WO2010021336A1 - Oscillation analysis device and oscillation analysis method - Google Patents

Oscillation analysis device and oscillation analysis method Download PDF

Info

Publication number
WO2010021336A1
WO2010021336A1 PCT/JP2009/064496 JP2009064496W WO2010021336A1 WO 2010021336 A1 WO2010021336 A1 WO 2010021336A1 JP 2009064496 W JP2009064496 W JP 2009064496W WO 2010021336 A1 WO2010021336 A1 WO 2010021336A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
data
analysis
frequency
shows
Prior art date
Application number
PCT/JP2009/064496
Other languages
French (fr)
Japanese (ja)
Inventor
公彦 中野
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2010021336A1 publication Critical patent/WO2010021336A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • G06F2218/06Denoising by applying a scale-space analysis, e.g. using wavelet analysis

Definitions

  • the present invention relates to a vibration analysis apparatus and a vibration analysis method. More particularly, the present invention relates to a technique for analyzing vibration characteristics.
  • Non-Patent Document 3 mode analysis has been proposed as a mechanical vibration analysis method (Non-Patent Document 3 below). According to this, the frequency of vibration and spatial distribution (displacement) can be obtained. However, it is still difficult to know the time change of vibration.
  • PARAFAC also called multi-layer factor analysis
  • This method originates from the measurement method used in psychology and has begun to be used in the field of chemical analysis such as spectrum analysis of fluorescein (fluorescein).
  • fluorescein fluorescein
  • attempts have been made to apply it to electroencephalogram analysis. By combining with complex wavelet transform, it is possible to investigate temporal changes and spatial distribution of electroencephalograms divided into ⁇ , ⁇ , ⁇ bands, etc. Patent Document 2).
  • a main object of the present invention is to provide an apparatus and a method capable of acquiring characteristics related to a temporal change of vibration.
  • the present invention has a configuration described in any of the following items.
  • the vibration acquisition unit is configured to acquire vibration data at a plurality of locations
  • the frequency analysis unit is configured to generate multidimensional vector data that is a function of time and frequency by analyzing the vibration data
  • the multi-layer factor analysis unit is configured to generate a plurality of independent vectors using the multidimensional vector data.
  • At least one of the plurality of vectors generated by the multilayer factor analysis unit represents the temporal characteristics of vibration.
  • the vibration to be analyzed is, for example, mechanical vibration.
  • the vibration may be a vibration of sound or electromagnetic waves in addition to the mechanical vibration.
  • Vibration analysis method comprising the following steps (1) obtaining vibration data at a plurality of locations; (2) generating multidimensional vector data that is a function of time and frequency by analyzing the vibration data; (3) A step of generating a plurality of independent vectors using the multidimensional vector data.
  • This computer program can be recorded on various recording media such as a magnetic recording medium (such as a hard disk), an electrical recording medium (such as a flash memory or DRAM), an optical recording medium (such as a CD or DVD), or a magneto-optical recording medium (such as a hard disk). MO etc.).
  • the type of the recording medium is not limited to these.
  • the program can be transmitted as a signal via various media (such as an optical fiber and a copper wire).
  • This program can be written in various languages (for example, C language or assembly language).
  • the program may be described in a language that requires compilation before execution. In this case, the program may be a pre-compiled program or a compiled program.
  • the vibration analysis apparatus includes a vibration acquisition unit 1, a frequency analysis unit 2, and a multilayer factor analysis unit 3.
  • the vibration acquisition unit 1 is configured to acquire vibration data at a plurality of locations.
  • the vibration data is acceleration data at a certain point, for example.
  • vibration data in addition to acceleration, data of an image taken by a speed, displacement, and high-speed camera can be used.
  • a so-called accelerometer can be used to acquire acceleration data.
  • the frequency analysis unit 2 is configured to generate multidimensional vector data that is a function of time and frequency by analyzing the vibration data acquired by the vibration acquisition unit 1. Specifically, in this embodiment, multidimensional vector data is generated by performing complex wavelet transform on vibration data.
  • the multilayer factor analysis unit 3 is configured to generate a plurality of independent vectors using the multidimensional vector data generated by the frequency analysis unit 2.
  • at least one of the plurality of vectors generated by the multilayer factor analysis unit 3 represents a temporal characteristic of vibration.
  • vibration analysis method Next, a vibration analysis method using the apparatus of the present invention will be described with reference mainly to the flowchart shown in FIG. Note that the vibration analysis in this embodiment is performed as a simulation. In this embodiment, a vibration analysis when vibration is applied to a simple support beam will be described as an example.
  • the beam 100 is a so-called simple support beam.
  • the beam 100 is provided with five accelerometers 11 to 15 that can ignore mass (see FIG. 3). These accelerometers 11 to 15 constitute the vibration acquisition unit 1 of the present embodiment.
  • the position of the point load is defined as l f with the left end in FIG. 3 as a reference.
  • the installation position p 1 of the accelerometers 11 ⁇ 15, p 2, p 3, p 4, p 5 , to the length l b of the beam is 10, 20, 30, 40, 50% Yes. Further, in this example, it has a length l b of the beam and 1 m.
  • the applied point load causes deflection acceleration at each point according to the distance from the left end.
  • the transfer function between the point load and the acceleration at this time is as shown in Equation (1), where s is the Laplace operator and ⁇ n is the natural angular frequency of the n-th mode.
  • k n is determined by the following equation.
  • the numerical values of the beams are shown in Table 1 below.
  • the primary, secondary and tertiary natural frequencies of this beam are 145.9 rad / s (23.2 Hz), 583.4 rad / s (92.9 Hz) and 1312.7 rad / s (208.9 Hz), respectively.
  • the vibration applied to the beam in this way is acquired by each accelerometer 11 to 15 and sent to the frequency analysis unit 2.
  • the frequency analysis unit 2 performs frequency analysis as follows.
  • wavelet transform is used as frequency analysis.
  • wavelet transform is performed on the time history data regarding acceleration at each point acquired by the accelerometers 11 to 15.
  • Wavelet transform can convert one-dimensional time history data into “two-dimensional data with frequency and time axes”. If the acceleration data at each point is s (t), the wavelet transform is defined as follows. Here, a is the scale and b is the position.
  • ⁇ (t) represents a mother wavelet.
  • Various mother wavelets have been proposed.
  • a complex Morlet is used.
  • Complex Morlet has a feature that it is easy to define a frequency and is composed of sine and cosine waves, and is represented by the following equation (4).
  • f b is a bandwidth parameter
  • f c is a center frequency.
  • the scale a is converted to a frequency f (Hz) by the following equation (5).
  • a complex multidimensional data matrix S (N f x N t x N p ) of frequency f, time t, and space p (corresponding to an example of the “multidimensional data matrix” in the present invention) can be obtained ( Step SA-3).
  • Non-Patent Document 2 the absolute value of a complex multidimensional data matrix is often the object of analysis.
  • the PARAFAC analysis is performed for each of the real part and the imaginary part. If phase information is unnecessary, the temporal characteristics of vibration can be analyzed by performing PARAFAC analysis on either the real part or the imaginary part (see the calculation example described later).
  • the generated multidimensional vector data is sent to the multilayer factor analysis unit 3.
  • the multilayer factor analysis unit 3 performs multilayer factor analysis (so-called PARAFAC analysis) on the multidimensional vector data.
  • PARAFAC analysis A schematic image of PARAFAC analysis is shown in FIG.
  • the elements of the multidimensional data matrix S (N f x N t x N p ) are S ftp, and independent three elements having a fk , b tk , and c pk as elements represented by the following expressions:
  • k represents a factor
  • N k represents the number of factors.
  • a general multidimensional data matrix cannot always be decomposed into a vector such as Equation (6). If the element of the data matrix to be obtained is S hat pft , a fk , b tk , and c pk are obtained by the alternating least squares method so as to minimize the following residual ⁇ .
  • the process of separating a multidimensional data matrix into a number of vectors in this way is called PARAFAC analysis.
  • the obtained independent vector a fk represents a frequency characteristic of vibration
  • b tk represents a temporal characteristic
  • c pk represents a spatial characteristic (this point will be further described later).
  • These features are also called frequency profile, temporal profile, and spatial profile, respectively.
  • the elements of the multidimensional data matrix handled in this embodiment are complex numbers. Therefore, it is divided into Sr ftp composed of real components and Si ftp composed of imaginary components, and PARAFAC analysis is performed on each of them (step SA-4 and step SA-6). The imaginary component will be described later in step SA-6.
  • T ftp represents an element of the predicted three-phase factor analysis model (Tucker3) (see Non-Patent Document 7). This shows the consistency between the elements calculated by PARAFAC and the predicted Tucker3 elements, and is 100% when decomposed by the ideal factor number. When the number of elements is small, the value is close to 100%, but as the number increases, it decreases rapidly to near 0% at a certain number. It is necessary to select the number of elements to take a value close to 100%.
  • SA-6 and SA-7 in FIG. 2 Similar to SA-4 and SA-5, three independent vectors aifk , bitk , and cipk can be obtained by targeting the imaginary part of the multidimensional vector data.
  • the magnitude (amplitude) of the vibration can be seen by calculating the square root of the square sum of the real and imaginary components.
  • the load time interval was 0.1 ms, and 8192 loads were performed while changing the amplitude.
  • the load signal has 8192 pieces of load data.
  • This weight signal is obtained by passing white noise created using random numbers through a filter W (s) of the following equation (9). That is, in this signal, it is possible to obtain a load (external force) close to a so-called 1 / f fluctuation that the amplitude decreases as the frequency becomes higher.
  • the cut-off frequency ⁇ c was 20 ⁇ rad / s.
  • FIG. 6 shows the acceleration at each point when the external force shown in FIG. 5 is applied to the beam 100 (corresponding to step SA-1 in FIG. 2).
  • the accelerations at points p 1 to p 5 are shown in order from the top of FIG.
  • white noise is mixed in the acceleration shown in FIG. 6 in order to simulate the observation noise.
  • FIG. 7 shows the absolute value, that is, the amplitude of each element in this complex data matrix.
  • the acceleration at points p 1 to p 5 is shown in order from the top.
  • the vertical axis in this figure represents the frequency as an index. That is, 1 indicates 10 Hz and 2 indicates 100 Hz.
  • the value increases as the color changes from black to white. That is, a white portion indicates that a large vibration exists.
  • FIG. 8 shows the frequency characteristics.
  • the upper diagram in FIG. 8 shows the result for the real part, and the lower diagram shows the result for the imaginary part. Looking at the peaking frequency, it is easy to see that the three vectors a f1 , a f2 , and a f3 represent the second-order mode, first-order mode, and third-order mode for both the real and imaginary parts. Recognize. In the figure, the subscripts r and i correspond to the real part and the imaginary part, respectively.
  • FIG. 9 and FIG. 10 represent temporal characteristics of the real part and the imaginary part, respectively.
  • b t1 , b t2 , and b t3 are represented in order from the top, and waveforms of the secondary mode, the primary mode, and the tertiary mode are shown, respectively.
  • the meanings of the subscripts r and i are the same as described above.
  • FIG. 11 shows the spatial characteristics of the real part.
  • cr p1 , cr p2 , and cr p3 are represented, and the second, first, and third-order mode shapes are shown, respectively.
  • the length of the beam is 1 m and FIG. 11 represents only the left half of the beam, it can be seen that an appropriate mode shape can be obtained by the vibration analysis of this embodiment. The same result is obtained for the imaginary part (not shown).
  • Chirp is a vibration whose frequency changes with time.
  • the acceleration is acquired as the vibration and the analysis is performed as in the above calculation example.
  • FIG. 13 shows a chirp-shaped point load.
  • the frequency of this vibration varies linearly from 1 Hz to 300 Hz.
  • the amplitude was 4e- t / 0.4085, and it was made smaller with time.
  • FIG. 14 shows the acceleration at each point when the external force shown in FIG. 13 is applied.
  • the accelerations at points p 1 to p 5 are shown in order from the top of FIG. From the first mode to the third mode, in which vibration is applied while sweeping the frequency from the low frequency, appears in order. In this case as well, white noise is mixed in the acceleration value in order to simulate the observation noise.
  • FIG. 16 shows three vectors a f1 , a f2 , and a f3 indicating frequency characteristics, and these represent the secondary mode, the primary mode, and the tertiary mode, respectively.
  • the upper figure in FIG. 16 represents the result of the real part
  • the lower figure represents the result of the imaginary part.
  • FIGS. 17 and 18 show three vectors b t1 , b t2 , and b t3 indicating temporal characteristics for the real part and the imaginary part, respectively.
  • the meanings of the subscripts r and i are the same as described above.
  • the first-order mode (b t2 ) appears from the beginning and gradually attenuates.
  • the secondary mode (b t1 ) and the tertiary mode (b t3 ) appear after the elapse of time.
  • the time in which each mode appears can be clarified.
  • FIG. 19 shows real-part vectors cr t1 , cr t2 , cr t3 indicating spatial features. These show that the spatial displacement (shape) in each mode is captured. The same result is obtained for the imaginary part (not shown).
  • FIG. 20 shows the calculation result. Not only can the characteristics of FIG. 15 be restored, but also noise can be removed, and as a result, a diagram in which only the mode of interest is extracted can be obtained.
  • the analysis technique described in the present embodiment can be executed by a computer by using a computer program that can be executed by the computer.
  • each functional element described above only needs to exist as a functional block, and does not need to exist as independent hardware.
  • a mounting method hardware or computer software may be used.
  • one functional element in the present invention may be realized by a set of a plurality of functional elements, and a plurality of functional elements in the present invention may be realized by one functional element.
  • the functional elements may be arranged at physically separated positions.
  • the functional elements may be connected by a network. It is also possible to realize functions or configure functional elements by grid computing.
  • the vibration applied to the beam has been described as an example.
  • the vibration applied to an object other than the beam can also be analyzed.
  • mechanical vibration is targeted as the analysis target.
  • the present invention is not limited to this, and it is also possible in principle to analyze acoustic vibration and electromagnetic wave vibration.
  • the wavelet transform is used in the analysis of the vibration data.
  • the present invention is not limited to this, and a short-time Fourier transform can also be used.
  • the frequency analysis unit only needs to be able to generate multidimensional vector data that is a function of time and frequency based on vibration data.
  • the real part and the imaginary part are respectively generated by the complex wavelet transform, and the PARAFAC analysis is performed for each.
  • wavelet transform generates either the real part or the imaginary part, or the absolute value, that is, the square root of the sum of the square of the real part and the square of the imaginary part. Analysis is also possible. However, if the phase information is lost, it becomes difficult to restore the original data from the data obtained by PARAFAC analysis.
  • the upper graph shows the result for the real part, and the lower graph shows the result for the imaginary part. It is a graph which shows the vector (real part) which shows the time characteristic of a vibration. It is a graph which shows the vector (imaginary part) which shows the time characteristic of a vibration. It is a graph which shows the vector which shows the spatial feature of a vibration. It is a graph which shows the wavelet transformation data reconstructed using the result of PARAFAC analysis. It is a graph which shows the vibration data added to a beam when the vibration input in this embodiment is made into a chirp shape. In the example of FIG. 13, it is a graph which each shows the vibration measured at each measurement point. In the example of FIG.
  • FIG. 13 it is a graph which each shows the result of the wavelet transformation with respect to each measurement data.
  • it is a graph which shows the change of the vector which shows a frequency characteristic.
  • the upper graph shows the result for the real part, and the lower graph shows the result for the imaginary part.
  • it is a graph which shows the vector (real part) which shows the time characteristic of a vibration.
  • it is a graph which shows the vector (imaginary part) which shows the time characteristic of a vibration.
  • it is a graph which shows the vector which shows the spatial characteristic of a vibration.
  • it is a graph which shows the wavelet transformation data reconfigure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Provided are device and a method which can acquire characteristics concerning a temporal change of oscillation. An oscillation acquisition unit (1) acquires oscillation data in a plurality of positions.  A frequency analysis unit (2) analyzes oscillation data by using the wavelet conversion, for example.  Thus, it is possible to generate multi-dimension vector data as a function of time and frequency.  A multi-layer factor analysis unit (3) uses the multi-dimension vector data to generate a plurality of independent vectors.  At least one of the vectors generated by the multi-layer factor analysis unit (3) expresses the temporal characteristic of the oscillation.

Description

振動解析装置及び振動解析方法Vibration analysis apparatus and vibration analysis method
 本発明は、振動解析装置及び振動解析方法に関するものである。より詳しくは、本発明は、振動の特徴を解析するための技術に関するものである。 The present invention relates to a vibration analysis apparatus and a vibration analysis method. More particularly, the present invention relates to a technique for analyzing vibration characteristics.
 振動を解析する手法としては、従来から、FFT(Fast Fourier Transform)に代表されるフーリエ解析が知られている。フーリエ解析を用いることにより、振動の周波数に関する特徴を知ることができる。 Conventionally, Fourier analysis represented by FFT (Fast Fourier Transform) is known as a method for analyzing vibration. By using the Fourier analysis, it is possible to know characteristics related to the frequency of vibration.
 しかしながら、フーリエ解析は、振動の時間的変化に関する特徴を知ることが難しいという特性を持っている。 However, Fourier analysis has the characteristic that it is difficult to know the characteristics related to temporal changes in vibration.
 そこで、機械的な振動の解析手法として、モード解析が提案されている(下記非特許文献3)。これによれば、振動の周波数と空間分布(変位)とを得ることができる。しかしながら、振動の時間変化を知ることはやはり難しい。 Therefore, mode analysis has been proposed as a mechanical vibration analysis method (Non-Patent Document 3 below). According to this, the frequency of vibration and spatial distribution (displacement) can be obtained. However, it is still difficult to know the time change of vibration.
 一方、多層因子分析とも呼ばれるPARAFACは、多チャンネルで計測した信号の時変スペクトラムを、空間、周波数、時間などを軸に多次元に分解する方法である(下記非特許文献1)。この方法は、心理学にて用いられる測定法に起源を持ち、フルオレセイン(Fluorescein:蛍光色素の一種)の発光のスペクトル解析など、化学分析の分野で用いられ始めている。近年、脳波解析への適用も試みられており、複素ウェーブレット変換と組み合わせることにより、α,β,θ帯域等にわけた脳波の時間変化と空間分布を調べることが可能になっている(下記非特許文献2)。この方法は、時間分解能が高く、動きのある環境下での計測に適しており、今後の発展が期待されている。
R. Bro, PARAFAC. Tutorial & applications, Chemometrics and Intelligent Laboratory Systems, 38 (1997), 149-171. F. Miwakeichi, E. Martinez-Montes, P.A. Valdes-Sosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi, Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis, NeuroImage 22 (2004), 1035-1045. 長松昭男,モード解析,培風館. 豊田秀樹,共分散構造分析[応用編],朝倉書店.
On the other hand, PARAFAC, also called multi-layer factor analysis, is a method of decomposing a time-varying spectrum of a signal measured in multiple channels into multi-dimensions with space, frequency, time, etc. as axes (non-patent document 1 below). This method originates from the measurement method used in psychology and has begun to be used in the field of chemical analysis such as spectrum analysis of fluorescein (fluorescein). In recent years, attempts have been made to apply it to electroencephalogram analysis. By combining with complex wavelet transform, it is possible to investigate temporal changes and spatial distribution of electroencephalograms divided into α, β, θ bands, etc. Patent Document 2). This method has high temporal resolution and is suitable for measurement in a moving environment, and is expected to be developed in the future.
R. Bro, PARAFAC.Tutorial & applications, Chemometrics and Intelligent Laboratory Systems, 38 (1997), 149-171. F. Miwakeichi, E. Martinez-Montes, PA Valdes-Sosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi, Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis, NeuroImage 22 (2004), 1035 -1045. Akio Nagamatsu, mode analysis, Baifukan. Hideki Toyoda, Covariance Structure Analysis [Application], Asakura Shoten.
 本発明は、このような状況に鑑みてなされたものである。本発明の主な目的は、振動の時間変化に関する特徴を取得可能な装置及び方法を提供することである。 The present invention has been made in view of such a situation. A main object of the present invention is to provide an apparatus and a method capable of acquiring characteristics related to a temporal change of vibration.
 本発明は、下記のいずれかの項目に記載の構成を備えている。 The present invention has a configuration described in any of the following items.
 (項目1)
 振動取得部と、周波数解析部と、多層因子分析部とを備えており、
 前記振動取得部は、複数の箇所における振動データを取得する構成となっており、
 前記周波数解析部は、前記振動データを解析することにより、時間と周波数の関数である多次元ベクトルデータを生成する構成となっており、
 前記多層因子分析部は、前記多次元ベクトルデータを用いて、複数の独立したベクトルを生成する構成となっている
 ことを特徴とする振動解析装置。
(Item 1)
It has a vibration acquisition unit, a frequency analysis unit, and a multilayer factor analysis unit,
The vibration acquisition unit is configured to acquire vibration data at a plurality of locations,
The frequency analysis unit is configured to generate multidimensional vector data that is a function of time and frequency by analyzing the vibration data,
The multi-layer factor analysis unit is configured to generate a plurality of independent vectors using the multidimensional vector data.
 多層因子分析部により生成された複数のベクトルのうち、少なくとも一つは、振動の時間的特性を表すものとなっている。 At least one of the plurality of vectors generated by the multilayer factor analysis unit represents the temporal characteristics of vibration.
 この発明において解析対象となる振動は、例えば機械的振動である。ただし、振動としては、機械的振動の他に、音や電磁波の振動であってもよい。 In the present invention, the vibration to be analyzed is, for example, mechanical vibration. However, the vibration may be a vibration of sound or electromagnetic waves in addition to the mechanical vibration.
 (項目2)
 前記多次元ベクトルデータは、前記振動データに対するウエーブレット変換によって生成されたものである
 項目1に記載の振動解析装置。
(Item 2)
The vibration analysis apparatus according to item 1, wherein the multidimensional vector data is generated by wavelet transform on the vibration data.
 (項目3)
 前記多次元ベクトルデータは、前記振動データに対する短時間フーリエ変換によって生成されたものである
 項目1に記載の振動解析装置。
(Item 3)
The vibration analysis apparatus according to item 1, wherein the multidimensional vector data is generated by a short-time Fourier transform on the vibration data.
 (項目4)
 以下のステップを備える振動解析方法
(1)複数の箇所における振動データを取得するステップ;
(2)前記振動データを解析することにより、時間と周波数の関数である多次元ベクトルデータを生成するステップ;
(3)前記多次元ベクトルデータを用いて、複数の独立したベクトルを生成するステップ。
(Item 4)
Vibration analysis method comprising the following steps (1) obtaining vibration data at a plurality of locations;
(2) generating multidimensional vector data that is a function of time and frequency by analyzing the vibration data;
(3) A step of generating a plurality of independent vectors using the multidimensional vector data.
 (項目5)
 項目4に記載の各ステップをコンピュータに実行させるためのコンピュータプログラム。
(Item 5)
A computer program for causing a computer to execute each step according to item 4.
 このコンピュータプログラムは、各種の記録媒体、例えば、磁気的記録媒体(ハードディスクなど)、電気的記録媒体(フラッシュメモリやDRAMなど)、光学的記録媒体(CDやDVDなど)、光磁気的記録媒体(MOなど)に記録することができる。記録媒体の種類はこれらに制約されない。また、このプログラムは、各種の媒体(光ファイバや銅線など)を介して、信号として伝達されることができる。 This computer program can be recorded on various recording media such as a magnetic recording medium (such as a hard disk), an electrical recording medium (such as a flash memory or DRAM), an optical recording medium (such as a CD or DVD), or a magneto-optical recording medium (such as a hard disk). MO etc.). The type of the recording medium is not limited to these. The program can be transmitted as a signal via various media (such as an optical fiber and a copper wire).
 このプログラムは、各種の言語(例えばC言語やアセンブリ言語)により記述されることができる。また、このプログラムは、実行前にコンパイルを要する言語で記述されてもよい。この場合において、このプログラムは、コンパイル前のものであっても、コンパイル後のものであってもよい。 This program can be written in various languages (for example, C language or assembly language). The program may be described in a language that requires compilation before execution. In this case, the program may be a pre-compiled program or a compiled program.
 本発明によれば、振動の時間変化に関する特徴を取得可能な装置及び方法を提供することができる。 According to the present invention, it is possible to provide an apparatus and a method capable of acquiring characteristics related to the temporal change of vibration.
 以下、本発明の一実施形態に係る振動解析装置の構成を、図1に基づいて説明する。本実施形態では、機械的振動を解析する装置の例を示す。 Hereinafter, the configuration of a vibration analysis apparatus according to an embodiment of the present invention will be described with reference to FIG. In this embodiment, an example of an apparatus for analyzing mechanical vibration is shown.
 (振動解析装置の構成)
 本実施形態の振動解析装置は、振動取得部1と、周波数解析部2と、多層因子分析部3とを備えている。
(Configuration of vibration analyzer)
The vibration analysis apparatus according to the present embodiment includes a vibration acquisition unit 1, a frequency analysis unit 2, and a multilayer factor analysis unit 3.
 振動取得部1は、複数の箇所における振動データを取得する構成となっている。振動データとは、例えばある地点における加速度データである。振動データとしては、加速度の他に、速度、変位、高速度カメラによって撮影された画像のデータを用いることができる。振動取得部1としては、加速度データを取得するためには、いわゆる加速度計を用いることができる。 The vibration acquisition unit 1 is configured to acquire vibration data at a plurality of locations. The vibration data is acceleration data at a certain point, for example. As vibration data, in addition to acceleration, data of an image taken by a speed, displacement, and high-speed camera can be used. As the vibration acquisition unit 1, a so-called accelerometer can be used to acquire acceleration data.
 周波数解析部2は、振動取得部1で取得された振動データを解析することにより、時間と周波数の関数である多次元ベクトルデータを生成する構成となっている。具体的には、この実施形態では、振動データに対して複素ウェーブレット変換を施すことにより、多次元ベクトルデータを生成する。 The frequency analysis unit 2 is configured to generate multidimensional vector data that is a function of time and frequency by analyzing the vibration data acquired by the vibration acquisition unit 1. Specifically, in this embodiment, multidimensional vector data is generated by performing complex wavelet transform on vibration data.
 多層因子分析部3は、周波数解析部2で生成された多次元ベクトルデータを用いて、複数の独立したベクトルを生成する構成となっている。ここで、多層因子分析部3により生成された複数のベクトルのうち、少なくとも一つは、振動の時間的特性を表すものとなっている。 The multilayer factor analysis unit 3 is configured to generate a plurality of independent vectors using the multidimensional vector data generated by the frequency analysis unit 2. Here, at least one of the plurality of vectors generated by the multilayer factor analysis unit 3 represents a temporal characteristic of vibration.
 本実施形態の装置における各部の動作は、以下に記載する振動解析方法の説明においてさらに詳しく述べる。 The operation of each part in the apparatus of this embodiment will be described in more detail in the description of the vibration analysis method described below.
 (振動解析方法)
 ついで、本発明の装置を用いた振動解析方法を、図2に示すフローチャートを主に参照しながら説明する。なお、この実施形態における振動解析は、シミュレーションとして行われている。また、この実施形態では、単純支持梁に振動を加えた場合の振動解析を例として説明する。
(Vibration analysis method)
Next, a vibration analysis method using the apparatus of the present invention will be described with reference mainly to the flowchart shown in FIG. Note that the vibration analysis in this embodiment is performed as a simulation. In this embodiment, a vibration analysis when vibration is applied to a simple support beam will be described as an example.
 (図2のSA-1)
 まず、梁に対して振動を加える。梁100は、図3に示されるように、いわゆる単純支持梁となっている。
(SA-1 in FIG. 2)
First, vibration is applied to the beam. As shown in FIG. 3, the beam 100 is a so-called simple support beam.
 この梁100には、点荷重振動f0が加わっているとする。そして、梁100には、5個の、質量を無視できる加速度計11~15が配置されている(図3参照)。これらの加速度計11~15は、本実施形態の振動取得部1を構成している。 It is assumed that the point load vibration f 0 is applied to the beam 100. The beam 100 is provided with five accelerometers 11 to 15 that can ignore mass (see FIG. 3). These accelerometers 11 to 15 constitute the vibration acquisition unit 1 of the present embodiment.
 図3中の左端を基準として、点荷重の位置をlfとする。また、各加速度計11~15の設置位置p1,p2,p3,p4,p5は、梁の長さlbに対して、10, 20, 30, 40 ,50%となっている。また、この例では、梁の長さlbを1mとしている。 The position of the point load is defined as l f with the left end in FIG. 3 as a reference. Also, the installation position p 1 of the accelerometers 11 ~ 15, p 2, p 3, p 4, p 5 , to the length l b of the beam, is 10, 20, 30, 40, 50% Yes. Further, in this example, it has a length l b of the beam and 1 m.
 加えた点荷重により、左端からの距離に応じて、各地点において、たわみの加速度を生じる。このときの、点荷重と加速度との間の伝達関数は、sをラプラス演算子、ωnをn次モードの固有角振動数とすると、式(1)のようになる。 The applied point load causes deflection acceleration at each point according to the distance from the left end. The transfer function between the point load and the acceleration at this time is as shown in Equation (1), where s is the Laplace operator and ω n is the natural angular frequency of the n-th mode.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、knは以下の式によって求められる。 Here, k n is determined by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、梁の諸数値を下記表1に示す。この梁の1次、2次、3次固有振動数は、それぞれ、145.9rad/s(23.2Hz)、583.4rad/s(92.9Hz)、1312.7rad/s(208.9Hz)となる。なお、本実施形態においては、3次モードまでを考慮する。すなわち、N=3として計算を行う。 Here, the numerical values of the beams are shown in Table 1 below. The primary, secondary and tertiary natural frequencies of this beam are 145.9 rad / s (23.2 Hz), 583.4 rad / s (92.9 Hz) and 1312.7 rad / s (208.9 Hz), respectively. In the present embodiment, the third mode is taken into consideration. That is, calculation is performed with N = 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このようにして梁に加えられた振動は、各加速度計11~15により取得され、周波数解析部2に送られる。 The vibration applied to the beam in this way is acquired by each accelerometer 11 to 15 and sent to the frequency analysis unit 2.
 (図2のSA-2及びSA-3)
 ついで、周波数解析部2は、以下のようにして、周波数解析を行う。この実施形態では、周波数解析として、ウェーブレット変換が用いられている。
(SA-2 and SA-3 in FIG. 2)
Next, the frequency analysis unit 2 performs frequency analysis as follows. In this embodiment, wavelet transform is used as frequency analysis.
 本実施形態では、後述する多層因子分析(いわゆるPARAFAC解析)を行う前に、加速度計11~15で取得された各地点での加速度についての時刻歴データに対して、各々にウェーブレット変換を行う。 In this embodiment, before performing multi-layer factor analysis (so-called PARAFAC analysis), which will be described later, wavelet transform is performed on the time history data regarding acceleration at each point acquired by the accelerometers 11 to 15.
 ウェーブレット変換は、1次元の時刻歴データを、「周波数と時間を軸とした2次元のデータ」に変換することができる。各地点の加速度データをs(t)とすると、ウェーブレット変換は以下のように定義される。なお、aはスケール、bはポジションである。 Wavelet transform can convert one-dimensional time history data into “two-dimensional data with frequency and time axes”. If the acceleration data at each point is s (t), the wavelet transform is defined as follows. Here, a is the scale and b is the position.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この式(3)においてΨ(t)は、マザーウェーブレットを表す。マザーウェーブレットとしては、様々なものが提案されているが、本実施形態では、複素Morletを用いた。複素Morletは、周波数を定義しやすく、正弦、余弦波から構成されているという特徴があり、以下の式(4)のように表わされる。式(4)において、fbは帯域幅パラメータ、fcは中心周波数である。ここではfb=2、fc=1とした。 In this equation (3), Ψ (t) represents a mother wavelet. Various mother wavelets have been proposed. In this embodiment, a complex Morlet is used. Complex Morlet has a feature that it is easy to define a frequency and is composed of sine and cosine waves, and is represented by the following equation (4). In equation (4), f b is a bandwidth parameter and f c is a center frequency. Here, f b = 2 and f c = 1.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 データtが間隔dtの時刻歴データとすると、スケールaは、以下の式(5)によって、周波数f(Hz)に変換される。これにより、周波数f、時間t、空間pの複素多次元のデータ行列S(Nf x Nt x Np)(本発明における「多次元データ行列」の一例に対応)を求めることができる(ステップSA-3)。 If the data t is time history data with an interval dt, the scale a is converted to a frequency f (Hz) by the following equation (5). Thereby, a complex multidimensional data matrix S (N f x N t x N p ) of frequency f, time t, and space p (corresponding to an example of the “multidimensional data matrix” in the present invention) can be obtained ( Step SA-3).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、いわゆるPARAFAC解析は、時変スペクトラムに対して一般に行われている。このため、従来のPARAFAC解析においては、複素多次元のデータ行列の絶対値を解析対象とすることが多い(非特許文献2参照)。しかし、位相情報を残すために、本実施形態では、実部と虚部に分けて、それぞれについてPARAFAC解析を行う。なお、位相情報が不要であれば、実部か虚部のどちらかについてPARAFAC解析を行えば、振動の時間的特徴は解析できる(後述の計算例を参照)。生成された多次元ベクトルデータは、多層因子分析部3に送られる。 Note that so-called PARAFAC analysis is generally performed on time-varying spectrums. For this reason, in the conventional PARAFAC analysis, the absolute value of a complex multidimensional data matrix is often the object of analysis (see Non-Patent Document 2). However, in order to leave the phase information, in this embodiment, the PARAFAC analysis is performed for each of the real part and the imaginary part. If phase information is unnecessary, the temporal characteristics of vibration can be analyzed by performing PARAFAC analysis on either the real part or the imaginary part (see the calculation example described later). The generated multidimensional vector data is sent to the multilayer factor analysis unit 3.
 (図2のSA-4及びSA-5)
 多層因子分析部3では、多次元ベクトルデータに対して、多層因子分析(いわゆるPARAFAC解析)を行う。PARAFAC解析の概略イメージを図4に示す。
(SA-4 and SA-5 in FIG. 2)
The multilayer factor analysis unit 3 performs multilayer factor analysis (so-called PARAFAC analysis) on the multidimensional vector data. A schematic image of PARAFAC analysis is shown in FIG.
 ここで、多次元のデータ行列S(Nf x Nt x Np)の要素をSftpとし、以下の式であらわされるような、afk,btk,cpkを要素とする独立した三つのベクトルaf,bt,cpに分離することを考える。ここで、kは因子、Nkは因子数を表す。 Here, the elements of the multidimensional data matrix S (N f x N t x N p ) are S ftp, and independent three elements having a fk , b tk , and c pk as elements represented by the following expressions: Consider separating into two vectors a f , b t and c p . Here, k represents a factor, and N k represents the number of factors.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 しかし、一般的な多次元データ行列は、式(6)のようなベクトルに分解できるとは限らない。求めるべきデータ行列の要素をSハットpftとすると、以下の残差εを最小にするよう、交互最小(Alternating least squares)法により、 afk,btk,cpkを求めることになる。このようにして、多次元のデータ行列を多数のベクトルに分離する処理を PARAFAC解析と呼ぶ。 However, a general multidimensional data matrix cannot always be decomposed into a vector such as Equation (6). If the element of the data matrix to be obtained is S hat pft , a fk , b tk , and c pk are obtained by the alternating least squares method so as to minimize the following residual ε. The process of separating a multidimensional data matrix into a number of vectors in this way is called PARAFAC analysis.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、得られた独立のベクトルafkは振動の周波数的特徴を、btkは時間的特徴を、cpkは空間的特徴を表すことになる(この点はさらに後述する)。これらの特徴は、それぞれ、 frequency profile,temporal profile,spatial profileとも呼ばれる。本実施形態で扱う多次元データ行列の要素は複素数である。そこで、実数成分で構成されるSrftpと、虚数成分で構成されるSiftpに分け、それぞれに対して、PARAFAC解析を行う(ステップSA-4及びステップSA-6)。虚数成分については、ステップSA-6において後述する。 Here, the obtained independent vector a fk represents a frequency characteristic of vibration, b tk represents a temporal characteristic, and c pk represents a spatial characteristic (this point will be further described later). These features are also called frequency profile, temporal profile, and spatial profile, respectively. The elements of the multidimensional data matrix handled in this embodiment are complex numbers. Therefore, it is divided into Sr ftp composed of real components and Si ftp composed of imaginary components, and PARAFAC analysis is performed on each of them (step SA-4 and step SA-6). The imaginary component will be described later in step SA-6.
 ここで、PARAFAC解析を行う際には、適切な因子数Nkを決める必要がある。つまり、いくつのベクトルに分離するかを決める必要がある。因子数を増やせば残差が減少するが、多すぎると過剰に適合してしまうため、適切な数を決める必要がある。以下の式(8)に示すCore consistencyにより適応した因子数を導出する方法が一般的に適用可能である。 Here, when performing PARAFAC analysis, it is necessary to determine an appropriate number of factors N k . In other words, it is necessary to decide how many vectors to separate. Increasing the number of factors will reduce the residual, but too much will fit too much, so you need to decide on an appropriate number. The method of deriving the number of factors adapted by the Core consistency shown in the following formula (8) is generally applicable.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、Tftpは、予測された3相因子分析モデル(Tucker3)の要素を表す(非特許文献7参照)。これは、PARAFACによって計算された要素と予測されたTucker3の要素との整合性を示し、理想的な因子数で分解した場合は100%になる。要素数が少ない時は100%に近い値となるが、増えていくにつれて、ある数を境に急激に0%近くまで減少する。100%に近い値を取るように、要素数を選択する必要がある。 Here, T ftp represents an element of the predicted three-phase factor analysis model (Tucker3) (see Non-Patent Document 7). This shows the consistency between the elements calculated by PARAFAC and the predicted Tucker3 elements, and is 100% when decomposed by the ideal factor number. When the number of elements is small, the value is close to 100%, but as the number increases, it decreases rapidly to near 0% at a certain number. It is necessary to select the number of elements to take a value close to 100%.
 このようにして、独立した三つのベクトルarfk,brtk,crpkを得ることができる(図2のSA-5)。 In this way, three independent vectors ar fk , br tk , cr pk can be obtained (SA-5 in FIG. 2).
 (図2のSA-6及びSA-7)
 前記のSA-4及びSA-5と同様に、多次元ベクトルデータの虚数部分を対象とすることにより、独立した三つのベクトルaifk,bitk,cipkを得ることができる。
(SA-6 and SA-7 in FIG. 2)
Similar to SA-4 and SA-5, three independent vectors aifk , bitk , and cipk can be obtained by targeting the imaginary part of the multidimensional vector data.
 実数成分と虚数成分の2乗和の平方根を計算することにより、振動の大きさ(振幅)を見ることができる。 The magnitude (amplitude) of the vibration can be seen by calculating the square root of the square sum of the real and imaginary components.
 (計算例)
 以下、計算例を用いてさらに具体的な例を説明する。
(Calculation example)
Hereinafter, more specific examples will be described using calculation examples.
 (ランダム波入力)
 まず、梁100に対して、図5に示すような点荷重(振動)を入力した。荷重の時間間隔は0.1msであり、振幅を変えながら、8192回の荷重を行った。つまり、この例では、荷重信号が、8192個の荷重データを有することになる。この荷重信号は、乱数を用いて作成した白色雑音を、下記式(9)のフィルタW(s)に通すことで求められたものである。すなわち、この信号においては、高周波になるにつれて振幅が小さくなるという、いわゆる1/f揺らぎに近い荷重(外力)を得ることができる。なお、カットオフ周波数ωcは20πrad/sとした。
(Random wave input)
First, a point load (vibration) as shown in FIG. The load time interval was 0.1 ms, and 8192 loads were performed while changing the amplitude. In other words, in this example, the load signal has 8192 pieces of load data. This weight signal is obtained by passing white noise created using random numbers through a filter W (s) of the following equation (9). That is, in this signal, it is possible to obtain a load (external force) close to a so-called 1 / f fluctuation that the amplitude decreases as the frequency becomes higher. The cut-off frequency ω c was 20π rad / s.
 図6に、図5に示す外力を梁100に加えた時の各地点における加速度を示す(図2のステップSA-1に相当)。図6の上から順に、地点p1からp5での加速度を示している。なお、この計算例では、観察雑音を模擬するため、図6に示す加速度に白色雑音を混入している。 FIG. 6 shows the acceleration at each point when the external force shown in FIG. 5 is applied to the beam 100 (corresponding to step SA-1 in FIG. 2). The accelerations at points p 1 to p 5 are shown in order from the top of FIG. In this calculation example, white noise is mixed in the acceleration shown in FIG. 6 in order to simulate the observation noise.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ついで、これらの観測された加速度に対して複素ウェーブレット変換を行った(図2のステップSA-2に相当)。これにより、複素データ行列S(Nf x Nt x Np)を求めることができる。この複素データ行列における各要素の絶対値、すなわち振幅を図7に示す。上から順に、地点p1からp5での加速度を示す。この図における縦軸は、周波数を指数で表している。すなわち、1は10Hz、2は100Hzを示している。また、黒から白に変化していくにつれて、値が大きくなっていく。すなわち、白い箇所が、大きな振動が存在することを表している。この変換の結果、1次、2次、3次固有振動数(23.2, 92.9, 208.9Hz)付近に振動が存在することがわかる。 Subsequently, a complex wavelet transform was performed on these observed accelerations (corresponding to step SA-2 in FIG. 2). Thereby, the complex data matrix S (N f x N t x N p ) can be obtained. FIG. 7 shows the absolute value, that is, the amplitude of each element in this complex data matrix. The acceleration at points p 1 to p 5 is shown in order from the top. The vertical axis in this figure represents the frequency as an index. That is, 1 indicates 10 Hz and 2 indicates 100 Hz. The value increases as the color changes from black to white. That is, a white portion indicates that a large vibration exists. As a result of this conversion, it can be seen that there are vibrations near the primary, secondary, and tertiary natural frequencies (23.2, 92.9, 208.9 Hz).
 ついで、複素データ行列を実数部と虚数部に分け、因子数3でPARAFAC解析を行った(図2のステップSA-4とSA-6とに相当)。図8は周波数的特徴を表している。図8の上の図が実数部についての結果を示し、下の図が虚数部についての結果を示している。ピークに達している周波数を見れば、実数部および虚数部ともに、三つのベクトルaf1,af2,af3がそれぞれ、2次モード、1次モード、3次モードを表していることが容易にわかる。なお、図中において添え字のrとiはそれぞれ実数部と虚数部に対応することを示している。 Next, the complex data matrix was divided into a real part and an imaginary part, and PARAFAC analysis was performed with a factor of 3 (corresponding to steps SA-4 and SA-6 in FIG. 2). FIG. 8 shows the frequency characteristics. The upper diagram in FIG. 8 shows the result for the real part, and the lower diagram shows the result for the imaginary part. Looking at the peaking frequency, it is easy to see that the three vectors a f1 , a f2 , and a f3 represent the second-order mode, first-order mode, and third-order mode for both the real and imaginary parts. Recognize. In the figure, the subscripts r and i correspond to the real part and the imaginary part, respectively.
 この計算例でのCore consistencyは、実数部及び虚数部のどちらにおいても100%であり、因子数は適切である。なお、3次モードまでしか考慮していない数値計算であるため、因子数を3にすることが最良であることは容易に察することができるが、例えば、因子数を4としてPARAFAC処理を行うと、実部は88.6%、虚部は86.1%に低下する。実験等においてモード数が未知の場合でも、本解析手法に適切な因子数を探索することが可能である。 «Core consistency in this calculation example is 100% in both the real and imaginary parts, and the number of factors is appropriate. In addition, since it is a numerical calculation that only considers up to the third-order mode, it can easily be seen that it is best to set the number of factors to 3, but for example, when performing PARAFAC processing with the number of factors set to 4 The real part drops to 88.6% and the imaginary part drops to 86.1%. Even if the number of modes is unknown in experiments or the like, it is possible to search for a suitable number of factors for this analysis method.
 図9と図10とは、それぞれ、実数部および虚数部の時間的特徴を表している。これらの図においては、上から順に、bt1,bt2,bt3を表し、それぞれ、2次モード、1次モード、3次モードの波形を示している。添え字のrとiの意味は前記と同様である。実数部と虚数部においては、位相差があること以外には大きな差はない。これらの図によれば、各モードの表れる強さの時間変化が良く理解できる。 FIG. 9 and FIG. 10 represent temporal characteristics of the real part and the imaginary part, respectively. In these drawings, b t1 , b t2 , and b t3 are represented in order from the top, and waveforms of the secondary mode, the primary mode, and the tertiary mode are shown, respectively. The meanings of the subscripts r and i are the same as described above. There is no significant difference between the real part and the imaginary part except that there is a phase difference. According to these figures, it is possible to understand well the time change of the strength in which each mode appears.
 図11は実数部の空間的特徴を表す。上から順に、crp1,crp2,crp3を表し、それぞれ、2次、1次、3次のモード形状を示している。梁の長さは1mであり、図11は梁の左半分のみを表していることを考えると、本実施形態の振動解析により適切なモード形状を得られることがわかる。なお、虚数部においても同様の結果が得られる(図示省略)。 FIG. 11 shows the spatial characteristics of the real part. In order from the top, cr p1 , cr p2 , and cr p3 are represented, and the second, first, and third-order mode shapes are shown, respectively. Considering that the length of the beam is 1 m and FIG. 11 represents only the left half of the beam, it can be seen that an appropriate mode shape can be obtained by the vibration analysis of this embodiment. The same result is obtained for the imaginary part (not shown).
 (データ復元)
 本実施形態における振動解析の妥当性を考えるため、解析結果を用いて、梁に加えた振動データの復元を試みる。PARAFAC解析より得られたベクトルafk,btk,cpkを、前記した式(6)に従って乗算し、得られた実数部と虚数部の二乗和平方根を計算する。これにより、図7と同様のデータを復元できる。復元結果を図12に示す。図12に示す結果を図6のデータと比較すると、両者はほとんど変わらない結果となっている。むしろ、図12に示された結果によれば、雑音が除外されて、注目するモードのみを抽出した結果となっている。
(Data recovery)
In order to consider the validity of the vibration analysis in this embodiment, an attempt is made to restore vibration data applied to the beam using the analysis result. The vectors a fk , b tk , and c pk obtained from the PARAFAC analysis are multiplied according to the above equation (6), and the square sum of squares of the obtained real part and imaginary part is calculated. Thereby, data similar to that in FIG. 7 can be restored. The restoration result is shown in FIG. When the results shown in FIG. 12 are compared with the data of FIG. 6, the results are almost the same. Rather, according to the result shown in FIG. 12, noise is excluded and only the mode of interest is extracted.
 (チャープ入力を用いた計算例)
 ついで、振動の入力としてチャープを用いた場合の計算例を以下において説明する。チャープとは、時間とともに周波数が変化していく振動である。以下の計算例では、前記した計算例と同様に、振動として加速度を取得して解析を行う。
(Calculation example using chirp input)
Next, a calculation example when chirp is used as an input of vibration will be described below. Chirp is a vibration whose frequency changes with time. In the following calculation example, the acceleration is acquired as the vibration and the analysis is performed as in the above calculation example.
 図13に、チャープ形状の点荷重を示す。シミュレーションにおいて振動を加える時間(0秒から0.8191秒)の間に、この振動の周波数は、1Hzから300Hzまで線形に変化する。また、振幅は4e-t/0.4085とし、時間の経過とともに、小さくなっていくようにした。 FIG. 13 shows a chirp-shaped point load. During the time to apply vibration in the simulation (from 0 to 0.8191 seconds), the frequency of this vibration varies linearly from 1 Hz to 300 Hz. The amplitude was 4e- t / 0.4085, and it was made smaller with time.
 図14に、図13に示す外力を加えた時の、各地点における加速度を示す。図14の上から順に、地点p1からp5での加速度を示している。低周波から周波数をスイープさせながら振動を加えている、1次モードから3次モードまでが順に出現する。なお、この場合も、観察雑音を模擬するため、加速度の値に白色雑音を混入している。 FIG. 14 shows the acceleration at each point when the external force shown in FIG. 13 is applied. The accelerations at points p 1 to p 5 are shown in order from the top of FIG. From the first mode to the third mode, in which vibration is applied while sweeping the frequency from the low frequency, appears in order. In this case as well, white noise is mixed in the acceleration value in order to simulate the observation noise.
 これら観測された加速度に対して複素ウェーブレット変換を行った。変換結果の絶対値を図15に示す。図15においては、上から順に、地点p1からp5での加速度を示す。これらによれば、1次、2次及び3次の各固有振動数(23.2, 92.9, 208.9Hz)付近の振動が順に出現していることがわかる。 Complex wavelet transform was performed on these observed accelerations. The absolute value of the conversion result is shown in FIG. In FIG. 15, the acceleration at points p 1 to p 5 is shown in order from the top. According to these, it can be seen that vibrations in the vicinity of the primary, secondary and tertiary natural frequencies (23.2, 92.9, 208.9 Hz) appear in order.
 その後、因子数3でPARAFAC解析を行い、3個のコンポーネントに分解した。図16には、周波数的特徴を示す三つのベクトルaf1,af2,af3を示しており、これらは、それぞれ、2次モード、1次モード、3次モードを表している。なお、図16における上の図は実部、下の図は虚部の結果を表している。 After that, PARAFAC analysis was performed with a factor of 3, and it was decomposed into 3 components. FIG. 16 shows three vectors a f1 , a f2 , and a f3 indicating frequency characteristics, and these represent the secondary mode, the primary mode, and the tertiary mode, respectively. In addition, the upper figure in FIG. 16 represents the result of the real part, and the lower figure represents the result of the imaginary part.
 図17と18は、時間的特徴を示す三つのベクトルbt1,bt2,bt3を、実部および虚部のそれぞれについて示している。添え字のrとiの意味は前記と同様である。これらの図において、1次モード(bt2)は、最初から表れて次第に減衰している。これに対して、2次(bt1)、3次モード(bt3)については、順次、時間が経過した後に表れている。本実施形態の解析手法により、各モードが表れる時間を明確にすることができる。図19は、空間的特徴を示す実部のベクトルcrt1,crt2,crt3を示している。これらによれば、各モードにおける空間的な変位(形状)をとらえていることが判る。虚部も同様の結果となる(図示省略)。 FIGS. 17 and 18 show three vectors b t1 , b t2 , and b t3 indicating temporal characteristics for the real part and the imaginary part, respectively. The meanings of the subscripts r and i are the same as described above. In these figures, the first-order mode (b t2 ) appears from the beginning and gradually attenuates. On the other hand, the secondary mode (b t1 ) and the tertiary mode (b t3 ) appear after the elapse of time. With the analysis method of the present embodiment, the time in which each mode appears can be clarified. FIG. 19 shows real-part vectors cr t1 , cr t2 , cr t3 indicating spatial features. These show that the spatial displacement (shape) in each mode is captured. The same result is obtained for the imaginary part (not shown).
 本計算例での解析より得られたベクトル、afk,btk,cpkを、前記した式(6)の通りに乗じ、実数部と虚数部の二乗和平方根を計算した。これにより、図15の特性を復元できるはずである。図20にその計算結果を示す。図15の特性を復元できているだけでなく、雑音を除去できており、その結果、注目するモードのみを抽出した図を得ることができた。 The vectors a fk , b tk , and c pk obtained from the analysis in this calculation example were multiplied as in the above equation (6) to calculate the square sum of squares of the real part and the imaginary part. This should be able to restore the characteristics of FIG. FIG. 20 shows the calculation result. Not only can the characteristics of FIG. 15 be restored, but also noise can be removed, and as a result, a diagram in which only the mode of interest is extracted can be obtained.
 本計算例においても、固有周波数と、モード形状と、支配的なモードの時間変化とを、明確に求めることができた。  In this calculation example, the natural frequency, the mode shape, and the temporal change of the dominant mode were clearly obtained.
 本実施形態に記載の解析手法は、コンピュータにおいて実行可能なコンピュータプログラムを用いることにより、コンピュータによって実行することが可能である。 The analysis technique described in the present embodiment can be executed by a computer by using a computer program that can be executed by the computer.
 なお、前記実施形態及び実施例の記載は単なる一例に過ぎず、本発明に必須の構成を示したものではない。各部の構成は、本発明の趣旨を達成できるものであれば、上記に限らない。 Note that the description of the embodiment and the examples is merely an example, and does not indicate a configuration essential to the present invention. The configuration of each part is not limited to the above as long as the gist of the present invention can be achieved.
 例えば、前記した各機能要素は、機能ブロックとして存在していればよく、独立したハードウエアとして存在しなくても良い。また、実装方法としては、ハードウエアを用いてもコンピュータソフトウエアを用いても良い。さらに、本発明における一つの機能要素が複数の機能要素の集合によって実現されても良く、本発明における複数の機能要素が一つの機能要素により実現されても良い。 For example, each functional element described above only needs to exist as a functional block, and does not need to exist as independent hardware. As a mounting method, hardware or computer software may be used. Furthermore, one functional element in the present invention may be realized by a set of a plurality of functional elements, and a plurality of functional elements in the present invention may be realized by one functional element.
 また、機能要素は、物理的に離間した位置に配置されていてもよい。この場合、機能要素どうしがネットワークにより接続されていても良い。グリッドコンピューティングにより機能を実現し、あるいは機能要素を構成することも可能である。 Further, the functional elements may be arranged at physically separated positions. In this case, the functional elements may be connected by a network. It is also possible to realize functions or configure functional elements by grid computing.
 また、前記実施形態では、梁に加わる振動を例として説明したが、梁以外の対象物に加わる振動を解析することもできる。また、解析対象となる振動として、前記の実施形態では、機械的な振動を対象としたが、これに限らず、音響の振動や電磁波の振動を解析することも原理的には可能である。 In the above embodiment, the vibration applied to the beam has been described as an example. However, the vibration applied to an object other than the beam can also be analyzed. Further, in the above-described embodiment, mechanical vibration is targeted as the analysis target. However, the present invention is not limited to this, and it is also possible in principle to analyze acoustic vibration and electromagnetic wave vibration.
 また、前記実施形態では、振動データの解析において、ウェーブレット変換を用いたが、これに限らず、短時間フーリエ変換を用いることも可能である。要するに、周波数解析部は、振動データに基づいて、時間と周波数の関数である多次元ベクトルデータを生成できるものであればよい。 In the embodiment, the wavelet transform is used in the analysis of the vibration data. However, the present invention is not limited to this, and a short-time Fourier transform can also be used. In short, the frequency analysis unit only needs to be able to generate multidimensional vector data that is a function of time and frequency based on vibration data.
 また、前記実施形態では複素ウェーブレット変換によって実部と虚部とをそれぞれ生成し、それぞれについてPARAFAC解析を行っている。しかしながら、位相情報が不要であれば、ウェーブレット変換によって実部か虚部のいずれかのみ、もしくは絶対値、すなわち実部の二乗と虚部の二乗の和の平方根を生成し、これに対してPARAFAC解析を行うことも可能である。ただし、位相情報が失われると、PARAFAC解析で得られたデータから元のデータを復元することが難しくなる。 In the above embodiment, the real part and the imaginary part are respectively generated by the complex wavelet transform, and the PARAFAC analysis is performed for each. However, if phase information is not required, wavelet transform generates either the real part or the imaginary part, or the absolute value, that is, the square root of the sum of the square of the real part and the square of the imaginary part. Analysis is also possible. However, if the phase information is lost, it becomes difficult to restore the original data from the data obtained by PARAFAC analysis.
本発明の一実施形態に係る振動解析装置の概略的な構成を説明するためのブロック図である。It is a block diagram for demonstrating the schematic structure of the vibration analyzer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る振動解析方法の全体的な流れを説明するためのフローチャートである。It is a flowchart for demonstrating the whole flow of the vibration analysis method which concerns on one Embodiment of this invention. 振動を加える梁の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the beam which adds a vibration. 本実施形態において用いるPARAFAC解析の手法を説明するための説明図である。It is explanatory drawing for demonstrating the method of the PARAFAC analysis used in this embodiment. 梁に加わる振動の一例を示すグラフである。It is a graph which shows an example of the vibration added to a beam. 各計測地点で計測された振動をそれぞれ示すグラフである。It is a graph which shows the vibration measured at each measurement point, respectively. 各計測データに対するウェーブレット変換の結果をそれぞれ示すグラフである。It is a graph which shows the result of the wavelet transformation with respect to each measurement data, respectively. 周波数的な特徴を示すベクトルの変化を示すグラフである。上のグラフは実部についての結果を示しており、下のグラフは虚部についての結果を示している。It is a graph which shows the change of the vector which shows a frequency characteristic. The upper graph shows the result for the real part, and the lower graph shows the result for the imaginary part. 振動の時間的な特徴を示すベクトル(実部)を示すグラフである。It is a graph which shows the vector (real part) which shows the time characteristic of a vibration. 振動の時間的な特徴を示すベクトル(虚部)を示すグラフである。It is a graph which shows the vector (imaginary part) which shows the time characteristic of a vibration. 振動の空間的な特徴を示すベクトルを示すグラフである。It is a graph which shows the vector which shows the spatial feature of a vibration. PARAFAC解析の結果を用いて再構築されたウエーブレット変換データを示すグラフである。It is a graph which shows the wavelet transformation data reconstructed using the result of PARAFAC analysis. 本実施形態において入力される振動をチャープ形状にした場合に、梁に加えられる振動データを示すグラフである。It is a graph which shows the vibration data added to a beam when the vibration input in this embodiment is made into a chirp shape. 図13の例において、各計測地点で計測された振動をそれぞれ示すグラフである。In the example of FIG. 13, it is a graph which each shows the vibration measured at each measurement point. 図13の例において、各計測データに対するウェーブレット変換の結果をそれぞれ示すグラフである。In the example of FIG. 13, it is a graph which each shows the result of the wavelet transformation with respect to each measurement data. 図13の例において、周波数的な特徴を示すベクトルの変化を示すグラフである。上のグラフは実部についての結果を示しており、下のグラフは虚部についての結果を示している。In the example of FIG. 13, it is a graph which shows the change of the vector which shows a frequency characteristic. The upper graph shows the result for the real part, and the lower graph shows the result for the imaginary part. 図13の例において、振動の時間的な特徴を示すベクトル(実部)を示すグラフである。In the example of FIG. 13, it is a graph which shows the vector (real part) which shows the time characteristic of a vibration. 図13の例において、振動の時間的な特徴を示すベクトル(虚部)を示すグラフである。In the example of FIG. 13, it is a graph which shows the vector (imaginary part) which shows the time characteristic of a vibration. 図13の例において、振動の空間的な特徴を示すベクトルを示すグラフである。In the example of FIG. 13, it is a graph which shows the vector which shows the spatial characteristic of a vibration. 図13の例において、PARAFAC解析の結果を用いて再構築されたウエーブレット変換データを示すグラフである。In the example of FIG. 13, it is a graph which shows the wavelet transformation data reconfigure | reconstructed using the result of the PARAFAC analysis.

Claims (5)

  1.  振動取得部と、周波数解析部と、多層因子分析部とを備えており、
     前記振動取得部は、複数の箇所における振動データを取得する構成となっており、
     前記周波数解析部は、前記振動データを解析することにより、時間と周波数の関数である多次元ベクトルデータを生成する構成となっており、
     前記多層因子分析部は、前記多次元ベクトルデータを用いて、複数の独立したベクトルを生成する構成となっている
     ことを特徴とする振動解析装置。
    It has a vibration acquisition unit, a frequency analysis unit, and a multilayer factor analysis unit,
    The vibration acquisition unit is configured to acquire vibration data at a plurality of locations,
    The frequency analysis unit is configured to generate multidimensional vector data that is a function of time and frequency by analyzing the vibration data,
    The multi-layer factor analysis unit is configured to generate a plurality of independent vectors using the multidimensional vector data.
  2.  前記多次元ベクトルデータは、前記振動データに対するウエーブレット変換によって生成されたものである
     請求項1に記載の振動解析装置。
    The vibration analysis apparatus according to claim 1, wherein the multidimensional vector data is generated by wavelet transform on the vibration data.
  3.  前記多次元ベクトルデータは、前記振動データに対する短時間フーリエ変換によって生成されたものである
     請求項1に記載の振動解析装置。
    The vibration analysis apparatus according to claim 1, wherein the multidimensional vector data is generated by a short-time Fourier transform on the vibration data.
  4.  以下のステップを備える振動解析方法
    (1)複数の箇所における振動データを取得するステップ;
    (2)前記振動データを解析することにより、時間と周波数の関数である多次元ベクトルデータを生成するステップ;
    (3)前記多次元ベクトルデータを用いて、複数の独立したベクトルを生成するステップ。
    Vibration analysis method comprising the following steps (1) obtaining vibration data at a plurality of locations;
    (2) generating multidimensional vector data that is a function of time and frequency by analyzing the vibration data;
    (3) A step of generating a plurality of independent vectors using the multidimensional vector data.
  5.  請求項4に記載の各ステップをコンピュータに実行させるためのコンピュータプログラム。 A computer program for causing a computer to execute each step according to claim 4.
PCT/JP2009/064496 2008-08-22 2009-08-19 Oscillation analysis device and oscillation analysis method WO2010021336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008213549A JP2010048684A (en) 2008-08-22 2008-08-22 Vibration analyzer and vibration analysis method
JP2008-213549 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021336A1 true WO2010021336A1 (en) 2010-02-25

Family

ID=41707212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064496 WO2010021336A1 (en) 2008-08-22 2009-08-19 Oscillation analysis device and oscillation analysis method

Country Status (2)

Country Link
JP (1) JP2010048684A (en)
WO (1) WO2010021336A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538951A (en) * 2011-12-30 2012-07-04 中国人民解放军后勤工程学院 Method for detecting self restoring effect of self restoring additives
JP6535208B2 (en) * 2015-05-12 2019-06-26 株式会社豊田中央研究所 Structure identification device for vibration analysis model and identification method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the IEICE Conference", vol. 2003, 10 September 2003, article FUMIKAZU MIWAKEICHI ET AL.: "Parallel Factor Analysis ni yoru Noha no Kukan/Jikan/Shuhasu Seibun Bunkai to Shingo no Chushutsu", pages: 62 *
RASMUS BRO, PARAFAC. TUTORIAL AND APPLICATIONS, CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, vol. 38, no. ISSUE, October 1997 (1997-10-01), pages 149 - 171 *

Also Published As

Publication number Publication date
JP2010048684A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
Pezerat et al. Force analysis technique: reconstruction of force distribution on plates
JP2009543050A (en) Modal parameter estimation method and apparatus
Quqa et al. Seismic structural health monitoring using the modal assurance distribution
WO2010021336A1 (en) Oscillation analysis device and oscillation analysis method
KR101543146B1 (en) Method for estimating state of vibration machine
Omar et al. An optimized rational fraction polynomial approach for modal parameters estimation from FRF measurements
CN101360979B (en) Non-invasive vibro-acoustic analysis
JP6477411B2 (en) Analysis program
Trapp et al. Characterizing non-Gaussian vibration loading using the trispectrum
JP6808597B2 (en) Signal separation device, signal separation method and program
Russotto et al. OMA: From research to engineering applications
Grappasonni et al. Subspace and nonlinear-normal-modes-based identification of a beam with softening-hardening behaviour
JP7476150B2 (en) Diagnostic method, diagnostic device, and diagnostic program
Şahin et al. Forced-vibration testing and experimental modal analysis of a steel footbridge for structural identification
JP5713964B2 (en) Sound field recording / reproducing apparatus, method, and program
JP6804554B2 (en) Signal feature extraction device, signal feature extraction method, and program
Elahi et al. Automating the Frequency Domain Decomposition Technique Using the Modal Assurance Criterion
Bhowmik Improved single-sensor-based modal identification using singular spectrum analysis
KR101501228B1 (en) Apparatus and method for bsr noise generation
Xu et al. Theoretical formulation/development of signal sampling with an equal arc length using the frame theorem
TWI841995B (en) Signal source separation system, signal source separation method and computer programe product
JP7338188B2 (en) Acoustic property measuring device, acoustic property measuring method, and acoustic property measuring program
JP5741866B2 (en) Sound field recording / reproducing apparatus, method, and program
DE102012208485A1 (en) Wave field analysis methods
Gopalakrishnan et al. Signal Processing Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808272

Country of ref document: EP

Kind code of ref document: A1