorescent proteins to unfertilized eggs and embryos immediately after fertilization. We have reported a live cell imaging technique for embryos characterized by microinjection, incubating the embryo for several hours, then transferring it to a culture apparatus on a fluorescence microscope, and observing the temporal change in the signal obtained (non- Patent Document 5).
 しかし、この方法では、蛍光シグナルの検出手段として、水銀ランプやキセノンランプを光源としている蛍光顕微鏡や、スキャニングタイプ(例えば、ガルバノミラーを用いたガルバノスキャン装置などによりレーザー光を走査し観察対象物に順次照射する方式)の共焦点レーザー顕微鏡を使用している。本発明者らのさらなる研究によれば、これらの方法ではサンプルに当たる光量が強すぎておよび/または曝露時間が長すぎて、イメージングの途中に胚発生が停止するか、胚が死亡してしまい、その場の観察は可能でも、長期間の蛍光観察後に該胚から個体を発生させることが不可能であることがわかった。 However, in this method, as a fluorescent signal detection means, a laser beam is scanned by a fluorescent microscope using a mercury lamp or a xenon lamp as a light source, or a scanning type (for example, a galvanoscan device using a galvanomirror) to the object to be observed. A confocal laser microscope is used. According to further studies by the inventors, these methods result in too much light hitting the sample and / or too long the exposure time, causing embryogenesis to stop during the imaging, or death of the embryo, Although in situ observation is possible, it has been found that individuals cannot be generated from the embryo after long-term fluorescence observation.
 マウスの着床前初期胚のライブセルイメージング技術については既に数グループより報告があるが、観察後の胚発生への悪影響無しに詳細なライブセルイメージングを成功させた例は極めて少ない。 Although several groups have already reported on live cell imaging technology for early embryos before implantation, there are very few examples of successful detailed live cell imaging without adverse effects on embryo development after observation.
 非特許文献6では、2光子励起顕微鏡を使って、ハムスター胚におけるミトコンドリアの蛍光観察を行い、その胚から産仔が得られたことが報告されている。 Non-Patent Document 6 reports that mitochondrial fluorescence was observed in hamster embryos using a two-photon excitation microscope, and that offspring were obtained from the embryos.
 本発明は、胚へのダメージを出来る限り抑制しながら、詳細に初期発生胚における染色体動態を観察する方法を開発することを目的とする。更に、本発明は、この方法を応用し、安全かつ確実に発生が良好な胚を選別する技術を開発することを目的とする。 The object of the present invention is to develop a method for observing chromosome dynamics in early embryos in detail while suppressing damage to the embryo as much as possible. A further object of the present invention is to apply this method and develop a technique for selecting embryos that are safe and reliably generated with good development.
 上記課題を解決するべく、胚の蛍光イメージング試験における種々の条件を検討した。
 まず、胚へ注入する染色体検出に用いる蛍光タンパク質をコードするmRNAの、胚へ注入する濃度条件を検討した。その結果、特定の濃度範囲のmRNAを胚へ注入すれば、十分な蛍光シグナルが得られ、且つ出生率の低下を引き起こさないことを見出した。
 続いて、シグナル検出機器の改良を行った。顕微鏡には、通常の倒立型顕微鏡を用いるが、ボケの無い詳細なZ軸情報を得るために、レーザー装置を励起光源とする共焦点画像を取得することにした。胚に当たる光量を極限まで下げるため、ニポウディスク式共焦点ユニットを使用して、高速回転するニポウディスクの孔を通してレーザー光を観察対象の胚に極めて短い時間だけ照射する構成とし、その代わりに得られる蛍光シグナルを最大限取得できるよう超高感度EM-CCDカメラを付属させた。ここで自動制御のフィルターを装備することで多色観察を可能にし、電動XYステージやZ軸モーターを組み合わせることで三次元観察や複数胚の同時観察、すなわち計6次元(X軸、Y軸、Z軸、時間、多色、多サンプル)のイメージングが可能になった。
 また、胚・個体発生への悪影響を可能な限り排除するため、出射されるレーザー光量や観察時間等の様々な実験条件を詳細に設定した。その結果、1細胞期から胚盤胞期に到る約70時間にわたり6次元観察を行い、この間計約5万枚の蛍光写真を撮影した後でも、胚から個体を問題なく発生させることに成功した。
In order to solve the above-mentioned problems, various conditions in an embryo fluorescence imaging test were examined.
First, the concentration conditions of mRNA encoding a fluorescent protein used for detection of chromosomes to be injected into embryos were examined. As a result, it was found that if a specific concentration range of mRNA is injected into an embryo, a sufficient fluorescence signal can be obtained and the birth rate is not reduced.
Subsequently, the signal detection device was improved. A normal inverted microscope is used as the microscope, but in order to obtain detailed Z-axis information without blur, a confocal image using a laser device as an excitation light source is acquired. In order to reduce the amount of light striking the embryo to the limit, a nippo disc confocal unit is used to irradiate the target embryo with laser light through a hole in the rotating nippo disc for a very short time. An ultra-sensitive EM-CCD camera was attached to obtain the maximum possible. Equipped with an automatic control filter to enable multicolor observation, and by combining an electric XY stage and Z-axis motor, three-dimensional observation and simultaneous observation of multiple embryos, that is, a total of 6 dimensions (X-axis, Y-axis, Z-axis, time, multicolor, multisample) can be imaged.
In addition, various experimental conditions such as the amount of emitted laser light and observation time were set in detail to eliminate as much as possible the adverse effects on embryo / ontogenesis. As a result, 6-dimensional observation was performed for about 70 hours from the 1-cell stage to the blastocyst stage, and even after taking a total of about 50,000 fluorescent photographs during this period, individuals were successfully generated from the embryo without any problems. did.
 更に、上記イメージング技術をマウスICSI胚に応用して、1細胞期から2細胞期に移行する第1体細胞分裂(first mitosis)における染色体動態を観察することで、将来流産する危険性の高い胚を2細胞期までに特定し、その胚を移植から除外することで、結果的に妊娠率を向上させることに成功した。以上の知見に基づき、本発明が完成された。 Furthermore, by applying the above imaging technique to mouse ICSI embryos and observing the chromosome dynamics in the first somitosis that transitions from the 1-cell stage to the 2-cell stage, embryos that are at high risk of miscarriage in the future Was identified by the 2-cell stage, and the embryo was excluded from the transplantation, and as a result, the pregnancy rate was successfully improved. Based on the above findings, the present invention has been completed.
 即ち、本発明は以下に関する。
[1]レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡により、蛍光標識された哺乳動物胚の蛍光画像を経時的に取得することを含む、哺乳動物胚のインビトロ蛍光観察方法。
[2]蛍光標識された哺乳動物胚が、蛍光タンパク質をコードし、且つ該胚内において該蛍光タンパク質へ翻訳され得るRNAを該胚内へ注入することにより得られたものである、[1]記載の方法。
[3]注入するRNAの量が、蛍光画像の取得に十分量であり、且つ1個の胚につき2.5pg以下である、[2]記載の方法。
[4]少なくとも3.75分の時間間隔をおいて、哺乳動物胚の蛍光画像が連続的に取得される、[1]記載の方法。
[5]少なくとも20時間以上にわたり、哺乳動物胚の蛍光画像が経時的に取得される、[1]記載の方法。
[6]1回の観察時点において、共焦点蛍光顕微鏡の焦点を、胚に対して、該顕微鏡のステージ面を基準とする高さ方向に3μm以下の間隔をおいて移動させて、各層の胚の断面の蛍光画像が取得される、[1]記載の方法。
[7]以下の工程を含む、着床不全又は流産のリスクの低い哺乳動物胚の選択方法:
(I)染色体構成タンパク質と蛍光タンパク質との融合タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質を発現する哺乳動物胚を調製すること;
(II)レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡により、(I)で得られた哺乳動物胚の蛍光画像を経時的に取得すること;及び
(III)(II)で得られた蛍光画像に基づき、異常な染色体の形態を呈していない胚を着床不全又は流産のリスクの低い哺乳動物胚として選択すること。
[8]工程(I)の哺乳動物胚が、染色体構成タンパク質と蛍光タンパク質との融合タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質をコードし、且つ該胚内において該融合タンパク質へ翻訳され得るRNAを該胚内へ注入することにより調製される、[7]記載の方法。
[9]工程(I)の哺乳動物胚が、1細胞期又は2細胞期の胚である、[7]記載の方法。
[10]哺乳動物胚が、細胞質内精子注入(ICSI)又は円形精子細胞注入(ROSI)により作成されたものである、[7]記載の方法。
[11]異常な染色体の形態が、体細胞分裂時における異常な染色体分離である、[7]記載の方法。
That is, the present invention relates to the following.
[1] A method for in vitro fluorescence observation of a mammalian embryo, comprising acquiring fluorescence images of a fluorescently labeled mammalian embryo over time with a confocal fluorescence microscope equipped with a laser light source and a nipou disc confocal unit.
[2] A fluorescently labeled mammalian embryo is obtained by injecting RNA into the embryo that encodes the fluorescent protein and can be translated into the fluorescent protein in the embryo. [1] The method described.
[3] The method according to [2], wherein the amount of RNA to be injected is a sufficient amount for obtaining a fluorescence image, and is 2.5 pg or less per embryo.
[4] The method according to [1], wherein fluorescence images of mammalian embryos are continuously acquired at a time interval of at least 3.75 minutes.
[5] The method according to [1], wherein a fluorescent image of the mammalian embryo is acquired over time for at least 20 hours.
[6] At the time of one observation, the focal point of the confocal fluorescence microscope is moved with respect to the embryo in the height direction with reference to the stage surface of the microscope at an interval of 3 μm or less, and the embryos in each layer The method according to [1], wherein a fluorescent image of the cross section is obtained.
[7] A method for selecting a mammalian embryo having a low risk of implantation failure or miscarriage, comprising the following steps:
(I) preparing a mammalian embryo that expresses a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein;
(II) Obtaining a fluorescence image of the mammalian embryo obtained in (I) over time by a confocal fluorescence microscope equipped with a laser light source and a Niipou disc type confocal unit; and (III) obtained in (II) Based on the obtained fluorescence image, an embryo that does not exhibit abnormal chromosomal morphology is selected as a mammalian embryo having a low risk of implantation failure or miscarriage.
[8] The mammalian embryo of step (I) encodes a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein, and is translated into the fusion protein in the embryo The method according to [7], which is prepared by injecting the obtained RNA into the embryo.
[9] The method according to [7], wherein the mammalian embryo of step (I) is a 1-cell stage or 2-cell stage embryo.
[10] The method according to [7], wherein the mammalian embryo is produced by intracytoplasmic sperm injection (ICSI) or circular sperm cell injection (ROSI).
[11] The method according to [7], wherein the abnormal chromosome morphology is abnormal chromosome segregation during somatic cell division.
 本発明の方法を用いることにより、胚へのダメージを出来る限り抑制しながら、詳細に初期発生胚を観察することが可能となる。本発明の方法を用いれば、哺乳動物の胚を生かしたまま、連続的に蛍光観察することが可能であり、更にその胚は問題なく個体発生することができるので、蛍光観察でみとめられた現象とその後の個体発生との関連性を直接結び付けて評価することが可能である。更に、本発明の方法を用いて第1体細胞分裂時の染色体動態の観察を行えば、将来流産する危険性の高い胚を、2細胞期までという非常に早期の段階で特定することが可能となる。そして、特定された異常胚を移植対象から除外することで、妊娠率を大幅に向上させることが可能となる。 By using the method of the present invention, it is possible to observe the early embryo in detail while suppressing damage to the embryo as much as possible. By using the method of the present invention, it is possible to continuously observe fluorescence while keeping a mammalian embryo alive, and furthermore, the embryo can be individually generated without any problem. And the subsequent ontogeny can be directly linked and evaluated. Furthermore, by observing chromosome dynamics during the first somatic cell division using the method of the present invention, it is possible to identify embryos at a very early stage, up to the 2-cell stage, at a high risk of miscarriage in the future. It becomes. And it becomes possible to improve a pregnancy rate significantly by removing the identified abnormal embryo from the transplant object.
本発明で用いられる〔レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡〕の構成を説明するための簡単な模式図である。It is a simple schematic diagram for demonstrating the structure of [the confocal fluorescence microscope provided with a laser light source and a Niipou disc-type confocal unit] used by this invention. 着床前診断のためのイメージングの安全性評価。a)安全性評価の模式図。b)着床前発生における紡錘体(緑色のチュブリン)及び核(赤色のH2B)の動態の典型的なこま撮り画像。7.5分ごとに得た一連の画像から2時間ごと選択された画像を示す。観察開始後の時間をパネルの下に示す。c)長期6次元イメージング後に生まれた新生仔。d)子の体重の変化を示したチャート。彼らは3つの強度(0,20,70mW)のレーザー光に7.5分間隔で約70時間にわたり曝露された胚から創生された(詳細については表2に記載)。横軸及び縦軸は、それぞれ、出世後の週と体重を示す。「n」は解析したマウスの数を意味する。e)子の蛍光画像。アスタリスクは陽性コントロールとした高感度緑色蛍光タンパク質(EGFP)発現トランスジェニックマウスをしめす。f)尾先端DNAのゲノタイピング解析の典型的な電気泳動パターン。レーン1~22はイメージングした胚の子由来のものであり;レーンNは陰性コントロールとしての正常BDF1系統マウス由来のものであり;Pは、陽性コントロールとしてのEGFP発現マウス由来のものであり、且つMはDNAサイズマーカーである。g)イメージング装置。ニポウディスク式共焦点ユニット、EM-CCDカメラ、Z軸モーター及び自動XY軸ステージを取り付けた通常の倒立顕微鏡。これらの全てはMetaMorphイメージングソフトウェアを用いて制御した。胚をステージ上のCOインキュベーターで培養した。詳細は図4に記載した。尚、図2は本来カラーの写真である。Imaging safety assessment for pre-implantation diagnosis. a) Schematic diagram of safety evaluation. b) Typical time-lapse image of spindle (green tubulin) and nucleus (red H2B) dynamics during pre-implantation development. An image selected every 2 hours from a series of images obtained every 7.5 minutes is shown. The time after the start of observation is shown below the panel. c) Newborn born after long-term 6D imaging. d) A chart showing changes in the weight of the child. They were created from embryos exposed to three intensities (0, 20, 70 mW) of laser light at intervals of 7.5 minutes for about 70 hours (details are given in Table 2). The horizontal and vertical axes indicate the week after birth and the weight, respectively. “N” means the number of mice analyzed. e) Child fluorescence image. An asterisk indicates a transgenic mouse expressing high sensitivity green fluorescent protein (EGFP) as a positive control. f) Typical electrophoresis pattern for genotyping analysis of tail tip DNA. Lanes 1-22 are from embryos of the imaged embryo; Lane N is from a normal BDF1 strain mouse as a negative control; P is from an EGFP-expressing mouse as a positive control; and M is a DNA size marker. g) Imaging device. A normal inverted microscope equipped with a Nipkow disc confocal unit, EM-CCD camera, Z-axis motor and automatic XY-axis stage. All of these were controlled using MetaMorph imaging software. Embryos were cultured in a CO 2 incubator on stage. Details are shown in FIG. FIG. 2 is an original color photograph. 種々の濃度のmRNAを注入した胚の蛍光顕微鏡観察。第2減数分裂後期/分裂終期段階のIVF胚へ、EGFP-α-チュブリン(チュブリン、緑色)をコードするmRNA及びH2B-mRFP1(H2B、赤色)をコードするmRNAの等量ずつの混合物を、種々の濃度(0-250ng/μL)で注入した。70時間のインキュベーション後、それらについてイメージングシステムを用いて観察した。NIは「非注入」を意味する。尚、図3は本来カラーの写真である。Fluorescence microscopy of embryos injected with various concentrations of mRNA. Various combinations of equal amounts of mRNA encoding EGFP-α-tubulin (tubulin, green) and mRNA encoding H2B-mRFP1 (H2B, red) were added to the second meiotic / end-stage IVF embryo. At a concentration of 0-250 ng / μL. After 70 hours of incubation, they were observed using an imaging system. NI means “non-injection”. FIG. 3 is an original color photograph. イメージングの安全性の評価に用いた装置。尚、図4は本来カラーの写真である。A device used to evaluate the safety of imaging. FIG. 4 is an original color photograph. 細胞質内精子注入(ICSI)により創生された胚における異常な染色体分離。(a-c)正常な染色体分離(NCS;a)、及びICSI胚の第1体細胞分裂での異常染色体分離(ACS;b、c)のこま撮り画像。キーワード:m、雄前核:f、雌前核;pb、極体。(d-f)ACSを有する2細胞胚の免疫染色。胚にヒストンH2B-mRFP1 mRNA(赤色)を注入し、抗lamin B抗体(lamin B;d)、抗リン酸化ヒストンH3 Ser10抗体(pH3 ser10;e)及び抗リン酸化H2A.X抗体(pH2A.X;f)により染色した。矢印は、体細胞分裂の過程で異常に分離した染色体断片を示す。矢頭は、微小核を示す。尚、図5は本来カラーの写真である。Abnormal chromosome segregation in embryos created by intracytoplasmic sperm injection (ICSI). (Ac) Time-lapse images of normal chromosome segregation (NCS; a) and abnormal chromosome segregation (ACS; b, c) at the first somatic division of an ICSI embryo. Keywords: m, male pronucleus: f, female pronucleus; pb, polar body. (Df) Immunostaining of 2-cell embryos with ACS. Histone H2B-mRFP1 mRNA (red) was injected into the embryo, and anti-lamin B antibody (lamin B; d), anti-phosphorylated histone H3 Ser10 antibody (pH3 ser10; e) and anti-phosphorylated H2A. Stained with X antibody (pH 2A.X; f). Arrows indicate chromosome fragments that are abnormally separated during the process of somatic cell division. Arrowheads indicate micronuclei. FIG. 5 is an original color photograph. 異常染色体分離の着床前及び着床後発生。(a,b)ACSを有する胚の長期イメージング。(a)桑実胚まで発生しつつあるACSを有する胚。(b)4細胞期後に停止した胚。(c,d)抗Oct3/4抗体(緑色)及び抗Cdx2(赤色)で処理したNCS胚(c)及びACS胚(d)から得た胚盤胞の異なる染色パターン。(e)ライブセルイメージングによりスクリーニングするICSI胚の評価の模式図。(f)NCS(左)及びACS(右)胚を移植された偽妊娠マウス雌のE7.5子宮。矢印は着床部位を示す。(g)E7.5及びE9.5におけるNCS及びACS胚の脱落膜。矢印は、脱落膜中から取り出した胚を示す。尚、図6は本来カラーの写真である。Abnormal chromosome segregation occurs before and after implantation. (A, b) Long-term imaging of embryos with ACS. (A) Embryo with ACS that is developing to morula. (B) Embryo stopped after the 4-cell stage. (C, d) Different staining patterns of blastocysts obtained from NCS embryos (c) and ACS embryos (d) treated with anti-Oct3 / 4 antibody (green) and anti-Cdx2 (red). (E) Schematic diagram of evaluation of ICSI embryos screened by live cell imaging. (F) E7.5 uterus of pseudopregnant female mice transplanted with NCS (left) and ACS (right) embryos. The arrow indicates the landing site. (G) Decidual membrane of NCS and ACS embryos at E7.5 and E9.5. The arrow indicates the embryo removed from the decidua. FIG. 6 is an original color photograph. ライブセルイメージングに用いて分離した後のACS及びNCS2細胞胚の光学顕微鏡観察画像。尚、図7は本来カラーの写真である。Optical microscope observation image of ACS and NCS2 cell embryos after separation for live cell imaging. FIG. 7 is an original color photograph. 正常卵母細胞への円形精子細胞注入及びKid-/-マウス卵母細胞を用いた細胞質内精子注入により創生された胚における異常染色体分離の頻度。円形精子細胞注入(ROSI)胚(a)及びKid-/-変異体ICSI作成胚(b)における、正常(上段)及び異常染色体分離(下段)。Kid-/-雌由来の卵母細胞へ、性成熟したBDF1雄由来の新鮮な精子を微注入した。キーワード:m、雄前核;f、雌前核;pd、極体。矢印は、異常に分離した染色体及び微小核を示す。尚、図8は本来カラーの写真である。Frequency of abnormal chromosome segregation in embryos created by circular sperm cell injection into normal oocytes and intracytoplasmic sperm injection with Kid − / − mouse oocytes. Normal (upper) and abnormal chromosome segregation (lower) in round sperm cell injection (ROSI) embryos (a) and Kid − / − mutant ICSI-produced embryos (b). Kid − / − female oocytes were microinjected with fresh sperm from a sexually mature BDF1 male. Keywords: m, male pronucleus; f, female pronucleus; pd, polar body. Arrows indicate abnormally separated chromosomes and micronuclei. FIG. 8 is an original color photograph. サル顕微授精胚第1体細胞分裂に見られる核・染色体異常。(A)マウス顕微授精胚においても高頻度に認められた染色体分配異常(図5b及びc参照)。分配時に染色体の一部が置き忘れられた(矢印)。(B)多核化した胚。分配後の染色体が一つにまとまらずに、2細胞期において2つ以上の核を形成する異常。(C)染色体の断片化を示す胚。分裂中期(メタフェイズ)ですでに染色体が紡錘体の赤道面に並んでおらず、両極に分配後に染色体が分散し(矢印)、結果的に2細胞期において無数の核・染色体のシグナルが観察される。Nucleus / chromosome abnormality observed in monkey microinsemination embryonic somatic cell division. (A) Chromosome partitioning abnormality frequently observed in mouse microinseminated embryos (see FIGS. 5b and c). Part of the chromosome was misplaced during distribution (arrow). (B) Multinucleated embryo. An abnormality in which two or more nuclei are formed in the two-cell stage without having a single chromosome after distribution. (C) Embryo showing chromosome fragmentation. Chromosomes are not already aligned in the equator plane of the spindle in the metaphase (metaphase), and the chromosomes are dispersed after distribution to both poles (arrows). As a result, countless nuclear and chromosomal signals are observed in the 2-cell stage. Is done.
(1.哺乳動物胚のインビトロ蛍光観察方法)
 本発明は、レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡により、蛍光標識された哺乳動物胚の蛍光画像を経時的に取得することを含む、哺乳動物胚のインビトロ蛍光観察方法(本発明の方法I)を提供する。
(1. In vitro fluorescence observation method of mammalian embryo)
The present invention relates to a method for in vitro fluorescence observation of a mammalian embryo (this book), comprising acquiring fluorescence images of a fluorescently labeled mammalian embryo over time by a confocal fluorescence microscope equipped with a laser light source and a nipou disc confocal unit. Inventive method I) is provided.
 本発明の方法Iにおいて用いられる胚は、哺乳動物由来のものである。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ、ミンク等の家畜、イヌ、ネコ等のペット、ヒト、サル、カニクイザル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来るが、これらに限定されるものではない。 The embryo used in the method I of the present invention is derived from a mammal. Examples of mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees.
 哺乳動物の胚は、自体公知の生殖技術、例えば、体外授精(IVF)、細胞質内精子注入(ICSI)、円形精子細胞注入(ROSI)等の方法を用いてインビトロにて作成することが可能である。 Mammalian embryos can be generated in vitro using reproductive techniques known per se, such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), circular sperm cell injection (ROSI), and the like. is there.
 本発明の方法Iにおいては、いかなる発生段階の哺乳動物胚をも観察対象として用いることが可能である。本発明の方法Iを用いれば、胚発生へのダメージを最小限に抑制しながら、胚を詳細に蛍光観察することが可能であり、観察後の胚を、偽妊娠の哺乳動物の子宮や輸卵管へ移入すると、正常に着床し、該胚由来の子が生まれる。従って、本発明の方法Iは、着床前の段階の胚、特に将来的に偽妊娠の哺乳動物の子宮や輸卵管へ移入が予定されている胚の観察に有利である。着床前の段階の胚としては、1細胞期、2細胞期、4細胞期、8細胞期、桑実胚期、胚盤胞期等の胚を挙げることができるが、これらに限定されるものではない。 In the method I of the present invention, any developmental stage mammalian embryo can be used as an observation target. By using the method I of the present invention, it is possible to carry out detailed fluorescence observation of the embryo while minimizing damage to embryo development, and the embryo after observation can be used as a pseudopregnant mammal uterus or oviduct When transferred to, normal implantation will occur and offspring derived from the embryo will be born. Therefore, the method I of the present invention is advantageous for observing embryos in a preimplantation stage, particularly embryos that are scheduled to be transferred to the uterus and oviduct of a pseudopregnant mammal in the future. Examples of embryos at the stage before implantation include embryos at the 1-cell stage, 2-cell stage, 4-cell stage, 8-cell stage, morula stage, blastocyst stage, etc., but are not limited thereto. It is not a thing.
 本発明の方法Iにおいて使用される哺乳動物胚は、蛍光顕微鏡による検出が可能となるように、所望の方法により蛍光標識される。蛍光標識の方法としては、例えば蛍光タンパク質の胚内での発現、胚内の抗原を特異的に認識する蛍光物質(例えばFITC等)結合抗体による染色、蛍光核酸プローブの注入等を挙げることができるが、これらに限定されない。蛍光タンパク質としては、自体公知のもの、例えばGFP、RFP、CFP、YFP、およびそれらの改良型である変異体(例えば、EGFP、EYFP等)等を使用することができ、観察目的に応じて所望の色の蛍光タンパク質を選択することができる。また、所望のタンパク質と上記蛍光タンパク質との融合タンパク質を胚内で発現させることにより、該タンパク質の胚内の局在や、該タンパク質が局在する胚内微小組織の形態を蛍光観察する技術が広く知られており、このような蛍光融合タンパク質も哺乳動物胚の蛍光標識に有用である。 The mammalian embryo used in the method I of the present invention is fluorescently labeled by a desired method so that it can be detected by a fluorescent microscope. Examples of the fluorescent labeling method include expression of fluorescent protein in the embryo, staining with a fluorescent substance (for example, FITC) binding antibody that specifically recognizes the antigen in the embryo, injection of a fluorescent nucleic acid probe, and the like. However, it is not limited to these. As fluorescent proteins, those known per se, for example, GFP, RFP, CFP, YFP, and their improved variants (eg, EGFP, EYFP, etc.) can be used. The fluorescent protein of the color can be selected. In addition, by expressing a fusion protein of a desired protein and the fluorescent protein in the embryo, the technology for observing the localization of the protein in the embryo and the morphology of the in-embryonic microtissue where the protein is localized is observed. Widely known, such fluorescent fusion proteins are also useful for fluorescent labeling of mammalian embryos.
 一つの好ましい態様において、染色体構成タンパク質と蛍光タンパク質との融合タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質を哺乳動物胚において発現させることにより、該胚を蛍光標識する。染色体構成タンパク質と蛍光タンパク質との融合タンパク質を哺乳動物胚において発現させると、該蛍光融合タンパク質は染色体に局在するため、哺乳動物胚の染色体の形態や構造の詳細な蛍光画像を取得することが可能である。また、紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質を哺乳動物胚において発現させると、該蛍光融合タンパク質は紡錘体と細胞質全体に局在するため、特に卵割時の紡錘体や細胞質分裂の動態を蛍光観察により詳細に追跡することが可能である。更に、染色体構成タンパク質と蛍光タンパク質との融合タンパク質(A)と紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質(B)とを組み合わせて用いることにより、胚の発生過程における染色体の動態を、卵割時及び静止時を通じて、経時的に詳細に追跡することが可能となる。組み合わせ使用の際には、2種の融合タンパク質を区別し得るように、融合タンパク質(A)に含まれる蛍光タンパク質の発光波長が、融合タンパク質(B)に含まれる蛍光タンパク質の発光波長と異なることが好ましい。下述する染色体分離異常の検出においても、このように融合タンパク質(A)と(B)とを組み合わせて用いる態様が好ましいが、融合タンパク質(A)のみを用いても染色体分離異常を検出することが可能である。
 染色体構成タンパク質としては、ヒストン(H1、H2A、H2B、H3、H4等)等を使用可能であるが、これに限定されない。
 紡錘体構成タンパク質としては、チュブリン(α、β)等を使用可能であるが、これに限定されない。
In one preferred embodiment, the embryo is fluorescently labeled by expressing in a mammalian embryo a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein. When a fusion protein of a chromosomal component protein and a fluorescent protein is expressed in a mammalian embryo, the fluorescent fusion protein is localized in the chromosome, so that a detailed fluorescent image of the morphology and structure of the chromosome of the mammalian embryo can be obtained. Is possible. In addition, when a fusion protein of a spindle protein and a fluorescent protein is expressed in a mammalian embryo, the fluorescent fusion protein is localized throughout the spindle and the cytoplasm. Can be traced in detail by fluorescence observation. Further, by using a combination of a fusion protein (A) of a chromosomal component protein and a fluorescent protein and a fusion protein (B) of a spindle component protein and a fluorescent protein, the dynamics of the chromosome in the embryo development process can be determined. It becomes possible to track in detail over time through time and at rest. When using the combination, the emission wavelength of the fluorescent protein contained in the fusion protein (A) is different from the emission wavelength of the fluorescent protein contained in the fusion protein (B) so that the two types of fusion proteins can be distinguished. Is preferred. In the detection of the chromosome segregation abnormality described below, an embodiment in which the fusion proteins (A) and (B) are combined in this way is preferable, but the chromosome segregation abnormality can also be detected using only the fusion protein (A). Is possible.
As a chromosome constituent protein, histone (H1, H2A, H2B, H3, H4, etc.) can be used, but is not limited thereto.
As the spindle component protein, tubulin (α, β) or the like can be used, but is not limited thereto.
 以上のほかにも、染色体自体やその構成成分に結合する性質のあるタンパク質と蛍光タンパク質との融合タンパク質(例えば本発明者が以前に開発したメチル化DNAに結合する蛍光プローブであるEGFP-MBD-NLS(Gensis, 43, 71-79 (2005)))などが使用可能であるが、これに限定されない。 In addition to the above, a fusion protein of a protein having a property of binding to the chromosome itself or its constituent components and a fluorescent protein (for example, EGFP-MBD-, which is a fluorescent probe that binds to methylated DNA previously developed by the present inventor) NLS (Gensis, 43, 71-79 (2005))) can be used, but is not limited thereto.
 蛍光タンパク質を哺乳動物胚において発現させる方法としては、以下を挙げることができる:
(A)哺乳動物胚内で蛍光タンパク質を発現し得る発現ベクターの哺乳動物胚内への導入;
(B)蛍光タンパク質をコードし、かつ哺乳動物胚内において該蛍光タンパク質へ翻訳され得るRNAの、哺乳動物未受精卵又は哺乳動物胚内への注入;及び
(C)蛍光タンパク質遺伝子が、胚において発現可能な態様でゲノム内へ組み込まれたトランスジェニック哺乳動物由来の胚の使用。
Methods for expressing fluorescent proteins in mammalian embryos include the following:
(A) introduction of an expression vector capable of expressing a fluorescent protein in a mammalian embryo into the mammalian embryo;
(B) injection of RNA encoding a fluorescent protein and capable of being translated into the fluorescent protein in a mammalian embryo into a mammalian unfertilized egg or mammalian embryo; and (C) the fluorescent protein gene is in the embryo Use of embryos from transgenic mammals integrated into the genome in an expressible manner.
 (A)の方法は、最もポピュラーな方法の1つであるが、発現ベクター(プラスミドベクター、ウイルスベクター等)は、通常DNAを含むため、導入したDNAが哺乳動物胚のゲノムへ組み込まれてしまい、結果的にトランスジェニック哺乳動物が生じてしまうおそれがある。これに対して、(B)の方法では、RNAを直接胚へ注入するため、理論的にはトランスジェニック哺乳動物が生じるリスクが皆無である。従って、観察対象の哺乳動物胚からのトランスジェニック動物の発生が所望されない場合(例えば、医療や畜産分野における使用)には、(B)の方法が有利である。 The method (A) is one of the most popular methods. However, since expression vectors (plasmid vectors, viral vectors, etc.) usually contain DNA, the introduced DNA is integrated into the genome of the mammalian embryo. As a result, a transgenic mammal may be generated. On the other hand, in the method (B), RNA is directly injected into an embryo, so that there is theoretically no risk of producing a transgenic mammal. Therefore, when the generation of a transgenic animal from a mammalian embryo to be observed is not desired (for example, use in the medical or livestock field), the method (B) is advantageous.
 (B)の方法で使用するRNA(mRNA)は、哺乳動物胚内において蛍光タンパク質へ翻訳され得るように、蛍光タンパク質のコード領域の5’側に翻訳開始領域を含む。また、胚内で安定化し、かつ効率的に翻訳され得るように、RNAは5’末端にキャップ構造を含み得る。また、RNAが胚内で安定化し、かつ効率的に翻訳され得るように、RNAは3’末端にポリA領域を有することが好ましい。ポリAの長さは、通常65以上、好ましくは80以上(例えば83)である。(B)の方法で使用するRNAは、発明者が以前に開発したプラスミド(pcDNA3.1-poly(A83), Gensis, 43, 71-79 (2005))の中に目的となる蛍光プローブのDNAを挿入し、それを鋳型として市販のキットを用いてインビトロ転写を行い、その転写産物からRNA画分(mRNA)を単離、精製することにより得ることができる。DNAのコンタミネーションによるトランスジェニック動物発生のリスクを回避するため、好ましくは、転写産物はDNase処理に付される。(B)の方法で使用するRNAは、化学合成により製造されたものであってもよい。(B)の方法で使用するRNAの具体的な調製方法については、Gensis, 43, 71-79 (2005)を参照のこと。 The RNA (mRNA) used in the method (B) includes a translation initiation region on the 5 'side of the coding region of the fluorescent protein so that it can be translated into the fluorescent protein in the mammalian embryo. The RNA may also contain a cap structure at the 5 'end so that it can be stabilized in the embryo and translated efficiently. It is also preferred that the RNA has a poly A region at the 3 'end so that the RNA can be stabilized in the embryo and translated efficiently. The length of the poly A is usually 65 or more, preferably 80 or more (for example, 83). The RNA used in the method (B) is the DNA of the target fluorescent probe in the plasmid (pcDNA3.1-poly (A83), Gensis, 43, 71-79 (2005)) previously developed by the inventors. Can be obtained by in vitro transcription using a commercially available kit using this as a template, and isolating and purifying the RNA fraction (mRNA) from the transcript. To avoid the risk of transgenic animal development due to DNA contamination, the transcript is preferably subjected to DNase treatment. The RNA used in the method (B) may be produced by chemical synthesis. For the specific preparation method of RNA used in the method (B), see Gensis, 43, 71-79 (2005).
 (B)の方法においては、哺乳動物の未受精卵又は胚のいずれにRNAを注入してもよい。インビトロにおいて胚を作成する場合(例えばIVF、ICSI、ROSI等)には、胚の作成操作の過程で胚が死んでしまうことがしばしばあるため、未受精卵へRNAを注入するよりも、授精操作後に生き残った胚にRNAを注入する方が、注入操作の労力を減らすことができ、好ましい。尚、未受精卵へRNAを注入した場合には、その後で雄の配偶子(精子、精子細胞等)による授精操作を行わなければならない。 In the method (B), RNA may be injected into either an unfertilized egg or embryo of a mammal. When embryos are created in vitro (eg IVF, ICSI, ROSI, etc.), embryos often die during the process of creating embryos. Therefore, fertilization is performed rather than injecting RNA into unfertilized eggs. It is preferable to inject RNA into the surviving embryo later because the labor of the injection operation can be reduced. When RNA is injected into an unfertilized egg, an insemination operation with a male gamete (sperm, sperm cell, etc.) must be performed thereafter.
 (B)の方法においては、蛍光顕微鏡による哺乳動物胚の蛍光画像の取得に十分量であり、且つ胚発生へのダメージが最小限に抑制された量のRNAが未受精卵又は胚へ注入される。蛍光画像の取得に十分なRNA量としては、具体的には、
1つの胚あたり0.1pg(10ng/μl×10ピコリットル相当量)以上
が例示される。
 胚発生へのダメージが抑制されたRNA量としては、具体的には、
1つの胚あたり2.5pg(250ng/μL×10ピコリットル相当量)以下、
好ましくは0.5pg(50ng/μL×10ピコリットル相当量)以下
が例示される。
 従って、(B)の方法においては、
通常0.1pg~2.5pg、
好ましくは0.1pg~0.5pg
のRNAが1つの未受精卵又は胚に注入される。
In the method (B), an amount of RNA sufficient to obtain a fluorescence image of a mammalian embryo by a fluorescence microscope and with minimal damage to embryo development is injected into an unfertilized egg or embryo. The Specifically, as the amount of RNA sufficient for obtaining a fluorescence image,
For example, 0.1 pg (equivalent to 10 ng / μl × 10 picoliter) or more per embryo is exemplified.
Specifically, the amount of RNA in which damage to embryonic development is suppressed is as follows:
2.5 pg per embryo (250 ng / μL × 10 picoliter equivalent) or less,
Preferably, 0.5 pg (50 ng / μL × 10 picoliter equivalent) or less is exemplified.
Therefore, in the method (B),
Usually 0.1pg to 2.5pg,
Preferably 0.1pg to 0.5pg
Of RNA is injected into one unfertilized egg or embryo.
 RNAの注入後、蛍光画像の取得に十分な量の蛍光タンパク質を翻訳させるため、哺乳動物胚は適切な培地中で3~5時間ほど培養され、その後、共焦点顕微鏡による観察に付される。 After the RNA injection, the mammalian embryo is cultured for 3 to 5 hours in an appropriate medium in order to translate a sufficient amount of fluorescent protein to obtain a fluorescent image, and then subjected to observation with a confocal microscope.
 以下、共焦点顕微鏡による蛍光標識された哺乳動物胚の観察について詳述する。 Hereinafter, observation of fluorescently labeled mammalian embryos using a confocal microscope will be described in detail.
 本発明の方法Iにおいては、蛍光標識された哺乳動物胚が、レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡により観察され、蛍光画像が経時的に取得される。 In Method I of the present invention, a fluorescently labeled mammalian embryo is observed with a confocal fluorescence microscope equipped with a laser light source and a Niipou disc confocal unit, and a fluorescence image is acquired over time.
 長期間の蛍光観察を可能にするため、哺乳動物胚は、適切な培養容器(例えばガラスボトムディッシュ)上の適切な培地(例えばCZB培地)のドロップ中に配置される。培養容器としては、蛍光観察を阻害しないよう、励起光及び蛍光を透過する部材からなるものが選択される。培地の蒸発を防止するために、好ましくは培地ドロップ上にミネラルオイルが重層される。培養容器は、蛍光顕微鏡の観察台上に設置された顕微鏡用COインキュベーター内に静置され、胚発生に適切な温度(例えば37℃、サル胚については38℃)、湿度(例えば100%)、及びCO濃度(例えば5%)条件にて、胚が培養される。 In order to allow long-term fluorescence observation, the mammalian embryo is placed in a drop of a suitable medium (eg, CZB medium) on a suitable culture vessel (eg, glass bottom dish). As the culture vessel, a culture vessel made of a member that transmits excitation light and fluorescence is selected so as not to hinder fluorescence observation. In order to prevent evaporation of the medium, mineral oil is preferably overlaid on the medium drop. The culture vessel is placed in a microscope CO 2 incubator placed on an observation table of a fluorescence microscope, and is at a temperature suitable for embryo development (eg 37 ° C., 38 ° C. for monkey embryos) and humidity (eg 100%). The embryos are cultured under conditions of CO 2 concentration (eg, 5%).
 本発明の重要な特徴の1つは、種々の蛍光顕微鏡の中から、〔ニポウディスク式共焦点ユニットを用いた共焦点蛍光顕微鏡〕を選択し、それを哺乳動物胚のインビトロ蛍光観察および哺乳動物胚の選択へと応用した点にある。これにより、胚の個体発生に悪影響を与えることなく、長時間の3次元的解析がはじめて可能になった。
 図1は、本発明で用いられる〔レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡〕の構成を説明するための簡単な模式図である。同図では、原理を説明するために詳細な光学系の描写は省略している。
 図1に示すように、レーザー光源1は、蛍光物質を励起するための励起光源である。また、ニポウディスク式共焦点ユニット2は、該光源1からのレーザー光L1を高速回転するニポウディスクを通して観察対象物Sに焦点を合わせて照射し、かつ、発せられた蛍光L2の発光源に焦点を合わせ、該ニポウディスクを通して該蛍光L2を撮像装置3へ送る装置である。より詳しくは、該共焦点顕微鏡は、(a)励起光照射においては、光源1からのレーザー光(励起光)L1を、回転するニポウディスク(ニポー板、ニプコー円板、ピンホール板とも呼ばれる)22に設けられた貫通孔を通過させることで、観察対象物Sに対し局所的にかつ所定の深さに焦点を合わせて該レーザー光L1を照射し、(b)蛍光撮像においては、前記照射点に受光の焦点を合わせ、そこから発せられる1つの画素(または貫通孔の移動で画素が連なった走査線)としての蛍光を撮像装置3で受光し合成して全体の画像を得るよう構成された顕微鏡である。
One of the important features of the present invention is that a confocal fluorescence microscope using a Niipou disc confocal unit is selected from various fluorescence microscopes, and this is used for in vitro fluorescence observation of mammalian embryos and mammalian embryos. It is in the point applied to the selection of. This has enabled long-term three-dimensional analysis for the first time without adversely affecting embryogenesis.
FIG. 1 is a simple schematic diagram for explaining the configuration of a [confocal fluorescence microscope including a laser light source and a Niipou disc confocal unit] used in the present invention. In the figure, in order to explain the principle, detailed depiction of the optical system is omitted.
As shown in FIG. 1, the laser light source 1 is an excitation light source for exciting a fluorescent substance. The Niipou disc type confocal unit 2 focuses the laser light L1 from the light source 1 on the observation object S through the Nipo disc that rotates at high speed, and focuses on the emitted light source of the emitted fluorescence L2. , An apparatus for sending the fluorescence L2 to the imaging device 3 through the nippo disk. More specifically, the confocal microscope (a) in the excitation light irradiation, a rotating nipou disk (also referred to as a Nipo plate, a Nipkow disc, or a pinhole plate) 22 which rotates laser light (excitation light) L1 from the light source 1 22 By passing through the through-hole provided in the laser beam, the observation object S is irradiated with the laser beam L1 while being focused at a predetermined depth locally. In (b) fluorescence imaging, the irradiation point The image pickup device 3 receives and synthesizes fluorescence as one pixel (or a scanning line in which the pixels are connected by movement of the through-hole) emitted from there. It is a microscope.
 ニポウディスクは、公知の走査用円板であって、図1のように、レーザー光を遮るように構成された円板22が、回転駆動用のモーターによって回転可能な構成とされ、その板面には、回転中心側から外周側へ、順次、螺旋を描くように多数の貫通孔が設けられている。回転中心側から外周側までの各貫通孔が、画像を構成する各走査線に対応する。レーザー光L1をニポウディスク面の特定の照射領域に照射しながら該ディスクを回転させると、各貫通孔がその照射領域を横切るときだけ、レーザー光が該貫通孔を通過し、観察対象物に照射される。
 特定のビーム断面を持ったレーザー光を、貫通孔を通して焦点を合わせて照射して得られる観察対象物の局所的な映像(本発明では、単なる反射光ではなくそこから発せられた蛍光による映像)を、同じ貫通孔を通して焦点を合わせて撮像することで、コントラストのよいクリアな画像を合成することが可能となる。
The Nipkow disk is a known scanning disk, and as shown in FIG. 1, a disk 22 configured to block the laser light is configured to be rotatable by a motor for rotation driving, and on the surface of the disk. Are provided with a large number of through holes so as to draw a spiral sequentially from the rotation center side to the outer peripheral side. Each through hole from the rotation center side to the outer peripheral side corresponds to each scanning line constituting the image. When the disk is rotated while irradiating a specific irradiation area of the Nipkow disk surface with the laser beam L1, the laser beam passes through the through-hole only when each through-hole crosses the irradiation area and is irradiated onto the observation object. The
A local image of an observation object obtained by irradiating a laser beam having a specific beam cross section through a focus through a through-hole (in the present invention, an image based on fluorescence emitted from the object, not just reflected light) Can be synthesized through focusing on the same through-hole, and a clear image with good contrast can be synthesized.
 図1の装置構成では、ニポウディスク22の貫通孔(図には現れていない)をレーザー光が好ましく通過し得るよう、ニポウディスクよりもレーザー光源側に集光ディスク21が設けられている。集光ディスク21はニポウディスク22と一体的に回転する円板であって、その板面には、ニポウディスクの貫通孔に対応した位置にレンズが設けられている。また、図1の装置構成では、観察対象物Sから発せられた蛍光L2は、励起光が通過したニポウディスク22の貫通孔を再び通って戻り、光分岐手段(例えば、45度に傾けたダイクロイックミラー)23によって方向を変えられて撮像装置3へと向かう構成となっている。
 励起光の照射と蛍光の撮像においては、照射点(焦点)の深さ(顕微鏡のステージ面を基準とする高さとも言う)を一定とした1平面の照射・撮像だけでなく、深さを順次変化させて多層の平面への照射と撮像を行い、得られた各層の平面の画素を合成することによって、観察対象物の立体画像を得ることができる。
 このようなニポウディスク式共焦点ユニットやそれを用いてレーザー光を照射し蛍光を撮像する共焦点蛍光顕微鏡の技術は、それ自体は公知であって、例えば、ニポウディスクを用いた共焦点顕微鏡については、特開平5-60980などに詳細に説明されている。
 光分岐手段による光路の通過と変更を好ましく行うために、レーザー光に偏光を用いるなど、光学系の細部の構成も、従来技術を適宜参照してもよい。
In the apparatus configuration of FIG. 1, the condensing disk 21 is provided on the laser light source side of the nipo disk so that the laser beam can preferably pass through the through hole (not shown in the figure) of the nipo disk 22. The condensing disk 21 is a disk that rotates integrally with the Nipkow disk 22, and a lens is provided on the plate surface at a position corresponding to the through hole of the Nipkow disk. Further, in the apparatus configuration of FIG. 1, the fluorescence L2 emitted from the observation object S returns again through the through-hole of the Nipkow disk 22 through which the excitation light has passed, and the light branching means (for example, a dichroic mirror inclined at 45 degrees) ) The direction is changed by 23 and the image pickup apparatus 3 is directed.
In excitation light irradiation and fluorescence imaging, not only one plane irradiation / imaging with a fixed depth of the irradiation point (focal point) (also referred to as a height with respect to the stage surface of the microscope), but also the depth. A three-dimensional image of the observation object can be obtained by sequentially irradiating and imaging a multilayer plane and combining the obtained plane pixels of each layer.
Such a Niipou disc confocal unit and a confocal fluorescence microscope technology for imaging fluorescence by irradiating a laser beam using the same are known per se. For example, for a confocal microscope using a Nipo disc, This is described in detail in JP-A-5-60980.
In order to preferably pass and change the optical path by the light branching means, the prior art may also be referred to as appropriate for the detailed configuration of the optical system, such as using polarized light for the laser light.
 ニポウディスクの仕様(円板の直径、貫通孔の数(=走査線の数)、円板の中心からの各貫通孔の距離、貫通孔の口径、円板の回転速度)と、その板面に照射されるレーザー光の仕様(出力、波長、ビーム径(即ち、板面への照射領域)、該照射領域の形状)は、胚へのダメージを抑制し得、かつ、好ましい蛍光観察が可能となるように、好ましい組合せを適宜選択すればよい。ニポウディスクの仕様の好ましい一例としては、横河電機株式会社(Yokogawa Electric Corp.)製のニポウディスクスキャニング共焦点ユニット(CSU10)が挙げられる。
 ニポウディスクの貫通孔は、胚へのダメージと目的の画像の解像度とを考慮して、その数、開口形状、開口面積を決定すればよい。該貫通孔は、走査線の本数の分だけ、その走査線に対応する位置に板面に螺旋を描く配置パターンにて設けられる。ニポウディスクの貫通孔の配置パターンと円板の回転数については、胚へのダメージを抑制し得る範囲内において、公知技術を参照してもよい。
Specifications of Nipkow disk (diameter of disk, number of through holes (= number of scanning lines), distance of each through hole from the center of disk, diameter of through hole, rotation speed of disk) The specifications of the irradiated laser light (output, wavelength, beam diameter (that is, the irradiation area on the plate surface), and the shape of the irradiation area) can suppress damage to the embryo and enable preferable fluorescence observation. Thus, a preferable combination may be appropriately selected. A preferred example of the specifications of the Nipkow disk is the Nipkow disk scanning confocal unit (CSU10) manufactured by Yokogawa Electric Corp.
The number, the opening shape, and the opening area of the through holes of the Niipou disc may be determined in consideration of the damage to the embryo and the resolution of the target image. The through holes are provided in an arrangement pattern that draws a spiral on the plate surface at a position corresponding to the number of scanning lines corresponding to the number of scanning lines. Regarding the arrangement pattern of the through holes of the Niipou disc and the rotational speed of the disc, a known technique may be referred to within a range in which damage to the embryo can be suppressed.
 レーザー光の波長と出力は、蛍光物質に対して適切な励起光であるように、かつ、上記のとおりニポウディスクの仕様と関連付けて、胚へのダメージを抑制するように選択すればよい。
 レーザー光の波長は、利用可能な蛍光物質の励起光であるという点からは、例えばEGFPに対しては488nm付近、mRFP1に対しては561nm付近にピークがあるものが好ましい。そのような波長のレーザー光を出射し得るレーザー光源(レーザー装置)としては、例えば、クリプトンアルゴンガスレーザー光源(波長488nm、568nm、647nm、752nmの光を出射)が挙げられるが、そのような特定波長の光を出射し得る種々のレーザー装置であってもよい。
 クリプトンアルゴンガスレーザーは、比較的広い波長範囲のレーザー光を発振し得るので、種々の励起波長の蛍光プローブで胚を標識することにより、1つのレーザー装置で多くの種類の蛍光シグナルを得ることができるメリットもある。
 レーザー光源としてクリプトンアルゴンガスレーザーを用い、ニポウディスクの仕様および該ニポウディスクの板面への照射領域を上記の範囲とする場合には、そのレーザー出力は、20~70mW、とりわけ20~25mWが好ましい範囲である。
 これらの組合せによって、レーザー光を蛍光観察が可能なように照射しながらも、胚へのダメージが抑制され、長期間の蛍光観察後の胚からの子への最終分化が可能となる。
 これに対して、水銀ランプやキセノンランプを光源としている蛍光顕微鏡や、ガルバノスキャン装置を用いてレーザー光を走査し順次照射するスキャニングタイプの共焦点レーザー顕微鏡を使用して胚を観察すると、胚が曝露される光が強すぎまたは曝露時間が長すぎて、観察はできても、胚が損傷を受けるため、子まで最終分化することができない。
The wavelength and output of the laser light may be selected so as to suppress damage to the embryo so as to be excitation light appropriate for the fluorescent substance and in association with the specifications of the Niipou disk as described above.
From the viewpoint that the wavelength of the laser light is excitation light of an available fluorescent substance, for example, those having a peak near 488 nm for EGFP and those near 561 nm for mRFP1 are preferable. Examples of a laser light source (laser device) that can emit laser light having such a wavelength include a krypton argon gas laser light source (emits light with wavelengths of 488 nm, 568 nm, 647 nm, and 752 nm). Various laser apparatuses that can emit light having a wavelength may be used.
Since krypton argon gas laser can oscillate laser light in a relatively wide wavelength range, it is possible to obtain many types of fluorescent signals with one laser device by labeling embryos with fluorescent probes of various excitation wavelengths. There are also benefits.
When a krypton argon gas laser is used as the laser light source and the specifications of the nippo disk and the irradiation area on the plate surface of the nippo disk are in the above range, the laser output is preferably 20 to 70 mW, particularly 20 to 25 mW. is there.
With these combinations, while irradiating laser light so that fluorescence observation is possible, damage to the embryo is suppressed, and final differentiation from embryo to offspring after long-term fluorescence observation becomes possible.
On the other hand, when the embryo is observed using a fluorescent microscope using a mercury lamp or xenon lamp as a light source, or a scanning confocal laser microscope that scans and sequentially irradiates laser light using a galvanoscan device, Although the exposed light is too intense or the exposure time is too long and can be observed, the embryo is damaged and cannot be terminally differentiated to offspring.
 胚発生へのダメージを最小限に抑えるため、蛍光画像の撮影は、一定時間以上の間隔をあけて、「こま撮り」により行われる。通常3.75分以上、好ましくは7.5分以上の間隔(例えば3.75~60分の間隔、好ましくは7.5~30分の間隔)をあけて、蛍光画像が連続的に取得される。
 1回の撮影において、胚が励起光に曝露される時間は、レーザーの出力や、レーザーの種類にもよるが、通常100ミリ秒~500ミリ秒、好ましくは100ミリ秒~200ミリ秒の範囲内である。
In order to minimize damage to embryonic development, fluorescent images are taken by “top shot” at intervals of a certain time or more. Usually, fluorescent images are continuously acquired at intervals of 3.75 minutes or more, preferably 7.5 minutes or more (for example, intervals of 3.75 to 60 minutes, preferably 7.5 to 30 minutes).
The duration of exposure of the embryo to the excitation light in one image is usually in the range of 100 ms to 500 ms, preferably 100 ms to 200 ms, depending on the laser output and the type of laser. Is within.
 また、微小な染色体の断片(例えば1μm程度の断片)の見落としを避けるためには、焦点をZ軸方向(即ち、顕微鏡のステージ面を基準とする高さ方向)にどれだけのステップ間隔で移動させ、胚の断面を何枚取得するかが重要である。
 即ち、胚の分裂中に見られる異常な染色体断片は、その大きさが1から3μm程度と微少であるため、共焦点観察を行う場合はZ軸方向に微小な間隔(例えば、後述のとおり2、3μmの間隔)で撮影しないと見落としてしまう可能性がある。かつ、哺乳動物胚は非常に厚みのある細胞(マウス胚は約100μm、サルやヒト胚は約150μm)であるため、その全体を捉えるためにはZ軸方向に50枚近く撮影することが必要となる。
 以上の点から、本発明では、1つの胚について、1回の観察時点において、Z軸方向に、例えば20μm以下の間隔をおいて、好ましくは10μm以下の間隔をおいて、より好ましくは5μm以下の間隔をおいて、最も好ましくは3μm以下の間隔をおいて(例えば2~3μm間隔で)、焦点を変化させて、各層の共焦点画像を取得し、より解像度の高い立体イメージを取得することを推奨する。
 例えば、直径100μmの胚では、Z軸方向に2μmの間隔をおいて焦点を移動させると、最上層、最下層の画像を含めて、合計51枚の共焦点画像(断層画像)を取得することができる。高さ方向にも高解像な立体画像を構成することによって、微小な染色体の断片の観察が可能となる。
Also, in order to avoid oversight of minute chromosome fragments (for example, fragments of about 1 μm), the focal point is moved in the Z-axis direction (that is, the height direction with respect to the stage surface of the microscope) at any step interval. It is important how many sections of the embryo are acquired.
In other words, abnormal chromosome fragments observed during embryonic division are very small, about 1 to 3 μm. Therefore, when performing confocal observation, a minute interval in the Z-axis direction (for example, 2 as described later). If it is not photographed at intervals of 3 μm, there is a possibility of being overlooked. In addition, mammalian embryos are very thick cells (mouse embryos are about 100 μm, monkeys and human embryos are about 150 μm), so it is necessary to photograph nearly 50 images in the Z-axis direction to capture the whole. It becomes.
In view of the above, in the present invention, at one observation time point, in the present invention, an interval of, for example, 20 μm or less, preferably an interval of 10 μm or less, and more preferably 5 μm or less, in the Z-axis direction. And most preferably at intervals of 3 μm or less (for example, at intervals of 2 to 3 μm), changing the focal point to obtain confocal images of each layer, and obtaining a stereoscopic image with higher resolution. Is recommended.
For example, in an embryo with a diameter of 100 μm, if the focal point is moved at an interval of 2 μm in the Z-axis direction, a total of 51 confocal images (tomographic images) including the images of the uppermost layer and the lowermost layer will be acquired. Can do. By constructing a high-resolution three-dimensional image in the height direction, it is possible to observe minute chromosome fragments.
 観察対象の哺乳動物胚へ照射されるレーザー光の強度が可能な限り抑制されているため、蛍光画像の取得に際しては、微弱な蛍光をも検出可能な検出装置が用いられる。そのような検出装置としては、超高感度のEM-CCDカメラ等を挙げることができる。 Since the intensity of the laser beam irradiated to the mammalian embryo to be observed is suppressed as much as possible, a detection device capable of detecting even weak fluorescence is used when acquiring a fluorescent image. Examples of such a detection device include an ultra-sensitive EM-CCD camera.
 顕微鏡に、電動XYステージやZ軸モーターを設置することにより、哺乳動物胚の3次元観察や、複数胚の同時観察が可能となる。 By installing an electric XY stage and a Z-axis motor in the microscope, it is possible to observe mammalian embryos in three dimensions and simultaneously observe multiple embryos.
 更に、レーザー出力側とカメラの直前にそれぞれ励起用、吸収用のフィルターホイールを設置することにより、自動制御により多色観察が可能となる。 Furthermore, by installing excitation and absorption filter wheels respectively on the laser output side and immediately before the camera, multicolor observation can be performed by automatic control.
 更に、上述の機器をコンピューターに接続することにより、自動的な機器の制御や画像処理が可能となる。 Furthermore, automatic device control and image processing become possible by connecting the above-mentioned devices to a computer.
 本発明の方法Iを用いれば、胚発生へのダメージを最小限に抑制しながら、長期間(例えば20時間以上、好ましくは40時間以上、より好ましくは50時間以上、更により好ましくは60時間以上、一層好ましくは70時間以上)、哺乳動物胚を連続的に蛍光観察することが可能である。例えば、1細胞期から2細胞期(マウスでは約20時間)、4細胞期(マウスでは約40時間、サルでは約60時間)や胚盤胞期(マウスでは約70時間)までの胚発生をインビトロで連続的に蛍光観察した後で、その胚を偽妊娠の哺乳動物雌の子宮や輸卵管へ移入すると、正常に着床し、該胚由来の子が生まれる。 By using the method I of the present invention, while minimizing damage to embryonic development, for a long period (for example, 20 hours or longer, preferably 40 hours or longer, more preferably 50 hours or longer, even more preferably 60 hours or longer). , More preferably 70 hours or more), it is possible to continuously observe the fluorescence of the mammalian embryo. For example, embryo development from the 1-cell stage to the 2-cell stage (about 20 hours in mice), the 4-cell stage (about 40 hours in mice, about 60 hours in monkeys) and the blastocyst stage (about 70 hours in mice) After continuous fluorescence observation in vitro, when the embryo is transferred to the uterus or oviduct of a pseudopregnant mammal female, the embryo is normally implanted and a child derived from the embryo is born.
 本発明の方法Iを用いれば、哺乳動物の胚を生かしたまま、連続的に蛍光観察することが可能であり、更にその胚は問題なく個体発生することができるので、蛍光観察でみとめられた現象とその後の個体発生との関連性を直接結び付けて評価することが可能である。 By using the method I of the present invention, it is possible to continuously observe the fluorescence while keeping the mammalian embryo alive, and further, the embryo can be generated individually without any problem. It is possible to directly link and evaluate the relationship between the phenomenon and subsequent ontogeny.
(2.着床不全又は流産のリスクの低い哺乳動物胚の選択方法)
 上述のような本発明の方法Iの利点に基づき、本発明は更に以下の工程を含む、着床不全又は流産のリスクの低い哺乳動物胚の選択方法(本発明の方法II)を提供する:
(I)染色体構成タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質を発現する哺乳動物胚を調製すること;
(II)レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡により、蛍光標識された哺乳動物胚の蛍光画像を経時的に取得すること;及び
(III)(II)で得られた蛍光画像に基づき、異常な染色体の形態を呈していない胚を流産リスクの低い哺乳動物胚として選択すること。
(2. Method of selecting mammalian embryos with low risk of implantation failure or miscarriage)
Based on the advantages of Method I of the present invention as described above, the present invention further provides a method for selecting a mammalian embryo with a low risk of implantation failure or miscarriage (Method II of the present invention) comprising the following steps:
(I) preparing a mammalian embryo that expresses a fusion protein of a chromosome constituent protein or a spindle constituent protein and a fluorescent protein;
(II) Obtaining fluorescence images of a fluorescently labeled mammalian embryo over time by a confocal fluorescence microscope equipped with a laser light source and a Niipou disc type confocal unit; and (III) Fluorescence images obtained in (II) Based on the above, an embryo that does not exhibit an abnormal chromosomal morphology is selected as a mammalian embryo with a low risk of miscarriage.
 本発明の方法IIにおける用語の定義は本発明の方法Iと同一である。 The definition of terms in the method II of the present invention is the same as that of the method I of the present invention.
 工程(I)の操作は、(1.哺乳動物胚のインビトロ蛍光観察方法)の項に記載された方法に従い行われる。 The operation of step (I) is performed according to the method described in the section (1. In vitro fluorescence observation method of mammalian embryo).
 トランスジェニック動物の発生リスクを抑制するため、工程(I)においては、染色体構成タンパク質と蛍光タンパク質との融合タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質をコードし、且つ該胚内において該融合タンパク質へ翻訳され得るRNAを該胚内へ注入することにより、染色体構成タンパク質と蛍光タンパク質との融合タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質を発現する哺乳動物胚が調製される。 In order to suppress the development risk of transgenic animals, in step (I), a fusion protein of a chromosomal component protein and a fluorescent protein or a fusion protein of a spindle component protein and a fluorescent protein is encoded, and By injecting RNA that can be translated into a fusion protein into the embryo, a mammalian embryo that expresses a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein is prepared.
 工程(I)においては、染色体の形態の詳細な解析を達成するため、染色体構成タンパク質と蛍光タンパク質との融合タンパク質と、紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質とを組み合わせて用いることが好ましい。これにより、胚の発生過程における染色体の動態を、卵割時及び静止時を通じて、経時的に詳細に追跡することが可能となる。 In step (I), in order to achieve detailed analysis of chromosome morphology, it is preferable to use a combination of a fusion protein of a chromosome constituent protein and a fluorescent protein and a fusion protein of a spindle constituent protein and a fluorescent protein. . As a result, the dynamics of the chromosomes during the embryonic development process can be traced in detail over time during cleavage and at rest.
 胚を構成する細胞のサイズが大きく、RNAの注入操作が容易であり、また、観察視野内の細胞同士の重なりがなく、染色体の形態の詳細な観察が可能なため、工程(I)で調製される哺乳動物細胞胚は、好ましくは未受精卵子や1細胞期又は2細胞期胚であり、最も好ましくは1細胞期の胚である。 Prepared in step (I) because the size of the cells that make up the embryo is large, RNA injection is easy, and there is no overlap between cells in the field of view, allowing detailed observation of chromosome morphology. The mammalian cell embryo to be used is preferably an unfertilized ovum or a 1-cell stage or 2-cell stage embryo, most preferably a 1-cell stage embryo.
 工程(II)の操作は、(1.哺乳動物胚のインビトロ蛍光観察方法)の項に記載された方法にて従い行われる。 The operation of the step (II) is performed according to the method described in the section (1. In vitro fluorescence observation method of mammalian embryo).
 工程(III)においては、工程(II)で得られた蛍光画像に基づき、異常な染色体の形態を呈していない胚が流産リスクの低い哺乳動物胚として選択される。 In step (III), based on the fluorescence image obtained in step (II), an embryo that does not exhibit an abnormal chromosomal morphology is selected as a mammalian embryo with a low risk of miscarriage.
 異常な染色体の形態としては、以下を例示することができる:
(A)体細胞分裂時における異常な染色体分離
(B)トリソミー等の染色体の異数性。
Examples of abnormal chromosome forms include the following:
(A) Abnormal chromosome segregation during somatic cell division (B) Chromosome aneuploidy such as trisomy.
 このような異常な染色体の形態を呈する胚は、正常に発生することができず、たとえインビトロで桑実胚や胚盤胞の段階まで発生し、偽妊娠雌へ移植後に着床したとしても、ほとんど全ては流産してしまう。従って、蛍光観察により異常な染色体の形態を認めた胚を排除することにより、残りの胚(すなわち異常な染色体の形態を呈していない胚)を、着床不全又は流産のリスクの低い胚として得ることができる。 Embryos with such abnormal chromosomal morphology cannot be developed normally, even if they develop in vitro to the stage of morula and blastocyst, and even after implantation into pseudopregnant females, Almost everything is miscarried. Therefore, by eliminating embryos that have observed abnormal chromosome morphology by fluorescence observation, the remaining embryos (that is, embryos that do not exhibit abnormal chromosome morphology) are obtained as embryos with a low risk of implantation failure or miscarriage. be able to.
 (A)の具体例としては以下を例示することができる:
i) 染色体と染色体との間に一部の染色体を「置き忘れる」ような、体細胞分裂に伴う染色体の分離。置き忘れられた染色体は、体細胞分裂が終了した後も、細胞質中に浮遊した状態で存在する。
ii) 雌雄の染色体が分裂中期プレート中にひとつにまとまった際に一部の染色体がはみ出る現象。このようにはみ出た染色体は、体細胞分裂の際に、一方の核内に取り込まれ得る。
iii) i)とii)が組み合わされた現象。
Specific examples of (A) include the following:
i) Separation of chromosomes accompanying somatic cell division, such as “forgetting” some chromosomes between chromosomes. Misplaced chromosomes remain floating in the cytoplasm after somatic cell division.
ii) A phenomenon in which some chromosomes protrude when male and female chromosomes are grouped together in a metaphase plate. Chromosomes that protrude in this way can be incorporated into one nucleus during somatic cell division.
iii) A combination of i) and ii).
 また、体細胞分裂時における異常な染色体分離の発生頻度は、IVFにより得られた胚よりも、ICSIやROSIにより作成された胚において顕著に高く、このことがICSIやROSI後の成功出生率の低さの原因となっているため、本発明の方法IIは、特にICSIやROSIにより作成された胚から着床不全又は流産のリスクの低い胚を選択する場合に有利である。 In addition, the frequency of abnormal chromosome segregation during somatic cell division is significantly higher in embryos produced by ICSI or ROSI than in embryos obtained by IVF, which is a lower rate of successful birth after ICSI or ROSI. For this reason, the method II of the present invention is advantageous particularly when selecting an embryo with a low risk of implantation failure or miscarriage from embryos produced by ICSI or ROSI.
 本発明の方法IIにより得られた哺乳動物胚は、胚発生へのダメージが最小限に抑制された条件で蛍光観察されおり、さらに異常な染色体の形態を呈し、流産リスクの高い胚が除去されているので、この胚を偽妊娠雌の子宮や輸卵管へ移植することにより、高い効率で、その胚由来の仔が出生する。従って、本発明の方法IIは、生殖医療や畜産の分野において、生殖補助医療(Artifical Reproductive Technology, ART)による着床不全や流産を未然に防ぎ、妊娠率を向上させる技術として有用である。 The mammalian embryo obtained by the method II of the present invention has been observed for fluorescence under the condition that damage to the embryogenesis is suppressed to a minimum, and further, an abnormal chromosomal morphology and an embryo with a high risk of miscarriage are removed. Therefore, by transferring this embryo to the uterus or oviduct of a pseudopregnant female, offspring derived from the embryo are born with high efficiency. Therefore, the method II of the present invention is useful as a technique for preventing implantation failure and miscarriage due to assisted reproduction (Artifical Reproductive Technology, 補助 ART) and improving the pregnancy rate in the fields of reproductive medicine and livestock.
 以下、実施例を示して本発明をより具体的に説明するが、本発明は以下に示す実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples shown below.
(実施例1)
[方法]
配偶子の採取
 5IUの妊娠雌馬血清ゴナドトロピン(PMSG)及び5IUのヒト絨毛性ゴナドトロピン(hCG)(帝国臓器、東京、日本)を48時間の間隔で腹腔内注射することにより、メスBDF1マウス(7~12週齢)を過排卵させた。hCG注射の13~15時間後に、卵丘細胞つきの卵母細胞を回収した。精子をBDF1雄マウス(>12週)の精巣上体尾部から0.2 mL滴のTYH培地中へ採取し、5%CO下、37℃、2時間のインキュベーションにより受精能を獲得させた。凍結融解させた精子は、TYH培地(Jpn J Anim Reprod, 16, 147-151, 1971)中の受精能を獲得した精子を-25℃で凍結させ、使用直前に融解することにより調製した。
Example 1
[Method]
Collection of gametes Female BDF1 mice (7) by intraperitoneal injection of 5 IU pregnant mare serum gonadotropin (PMSG) and 5 IU human chorionic gonadotropin (hCG) (Imperial Organ, Tokyo, Japan) at 48 hour intervals. -12 weeks old) were superovulated. Oocytes with cumulus cells were harvested 13-15 hours after hCG injection. Sperm were harvested from the epididymis tail of BDF1 male mice (> 12 weeks) into 0.2 mL drops of TYH medium to obtain fertility by incubation at 37 ° C. for 2 hours under 5% CO 2 . Freeze-thawed sperm was prepared by freezing sperm that acquired fertilizing ability in TYH medium (Jpn J Anim Reprod, 16, 147-151, 1971) at −25 ° C. and thawing immediately before use.
インビトロ受精(IVF)
 卵丘細胞つきの卵母細胞を0.2mLのTYH培地中へ採取し、受精能を獲得した精子(最終濃度 100/μL)で授精させた。5%CO下、37℃、2時間のインキュベーション後、卵丘細胞をヒアルロニダーゼ(タイプIS、150ユニット/mL、Sigma-Aldrich、St Louis、MO、USA)による短処理により分散させた。
In vitro fertilization (IVF)
Oocytes with cumulus cells were collected in 0.2 mL of TYH medium and fertilized with sperm that acquired fertility (final concentration 100 / μL). After incubation for 2 hours at 37 ° C. under 5% CO 2 , cumulus cells were dispersed by a short treatment with hyaluronidase (type IS, 150 units / mL, Sigma-Aldrich, St Louis, MO, USA).
細胞質内精子注入法(ICSI)
 ヒアルロニダーゼを含有するChatot-Ziomek-Bavister (CZB)培地(Biol Reprod, 42, 432-440, 1990)中での短時間インキュベーションにより、第2減数分裂中期II(MII)卵母細胞を調製した。TYH培地中の受精能を獲得した精子の懸濁液1マイクロリットルを、マイクロマニピュレーションチャンバー中で、12%(w/v)ポリビニルピロリドン(PVP, Wako Pure Chemical Industries, Ltd, Osaka, Japan)を含有するHEPES緩衝化CZB培地 9μLと混合した。ピエゾ駆動ピペット(PrimeTech, Ibaraki, Japan)の手段により頭尾接合部へパルスを加えることにより、各精子の頭部を尾部から分離した。各MII卵母細胞の細胞質中へ精子頭部のみを注入した。
Intracytoplasmic sperm injection (ICSI)
Second meiotic metaphase II (MII) oocytes were prepared by brief incubation in Chatot-Ziomek-Bavister (CZB) medium (Biol Reprod, 42, 432-440, 1990) containing hyaluronidase. 1 microliter suspension of sperm that has acquired fertilizing ability in TYH medium contains 12% (w / v) polyvinylpyrrolidone (PVP, Wako Pure Chemical Industries, Ltd, Osaka, Japan) in a micromanipulation chamber Mixed with 9 μL of HEPES buffered CZB medium. The head of each sperm was separated from the tail by applying a pulse to the head-tail junction by means of a piezo-driven pipette (PrimeTech, Ibaraki, Japan). Only the sperm head was injected into the cytoplasm of each MII oocyte.
円形精子細胞注入(ROSI)
 精子形成過程の細胞を採取するため、BDF1雄マウス由来の精巣の精細管をはさみで刻み、HEPES緩衝化CZB培地中に懸濁した。培地が濁ってきたら、細胞懸濁液をキムワイプでろ過し、細胞細片を除去した。マイクロマニピュレーションチャンバー中で、1μL分割量の精子形成細胞懸濁液を10μLの12%PVP/HEPES-CZBと混合した。5mM SrClを含有するCa2+不含CZB培地中での20分間のインキュベーションにより、MII卵母細胞を、人為的に活性化させた。活性化から約60分後、ピエゾ駆動マイクロマニピュレーターを使用して円形精細胞の核を各卵母細胞に注入した。
Round sperm cell injection (ROSI)
To collect cells in the process of spermatogenesis, testicular seminiferous tubules from BDF1 male mice were chopped with scissors and suspended in HEPES buffered CZB medium. When the medium became cloudy, the cell suspension was filtered with Kimwipe to remove cell debris. In a micromanipulation chamber, 1 μL aliquots of spermatogenic cell suspension were mixed with 10 μL of 12% PVP / HEPES-CZB. MII oocytes were artificially activated by incubation for 20 minutes in Ca 2+ -free CZB medium containing 5 mM SrCl 2 . Approximately 60 minutes after activation, circular sperm nuclei were injected into each oocyte using a piezo-driven micromanipulator.
インビトロでのmRNAの合成
 XbaI(EGFP-α-チュブリン及びH2B-mRFP1)又はXhoI(EGFP-β-アクチン)サイトでの鋳型プラスミドの直線化の後で、RiboMAXTM Large Scale RNA Production Systems-T7 (Promega, Madison, WI, USA)を用いてmRNAを合成した。胚内での融合タンパク質の効率的な翻訳のため、各mRNAの5’末端をRibo m7G CapAnalog (Promega)を用いて、製造者のプロトコールに従い、キャップした。胚ゲノムへの鋳型DNAの組み込みを回避するため、インビトロ転写の反応混合液をRQ-1 RNase-free DNase I (Promega)で処理した。合成されたRNAをフェノール-クロロホルムで処理し、引き続きエタノール沈殿に付した。RNase不含水に溶解後、mRNAをMicroSpinTM G-25 column (Amersham Biosciences, Piscataway, NJ, USA)を用いてゲルろ過に付し、未反応基質を除去し、使用するまで-80℃にて貯蔵した。
Synthesis of mRNA in vitro After linearization of the template plasmid at the XbaI (EGFP-α-tubulin and H2B-mRFP1) or XhoI (EGFP-β-actin) sites, RiboMAX ™ Large Scale RNA Production Systems-T7 (Promega, MRNA was synthesized using Madison, WI, USA. For efficient translation of the fusion protein in the embryo, the 5 'end of each mRNA was capped using Ribo m7G CapAnalog (Promega) according to the manufacturer's protocol. In order to avoid incorporation of template DNA into the embryo genome, the reaction mixture for in vitro transcription was treated with RQ-1 RNase-free DNase I (Promega). The synthesized RNA was treated with phenol-chloroform and subsequently subjected to ethanol precipitation. After dissolution in RNase-free water, the mRNA was subjected to gel filtration using a MicroSpin ™ G-25 column (Amersham Biosciences, Piscataway, NJ, USA) to remove unreacted substrate and stored at −80 ° C. until use. .
mRNAマイクロインジェクション
 合成した各mRNAをMilli-Q超純水(Millipore Corp., Madison, WI, USA)を用いて適切な濃度に希釈し、分割量をマイクロマニピュレーションチャンバー上へ配置した。第2減数分裂後期/分裂終期卵母細胞(授精又は活性化の約2時間後)をチャンバー上のHEPES-CZB培地へ移し、細いガラスピペット(直径1~3μm)をつけたピエゾマニピュレーターを用いてmRNAを注入した。ピペット中へ一度mRNA溶液を吸い、卵母細胞へピエゾパルスをかけて透明帯及び細胞膜を壊した。5~10ピコリットルの溶液を卵母細胞内へ導入し、ピペットをすばやく抜いた。mRNAを注入した胚を5%CO雰囲気下、37℃でインキュベートし、充分イメージングできるまでmRNAを翻訳させた。1時間に200個超の卵母細胞へ注入することができ、mRNA注入後の生存率は100%近かった。
Each mRNA synthesized by mRNA microinjection was diluted to an appropriate concentration using Milli-Q ultrapure water (Millipore Corp., Madison, Wis., USA), and the aliquot was placed on a micromanipulation chamber. Transfer the second meiotic / end-stage oocyte (approximately 2 hours after insemination or activation) to the HEPES-CZB medium on the chamber and use a piezo manipulator with a thin glass pipette (1-3 μm in diameter). mRNA was injected. The mRNA solution was once sucked into a pipette, and the zona pellucida and cell membrane were broken by applying a piezo pulse to the oocyte. 5-10 picoliters of solution was introduced into the oocyte and the pipette was quickly removed. Embryos injected with mRNA were incubated at 37 ° C. in a 5% CO 2 atmosphere, and mRNA was translated until sufficient imaging was possible. Over 200 oocytes could be injected per hour and the survival rate after mRNA injection was close to 100%.
ライブセルイメージング
 ガラスボトムディッシュ上の5μL滴のCZB培地へ胚を移し(12個の胚/滴)、2細胞期(約20時間)又は胚盤胞期(約70時間)まで顕微鏡ステージ上のインキュベーター(Tokai Hit, Shizuoka, Japan)中でイメージングした。特に他の指示がなければ、25mWのレーザー出力で2色(緑及び赤)の励起光を当て、Z軸方向に51画像(2μm刻み)を15分間隔で追跡した。倒立顕微鏡にニポウディスクスキャニング共焦点ユニット(CSU10, Yokogawa Electric Corp.)、EM-CCDカメラ(iXON BV-887, Andor)を取り付けた。レーザー出力側とカメラの直前にそれぞれ励起用、吸収用のフィルターホイール(Ludl)を入れることにより、自動制御により多色観察を可能にした。Z軸モーター(Mac5000, Ludl Electronic Products)を取り付けることで3次元観察を可能にした。イメージング装置は自動XYステージを有しており、多数の胚(通常100個を上回る胚をイメージした)を1回のアッセイでモニターできる。装置のコントロール及び画像解析はMetaMorph software (Universal Imaging)を用いて行った。レーザー光源にはKrAr(クリプトンアルゴン)ガスレーザー(Melles Griot)を用いた。レーザー出力に関しては、レンズから射出される488nm及び561nmそれぞれの光量を横河電機のTB200 Optical power meterを用いて測定しながらレーザー光源本体の総出力を調整した。検出装置一式は、気温が30度前後に保たれた暗室に設置し、観察する培地の温度が37℃となるように、顕微鏡用COインキュベーター(東海ヒット、MI-IBC)の温度設定を行った。インキュベーター内には5%COガスを流量160ml/分で導入した。
Transfer embryos to 5 μL drops of CZB medium on live cell imaging glass bottom dish (12 embryos / drop), incubator on microscope stage to 2 cell stage (about 20 hours) or blastocyst stage (about 70 hours) (Tokai Hit, Shizuoka, Japan). Unless otherwise specified, excitation light of two colors (green and red) was applied with a laser output of 25 mW, and 51 images (in 2 μm increments) were traced at 15-minute intervals in the Z-axis direction. A Nipow disk scanning confocal unit (CSU10, Yokogawa Electric Corp.) and an EM-CCD camera (iXON BV-887, Andor) were attached to an inverted microscope. By installing excitation and absorption filter wheels (Ludl) just before the laser output side and the camera, multi-color observation is possible by automatic control. By attaching a Z-axis motor (Mac5000, Ludl Electronic Products), 3D observation is possible. The imaging device has an automatic XY stage that can monitor a large number of embryos (usually imaged over 100 embryos) in a single assay. Control of the apparatus and image analysis were performed using MetaMorph software (Universal Imaging). A KrAr (krypton argon) gas laser (Melles Griot) was used as a laser light source. Regarding the laser output, the total output of the laser light source body was adjusted while measuring the respective light amounts of 488 nm and 561 nm emitted from the lens using Yokogawa's TB200 Optical power meter. The detector set is installed in a dark room where the temperature is kept around 30 degrees, and the temperature of the CO 2 incubator for microscope (Tokai Hit, MI-IBC) is set so that the temperature of the observed medium is 37 ° C. It was. 5% CO 2 gas was introduced into the incubator at a flow rate of 160 ml / min.
胚移植
 精管を結紮されたICRマウスと交配させた後の偽妊娠第0.5日目の代理母親(ICR系統)の輸卵管中へ、2細胞期胚を移植した。桑実胚及び胚盤胞は、偽妊娠第0.5日目の母親の輸卵管又は偽妊娠第2.5日目の母親の子宮中へ移植した。
Embryo transplanted embryos transplanted with 2-cell stage embryos into the oviduct of a surrogate mother (ICR line) on day 0.5 of pseudopregnancy after mating with ligated ICR mice. Mulberry embryos and blastocysts were transplanted into the mother's oviduct on day 0.5 of pseudopregnancy or the mother's womb on day 2.5 of pseudopregnancy.
プラスミドの構築
 pcDNA3.1 poly(A83)ベクター中へ挿入したEGFP-α-チュブリン(Yamagata K. et al.,Genesis, 43, 71-79, 205)及びヒストンH2B-mRFP1(Yamazaki T. et al., Reprod Dev, 53, 1035-1041, 2007 )のmRNAのプラスミドを既報のように構築した。EGFP-β-アクチンは、マウスβ-アクチンの全長cDNAのN-末端へのEGFPの融合により作った。β-アクチンcDNAを単離するため、テンプレートとしてマウス精巣由来の1本鎖cDNAと以下のプライマーセットを使用してPCR増幅を行った。
5’-TGGATCCCGAGCTATGGATGACGATATCGCTGCGCTG-3’(配列番号1)
5’-AAGCGGCCGCCTAGAAGCACTTGCGGTGCACGAT-3’(配列番号2)
 増幅断片をEGFP断片とともにpcDNA3.1-poly(A83)ベクターのEcoRI及びNotI部位へ共挿入した。
Plasmid Construction EGFP-α-tubulin (Yamagata K. et al., Genesis, 43, 71-79, 205) and histone H2B-mRFP1 (Yamazaki T. et al.) Inserted into pcDNA3.1 poly (A83) vector. , Reprod Dev, 53, 1035-1041, 2007), an mRNA plasmid was constructed as described previously. EGFP-β-actin was made by fusion of EGFP to the N-terminus of the full-length mouse β-actin cDNA. In order to isolate β-actin cDNA, PCR amplification was performed using a single-stranded cDNA derived from mouse testis as a template and the following primer set.
5'-TGGATCCCGAGCTATGGATGACGATATCGCTGCGCTG-3 '(SEQ ID NO: 1)
5'-AAGCGGCCGCCTAGAAGCACTTGCGGTGCACGAT-3 '(SEQ ID NO: 2)
The amplified fragment was co-inserted with the EGFP fragment into the EcoRI and NotI sites of the pcDNA3.1-poly (A83) vector.
ゲノタイピング
 子の尾先端部を切断し、一度凍結した。これらを溶解緩衝液(50 mM Tris/HCl pH 7.6, 0.1 M NaCl, 20 mM EDTA, 1% SDS, 0.1 mg/mLのプロテイネース K 及び0.08 mg/mLのRNaseA)中へ入れ、50℃にて終夜インキュベートした。抽出された染色体DNAをフェノール-クロロホルム混合液で2回処理し、エタノールにより沈殿させた。TEに溶解後、DNA濃度を0.3μg/μLへ調製した。1マイクロリットルのDNA溶液を、PCR解析(Ex Taq, TaKaRa, Kyoto, Japan)用の12.5μLの各反応混合液に使用した。95℃10秒間、58℃30秒、及び72℃60秒の35サイクルの条件でPCRを行った。使用したプライマーセットは以下の通りである。
(EGFPの翻訳領域の増幅用)
5’-AATCTAGAATGGTGAGCAAGGGCGAG-3’(配列番号3)
5’-AATCTAGACTTGTACAGCTCGTCCATG-3’(配列番号4)
(PCRコントロールとしてのβ-アクチン遺伝子の増幅用)
5’-AAAAGCTTGGCGCTTTTGACTCAGGA-3’(配列番号5)
5’-GGAATTCAAGTCAGTGTACAGGCCAG-3’(配列番号6)
 B6D2F1及びGOF18-GFPトランスジェニックマウス(Dev Growth Differ, 41, 675-684, 1999)からの染色体DNAを、それぞれ、陰性及び陽性コントロールとして使用した。
Cutting the tail tip genotyping Son, once frozen. These were placed in lysis buffer (50 mM Tris / HCl pH 7.6, 0.1 M NaCl, 20 mM EDTA, 1% SDS, 0.1 mg / mL proteinase K and 0.08 mg / mL RNase A) overnight at 50 ° C. Incubated. The extracted chromosomal DNA was treated twice with a phenol-chloroform mixture and precipitated with ethanol. After dissolving in TE, the DNA concentration was adjusted to 0.3 μg / μL. One microliter of DNA solution was used for 12.5 μL of each reaction mixture for PCR analysis (Ex Taq, TaKaRa, Kyoto, Japan). PCR was performed under conditions of 35 cycles of 95 ° C. for 10 seconds, 58 ° C. for 30 seconds, and 72 ° C. for 60 seconds. The primer sets used are as follows.
(For amplification of translation region of EGFP)
5'-AATCTAGAATGGTGAGCAAGGGCGAG-3 '(SEQ ID NO: 3)
5'-AATCTAGACTTGTACAGCTCGTCCATG-3 '(SEQ ID NO: 4)
(For amplification of β-actin gene as a PCR control)
5'-AAAAGCTTGGCGCTTTTGACTCAGGA-3 '(SEQ ID NO: 5)
5'-GGAATTCAAGTCAGTGTACAGGCCAG-3 '(SEQ ID NO: 6)
Chromosomal DNA from B6D2F1 and GOF18-GFP transgenic mice (Dev Growth Differ, 41, 675-684, 1999) were used as negative and positive controls, respectively.
免疫染色
 凍結融解した精子を用いたICSIにより創生された胚を、2細胞期又は胚盤胞期にて4%パラホルムアルデヒド(PBS中)を用いて固定し、0.25% TritonX100/PBSにより透過処理した。胚盤胞については、固定前に酸性タイロード溶液を用いて透明帯を剥皮した。0.01% Tween-20を含有する3% BSA/PBSによるブロッキング後、抗Oct3/4抗体(sc-9081, Santa Cruz Biotechnology, Santa Cruz, CA, USA)、抗Cdx2抗体(CDX2-88, BioGenex, San Ramon, CA, USA)、抗lamin B抗体(sc-6217, Santa Cruz Biotechnology)、抗リン酸化ヒストン H3抗体(Ser 10) (#9701,Cell Signaling Technology, Danvers, MA, USA)、又は抗リン酸化ヒストンH2A.X抗体(Ser 139)(#05636, Upstate Biotechnology, Inc., Lake Placid, NY, USA)を加えた。洗浄後、胚を二次抗体(Alexa dyes, Invitrogen, Carlsbad, CA, USA)でインキュベートし、再度洗浄し、観察した。
Embryos created by ICSI using immunostained freeze-thawed sperm were fixed with 4% paraformaldehyde (in PBS) at the 2-cell stage or blastocyst stage, and 0.25% Triton X100 / PBS Permeabilized. For blastocysts, the zona pellucida was peeled using an acidic tyrode solution before fixation. After blocking with 3% BSA / PBS containing 0.01% Tween-20, anti-Oct3 / 4 antibody (sc-9081, Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-Cdx2 antibody (CDX2-88, BioGenex , San Ramon, CA, USA), anti-lamin B antibody (sc-6217, Santa Cruz Biotechnology), anti-phosphorylated histone H3 antibody (Ser 10) (# 9701, Cell Signaling Technology, Danvers, MA, USA), or anti Phosphorylated histone H2A. Antibody X (Ser 139) (# 05636, Upstate Biotechnology, Inc., Lake Placid, NY, USA) was added. After washing, embryos were incubated with secondary antibody (Alexa dyes, Invitrogen, Carlsbad, CA, USA), washed again and observed.
[結果]
 インビトロ授精(IVF)により創生された胚を種々の条件で観察し偽妊娠雌へ移入した(図2a)。α-チュブリンを結合させた高感度緑色蛍光タンパク質(EGFP)(EGFP-α-チュブリン)(Genesis 43, 71-79 (2005))、及びヒストンH2Bと融合した単量体赤色蛍光タンパク質(mRFP1)(J Reprod Dev 53, 1035-1041 (2007))をコードするmRNAの混合物を受精の直後に注入した。mRNA濃度及び蛍光顕微鏡の胚発生への影響を図3並びに表1及び2にまとめる。
[result]
Embryos created by in vitro fertilization (IVF) were observed under various conditions and transferred to pseudopregnant females (FIG. 2a). Highly sensitive green fluorescent protein (EGFP) (EGFP-α-tubulin) (Genesis 43, 71-79 (2005)) to which α-tubulin is bound, and monomeric red fluorescent protein (mRFP1) fused with histone H2B ( J Reprod Dev 53, 1035-1041 (2007)) was injected immediately after fertilization. The effects of mRNA concentration and fluorescence microscopy on embryo development are summarized in FIG. 3 and Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  第2減数分裂における後/終期IVF胚にmRNAを注入し、授精後約78時間インキュベートし、移植した。蛍光写真は、胚移入の直前に撮影し、図3に示した。
  EGFP-αチュブリン及びH2B-mRFP1の等量の混合物。
  8個を超える核を有するコンパクションした胚を、桑実胚/胚盤胞段階として評価した。
  胚は、性交2.5日後の偽妊娠雌の子宮に移入した。
a mRNA was injected into late / terminal IVF embryos in the second meiosis, incubated for about 78 hours after insemination, and transplanted. A fluorescence photograph was taken immediately before embryo transfer and is shown in FIG.
b Equal volume mixture of EGFP-α tubulin and H2B-mRFP1.
c Compacted embryos with more than 8 nuclei were evaluated as morula / blastocyst stage.
d Embryos were transferred to the uterus of pseudopregnant females 2.5 days after intercourse.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  IVF胚へ各25 ng/μlのEGFP-α-チュブリン及びH2B-mRFP1の混合物を注入し、ガラスボトムディッシュ上の5μLのCZB滴へ移し(12個の胚/滴)、胚盤胞段階までインキュベートした(約70時間)。2色(緑及び赤)の励起光をZ軸方向について51回表示した間隔で照射した。
  胚移植の直前に、胚を共焦点顕微鏡下で1回観察した。
  8個を超える核を有するコンパクションした胚を、桑実胚/胚盤胞段階として評価した。
  性交後2.5又は0.5日後の偽妊娠雌の子宮又は輸卵管へ胚を移入した。
  子のパーセンテージを以下の様に算出した:(子の数)÷(桑実胚/胚盤胞胚の数)
a Injection of 25 ng / μl of each mixture of EGFP-α-tubulin and H2B-mRFP1 into IVF embryos and transfer to 5 μL CZB drops on glass bottom dish (12 embryos / drop) until blastocyst stage Incubated (about 70 hours). Two colors (green and red) of excitation light were irradiated at intervals displayed 51 times in the Z-axis direction.
b Immediately prior to embryo transfer, embryos were observed once under a confocal microscope.
c Compacted embryos with more than 8 nuclei were evaluated as morula / blastocyst stage.
d Embryos were transferred to the uterus or oviduct of pseudopregnant females 2.5 or 0.5 days after intercourse.
e The percentage of offspring was calculated as follows: (number of offspring) ÷ (number of morula / blastocyst embryo)
 表1の結果より、10~250ng/μLの濃度のmRNAを注入した胚を偽妊娠雌の子宮へ移植することにより、該胚由来の子が誕生した。250ng/μLの濃度では、桑実胚又は胚盤胞の段階へのインビトロ分化や出生率が低下したが、50ng/μLの濃度では、インビトロ分化及び出生率の低下は認められなかった。 From the results shown in Table 1, by transplanting an embryo injected with mRNA at a concentration of 10 to 250 ng / μL into the uterus of a pseudopregnant female, a child derived from the embryo was born. At a concentration of 250 ng / μL, in vitro differentiation to the morula or blastocyst stage and the birth rate decreased, but at a concentration of 50 ng / μL, in vitro differentiation and a decrease in the birth rate were not observed.
 表2の結果より、20~70mWのレーザー出力での励起光へ胚を曝露しても、胚は桑実胚又は胚盤胞の段階へインビトロ分化し、胚を偽妊娠雌の子宮へ移植することにより、該胚由来の子が誕生した。しかし、70mWのレーザー出力で3.75分ごとに蛍光撮影を行うと、子の誕生が阻害されたが、7.5分間隔では、桑実胚又は胚盤胞の段階へのインビトロ分化や出生率の低下は認められなかった。 From the results in Table 2, even when the embryo is exposed to excitation light with a laser power of 20-70 mW, the embryo differentiates in vitro to the morula or blastocyst stage and the embryo is transferred to the uterus of a pseudopregnant female As a result, offspring derived from the embryo were born. However, when fluorescence imaging was performed every 3.75 minutes with a laser output of 70 mW, the birth of the offspring was inhibited, but at an interval of 7.5 minutes, in vitro differentiation to the morula or blastocyst stage and birth rate There was no decline.
 驚くべきことに、着床前発生を長期間6次元動画で追跡した後でも子が生まれた(図2b、c、及び表2)。これらの胚は2つの異なる波長の励起光(488及び561nm)に、7.5分間隔で約70時間曝露されており、それぞれの時点でZ軸について51画像を得た;従って、全部で56,814の蛍光画像が撮影された(表2)。プローブの組み合わせをEGFP-α-チュブリンからEGFP-β-アクチンへ変更しても結果に違いはなかった(表2)。これらの子は正常な成体へ成長し(図2d)、雄も雌も生殖性の点で正常であった(データ示さず)ことから、本発明者らのイメージング系は胚発生にとって安全であることが示唆された。更に、DNAではなく、mRNA注入を用いたため、402匹の子のうちトランスジェニックはいなかった(図2e、f及び表2)。これは、本発明者らのPDIについての安全性及び効率性を確認している。使用したイメージング装置(図2g)は、方法の章及び図4に示す。 Surprisingly, a child was born even after the pre-implantation occurrence was tracked for a long time with a 6-dimensional video (FIGS. 2b, c and Table 2). These embryos were exposed to two different wavelengths of excitation light (488 and 561 nm) for approximately 70 hours at 7.5 minute intervals, yielding 51 images for the Z axis at each time point; , 814 fluorescence images were taken (Table 2). There was no difference in results when the probe combination was changed from EGFP-α-tubulin to EGFP-β-actin (Table 2). Since these pups grew to normal adults (FIG. 2d) and both males and females were normal in terms of fertility (data not shown), our imaging system is safe for embryonic development. It has been suggested. In addition, there was no transgenic out of 402 offspring because mRNA injection was used rather than DNA (Figure 2e, f and Table 2). This confirms the safety and efficiency of our PDI. The imaging device used (FIG. 2g) is shown in the method section and in FIG.
 ICSI後に生まれてくるヒトの赤ん坊のほとんどは正常であるが、このARTでは自然受胎後のものと比較して妊娠率が低い(Reprod Biomed Online 10, 247-288 (2005);Hum Reprod 23, 756-771 (2008))。更に、マウスのICSI胚においては、染色体異常が観察された(J Reprod Dev 53, 615-622 (2007);Biol Reprod 77, 336-342 (2007))。
 本発明者らは、PDI技術を、マウスICSI胚の染色体の完全性の評価に応用した。第1体細胞分裂をモニターしたときに、細胞質分裂は正常であったが、染色体分離の間に有意な異常を認めた(図5a-c)。小さなドット様のH2B-mRFP1シグナルが、分裂後期と分裂終期の間に、微小管束に沿って検出され、これは2細胞胚の静止期においてさえも細胞質中に残留した(図5b)。2細胞期における異所性のH2B-mRFP1シグナルは見られないが、分裂中に染色体断片が分裂中期プレートからいったんちぎれて再度付着するようなもう一つの異常なパターンも観察された(図5c)。いくつかの胚においては、上記の2つのパターンの組み合わせが見られた。本研究においては、これらのすべての異常が、異常染色体分離(ACS)に分類され、残りはまとめて正常染色体分離(NCS)として分類された(図5a)。ICSI胚におけるACSの頻度(10.4%~46.7%)は、IVF胚(1.7%)と比較して有意に高かった(表3)。
Most human babies born after ICSI are normal, but this ART has a lower pregnancy rate than those after natural conception (Reprod Biomed Online 10, 247-288 (2005); Hum Reprod 23, 756 -771 (2008)). Furthermore, chromosomal abnormalities were observed in mouse ICSI embryos (J Reprod Dev 53, 615-622 (2007); Biol Reprod 77, 336-342 (2007)).
We applied the PDI technique to assess the chromosomal integrity of mouse ICSI embryos. When first somatic division was monitored, cytokinesis was normal, but significant abnormalities were observed during chromosome segregation (FIGS. 5a-c). A small dot-like H2B-mRFP1 signal was detected along the microtubule bundle between late and late mitosis, which remained in the cytoplasm even in the stationary phase of the 2-cell embryo (FIG. 5b). Although there was no ectopic H2B-mRFP1 signal at the two-cell stage, another unusual pattern was also observed in which chromosome fragments were detached from metaphase plates and reattached during division (FIG. 5c). . In some embryos, a combination of the above two patterns was seen. In this study, all these abnormalities were classified as abnormal chromosome segregation (ACS) and the rest were collectively classified as normal chromosome segregation (NCS) (FIG. 5a). The frequency of ACS in ICSI embryos (10.4% -46.7%) was significantly higher compared to IVF embryos (1.7%) (Table 3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  第2減数分裂後期/分裂終期胚へmRNAを注入し、6次元イメージングを行った。2細胞期までにイメージングを行い、胚をそれぞれのカテゴリーに分類し、偽妊娠レシピエントへ移植した。
  FT、凍結融解。
  オペレーターWは熟練したマイクロマニピュレーターであり、Yはその時点では初心者であった。
  1個又は3個の前核(PN)を有する胚を解析から除外した。
  胚を図5a-cの画像等に基づきNCS及びACSに分類した。
  それぞれのカテゴリーの2細胞胚を性交0.5日後の偽妊娠雌の輸卵管へ移植した。
  値は、移植した2細胞胚の総数に対する、子の総数の割合として算出した。
  2PN胚の65%が1個の大きな雌前核及び1個の非常に小さな雄前核を有していた。
i,j  ACSの頻度は、IVF後よりも有意に高かった(iP<0.01, jP<0.05, Student’s t-test)n.d. 、未検定。
a mRNA was injected into the 2nd meiotic / end-stage embryo and 6-dimensional imaging was performed. Imaging was performed by the 2-cell stage, embryos were classified into their respective categories and transferred to pseudopregnant recipients.
b FT, freeze thaw.
c Operator W was a skilled micromanipulator and Y was a beginner at that time.
d Embryos with 1 or 3 pronuclei (PN) were excluded from the analysis.
e Embryos were classified into NCS and ACS based on the images in FIGS. 5a-c.
f Two-cell embryos of each category were transplanted into the oviducts of pseudopregnant females 0.5 days after intercourse.
The g value was calculated as the ratio of the total number of offspring to the total number of transplanted 2-cell embryos.
h 65% of 2PN embryos had one large female pronucleus and one very small male pronucleus.
The frequency of i, j ACS was significantly higher than that after IVF ( i P <0.01, j P <0.05, Student's t-test) nd, untested.
 興味深いことに、ICSI胚におけるACSの出現頻度はオペレーターの技術に大きく依存していた(表3)。凍結融解した精子をICSIに使用したときには、最も熟練したマイクロマニピュレーターが操作したときでさえも、ACSのパーセンテージが新鮮な精子を使用したときよりもかなり高かった(表3)。2細胞期での免疫染色解析により、細胞質中に浮遊した染色体断片はlaminBを欠いているが(図5d)、凝集した染色体のマーカーである抗リン酸化ヒストンH3 Ser10抗体陽性であることが判明した(図5e)。このことは、2細胞卵割球において静止期の核が形成されていても、独立してそれらは分裂中期であることを示す。更に、これらの断片は、DNA二重鎖切断のプローブである、抗リン酸化H2A.X抗体で染色された(Biol Reprod 75, 673-680 (2006))(図5f)。これらのデータは、ACSが二重鎖ゲノムDNAの切断から生じ、分裂中期に現れる染色体フラグメントとなり、その後に紡錘体微小管から解離しつつあるものであり得ることを示唆する。 Interestingly, the frequency of ACS in ICSI embryos was highly dependent on the operator's skill (Table 3). When freeze-thawed sperm were used for ICSI, the ACS percentage was significantly higher than when fresh sperm was used, even when the most skilled micromanipulators were operated (Table 3). Immunostaining analysis at the 2-cell stage revealed that chromosomal fragments suspended in the cytoplasm lacked laminB (FIG. 5d), but were positive for anti-phosphorylated histone H3 Ser10 antibody, a marker of aggregated chromosomes. (Figure 5e). This indicates that even though quiescent nuclei are formed in the 2-cell blastomeres, they are independently metaphase. In addition, these fragments contain anti-phosphorylated H2A. It was stained with X antibody (Biol Reprod 75, 673-680 (2006)) (Fig. 5f). These data suggest that ACS may result from cleavage of double-stranded genomic DNA, resulting in a chromosomal fragment that appears in metaphase and subsequently dissociating from the spindle microtubules.
 ICSI胚を後期までイメージングすると、ACSを有する胚の半分超が桑実胚/胚盤胞段階へ分化することが見出された(図6a及び表4)。 When imaging the ICSI embryos to late stages, it was found that more than half of the ACS-bearing embryos differentiated into the morula / blastocyst stage (FIG. 6a and Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
  凍結融解した精子を用いてICSI胚を作成し、第2減数分裂の分裂後期/分裂終期の相においてmRNAを注入し、桑実胚/胚盤胞段階まで長期間イメージングした(約70時間)。
  8個を超える核を有するコンパクションした胚を、桑実胚/胚盤胞段階として評価した。残りは「停止」胚としてカウントした。
  桑実胚/胚盤胞段階の胚を、性交0.5日後の偽妊娠雌の輸卵管に移植した。n.d.は「未検定」を意味する。
Create an ICSI embryos using sperm a freeze-thaw, mRNA was injected in phase anaphase / telophase of the second meiotic division, and imaged long time until the morula / blastocyst stage (about 70 hours) .
b Compacted embryos with more than 8 nuclei were evaluated as morula / blastocyst stage. The rest were counted as “stopped” embryos.
c Mulberry / blastocyst stage embryos were transplanted into the oviducts of pseudopregnant females 0.5 days after sexual intercourse. n. d. Means “untested”.
 いくつかの胚盤胞で、栄養外胚葉(Cdx2陽性細胞)と内部細胞塊(Oct3/4陽性細胞)との間における細胞系譜の特異化のパターンが異常であったが、ACS胚は、NCS胚と同様に正常に見える胞胚腔を有していた(図6c,d)。ACSを有する胚の着床及び着床後発生の能力を評価するため、ライブセルイメージング後に、胚を2細胞期においてACSとNCSとに分離し、偽妊娠雌の輸卵管に別々に移入した(図6e)。ACSを有する胚は着床することができ、脱落膜を形成したが(図6f)、E7.5において生存した胚がなくなり、約E9.5において吸収され始め(図6g及び表5)、このことはACSを有する胚はE7.5までに自然流産することを示唆する。 In some blastocysts, the pattern of cell lineage specification between trophectoderm (Cdx2 positive cells) and inner cell mass (Oct3 / 4 positive cells) was abnormal, but ACS embryos are Like the embryo, it had a blastocoel that looked normal (FIGS. 6c, d). To assess the ability of embryos with ACS to implant and post-implantation development, after live cell imaging, embryos were separated into ACS and NCS at the 2-cell stage and transferred separately to the oviducts of pseudopregnant females (Fig. 6e). Embryos with ACS could be implanted and formed a decidua (Fig. 6f), but no viable embryos disappeared at E7.5 and began to be absorbed at approximately E9.5 (Fig. 6g and Table 5). This suggests that embryos with ACS spontaneously aborted by E7.5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
  凍結融解した精子を用いてICSI胚を作成し、2細胞期まで24時間イメージングを行い、マニピュレーターでACS及びNCS胚に選別し、偽妊娠雌に移植した。雌は、胎齢7.5(E7.5)又は9.5(E9.5)日後に屠殺し、生殖臓器を解剖し、子宮を摘出した。 Create an ICSI embryo using a freeze-thawed sperm to 2-cell stage for 24 hours imaging, sorted into ACS and NCS embryos manipulator and implanted into pseudopregnant females. Females were sacrificed after embryonic day 7.5 (E7.5) or 9.5 (E9.5) days, the reproductive organs were dissected and the uterus was removed.
 実際に全てのICSI実験において、ACS胚からは子が全く得られないか、きわめてわずかしか得ることができないが、NCS胚は、正常に子へ発生した(表3及び4)。これらのデータは、ICSI後における比較的低い妊娠率は、第1体細胞分裂における異常な染色体分離と、それに引き続くE7.5前の流産によるものであることを明確に示している。従って、PDIは、一見正常に見える2細胞期マウス胚の中から不完全な胚の特定を可能とし、そのような胚を移植から除去することにより全体としての妊娠率を改善することを可能にした。本発明者らは、ACSを有する2細胞胚とNCSを有する2細胞胚が光学顕微鏡でまったく区別できないことを再度強調する(図7)。 In fact, in all ICSI experiments, no or very few offspring were obtained from ACS embryos, but NCS embryos developed normally into offspring (Tables 3 and 4). These data clearly show that the relatively low pregnancy rate after ICSI is due to abnormal chromosome segregation in the first somatic division followed by miscarriage before E7.5. Thus, PDI enables the identification of incomplete embryos from seemingly normal two-cell stage mouse embryos, and the overall pregnancy rate can be improved by removing such embryos from transplantation. did. We again emphasize that 2-cell embryos with ACS and 2-cell embryos with NCS cannot be distinguished at all by light microscopy (FIG. 7).
 本発明者らは、PDIを用いて、他のARTモデルにおけるACSの有病率を調べた。円形精子細胞は成熟した精子のように一倍体であるが、マウスにおいて円形精子細胞注入(ROSI)後の成功出生率は極めて低い(1.7~28.2%)(Proc Natl Acad Sci USA 91, 7460-7462 (1994);Development 121, 2397-2405 (1995))。イメージングの結果、ROSI前核段階の胚の多くは1個の非常に大きな雌前核と1つの非常に小さな雄前核を含み(図8a)、この現象は以前の報告と一致している(Development 121, 2397-2405(1995))。これらの胚は、第1体細胞分裂において重篤なACSを呈し(図8a)、最後まで発生したものはなかったが(表3)、NCSを有するROSI胚の出生率は44.4%であった(表3)。PDIなしでのROSI後の出生率は10%と見積もられるので(表3のカラム「NCS+ACS」)、PDIにより、妊娠成功率が4倍超に改善したことになる。 The present inventors investigated the prevalence of ACS in other ART models using PDI. Although round sperm cells are haploid like mature sperm, the successful birth rate after round sperm cell injection (ROSI) in mice is very low (1.7-28.2%) (Proc Natl Acad Sci USA 91) 7460-7462 (1994); Development 121, 2397-2405 (1995)). Imaging results show that many ROSI pronuclear stage embryos contain one very large female pronucleus and one very small male pronucleus (Figure 8a), which is consistent with previous reports ( Development 121, 2397-2405 (1995)). These embryos exhibited severe ACS in first somatic division (Fig. 8a) and none developed until the end (Table 3), but the birth rate of ROSI embryos with NCS was 44.4%. (Table 3). Since the birth rate after ROSI without PDI is estimated to be 10% (column “NCS + ACS” in Table 3), PDI has improved the pregnancy success rate by more than four times.
 ROSIは、おそらくは精子の未成熟に起因する低妊娠の実験モデルである。本発明者らは、母性側の因子に由来する染色体異常についても調べた。クロモキネシンKid/kinesin-10は、分裂後期及び分裂終期染色体の境界に局在し、分裂後期染色体のかたまりを紡錘体軸に沿って短くすることを媒介することにより、染色体分離において重要な役割を果たしている(Mol Biol Cell 16, 5455-5463 (2005))。Kid-/-の雌は低受胎性であり、おそらくは、その原因の一部は第1体細胞分裂の異常な染色体分離によるものと考えられている(Cell 132, 771-782 (2008))。本発明者らは、Kid-/-卵母細胞を用いてICSIにより作成した胚についてPDIを行った。Cell 132, 771-782 (2008)で報告されたように、多くの1細胞期胚は複数の前核を有しており、その後核膜が崩壊し、すべての染色体が分裂中期プレートへ集合した後、正常に2つの核へ分裂した(図8b)。しかしながら、これらの胚の33.8%は、ACSを示し(図8b)、そのほとんど全てが移植後に発生できなかったが(表3)、その一方で、66.2%がNCSを示し、その28.6%が最後まで発生した(表3)。 ROSI is an experimental model of low pregnancy, presumably due to sperm immaturity. The present inventors also examined chromosomal abnormalities derived from maternal factors. Chromokinesin Kid / kinesin-10 plays a key role in chromosome segregation by localizing at the boundaries of anaphase and metaphase chromosomes and mediating shortening of mitotic chromosome clusters along the spindle axis. (Mol Biol Cell 16, 5455-5463 (2005)). Kid − / − females are poorly fertile and are probably thought to be partly due to abnormal chromosome segregation of first somatic division (Cell 132, 771-782 (2008)). The present inventors performed PDI on embryos created by ICSI using Kid-/-oocytes. As reported in Cell 132, 771-782 (2008), many single-cell embryos have multiple pronuclei, after which the nuclear envelope has collapsed and all chromosomes have assembled into metaphase plates. Later, it normally split into two nuclei (FIG. 8b). However, 33.8% of these embryos showed ACS (FIG. 8b), almost all of which failed to develop after transplantation (Table 3), while 66.2% showed NCS, which 28.6% occurred to the end (Table 3).
(実施例2)
 サルをモデルに用いて実施例1と同様の試験を行った。
 カニクイザル卵巣より回収した未受精卵に顕微授精(ICSI)を施した。未受精卵としては、卵巣より回収した卵子のうち、第2減数分裂中期(メタフェイズII)で停止しているものを使用した。陰茎の電気刺激にて採取された精子を遠心洗浄後培地に懸濁し、1時間インキュベーションすることで受精能を獲得させ、遠心後上昇したもののみを顕微授精に用いた。3時間ほどインキュベーションを行った後、前核期直前にある胚に各5ng/μlに調整したEGFP-tubulinおよびHistone H2B-mRFP1のmRNAを1つの胚あたり20~30ピコリットル程度インジェクションした。
 3時間インキュベーションした後、前核期からイメージングを開始した。2つの雌雄前核が存在し、第1体細胞分裂時に正常な細胞質分裂を見せた胚について、第1体細胞分裂過程における核・染色体の動態を観察した。
(Example 2)
The same test as in Example 1 was performed using monkeys as models.
Microinsemination (ICSI) was performed on unfertilized eggs collected from cynomolgus monkey ovaries. As an unfertilized egg, an egg recovered from the ovary that was stopped in the second metaphase (metaphase II) was used. Sperm collected by electrical stimulation of the penis were suspended in the medium after centrifugal washing and incubated for 1 hour to acquire fertility, and only those that increased after centrifugation were used for microinsemination. After incubation for about 3 hours, EGFP-tubulin and Histone H2B-mRFP1 mRNAs adjusted to 5 ng / μl each were injected into embryos immediately before the pronuclear phase at about 20 to 30 picoliters per embryo.
After 3 hours of incubation, imaging was started from the pronuclear phase. For embryos that had two male and female pronuclei and showed normal cytokinesis during first somatic division, the dynamics of nuclei and chromosomes during the first somatic division were observed.
 尚、サル胚のライブセルイメージングの条件は、以下の点を除き、マウスと同一であった。
(1)インキュベーター温度は38度に設定した。
(2)1細胞期から4細胞期前後までの約60時間の観察を行なった。
(3)サル胚はマウス胚に比べてサイズが大きいため撮影間隔をマウスの2μmから3μmに変更し、Z軸方向に46枚の画像を取得した。
(4)撮影時間間隔は15分とした。
The conditions for live cell imaging of monkey embryos were the same as for mice except for the following points.
(1) The incubator temperature was set at 38 degrees.
(2) Observation was performed for about 60 hours from the 1-cell stage to around the 4-cell stage.
(3) Since the monkey embryo was larger in size than the mouse embryo, the imaging interval was changed from 2 μm to 3 μm of the mouse, and 46 images were acquired in the Z-axis direction.
(4) The shooting time interval was 15 minutes.
 結果、正常な染色体分離を示すものは半分以下(45.7%)であり、残りはすべて異常な染色体分離を示した。異常の種類とその頻度については図9及び表6にそれぞれ示した。 As a result, less than half (45.7%) showed normal chromosome segregation, and the rest all showed abnormal chromosome segregation. The types of abnormalities and their frequencies are shown in FIG. 9 and Table 6, respectively.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 雌雄2つの前核を持ち第1体細胞分裂時に正常な細胞質分裂をしたもの。
 マウス顕微授精胚で良くみられた、染色体の一部が分配時に置き忘れられる異常(図9A参照)。
 分裂後に2細胞期胚のどちらか一方、または両割球において、1つ以上の核を持つ異常(図9B参照)。
 分裂時に染色体が断片化し、2細胞期胚において無数の核を形成してしまう異常(図9C参照)。
aA male and female pronucleus with normal cytokinesis during the first somatic division.
b Abnormalities commonly seen in mouse insemination embryos, in which part of the chromosome is misplaced during distribution (see FIG. 9A).
c Abnormalities with one or more nuclei in either the 2-cell embryo or both blastomeres after division (see FIG. 9B).
d An abnormality that causes chromosomes to become fragmented during division and to form innumerable nuclei in 2-cell embryos (see FIG. 9C).
 正常な染色体分離を示したものをNCS、それ以外の異常なものをすべてまとめてACSと分類し、それぞれについてさらに数日間培養を行い、桑実胚・胚盤胞期胚への発生能を調べた(表7)。また、そのうち胚盤胞期にまで達した胚については、胚移植を行ない、産仔作出能を検討した(表7)。1頭の仮親に対して、1ないし2つの胚盤胞期胚を移植した。 Those that showed normal chromosome segregation were classified as NCS, and all other abnormal ones were classified as ACS, and each of them was further cultured for several days to examine the developmental ability to morula and blastocyst stage embryos (Table 7). Of those embryos that reached the blastocyst stage, embryo transfer was performed to examine the ability to produce offspring (Table 7). One or two blastocyst stage embryos were transferred to one foster parent.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 桑実胚まで至らずに途中で発生が停止した胚。
 重度の細胞質断片化が見られた胚。
a Embryo whose development has stopped midway without reaching the morula.
b Embryos with severe cytoplasmic fragmentation.
 その結果、NCS胚はその半分以上が桑実・胚盤胞期胚へと発生し、そこから一部を仮親の卵管に移植したところ、2仔の妊娠に成功した。うち1仔は妊娠満期に自然出産により生まれた。一方、ACS胚についても約1割の胚が桑実・胚盤胞期まで発生したが、移植の結果産仔は得られなかった。これらの結果から、マウス同様サル顕微授精胚においても第1体細胞分裂において異常な染色体分配が高頻度で起きており、それが発生異常を引き起こしていることが明らかとなった。 As a result, more than half of the NCS embryos developed into morula and blastocyst stage embryos, and a part of them was transplanted into the temporary parental oviduct. One of them was born due to spontaneous delivery at the time of pregnancy. On the other hand, about 10% of the ACS embryos were developed up to the morula and blastocyst stage, but no offspring were obtained as a result of the transplantation. From these results, it became clear that abnormal chromosome partitioning occurred frequently in the first somatic division in monkey microinseminated embryos as well as mice, which caused developmental abnormalities.
 以上、サルの胚を用いた場合においても、マウス胚と同様に、イメージング後の胚から産仔が得られ、ACSの胚を移植から除外することで結果的に妊娠率を向上させることができた。 As described above, even in the case of using monkey embryos, as with mouse embryos, offspring can be obtained from the embryos after imaging, and by eliminating ACS embryos from transplantation, the pregnancy rate can be improved as a result. It was.
 本発明の方法を用いることにより、胚へのダメージを出来る限り抑制しながら、詳細に初期発生胚を観察することが可能となる。本発明の方法を用いれば、哺乳動物の胚を生かしたまま、連続的に蛍光観察することが可能であり、更にその胚は問題なく個体発生することができるので、蛍光観察でみとめられた現象とその後の個体発生との関連性を直接結び付けて評価することが可能である。更に、本発明の方法を用いれば、将来流産する危険性の高い胚を、2細胞期までという非常に早期の段階で特定することが可能となる。そして、特定された異常胚を移植対象から除外することで、妊娠率を大幅に向上させることが可能となる。また、本発明の方法では、観察後の胚から生まれた子はトランスジェニックになっていないことから、医療・畜産分野への応用が考えられる。
 本出願は日本で出願された特願2008-213296(出願日:2008年8月21日)を基礎としており、その内容は本明細書に全て包含されるものである。
By using the method of the present invention, it is possible to observe the early embryo in detail while suppressing damage to the embryo as much as possible. By using the method of the present invention, it is possible to continuously observe fluorescence while keeping a mammalian embryo alive, and furthermore, the embryo can be individually generated without any problem. And the subsequent ontogeny can be directly linked and evaluated. Furthermore, by using the method of the present invention, it is possible to identify embryos at a very early stage, up to the 2-cell stage, at a high risk of miscarriage in the future. And it becomes possible to improve a pregnancy rate significantly by removing the identified abnormal embryo from the transplant object. In addition, in the method of the present invention, since the offspring born from the observed embryo is not transgenic, it can be applied to the medical / livestock field.
This application is based on Japanese Patent Application No. 2008-213296 filed in Japan (filing date: August 21, 2008), the contents of which are incorporated in full herein.

Claims (11)

  1.  レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡により、蛍光標識された哺乳動物胚の蛍光画像を経時的に取得することを含む、哺乳動物胚のインビトロ蛍光観察方法。 A method for in vitro fluorescence observation of a mammalian embryo, comprising acquiring fluorescence images of a fluorescently labeled mammalian embryo over time with a confocal fluorescence microscope equipped with a laser light source and a nipou disc confocal unit.
  2.  蛍光標識された哺乳動物胚が、蛍光タンパク質をコードし、且つ該胚内において該蛍光タンパク質へ翻訳され得るRNAを該胚内へ注入することにより得られたものである、請求項1記載の方法。 The method according to claim 1, wherein the fluorescently labeled mammalian embryo is obtained by injecting RNA into the embryo that encodes the fluorescent protein and can be translated into the fluorescent protein in the embryo. .
  3.  注入するRNAの量が、蛍光画像の取得に十分量であり、且つ1個の胚につき2.5pg以下である、請求項2記載の方法。 The method according to claim 2, wherein the amount of RNA to be injected is a sufficient amount for obtaining a fluorescence image and not more than 2.5 pg per embryo.
  4.  少なくとも3.75分の時間間隔をおいて、哺乳動物胚の蛍光画像が連続的に取得される、請求項1記載の方法。 The method according to claim 1, wherein fluorescence images of mammalian embryos are continuously acquired at a time interval of at least 3.75 minutes.
  5.  少なくとも20時間以上にわたり、哺乳動物胚の蛍光画像が経時的に取得される、請求項1記載の方法。 The method according to claim 1, wherein fluorescence images of mammalian embryos are acquired over time for at least 20 hours.
  6.  1回の観察時点において、共焦点蛍光顕微鏡の焦点を、胚に対して、該顕微鏡のステージ面を基準とする高さ方向に3μm以下の間隔をおいて移動させて、各層の胚の断面の蛍光画像が取得される、請求項1記載の方法。 At the time of one observation, the focal point of the confocal fluorescence microscope is moved with respect to the embryo in the height direction with respect to the stage surface of the microscope as a reference at an interval of 3 μm or less, and the cross section of the embryo of each layer is The method of claim 1, wherein a fluorescent image is acquired.
  7.  以下の工程を含む、着床不全又は流産のリスクの低い哺乳動物胚の選択方法:
    (I)染色体構成タンパク質と蛍光タンパク質との融合タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質を発現する哺乳動物胚を調製すること;
    (II)レーザー光源及びニポウディスク式共焦点ユニットを備える共焦点蛍光顕微鏡により、(I)で得られた哺乳動物胚の蛍光画像を経時的に取得すること;及び
    (III)(II)で得られた蛍光画像に基づき、異常な染色体の形態を呈していない胚を着床不全又は流産のリスクの低い哺乳動物胚として選択すること。
    A method for selecting a mammalian embryo with a low risk of implantation failure or miscarriage comprising the following steps:
    (I) preparing a mammalian embryo that expresses a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein;
    (II) Obtaining a fluorescence image of the mammalian embryo obtained in (I) over time by a confocal fluorescence microscope equipped with a laser light source and a Niipou disc type confocal unit; and (III) obtained in (II) Based on the obtained fluorescence image, an embryo that does not exhibit abnormal chromosomal morphology is selected as a mammalian embryo having a low risk of implantation failure or miscarriage.
  8.  工程(I)の哺乳動物胚が、染色体構成タンパク質と蛍光タンパク質との融合タンパク質又は紡錘体構成タンパク質と蛍光タンパク質との融合タンパク質をコードし、且つ該胚内において該融合タンパク質へ翻訳され得るRNAを該胚内へ注入することにより調製される、請求項7記載の方法。 The mammalian embryo of step (I) encodes a fusion protein of a chromosome constituent protein and a fluorescent protein or a fusion protein of a spindle constituent protein and a fluorescent protein, and an RNA that can be translated into the fusion protein in the embryo 8. The method of claim 7, wherein the method is prepared by injection into the embryo.
  9.  工程(I)の哺乳動物胚が、1細胞期又は2細胞期の胚である、請求項5記載の方法。 6. The method according to claim 5, wherein the mammalian embryo of step (I) is a 1-cell stage or 2-cell stage embryo.
  10.  哺乳動物胚が、細胞質内精子注入(ICSI)又は円形精子細胞注入(ROSI)により作成されたものである、請求項7記載の方法。 The method according to claim 7, wherein the mammalian embryo is prepared by intracytoplasmic sperm injection (ICSI) or circular sperm cell injection (ROSI).
  11.  異常な染色体の形態が、体細胞分裂時における異常な染色体分離である、請求項7記載の方法。 The method according to claim 7, wherein the abnormal chromosome morphology is abnormal chromosome segregation during somatic cell division.
PCT/JP2009/064681 2008-08-21 2009-08-21 In vitro fluorescence observation method for mammal embryo, and method for selecting mammal embryo reduced in risk of implantation failure or abortion WO2010021392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-213296 2008-08-21
JP2008213296 2008-08-21

Publications (1)

Publication Number Publication Date
WO2010021392A1 true WO2010021392A1 (en) 2010-02-25

Family

ID=41707266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064681 WO2010021392A1 (en) 2008-08-21 2009-08-21 In vitro fluorescence observation method for mammal embryo, and method for selecting mammal embryo reduced in risk of implantation failure or abortion

Country Status (1)

Country Link
WO (1) WO2010021392A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293136A (en) * 2013-04-27 2013-09-11 清华大学 Method for quantitative analysis of chromosome and spindle body in animal oocyte
JP2014507664A (en) * 2011-02-23 2014-03-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Method for detecting aneuploidy in human embryos
CN104133068A (en) * 2014-08-11 2014-11-05 环境保护部南京环境科学研究所 Method for observing microtubule structure of cytoskeleton in liver tissue of animals
US20210319208A1 (en) * 2018-12-28 2021-10-14 Olympus Corporation Microscope system

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
KAWASUMI M ET AL.: "Abnormal distribution of chromosomes in the first division of nuclear transferred mouse embryos.", J. REPROD. DEV., vol. 53, 2007, pages 615 - 622 *
KAZUO YAMAGATA ET AL.: "Live Cell Imaging ni yoru Shoki Hai Epigenetics Henka no Dynamics Kaiseki", PROTEIN, NUCLEIC ACID AND ENZYME, vol. 52, 2007, pages 2216 - 2222 *
LEMMEN J G ET AL.: "Kinetic markers of human embryo quality using time-lapse recording of IVF/ICSI-fertilized oocytes.", REPROD. BIOMED., vol. 17, 30 July 2008 (2008-07-30), pages 385 - 391 *
ROSS P J ET AL.: "Full developmental potential of mammalian preimplantation embryos is maintained after imaging using a spinning-disk confocal microscope.", BIOTECHNIQUES, vol. 41, 2006, pages 741 - 750 *
YAMAGATA K ET AL.: "Assesment of chromosomal integrity using a novel live-cell imaging technique in mouse embryos produced by intracytoplasmic sperm injection.", HUMAN REPROD., vol. 24, 2 July 2009 (2009-07-02), pages 2490 - 2499 *
YAMAGATA K ET AL.: "Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages.", DEV. BIOL., vol. 312, 2007, pages 419 - 426 *
YAMAGATA K ET AL.: "Long-term, six-dimensional live-cell imaging for the mouse preimplantation embryo that does not affect full-term development.", J. REPROD. DEV., vol. 55, June 2009 (2009-06-01), pages 343 - 350 *
YAMAGATA K ET AL.: "Noninvasive visualization of molecular events in the mammalian zygote.", GENESIS, vol. 43, 2005, pages 71 - 79 *
YAMAGATA K. ET AL.: "Capturing epigenetic dynamics during pre-implantation development using live cell imaging.", J. BIOCHEM., vol. 143, March 2008 (2008-03-01), pages 279 - 286 *
YAMAZAKI T ET AL.: "Molecular dynamics of heterochromatin protein 1beta, HPlbeta, during mouse preimplantation development.", J. REPROD. DEV., vol. 53, 2007, pages 1035 - 1041 *
YAMAZAKI T ET AL.: "Time-lapse and retrospective analysis of DNA methylation in mouse preimplantation embryos by live cell imaging.", DEV. BIOL., vol. 304, 2007, pages 409 - 419 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507664A (en) * 2011-02-23 2014-03-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Method for detecting aneuploidy in human embryos
US9879307B2 (en) 2011-02-23 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University Methods of detecting aneuploidy in human embryos
CN103293136A (en) * 2013-04-27 2013-09-11 清华大学 Method for quantitative analysis of chromosome and spindle body in animal oocyte
CN104133068A (en) * 2014-08-11 2014-11-05 环境保护部南京环境科学研究所 Method for observing microtubule structure of cytoskeleton in liver tissue of animals
US20210319208A1 (en) * 2018-12-28 2021-10-14 Olympus Corporation Microscope system
US11861921B2 (en) * 2018-12-28 2024-01-02 Evident Corporation Microscope system

Similar Documents

Publication Publication Date Title
Tokuhiro et al. Glycan-independent gamete recognition triggers egg zinc sparks and ZP2 cleavage to prevent polyspermy
Van Keuren et al. Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes
JP2020171297A (en) Organ regeneration method using ips cell and blastocyst complementation
US20010044937A1 (en) Methods for producing transgenic animals
JP2020043864A (en) Production method of heterogeneous germinal vesicle chimera animal using stem cell
US6143564A (en) Use of the polar body chromosomes for the production of embryos and normal offspring
WO2010021392A1 (en) In vitro fluorescence observation method for mammal embryo, and method for selecting mammal embryo reduced in risk of implantation failure or abortion
Meng et al. Optimized production of transgenic buffalo embryos and offspring by cytoplasmic zygote injection
JP2002512787A (en) How to get stem cells
WO2008051620A2 (en) Methods and compositions for intracytoplasmic sperm injection-mediated transgenesis
Yamagata et al. Long‐term live‐cell imaging of mammalian preimplantation development and derivation process of pluripotent stem cells from the embryos
JP3694734B2 (en) Method for producing transgenic animal, transgenic animal
US20080263692A1 (en) Methods for correcting mitotic spindle defects associated with somatic cell nuclear transfer in animals
Sparman et al. Cloning of non-human primates: the road “less traveled by”
Park et al. Suppressing mosaicism by Au nanowire injector-driven direct delivery of plasmids into mouse embryos
JP2002524054A (en) How to perform gene transfer
JP4845073B2 (en) Method for producing reconstructed fertilized egg and method for producing transgenic embryo using the same
Kuznyetsov et al. Duplication of the sperm genome by human androgenetic embryo production: towards testing the paternal genome prior to fertilization
EP1828376A2 (en) Methods for correcting mitotic spindle defects and optimizing preimplantation embryonic developmental rates associated with somatic cell nuclear transfer in animals
Niwa et al. Expression of GFP in nuclear transplants generated by transplantation of embryonic cell nuclei from GFP-transgenic fish into nonenucleated eggs of medaka, Oryzias latipes
JP2019517818A (en) Tissue regeneration using somatic cell nuclear transfer (SCNT) cells and blastocyst complementation
US20230220331A1 (en) Temporary treatment medium, treatment kit, embryogenesis arrest inhibitor, embryogenesis arrest inhibitory method, developmental engineering product preparation method, transplantation method, therapeutic method, and developmental engineering product
WO2023100925A1 (en) Asymmetric cell division inhibitor, chromosomal aneuploidy inhibitor, medium, in vitro fertilization medium, cell treatment kit, asymmetric cell division inhibition method, in vitro fertilization method, transplantation method, infertility treatment method, and offspring acquisition method
US20040088748A1 (en) Method of performing transgenesis
US20100293623A1 (en) Rabbit nuclear cloning method and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP