WO2010021227A1 - Organism condition analyzer, computer program, and recording medium - Google Patents

Organism condition analyzer, computer program, and recording medium Download PDF

Info

Publication number
WO2010021227A1
WO2010021227A1 PCT/JP2009/063390 JP2009063390W WO2010021227A1 WO 2010021227 A1 WO2010021227 A1 WO 2010021227A1 JP 2009063390 W JP2009063390 W JP 2009063390W WO 2010021227 A1 WO2010021227 A1 WO 2010021227A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
slope
order differential
time
sleep onset
Prior art date
Application number
PCT/JP2009/063390
Other languages
French (fr)
Japanese (ja)
Inventor
悦則 藤田
由美 小倉
慎一郎 前田
重行 小島
Original Assignee
株式会社デルタツーリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デルタツーリング filed Critical 株式会社デルタツーリング
Publication of WO2010021227A1 publication Critical patent/WO2010021227A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles

Definitions

  • the present invention relates to a technique for analyzing a state of a living body by detecting a biological signal, and more particularly, to a biological state analyzing apparatus, a computer program, and a recording medium using an air cushion capable of non-invasively detecting a biological signal.
  • Patent Document 1 In recent years, monitoring the biological state of a driver during driving has attracted attention as an accident prevention measure.
  • the present applicant also includes an air bag in which a restoring force imparting member is inserted.
  • the air bag is disposed at a portion corresponding to, for example, a human waist, and the air pressure variation of the air bag is measured.
  • a system for detecting a human biological signal from the obtained time-series data of air pressure fluctuation and analyzing the state of the human biological body is disclosed.
  • Non-Patent Documents 1 and 2 also report attempts to detect human biological signals by arranging an air pack sensor along the lumbar gluteal muscles.
  • JP 2007-90032 A "Application of biological fluctuation signals measured by non-invasive sensors to fatigue and sleep prediction", Naoki Ochiai (6 others), 39th Annual Meeting of the Japan Ergonomics Society, Chugoku-Shikoku Branch, 2006 Issued on May 25, Publisher: Japan Ergonomics Society Chugoku-Shikoku Branch Office "Prototype of vehicle seat with non-invasive biological signal sensing function", Shinichiro Maeda (4 others), 39th Japan Ergonomics Society China-Shikoku Branch Conference, Proceedings, November 25, 2006 Place: Japan Ergonomics Society Chugoku / Shikoku Branch Office
  • Patent Document 1 and Non-Patent Documents 1 and 2 a pulse wave of an artery (aorta) near the lumbar region is detected, and time series signal data of the obtained pulse wave is used.
  • the biological state is analyzed by detecting a sleep symptom signal by the method proposed in -344612. More specifically, the detection of the onset of sleep signal is performed by obtaining the maximum value and the minimum value of the time-series signal data of the pulse wave by the smoothing differentiation method using Savitzky and Golay, respectively. Then, the maximum value and the minimum value are divided every 5 seconds, and the average value of each is obtained.
  • the square of the difference between the average values of the obtained local maximum and local minimum is used as a power value, and this power value is plotted every 5 seconds to create a time series waveform of the power value.
  • the slope of the power value is obtained by the least square method for a certain time width Tw (180 seconds).
  • Tw time width
  • Tw time width
  • Tl overlap time
  • chaos analysis is performed on pulse wave time series signal data to obtain the maximum Lyapunov exponent, and as above, the maximum and minimum values are obtained by smoothing differentiation, and the time series of the slope of the maximum Lyapunov exponent is obtained by slide calculation. Get the waveform.
  • the time series waveform of the power value slope and the time series waveform of the power value slope and the time series waveform of the maximum Lyapunov exponent slope are in opposite phases, and further, the power value A waveform having a low frequency and a large amplitude waveform in the time series waveform of the slope is a characteristic signal indicating a sleep onset symptom, and the point at which the amplitude subsequently decreases is the sleep onset point.
  • the present invention has been made in view of the above, and by using time-series signal data of air pressure fluctuations detected by an air cushion disposed at a portion corresponding to a back portion including at least a waist portion of a person, the state of the person than before It is an object of the present invention to provide a biological state analysis apparatus, a computer program, and a recording medium that can accurately analyze the condition.
  • a living body state analyzing apparatus includes a human body support unit that includes a skin member that supports at least the vicinity of a human waist and a cushion support member that is disposed on the back side of the skin member.
  • Time-series signal data of the sensor due to air pressure fluctuation from a biological signal measuring device comprising an air cushion having an air bag incorporated in between and a sensor for detecting air pressure fluctuation of the air bag accompanying an arterial pulse wave
  • a biological state analyzer that processes the time-series signal data and analyzes the state of the person supported by the human body support means, The apparatus has a second-order differential operation means for second-order differentiation of the time series signal data, and processes a second-order differential waveform obtained by the second-order differential operation means to analyze a human state.
  • the biological state analyzer of the present invention further includes an upper limit peak value and a lower limit peak value for each predetermined time range from the peak value of each cycle of the second derivative waveform obtained by the second derivative calculation means.
  • the difference is calculated, and the difference is used as a power value, time series data of the power value is obtained, and the slope of the second-order differential waveform power value obtained by sliding the power value with respect to the time axis in a predetermined time range by a predetermined number of times is calculated.
  • Waveform maximum Lyapunov exponent slope calculation means When the slope time-series waveforms obtained by the second-order differential waveform power value slope calculating means and the second-order differential waveform maximum Lyapunov exponent slope calculating means are overlapped, the two slope time-series waveforms have an antiphase relationship. It is preferable to comprise a second-order differential waveform sleep onset determination means for determining a waveform as a sleep onset signal.
  • the biological state analyzer of the present invention further includes an upper limit peak value and a lower limit peak value for each predetermined time range from the peak value of each period of time series signal data of air pressure fluctuation detected by the air cushion.
  • the original waveform power value slope calculation means for obtaining the time series data of the power value and calculating the slope of the power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times.
  • the time series data of the maximum Lyapunov exponent is obtained, and the original waveform obtained by sliding the slope of the maximum Lyapunov exponent with respect to the time axis in a given time range a predetermined number of times Means for calculating the maximum Lyapunov exponent slope;
  • the respective slope time series waveforms obtained by the original waveform power value slope calculating means and the original waveform maximum Lyapunov exponent slope calculating means are overlapped, a waveform in which the two slope time series waveforms are in an antiphase relationship is displayed.
  • a comparison judgment means for making a comparison judgment It is preferable to comprise warning control means for operating a warning for being awakened according to the comparison results of the ratio determining means.
  • the warning control means of the biological state analyzer of the present invention includes a case in which the comparison judgment means determines a sleep onset symptom signal only by the second order differential waveform sleep onset determination means, and the second order differential waveform sleep onset determination means.
  • the computer program of the present invention includes an air bag incorporated between a skin member of a part of the human body support means that supports at least the vicinity of a human waist and a cushion support member disposed on the back side of the skin member.
  • a biological signal measuring device comprising an air cushion provided and a sensor for detecting air pressure fluctuation of the air bag accompanying a pulse wave of an artery;
  • a computer program introduced into a biological state analyzer that processes signal data and analyzes the state of a person supported by the human body support means,
  • the apparatus has a second-order differential operation means for second-order differentiation of the time series signal data, and processes a second-order differential waveform obtained by the second-order differential operation means to analyze a human state.
  • the computer program of the present invention further calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the second-order differential waveform obtained by the second-order differential calculation means.
  • a second-order differential waveform power value slope calculating means for calculating and calculating time series data of the power value by using this difference as a power value, and calculating a slope of the power value with respect to the time axis in a predetermined time range by sliding a predetermined number of times;
  • Second-order differentiation obtained by obtaining time-series data of the maximum Lyapunov exponent from the second-order differential waveform obtained by the second-order differentiation calculation means and slidingly calculating the slope of the maximum Lyapunov exponent with respect to the time axis in a predetermined time range by a predetermined number of times.
  • Waveform maximum Lyapunov exponent slope calculation means When the slope time-series waveforms obtained by the second-order differential waveform power value slope calculating means and the second-order differential waveform maximum Lyapunov exponent slope calculating means are overlapped, the two slope time-series waveforms have an antiphase relationship. It is preferable to comprise a second-order differential waveform sleep onset determination means for determining a waveform as a sleep onset signal.
  • the computer program of the present invention further includes a difference between a peak value on an upper limit side and a peak value on a lower limit side for each predetermined time range from a peak value of each period of time series signal data of air pressure fluctuation detected by the air cushion.
  • An original waveform power value slope calculating means for obtaining a time value data of the power value and calculating a slope of the power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times, From the time series signal data of the air pressure fluctuation detected by the air cushion, the time series data of the maximum Lyapunov exponent is obtained, and the original waveform obtained by sliding the slope of the maximum Lyapunov exponent with respect to the time axis in a given time range a predetermined number of times Means for calculating the maximum Lyapunov exponent slope;
  • the respective slope time series waveforms obtained by the original waveform power value slope calculating means and the original waveform maximum Lyapunov exponent slope calculating means are overlapped, a waveform in which the two slope time series waveforms are in an antiphase relationship is displayed.
  • a comparison judgment means for making a comparison judgment It is preferable to comprise warning control means for operating a warning for being awakened according to the comparison results of the ratio determining means.
  • the warning control means of the computer program according to the present invention includes a case where, in the comparison and determination means, a sleep onset sign signal is determined only by the second-order differential waveform sleep onset determination means, and the second-order differential waveform sleep onset determination means and the original It is preferable that different types of warnings are made to function depending on whether the sleep onset sign signal is determined in the same time period in both of the waveform sleep onset determination means.
  • the present invention also provides a computer-readable recording medium on which the computer program is recorded.
  • a second-order differential calculation means for performing second-order differentiation on the time-series signal data of the air pressure fluctuation detected by the air cushion, and the second-order differential waveform obtained by the second-order differential calculation means is processed to produce a human Analyze the condition.
  • the time-series signal data of air pressure fluctuation detected from the air cushion is due to the arterial pulse wave.
  • second-order differentiation of this changes in the waveform of the time-series signal data, especially changes in high-frequency components, are emphasized. Is done.
  • the time series waveform obtained by second-order differentiation emphasizes the high-frequency component, so that the time series of the fingertip volume pulse wave, which is a peripheral pulse wave, is used.
  • the arterial pulse wave itself and the second-order differential waveform approximating the fingertip volume pulse wave can be used together, and only the arterial pulse wave is obtained. However, it is possible to analyze the biological state with higher accuracy.
  • the detection of the sleep signal by the fingertip volume pulse wave is more sensitive than the sleep signal by the arterial pulse wave. Therefore, when a sleep onset predictor signal is detected only from the time-series waveform of the arterial pulse wave obtained by second-order differentiation corresponding to the fingertip volume pulse wave, the sleep onset predictor signal is a sleep signal from the awakening stage. It seems that the signs of the level closer to the awakening stage were captured until reaching stage 1. On the other hand, not only from a time-series waveform obtained by second-order differentiation, but also when using a data that is not second-order differentiated, when the sleep onset predictor signal is detected, the detection sensitivity of the sleep onset predictor signal is relative.
  • a sign of a level closer to the sleep stage 1 is captured from the awakening stage to the sleep stage 1. That is, by capturing the sleep onset sign signal using two time-series waveforms in this way, it is possible to capture a two-stage sleep onset sign signal. Therefore, by linking the warning control means to the two-stage sleep signal, for example, when a sleep signal is detected only from the time-series waveform obtained by second-order differentiation, a weak warning is issued. Even when data that is controlled and is not second-order differentiated is used, if a sleep onset sign signal is detected, control can be performed so that a strong warning is issued.
  • the first sleep onset signal is shown to indicate that the sleep state 1 is not reached but the state of disorder is continued. A warning may be issued even when such a small waveform is seen after appearing.
  • FIG. 1 is a diagram illustrating a state in which a biological signal measuring device that is an analysis target of a biological state analyzer according to an embodiment of the present invention is incorporated in a sheet.
  • FIG. 2 is a diagram showing the biological signal measuring apparatus according to the embodiment in more detail.
  • 3A and 3B are views showing the air cushion unit, where FIG. 3A is a cross-sectional view seen from the front direction, FIG. 3B is a side view, FIG. 3C is a bottom view, and FIG. It is A sectional view.
  • FIG. 4 is an exploded perspective view of the air cushion unit.
  • 5A and 5B are views for explaining the size of the air cushion unit used in the test example.
  • FIG. 6 is a diagram for explaining the structure of the biological state analyzer of the embodiment.
  • FIG. 1 is a diagram illustrating a state in which a biological signal measuring device that is an analysis target of a biological state analyzer according to an embodiment of the present invention is incorporated in a sheet.
  • FIG. 2
  • FIG. 7 is a diagram for explaining a method of measuring load-deflection characteristics in Test Example 1.
  • FIG. 8 is a diagram showing the measurement results of FIG.
  • FIG. 9 is a diagram for explaining a test method for vibration absorption characteristics of Test Example 2.
  • FIG. FIGS. 10A to 10D are diagrams showing sensor outputs when vibration is applied at 1.0 Hz to 2.5 Hz in Test Example 2.
  • FIG. 11A to 11D are diagrams showing sensor outputs when vibration is applied at 3.0 Hz to 4.5 Hz in Test Example 2.
  • FIG. 12A to 12D are diagrams showing sensor outputs when vibration is applied at 5.0 Hz to 6.5 Hz in Test Example 2.
  • FIG. 13A to 13D are diagrams showing sensor outputs when vibration is applied at 7.0 Hz to 8.5 Hz in Test Example 2.
  • FIG. 14A to 14C are diagrams showing sensor outputs when vibration is applied at 9.0 Hz to 10.0 Hz in Test Example 2.
  • FIG. 15A and 15B are diagrams for explaining the test method of Test Example 3.
  • FIG. 16 is a diagram showing the output of the sensor when vibrating at 1.0 Hz in Test Example 3.
  • FIG. 17 is a diagram showing the output of the sensor when vibrating at 1.5 Hz in Test Example 3.
  • FIG. 18 is a diagram showing the output of the sensor when vibrating at 2.0 Hz in Test Example 3.
  • FIG. 19 is a diagram showing an original waveform of a subject's aortic pulse wave (air pack pulse wave) collected by the biological signal measuring apparatus in Test Example 4.
  • FIG. 20 is a diagram showing a second-order differential waveform (air pack pulse wave second-order differential waveform) obtained by the second-order differential calculation means.
  • FIG. 21 is a diagram illustrating an original waveform of a fingertip volume pulse wave.
  • FIG. 22 is a diagram showing a part of the air pack pulse wave and fingertip volume pulse wave shown in FIGS. 19 and 21 partially enlarged.
  • FIG. 23 is a diagram showing another part of the air pack pulse wave and fingertip volume pulse wave shown in FIGS. 19 and 21 partially enlarged.
  • FIG. 24A is a frequency analysis result of the air pack pulse wave of FIG.
  • FIG. 25A is a time-series waveform of the original waveform power value of the air pack pulse wave and the gradient of the original waveform maximum Lyapunov exponent
  • FIG. 25B is the second derivative of the air pack pulse wave second-order differential waveform.
  • FIG. 25C is a time series waveform of the waveform power value and the slope of the second-order differential waveform maximum Lyapunov exponent
  • FIG. 25C shows the power value of the fingertip volume pulse wave and the slope of the maximum Lyapunov exponent determined from the fingertip volume pulse wave. It is a time series waveform.
  • FIG. 25 (d) is a diagram showing a time-series waveform of the distribution rate of the electroencephalogram.
  • 26 (a) and 26 (b) show three types of time series waveforms (air pack pulse wave (“Air-pack” in the figure)), air pack pulse wave second-order differential waveform (in the figure, FIG. 25) of FIG.
  • FIG. 27A shows an air pack pulse wave (“Air-pack sensor” in the figure)
  • FIG. 27B shows an air pack pulse wave second-order differential waveform (“Air-pack 2nd differential calculus wave” in the figure).
  • 27 (c) is a fingertip volume pulse wave (“Plethysmogram” in the figure)
  • FIG. 27 (d) is a wavelet analysis of heart rate variability obtained from an electrocardiogram (“The electrocardiongram” in the figure). It is a figure which shows the result of having performed.
  • FIG. 27A shows an air pack pulse wave (“Air-pack sensor” in the figure)
  • FIG. 27B shows an air pack pulse wave second-order differential waveform (“Air-pack 2nd differential calculus wave” in the figure).
  • 27 (c) is a fingertip volume pulse wave (“Plethysmogram” in the figure)
  • FIG. 27 (d) is a wavelet analysis of heart rate variability obtained from an electrocardiogram (“The electrocardiongram” in the figure). It is a figure which shows the result
  • FIG. 28A is a diagram showing the value of the acceleration pulse wave aging index (SDPTGAI) obtained from the fingertip volume pulse wave and the air pack pulse wave
  • FIG. It is a figure which shows the value of the acceleration pulse wave aging index (SDPTGAI) obtained from the air pack pulse wave second-order differential waveform.
  • FIG. 1 is an external view of a vehicle seat 500 incorporating a biological signal measuring apparatus 1 that collects a pulse wave of a back aorta, which is a biological signal to be analyzed by the biological state analyzing apparatus 60 according to the present embodiment. It is. As shown in this figure, the biological signal measuring apparatus 1 is used by being incorporated in a seat back portion 510.
  • the biological state analyzer 60 of the present embodiment can analyze biological information more accurately than in the past, but of course it can be analyzed more accurately as there is no noise in the biological signal to be analyzed. Therefore, first, in the following, the configuration of the biological signal measuring apparatus 1 with less noise mixing will be described.
  • the biological signal measuring apparatus 1 includes an air cushion unit 100, a first bead foam resin elastic member 20, and a second bead foam resin elastic member 30.
  • the air cushion unit 100 includes a housing 15 and two air cushions 10 housed in the housing 15. As shown in FIGS. 3 and 4, each air cushion 10 is configured by laminating a front side air cushion 11 and a back side air cushion 12, and is arranged on the left and right sides of the container 15.
  • the front-side air cushion 11 is formed such that three small air bags 111 are connected in the vertical direction, and each of them does not allow air to flow. In each small air bag 111, a three-dimensional solid knitted fabric 112 is disposed as a restoring force applying member.
  • the back side air cushion 12 has a large air bag 121 having the same length as the full length of the front side air cushion 11 formed by connecting three small air bags 111 and a tertiary as a restoring force applying member accommodated in the large air bag 121. It comprises an original three-dimensional knitted fabric 122 (see FIG. 4).
  • the front side air cushion 11 and the back side air cushion 12 are used in such a manner that one side edge along the longitudinal direction is joined, folded into two around the joined side edge, and overlapped with each other ( (Refer FIG.3 (d) and FIG. 4).
  • the air cushion 10 in which the front side air cushion 11 and the back side air cushion 12 are overlapped with each other is arranged on the left and right sides.
  • a sensor mounting tube 111a is provided in any one of the small air bags 111 constituting either one of the left and right front air cushions 11 and 11, and a sensor 111b for measuring air pressure fluctuation is fixed inside thereof.
  • the sensor mounting tube 111a is sealed.
  • a mounting tube 121a is provided in the large air bag 121 in advance, and a sensor is disposed at that portion, and the air pressure fluctuation of the large air bag 121 is measured as necessary.
  • the measurement result of the small air bag 111 may be used for verification.
  • the small air bag 111 preferably has a size in the range of 40 to 100 mm in width and 120 to 200 mm in length in order to react sensitively to such a variation in air pressure due to a biological signal.
  • the material of the small air bag 111 is not limited.
  • the small air bag 111 can be formed using a sheet made of polyurethane elastomer (for example, product number “DUS605-CDR” manufactured by Seadam Co., Ltd.). Any sensor 111b may be used as long as it can measure the air pressure in the small air bag 111.
  • a condenser microphone sensor can be used.
  • the size of the large air bag 121 and the total size when three small air bags 111 are connected are a range of 40 to 100 mm in width and 400 to 600 mm in total length when used for the seat back portion 510 of the automobile seat 500. It is preferable that When the length is short, the seat occupant feels a foreign body sensation only at a portion near the waist in the seat back portion 510. Therefore, it is preferable that the length is 400 mm or more to correspond to the entire back of the seat occupant as much as possible.
  • the sensor 111b that detects air pressure fluctuation is provided in the small air bag 111 at the center of the front air cushion 11 that constitutes the air cushion 10 that is disposed on the left side of the seated person.
  • the position of the small air bag 111 corresponds to a region where a pulse wave of the aorta near the waist of the seated person can be detected.
  • the region in which the aortic pulse wave in the vicinity of the lumbar region can be detected is not uniform depending on the physique of the seated person, but when measured by 20 subjects with various physiques from a Japanese woman with a height of 158 cm to a Japanese man with a height of 185 cm,
  • the small air bag 111 (width: 60 mm, length: 160 mm) is formed so that the intersection P (see FIGS. 2 and 3) between the side edge and the lower edge near the center of the seat back portion 510 is from the upper surface of the seat cushion portion 520.
  • the pulse wave of the aorta could be detected in all the above subjects.
  • the size of the small air bag 111 is in the range of 40 to 100 mm in width and 120 to 200 mm in length
  • the position of the intersecting portion P is a length along the surface of the seat back portion 510 from the upper surface of the seat cushion portion 520. It is preferable to set the distance within the range of 150 to 280 mm and 60 to 120 mm from the center of the seat back portion 510.
  • the container 15 has a bag-shaped air cushion accommodating part 151 that accommodates the air cushion 10 on both sides, and a connecting part 152 between the two air cushion accommodating parts 151.
  • the air cushion 10 is inserted into each of the two air cushion accommodating portions 151.
  • a three-dimensional solid knitted fabric 40 having substantially the same size as the air cushion 10 into the air cushion accommodating portion 151 so as to overlap the back side of the back side air cushion 12 of the air cushion 10 (FIG. 3D). )reference).
  • the connecting portion 152 only needs to be able to support the two air cushion portions 151 at a predetermined interval, and is formed with a width of about 60 to 120 mm. It is preferable that the connecting portion 152 is also formed in a bag shape, and the three-dimensional solid knitted fabric 45 is inserted therein (see FIGS. 3D and 4). Thereby, the vibration input through the connection portion 152 can be effectively removed by inserting the three-dimensional solid knitted fabric 45.
  • the small air bag 111 is formed using, for example, a sheet made of polyurethane elastomer (for example, product number “DUS605-CDR” manufactured by Seadam Co., Ltd.), and forms the back cushion material 12.
  • the large air bag 121 and the container 15 are also preferably formed using the same material.
  • each three-dimensional solid knitted fabric loaded in the small air bag 111, the large air bag 121, the air cushion accommodating portion 151, and the connection portion 152 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-331603. This is a knitted fabric having a three-dimensional three-dimensional structure having a pair of ground knitted fabrics spaced apart from each other and a large number of connecting yarns that reciprocate between the pair of ground knitted fabrics to couple them together.
  • One ground knitted fabric is formed by, for example, a flat knitted fabric structure (fine stitches) that is continuous in both the wale direction and the course direction from a yarn obtained by twisting a single fiber.
  • a knitted structure having a honeycomb-shaped (hexagonal) mesh is formed from a yarn obtained by twisting short fibers.
  • this knitted fabric structure is arbitrary, and it is also possible to adopt a knitted fabric structure other than a fine structure or a honeycomb shape, and a combination thereof is also arbitrary, such as adopting a fine structure for both.
  • the connecting yarn is knitted between two ground knitted fabrics so that one ground knitted fabric and the other ground knitted fabric maintain a predetermined distance.
  • a three-dimensional solid knitted fabric for example, the following can be used.
  • Each three-dimensional solid knitted fabric can be used by stacking a plurality of pieces as necessary.
  • Product number 49076D (manufactured by Sumie Textile Co., Ltd.)
  • Material Front side ground knitted fabric: twisted yarn of 300 dtex / 288 f polyethylene terephthalate fiber false twisted yarn and 700 dtex / 192 f polyethylene terephthalate fiber false twisted yarn
  • Back side ground knitted fabric 450 dtex / 108 f polyethylene Combination of terephthalate fiber false twisted yarn and 350 decitex / 1f polytrimethylene terephthalate monofilament Linked yarn ... 350 decitex / 1f polytrimethylene terephthalate monofilament
  • the first bead foam resin elastic member 20 and the second bead foam resin elastic member 30 are arranged between the skin member of the seat back portion 510 and the container 15 (air cushion unit 100) containing the air cushion 10. And has a length corresponding to the entire length of the two air cushions 10 and a width corresponding to the length between the tops of the two air cushions 10. Accordingly, it is preferable to use a material having a length of about 400 to 600 mm and a width of about 250 to 350 mm. Thereby, since the two air cushions 10 are covered together, it becomes difficult to feel the unevenness of the two air cushions 10.
  • the first bead foamed resin elastic member 20 is composed of a bead foam formed in a flat plate shape and a covering material adhered to the outer surface thereof.
  • a foam molded body by a resin bead method containing at least one of polystyrene, polypropylene and polyethylene is used as the bead foam.
  • the expansion ratio is arbitrary and is not limited.
  • the covering material is a material having a high elongation and a recovery rate, which is adhered to the outer surface of the bead foam by adhesion, and preferably has a recovery rate of 80% or more at the elongation of 200% or more and 100%.
  • An elastic fiber nonwoven fabric is used.
  • thermoplastic elastomer elastic fibers disclosed in Japanese Patent Application Laid-Open No. 2007-92217 are melt-bonded to each other.
  • trade name “Espancione” manufactured by KB Seiren Co., Ltd. can be used.
  • the second bead foamed resin elastic member 30 includes a bead foam as in the first bead foamed resin elastic member 20, and the first bead foamed resin elastic member covers the outer surface thereof.
  • a biaxial woven fabric (length: 20 / inch, width: 20 / inch) formed from polyethylene naphthalate (PEN) fibers (1100 dtex) manufactured by Teijin Limited can be used.
  • the order in which the first bead foam resin elastic member 20 and the second bead foam resin elastic member 30 are stacked is not limited, but the first elastic member on the seat back portion 510 close to the skin member 511 has a high elasticity. It is preferable to dispose one bead foamed resin elastic member 20.
  • the bead foam constituting the first and second bead foam resin elastic members 20 and 30 has a thickness of about 5 to 6 mm, and the outer surface thereof has a thickness of about 1 mm or less and the above-described elastic fiber nonwoven fabric or heat. It is formed by sticking a nonwoven fabric made of plastic polyester.
  • the surface of the first bead foamed resin elastic member 20 facing the skin member 511 and the surface of the second bead foamed resin elastic member 30 facing the air cushion unit 100 are each made of a PEN film or the like. A polyester film is attached. Thereby, the transmissibility of a biological signal improves.
  • the seat back portion 510 of the seat 500 constituting the human body support means includes a skin member 511 and a cushion support member 512 disposed on the back side of the skin member 511, and the skin member 511
  • a container 15 (air cushion unit 100) holding the air cushion 10 and the first and second bead foamed resin elastic members 20 and 30 are incorporated between the cushion support member 512 and the cushion support member 512.
  • the container 15 (air cushion unit 100) holding the air cushion 10 is first disposed on the cushion support member 512 side, the second bead foam resin elastic member 30 is further on the surface side, and the second bead foam resin elastic member 30 is further on the surface side.
  • One bead foamed resin elastic member 20 is disposed and then covered with a skin member 511.
  • the cushion support member 512 can be formed, for example, by stretching a three-dimensional solid knitted fabric between the rear end edges of the pair of left and right side frames of the seat back portion 510, or can be formed from a synthetic resin plate.
  • the skin member 511 can be provided, for example, by stretching a three-dimensional solid knitted fabric, synthetic leather, leather, or a laminate thereof between the front edges of a pair of left and right side frames.
  • the first bead foamed resin elastic member 20 and the second bead foam resin elastic member 30 having a predetermined size are laminated and arranged on the back surface side of the skin member 511, and thereafter Since the container 15 (air cushion unit 100) holding the pair of left and right air cushions 10 is arranged on the side, the seated person does not feel the unevenness of the air cushion 10 on the back, and measures a biological signal. Although it is the structure which has this air cushion 10, sitting comfort improves.
  • the biological state analyzer 60 is configured by a computer, and as a computer program, second-order differential calculation means 61, second-order differential waveform power value slope calculation means 62, second-order differential waveform maximum Lyapunov exponent slope calculation means 63, second-order differential waveform.
  • a sleep onset predictor determining unit 64, an original waveform power value inclination calculating unit 65, an original waveform maximum Lyapunov exponent inclination calculating unit 66, an original waveform entering sleep predictor determining unit 67, a comparison determining unit 68, and a warning control unit 69 are installed.
  • the computer program can be provided by being stored in a recording medium.
  • a “recording medium” is a medium that can carry a program that cannot occupy space by itself, such as a flexible disk, hard disk, CD-ROM, MO (magneto-optical disk), DVD-ROM, etc. is there. It is also possible to transmit from a computer installed with the program according to the present invention to another computer through a communication line. Moreover, it is also possible to form a biological state analyzer by preinstalling or downloading the above-mentioned program to a general-purpose terminal device.
  • the second-order differential calculation means 61 second-order differentiates the original waveform of the time-series signal data of the air cushion 10 that is an electrical signal of the sensor 111b provided in the biological signal measuring device 1. Since the second-order differential waveform obtained by second-order differentiation of the original waveform of the time series signal data of the air cushion 10 can emphasize the change of the original waveform, the information indicating the biological state included in the original waveform is markedly shown. become.
  • the second-order differential waveform power value slope calculation means 62 calculates the difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the second-order differential waveform obtained by the second-order differential calculation means 61. The difference is calculated, the difference is used as a power value, time series data of the power value is obtained, and the inclination of the power value with respect to the time axis in a predetermined time range is calculated by sliding a predetermined number of times.
  • the second-order differential waveform maximum Lyapunov exponent slope calculating means 63 performs chaos analysis on the second-order differential waveform obtained by the second-order differential calculation means 61, obtains the time series data of the maximum Lyapunov exponent obtained from the chaos analysis, and the maximum Lyapunov exponent.
  • the inclination with respect to the time axis in a predetermined time range is calculated by sliding a predetermined number of times.
  • the second-order differential waveform onset symptom predicting means 64 has two slopes when the slope time series waveforms obtained by the second-order differential waveform power value slope calculating means 62 and the second-order differential waveform maximum Lyapunov exponent slope calculating means 63 are overlapped.
  • a waveform in which the time series waveform has an antiphase relationship is determined as a sleep onset signal.
  • the time-series waveform of the slope of the second-order differential waveform power value and the time-series waveform of the slope of the second-order differential waveform maximum Lyapunov exponent are in opposite phases, and the slope of the second-order differential waveform power value
  • a waveform in which a low-frequency and large-amplitude waveform is generated in the time-series waveform is determined as a sleep onset signal.
  • the original waveform power value slope calculating means 65, the original waveform maximum Lyapunov exponent slope calculating means 66, and the original waveform sleep onset predictor judging means 67 are not the second-order differential waveform but the biological signal measuring device 1 Is the original waveform of the time-series signal data of the air cushion 10 which is an electric signal of the sensor 111b provided in the sensor 111b, and the calculation method thereof is the above-described second-order differential waveform power value slope calculating means 62, second-order differential waveform maximum Lyapunov exponent. This is exactly the same as the slope calculating means 63 and the second-order differential waveform sleep onset determination means 64.
  • the comparison judgment means 68 is determined to have a sleep onset sign signal only by the second-order differential waveform onset sign determination means 64, or both the second-order differential waveform onset sign determination means 64 and the original waveform onset sign determination means 67 fall asleep at the same time period. A comparison is made to determine whether or not the predictive signal has been determined. Comparing the second-order differential waveform sleep onset predicting means 64 and the original waveform sleep onset predicting means 67, the former is considered to have a low threshold (high sensitivity) for detecting a change in the living body.
  • a warning control means 69 which is a computer program, gives a command for operating a weak warning to a warning device (not shown).
  • a command to activate a strong warning is set.
  • various devices such as a device that generates sound, a device that blinks light, and a device that changes the inclination angle of the seat back portion can be used as the warning device.
  • the warning device emits a relatively small sound for a weak warning, a loud sound for a strong warning, or only a sound for a weak warning, and a sound for a strong warning.
  • the light can also be controlled to blink.
  • the air pressure fluctuation generated by the pulse wave of the aorta at the back of the air cushion 10 held by the container 15 is the case when only the container 15 holding the air cushion 10 is placed alone (“air pack” in FIG. 8). It follows the load-deflection characteristics. Therefore, when the spring constant becomes higher than this load-deflection characteristic, the sensitivity of the pulse wave of the aorta becomes duller than when the container 15 holding the air cushion 10 is arranged directly on the back side of the skin member 511. It will be.
  • the first bead foam resin elastic member 20 and the second bead foam resin elastic member 30 have different spring constants. Are preferably overlapped. From the experimental results of FIG. 8, it is preferable that the spring constant of the second bead foamed resin elastic member 30 is in a range of 1.1 to 1.4 times the spring constant of the first bead foamed resin elastic member 20. As described above, the first bead foamed resin elastic member 20 is covered with a relatively elastic elastic nonwoven fabric, and the second beaded foam elastic member 30 is relatively stretchable as described above.
  • the spring constant of the “pack”) is preferably in the range of 0.8 to 1.2 times the spring constant indicated by the “air pack” of FIG. 8 corresponding to the spring constant of the air cushion 10 only. .
  • Test Example 2 Influence of disturbance vibration
  • the container 15 the same structure and size as in Test Example 1 holding the air cushion 10 is placed on the vibration table of the vibration exciter, and on the upper surface thereof,
  • the second bead foam resin elastic member 30 and the first bead foam resin elastic member 20 are sequentially laminated (in FIG. 9, the second bead foam resin elastic member 30 and the first bead foam resin elastic member 20 are stacked.
  • the combined material is displayed as “buffer material” (the same form as “A + B + air pack” in FIG.
  • the PEN film is affixed on the surface facing the skin member 511 of the first bead foamed resin elastic member 20 and the surface facing the air cushion unit 100 of the second bead foamed resin elastic member 30.
  • the output voltage of the sensor 111b Capacitor-type microphone sensor provided in the small air bag 111 was measured for each. The results are shown in FIGS.
  • Test Example 3 Influence of disturbance vibration and detection of biological signals
  • a three-dimensional solid knitted fabric (3D net) corresponding to the cushion support member 512 in the seat back portion 510 and a container holding the air cushion 10 on the vibration exciter of the vibration exciter.
  • air cushion unit 100 air cushion unit 100, the same structure and size as those of Test Example 1
  • the second bead foam resin elastic member 30 the first bead foam resin elastic member 20
  • the skin member 511 in the seat back portion 510 As shown in FIG. 15 (a), a three-dimensional solid knitted fabric (3D net) corresponding to the cushion support member 512 in the seat back portion 510 and a container holding the air cushion 10 on the vibration exciter of the vibration exciter. 15 (air cushion unit 100, the same structure and size as those of Test Example 1), the second bead foam resin elastic member 30, the first bead foam resin elastic member 20, and the skin member 511 in the seat back portion 510.
  • FIG. 15A shows the influence of disturbance vibration received when the biological signal measuring device 1 of this embodiment is actually incorporated into the seat back portion 510 by inputting vibration from the cushion support member 512 side. It is.
  • FIG. 15 (b) is arranged in the reverse order to FIG. 15 (a). That is, a container holding a three-dimensional solid knitted fabric (3D net) corresponding to the skin member 511 in the seat back portion 510, the first bead foam resin elastic member 20, the second bead foam resin elastic member 30, and the air cushion 10. 15 (air cushion unit 100, the same structure and size as those of Test Example 1) and a three-dimensional solid knitted fabric (3D net) corresponding to the cushion support member 512 are laminated in this order.
  • the weight is set to 2 kg is that when a person is seated, the load applied to the seat back portion 510 where the air cushion unit 100 is disposed from the waist corresponds to 2 kg in an area of 98 mm in diameter. .
  • Test Example 4 Measurement of biological signals
  • a container 15 (the same structure and size as those of the air cushion unit 100, Test Example 1) holding the air cushion 10 described in the above embodiment on the seat back portion 510 of the seat 500,
  • the second bead foam resin elastic member 30 and the first bead foam resin elastic member 20 were accommodated in this order.
  • the skin member 511 used for the seat back portion 510 is a three-dimensional solid knitted fabric (manufactured by Sumie Textile Co., Ltd., product number 49013D).
  • the intersection of the side edge and the lower edge near the center of the seat back part 510 of the central small air bag 111 (width 60 mm, length 160 mm) constituting the air cushion 10 on the left side of the occupant provided with the sensor 111b.
  • the seat back portion 510 was incorporated such that P was 220 mm from the upper surface of the seat cushion portion 520 along the surface of the seat back portion 510 and 80 mm from the center of the seat back portion 510.
  • a biological signal analyzing means 60 comprising a computer for analyzing the state of the person based on the air pressure fluctuation obtained by measuring the electric signal from the sensor 111b of the small air bag 111 is arranged (see FIG. 1).
  • a Japanese male of the age group was seated on the seat 500 and the pulse wave of the aorta near the lumbar region was collected.
  • Each subject was also equipped with a fingertip plethysmograph (manufactured by Amco, finger clip probe SR-5C) to measure the fingertip plethysmogram and a simple electroencephalograph (Futech Electronics ( EEG measurement was also performed by wearing FM-515A).
  • an electrocardiograph NEC Kogyo Co., Ltd. ECG-9122 was also attached.
  • FIG. 19 shows the original waveform of the aortic pulse wave (air pack pulse wave) near the lumbar region of the subject
  • FIG. 20 shows the second-order differential waveform (the air pack pulse wave second-order differential) obtained by the second-order differential calculation means 61. Waveform).
  • FIG. 21 shows the original waveform of the fingertip volume pulse wave. 22 and 23 are partially enlarged views of the air pack pulse wave shown in FIG. 19 and the fingertip volume pulse wave shown in FIG. 22 and 23, it can be seen that the air pack pulse wave captures a notch (a signal indicating that the aorta suddenly closes at the end of the stroke period) included in the pressure waveform of the aorta. The ability to capture this notch is a proof that the biological information is reliably captured.
  • a notch a signal indicating that the aorta suddenly closes at the end of the stroke period
  • FIG. 24A shows the frequency analysis results of the air pack pulse wave and fingertip volume pulse wave of FIGS. 19 and 21, and FIG. 24B shows the air pack pulse wave second-order differential waveform of FIG. It is a figure which shows the frequency analysis result of a cusp volume pulse wave. From this figure, it can be seen that both the air pack pulse wave and its second-order differential waveform have peaks at the same frequency as the fingertip volume pulse wave.
  • FIG. 25A shows a time-series waveform of the original waveform power value of the airpack pulse wave and the inclination of the original maximum Lyapunov exponent determined by the original waveform power value inclination calculator 65 and the original waveform maximum Lyapunov exponent slope calculator 66.
  • FIG. 25B shows the second-order differential waveform power value of the second-order differential waveform power value slope calculating means 62, the second-order differential waveform power value obtained by the second-order differential waveform maximum Lyapunov exponent slope calculating means 63, and 2 This is a time-series waveform of the gradient of the highest differential Lyapunov exponent.
  • FIG. 25C is a time-series waveform of the power value of the fingertip volume pulse wave and the slope of the maximum Lyapunov exponent obtained from the fingertip volume pulse wave for verification.
  • the time-series waveform of the slope of the second-order differential waveform power value and the time series of the slope of the second-order differential waveform maximum Lyapunov exponent are around 300 seconds. Since the waveform is in antiphase and the time-series waveform of the slope of the second-order differential waveform power value is low frequency and large amplitude, the first sleep predictive signal may appear at this point Recognize. In the fingertip volume pulse wave of FIG. 25 (c) used for the verification, a similar sleep prediction signal appears. Then, in the distribution rate of the electroencephalogram in FIG.
  • the comparison determination means 68 which of the sleep onset predictor signals has been determined. As described above, it can be used for warning control by the warning control means 69.
  • 26 (a) and 26 (b) show the frequency analysis results of the three types of gradient time-series waveforms in FIG. From this figure, as for the power value, the fingertip volume pulse wave and the air pack pulse wave second-order differential waveform have a large power spectrum, and their absolute values are also at the same level. On the other hand, the power spectrum of the air pack pulse wave becomes extremely small. The time series waveforms of the maximum Lyapunov exponent slopes of the fingertip volume pulse wave and the air pack pulse wave second-order differential waveform are at the same level, but the maximum Lyapunov exponent of the air pack pulse wave is extremely high.
  • the fingertip volume pulse wave and the air pack pulse wave second-order differential waveform have a good balance between the power value and the power spectrum of the maximum Lyapunov exponent, and the two antagonizing actions smoothly mesh and balance each other. Recognize.
  • the air pack pulse wave has two unstable actions, and changes greatly with a small stress. This difference influences the sensitivity between the detection of the sleep onset signal using the air pack pulse wave and the detection of the sleep onset signal using the air pack pulse wave second-order differential waveform.
  • FIGS. 27A to 27D show the results of wavelet analysis of heart rate fluctuations obtained from an air pack pulse wave, air pack pulse wave second-order differential waveform, fingertip volume pulse wave, and electrocardiograph. Show.
  • the LF / HF component is an index indicating the state of sympathetic nerve activity
  • the HF component is an index of parasympathetic nerve activity.
  • the physiological significance of the change of the HF component is small compared to the LF / HF component, and therefore, the analysis was conducted focusing on the LF / HF component.
  • FIG. 28A shows the acceleration pulse wave aging index (SDPTGAI) obtained from the acceleration pulse wave of the fingertip volume pulse wave and the acceleration pulse wave aging index obtained from the acceleration pulse wave of the air pack pulse wave.
  • FIG. 28B shows the values of the series, and FIG. 28B shows the acceleration obtained from the acceleration pulse wave aging index obtained from the acceleration pulse wave of the fingertip volume pulse wave and the acceleration pulse wave of the air pack pulse wave second-order differential waveform. The time series value of the pulse wave aging index is shown. It is known that SDPTGAI changes under the influence of both organic vascular wall sclerosis (arteriosclerosis in lifestyle-related diseases) and functional vascular wall tension.
  • the SDPTGAI obtained from the air pack pulse wave second-order differential waveform shows a value close to the SDPTGAI obtained from the fingertip volume pulse wave, although there is some variation.
  • the SDPTGAI obtained from the air pack pulse wave has a large variation compared to the case of the air pack pulse wave second-order differential waveform, and the air pack pulse wave second-order differential waveform shows organic vascular wall hardening and functional vascular tone. It can be seen that the blood vessel state can be captured in the same manner as the fingertip plethysmogram.
  • the air cushion 10 and the first and second bead foamed resin elastic members 20 and 30 are incorporated in the automobile seat as the human body support means, but the human body support means may be a bed or the like. It can also be incorporated into bedding, diagnostic chairs in hospital equipment, and the like.
  • the pulse wave of the back aorta is detected using an air cushion incorporated in the seat back part.For example, by installing this air cushion around a person's wrist, the transverse artery, Arterial pulse waves can also be collected from the ulnar artery.

Abstract

A significant biometric signal can be detected without giving a feeling of strangeness, and the condition of a person can be correctly analyzed. An organism condition analyzer includes a second-order differentiating means (61) for twice differentiating time-series signal data about an air pressure variation detected by an air cushion.  The second-order differentiation waveform obtained by the second-order differentiating means (61) is processed to analyze the condition of a person.  The time series signal data represents the pulse of an aorta in the back of the person, and the second-order differentiation emphasizes the variation of the waveform of the time-series signal data.  Information representing the organism condition included in the waveform obtained by the second-order differentiation is more significant than that representing the organism condition included in the waveform before the second-order differentiation.  Therefore, analysis of the time-series waveform obtained by the second-order differentiation bring about more accurate result of the analysis than that by conventional means for analyzing the organism condition by using the pulse of the aorta.

Description

生体状態分析装置、コンピュータプログラム及び記録媒体Biological condition analyzer, computer program, and recording medium
 本発明は、生体信号を検出して生体の状態を分析する技術に関し、特に、生体信号を非侵襲で検出可能なエアクッションを用いた生体状態分析装置、コンピュータプログラム及び記録媒体に関する。 The present invention relates to a technique for analyzing a state of a living body by detecting a biological signal, and more particularly, to a biological state analyzing apparatus, a computer program, and a recording medium using an air cushion capable of non-invasively detecting a biological signal.
 運転中の運転者の生体状態を監視することは、近年、事故予防策として注目されている。本出願人も、例えば、特許文献1として、内部に復元力付与部材を挿入した空気袋を備え、この空気袋を例えば人の腰部に対応する部位に配置し、空気袋の空気圧変動を測定し、得られた空気圧変動の時系列データから人の生体信号を検出し、人の生体の状態を分析するシステムを開示している。また、非特許文献1及び2においても、腰腸肋筋に沿うようにエアパックセンサを配置して人の生体信号を検出する試みが報告されている。
特開2007-90032号公報 「非侵襲型センサによって測定された生体ゆらぎ信号の疲労と入眠予知への応用」、落合直輝(外6名)、第39回日本人間工学会 中国・四国支部大会 講演論文集、平成18年11月25日発行、発行所:日本人間工学会 中国・四国支部事務局 「非侵襲生体信号センシング機能を有する車両用シートの試作」、前田慎一郎(外4名)、第39回日本人間工学会 中国・四国支部大会 講演論文集、平成18年11月25日発行、発行所:日本人間工学会 中国・四国支部事務局
In recent years, monitoring the biological state of a driver during driving has attracted attention as an accident prevention measure. For example, as disclosed in Patent Document 1, the present applicant also includes an air bag in which a restoring force imparting member is inserted. The air bag is disposed at a portion corresponding to, for example, a human waist, and the air pressure variation of the air bag is measured. A system for detecting a human biological signal from the obtained time-series data of air pressure fluctuation and analyzing the state of the human biological body is disclosed. Non-Patent Documents 1 and 2 also report attempts to detect human biological signals by arranging an air pack sensor along the lumbar gluteal muscles.
JP 2007-90032 A "Application of biological fluctuation signals measured by non-invasive sensors to fatigue and sleep prediction", Naoki Ochiai (6 others), 39th Annual Meeting of the Japan Ergonomics Society, Chugoku-Shikoku Branch, 2006 Issued on May 25, Publisher: Japan Ergonomics Society Chugoku-Shikoku Branch Office "Prototype of vehicle seat with non-invasive biological signal sensing function", Shinichiro Maeda (4 others), 39th Japan Ergonomics Society China-Shikoku Branch Conference, Proceedings, November 25, 2006 Place: Japan Ergonomics Society Chugoku / Shikoku Branch Office
 特許文献1及び非特許文献1、2によれば、腰部付近の動脈(大動脈)の脈波を検知し、得られた脈波の時系列信号データを用い、例えば、本出願人が特開2004-344612において提案した手法により入眠予兆信号を検出して生体状態を分析している。入眠予兆信号の検出は、具体的には、脈波の時系列信号データを、それぞれ、SavitzkyとGolayによる平滑化微分法により、極大値と極小値を求める。そして、5秒ごとに極大値と極小値を切り分け、それぞれの平均値を求める。求めた極大値と極小値のそれぞれの平均値の差の二乗をパワー値とし、このパワー値を5秒ごとにプロットし、パワー値の時系列波形を作る。この時系列波形からパワー値の大域的な変化を読み取るために、ある時間幅Tw(180秒)について最小二乗法でパワー値の傾きを求める。次に、オーバーラップ時間Tl(162秒)で次の時間幅Twを同様に計算して結果をプロットする。この計算(スライド計算)を順次繰り返してパワー値の傾きの時系列波形を得る。一方、脈波の時系列信号データをカオス解析して最大リアプノフ指数を求め、上記と同様に、平滑化微分によって極大値と極小値を求め、スライド計算することにより最大リアプノフ指数の傾きの時系列波形を得る。 According to Patent Document 1 and Non-Patent Documents 1 and 2, a pulse wave of an artery (aorta) near the lumbar region is detected, and time series signal data of the obtained pulse wave is used. The biological state is analyzed by detecting a sleep symptom signal by the method proposed in -344612. More specifically, the detection of the onset of sleep signal is performed by obtaining the maximum value and the minimum value of the time-series signal data of the pulse wave by the smoothing differentiation method using Savitzky and Golay, respectively. Then, the maximum value and the minimum value are divided every 5 seconds, and the average value of each is obtained. The square of the difference between the average values of the obtained local maximum and local minimum is used as a power value, and this power value is plotted every 5 seconds to create a time series waveform of the power value. In order to read the global change of the power value from this time series waveform, the slope of the power value is obtained by the least square method for a certain time width Tw (180 seconds). Next, the next time width Tw is similarly calculated at the overlap time Tl (162 seconds), and the result is plotted. This calculation (slide calculation) is sequentially repeated to obtain a time series waveform of the gradient of the power value. On the other hand, chaos analysis is performed on pulse wave time series signal data to obtain the maximum Lyapunov exponent, and as above, the maximum and minimum values are obtained by smoothing differentiation, and the time series of the slope of the maximum Lyapunov exponent is obtained by slide calculation. Get the waveform.
 この2つの傾き時系列波形において、パワー値の傾きの時系列波形で、パワー値の傾きの時系列波形と最大リアプノフ指数の傾きの時系列波形が逆位相となっており、さらには、パワー値の傾きの時系列波形で低周波、大振幅の波形が生じている波形が入眠予兆を示す特徴的な信号であり、その後に振幅が小さくなったポイントが入眠ポイントである。 In these two time series waveforms, the time series waveform of the power value slope and the time series waveform of the power value slope and the time series waveform of the maximum Lyapunov exponent slope are in opposite phases, and further, the power value A waveform having a low frequency and a large amplitude waveform in the time series waveform of the slope is a characteristic signal indicating a sleep onset symptom, and the point at which the amplitude subsequently decreases is the sleep onset point.
 しかしながら、上記の動脈の脈波を用いて入眠予兆信号を検出する手法と、指尖容積脈波を用いて入眠予兆信号を検出する手法とを比較すると、指尖容積脈波を用いた場合に入眠予兆信号として検出されているにも拘わらず、動脈の脈波を用いた場合にはそのタイミングにおいて入眠予兆信号を検出できていない場合、あるいは、その逆の場合があることがわかった。入眠予兆信号を確実に検出するためには、動脈の脈波による検出と指尖容積脈波による検出を併用すればよいが、指尖容積脈波は、人の指に指尖容積脈波計を装着しなければならないため、例えば、自動車の運転者の入眠予兆信号を検知しようとした場合に、日常運転において、当該運転者が指尖容積脈波計を常に装着するとは限らず、現実的ではない。 However, when comparing the technique for detecting a sleep onset symptom signal using the pulse wave of the above-mentioned artery with the technique for detecting a sleep onset symptom signal using the fingertip volume pulse wave, when using the fingertip volume pulse wave, In spite of being detected as a sleep onset signal, it has been found that when an arterial pulse wave is used, the onset signal cannot be detected at that timing, or vice versa. In order to reliably detect the onset of sleep signal, detection using arterial pulse waves and detection using fingertip volume pulse waves may be used in combination. For example, when trying to detect a sleep signal of a car driver, the driver does not always wear a fingertip plethysmograph in daily driving. is not.
 本発明は上記に鑑みなされたものであり、人の少なくとも腰部を含む背部に対応する部位に配置されるエアクッションによって検出される空気圧変動の時系列信号データを用いて、従来よりも人の状態を正確に分析できる生体状態分析装置、コンピュータプログラム及び記録媒体を提供することを課題とする。 The present invention has been made in view of the above, and by using time-series signal data of air pressure fluctuations detected by an air cushion disposed at a portion corresponding to a back portion including at least a waist portion of a person, the state of the person than before It is an object of the present invention to provide a biological state analysis apparatus, a computer program, and a recording medium that can accurately analyze the condition.
 上記課題を解決するため、本発明の生体状態分析装置は、人体支持手段における、少なくとも人の腰部付近を支持する部位の表皮部材と該表皮部材の裏面側に配設されるクッション支持部材との間に組み込まれる空気袋を備えたエアクッションと、動脈の脈波に伴う前記空気袋の空気圧変動を検出するセンサとを備えてなる生体信号測定装置から、空気圧変動による前記センサの時系列信号データを受信し、該時系列信号データを加工して、前記人体支持手段により支持されている人の状態を分析する生体状態分析装置であって、
 前記時系列信号データを2階微分する2階微分演算手段を有し、前記2階微分演算手段により得られる2階微分波形を加工して人の状態を分析することを特徴とする。
 本発明の生体状態分析装置は、さらに、前記2階微分演算手段により得られる2階微分波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形パワー値傾き算出手段と、
 前記2階微分演算手段により得られる2階微分波形から、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形最大リアプノフ指数傾き算出手段と、
 前記2階微分波形パワー値傾き算出手段及び2階微分波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する2階微分波形入眠予兆判定手段と
を具備することが好ましい。
 本発明の生体状態分析装置は、さらに、前記エアクッションにより検出される空気圧変動の時系列信号データの各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形パワー値傾き算出手段と、
 前記エアクッションにより検出される空気圧変動の時系列信号データから、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形最大リアプノフ指数傾き算出手段と、
 前記原波形パワー値傾き算出手段及び原波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する原波形入眠予兆判定手段と、
 前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定されたか、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定されたかを比較判断する比較判断手段と、
 前記比各判断手段の比較結果に従って、覚醒されるための警告を動作させる警告制御手段と
を具備することが好ましい。
 本発明の生体状態分析装置の前記警告制御手段は、前記比較判断手段において、前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定された場合と、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定された場合とで、異なる種類の警告を機能させるものであることが好ましい。
 また、本発明のコンピュータプログラムは、人体支持手段における、少なくとも人の腰部付近を支持する部位の表皮部材と該表皮部材の裏面側に配設されるクッション支持部材との間に組み込まれる空気袋を備えたエアクッションと、動脈の脈波に伴う前記空気袋の空気圧変動を検出するセンサとを備えてなる生体信号測定装置から、空気圧変動による前記センサの時系列信号データを受信し、該時系列信号データを加工して、前記人体支持手段により支持されている人の状態を分析する生体状態分析装置に導入されるコンピュータプログラムであって、
 前記時系列信号データを2階微分する2階微分演算手段を有し、前記2階微分演算手段により得られる2階微分波形を加工して人の状態を分析することを特徴とする。
 本発明のコンピュータプログラムは、さらに、前記2階微分演算手段により得られる2階微分波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形パワー値傾き算出手段と、
 前記2階微分演算手段により得られる2階微分波形から、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形最大リアプノフ指数傾き算出手段と、
 前記2階微分波形パワー値傾き算出手段及び2階微分波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する2階微分波形入眠予兆判定手段と
を具備することが好ましい。
 本発明のコンピュータプログラムは、さらに、前記エアクッションにより検出される空気圧変動の時系列信号データの各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形パワー値傾き算出手段と、
 前記エアクッションにより検出される空気圧変動の時系列信号データから、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形最大リアプノフ指数傾き算出手段と、
 前記原波形パワー値傾き算出手段及び原波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する原波形入眠予兆判定手段と、
 前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定されたか、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定されたかを比較判断する比較判断手段と、
 前記比各判断手段の比較結果に従って、覚醒されるための警告を動作させる警告制御手段と
を具備することが好ましい。
 本発明のコンピュータプログラムの前記警告制御手段は、前記比較判断手段において、前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定された場合と、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定された場合とで、異なる種類の警告を機能させるものであることが好ましい。
 また、本発明は、前記コンピュータプログラムが記録されたことコンピュータ読み取り可能な記録媒体を提供する。
In order to solve the above-described problems, a living body state analyzing apparatus according to the present invention includes a human body support unit that includes a skin member that supports at least the vicinity of a human waist and a cushion support member that is disposed on the back side of the skin member. Time-series signal data of the sensor due to air pressure fluctuation from a biological signal measuring device comprising an air cushion having an air bag incorporated in between and a sensor for detecting air pressure fluctuation of the air bag accompanying an arterial pulse wave A biological state analyzer that processes the time-series signal data and analyzes the state of the person supported by the human body support means,
The apparatus has a second-order differential operation means for second-order differentiation of the time series signal data, and processes a second-order differential waveform obtained by the second-order differential operation means to analyze a human state.
The biological state analyzer of the present invention further includes an upper limit peak value and a lower limit peak value for each predetermined time range from the peak value of each cycle of the second derivative waveform obtained by the second derivative calculation means. The difference is calculated, and the difference is used as a power value, time series data of the power value is obtained, and the slope of the second-order differential waveform power value obtained by sliding the power value with respect to the time axis in a predetermined time range by a predetermined number of times is calculated. Means,
Second-order differentiation obtained by obtaining time-series data of the maximum Lyapunov exponent from the second-order differential waveform obtained by the second-order differentiation calculation means and slidingly calculating the slope of the maximum Lyapunov exponent with respect to the time axis in a predetermined time range by a predetermined number of times. Waveform maximum Lyapunov exponent slope calculation means,
When the slope time-series waveforms obtained by the second-order differential waveform power value slope calculating means and the second-order differential waveform maximum Lyapunov exponent slope calculating means are overlapped, the two slope time-series waveforms have an antiphase relationship. It is preferable to comprise a second-order differential waveform sleep onset determination means for determining a waveform as a sleep onset signal.
The biological state analyzer of the present invention further includes an upper limit peak value and a lower limit peak value for each predetermined time range from the peak value of each period of time series signal data of air pressure fluctuation detected by the air cushion. The original waveform power value slope calculation means for obtaining the time series data of the power value and calculating the slope of the power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times. When,
From the time series signal data of the air pressure fluctuation detected by the air cushion, the time series data of the maximum Lyapunov exponent is obtained, and the original waveform obtained by sliding the slope of the maximum Lyapunov exponent with respect to the time axis in a given time range a predetermined number of times Means for calculating the maximum Lyapunov exponent slope;
When the respective slope time series waveforms obtained by the original waveform power value slope calculating means and the original waveform maximum Lyapunov exponent slope calculating means are overlapped, a waveform in which the two slope time series waveforms are in an antiphase relationship is displayed. An original waveform sleep onset predictor determining means for determining a signal;
Whether a sleep onset sign signal has been determined only by the second-order differential waveform sleep onset determination means, or whether both of the second-order differential waveform sleep onset determination means and the original waveform onset sign determination means have determined a sleep onset sign signal in the same time period A comparison judgment means for making a comparison judgment;
It is preferable to comprise warning control means for operating a warning for being awakened according to the comparison results of the ratio determining means.
The warning control means of the biological state analyzer of the present invention includes a case in which the comparison judgment means determines a sleep onset symptom signal only by the second order differential waveform sleep onset determination means, and the second order differential waveform sleep onset determination means. In addition, it is preferable that different types of warnings function depending on whether the sleep onset sign signal is determined in the same time period in both the original waveform sleep onset determination means.
Further, the computer program of the present invention includes an air bag incorporated between a skin member of a part of the human body support means that supports at least the vicinity of a human waist and a cushion support member disposed on the back side of the skin member. Receiving time-series signal data of the sensor due to air pressure fluctuation from a biological signal measuring device comprising an air cushion provided and a sensor for detecting air pressure fluctuation of the air bag accompanying a pulse wave of an artery; A computer program introduced into a biological state analyzer that processes signal data and analyzes the state of a person supported by the human body support means,
The apparatus has a second-order differential operation means for second-order differentiation of the time series signal data, and processes a second-order differential waveform obtained by the second-order differential operation means to analyze a human state.
The computer program of the present invention further calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the second-order differential waveform obtained by the second-order differential calculation means. A second-order differential waveform power value slope calculating means for calculating and calculating time series data of the power value by using this difference as a power value, and calculating a slope of the power value with respect to the time axis in a predetermined time range by sliding a predetermined number of times; ,
Second-order differentiation obtained by obtaining time-series data of the maximum Lyapunov exponent from the second-order differential waveform obtained by the second-order differentiation calculation means and slidingly calculating the slope of the maximum Lyapunov exponent with respect to the time axis in a predetermined time range by a predetermined number of times. Waveform maximum Lyapunov exponent slope calculation means,
When the slope time-series waveforms obtained by the second-order differential waveform power value slope calculating means and the second-order differential waveform maximum Lyapunov exponent slope calculating means are overlapped, the two slope time-series waveforms have an antiphase relationship. It is preferable to comprise a second-order differential waveform sleep onset determination means for determining a waveform as a sleep onset signal.
The computer program of the present invention further includes a difference between a peak value on an upper limit side and a peak value on a lower limit side for each predetermined time range from a peak value of each period of time series signal data of air pressure fluctuation detected by the air cushion. An original waveform power value slope calculating means for obtaining a time value data of the power value and calculating a slope of the power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times,
From the time series signal data of the air pressure fluctuation detected by the air cushion, the time series data of the maximum Lyapunov exponent is obtained, and the original waveform obtained by sliding the slope of the maximum Lyapunov exponent with respect to the time axis in a given time range a predetermined number of times Means for calculating the maximum Lyapunov exponent slope;
When the respective slope time series waveforms obtained by the original waveform power value slope calculating means and the original waveform maximum Lyapunov exponent slope calculating means are overlapped, a waveform in which the two slope time series waveforms are in an antiphase relationship is displayed. An original waveform sleep onset predictor determining means for determining a signal;
Whether a sleep onset sign signal has been determined only by the second-order differential waveform sleep onset determination means, or whether both of the second-order differential waveform sleep onset determination means and the original waveform onset sign determination means have determined a sleep onset sign signal in the same time period A comparison judgment means for making a comparison judgment;
It is preferable to comprise warning control means for operating a warning for being awakened according to the comparison results of the ratio determining means.
The warning control means of the computer program according to the present invention includes a case where, in the comparison and determination means, a sleep onset sign signal is determined only by the second-order differential waveform sleep onset determination means, and the second-order differential waveform sleep onset determination means and the original It is preferable that different types of warnings are made to function depending on whether the sleep onset sign signal is determined in the same time period in both of the waveform sleep onset determination means.
The present invention also provides a computer-readable recording medium on which the computer program is recorded.
 本発明では、エアクッションによって検出される空気圧変動の時系列信号データを2階微分する2階微分演算手段を有し、この2階微分演算手段により得られる2階微分波形を加工して人の状態を分析する。エアクッションから検出される空気圧変動の時系列信号データは、動脈の脈波によるものであるが、これを2階微分することにより、時系列信号データの波形の変化、特に高周波成分の変化が強調される。そして、後述のように本発明者らの試験によれば、2階微分して得られる時系列波形は、高周波成分が強調されるため、末梢の脈波である指尖容積脈波の時系列波形に近似することになり、動脈の脈波を採取することによって、動脈の脈波そのものと指尖容積脈波に近似した2階微分の波形とを併用することができ、動脈の脈波のみを採取するにも拘わらず、生体状態の分析をより高い精度で行うことができる。 In the present invention, there is a second-order differential calculation means for performing second-order differentiation on the time-series signal data of the air pressure fluctuation detected by the air cushion, and the second-order differential waveform obtained by the second-order differential calculation means is processed to produce a human Analyze the condition. The time-series signal data of air pressure fluctuation detected from the air cushion is due to the arterial pulse wave. By second-order differentiation of this, changes in the waveform of the time-series signal data, especially changes in high-frequency components, are emphasized. Is done. As described later, according to the tests of the present inventors, the time series waveform obtained by second-order differentiation emphasizes the high-frequency component, so that the time series of the fingertip volume pulse wave, which is a peripheral pulse wave, is used. By sampling the arterial pulse wave, the arterial pulse wave itself and the second-order differential waveform approximating the fingertip volume pulse wave can be used together, and only the arterial pulse wave is obtained. However, it is possible to analyze the biological state with higher accuracy.
 また、指尖容積脈波による入眠予兆信号の検出は、動脈の脈波による入眠予兆信号よりも感度が高い。従って、指尖容積脈波に相当する2階微分して得られる動脈の脈波の時系列波形のみから入眠予兆信号が検出された場合には、入眠予兆信号と言っても、覚醒段階から睡眠段階1に至るまでのうち、より覚醒段階に近いレベルの兆候を捉えたものと考えられる。これに対し、2階微分して得られる時系列波形からだけでなく、2階微分しないデータを用いた場合にも入眠予兆信号が検出された場合には、入眠予兆信号の検出感度が相対的に劣るにも拘わらず検出されることから、覚醒段階から睡眠段階1に至るまでのうち、より睡眠段階1に近いレベルの兆候を捉えたものと考えられる。すなわち、入眠予兆信号をこのように2つの時系列波形を用いて捉えることにより、2段階の入眠予兆信号を捉えることができる。従って、警告制御手段をこの2段階の入眠予兆信号にリンクさせることにより、例えば、2階微分して得られる時系列波形のみから入眠予兆信号が検出された場合には、弱い警告を発するように制御し、2階微分しないデータを用いた場合にも入眠予兆信号が検出された場合には、強い警告を発するように制御することもできる。また、2つの入眠予兆信号の間で相対的に振幅の小さな波形が見られる場合には、睡眠段階1に至らないものの漫然とした状態が継続していることを示すため、最初の入眠予兆信号が現れた後このような小さな波形が見られた段階でも警告を発するようにしてもよい。 In addition, the detection of the sleep signal by the fingertip volume pulse wave is more sensitive than the sleep signal by the arterial pulse wave. Therefore, when a sleep onset predictor signal is detected only from the time-series waveform of the arterial pulse wave obtained by second-order differentiation corresponding to the fingertip volume pulse wave, the sleep onset predictor signal is a sleep signal from the awakening stage. It seems that the signs of the level closer to the awakening stage were captured until reaching stage 1. On the other hand, not only from a time-series waveform obtained by second-order differentiation, but also when using a data that is not second-order differentiated, when the sleep onset predictor signal is detected, the detection sensitivity of the sleep onset predictor signal is relative. Therefore, it is considered that a sign of a level closer to the sleep stage 1 is captured from the awakening stage to the sleep stage 1. That is, by capturing the sleep onset sign signal using two time-series waveforms in this way, it is possible to capture a two-stage sleep onset sign signal. Therefore, by linking the warning control means to the two-stage sleep signal, for example, when a sleep signal is detected only from the time-series waveform obtained by second-order differentiation, a weak warning is issued. Even when data that is controlled and is not second-order differentiated is used, if a sleep onset sign signal is detected, control can be performed so that a strong warning is issued. In addition, when a waveform having a relatively small amplitude is observed between the two sleep onset signals, the first sleep onset signal is shown to indicate that the sleep state 1 is not reached but the state of disorder is continued. A warning may be issued even when such a small waveform is seen after appearing.
図1は、本発明の一の実施形態に係る生体状態分析装置の分析対象である生体信号測定装置をシートに組み込んだ状態で示した図である。FIG. 1 is a diagram illustrating a state in which a biological signal measuring device that is an analysis target of a biological state analyzer according to an embodiment of the present invention is incorporated in a sheet. 図2は、上記実施形態に係る生体信号測定装置をより詳細に示した図である。FIG. 2 is a diagram showing the biological signal measuring apparatus according to the embodiment in more detail. 図3は、エアクッションユニットを示した図であり、(a)は正面方向から見た断面図、(b)は側面図、(c)は底面図、(d)は(a)のA-A線断面図である。3A and 3B are views showing the air cushion unit, where FIG. 3A is a cross-sectional view seen from the front direction, FIG. 3B is a side view, FIG. 3C is a bottom view, and FIG. It is A sectional view. 図4は、エアクッションユニットの分解斜視図である。FIG. 4 is an exploded perspective view of the air cushion unit. 図5(a),(b)は、試験例で用いたエアクッションユニットのサイズを説明するための図である。5A and 5B are views for explaining the size of the air cushion unit used in the test example. 図6は、上記実施形態の生体状態分析装置の構造を説明するための図である。FIG. 6 is a diagram for explaining the structure of the biological state analyzer of the embodiment. 図7は、試験例1における荷重-たわみ特性の測定方法を説明するための図である。FIG. 7 is a diagram for explaining a method of measuring load-deflection characteristics in Test Example 1. 図8は、図7の測定結果を示した図である。FIG. 8 is a diagram showing the measurement results of FIG. 図9は、試験例2の振動吸収特性の試験方法を説明するための図である。FIG. 9 is a diagram for explaining a test method for vibration absorption characteristics of Test Example 2. FIG. 図10(a)~(d)は、試験例2において、1.0Hz~2.5Hzで加振した際のセンサの出力を示した図である。FIGS. 10A to 10D are diagrams showing sensor outputs when vibration is applied at 1.0 Hz to 2.5 Hz in Test Example 2. FIG. 図11(a)~(d)は、試験例2において、3.0Hz~4.5Hzで加振した際のセンサの出力を示した図である。FIGS. 11A to 11D are diagrams showing sensor outputs when vibration is applied at 3.0 Hz to 4.5 Hz in Test Example 2. FIG. 図12(a)~(d)は、試験例2において、5.0Hz~6.5Hzで加振した際のセンサの出力を示した図である。12A to 12D are diagrams showing sensor outputs when vibration is applied at 5.0 Hz to 6.5 Hz in Test Example 2. FIG. 図13(a)~(d)は、試験例2において、7.0Hz~8.5Hzで加振した際のセンサの出力を示した図である。FIGS. 13A to 13D are diagrams showing sensor outputs when vibration is applied at 7.0 Hz to 8.5 Hz in Test Example 2. FIG. 図14(a)~(c)は、試験例2において、9.0Hz~10.0Hzで加振した際のセンサの出力を示した図である。14A to 14C are diagrams showing sensor outputs when vibration is applied at 9.0 Hz to 10.0 Hz in Test Example 2. FIG. 図15(a),(b)は、試験例3の試験方法を説明するための図である。15A and 15B are diagrams for explaining the test method of Test Example 3. FIG. 図16は、試験例3において、1.0Hzで加振した際のセンサの出力を示した図である。FIG. 16 is a diagram showing the output of the sensor when vibrating at 1.0 Hz in Test Example 3. 図17は、試験例3において、1.5Hzで加振した際のセンサの出力を示した図である。FIG. 17 is a diagram showing the output of the sensor when vibrating at 1.5 Hz in Test Example 3. 図18は、試験例3において、2.0Hzで加振した際のセンサの出力を示した図である。FIG. 18 is a diagram showing the output of the sensor when vibrating at 2.0 Hz in Test Example 3. 図19は試験例4において生体信号測定装置により採取した被験者の大動脈の脈波(エアパック脈波)の原波形を示す図である。FIG. 19 is a diagram showing an original waveform of a subject's aortic pulse wave (air pack pulse wave) collected by the biological signal measuring apparatus in Test Example 4. 図20は、2階微分演算手段により求められた2階微分波形(エアパック脈波2階微分波形)を示す図である。FIG. 20 is a diagram showing a second-order differential waveform (air pack pulse wave second-order differential waveform) obtained by the second-order differential calculation means. 図21は、指尖容積脈波の原波形を示す図である。FIG. 21 is a diagram illustrating an original waveform of a fingertip volume pulse wave. 図22は、図19及び図21で示したエアパック脈波と指尖容積脈波を部分的に拡大して示した一部を示した図である。FIG. 22 is a diagram showing a part of the air pack pulse wave and fingertip volume pulse wave shown in FIGS. 19 and 21 partially enlarged. 図23は、図19及び図21で示したエアパック脈波と指尖容積脈波を部分的に拡大して示した他の部を示した図である。FIG. 23 is a diagram showing another part of the air pack pulse wave and fingertip volume pulse wave shown in FIGS. 19 and 21 partially enlarged. 図24(a)は、図19のエアパック脈波(図中、「Air-pack」)と図21の指尖容積脈波(図中、「Plethysmogram」)の周波数解析結果であり、図24(b)は、図20のエアパック脈波2階微分波形(図中、「Air-pack(2nd differential calculus」)と図21の指尖容積脈波(図中、「Plethysmogram」)の周波数解析結果を示す図である。FIG. 24A is a frequency analysis result of the air pack pulse wave of FIG. 19 (“Air-pack” in the figure) and the fingertip volume pulse wave of FIG. 21 (“Plethysmogram” in the figure). (B) is a frequency analysis of the second-order differential waveform of the air pack pulse wave in FIG. 20 (“Air-pack (2nd differential calculus”) in FIG. 20 and the fingertip volume pulse wave in FIG. 21 (“Plethysmogram” in the figure)). It is a figure which shows a result. 図25(a)は、エアパック脈波の原波形パワー値及び原波形最大リアプノフ指数の傾きの時系列波形であり、図25(b)は、エアパック脈波2階微分波形の2階微分波形パワー値及び2階微分波形最大リアプノフ指数の傾きの時系列波形であり、図25(c)は、指尖容積脈波から求めた指尖容積脈波のパワー値及び最大リアプノフ指数の傾きの時系列波形である。図25(d)は脳波の分布率の時系列波形を示す図である。FIG. 25A is a time-series waveform of the original waveform power value of the air pack pulse wave and the gradient of the original waveform maximum Lyapunov exponent, and FIG. 25B is the second derivative of the air pack pulse wave second-order differential waveform. FIG. 25C is a time series waveform of the waveform power value and the slope of the second-order differential waveform maximum Lyapunov exponent, and FIG. 25C shows the power value of the fingertip volume pulse wave and the slope of the maximum Lyapunov exponent determined from the fingertip volume pulse wave. It is a time series waveform. FIG. 25 (d) is a diagram showing a time-series waveform of the distribution rate of the electroencephalogram. 図26(a),(b)は、図25の3種類の各傾き時系列波形(エアパック脈波(図中、「Air-pack」)、エアパック脈波2階微分波形(図中、「Air-pack 2nd differential calculus wave」)、指尖容積脈波(図中、「Plethysmogram」)の周波数解析結果を示す図である。26 (a) and 26 (b) show three types of time series waveforms (air pack pulse wave (“Air-pack” in the figure)), air pack pulse wave second-order differential waveform (in the figure, FIG. 25) of FIG. It is a figure which shows the frequency analysis result of "Air-pack (2nd) differential (calculus) wave") and fingertip plethysmogram ("Plethysmogram" in the figure). 図27(a)はエアパック脈波(図中、「Air-pack sensor」)、図27(b)はエアパック脈波2階微分波形(図中、「Air-pack 2nd differential calculus wave」)、図27(c)は指尖容積脈波(図中、「Plethysmogram」)、図27(d)は心電図(図中、「The electrocardiongram」)からそれぞれ得られた心拍数変動のウエーブレット解析を行った結果を示す図である。FIG. 27A shows an air pack pulse wave (“Air-pack sensor” in the figure), and FIG. 27B shows an air pack pulse wave second-order differential waveform (“Air-pack 2nd differential calculus wave” in the figure). 27 (c) is a fingertip volume pulse wave (“Plethysmogram” in the figure), and FIG. 27 (d) is a wavelet analysis of heart rate variability obtained from an electrocardiogram (“The electrocardiongram” in the figure). It is a figure which shows the result of having performed. 図28(a)は、指尖容積脈波とエアパック脈波から得られた加速度脈波加齢指数(SDPTGAI)の値を示す図であり、図28(b)は、指尖容積脈波とエアパック脈波2階微分波形から得られた加速度脈波加齢指数(SDPTGAI)の値を示す図である。FIG. 28A is a diagram showing the value of the acceleration pulse wave aging index (SDPTGAI) obtained from the fingertip volume pulse wave and the air pack pulse wave, and FIG. It is a figure which shows the value of the acceleration pulse wave aging index (SDPTGAI) obtained from the air pack pulse wave second-order differential waveform.
 以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。図1は、本実施形態に係る生体状態分析装置60の分析対象の生体信号である背部の大動脈の脈波を採取する生体信号測定装置1を組み込んだ自動車用のシート500の外観を示した図である。この図に示したように、生体信号測定装置1は、シートバック部510に組み込まれて用いられる。本実施形態の生体状態分析装置60は、従来よりも正確に生体情報を分析できるものであるが、分析対象の生体信号自体にノイズがないほど、より正確に分析できることはもちろんである。そこで、まず、以下においては、ノイズの混入の少ない生体信号測定装置1の構成を説明する。 Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention shown in the drawings. FIG. 1 is an external view of a vehicle seat 500 incorporating a biological signal measuring apparatus 1 that collects a pulse wave of a back aorta, which is a biological signal to be analyzed by the biological state analyzing apparatus 60 according to the present embodiment. It is. As shown in this figure, the biological signal measuring apparatus 1 is used by being incorporated in a seat back portion 510. The biological state analyzer 60 of the present embodiment can analyze biological information more accurately than in the past, but of course it can be analyzed more accurately as there is no noise in the biological signal to be analyzed. Therefore, first, in the following, the configuration of the biological signal measuring apparatus 1 with less noise mixing will be described.
 生体信号測定装置1は、エアクッションユニット100と、第1のビーズ発泡樹脂弾性部材20と、第2のビーズ発泡樹脂弾性部材30とを有して構成されている。エアクッションユニット100は、収容体15と、該収容体15に収容した2つのエアクッション10を備えて構成される。各エアクッション10は、図3及び図4に示したように、表側エアクッション11と裏側エアクッション12とが積層されて構成され、収容体15の左右にそれぞれ配置される。表側エアクッション11は、3つの小空気袋111が縦方向に連接されている一方、そのそれぞれは空気の流通がないように形成されている。各小空気袋111内には、復元力付与部材としての三次元立体編物112が配置されている。
 裏側エアクッション12は、3つの小空気袋111を連接してなる表側エアクッション11の全長と同じ長さの大空気袋121とこの大空気袋121内に収容される復元力付与部材としての三次元立体編物122とを備えて構成される(図4参照)。表側エアクッション11と裏側エアクッション12とは、長手方向に沿った一方の側縁同士が接合され、接合された側縁を中心にして2つ折りにされて、相互に重ね合わせられて用いられる(図3(d)及び図4参照)。
The biological signal measuring apparatus 1 includes an air cushion unit 100, a first bead foam resin elastic member 20, and a second bead foam resin elastic member 30. The air cushion unit 100 includes a housing 15 and two air cushions 10 housed in the housing 15. As shown in FIGS. 3 and 4, each air cushion 10 is configured by laminating a front side air cushion 11 and a back side air cushion 12, and is arranged on the left and right sides of the container 15. The front-side air cushion 11 is formed such that three small air bags 111 are connected in the vertical direction, and each of them does not allow air to flow. In each small air bag 111, a three-dimensional solid knitted fabric 112 is disposed as a restoring force applying member.
The back side air cushion 12 has a large air bag 121 having the same length as the full length of the front side air cushion 11 formed by connecting three small air bags 111 and a tertiary as a restoring force applying member accommodated in the large air bag 121. It comprises an original three-dimensional knitted fabric 122 (see FIG. 4). The front side air cushion 11 and the back side air cushion 12 are used in such a manner that one side edge along the longitudinal direction is joined, folded into two around the joined side edge, and overlapped with each other ( (Refer FIG.3 (d) and FIG. 4).
 本実施形態では、このように表側エアクッション11と裏側エアクッション12とが相互に重ね合わせられたエアクッション10が左右に配置される。左右に配置することにより、着座者の背への当たりが左右均等になり、違和感を感じにくくなる。また、左右の表側エアクッション11,11のいずれか一方を構成するいずれかの小空気袋111にセンサ取付チューブ111aが設けられ、その内側に空気圧変動を測定するセンサ111bが固定されている。なお、センサ取付チューブ111aは密閉されている。裏側エアクッション12を構成する大空気袋121にセンサを配設することもできるが、容量の大きい空気袋に設けると、脈波による空気圧変動が吸収されてしまう場合があるため、小空気袋111に設けることが好ましい。但し、図4に示したように、予め、大空気袋121に取付チューブ121aを設けその部位にセンサを配設しておき、必要に応じて、大空気袋121の空気圧変動を測定することで、小空気袋111の測定結果の検証に利用できるようにしておいてもよい。小空気袋111は、このような生体信号による空気圧変動に敏感に反応させるために、大きさは、幅40~100mm、長さ120~200mmの範囲が好ましい。小空気袋111の素材は限定されるものではないが、例えば、ポリウレタンエラストマー(例えば、シーダム株式会社製、品番「DUS605-CDR」)からなるシートを用いて形成することができる。センサ111bとしては、小空気袋111内の空気圧を測定できるものであればよく、例えば、コンデンサ型マイクロフォンセンサを用いることができる。 In this embodiment, the air cushion 10 in which the front side air cushion 11 and the back side air cushion 12 are overlapped with each other is arranged on the left and right sides. By arranging them on the left and right, the back of the seated person becomes even on the left and right sides, making it difficult to feel uncomfortable. In addition, a sensor mounting tube 111a is provided in any one of the small air bags 111 constituting either one of the left and right front air cushions 11 and 11, and a sensor 111b for measuring air pressure fluctuation is fixed inside thereof. The sensor mounting tube 111a is sealed. Although the sensor can be disposed in the large air bag 121 constituting the back side air cushion 12, if the air bag is provided with a large capacity, the air pressure fluctuation due to the pulse wave may be absorbed. It is preferable to provide in. However, as shown in FIG. 4, a mounting tube 121a is provided in the large air bag 121 in advance, and a sensor is disposed at that portion, and the air pressure fluctuation of the large air bag 121 is measured as necessary. Alternatively, the measurement result of the small air bag 111 may be used for verification. The small air bag 111 preferably has a size in the range of 40 to 100 mm in width and 120 to 200 mm in length in order to react sensitively to such a variation in air pressure due to a biological signal. The material of the small air bag 111 is not limited. For example, the small air bag 111 can be formed using a sheet made of polyurethane elastomer (for example, product number “DUS605-CDR” manufactured by Seadam Co., Ltd.). Any sensor 111b may be used as long as it can measure the air pressure in the small air bag 111. For example, a condenser microphone sensor can be used.
 大空気袋121の大きさ及び小空気袋111を3つ連接した場合の全体の大きさとしては、自動車のシート500のシートバック部510に用いる場合、幅40~100mm、全長400~600mmの範囲とすることが好ましい。長さが短い場合、シートバック部510において、着座者が、腰部付近の一部分のみに異物感を感じるため、400mm以上の長さとして、できるだけ、着座者の背全体に対応させることが好ましい。 The size of the large air bag 121 and the total size when three small air bags 111 are connected are a range of 40 to 100 mm in width and 400 to 600 mm in total length when used for the seat back portion 510 of the automobile seat 500. It is preferable that When the length is short, the seat occupant feels a foreign body sensation only at a portion near the waist in the seat back portion 510. Therefore, it is preferable that the length is 400 mm or more to correspond to the entire back of the seat occupant as much as possible.
 空気圧変動を検出するセンサ111bは、本実施形態では、着座者の左側に配置されるエアクッション10を構成する表側エアクッション11の中央の小空気袋111に設けている。この小空気袋111の位置は、着座者の腰部付近の大動脈の脈波を検知可能な領域に相当する。腰部付近の大動脈脈波を検知可能な領域は、着座者の体格により一律ではないが、身長158cmの日本人女性から身長185cmの日本人男性までの様々な体格の被験者20名で測定したところ、該小空気袋111(幅60mm、長さ160mm)をシートバック部510の中心寄りの側縁と下縁の交差部P(図2及び図3参照)が、シートクッション部520の上面からシートバック部510の表面に沿った長さL:220mm、シートバック部510の中心からの距離M:80mmとなるように設定したところ、上記全ての被験者において大動脈の脈波を検知できた。小空気袋111の大きさが、幅40~100mm、長さ120~200mmの範囲の場合、交差部Pの位置を、シートクッション部520の上面からシートバック部510の表面に沿った長さで150~280mm、シートバック部510の中心から60~120mmの範囲に設定することが好ましい。 In this embodiment, the sensor 111b that detects air pressure fluctuation is provided in the small air bag 111 at the center of the front air cushion 11 that constitutes the air cushion 10 that is disposed on the left side of the seated person. The position of the small air bag 111 corresponds to a region where a pulse wave of the aorta near the waist of the seated person can be detected. The region in which the aortic pulse wave in the vicinity of the lumbar region can be detected is not uniform depending on the physique of the seated person, but when measured by 20 subjects with various physiques from a Japanese woman with a height of 158 cm to a Japanese man with a height of 185 cm, The small air bag 111 (width: 60 mm, length: 160 mm) is formed so that the intersection P (see FIGS. 2 and 3) between the side edge and the lower edge near the center of the seat back portion 510 is from the upper surface of the seat cushion portion 520. When the length L along the surface of the portion 510 was set to 220 mm and the distance M from the center of the seat back portion 510 was set to 80 mm, the pulse wave of the aorta could be detected in all the above subjects. When the size of the small air bag 111 is in the range of 40 to 100 mm in width and 120 to 200 mm in length, the position of the intersecting portion P is a length along the surface of the seat back portion 510 from the upper surface of the seat cushion portion 520. It is preferable to set the distance within the range of 150 to 280 mm and 60 to 120 mm from the center of the seat back portion 510.
 上記した2つのエアクッション10をシートバック部510において容易に所定の位置に設定できるようにユニット化しておくことが好ましい。従って、図2~図4に示したような収容体15にエアクッション10を装填したエアクッションユニット100として構成とすることが好ましい。収容体15は、両側にエアクッション10を収容する袋状のエアクッション収容部151を有し、2つのエアクッション収容部151間に接続部152を有している。 It is preferable to unitize the two air cushions 10 so that the seat back portion 510 can be easily set at a predetermined position. Therefore, it is preferable to configure the air cushion unit 100 in which the air cushion 10 is loaded in the housing 15 as shown in FIGS. The container 15 has a bag-shaped air cushion accommodating part 151 that accommodates the air cushion 10 on both sides, and a connecting part 152 between the two air cushion accommodating parts 151.
 2つのエアクッション収容部151には、それぞれエアクッション10が挿入される。また、エアクッション収容部151には、エアクッション10とほぼ同じ大きさの三次元立体編物40を、エアクッション10の裏側エアクッション12の背面側に重ねて挿入することが好ましい(図3(d)参照)。三次元立体編物40を配置することにより、シートバック部510を通じて人体側に入力される振動を除振する効果がより高くなる。 The air cushion 10 is inserted into each of the two air cushion accommodating portions 151. In addition, it is preferable to insert a three-dimensional solid knitted fabric 40 having substantially the same size as the air cushion 10 into the air cushion accommodating portion 151 so as to overlap the back side of the back side air cushion 12 of the air cushion 10 (FIG. 3D). )reference). By arranging the three-dimensional solid knitted fabric 40, the effect of removing vibrations input to the human body side through the seat back portion 510 is further enhanced.
 接続部152は、2つのエアクッション部151を所定間隔をおいて支持できるものであればよく、幅60~120mm程度で形成される。接続部152も、袋状に形成し、その内部に三次元立体編物45を挿入することが好ましい(図3(d)及び図4参照)。これにより、該接続部152を通じて入力される振動も、該三次元立体編物45を挿入することにより効果的に除振できる。 The connecting portion 152 only needs to be able to support the two air cushion portions 151 at a predetermined interval, and is formed with a width of about 60 to 120 mm. It is preferable that the connecting portion 152 is also formed in a bag shape, and the three-dimensional solid knitted fabric 45 is inserted therein (see FIGS. 3D and 4). Thereby, the vibration input through the connection portion 152 can be effectively removed by inserting the three-dimensional solid knitted fabric 45.
 なお、上記したように、小空気袋111は、例えば、ポリウレタンエラストマー(例えば、シーダム株式会社製、品番「DUS605-CDR」)からなるシートを用いて形成されるが、裏側クッション材12を形成する大空気袋121及び収容体15も、同じ素材を用いて形成することが好ましい。また、小空気袋111、大空気袋121、エアクッション収容部151及び接続部152内に装填される各三次元立体編物は、例えば、特開2002-331603号公報に開示されているように、互いに離間して配置された一対のグランド編地と、該一対のグランド編地間を往復して両者を結合する多数の連結糸とを有する立体的な三次元構造となった編地である。 As described above, the small air bag 111 is formed using, for example, a sheet made of polyurethane elastomer (for example, product number “DUS605-CDR” manufactured by Seadam Co., Ltd.), and forms the back cushion material 12. The large air bag 121 and the container 15 are also preferably formed using the same material. Further, each three-dimensional solid knitted fabric loaded in the small air bag 111, the large air bag 121, the air cushion accommodating portion 151, and the connection portion 152 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-331603. This is a knitted fabric having a three-dimensional three-dimensional structure having a pair of ground knitted fabrics spaced apart from each other and a large number of connecting yarns that reciprocate between the pair of ground knitted fabrics to couple them together.
 一方のグランド編地は、例えば、単繊維を撚った糸から、ウェール方向及びコース方向のいずれの方向にも連続したフラットな編地組織(細目)によって形成され、他方のグランド編地は、例えば、短繊維を撚った糸から、ハニカム状(六角形)のメッシュを有する編み目構造に形成されている。もちろん、この編地組織は任意であり、細目組織やハニカム状以外の編地組織を採用することもできるし、両者とも細目組織を採用するなど、その組み合わせも任意である。連結糸は、一方のグランド編地と他方のグランド編地とが所定の間隔を保持するように、2つのグランド編地間に編み込んだものである。このような三次元立体編物としては、例えば、以下のようなものを用いることができる。なお、各三次元立体編物は、必要に応じて複数枚積層して用いることもできる。 One ground knitted fabric is formed by, for example, a flat knitted fabric structure (fine stitches) that is continuous in both the wale direction and the course direction from a yarn obtained by twisting a single fiber. For example, a knitted structure having a honeycomb-shaped (hexagonal) mesh is formed from a yarn obtained by twisting short fibers. Of course, this knitted fabric structure is arbitrary, and it is also possible to adopt a knitted fabric structure other than a fine structure or a honeycomb shape, and a combination thereof is also arbitrary, such as adopting a fine structure for both. The connecting yarn is knitted between two ground knitted fabrics so that one ground knitted fabric and the other ground knitted fabric maintain a predetermined distance. As such a three-dimensional solid knitted fabric, for example, the following can be used. Each three-dimensional solid knitted fabric can be used by stacking a plurality of pieces as necessary.
(1)製品番号:49076D(住江織物(株)製)
材質:
 表側のグランド編地・・・300デシテックス/288fのポリエチレンテレフタレート繊維仮撚加工糸と700デシテックス/192fのポリエチレンテレフタレート繊維仮撚加工糸との撚り糸
 裏側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸と350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメントとの組み合わせ
 連結糸・・・・・・・・・350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメント
(1) Product number: 49076D (manufactured by Sumie Textile Co., Ltd.)
Material:
Front side ground knitted fabric: twisted yarn of 300 dtex / 288 f polyethylene terephthalate fiber false twisted yarn and 700 dtex / 192 f polyethylene terephthalate fiber false twisted yarn Back side ground knitted fabric: 450 dtex / 108 f polyethylene Combination of terephthalate fiber false twisted yarn and 350 decitex / 1f polytrimethylene terephthalate monofilament Linked yarn ... 350 decitex / 1f polytrimethylene terephthalate monofilament
(2)製品番号:49013D(住江織物(株)製)
材質:
 表側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
 裏側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
 連結糸・・・・・・・・・350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメント
(2) Product number: 49013D (manufactured by Sumie Textile Co., Ltd.)
Material:
Front side ground knitted fabric: two twisted yarns of 450 dtex / 108f polyethylene terephthalate fiber false twisted yarn Backside ground knitted fabric ... 450 twists of polyethylene terephthalate fiber false twisted yarn of 108 dtex / 108f Connecting thread: 350 dtex / 1f polytrimethylene terephthalate monofilament
(3)製品番号:69030D(住江織物(株)製)
材質:
 表側のグランド編地・・・450デシテックス/144fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
 裏側のグランド編地・・・450デシテックス/144fのポリエチレンテレフタレート繊維仮撚加工糸と350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメントとの組み合わせ
 連結糸・・・・・・・・・350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメント
(3) Product number: 69030D (manufactured by Sumie Textile Co., Ltd.)
Material:
Front side ground knitted fabric: two twisted yarns of 450 dtex / 144 f polyethylene terephthalate fiber false twisted yarn Back side ground knitted fabric: 450 dtex / 144 f polyethylene terephthalate fiber false twisted yarn and 350 dtex / 1 f Combined with polytrimethylene terephthalate monofilaments of linking yarns ... 350 dtex / 1f polytrimethylene terephthalate monofilaments
(4)旭化成せんい(株)製の製品番号:T24053AY5-1S (4) Product number manufactured by Asahi Kasei Fibers Co., Ltd .: T24053AY5-1S
 第1のビーズ発泡樹脂弾性部材20と第2のビーズ発泡樹脂弾性部材30とは、シートバック部510の表皮部材とエアクッション10を収容した収容体15(エアクッションユニット100)との間に配設され、2つのエアクッション10の全長に相当する長さを有し、2つのエアクッション10の頂部間の長さに相当する幅を有している。従って、長さが400~600mm、幅が250~350mm程度の大きさのものを用いることが好ましい。これにより、2つのエアクッション10が共に覆われるため、2つのエアクッション10の凹凸を感じにくくなる。 The first bead foam resin elastic member 20 and the second bead foam resin elastic member 30 are arranged between the skin member of the seat back portion 510 and the container 15 (air cushion unit 100) containing the air cushion 10. And has a length corresponding to the entire length of the two air cushions 10 and a width corresponding to the length between the tops of the two air cushions 10. Accordingly, it is preferable to use a material having a length of about 400 to 600 mm and a width of about 250 to 350 mm. Thereby, since the two air cushions 10 are covered together, it becomes difficult to feel the unevenness of the two air cushions 10.
 第1のビーズ発泡樹脂弾性部材20は、平板状に形成されたビーズ発泡体と、その外面に貼着される被覆材とから構成されている。ビーズ発泡体としては、ポリスチレン、ポリプロピレン及びポリエチレンのいずれか少なくとも一つを含む樹脂のビーズ法による発泡成形体が用いられる。なお、発泡倍率は任意であり限定されるものではない。被覆材は、ビーズ発泡体の外面に接着により貼着され、高い伸度と回復率を有する素材であり、好ましくは、伸度200%以上、100%伸長時の回復率が80%以上である弾性繊維不織布が用いられる。例えば、特開2007-92217号公報に開示された熱可塑性エラストマー弾性繊維が相互に溶融接着された不織布を用いることができる。具体的には、KBセーレン(株)製、商品名「エスパンシオーネ」を用いることができる。 The first bead foamed resin elastic member 20 is composed of a bead foam formed in a flat plate shape and a covering material adhered to the outer surface thereof. As the bead foam, a foam molded body by a resin bead method containing at least one of polystyrene, polypropylene and polyethylene is used. The expansion ratio is arbitrary and is not limited. The covering material is a material having a high elongation and a recovery rate, which is adhered to the outer surface of the bead foam by adhesion, and preferably has a recovery rate of 80% or more at the elongation of 200% or more and 100%. An elastic fiber nonwoven fabric is used. For example, a nonwoven fabric in which thermoplastic elastomer elastic fibers disclosed in Japanese Patent Application Laid-Open No. 2007-92217 are melt-bonded to each other can be used. Specifically, trade name “Espancione” manufactured by KB Seiren Co., Ltd. can be used.
 第2のビーズ発泡樹脂弾性部材30は、第1のビーズ発泡樹脂弾性部材20と同様にビーズ発泡体を備えて構成されるが、その外面を覆う被覆材としては、第1のビーズ発泡樹脂弾性部材20において用いた弾性繊維不織布よりも伸縮性の小さい素材、例えば、熱可塑性ポリエステルからなる不織布が用いられる。具体的には、帝人(株)製のポリエチレンナフタレート(PEN)繊維(1100dtex)から形成した2軸織物(縦:20本/inch、横:20本/inch)を用いることができる。 The second bead foamed resin elastic member 30 includes a bead foam as in the first bead foamed resin elastic member 20, and the first bead foamed resin elastic member covers the outer surface thereof. A material that is less stretchable than the elastic fiber nonwoven fabric used in the member 20, for example, a nonwoven fabric made of thermoplastic polyester is used. Specifically, a biaxial woven fabric (length: 20 / inch, width: 20 / inch) formed from polyethylene naphthalate (PEN) fibers (1100 dtex) manufactured by Teijin Limited can be used.
 第1のビーズ発泡樹脂弾性部材20と第2のビーズ発泡樹脂弾性部材30とを積層する順序は限定されるものではないが、シートバック部510の表皮部材511に近い側に、弾性の高い第1のビーズ発泡樹脂弾性部材20を配設することが好ましい。また、第1及び第2のビーズ発泡樹脂弾性部材20,30を構成するビーズ発泡体は、厚さ約5~6mm程度とし、その外面に、厚さ約1mm以下の上記した弾性繊維不織布や熱可塑性ポリエステルからなる不織布を貼着して形成される。なお、本実施形態では、第1のビーズ発泡樹脂弾性部材20の表皮部材511に対向する面、第2のビーズ発泡樹脂弾性部材30のエアクッションユニット100に対向する面に、それぞれPENフィルムなどのポリエステルフィルムを貼着している。これにより、生体信号の伝達性が向上する。 The order in which the first bead foam resin elastic member 20 and the second bead foam resin elastic member 30 are stacked is not limited, but the first elastic member on the seat back portion 510 close to the skin member 511 has a high elasticity. It is preferable to dispose one bead foamed resin elastic member 20. The bead foam constituting the first and second bead foam resin elastic members 20 and 30 has a thickness of about 5 to 6 mm, and the outer surface thereof has a thickness of about 1 mm or less and the above-described elastic fiber nonwoven fabric or heat. It is formed by sticking a nonwoven fabric made of plastic polyester. In the present embodiment, the surface of the first bead foamed resin elastic member 20 facing the skin member 511 and the surface of the second bead foamed resin elastic member 30 facing the air cushion unit 100 are each made of a PEN film or the like. A polyester film is attached. Thereby, the transmissibility of a biological signal improves.
 本実施形態において人体支持手段を構成するシート500のシートバック部510は、表皮部材511と該表皮部材511の背面側に配設されるクッション支持部材512とを備えてなり、該表皮部材511とクッション支持部材512との間にエアクッション10を保持した収容体15(エアクッションユニット100)と第1及び第2のビーズ発泡樹脂弾性部材20,30が組み込まれる。この際、クッション支持部材512側にまずエアクッション10を保持した収容体15(エアクッションユニット100)が配置され、その表面側に第2のビーズ発泡樹脂弾性部材30が、さらにその表面側に第1のビーズ発泡樹脂弾性部材20が配置された上で、表皮部材511により被覆される。なお、クッション支持部材512は、例えば、三次元立体編物をシートバック部510の左右一対のサイドフレームの後端縁間に張って形成することもできるし、合成樹脂板から形成することもできる。表皮部材511は、例えば、三次元立体編物、合成皮革、皮革、あるいはこれらの積層体などを左右一対のサイドフレームの前縁間に張って設けることができる。 In the present embodiment, the seat back portion 510 of the seat 500 constituting the human body support means includes a skin member 511 and a cushion support member 512 disposed on the back side of the skin member 511, and the skin member 511 A container 15 (air cushion unit 100) holding the air cushion 10 and the first and second bead foamed resin elastic members 20 and 30 are incorporated between the cushion support member 512 and the cushion support member 512. At this time, the container 15 (air cushion unit 100) holding the air cushion 10 is first disposed on the cushion support member 512 side, the second bead foam resin elastic member 30 is further on the surface side, and the second bead foam resin elastic member 30 is further on the surface side. One bead foamed resin elastic member 20 is disposed and then covered with a skin member 511. The cushion support member 512 can be formed, for example, by stretching a three-dimensional solid knitted fabric between the rear end edges of the pair of left and right side frames of the seat back portion 510, or can be formed from a synthetic resin plate. The skin member 511 can be provided, for example, by stretching a three-dimensional solid knitted fabric, synthetic leather, leather, or a laminate thereof between the front edges of a pair of left and right side frames.
 このように、本実施形態においては、表皮部材511の裏面側に所定の大きさの第1のビーズ発泡樹脂弾性部材20及び第2のビーズ発泡樹脂弾性部材30が積層して配置され、さらにその後方に左右一対のエアクッション10を保持した収容体15(エアクッションユニット100)が配置される構成であるため、着座者が背にエアクッション10の凹凸を感じることなくなり、生体信号を測定するためのエアクッション10を有する構成でありながら、座り心地が向上する。 As described above, in the present embodiment, the first bead foamed resin elastic member 20 and the second bead foam resin elastic member 30 having a predetermined size are laminated and arranged on the back surface side of the skin member 511, and thereafter Since the container 15 (air cushion unit 100) holding the pair of left and right air cushions 10 is arranged on the side, the seated person does not feel the unevenness of the air cushion 10 on the back, and measures a biological signal. Although it is the structure which has this air cushion 10, sitting comfort improves.
 次に、生体状態分析装置60の構成について図6に基づいて説明する。
 生体状態分析装置60は、コンピュータから構成され、コンピュータプログラムとして、2階微分演算手段61、2階微分波形パワー値傾き算出手段62、2階微分波形最大リアプノフ指数傾き算出手段63、2階微分波形入眠予兆判定手段64、原波形パワー値傾き算出手段65、原波形最大リアプノフ指数傾き算出手段66、原波形入眠予兆判定手段67、比較判断手段68、警告制御手段69がインストールされている。なお、コンピュータプログラムは、記録媒体へ記憶させて提供することができる。「記録媒体」とは、それ自身では空間を占有し得ないプログラムを担持することができる媒体であり、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO(光磁気ディスク)、DVD-ROMなどである。また、本発明に係るプログラムをインストールしたコンピュータから、通信回線を通じて他のコンピュータへ伝送することも可能である。また、汎用的な端末装置に対して、上記のプログラムをプリインストール、あるいはダウンロードすることで、生体状態分析装置を形成することも可能である。
Next, the configuration of the biological state analyzer 60 will be described with reference to FIG.
The biological state analyzer 60 is configured by a computer, and as a computer program, second-order differential calculation means 61, second-order differential waveform power value slope calculation means 62, second-order differential waveform maximum Lyapunov exponent slope calculation means 63, second-order differential waveform. A sleep onset predictor determining unit 64, an original waveform power value inclination calculating unit 65, an original waveform maximum Lyapunov exponent inclination calculating unit 66, an original waveform entering sleep predictor determining unit 67, a comparison determining unit 68, and a warning control unit 69 are installed. Note that the computer program can be provided by being stored in a recording medium. A “recording medium” is a medium that can carry a program that cannot occupy space by itself, such as a flexible disk, hard disk, CD-ROM, MO (magneto-optical disk), DVD-ROM, etc. is there. It is also possible to transmit from a computer installed with the program according to the present invention to another computer through a communication line. Moreover, it is also possible to form a biological state analyzer by preinstalling or downloading the above-mentioned program to a general-purpose terminal device.
 2階微分演算手段61は、生体信号測定装置1に設けられたセンサ111bの電気信号であるエアクッション10の時系列信号データの原波形を2階微分する。エアクッション10の時系列信号データの原波形を2階微分することにより得られる2階微分波形は、原波形の変化を強調できるため、原波形に含まれる生体状態を示す情報を顕著に示すことになる。 The second-order differential calculation means 61 second-order differentiates the original waveform of the time-series signal data of the air cushion 10 that is an electrical signal of the sensor 111b provided in the biological signal measuring device 1. Since the second-order differential waveform obtained by second-order differentiation of the original waveform of the time series signal data of the air cushion 10 can emphasize the change of the original waveform, the information indicating the biological state included in the original waveform is markedly shown. become.
 2階微分波形パワー値傾き算出手段62は、2階微分演算手段61により得られる2階微分波形の各周期のピーク値から所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める。 The second-order differential waveform power value slope calculation means 62 calculates the difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the second-order differential waveform obtained by the second-order differential calculation means 61. The difference is calculated, the difference is used as a power value, time series data of the power value is obtained, and the inclination of the power value with respect to the time axis in a predetermined time range is calculated by sliding a predetermined number of times.
 2階微分波形最大リアプノフ指数傾き算出手段63は、2階微分演算手段61により得られる2階微分波形をカオス解析し、カオス解析から得られる最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める。 The second-order differential waveform maximum Lyapunov exponent slope calculating means 63 performs chaos analysis on the second-order differential waveform obtained by the second-order differential calculation means 61, obtains the time series data of the maximum Lyapunov exponent obtained from the chaos analysis, and the maximum Lyapunov exponent. The inclination with respect to the time axis in a predetermined time range is calculated by sliding a predetermined number of times.
 2階微分波形入眠予兆判定手段64は、2階微分波形パワー値傾き算出手段62及び2階微分波形最大リアプノフ指数傾き算出手段63により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する。より具体的には、2階微分波形パワー値の傾きの時系列波形と2階微分波形最大リアプノフ指数の傾きの時系列波形が逆位相となっており、かつ、2階微分波形パワー値の傾きの時系列波形で低周波、大振幅の波形が生じている波形を入眠予兆信号と判定する。 The second-order differential waveform onset symptom predicting means 64 has two slopes when the slope time series waveforms obtained by the second-order differential waveform power value slope calculating means 62 and the second-order differential waveform maximum Lyapunov exponent slope calculating means 63 are overlapped. A waveform in which the time series waveform has an antiphase relationship is determined as a sleep onset signal. More specifically, the time-series waveform of the slope of the second-order differential waveform power value and the time-series waveform of the slope of the second-order differential waveform maximum Lyapunov exponent are in opposite phases, and the slope of the second-order differential waveform power value A waveform in which a low-frequency and large-amplitude waveform is generated in the time-series waveform is determined as a sleep onset signal.
 原波形パワー値傾き算出手段65、原波形最大リアプノフ指数傾き算出手段66、及び原波形入眠予兆判定手段67は、分析対象となる時系列データが、2階微分波形ではなく、生体信号測定装置1に設けられたセンサ111bの電気信号であるエアクッション10の時系列信号データの原波形であるが、その算出方法は上記した2階微分波形パワー値傾き算出手段62、2階微分波形最大リアプノフ指数傾き算出手段63、2階微分波形入眠予兆判定手段64と全く同様である。 The original waveform power value slope calculating means 65, the original waveform maximum Lyapunov exponent slope calculating means 66, and the original waveform sleep onset predictor judging means 67 are not the second-order differential waveform but the biological signal measuring device 1 Is the original waveform of the time-series signal data of the air cushion 10 which is an electric signal of the sensor 111b provided in the sensor 111b, and the calculation method thereof is the above-described second-order differential waveform power value slope calculating means 62, second-order differential waveform maximum Lyapunov exponent. This is exactly the same as the slope calculating means 63 and the second-order differential waveform sleep onset determination means 64.
 比較判断手段68は、2階微分波形入眠予兆判定手段64のみにより入眠予兆信号が判定されたか、2階微分波形入眠予兆判定手段64及び原波形入眠予兆判定手段67の双方において同時間帯に入眠予兆信号が判定されたかを比較判断する。2階微分波形入眠予兆手段64と原波形入眠予兆判定手段67とを比較すると、前者は、生体の変化を検知する閾値が低い(感度が高い)と考えられるため、覚醒段階から睡眠段階1に至るまでのうち、より覚醒段階に近いレベルの兆候をも捉えることができるのに対し、後者は、生体の変化を検知する閾値が高い(感度が低い)と考えられるため、覚醒段階から睡眠段階1に至るまでのうち、より睡眠段階1に近いレベルの兆候しか捉えることができない。そこで、いずれによって入眠予兆信号が判定されたかを比較判断することにより、警告制御手段69による警告に役立てることができる。例えば、2階微分波形入眠予兆判定手段64のみにより入眠予兆信号が判定された場合には、コンピュータプログラムである警告制御手段69が警告装置(図示せず)に対して弱い警告を動作させる指令を発し、2階微分波形入眠予兆判定手段64及び原波形入眠予兆判定手段67の双方において同時間帯に入眠予兆信号が判定された場合には、強い警告を動作させる指令を発するように設定することができる。なお、警告装置は、音を発生させる装置、光を点滅させる装置、シートバック部の傾斜角度を変化させる装置など様々な装置を用いることもできる。もちろん、これらを適宜に2以上組み合わせてもよい。例えば、弱い警告の際には比較的小さな音を発し、強い警告の際には大きな音を発するようにしたり、弱い警告の際には音のみを発し、強い警告の際には音を発すると共に光も点滅させるように制御できる。 The comparison judgment means 68 is determined to have a sleep onset sign signal only by the second-order differential waveform onset sign determination means 64, or both the second-order differential waveform onset sign determination means 64 and the original waveform onset sign determination means 67 fall asleep at the same time period. A comparison is made to determine whether or not the predictive signal has been determined. Comparing the second-order differential waveform sleep onset predicting means 64 and the original waveform sleep onset predicting means 67, the former is considered to have a low threshold (high sensitivity) for detecting a change in the living body. Until then, it is possible to catch signs at a level closer to the awakening stage, whereas the latter is considered to have a high threshold (low sensitivity) to detect changes in the living body, so the awakening stage to the sleeping stage. Until it reaches 1, it can only catch signs of a level closer to sleep stage 1. Therefore, by comparing and determining which of the sleep onset sign signals is determined, it can be used for warning by the warning control means 69. For example, when a sleep onset symptom signal is determined only by the second-order differential waveform onset symptom determination means 64, a warning control means 69, which is a computer program, gives a command for operating a weak warning to a warning device (not shown). When both the second-order differential waveform onset symptom determination unit 64 and the original waveform onset symptom determination unit 67 determine that a sleep onset symptom signal is determined in the same time period, a command to activate a strong warning is set. Can do. Note that various devices such as a device that generates sound, a device that blinks light, and a device that changes the inclination angle of the seat back portion can be used as the warning device. Of course, two or more of these may be appropriately combined. For example, it emits a relatively small sound for a weak warning, a loud sound for a strong warning, or only a sound for a weak warning, and a sound for a strong warning. The light can also be controlled to blink.
(試験例1)
(静荷重特性)
 図7に示したように、測定盤上に、エアクッション10を保持した収容体15(エアクッションユニット100)のみを単独で置いた場合(図8の「エアパック」のデータ)、エアクッション10を保持した収容体15(エアクッションユニット100)上に第1のビーズ発泡樹脂弾性部材20を積層した場合(図8の「A+エアパック」のデータ)、エアクッション10を保持した収容体15(エアクッションユニット100)上に第2のビーズ発泡樹脂弾性部材30を積層した場合(図8の「B+エアパック」のデータ)、及び、エアクッション10を保持した収容体15(エアクッションユニット100)上に第2のビーズ発泡樹脂弾性部材30を積層し、さらにその上に第1のビーズ発泡樹脂弾性部材20を積層した場合(図8の「A+B+エアパック」のデータ)について、センサ111bが付設された小空気袋111に対応する位置を、直径30mmの加圧板によってたわみ量1mmまで加圧して荷重-たわみ特性を測定した。エアクッション10の各空気袋111,121内に収容した三次元立体編物は、住江織物(株)製、製品番号49013Dであり、各部位の主な寸法は、図5(a),(b)に示したとおりであった。
(Test Example 1)
(Static load characteristics)
As shown in FIG. 7, when only the container 15 (air cushion unit 100) holding the air cushion 10 is placed alone on the measurement panel (data of “air pack” in FIG. 8), the air cushion 10 When the first bead foamed resin elastic member 20 is laminated on the container 15 (air cushion unit 100) that holds the air (the data of “A + air pack” in FIG. 8), the container 15 ( When the second bead foamed resin elastic member 30 is laminated on the air cushion unit 100) (data of “B + air pack” in FIG. 8), and the container 15 holding the air cushion 10 (air cushion unit 100) When the second bead foamed resin elastic member 30 is laminated thereon and the first bead foam resin elastic member 20 is further laminated thereon (“A + B in FIG. 8). + Air pack data), the position corresponding to the small air bag 111 provided with the sensor 111b was pressurized to a deflection of 1 mm with a pressure plate having a diameter of 30 mm, and the load-deflection characteristics were measured. The three-dimensional solid knitted fabric housed in the air bags 111 and 121 of the air cushion 10 is a product number 49013D manufactured by Sumie Textile Co., Ltd. The main dimensions of each part are shown in FIGS. 5 (a) and 5 (b). It was as shown in.
 その結果を図8に示す。収容体15により保持されたエアクッション10が、背部の大動脈の脈波によって生じる空気圧変動は、エアクッション10を保持した収容体15のみを単独で置いた場合(図8の「エアパック」)の荷重-たわみ特性に従うことになる。従って、この荷重-たわみ特性よりもバネ定数が高くなった場合には、エアクッション10を保持した収容体15を直接表皮部材511の裏面側に配置した場合よりも大動脈の脈波の感度が鈍ることになる。そこで、各荷重-たわみ特性から得られるバネ定数を比較すると、第1又は第2のビーズ発泡樹脂弾性部材20,30のいずれかのみを、エアクッション10を保持した収容体15と積層した場合(図8の「A+エアパック」,「B+エアパック」)よりも、第1及び第2のビーズ発泡樹脂弾性部材20,30の両方を積層した場合(図8の「A+B+エアパック」)の方が、エアクッション10を保持した収容体15のみを単独で置いて測定した場合のバネ定数に近いことがわかる。従って、第1及び第2のビーズ発泡樹脂弾性部材20,30を両方とも積層して用いた場合には、これらをエアクッション10に積層しているにも拘わらず、大動脈の脈波をほとんど減衰させずに伝達できると共に、エアクッション10を単体で用いた場合のように異物感も感じることが少なくなる。 The result is shown in FIG. The air pressure fluctuation generated by the pulse wave of the aorta at the back of the air cushion 10 held by the container 15 is the case when only the container 15 holding the air cushion 10 is placed alone (“air pack” in FIG. 8). It follows the load-deflection characteristics. Therefore, when the spring constant becomes higher than this load-deflection characteristic, the sensitivity of the pulse wave of the aorta becomes duller than when the container 15 holding the air cushion 10 is arranged directly on the back side of the skin member 511. It will be. Therefore, when comparing the spring constants obtained from the respective load-deflection characteristics, when only one of the first or second bead foamed resin elastic members 20 and 30 is laminated with the container 15 holding the air cushion 10 ( When both the first and second bead foamed resin elastic members 20 and 30 are laminated (“A + B + air pack” in FIG. 8) rather than “A + air pack” and “B + air pack” in FIG. However, it can be seen that it is close to the spring constant when measured by placing only the container 15 holding the air cushion 10 alone. Therefore, when both the first and second bead foamed resin elastic members 20 and 30 are laminated, the aortic pulse wave is almost attenuated even though they are laminated on the air cushion 10. It is possible to transmit without using the air cushion 10, and it is less likely to feel a foreign object as when the air cushion 10 is used alone.
 なお、第1のビーズ発泡樹脂弾性部材20のみを複数枚積層した場合、あるいは、第2のビーズ発泡樹脂弾性部材30のみを複数枚積層した場合には、それぞれ、図8の「A+エアパック」のデータ、「B+エアパック」のデータとあまり変わらない結果となったことから、第1のビーズ発泡樹脂弾性部材20と第2のビーズ発泡樹脂弾性部材30とはバネ定数の異なる構成とし、それらを重ね合わせることが好ましい。図8の実験結果から、第2のビーズ発泡樹脂弾性部材30のバネ定数が第1のビーズ発泡樹脂弾性部材20のバネ定数の1.1~1.4倍の範囲とすることが好ましい。この特性は、上記したように、第1のビーズ発泡樹脂弾性部材20は、相対的に伸縮性の高い弾性繊維不織布で被覆し、第2のビーズ発泡樹脂弾性部材30は、相対的に伸縮性の小さい不織布で被覆することにより付与される。また、エアクッション10を保持した収容体15上に第2のビーズ発泡樹脂弾性部材30を積層し、さらにその上に第1のビーズ発泡樹脂弾性部材20を積層した場合(図8の「A+B+エアパック」)のバネ定数は、エアクッション10のみのバネ定数に相当する図8の「エアパック」で示されたバネ定数の0.8~1.2倍の範囲となるようにすることが好ましい。 When only a plurality of first bead foam resin elastic members 20 are laminated or when only a plurality of second bead resin foam elastic members 30 are laminated, “A + air pack” in FIG. 8 respectively. Therefore, the first bead foam resin elastic member 20 and the second bead foam resin elastic member 30 have different spring constants. Are preferably overlapped. From the experimental results of FIG. 8, it is preferable that the spring constant of the second bead foamed resin elastic member 30 is in a range of 1.1 to 1.4 times the spring constant of the first bead foamed resin elastic member 20. As described above, the first bead foamed resin elastic member 20 is covered with a relatively elastic elastic nonwoven fabric, and the second beaded foam elastic member 30 is relatively stretchable as described above. It is given by coating with a small non-woven fabric. Further, when the second bead foamed resin elastic member 30 is laminated on the container 15 holding the air cushion 10 and the first bead foam resin elastic member 20 is further laminated thereon (“A + B + air in FIG. 8). The spring constant of the “pack”) is preferably in the range of 0.8 to 1.2 times the spring constant indicated by the “air pack” of FIG. 8 corresponding to the spring constant of the air cushion 10 only. .
(試験例2)
(外乱振動の影響)
 図9に示したように、加振機の加振台上に、エアクッション10を保持した収容体15(試験例1のものと同じ構造、サイズ)上を載置し、そのさらに上面に、第2のビーズ発泡樹脂弾性部材30と第1のビーズ発泡樹脂弾性部材20を順に積層したもの(図9では、第2のビーズ発泡樹脂弾性部材30と第1のビーズ発泡樹脂弾性部材20を重ね合わせたものを「緩衝材」として表示)について(図8の「A+B+エアパック」と同じ形態)、第1のビーズ発泡樹脂弾性部材20上に2kgの重りを載せ、振幅1mmで1.0Hz~10Hzまで、0.5Hz刻みで加振した(試験例2-A)。また、エアクッション10を保持した収容体15に代えて、小空気袋111を一つ加振台上に配置し、その上に、第2のビーズ発泡樹脂弾性部材30と第1のビーズ発泡樹脂弾性部材20を順に積層し、さらに、2kgの重りを載せて同様に加振した(比較例2-A)。なお、第1のビーズ発泡樹脂弾性部材20の表皮部材511に対向する面、第2のビーズ発泡樹脂弾性部材30のエアクッションユニット100に対向する面には、それぞれPENフィルムが貼着されている。そして、それぞれについて小空気袋111のに設けたセンサ111b(コンデンサ型マイクロフォンセンサ)の出力電圧を測定した。その結果を図10~図14に示す。
(Test Example 2)
(Influence of disturbance vibration)
As shown in FIG. 9, the container 15 (the same structure and size as in Test Example 1) holding the air cushion 10 is placed on the vibration table of the vibration exciter, and on the upper surface thereof, The second bead foam resin elastic member 30 and the first bead foam resin elastic member 20 are sequentially laminated (in FIG. 9, the second bead foam resin elastic member 30 and the first bead foam resin elastic member 20 are stacked. The combined material is displayed as “buffer material” (the same form as “A + B + air pack” in FIG. 8), and a 2 kg weight is placed on the first beaded foamed elastic resin member 20 and the amplitude is 1 mm and 1.0 Hz to The vibration was applied in increments of 0.5 Hz up to 10 Hz (Test Example 2-A). Moreover, it replaces with the container 15 holding the air cushion 10, and arrange | positions one small air bag 111 on a vibration stand, on it, the 2nd bead foam resin elastic member 30 and the 1st bead foam resin The elastic members 20 were laminated in order, and further a 2 kg weight was placed thereon and vibrated in the same manner (Comparative Example 2-A). In addition, the PEN film is affixed on the surface facing the skin member 511 of the first bead foamed resin elastic member 20 and the surface facing the air cushion unit 100 of the second bead foamed resin elastic member 30. . And the output voltage of the sensor 111b (capacitor-type microphone sensor) provided in the small air bag 111 was measured for each. The results are shown in FIGS.
 図10~図14から、試験例2-Aの場合には、1.0Hz~10Hzまでのいずれの周波数においても、出力電圧の変化がほとんどないのに対し、比較例2-Aの場合には、試験例2-Aよりも相対的に出力電圧の変化が大きい。従って、試験例2-Aの構成とすることにより、シートバック部510からの外部振動の出力電圧への影響が極めて小さくなる。その一方、第1及び第2のビーズ発泡樹脂弾性部材20,30側から入力される生体信号は、後述の試験例3のようにセンサ111bにより出力電圧の変化として捉えることができる。 From FIG. 10 to FIG. 14, in the case of Test Example 2-A, there is almost no change in the output voltage at any frequency from 1.0 Hz to 10 Hz, whereas in the case of Comparative Example 2-A. The change in the output voltage is relatively larger than in Test Example 2-A. Therefore, by adopting the configuration of Test Example 2-A, the influence of the external vibration from the seat back portion 510 on the output voltage becomes extremely small. On the other hand, the biological signal input from the first and second bead foamed resin elastic members 20 and 30 side can be regarded as a change in output voltage by the sensor 111b as in Test Example 3 described later.
(試験例3)
(外乱振動の影響と生体信号の検出)
 図15(a)に示したように、加振機の加振台上に、シートバック部510におけるクッション支持部材512に相当する三次元立体編物(3Dネット)、エアクッション10を保持した収容体15(エアクッションユニット100,試験例1のものと同じ構造、サイズ)、第2のビーズ発泡樹脂弾性部材30、第1のビーズ発泡樹脂弾性部材20、シートバック部510における表皮部材511に相当する三次元立体編物(3Dネット)を順に積層し、その上に2kgの重りを載せ、振幅1mmで、大動脈の脈波の周波数に近い1.0Hz、1.5Hz、2.0Hzで加振した。図15(a)は、クッション支持部材512側から振動を入力するようにして、本実施形態の生体信号測定装置1をシートバック部510に実際に組み込んだ際に受ける外乱振動の影響を調べるものである。
(Test Example 3)
(Influence of disturbance vibration and detection of biological signals)
As shown in FIG. 15 (a), a three-dimensional solid knitted fabric (3D net) corresponding to the cushion support member 512 in the seat back portion 510 and a container holding the air cushion 10 on the vibration exciter of the vibration exciter. 15 (air cushion unit 100, the same structure and size as those of Test Example 1), the second bead foam resin elastic member 30, the first bead foam resin elastic member 20, and the skin member 511 in the seat back portion 510. Three-dimensional three-dimensional knitted fabric (3D net) was laminated in order, a 2 kg weight was placed thereon, and vibration was applied at 1.0 Hz, 1.5 Hz, and 2.0 Hz with an amplitude of 1 mm and close to the frequency of the aortic pulse wave. FIG. 15A shows the influence of disturbance vibration received when the biological signal measuring device 1 of this embodiment is actually incorporated into the seat back portion 510 by inputting vibration from the cushion support member 512 side. It is.
 一方、図15(b)は、図15(a)と逆の順序で配置している。すなわち、シートバック部510における表皮部材511に相当する三次元立体編物(3Dネット)、第1のビーズ発泡樹脂弾性部材20、第2のビーズ発泡樹脂弾性部材30、エアクッション10を保持した収容体15(エアクッションユニット100,試験例1のものと同じ構造、サイズ)、クッション支持部材512に相当する三次元立体編物(3Dネット)の順で積層している。この状態で加振することにより、表皮部材511側から入力される背部の大動脈の脈波の検出感度を調べることができる。なお、重りを2kgにしたのは、人が着座した際に、腰部からエアクッションユニット100が配設されているシートバック部510にかかる荷重が、直径98mmの面積で2kgに相当するためである。 On the other hand, FIG. 15 (b) is arranged in the reverse order to FIG. 15 (a). That is, a container holding a three-dimensional solid knitted fabric (3D net) corresponding to the skin member 511 in the seat back portion 510, the first bead foam resin elastic member 20, the second bead foam resin elastic member 30, and the air cushion 10. 15 (air cushion unit 100, the same structure and size as those of Test Example 1) and a three-dimensional solid knitted fabric (3D net) corresponding to the cushion support member 512 are laminated in this order. By oscillating in this state, it is possible to examine the detection sensitivity of the pulse wave of the back aorta inputted from the skin member 511 side. The reason why the weight is set to 2 kg is that when a person is seated, the load applied to the seat back portion 510 where the air cushion unit 100 is disposed from the waist corresponds to 2 kg in an area of 98 mm in diameter. .
 結果を図16~図18に示す。図において、「エアパック外乱模擬」が図15(a)の結果であり、「エアパック生体信号模擬」が図15(b)の結果である。また、加振機の入力波形も併せて示す。これらの図から、「エアパック外乱模擬」は、振幅がほとんどない直線に近い状態であり、外乱振動はほとんど除去されることがわかる。逆に、「エアパック生体信号模擬」は、入力波形よりも増幅していることがわかる。このことから、本実施形態の構成によれば、乗車時のような外乱振動が入力される動的条件下においても、1.0Hz~2.0Hz付近の大動脈の脈波を、外乱振動に埋もれさせることなく、確実に検出できると言える。 The results are shown in FIGS. In the figure, “air pack disturbance simulation” is the result of FIG. 15A, and “air pack biological signal simulation” is the result of FIG. 15B. In addition, the input waveform of the vibrator is also shown. From these figures, it can be seen that the “air pack disturbance simulation” is in a state close to a straight line with almost no amplitude, and disturbance vibrations are almost eliminated. On the contrary, it can be seen that the “air pack biosignal simulation” is amplified more than the input waveform. Therefore, according to the configuration of the present embodiment, the pulse wave of the aorta in the vicinity of 1.0 Hz to 2.0 Hz is buried in the disturbance vibration even under dynamic conditions in which disturbance vibration is input such as when riding. It can be said that it can be reliably detected without causing it to occur.
(試験例4)
(生体信号の測定)
 図2に示したように、シート500のシートバック部510に、上記実施形態で説明したエアクッション10を保持した収容体15(エアクッションユニット100,試験例1のものと同じ構造、サイズ)、第2のビーズ発泡樹脂弾性部材30、第1のビーズ発泡樹脂弾性部材20を順に収容した。なお、このシートバック部510に使用した表皮部材511は、三次元立体編物である(住江織物(株)製、製品番号49013D)。また、センサ111bを備えた、着座者の左側のエアクッション10を構成する中央の小空気袋111(幅60mm、長さ160mm)のシートバック部510の中心寄りの側縁と下縁の交差部Pが、シートクッション部520の上面からシートバック部510の表面に沿った長さで220mm、シートバック部510の中心から80mmとなるようにシートバック部510に組み込んだ。そして、上記小空気袋111のセンサ111bからの電気信号を測定して得られる空気圧変動をもとに人の状態を分析するコンピュータからなる生体信号分析手段60を配置し(図1参照)、50歳代の日本人男性をシート500に着座させ、腰部付近の大動脈の脈波を採取した。また、各被験者には指尖容積脈波計((株)アムコ製、フィンガークリッププローブ SR-5C)を装着して、指尖容積脈波の測定を行うと共に、簡易脳波計(フューテックエレクトロニクス(株)、FM-515A)を装着して脳波の測定も行った。また、心電計(日本光電工業(株)製心電計EGG-9122)も装着した。
(Test Example 4)
(Measurement of biological signals)
As shown in FIG. 2, a container 15 (the same structure and size as those of the air cushion unit 100, Test Example 1) holding the air cushion 10 described in the above embodiment on the seat back portion 510 of the seat 500, The second bead foam resin elastic member 30 and the first bead foam resin elastic member 20 were accommodated in this order. The skin member 511 used for the seat back portion 510 is a three-dimensional solid knitted fabric (manufactured by Sumie Textile Co., Ltd., product number 49013D). Further, the intersection of the side edge and the lower edge near the center of the seat back part 510 of the central small air bag 111 (width 60 mm, length 160 mm) constituting the air cushion 10 on the left side of the occupant provided with the sensor 111b. The seat back portion 510 was incorporated such that P was 220 mm from the upper surface of the seat cushion portion 520 along the surface of the seat back portion 510 and 80 mm from the center of the seat back portion 510. Then, a biological signal analyzing means 60 comprising a computer for analyzing the state of the person based on the air pressure fluctuation obtained by measuring the electric signal from the sensor 111b of the small air bag 111 is arranged (see FIG. 1). A Japanese male of the age group was seated on the seat 500 and the pulse wave of the aorta near the lumbar region was collected. Each subject was also equipped with a fingertip plethysmograph (manufactured by Amco, finger clip probe SR-5C) to measure the fingertip plethysmogram and a simple electroencephalograph (Futech Electronics ( EEG measurement was also performed by wearing FM-515A). In addition, an electrocardiograph (NEC Kogyo Co., Ltd. ECG-9122) was also attached.
 図19は、被験者の腰部付近の大動脈脈波(エアパック脈波)の原波形を示し、図20は、2階微分演算手段61により求められた2階微分波形(エアパック脈波2階微分波形)を示す。図21は、指尖容積脈波の原波形を示す。図22及び図23は、図19で示したエアパック脈波と図21で示した指尖容積脈波を部分的に拡大して示した図である。図22及び図23から、エアパック脈波は、大動脈の圧波形に含まれる切痕(拍出期の終わりに大動脈が急に閉鎖することを示す信号)を捉えていることがわかる。この切痕を捉えることができるということは、生体情報を確実に捉えていることの証左である。従って、エアパック脈波は、指尖容積脈波とほぼ同じ位相差と周期をもっている。図24(a)は、図19及び図21のエアパック脈波と指尖容積脈波の周波数解析結果であり、図24(b)は、図20のエアパック脈波2階微分波形と指尖容積脈波の周波数解析結果を示す図である。この図から、エアパック脈波及びその2階微分波形は、いずれも指尖容積脈波と同じ周波数でピークが生じていることがわかる。 FIG. 19 shows the original waveform of the aortic pulse wave (air pack pulse wave) near the lumbar region of the subject, and FIG. 20 shows the second-order differential waveform (the air pack pulse wave second-order differential) obtained by the second-order differential calculation means 61. Waveform). FIG. 21 shows the original waveform of the fingertip volume pulse wave. 22 and 23 are partially enlarged views of the air pack pulse wave shown in FIG. 19 and the fingertip volume pulse wave shown in FIG. 22 and 23, it can be seen that the air pack pulse wave captures a notch (a signal indicating that the aorta suddenly closes at the end of the stroke period) included in the pressure waveform of the aorta. The ability to capture this notch is a proof that the biological information is reliably captured. Therefore, the air pack pulse wave has substantially the same phase difference and cycle as the fingertip volume pulse wave. FIG. 24A shows the frequency analysis results of the air pack pulse wave and fingertip volume pulse wave of FIGS. 19 and 21, and FIG. 24B shows the air pack pulse wave second-order differential waveform of FIG. It is a figure which shows the frequency analysis result of a cusp volume pulse wave. From this figure, it can be seen that both the air pack pulse wave and its second-order differential waveform have peaks at the same frequency as the fingertip volume pulse wave.
 図25(a)は、原波形パワー値傾き算出手段65、原波形最大リアプノフ指数傾き算出手段66により求められたエアパック脈波の原波形パワー値及び原波形最大リアプノフ指数の傾きの時系列波形である。図25(b)は、2階微分波形パワー値傾き算出手段62、2階微分波形最大リアプノフ指数傾き算出手段63により求められたエアパック脈波2階微分波形の2階微分波形パワー値及び2階微分波形最大リアプノフ指数の傾きの時系列波形である。図25(c)は、検証のため、指尖容積脈波から求めた指尖容積脈波のパワー値及び最大リアプノフ指数の傾きの時系列波形である。 FIG. 25A shows a time-series waveform of the original waveform power value of the airpack pulse wave and the inclination of the original maximum Lyapunov exponent determined by the original waveform power value inclination calculator 65 and the original waveform maximum Lyapunov exponent slope calculator 66. It is. FIG. 25B shows the second-order differential waveform power value of the second-order differential waveform power value slope calculating means 62, the second-order differential waveform power value obtained by the second-order differential waveform maximum Lyapunov exponent slope calculating means 63, and 2 This is a time-series waveform of the gradient of the highest differential Lyapunov exponent. FIG. 25C is a time-series waveform of the power value of the fingertip volume pulse wave and the slope of the maximum Lyapunov exponent obtained from the fingertip volume pulse wave for verification.
 図25(b)から、エアパック脈波2階微分波形の場合には、300秒付近において、2階微分波形パワー値の傾きの時系列波形と2階微分波形最大リアプノフ指数の傾きの時系列波形が逆位相となっており、かつ、2階微分波形パワー値の傾きの時系列波形が低周波、大振幅になっていることから、この時点において最初の入眠予兆信号が現れていることがわかる。検証に用いた図25(c)の指尖容積脈波においても同様の入眠予兆信号が現れている。そして、図25(d)の脳波の分布率において、600秒~1000秒において、α波の出現率が低下し、θ波が増加するという、覚醒段階から睡眠段階1に差しかかる状態が現れていることから、上記の300秒付近の入眠予兆信号は、この状態を予兆したものと考えられる。しかしながら、図25(a)のエアパック脈波の場合には、このような入眠予兆信号は現れていない。 From FIG. 25 (b), in the case of the airpack pulse wave second-order differential waveform, the time-series waveform of the slope of the second-order differential waveform power value and the time series of the slope of the second-order differential waveform maximum Lyapunov exponent are around 300 seconds. Since the waveform is in antiphase and the time-series waveform of the slope of the second-order differential waveform power value is low frequency and large amplitude, the first sleep predictive signal may appear at this point Recognize. In the fingertip volume pulse wave of FIG. 25 (c) used for the verification, a similar sleep prediction signal appears. Then, in the distribution rate of the electroencephalogram in FIG. 25 (d), a state of approaching from the awakening phase to the sleep phase 1 appears that the appearance rate of the α wave decreases and the θ wave increases from 600 seconds to 1000 seconds. Therefore, the sleep onset sign signal in the vicinity of 300 seconds is considered to be a sign of this state. However, in the case of the air pack pulse wave of FIG. 25 (a), such a sleep prediction signal does not appear.
 一方、1200秒~1400秒の範囲では、エアパック脈波、エアパック脈波2階微分波形、指尖容積脈波のいずれにおいても、入眠予兆信号が出現していることがわかる。脳波分布率において、1400秒近傍でα波の低下とθ波の上昇が認められることから、その予兆を捉えたものと考えられる。 On the other hand, in the range of 1200 seconds to 1400 seconds, it can be seen that a sleep onset sign signal appears in any of the air pack pulse wave, the air pack pulse wave second-order differential waveform, and the fingertip volume pulse wave. In the electroencephalogram distribution rate, a decrease in α-wave and an increase in θ-wave are observed in the vicinity of 1400 seconds.
 上記試験例から、エアパック脈波2階微分波形を用いた分析を行った場合には、エアパック脈波を用いる場合よりも、指尖容積脈波を用いて分析を行った場合により近い結果が得られることがわかる。従って、エアパック脈波2階微分波形を用いることにより、自動車用のシートなどに、上記したエアクッション10を有する生体信号測定装置1を配設すれば、運転操作の妨げとなることなく、運転者の生体状態(眠気など)を、指尖容積脈波を測定して分析した場合と同様の判定を行うことができる。つまり、エアパック脈波2階微分波形は、指尖容積脈波に相当することになる。 From the above test example, when the analysis using the second-order differential waveform of the air pack pulse wave is performed, a result closer to the case where the analysis is performed using the fingertip volume pulse wave than when the air pack pulse wave is used It can be seen that Therefore, if the biological signal measuring device 1 having the air cushion 10 described above is disposed on a vehicle seat or the like by using the air pack pulse wave second-order differential waveform, the driving operation is not hindered. It is possible to make the same determination as when a person's biological state (such as sleepiness) is analyzed by measuring fingertip volume pulse waves. That is, the air pack pulse wave second-order differential waveform corresponds to the fingertip volume pulse wave.
 また、エアパック脈波を用いる場合とエアパック脈波2階微分波形を用いる場合とで上記のような差が生じることから、比較判断手段68により、いずれによって入眠予兆信号が判定されたかを判断し、上記のように、警告制御手段69による警告の制御に利用することができる。 Further, since the difference as described above occurs between the case where the air pack pulse wave is used and the case where the air pack pulse wave second-order differential waveform is used, it is determined by the comparison determination means 68 which of the sleep onset predictor signals has been determined. As described above, it can be used for warning control by the warning control means 69.
 図26(a),(b)は、図25の3種類の各傾き時系列波形の周波数解析結果を示す。この図から、パワー値については指尖容積脈波とエアパック脈波2階微分波形はパワースペクトルが大きく、その絶対値も同一レベルである。一方、エアパック脈波はパワースペクトルが極端に小さくなる。また、指尖容積脈波とエアパック脈波2階微分波形の最大リアプノフ指数の傾きの時系列波形は、同一レベルにあるが、エアパック脈波の最大リアプノフ指数は極端に高い。従って、指尖容積脈波とエアパック脈波2階微分波形は、パワー値と最大リアプノフ指数のパワースペクトルのバランスがよく、2つの拮抗する作用がスムーズに噛み合い、かつ互いにバランスしていることがわかる。一方、エアパック脈波は2つの作用が不安定であり、小さなストレスで大きな変化することになる。この差が、上述したエアパック脈波を用いた入眠予兆信号の検出とエアパック脈波2階微分波形を用いた入眠予兆信号の検出との感度に影響している。 26 (a) and 26 (b) show the frequency analysis results of the three types of gradient time-series waveforms in FIG. From this figure, as for the power value, the fingertip volume pulse wave and the air pack pulse wave second-order differential waveform have a large power spectrum, and their absolute values are also at the same level. On the other hand, the power spectrum of the air pack pulse wave becomes extremely small. The time series waveforms of the maximum Lyapunov exponent slopes of the fingertip volume pulse wave and the air pack pulse wave second-order differential waveform are at the same level, but the maximum Lyapunov exponent of the air pack pulse wave is extremely high. Therefore, the fingertip volume pulse wave and the air pack pulse wave second-order differential waveform have a good balance between the power value and the power spectrum of the maximum Lyapunov exponent, and the two antagonizing actions smoothly mesh and balance each other. Recognize. On the other hand, the air pack pulse wave has two unstable actions, and changes greatly with a small stress. This difference influences the sensitivity between the detection of the sleep onset signal using the air pack pulse wave and the detection of the sleep onset signal using the air pack pulse wave second-order differential waveform.
 図27(a)~(d)は、エアパック脈波、エアパック脈波2階微分波形、指尖容積脈波、心電計から得られた心拍数変動のウエーブレット解析を行った結果を示す。LF/HF成分は、交感神経活動の状態を示す指標であり、HF成分は、副交感神経活動の指標である。覚醒段階から睡眠段階1に移行する過程においては、LF/HF成分と比較してHF成分の変化の生理学的意義は小さいことから、LF/HF成分に注目して解析を行った。指尖容積脈波、エアパック脈波2階微分波形、心拍数変動から得られたLF/HF成分の場合には、150秒近傍で、いずれも単発的に上昇が見られる。これは、図25の傾き時系列波形における300秒近傍の入眠予兆信号が出現する前に、交感神経が活性化していることが現れたものと考えられる。さらに、心拍変動解析では、450~900秒と1200~1400秒でLF/HFのバーストの頻度が低下しており、これらの期間に自律神経において交感神経の活動レベルが低下していたと考えられる。これらの期間は、図25の傾き時系列波形から検知された入眠予兆信号の出現期、並びに、脳波の睡眠段階の変化の時期と一致していた。 FIGS. 27A to 27D show the results of wavelet analysis of heart rate fluctuations obtained from an air pack pulse wave, air pack pulse wave second-order differential waveform, fingertip volume pulse wave, and electrocardiograph. Show. The LF / HF component is an index indicating the state of sympathetic nerve activity, and the HF component is an index of parasympathetic nerve activity. In the process of transitioning from the awakening stage to the sleep stage 1, the physiological significance of the change of the HF component is small compared to the LF / HF component, and therefore, the analysis was conducted focusing on the LF / HF component. In the case of the LF / HF component obtained from the fingertip volume pulse wave, the air pack pulse wave second-order differential waveform, and the heart rate fluctuation, an increase is observed in one shot in the vicinity of 150 seconds. This is probably because the sympathetic nerve was activated before the onset of sleep signal in the vicinity of 300 seconds in the gradient time-series waveform of FIG. Furthermore, in the heart rate variability analysis, the frequency of LF / HF bursts decreased at 450 to 900 seconds and 1200 to 1400 seconds, and it is considered that the level of sympathetic nerve activity in the autonomic nerve decreased during these periods. These periods coincided with the appearance period of the sleep onset sign signal detected from the tilt time-series waveform of FIG. 25 and the period of change in the sleep stage of the electroencephalogram.
 図28(a)は、指尖容積脈波の加速度脈波から得られた加速度脈波加齢指数(SDPTGAI)とエアパック脈波の加速度脈波から得られた加速度脈波加齢指数の時系列の値を示し、図28(b)は、指尖容積脈波の加速度脈波から得られた加速度脈波加齢指数とエアパック脈波2階微分波形の加速度脈波から得られた加速度脈波加齢指数の時系列の値を示す。SDPTGAIは器質的な血管壁硬化(生活習慣病における動脈硬化)と機能的血管壁緊張の両者の影響を受けて変化することが知られている。エアパック脈波2階微分波形から得られたSDPTGAIは、若干のバラツキはあるが、指尖容積脈波から得られたSDPTGAIに近い値を示している。一方、エアパック脈波から得られたSDPTGAIは、エアパック脈波2階微分波形の場合と比べてバラツキが大きく、エアパック脈波2階微分波形は器質的な血管壁硬化や機能的血管緊張といった血管の状態を指尖容積脈波と同様に捉えることができることがわかる。 FIG. 28A shows the acceleration pulse wave aging index (SDPTGAI) obtained from the acceleration pulse wave of the fingertip volume pulse wave and the acceleration pulse wave aging index obtained from the acceleration pulse wave of the air pack pulse wave. FIG. 28B shows the values of the series, and FIG. 28B shows the acceleration obtained from the acceleration pulse wave aging index obtained from the acceleration pulse wave of the fingertip volume pulse wave and the acceleration pulse wave of the air pack pulse wave second-order differential waveform. The time series value of the pulse wave aging index is shown. It is known that SDPTGAI changes under the influence of both organic vascular wall sclerosis (arteriosclerosis in lifestyle-related diseases) and functional vascular wall tension. The SDPTGAI obtained from the air pack pulse wave second-order differential waveform shows a value close to the SDPTGAI obtained from the fingertip volume pulse wave, although there is some variation. On the other hand, the SDPTGAI obtained from the air pack pulse wave has a large variation compared to the case of the air pack pulse wave second-order differential waveform, and the air pack pulse wave second-order differential waveform shows organic vascular wall hardening and functional vascular tone. It can be seen that the blood vessel state can be captured in the same manner as the fingertip plethysmogram.
 なお、上記実施形態においては、人体支持手段として自動車用のシートにエアクッション10、第1及び第2のビーズ発泡樹脂弾性部材20,30を組み込んでいるが、人体支持手段としては、ベッドなどの寝具、病院設備における診断用の椅子等に組み込むこともできる。また、上記実施形態では、シートバック部に組み込むエアクッションを用いて背部の大動脈の脈波を検知しているが、例えば、このエアクッションを人の手首回りに装着することにより、横骨動脈、尺骨動脈から動脈の脈波を採取することもできる。なお、このほかに動脈の脈波を採取可能な箇所としては、浅側頭動脈、頸動脈、鎖骨下動脈、上腕動脈、腹部大動脈、大腿動脈、膝窩動脈、後脛骨動脈、足背動脈などがあり、これらの脈波を採取して2階微分の手法を用いて人の状態を分析することもできる。但し、運転者の状態を分析する場合には、運転者の手、腕、首、足などを拘束することなく測定できることから、上記実施形態のように、腰部付近の大動脈の脈波を検知することが望ましい。 In the above embodiment, the air cushion 10 and the first and second bead foamed resin elastic members 20 and 30 are incorporated in the automobile seat as the human body support means, but the human body support means may be a bed or the like. It can also be incorporated into bedding, diagnostic chairs in hospital equipment, and the like. Further, in the above embodiment, the pulse wave of the back aorta is detected using an air cushion incorporated in the seat back part.For example, by installing this air cushion around a person's wrist, the transverse artery, Arterial pulse waves can also be collected from the ulnar artery. Other locations where arterial pulse waves can be collected include superficial temporal artery, carotid artery, subclavian artery, brachial artery, abdominal aorta, femoral artery, popliteal artery, posterior tibial artery, and dorsal artery It is also possible to collect these pulse waves and analyze the human condition using a second-order differential technique. However, when analyzing the driver's condition, it can be measured without restraining the driver's hand, arm, neck, foot, etc., so the pulse wave of the aorta near the waist is detected as in the above embodiment. It is desirable.
 1 生体信号測定装置
 10 エアクッション
 11 表側エアクッション
 111 小空気袋
 112 三次元立体編物
 12 裏側エアクッション
 121 大空気袋
 122 三次元立体編物
 15 収容体
 100 エアクッションユニット
 20 第1のビーズ発泡樹脂弾性部材
 30 第2のビーズ発泡樹脂弾性部材
 40,45 三次元立体編物
 60 生体状態分析装置
 61 2階微分演算手段
 62 2階微分波形パワー値傾き算出手段
 63 2階微分波形最大リアプノフ指数傾き算出手段
 64 2階微分波形入眠予兆判定手段
 65 原波形パワー値傾き算出手段
 66 原波形最大リアプノフ指数傾き算出手段
 67 原波形入眠予兆判定手段
 68 比較判断手段
 69 警告制御手段
 500 シート
 510 シートバック部
 511 表皮部材
 512 クッション支持部材
 520 シートクッション部
DESCRIPTION OF SYMBOLS 1 Biosignal measuring apparatus 10 Air cushion 11 Front side air cushion 111 Small air bag 112 Three-dimensional solid knitted fabric 12 Back side air cushion 121 Large air bag 122 Three-dimensional solid knitted fabric 15 Housing 100 Air cushion unit 20 1st bead foam resin elastic member 30 Second bead foamed resin elastic member 40, 45 Three-dimensional solid knitted fabric 60 Biological state analyzer 61 Second-order differential calculation means 62 Second-order differential waveform power value inclination calculation means 63 Second-order differential waveform maximum Lyapunov exponent inclination calculation means 64 2 Step differential waveform sleep onset determination means 65 Original waveform power value inclination calculation means 66 Original waveform maximum Lyapunov exponent inclination calculation means 67 Original waveform sleep onset sign determination means 68 Comparison determination means 69 Warning control means 500 Seat 510 Seat back portion 511 Skin member 512 Cushion Support member 52 Seat cushion

Claims (9)

  1.  人体支持手段における、少なくとも人の腰部付近を支持する部位の表皮部材と該表皮部材の裏面側に配設されるクッション支持部材との間に組み込まれる空気袋を備えたエアクッションと、動脈の脈波に伴う前記空気袋の空気圧変動を検出するセンサとを備えてなる生体信号測定装置から、空気圧変動による前記センサの時系列信号データを受信し、該時系列信号データを加工して、前記人体支持手段により支持されている人の状態を分析する生体状態分析装置であって、
     前記時系列信号データを2階微分する2階微分演算手段を有し、前記2階微分演算手段により得られる2階微分波形を加工して人の状態を分析することを特徴とする生体状態分析装置。
    In the human body support means, an air cushion provided with an air bag incorporated between an epidermis member of a part supporting at least the vicinity of the human lumbar region and a cushion support member disposed on the back side of the epidermis member, and an arterial pulse Receiving a time series signal data of the sensor due to air pressure fluctuation from a biological signal measuring device comprising a sensor for detecting air pressure fluctuation of the air bag accompanying a wave, processing the time series signal data, and processing the human body A biological state analyzer for analyzing the state of a person supported by a support means,
    Biological state analysis characterized by comprising second-order differential operation means for second-order differentiation of the time-series signal data, and analyzing a human state by processing a second-order differential waveform obtained by the second-order differential operation means apparatus.
  2.  さらに、前記2階微分演算手段により得られる2階微分波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形パワー値傾き算出手段と、
     前記2階微分演算手段により得られる2階微分波形から、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形最大リアプノフ指数傾き算出手段と、
     前記2階微分波形パワー値傾き算出手段及び2階微分波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する2階微分波形入眠予兆判定手段と
    を具備することを特徴とする請求項1記載の生体状態分析装置。
    Further, the difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle of the second-order differential waveform obtained by the second-order differential calculation means, and this difference is calculated as the power. A second-order differential waveform power value slope calculating means for obtaining time series data of power values and obtaining a slope of the power value with respect to the time axis in a predetermined time range by sliding calculation a predetermined number of times;
    Second-order differentiation obtained by obtaining time-series data of the maximum Lyapunov exponent from the second-order differential waveform obtained by the second-order differentiation calculation means and slidingly calculating the slope of the maximum Lyapunov exponent with respect to the time axis in a predetermined time range by a predetermined number of times. Waveform maximum Lyapunov exponent slope calculation means,
    When the slope time-series waveforms obtained by the second-order differential waveform power value slope calculating means and the second-order differential waveform maximum Lyapunov exponent slope calculating means are overlapped, the two slope time-series waveforms have an antiphase relationship. The biological state analysis apparatus according to claim 1, further comprising second-order differential waveform sleep onset predicting means for determining a waveform as a sleep onset sign signal.
  3.  さらに、前記エアクッションにより検出される空気圧変動の時系列信号データの各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形パワー値傾き算出手段と、
     前記エアクッションにより検出される空気圧変動の時系列信号データから、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形最大リアプノフ指数傾き算出手段と、
     前記原波形パワー値傾き算出手段及び原波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する原波形入眠予兆判定手段と、
     前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定されたか、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定されたかを比較判断する比較判断手段と、
     前記比各判断手段の比較結果に従って、覚醒されるための警告を動作させる警告制御手段と
    を具備することを特徴とする請求項2記載の生体状態分析装置。
    Further, the difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each period of the time series signal data of the air pressure fluctuation detected by the air cushion, and this difference is calculated. An original waveform power value slope calculating means for obtaining a power value, obtaining time-series data of the power value, and obtaining a slope with respect to a time axis in a predetermined time range by a predetermined number of slide calculations;
    From the time series signal data of the air pressure fluctuation detected by the air cushion, the time series data of the maximum Lyapunov exponent is obtained, and the original waveform obtained by sliding the slope of the maximum Lyapunov exponent with respect to the time axis in a given time range a predetermined number of times Means for calculating the maximum Lyapunov exponent slope;
    When the respective slope time series waveforms obtained by the original waveform power value slope calculating means and the original waveform maximum Lyapunov exponent slope calculating means are overlapped, a waveform in which the two slope time series waveforms are in an antiphase relationship is displayed. An original waveform sleep onset predictor determining means for determining a signal;
    Whether a sleep onset sign signal has been determined only by the second-order differential waveform sleep onset determination means, or whether both of the second-order differential waveform sleep onset determination means and the original waveform onset sign determination means have determined a sleep onset sign signal in the same time period A comparison judgment means for making a comparison judgment;
    3. The biological state analyzing apparatus according to claim 2, further comprising warning control means for operating a warning for being awakened according to a comparison result of each ratio judging means.
  4.  前記警告制御手段は、前記比較判断手段において、前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定された場合と、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定された場合とで、異なる種類の警告を機能させるものであることを特徴とする請求項3記載の生体状態分析装置。 The warning control means includes a case in which the comparison judgment means determines that a sleep onset sign signal is determined only by the second-order differential waveform sleep onset determination means, and the second-order differential waveform sleep onset prediction determination means and the original waveform onset sleep prediction determination means. 4. The biological state analyzing apparatus according to claim 3, wherein different types of warnings are made to function depending on whether the sleep onset symptom signal is determined in the same time zone in both cases.
  5.  人体支持手段における、少なくとも人の腰部付近を支持する部位の表皮部材と該表皮部材の裏面側に配設されるクッション支持部材との間に組み込まれる空気袋を備えたエアクッションと、動脈の脈波に伴う前記空気袋の空気圧変動を検出するセンサとを備えてなる生体信号測定装置から、空気圧変動による前記センサの時系列信号データを受信し、該時系列信号データを加工して、前記人体支持手段により支持されている人の状態を分析する生体状態分析装置に導入されるコンピュータプログラムであって、
     前記時系列信号データを2階微分する2階微分演算手段を有し、前記2階微分演算手段により得られる2階微分波形を加工して人の状態を分析することを特徴とするコンピュータプログラム。
    In the human body support means, an air cushion provided with an air bag incorporated between an epidermis member of a part supporting at least the vicinity of the human lumbar region and a cushion support member disposed on the back side of the epidermis member, and an arterial pulse Receiving a time series signal data of the sensor due to air pressure fluctuation from a biological signal measuring device comprising a sensor for detecting air pressure fluctuation of the air bag accompanying a wave, processing the time series signal data, and processing the human body A computer program installed in a biological state analyzer for analyzing the state of a person supported by a support means,
    A computer program comprising second-order differential calculation means for second-order differentiation of the time-series signal data, and processing a second-order differential waveform obtained by the second-order differential calculation means to analyze a human state.
  6.  さらに、前記2階微分演算手段により得られる2階微分波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形パワー値傾き算出手段と、
     前記2階微分演算手段により得られる2階微分波形から、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める2階微分波形最大リアプノフ指数傾き算出手段と、
     前記2階微分波形パワー値傾き算出手段及び2階微分波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する2階微分波形入眠予兆判定手段と
    を具備することを特徴とする請求項5記載のコンピュータプログラム。
    Further, the difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle of the second-order differential waveform obtained by the second-order differential calculation means, and this difference is calculated as the power. A second-order differential waveform power value slope calculating means for obtaining time series data of power values and obtaining a slope of the power value with respect to the time axis in a predetermined time range by sliding calculation a predetermined number of times;
    Second-order differentiation obtained by obtaining time-series data of the maximum Lyapunov exponent from the second-order differential waveform obtained by the second-order differentiation calculation means and slidingly calculating the slope of the maximum Lyapunov exponent with respect to the time axis in a predetermined time range by a predetermined number of times. Waveform maximum Lyapunov exponent slope calculation means,
    When the slope time-series waveforms obtained by the second-order differential waveform power value slope calculating means and the second-order differential waveform maximum Lyapunov exponent slope calculating means are overlapped, the two slope time-series waveforms have an antiphase relationship. 6. The computer program according to claim 5, further comprising second-order differential waveform sleep onset predicting means for determining a waveform as a sleep onset sign signal.
  7.  さらに、前記エアクッションにより検出される空気圧変動の時系列信号データの各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを求めると共に、パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形パワー値傾き算出手段と、
     前記エアクッションにより検出される空気圧変動の時系列信号データから、最大リアプノフ指数の時系列データを求めると共に、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める原波形最大リアプノフ指数傾き算出手段と、
     前記原波形パワー値傾き算出手段及び原波形最大リアプノフ指数傾き算出手段により得られる各傾き時系列波形を重ねた際に、2つの傾き時系列波形が逆位相の関係になっている波形を入眠予兆信号と判定する原波形入眠予兆判定手段と、
     前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定されたか、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定されたかを比較判断する比較判断手段と、
     前記比各判断手段の比較結果に従って、覚醒されるための警告を動作させる警告制御手段と
    を具備することを特徴とする請求項6記載のコンピュータプログラム。
    Further, the difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each period of the time series signal data of the air pressure fluctuation detected by the air cushion, and this difference is calculated. An original waveform power value slope calculating means for obtaining a power value, obtaining time-series data of the power value, and obtaining a slope with respect to a time axis in a predetermined time range by a predetermined number of slide calculations;
    From the time series signal data of the air pressure fluctuation detected by the air cushion, the time series data of the maximum Lyapunov exponent is obtained, and the original waveform obtained by sliding the slope of the maximum Lyapunov exponent with respect to the time axis in a given time range a predetermined number of times Means for calculating the maximum Lyapunov exponent slope;
    When the respective slope time series waveforms obtained by the original waveform power value slope calculating means and the original waveform maximum Lyapunov exponent slope calculating means are overlapped, a waveform in which the two slope time series waveforms are in an antiphase relationship is displayed. An original waveform sleep onset predictor determining means for determining a signal;
    Whether a sleep onset sign signal has been determined only by the second-order differential waveform sleep onset determination means, or whether both of the second-order differential waveform sleep onset determination means and the original waveform onset sign determination means have determined a sleep onset sign signal in the same time period A comparison judgment means for making a comparison judgment;
    7. The computer program according to claim 6, further comprising warning control means for operating a warning to be awakened according to a comparison result of each ratio judging means.
  8.  前記警告制御手段は、前記比較判断手段において、前記2階微分波形入眠予兆判定手段のみにより入眠予兆信号が判定された場合と、前記2階微分波形入眠予兆判定手段及び原波形入眠予兆判定手段の双方において同時間帯に入眠予兆信号が判定された場合とで、異なる種類の警告を機能させるものであることを特徴とする請求項7記載のコンピュータプログラム。 The warning control means includes a case in which the comparison judgment means determines that a sleep onset sign signal is determined only by the second-order differential waveform sleep onset determination means, and the second-order differential waveform sleep onset prediction determination means and the original waveform onset sleep prediction determination means. 8. The computer program according to claim 7, wherein different types of warnings are made to function depending on whether the sleep onset symptom signal is determined in the same time zone in both cases.
  9.  請求項5~8のいずれか1に記載のコンピュータプログラムが記録されたことを特徴とするコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the computer program according to any one of claims 5 to 8 is recorded.
PCT/JP2009/063390 2008-08-20 2009-07-28 Organism condition analyzer, computer program, and recording medium WO2010021227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-212291 2008-08-20
JP2008212291A JP5327584B2 (en) 2008-08-20 2008-08-20 Biological condition analyzer, computer program, and recording medium

Publications (1)

Publication Number Publication Date
WO2010021227A1 true WO2010021227A1 (en) 2010-02-25

Family

ID=41707105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063390 WO2010021227A1 (en) 2008-08-20 2009-07-28 Organism condition analyzer, computer program, and recording medium

Country Status (2)

Country Link
JP (1) JP5327584B2 (en)
WO (1) WO2010021227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187243A1 (en) * 2012-06-16 2013-12-19 株式会社デルタツーリング Physiological state-analyzing device and computer program

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476546B2 (en) * 2009-05-14 2014-04-23 株式会社デルタツーリング Abdominal aortic aneurysm detection device
JP5299915B2 (en) * 2009-07-22 2013-09-25 株式会社最新松本技研 Arousal degree detection device
JP6209396B2 (en) * 2013-04-17 2017-10-04 株式会社デルタツーリング Driving support device and computer program
WO2017195235A1 (en) 2016-05-13 2017-11-16 ダイキン工業株式会社 Biological information acquisition device
CN109069068B (en) 2016-05-13 2019-10-01 大金工业株式会社 Apparatus for obtaining pulse wave velocity information
US11660053B2 (en) 2018-04-16 2023-05-30 Samsung Electronics Co., Ltd. Apparatus and method for monitoring bio-signal measuring condition, and apparatus and method for measuring bio-information

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344612A (en) * 2003-05-21 2004-12-09 Delta Tooling Co Ltd Living body evaluation system, computer program and recording medium
WO2007037100A1 (en) * 2005-09-27 2007-04-05 Citizen Holdings Co., Ltd. Heart rate meter and heart beat detecting method
JP2007090032A (en) * 2005-02-28 2007-04-12 Delta Tooling Co Ltd Cushioning material and pressure fluctuation sensor
JP2007135614A (en) * 2005-11-14 2007-06-07 Citizen Watch Co Ltd Sensing device and heart rate meter
JP2007209453A (en) * 2006-02-08 2007-08-23 Delta Tooling Co Ltd Muscle fatigue evaluation system
WO2008099537A1 (en) * 2007-02-14 2008-08-21 Delta Tooling Co., Ltd. Biosignal analyzer, sheet and method of analyzing biosignal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344612A (en) * 2003-05-21 2004-12-09 Delta Tooling Co Ltd Living body evaluation system, computer program and recording medium
JP2007090032A (en) * 2005-02-28 2007-04-12 Delta Tooling Co Ltd Cushioning material and pressure fluctuation sensor
WO2007037100A1 (en) * 2005-09-27 2007-04-05 Citizen Holdings Co., Ltd. Heart rate meter and heart beat detecting method
JP2007135614A (en) * 2005-11-14 2007-06-07 Citizen Watch Co Ltd Sensing device and heart rate meter
JP2007209453A (en) * 2006-02-08 2007-08-23 Delta Tooling Co Ltd Muscle fatigue evaluation system
WO2008099537A1 (en) * 2007-02-14 2008-08-21 Delta Tooling Co., Ltd. Biosignal analyzer, sheet and method of analyzing biosignal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187243A1 (en) * 2012-06-16 2013-12-19 株式会社デルタツーリング Physiological state-analyzing device and computer program
JP2014000178A (en) * 2012-06-16 2014-01-09 Delta Tooling Co Ltd Biological state analyzer and computer program
EP2862507A4 (en) * 2012-06-16 2015-07-01 Delta Tooling Co Ltd Physiological state-analyzing device and computer program
US10398329B2 (en) 2012-06-16 2019-09-03 Delta Tooling Co., Ltd. Biological state analyzer and computer program

Also Published As

Publication number Publication date
JP5327584B2 (en) 2013-10-30
JP2010046236A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
EP2633812B1 (en) Vital status estimation device and computer program
JP5044230B2 (en) Biological signal analyzing apparatus, sheet, and biological signal analyzing method
JP5429946B2 (en) Biological condition analyzer and computer program
EP3078948B1 (en) Acoustic and vibration information accumulation mechanism, acoustic and vibration sensing system, and computer program
JP5561552B2 (en) Biological signal measuring apparatus and biological state analysis system
JP5669287B2 (en) Drinking detection system and computer program
JP5327584B2 (en) Biological condition analyzer, computer program, and recording medium
JP5582478B2 (en) Biological state estimation device and computer program
JP5236424B2 (en) Pulse wave detection device and biological state analysis device
JP5476546B2 (en) Abdominal aortic aneurysm detection device
JP5679556B2 (en) Drinking state detection device, computer program and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE