WO2010021213A1 - Magnetoresistive storage device - Google Patents

Magnetoresistive storage device Download PDF

Info

Publication number
WO2010021213A1
WO2010021213A1 PCT/JP2009/062713 JP2009062713W WO2010021213A1 WO 2010021213 A1 WO2010021213 A1 WO 2010021213A1 JP 2009062713 W JP2009062713 W JP 2009062713W WO 2010021213 A1 WO2010021213 A1 WO 2010021213A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
magnetization direction
magnetic
magnetic body
storage device
Prior art date
Application number
PCT/JP2009/062713
Other languages
French (fr)
Japanese (ja)
Inventor
有光 加藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2010021213A1 publication Critical patent/WO2010021213A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetoresistive storage device that stores data as a resistance value using a magnetic material.
  • MRAM Magnetic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • TMR Tunnelel MagnetoResistance
  • MTJ Magnetic Tunnel Junction
  • the two ferromagnetic layers are composed of a pinned layer (magnetization pinned layer) whose magnetization direction is fixed and a free layer (magnetization free layer) whose magnetization direction is reversible (Roy Scheuerlein et al. , “A 10 ns Read and Write Non-Volatile Memory Array Usage a Magnetic Tunnel Junction and FET SwitchinEachNeSNRC”, 2000 IEEE InternalCRS. reference).
  • the resistance value (R + ⁇ R) of the MTJ when the magnetization directions of the pinned layer and the free layer are “anti-parallel” is larger than the resistance value (R) when they are “parallel” due to the magnetoresistance effect. It is known.
  • the MRAM uses the magnetoresistive element having the MTJ as a memory cell, and stores data in a nonvolatile manner by utilizing the change in the resistance value. Data is written to the memory cell by reversing the magnetization direction of the free layer.
  • the asteroid method is known as a method of writing data to the MRAM (M. Durlam et al., “Nonvolatile RAM based on Magnetic Junction Elements”, 2000 IEEE International International Solid-StateCirC: 130-131 .: see non-patent document 2).
  • MRAM Magnetoresistive RAM
  • the reversal magnetic field necessary for reversing the magnetization of the free layer increases in inverse proportion to the memory cell size. That is, the write current tends to increase as the memory cell is miniaturized. Such a tendency is not preferable for miniaturization of memory cells and increase in capacity of MRAM.
  • spin injection method has been proposed as a write method that can suppress an increase in write current due to miniaturization (Yagami and Suzuki, “Research Trends in Spin Transfer Magnetizing Switching” (research trend of spin injection magnetization reversal). ), Journal of Japan Society of Applied Magnetics, Vol. 28, No. 9, 2004, pp. 937-948: Non-patent document 3).
  • spin transfer method a spin-polarized current is injected into a ferromagnetic conductor, and a direct interaction between the spin of a conduction electron carrying the current and the magnetic moment of the conductor is performed. Magnetization is reversed (hereinafter referred to as “Spin Transfer Magnetization Switching”).
  • FIG. 1 is a diagram for explaining data writing using spin injection magnetization reversal.
  • the magnetoresistive element includes a free layer 101, a pinned layer 103, and a tunnel barrier layer 102 that is a nonmagnetic layer sandwiched between the free layer 101 and the pinned layer 103.
  • the pinned layer 103 whose magnetization direction is fixed is formed so as to be thicker than the free layer 101, and plays a role as a mechanism (spin filter) for creating a spin-polarized current.
  • the state where the magnetization directions of the free layer 101 and the pinned layer 103 are parallel is associated with data “0”, and the state where they are antiparallel is associated with data “1”.
  • the spin injection magnetization reversal shown in FIG. 1 is realized by a CPP (Current Perpendicular to Plane) method, and a write current is injected perpendicularly to the film surface. Specifically, current flows from the pinned layer 103 to the free layer 101 at the time of transition from data “0” to data “1”. In this case, electrons having the same spin state as the pinned layer 103 as a spin filter move from the free layer 101 to the pinned layer 103. Then, the magnetization of the free layer 101 is reversed by a spin transfer (spin angular momentum transfer) effect.
  • CPP Current Perpendicular to Plane
  • spin injection magnetization reversal data is written by the movement of spin electrons.
  • the direction of magnetization of the free layer 101 can be defined by the direction of the spin-polarized current injected perpendicular to the film surface.
  • the threshold for writing depends on the current density. Therefore, as the memory cell size is reduced, the write current required for magnetization reversal decreases. Since the write current decreases with the miniaturization of the memory cell, the spin transfer magnetization reversal is important for realizing the large capacity of the MRAM and the miniaturization of the memory cell.
  • JP-A-2005-150303 Patent Document 1
  • This magnetoresistive effect element has a ferromagnetic tunnel junction including a three-layer structure of a first ferromagnetic layer / tunnel barrier layer / second ferromagnetic layer.
  • the coercive force of the first ferromagnetic layer is greater than the coercivity of the second ferromagnetic layer.
  • the magnetization of the end portion of the second ferromagnetic layer is fixed in a direction having a component orthogonal to the easy axis direction of the second ferromagnetic layer.
  • Patent Document 2 Japanese Patent No. 2967980 (Patent Document 2) describes a magnetic surname memory.
  • 2A and 2B are cross-sectional views showing the configuration of this magnetic memory. As shown in FIGS. 2A and 2B, this magnetic memory has a structure in which an antiferromagnetic layer 110, a magnetic pinned layer 111, a nonmagnetic layer 112, and a magnetic sense layer 113 are stacked.
  • FIG. 2A shows a high resistance state
  • FIG. 2B shows a low resistance state.
  • Patent Document 3 describes a method and system for providing a TMR sensor using a hard magnetic material that deflects a free layer.
  • This magnetoresistive sensor reads data from a recording medium, and includes a free layer, a pin layer, a barrier layer, and a hard magnetic layer.
  • the free layer has ferromagnetism and has a first side and a second side opposite to the first side.
  • the pinned layer has a magnetization direction and is ferromagnetic. The direction of magnetization of the pinned layer is fixed in a specific direction.
  • This pinned layer is on the first side of the free layer.
  • the barrier layer separates the first-side free layer and the pinned layer.
  • This barrier layer is an insulating layer having a thickness sufficient to allow a tunnel of charged particles between the pinned layer and the free layer.
  • the hard magnetic layer is on the second side of the free layer. This hard magnetic layer magnetically deflects the free layer.
  • Patent Document 4 discloses an exchange coupling film, a magnetoresistive effect element, a magnetic head, and a magnetic random access memory.
  • This exchange coupling film includes an antiferromagnetic material layer, an exchange coupling imparting layer, and an exchange coupling enhancement layer.
  • the antiferromagnetic material layer is made of a disordered alloy.
  • the exchange coupling imparting layer is made of a ferromagnetic material of Co or a CoFe alloy having a face-centered cubic crystal structure and is in contact with the antiferromagnetic material layer to provide exchange coupling at the interface with the antiferromagnetic material layer.
  • the exchange coupling enhancement layer is disposed on the surface opposite to the antiferromagnetic layer in the exchange coupling imparting layer and is made of a ferromagnetic material of Fe or a body-centered cubic CoFe alloy and is provided by the exchange coupling imparting layer. Amplify exchange bonds.
  • a magnetoresistive memory device is disclosed in Japanese Patent Laid-Open No. 2005-116658 (Patent Document 5).
  • a plurality of word lines and bit lines and a plurality of magnetoresistive memory elements are arranged.
  • the plurality of word lines and bit lines intersect on the semiconductor substrate in a non-contact manner to form a matrix.
  • a plurality of magnetoresistive memory elements are formed by laminating a free layer having a variable magnetization direction and a magnetization fixed layer having a fixed magnetization direction interposed between the plurality of bit lines and the word lines and intersecting each other through an insulating layer. ing.
  • the magnetoresistive memory device writes magnetization information to a magnetoresistive memory element at an intersection selected by a magnetizing current flowing through the bit line and the word line, and detects a resistance change of the current flowing through the magnetoresistive memory element by a tunnel effect. To read the magnetization information.
  • the plurality of magnetoresistive memory elements are arranged at positions deviated from the intersections of the plurality of bit lines and word lines, and the free layer magnetism of each magnetoresistive memory element is disposed between the bit lines and the word lines at each intersection.
  • the free layer extension part which extended only the body is arrange
  • Patent Document 6 discloses a magnetoresistive effect element, a magnetic head, a magnetic reproducing device, and a method of manufacturing a magnetoresistive element.
  • the magnetoresistive effect element includes a magnetoresistive effect film, a magnetic coupling layer, a ferromagnetic layer, an antiferromagnetic layer, a bias mechanism part, and a pair of electrodes.
  • the magnetoresistive film includes a magnetization free layer having a magnetic film whose magnetization direction changes according to an external magnetic field, a magnetization fixed layer having a magnetic film whose magnetization direction is substantially fixed to one side, An intermediate layer disposed between the magnetization free layer and the magnetization pinned layer.
  • the magnetic coupling layer is disposed on the magnetization pinned layer of the magnetoresistive effect film.
  • the ferromagnetic layer is disposed on the magnetic coupling layer.
  • the antiferromagnetic layer is disposed on the ferromagnetic layer.
  • the bias mechanism unit applies a bias magnetic field to the magnetization free layer in a direction substantially parallel to the film surface of the magnetoresistive film and substantially perpendicular to the magnetization direction of the magnetization pinned layer.
  • the pair of electrodes energize the magnetoresistive film with a current in a direction from the magnetization fixed layer to the magnetization free layer. Bias point is greater than 50%.
  • JP 2005-150303 A Japanese Patent No. 2967980 JP 2002-117510 A JP 2003-124541 A JP-A-2005-116658 JP 2007-220945 A
  • the inventors' research has revealed that there is a correlation between the magnitude of the write current and the thermal disturbance tolerance of data storage. That is, it has been found that the more data can be written at a lower current, the more likely data destruction occurs due to thermal disturbance, and it is difficult to ensure reliability even when the current is reduced.
  • a magnetoresistive element using an exchange bias magnetic field it is necessary to heat an antiferromagnetic layer in contact with the magnetic pinned layer, and a tunnel insulating film (nonmagnetic) in contact with the other surface of the magnetic pinned layer. The body layer) is also heated.
  • a highly reliable magnetoresistive memory device having high thermal disturbance resistance is desired.
  • a magnetoresistive element using the easy magnetization direction of the free layer has only two easy magnetization directions. Further, the inventors' research has revealed that control becomes extremely difficult when the easy magnetization direction is set to multiple directions. That is, it is difficult to store multiple values in one magnetoresistive element.
  • a magnetoresistive storage device capable of multi-value storage is required.
  • An object of the present invention is to provide a magnetoresistive memory device having high thermal disturbance resistance and high reliability.
  • the magnetoresistive storage device of the present invention includes a first structure, a second structure, a temperature raising means, and a magnetization direction setting means.
  • the first structure is formed by laminating a first magnetic body whose magnetization direction is fixed, a first nonmagnetic body, and a second magnetic body whose magnetization state changes according to data.
  • the second structure is formed by laminating an antiferromagnetic material and a third magnetic material.
  • the temperature raising means raises the temperature of the antiferromagnetic material to a desired temperature.
  • the magnetization direction setting means directs the magnetization direction of the third magnetic body in a desired direction.
  • the antiferromagnetic material and the third magnetic material are exchange coupled.
  • the second magnetic body and the third magnetic body are magnetically coupled.
  • the magnetoresistive memory device writing method of the present invention comprises preparing the above magnetoresistive memory device, raising the temperature of the antiferromagnetic material to a desired temperature by the temperature raising means, and applying the third magnetic property by the magnetization direction setting means. Setting the magnetization direction of the body to a direction corresponding to the data to be written, and stopping the temperature raising means and the magnetization direction setting means to lower the temperature of the antiferromagnetic material and fixing the magnetization direction of the third magnetic material. It has.
  • FIG. 1 is a diagram for explaining data writing using spin injection magnetization reversal in the related art.
  • FIG. 2A is a cross-sectional view showing a configuration of a magnetic memory in the related art.
  • FIG. 2B is a cross-sectional view showing a configuration of a magnetic memory in the related art.
  • FIG. 3A is a schematic cross-sectional view showing the configuration of the main part of the magnetoresistive memory element in the magnetoresistive memory device according to the embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view showing a configuration of a main part of the magnetoresistive memory element in the magnetoresistive memory device according to the embodiment of the present invention.
  • FIG. 1 is a diagram for explaining data writing using spin injection magnetization reversal in the related art.
  • FIG. 2A is a cross-sectional view showing a configuration of a magnetic memory in the related art.
  • FIG. 2B is a cross-sectional view showing a configuration of a magnetic
  • FIG. 4 is a circuit diagram showing the configuration of the memory array portion of the magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • FIG. 6 is a top view showing a configuration of a main part of the magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a second example according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • FIG. 6 is a top view showing a configuration of a main part of the magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention.
  • FIG. 9 is a top view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of a memory array section of a magnetoresistive storage device as a third example according to the embodiment of the present invention.
  • FIG. 11A is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention.
  • FIG. 11B is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention.
  • FIG. 12 is a top view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention.
  • FIG. 14A is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention.
  • FIG. 14B is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention.
  • 3A and 3B are schematic cross-sectional views showing the configuration of the main part of the magnetoresistive memory element in the magnetoresistive memory device according to the embodiment of the present invention.
  • the magnetoresistive memory device has a plurality of magnetoresistive memory elements. 3A and 3B show only one magnetoresistive memory element. Each magnetoresistive memory element includes a read structure 6, a memory structure 9, a temperature raising means 11, and a magnetization direction setting means 12.
  • the readout structure 6 includes a first magnetic body 1, a first nonmagnetic body 2, a second magnetic body 3, a first terminal 4, and a second terminal 5.
  • the first magnetic body 1 has a fixed magnetization direction.
  • the first nonmagnetic body 2 is provided between the first magnetic body 1 and the second magnetic body 3.
  • the magnetization state of the second magnetic body 3 changes according to data.
  • the first magnetic body 1, the first non-magnetic body 2, and the second magnetic body 3 constitute an MTJ.
  • the first terminal 4 is electrically connected to the first magnetic body 1.
  • the second terminal 5 is electrically connected to the second magnetic body 3.
  • the memory structure 9 includes an antiferromagnetic material 7 and a third magnetic material 8.
  • the third magnetic body 8 is coupled to the antiferromagnetic body 7 by an exchange bias magnetic field.
  • the temperature raising means 11 heats the antiferromagnetic material 7 to the first temperature 10.
  • the magnetization direction setting means 12 sets the magnetization direction of the third magnetic body 8 to a desired direction.
  • the second magnetic body 3 and the third magnetic body 8 are magnetically coupled via a static magnetic field.
  • the first temperature 10 at the time of heating by the temperature raising means 11 is such that when the magnetic field in a direction different from the initial magnetization direction of the third magnetic body 8 is applied to the third magnetic body 8, The temperature at which the magnetization direction of the magnetic body 8 and the magnetization state of the antiferromagnetic body 7 change.
  • the amount of change due to this change is preferably as high as possible, but is preferably an amount that exceeds 50% as a discriminable range. More preferably, it is 100%.
  • the magnetization directions of the first magnetic body 1 and the second magnetic body 3 are in two parallel planes.
  • the magnetization direction of the third magnetic body 8 may be in the same parallel plane or in another different plane.
  • the temperature raising means 11 may be provided for each magnetoresistive memory element as shown in the figure, or may be provided for each of a plurality of magnetoresistive memory elements or for the entire magnetoresistive memory device. .
  • the magnetization direction setting means 12 may be provided for each magnetoresistive memory element as shown in the figure, or one for each of the plurality of magnetoresistive memory elements or the entire magnetoresistive memory device. Also good.
  • the temperature raising means 11 and the magnetization direction setting means 12 may be integrated.
  • the writing operation is performed by heating the antiferromagnetic body 7 to the first temperature 10 by the temperature raising means 11 and setting the magnetization direction of the third magnetic body 8 by the magnetization direction setting means 12.
  • the antiferromagnet 7 is heated to the first temperature 10 by the temperature raising means 11 and a magnetic field corresponding to the data written to the third magnetic body 8 is generated by the magnetization direction setting means 12.
  • the temperature raising means 11 or the magnetization direction setting means 12 may be started earlier or at the same time.
  • the magnetization direction of the third magnetic body 8 changes to a direction corresponding to the data to be written.
  • the antiferromagnetic body 7 is at the first temperature 10
  • the magnetization state of the antiferromagnetic body 7 changes according to the magnetization state of the third magnetic body 8.
  • the magnetization state of the antiferromagnetic body 7 is also supported, that is, a state corresponding to the data to be written.
  • the heating temperature the blocking temperature of the antiferromagnetic material (for example, PtMn) is about 250 ° C., and considering that the device can be used at about 150 ° C., the heating temperature is between 200 ° C. and above. It is desirable to be.
  • the reason why the temperature may be lower than the blocking temperature is that, in antiferromagnetic materials, a magnetization change occurs in units of grains (magnetization change occurs from grains with a small energy barrier), and even if all the grains do not change, some degree This is because there is no problem if the grain changes.
  • the upper limit of the temperature is about 400 ° C. due to the limitation of suppressing the deterioration of characteristics of the MTJ tunnel film (first nonmagnetic material 2).
  • the temperature raising means 11 and the magnetization direction setting means 12 are stopped. At this time, the order of stopping the temperature raising means 11 first and then stopping the magnetization direction setting means 12 is desirable. If the magnetization direction setting means 12 is stopped first when the temperature of the antiferromagnetic body 7 is high to some extent, the magnetization state of the third magnetic body 8 is disturbed by thermal disturbance, and the state of the antiferromagnetic body 7 is also disturbed. This is because it is expected. By stopping the temperature raising means 11, the antiferromagnetic material 7 and the third magnetic material 8 are cooled. After cooling, since the magnetization state of the antiferromagnetic material 7 does not change, the magnetization direction of the third magnetic material 8 is fixed as set by the magnetization direction setting means 12.
  • the magnetization direction of the third magnetic body 8 can be any direction that can be directed as long as the magnetization direction setting means 12 corresponds.
  • the third magnetic body 8 is coupled to the second magnetic body 3 via a static magnetic field. Therefore, when the magnetization direction of the third magnetic body 8 changes corresponding to the data writing, the magnetization direction of the second magnetic body 3 also changes in a direction corresponding to the written data. That is, data is also written into the read structure 6.
  • FIG. 3A shows a low resistance state (resistance value: R) in which the magnetization direction of the first magnetic body 1 and the magnetization direction of the second magnetic body 3 are “parallel”. Can be associated.
  • FIG. 3B shows a high resistance state (resistance value: R + ⁇ R) in which the magnetization direction of the first magnetic body 1 and the magnetization direction of the second magnetic body 3 are “anti-parallel”. 1 ".
  • the magnetization direction of the third magnetic body 8 can be any direction as described above, the magnetization direction of the second magnetic body 3 that is magnetically coupled to the third magnetic body 8 is also the same. All directions are possible.
  • the magnetization direction of the second magnetic body 3 can be set to an intermediate state between the “parallel” state in FIG. 3A and the “antiparallel” state in FIG. 3B.
  • the intermediate state (s) not only data “0” and “1” but also other data can be stored. That is, multivalue storage can be performed by associating a plurality of data with a plurality of directions.
  • the read operation of the magnetoresistive memory device Next, the read operation of the magnetoresistive memory device according to this embodiment will be described.
  • the written data is determined by evaluating the resistance value between the first terminal 4 and the second terminal 5 of the read structure 6.
  • the resistance value is determined by the difference in magnetization direction (eg, angle) between the first magnetic body 1 and the second magnetic body 3. If the magnetization direction of the first magnetic body 1 and the magnetization direction of the second magnetic body 3 are in a “parallel” state (angle 0 degree), a low resistance state (resistance value: R) is obtained. On the other hand, if it is in an “antiparallel” state (angle 180 degrees), it becomes a high resistance state (resistance value: R + ⁇ R). In the intermediate state, an intermediate resistance state (resistance value: R + ⁇ r, 0 ⁇ r ⁇ R) is obtained.
  • magnetization direction eg, angle
  • the magnetization direction of the first magnetic body 1 is fixed, it is determined by the magnetization direction of the second magnetic body 3.
  • the resistance value is determined by the written data.
  • the reading method first, (1) a constant voltage or a constant current is applied between the first terminal 4 and the second terminal 5. (2) The current generated between the first terminal 4 and the second terminal 5 and the voltage generated by passing the current are compared with the reference value, and the magnetoresistive memory element (reading structure 6) Determine the resistance state. Data can be read out by determining the resistance state.
  • the antiferromagnetic material 7 of the memory structure 9 that is heated in the write operation.
  • the third magnetic body 8 in contact with the antiferromagnetic body 7 is also heated to the same extent.
  • the readout structure 6 is arranged away from these (interlayer insulating film is interposed)
  • the temperature rise is small.
  • the temperature rise of the 1st nonmagnetic body 2 tunnel insulating film
  • the temperature rise of the 1st nonmagnetic body 2 tunnel insulating film
  • the positional relationship between the readout structure 6 and the storage structure 9 overlaps. That is, when the surface of the second magnetic body 3 is projected perpendicularly to the surface of the semiconductor substrate onto the surface of the third magnetic body 8, the projection of the surface of the second magnetic body 3 is the same as the surface of the third magnetic body 8. overlapping. However, if the third magnetic body 8 is coupled to the second magnetic body 3 through a static magnetic field, the positional relationship between the readout structure 6 and the storage structure 9 does not overlap at all. Also good.
  • the distance between the antiferromagnetic material 7 and the first non-magnetic material 2 has been about several nanometers in the past (FIGS. 2A and 2B), but is preferably at least wider, for example, 100 nm apart.
  • Each magnetic body may be a single layer, a structure in which a plurality of magnetic bodies are stacked, or a structure in which a plurality of magnetic bodies are magnetically coupled via a non-magnetic body.
  • the magnetization fixing method of the first magnetic body 1 may be, for example, a method using a laminated structure of the first magnetic body 1 and an antiferromagnetic body that is antiferromagnetically coupled, or a long shape anisotropy that is long in one direction. This is done by giving It is desirable that the magnetization directions of the second magnetic body 3 and the third magnetic body 8 are easily changed by the magnetostatic coupling with the third magnetic body 8 and the magnetization direction setting means 12.
  • the shape is most preferably a circular shape having no shape anisotropy.
  • the magnetization direction is easy to be directed in all directions, so that it is excellent in multivalue storage.
  • the magnetic material also has magnetocrystalline anisotropy, in order to provide a shape anisotropy that cancels this, it may be desirable to use an elliptical shape.
  • the magnetization direction is easily changed by a method such as thinning.
  • both can be realized by a magnetic material or a film configuration. Examples of the magnetoresistive memory device according to the embodiment of the present invention will be described below.
  • FIG. 4 is a circuit diagram showing the configuration of the memory array portion of the magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • FIG. 6 is a top view showing a configuration of a main part of the magnetoresistive memory device as a first example according to the embodiment of the present invention.
  • the memory array unit 63 of the magnetoresistive memory device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of memory structures 53, and a plurality of memory structures 53.
  • a selection transistor 54, a word line control circuit 61, and a bit line control circuit 62 are provided.
  • the plurality of word lines 50 extend in one direction (X direction).
  • the plurality of bit lines 51 extend in one direction (Y direction).
  • the plurality of read structures 52 are arranged in an array in the vicinity of a plurality of intersections between the plurality of word lines 50 and the plurality of bit lines 51.
  • the plurality of storage structures 53 are arranged in the vicinity of the plurality of readout structures 52.
  • the plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52.
  • One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54.
  • the source of the selection transistor 54 is grounded.
  • the gate of the selection transistor 54 is connected to the corresponding word line 50.
  • the word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage.
  • the bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage.
  • the memory cell 60 includes the read structure 52, the storage structure 53, and the selection transistor 54 described above.
  • the memory array unit 63 has a plurality of memory cells 60 arranged on the array.
  • the magnetoresistive storage device further includes an electromagnet (not shown: corresponding to the magnetization direction setting means 12) that applies a magnetic field to the entire memory array section 63, and a laser irradiation device (which irradiates a desired storage structure 53 with a laser). (Not shown: corresponding to the temperature raising means 11).
  • An SiO 2 interlayer insulating film 71 having a thickness of 100 nm is provided on a semiconductor substrate (not shown) on which transistors including the selection transistor 54, wirings, and the like are formed.
  • a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided in the SiO 2 interlayer insulating film 71.
  • a Ta film 72 having a thickness of 10 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70.
  • a tunnel insulating layer MgO film 77 having a thickness of 1 nm, a free CoFeB film 78 having a thickness of 2 nm, and a Ta film 79 having a thickness of 50 nm are stacked in this order.
  • the free layer CoFeB film 78 and the Ta film 79 are protected by a SiN film 80 having a thickness of 2 nm.
  • the shape of the readout structure 52 composed of the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 is a circle having a diameter of 1 ⁇ m, as shown in FIG.
  • a 400-nm-thick SiO 2 interlayer insulating film 81 is provided so as to cover the readout structure 52.
  • a Cu plug 82 having a thickness of 300 nm connected to the upper portion of the Ta film 79 is provided.
  • An AlCu film 83 having a thickness of 200 nm is provided on the SiO 2 interlayer insulating film 81 so as to be connected to the Cu plug 82.
  • a 300 nm thick SiO 2 interlayer insulating film 84 is provided so as to cover the AlCu film 83.
  • a 10 nm thick Ta film 85, a 20 nm thick antiferromagnetic PtMn film 86, a 6 nm thick magnetic CoPt film 87, and a 50 nm thick Ta film 88 are formed on the SiO 2 interlayer insulating film 84. They are stacked in this order.
  • the shape of the memory structure 53 composed of the PtMn film 86 and the CoPt film 87 is a circle having a diameter of 3 ⁇ m, as shown in FIG.
  • the CoPt film 87 and the PtMn film 86 are firmly exchange coupled.
  • the direction in which magnetization is easy is the in-plane direction of the CoFe film 74 and the direction perpendicular to the film surface of the CoPt film 87.
  • the prepared laser irradiation apparatus irradiates the storage structure 53 of the memory cell 60 to be written with a laser based on the word address and bit address to be written, and raises the temperature to a desired temperature (eg, 200 ° C.). Warm up. Further, the prepared electromagnet applies a magnetic field in a desired direction (a direction corresponding to data to be written) in the vertical direction to the entire substrate. Thereby, the magnetization direction of the CoPt film 87 is directed along the applied magnetic field having a direction corresponding to the data to be written.
  • the PtMn film 86 of the memory structure 53 is at a temperature at which the magnetization state changes according to the magnetization direction of the CoPt film 87. Therefore, the magnetization direction of the PtMn film 86 is oriented in the direction along the applied magnetic field having a direction corresponding to the data to be written.
  • the laser irradiation apparatus stops the laser irradiation and the temperature of the memory structure 53 is lowered, the PtMn film 86 is in a magnetization state that supports the magnetization direction of the CoPt film 87. For this reason, the magnetization direction of the CoPt film 87 remains fixed even after the electromagnet stops applying the magnetic field.
  • the word line control circuit 61 selects the word line 50 of the word address to be read and applies a predetermined voltage. Thereby, the corresponding selection transistor 54 is turned on. Then, the bit line control circuit 62 selects the bit line 51 of the bit address to be read and applies a read current of 20 ⁇ A.
  • the CoFeB film 78 of the read structure 52 is set to either the right direction or the left direction by magnetostatic coupling with the CoPt film 87 of the memory structure 53.
  • the resistance values at this time are 10 k ⁇ and 20 k ⁇ , respectively, and the on-resistance of each transistor is 1 k ⁇ , the potential of the bit line 51 is 0.21 V and 0.41 V, respectively. Therefore, by writing the potential of the bit line 51 to, for example, a differential sense amplifier, written data can be determined.
  • a SiO 2 interlayer insulating film 71 provided with a tungsten plug 70 connected to a lower layer wiring is formed to 100 nm on a semiconductor substrate (not shown) on which a transistor including the selection transistor 54, wiring, and the like are formed.
  • the Ta film 72 is 10 nm
  • the antiferromagnetic PtMn film 73 is 20 nm
  • the lower pinned layer CoFe film 74 is 3 nm
  • the nonmagnetic layer Ru film 75 is 3 nm
  • the upper pinned layer is 3 nm.
  • the CoFe film 76 is formed by stacking 3 nm, the tunnel insulating layer MgO film 77 by 1 nm, the free layer CoFeB film 78 by 2 nm, and the Ta film 79 by 50 nm in this order by sputtering. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours, and the magnetization direction of the pinned layer (the lower pinned layer CoFe film 74 and the upper pinned layer CoFe film 76) is set. Subsequently, the Ta film 79 is processed into a readout structure shape by a photolithography technique and a reactive ion etching technique (hereinafter referred to as RIE).
  • RIE reactive ion etching
  • the CoFeB film 78 is processed into a readout structure by a milling method using the Ta film 79 as a mask.
  • an SiN film 80 is formed to have a thickness of 30 nm by the CVD method so as to cover the entire surface of the substrate, and the upper side wall of the readout structure 52 is protected.
  • the MgO film 77 to the Ta film 72 are processed by a photolithography technique and a milling method.
  • the shape of the free layer (CoFeB film 78) of this example is a circle having a diameter of 1 ⁇ m as shown in FIG.
  • an SiO 2 interlayer insulating film 81 is formed by a 500 nm CVD method so as to cover the entire surface of the substrate, and then planarized by a chemical mechanical polishing technique (hereinafter referred to as CMP).
  • CMP chemical mechanical polishing technique
  • the SiO 2 interlayer insulating film 81 on the Ta film 79 is removed by RIE to form vias, and Cu is embedded to form Cu plugs 82.
  • an AlCu film 83 is formed on the entire surface by sputtering, and processed by using the RIE technique to form a wiring (bit line 51).
  • an SiO 2 interlayer insulating film 84 is formed to a thickness of 400 nm so as to cover the entire surface of the substrate, and is planarized by CMP.
  • the Ta film 85, 10 nm of the antiferromagnetic PtMn film 86, 20 nm of the magnetic CoPt film 87, and 6 nm of the Ta film 88 are stacked in this order by sputtering.
  • patterning is performed by a photolithography technique and a milling method to form the memory structure 53.
  • the memory structure 53 is circular with a diameter of 3 ⁇ m.
  • annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours to strengthen the exchange coupling between the CoPt film 87 and the PtMn film 86.
  • the magnetization direction is 45 degrees with respect to the film surface (xy plane). Apply a magnetic field in the tilted direction.
  • the distance between the antiferromagnetic material and the tunnel insulating film that requires a temperature increase in the write operation is several nanometers compared to the conventional distance (FIGS. 2A and 2B), which is several nanometers. Can do.
  • the conventional distance FIGS. 2A and 2B
  • heat conduction is hindered, and it is possible to suppress a temperature rise compared to the conventional (FIGS. 2A and 2B). Become. This improves the reliability of the tunnel insulating film.
  • This magnetic storage device is suitable for storing a capacity of about several tens of bits because of its large size, and has prepared a recording of parameters obtained by evaluating the device itself in a substrate state and a circuit for multiple use.
  • the adopted circuit information can be used to store instead of the fuse.
  • a structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
  • FIG. 7 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a second example according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention.
  • FIG. 9 is a top view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention.
  • the memory array unit 63 of the magnetoresistive storage device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of storage structures 53, and a plurality of memory structures 53.
  • a selection transistor 54, a plurality of resistors 55, a plurality of write selection transistors 56, a plurality of write word lines 57, a word line control circuit 61, and a bit line control circuit 62 are provided.
  • the plurality of word lines 50 extend in one direction (X direction).
  • the plurality of bit lines 51 extend in one direction (Y direction).
  • the plurality of read structures 53 are arranged in an array in the vicinity of a plurality of intersections between the plurality of word lines 50 and the plurality of bit lines 51.
  • the plurality of storage structures 53 are arranged in the vicinity of the plurality of readout structures 52.
  • the plurality of resistors 55 are arranged below the corresponding memory structures 53.
  • the plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52.
  • the plurality of selection transistors 56 are arranged corresponding to the plurality of resistors 55.
  • the plurality of write word lines 57 extend in one direction (X direction). One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54.
  • the source of the selection transistor 54 is grounded.
  • the gate of the selection transistor 54 is connected to the corresponding word line 50.
  • One terminal of the resistor 55 is connected to the bit line 51 and the other terminal is connected to the drain of the write selection transistor 56.
  • the source of the write selection transistor 56 is grounded.
  • the gate of the write selection transistor 56 is connected to the corresponding write word line 57.
  • the word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage. Further, one end of a plurality of write word lines 57 is connected to control selection of each write word line 57 and application of current / voltage.
  • the bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage.
  • the memory cell 60 includes the read structure 52, the memory structure 53, the selection transistor 54, the write selection transistor 56, and the resistor 55.
  • the memory array unit 63 has a plurality of memory cells 60 arranged on the array.
  • the resistor 55 functions as the temperature raising means 11 and the bit line 51 functions as the magnetization direction setting means 12.
  • the resistor 55 may also have a function as the magnetization direction setting means 12.
  • a resistor 55 having a thickness of 10 nm is provided over a transistor including the selection transistor 54 and a semiconductor substrate (not shown) on which wirings and the like are formed.
  • a 100 nm thick SiO 2 interlayer insulating film 71 is provided so as to cover the entire substrate including the resistor 55.
  • a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided in the SiO 2 interlayer insulating film 71.
  • a Ta film 72 having a thickness of 10 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70.
  • Ta film 72 a having the same thickness of 10 nm is provided in the vicinity of the Ta film 72.
  • an antiferromagnetic PtMn film 73 having a thickness of 20 nm
  • a lower pinned layer CoFe film 74 having a thickness of 3 nm
  • a nonmagnetic layer Ru film 75 having a thickness of 3 nm
  • an upper pinned layer CoFe film having a thickness of 3 nm.
  • a tunnel insulating layer MgO film 77 having a thickness of 1 nm
  • a free CoFeB film 78 having a thickness of 2 nm
  • a Ta film 79 having a thickness of 50 nm
  • an antiferromagnetic PtMn film 73a having a thickness of 20 nm, a magnetic CoFe film 74a having a thickness of 3 nm, and a nonmagnetic layer Ru film 75a having a thickness of 3 nm are stacked in this order on the Ta film 72a. ing.
  • the free layer CoFeB film 78 and the Ta film 79 are protected by a SiN film 80 having a thickness of 2 nm.
  • the shape of the readout structure 52 composed of the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 is a circle having a diameter of 0.2 ⁇ m, as shown in FIG.
  • the shape of the memory structure 53 composed of the PtMn film 73a and the CoFe film 74a is a circle having a diameter of 0.2 ⁇ m, as shown in FIG.
  • a 40 nm-thickness SiO 2 interlayer insulating film 81 is provided so as to cover the readout structure 52 and the memory structure 53.
  • a Cu plug 82 having a thickness of 300 nm connected to the upper portion of the Ta film 79 is provided.
  • An AlCu film 83 having a thickness of 200 nm is provided on the SiO 2 interlayer insulating film 81 so as to be connected to the Cu plug 82.
  • the CoFe film 74a and the PtMn film 73a are strongly exchange coupled.
  • the direction in which magnetization is easy is the in-film direction of the CoFe film 74 and the in-film direction of the CoFe film 74a.
  • the word line control circuit 62 selects a write word line 57 of a word address to be written and applies a predetermined voltage. Accordingly, the corresponding write selection transistor 56 is turned on.
  • the bit line control circuit 61 selects a bit line 51 of a bit address to be written and applies a predetermined voltage. As a result, the corresponding resistor 55 generates heat when a current flows through it. Due to the heat generation, the CoFe film 74a of the corresponding memory structure 53 is heated to a desired temperature (eg, 280 ° C.).
  • the magnetization direction of the CoFe film 74a is directed in a direction along the magnetic field having a direction corresponding to the data to be written.
  • the PtMn film 73a of the memory structure 53 is at a temperature at which the magnetization state changes according to the magnetization direction of the CoFe film 74a. Therefore, the PtMn film 73a faces in the direction along the applied magnetic field having a direction corresponding to the data to be written.
  • the write selection transistor 56 is turned off, the PtMn film 73a enters a magnetization state that supports the magnetization direction of the CoFe film 74a. For this reason, even if the bit line potential is lowered, the magnetization direction of the CoFe film 74a remains fixed even after the magnetic field is stopped. In this way, data can be written by setting the magnetization direction of the CoFe film 74a of the memory structure 53 to a desired direction (direction corresponding to data to be written). At this time, due to the magnetostatic coupling between the CoFe film 74a and the CoFeB film 78, the magnetization direction of the CoFeB film 78 is also directed to the direction corresponding to the data to be written.
  • the data read operation according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
  • SiO 2 interlayer insulating film in which a tungsten plug 70 connected to a lower layer wiring is provided on a semiconductor substrate (not shown) on which a transistor 55 including a selection transistor 54 and a write selection transistor 56, a wiring, etc., and a resistor 55 are formed.
  • 71 is formed to 100 nm.
  • the Ta film 72 is 10 nm
  • the antiferromagnetic PtMn film 73 is 20 nm
  • the lower pinned layer CoFe film 74 is 3 nm
  • the nonmagnetic layer Ru film 75 is 3 nm
  • the upper pinned layer is 3 pinned layer.
  • the CoFe film 76 is formed by stacking 3 nm, the tunnel insulating layer MgO film 77 by 1 nm, the free layer CoFeB film 78 by 2 nm, and the Ta film 79 by 50 nm in this order by sputtering. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours, and the magnetization direction of the pinned layer (the lower pinned layer CoFe film 74 and the upper pinned layer CoFe film 76) is set. Subsequently, the Ta film 79 is processed into a readout structure shape by photolithography and RIE.
  • the CoFeB film 78 is processed into a readout structure by a milling method using the Ta film 79 as a mask.
  • an SiN film 80 is formed to have a thickness of 30 nm by the CVD method so as to cover the entire surface of the substrate, and the upper side wall of the readout structure 52 is protected.
  • the MgO film 77 and the upper pinned CoFe film 76 are processed by a photolithography technique and a milling method.
  • the read structure 52 is processed from the Ru film 75 to the Ta film 72 using the Ta film 79 as a mask.
  • the Ru structure 75 to the Ta film 72 are processed for the memory structure 53 using the resist as a mask.
  • a subscript “a” is added for distinction to form a Ru film 75a, a CoFe film 74a, a PtMn film 73a, and a Ta film 72a.
  • the read structure 52 and the storage structure 53 can be formed.
  • both the readout structure 52 and the storage structure 53 are circular with a diameter of 0.2 ⁇ m.
  • an SiO 2 interlayer insulating film 81 is formed by a 500 nm CVD method so as to cover the entire surface of the substrate, and then planarized by a chemical mechanical polishing technique (hereinafter referred to as CMP).
  • CMP chemical mechanical polishing technique
  • the SiO 2 interlayer insulating film 81 on the Ta film 79 is removed by RIE to form vias, and Cu is embedded to form Cu plugs 82.
  • an AlCu film 83 is formed on the entire surface by sputtering, and processed by using the RIE technique to form a wiring (bit line 51).
  • the storage structure 53 and the readout structure 52 are formed simultaneously. This facilitates the manufacturing process.
  • the resistor 55 has the function of the temperature raising means 11, and the bit line 51 has the function of the magnetization direction setting means 12, both of which are built in the memory array unit 63.
  • the element configuration of the magnetoresistive memory device can be simplified and miniaturization is facilitated.
  • this magnetoresistive memory device incorporates the temperature raising means (resistor 55), it can be rewritten on the user side. Further, it can be used to store block selection data of the redundancy memory block by inspection at the time of shipment.
  • the magnetic field applied to the memory structure 53 is a magnetic field generated by the wiring current of the bit line 51. Therefore, the direction of the magnetic field is two directions.
  • a combined magnetic field of the magnetic field due to the separate wiring current and the magnetic field due to the wiring current of the bit line 51 may be obtained. Is possible.
  • a magnetic field in any direction can be formed by independently controlling the magnitude of the current flowing through both wirings.
  • the magnetization direction of the memory structure 53 having no anisotropy can be set to an arbitrary direction. In this case, multi-value and analog data can be recorded corresponding to the direction.
  • a structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
  • FIG. 10 is a circuit diagram showing a configuration of a memory array section of a magnetoresistive storage device as a third example according to the embodiment of the present invention.
  • 11A and 11B are cross-sectional views showing the configuration of the main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention.
  • FIG. 11A shows a low resistance state
  • FIG. 11B shows a high resistance state.
  • FIG. 12 is a top view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention.
  • the memory array unit 63 of the magnetoresistive storage device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of storage structures 53, and a plurality of memory structures 53.
  • a selection transistor 54, a plurality of write selection transistors 56, a plurality of write word lines 57, a word line control circuit 61, and a bit line control circuit 62 are provided.
  • the plurality of word lines 50 extend in one direction (X direction).
  • the plurality of bit lines 51 extend in one direction (Y direction).
  • the plurality of storage structures 53 are arranged in an array. Each of the plurality of storage structures 53 is arranged in contact with the lower side of the corresponding bit line 51.
  • the plurality of readout structures 52 are arranged in an array. Each of the plurality of read structures 52 is disposed in contact with the opposite side of the corresponding bit line 51 from the memory structure 53.
  • the plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52.
  • the plurality of selection transistors 56 are arranged corresponding to the plurality of storage structures 53.
  • the plurality of write word lines 57 extend in one direction (X direction).
  • One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54.
  • the source of the selection transistor 54 is grounded.
  • the gate of the selection transistor 54 is connected to the corresponding word line 50.
  • One terminal of the memory structure 53 is connected to the bit line 51, and a terminal provided on the surface opposite to the bit line 51 is connected to the drain of the write selection transistor 56.
  • the source of the write selection transistor 56 is grounded.
  • the gate of the write selection transistor 56 is connected to the corresponding write word line 57.
  • the word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage. Further, one end of a plurality of write word lines 57 is connected to control selection of each write word line 57 and application of current / voltage.
  • the bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage.
  • the memory cell 60 includes the read structure 52, the storage structure 53, the selection transistor 54, and the write selection transistor 56 described above.
  • the memory array unit 63 has a plurality of memory cells 60 arranged on the array.
  • the storage structure 53 functions as the temperature raising means 11
  • the bit line 51 functions as the magnetization direction setting means 12.
  • An SiO 2 interlayer insulating film 71 having a thickness of 100 nm is provided on a semiconductor substrate (not shown) on which a transistor including the selection transistor 54 and the write selection transistor 56, wiring, and the like are formed.
  • a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided in the SiO 2 interlayer insulating film 71.
  • a Ta film 85 having a thickness of 20 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70.
  • an antiferromagnetic PtMn film 86 having a thickness of 20 nm, a magnetic CoFe film 87 having a thickness of 3 nm, and a Ta film 88 having a thickness of 50 nm are stacked in this order.
  • the memory structure 53 including the PtMn film 86 and the CoFe film 87 has a circular shape with a diameter of 0.2 ⁇ m.
  • a Cu film 93 as the bit line 51 is provided on the Ta film 88.
  • a Ru film 75, a pinned CoFe film 74 having a thickness of 3 nm, an antiferromagnetic PtMn film 73 having a thickness of 20 nm, and a Ta film 72 having a thickness of 50 nm are stacked in this order. As shown in FIG.
  • the readout structure 52 composed of the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 has a circular shape with a diameter of 0.2 ⁇ m.
  • the CoPt film 87 and the PtMn film 86 are firmly exchange coupled.
  • FIG. 11A shows a low resistance state (resistance value: R) where the magnetization direction of the pinned CoFe film 76 and the magnetization direction of the free NiFe film 78 are “parallel”. Can be associated.
  • FIG. 11B shows a high resistance state (resistance value: R + ⁇ R) in which the magnetization direction of the pinned CoFe film 76 and the magnetization direction of the free NiFe film 78 are “anti-parallel”. For example, data “1” Can be associated.
  • the word line control circuit 62 selects a write word line 57 of a word address to be written and applies a predetermined voltage. Accordingly, the corresponding write selection transistor 56 is turned on.
  • the bit line control circuit 61 selects a bit line 51 of a bit address to be written and applies a predetermined voltage. As a result, the corresponding memory structure 53 generates heat when a current flows therethrough. Due to the heat generation, the antiferromagnetic CoFe film 87 of the memory structure 53 is heated to a desired temperature (eg, 290 ° C.).
  • the magnetization direction of the CoFe film 87 is directed along the magnetic field having a direction corresponding to the data to be written.
  • the PtMn film 86 of the memory structure 53 is at a temperature at which the magnetization state changes according to the magnetization direction of the CoFe film 74. Therefore, the PtMn film 86 is oriented in a direction along the applied magnetic field having a direction corresponding to the data to be written.
  • the write selection transistor 56 is turned off, the PtMn film 86 enters a magnetization state that supports the magnetization direction of the CoFe film 87. For this reason, even if the bit line potential is lowered, the magnetization direction of the CoFe film 87 remains fixed even after the magnetic field is stopped. In this way, data can be written by setting the magnetization direction of the CoFe film 87 of the memory structure 53 to a desired direction (direction corresponding to the data to be written). At this time, due to magnetostatic coupling between the CoFe film 87 and the CoFeB film 78, the magnetization direction of the CoFeB film 78 is also directed to the direction corresponding to the data to be written.
  • the data read operation according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
  • An SiO 2 interlayer insulating film 71 provided with a tungsten plug 70 connected to a lower layer wiring is formed to 100 nm on a semiconductor substrate (not shown) on which transistors including the selection transistor 54 and the write selection transistor 56, wirings, and the like are formed.
  • the Ta film 85 is laminated by 20 nm
  • the antiferromagnetic PtMn film 86 is 20 nm
  • the magnetic CoFe film 87 is 3 nm
  • the Ta film 88 is laminated by 50 nm in this order.
  • the Ta film 88 is processed into a memory structure shape by photolithography and RIE. Then, after removing the resist by ashing, the Ta film 85 is processed from the CoFe film 87 by the milling method using the Ta film 88 as a mask. Thereby, the memory structure 53 is formed.
  • an SiO 2 interlayer insulating film (not shown) is formed by a 50 nm CVD method so as to cover the entire surface of the substrate, and then planarized by CMP to expose the surface of the Ta film 88. Subsequently, a SiN film (not shown) is formed with a thickness of 20 nm, and a SiO 2 interlayer insulating film (not shown) is formed with a thickness of 400 nm.
  • the Ta film 79 is 10 nm
  • the free layer NiFe film 78 is 2 nm
  • the tunnel insulating layer MgO film 77 is 1 nm
  • the pinned layer CoFe film 76 is 3 nm
  • the Ru layer 75 is 1 nm
  • the pinned layer CoFe film 74 so as to cover the entire surface of the substrate.
  • the antiferromagnetic PtMn film 73 is 20 nm
  • the Ta film 72 is 50 nm, which are stacked in this order by sputtering.
  • the Ta film 72 is processed into a readout structure shape by photolithography and RIE.
  • the Ta film 79 is processed from the PtMn film 73 by the milling method using the Ta film 72 as a mask. Thereby, the readout structure 52 can be formed.
  • the free layer shape of the present example is a circle having a diameter of 0.2 ⁇ m. Since the subsequent processes are the same as those in the second embodiment, the description thereof is omitted.
  • the resistor 55 used in the second embodiment is not necessary.
  • the memory structure 53 and the read structure 53 can share the wiring (bit line 51). As a result, the element configuration of the magnetoresistive memory device can be simplified and miniaturization is facilitated.
  • a structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
  • FIG. 13 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention.
  • 14A and 14B are cross-sectional views showing the configuration of the main part of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention.
  • FIG. 14A shows a low resistance state
  • FIG. 14B shows a high resistance state.
  • the memory array unit 63 of the magnetoresistive memory device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of memory structures 53, and a plurality of memory structures 53.
  • a selection transistor 54, a plurality of write selection transistors 56, a plurality of write word lines 57, a plurality of write bit lines 94, a word line control circuit 61, and a bit line control circuit 62 are provided.
  • the plurality of word lines 50 extend in one direction (X direction).
  • the plurality of bit lines 51 extend in one direction (Y direction).
  • the plurality of readout structures 52 are arranged in an array. Each of the plurality of read structures 52 is disposed on the corresponding bit line 51.
  • the plurality of storage structures 53 are arranged in an array. Each of the plurality of storage structures 53 is arranged in contact with the lower side of the corresponding write bit line 94.
  • the plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52.
  • the plurality of selection transistors 56 are arranged corresponding to the plurality of storage structures 53.
  • the plurality of write word lines 57 extend in one direction (X direction).
  • the plurality of write bit lines 94 extend in one direction (Y direction).
  • One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54.
  • the source of the selection transistor 54 is grounded.
  • the gate of the selection transistor 54 is connected to the corresponding word line 50.
  • One terminal of the memory structure 53 is connected to the write bit line 94, and a terminal provided on the surface opposite to the write bit line 94 is connected to the drain of the write selection transistor 56.
  • the source of the write selection transistor 56 is grounded.
  • the gate of the write selection transistor 56 is connected to the corresponding write word line 57.
  • the word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage. Further, one end of a plurality of write word lines 57 is connected to control selection of each write word line 57 and application of current / voltage.
  • the bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage.
  • the memory cell 60 includes the read structure 52, the storage structure 53, the selection transistor 54, and the write selection transistor 56 described above.
  • the memory array unit 63 has a plurality of memory cells 60 arranged on the array.
  • the storage structure 53 functions as the temperature raising means 11
  • the write bit line 94 functions as the magnetization direction setting means 12.
  • a SiO 2 interlayer insulating film 71 having a thickness of 100 nm is provided on a semiconductor substrate (not shown) on which a transistor including a write selection transistor, wiring, and the like are formed.
  • a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided in the SiO 2 interlayer insulating film 71.
  • a Ta film 85 having a thickness of 20 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70.
  • an antiferromagnetic PtMn film 86 having a thickness of 20 nm, a magnetic CoFe film 87 having a thickness of 3 nm, and a Ta film 88 having a thickness of 50 nm are stacked in this order.
  • the memory structure 53 constituted by the PtMn film 86 and the CoFe film 87 is, for example, a circle having a diameter of 0.2 ⁇ m.
  • an AlCu film 83 as a write bit line 94 is provided on the Ta film 87.
  • another AlCu film 83 as the bit line 51 is provided via the SiO 2 interlayer insulating film 84.
  • a Ru film 75, a pinned CoFe film 74 having a thickness of 3 nm, an antiferromagnetic PtMn film 73 having a thickness of 20 nm, and a Ta film 72 having a thickness of 50 nm are stacked in this order.
  • the shape of the readout structure 52 including the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 is, for example, a circle having a diameter of 0.2 ⁇ m.
  • another tungsten plug 70 (100 nm thick) embedded in another SiO 2 interlayer insulating film 71 (100 nm thick) is provided.
  • a transistor including the selection transistor 54 a semiconductor substrate (not shown) on which wiring and the like are formed is provided in the reverse direction (direction in which the mounting surface of the electronic element is directed in the ⁇ Z direction). It has been.
  • FIG. 14A shows a low resistance state (resistance value: R) in which the magnetization direction of the pinned CoFe film 76 and the magnetization direction of the free layer NiFe film 78 are “parallel”. Can be associated.
  • FIG. 14B shows a high resistance state (resistance value: R + ⁇ R) in which the magnetization direction of the pinned layer CoFe film 76 and the magnetization direction of the free layer NiFe film 78 are “antiparallel”. For example, data “1” Can be associated.
  • the data write operation and read operation are the same as those of the third embodiment, and the description thereof will be omitted.
  • An SiO 2 interlayer insulating film 71 provided with a tungsten plug 70 connected to a lower layer wiring is formed to 100 nm on a semiconductor substrate (not shown) on which a transistor including the write selection transistor 56, wiring, and the like are formed.
  • the Ta film 85 is laminated by 20 nm
  • the antiferromagnetic PtMn film 86 is 20 nm
  • the magnetic CoFe film 87 is 3 nm
  • the Ta film 88 is laminated by 50 nm in this order.
  • the Ta film 88 is processed into a memory structure shape by photolithography and RIE. Then, after removing the resist by ashing, the Ta film 85 is processed from the CoFe film 87 by the milling method using the Ta film 88 as a mask. Thereby, the memory structure 53 is formed. Next, an SiO 2 interlayer insulating film 95 is formed by a 50 nm CVD method so as to cover the entire surface of the substrate, and then flattened by CMP to expose the surface of the Ta film 88. Next, an AlCu film 83 is formed and processed to form a wiring (write bit line 94).
  • an SiO 2 interlayer insulating film 71 having a tungsten plug 70 connected to the lower layer wiring is formed to a thickness of 100 nm on a new semiconductor substrate (not shown) on which a transistor including the selection transistor 54, wiring, and the like are formed.
  • the Ta film 72 is 20 nm
  • the antiferromagnetic PtMn film 73 is 20 nm
  • the pinned layer CoFe film 74 is 3 nm
  • the Ru film 75 is 1 nm
  • the pinned layer CoFe film 76 is 3 nm
  • the tunnel insulating layer MgO film 77 is formed by laminating 1 nm, the free layer NiFe film 78 by 2 nm, and the Ta film 79 by 10 nm in this order by sputtering. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C.
  • the Ta film 79 is processed into a readout structure shape by photolithography and RIE. After removing the resist by ashing, the Ta film 72 is processed from the Ta film 79 by the milling method using the Ta film 79 as a mask. Thereby, the readout structure 52 can be formed.
  • an SiO 2 interlayer insulating film 81 is formed by a 50 nm CVD method so as to cover the entire surface of the substrate, and then flattened by CMP to expose the surface of the Ta film 79.
  • an AlCu film 83 is formed and processed to form a wiring (bit line 51).
  • the free layer shape of the present example is a circle having a diameter of 0.2 ⁇ m.
  • a good chip which is the good magnetoresistive memory device is cut out and pasted together.
  • the alignment between the two may be performed by using an infrared transmission image, or by detecting a position where the output of the readout structure 52 is good and fixing it at that position.
  • Electrical connection is possible by providing bumps on both substrates. If the connection is made at the control portion on the outer periphery of the memory array section 63, the number of terminals can be reduced, and only the power source may be connected.
  • the semiconductor substrate on which the memory structure 53 is formed and the semiconductor substrate on which the reading structure 52 is formed are different semiconductor substrates. Therefore, since each semiconductor substrate has few processes, the yield can be improved. Further, since the selected chips are attached after selecting the good chips, an improvement in the non-defective product rate can be expected.
  • a structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
  • the distance between a portion that requires heating (an antiferromagnetic material of the memory structure) and a portion that is important for the reliability of the element (the nonmagnetic material of the readout structure) is increased. It can be expanded from the conventional several nm to about 100 nm or more. Therefore, reliability deterioration due to heating can be suppressed.
  • the data since data is stored in the memory structure using exchange coupling between the antiferromagnetic material and the magnetic material, the data is stochastically resistant to thermal disturbance compared to the conventional MTJ in which data is stochastically destroyed by thermal disturbance. Data is hard to be destroyed. In addition, multilevel storage is possible.
  • the memory element memory structure
  • the reading element reading structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

A magnetoresistive storage device includes: a first structure (6), a second structure (9), a temperature increase means (11), and a magnetization direction setting means (12).  The first structure (6) is formed by a first magnetic body (1) having a fixed magnetization direction, a first non-magnetic body (2), and a second magnetic body (3) having a magnetization state changed by data which are layered on one another.  The second structure (9) is formed by antiferromagnetic material (7) and a third magnetic body (8) which are layered on each other.  The temperature increase means (11) increases the temperature of the antiferromagnetic material (7) to a desired temperature.  The magnetization direction setting means (12) orients the magnetization direction of the third magnetic body (8) to a desired direction.  The antiferromagnetic material (7) is exchange-coupled to the third magnetic body (8).  The second magnetic body (3) is magnetically coupled to the third magnetic body (8).

Description

磁気抵抗記憶装置Magnetoresistive memory device
 本発明は、磁性体を用いて抵抗値としてデータを記憶する磁気抵抗記憶装置に関する。 The present invention relates to a magnetoresistive storage device that stores data as a resistance value using a magnetic material.
 磁性体を用いて抵抗値を記憶する装置の例として、磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)が知られている。MRAMは、高集積・高速動作の観点から有望な不揮発性メモリである。MRAMでは、TMR(Tunnel MagnetoResistance)効果などの「磁気抵抗効果」を示す磁気抵抗素子が利用される。その磁気抵抗素子には、例えばトンネルバリヤ層が2層の強磁性体層で挟まれた磁気トンネル接合(MTJ;Magnetoresistive Tunnel Junction)が形成される。その2層の強磁性体層は、磁化の向きが固定されたピン層(磁化固定層)と、磁化の向きが反転可能なフリー層(磁化自由層)から構成される(Roy Scheuerlein et al.,“A 10ns Read and Write Non-Volatile Memory Array Using a Magnetic Tunnel Junction and FET Switch in each Cell”,2000 IEEE International Solid-State Circuits Conference,DIGEST OF TECHNICAL PAPERS,pp.128-129.:非特許文献1参照)。 A magnetic random access memory (MRAM: Magnetic Random Access Memory) is known as an example of a device that stores a resistance value using a magnetic material. MRAM is a promising nonvolatile memory from the viewpoint of high integration and high-speed operation. In the MRAM, a magnetoresistive element exhibiting a “magnetoresistance effect” such as a TMR (Tunnel MagnetoResistance) effect is used. In the magnetoresistive element, for example, a magnetic tunnel junction (MTJ; Magnetotunic Tunnel Junction) in which a tunnel barrier layer is sandwiched between two ferromagnetic layers is formed. The two ferromagnetic layers are composed of a pinned layer (magnetization pinned layer) whose magnetization direction is fixed and a free layer (magnetization free layer) whose magnetization direction is reversible (Roy Scheuerlein et al. , “A 10 ns Read and Write Non-Volatile Memory Array Usage a Magnetic Tunnel Junction and FET SwitchinEachNeSNRC”, 2000 IEEE InternalCRS. reference).
 ピン層とフリー層の磁化の向きが“反平行”である場合のMTJの抵抗値(R+ΔR)は、磁気抵抗効果により、それらが“平行”である場合の抵抗値(R)よりも大きくなることが知られている。MRAMは、このMTJを有する磁気抵抗素子をメモリセルとして用い、その抵抗値の変化を利用することによってデータを不揮発的に記憶する。メモリセルに対するデータの書き込みは、フリー層の磁化の向きを反転させることによって行われる。 The resistance value (R + ΔR) of the MTJ when the magnetization directions of the pinned layer and the free layer are “anti-parallel” is larger than the resistance value (R) when they are “parallel” due to the magnetoresistance effect. It is known. The MRAM uses the magnetoresistive element having the MTJ as a memory cell, and stores data in a nonvolatile manner by utilizing the change in the resistance value. Data is written to the memory cell by reversing the magnetization direction of the free layer.
 MRAMに対するデータの書き込み方法として、アステロイド方式が知られている(M.Durlam et al.,“Nonvolatile RAM based on Magnetic Tunnel Junction Elements”,2000 IEEE International Solid-State Circuits Conference,DIGEST OF TECHNICAL PAPERS,pp.130-131.:非特許文献2参照)。アステロイド方式によれば、メモリセルサイズにほぼ反比例して、フリー層の磁化を反転させるために必要な反転磁界が大きくなる。つまり、メモリセルが微細化されるにつれて、書き込み電流が増加する傾向にある。そのような傾向は、メモリセルの微細化やMRAMの大容量化には好ましくない。 The asteroid method is known as a method of writing data to the MRAM (M. Durlam et al., “Nonvolatile RAM based on Magnetic Junction Elements”, 2000 IEEE International International Solid-StateCirC: 130-131 .: see non-patent document 2). According to the asteroid method, the reversal magnetic field necessary for reversing the magnetization of the free layer increases in inverse proportion to the memory cell size. That is, the write current tends to increase as the memory cell is miniaturized. Such a tendency is not preferable for miniaturization of memory cells and increase in capacity of MRAM.
 微細化に伴う書き込み電流の増加を抑制することができる書き込み方式として、「スピン注入方式」が提案されている(Yagami and Suzuki,“Research Trends in Spin Transfer Magnetization Switching”(スピン注入磁化反転の研究動向),日本応用磁気学会誌,Vol.28,No.9,2004,pp.937-948:非特許文献3参照)。スピン注入(spin transfer)方式によれば、強磁性導体にスピン偏極電流(spin-polarized current)が注入され、その電流を担う伝導電子のスピンと導体の磁気モーメントとの間の直接相互作用によって磁化が反転する(以下、「スピン注入磁化反転:Spin Transfer Magnetization Switching」と参照される)。 “Spin injection method” has been proposed as a write method that can suppress an increase in write current due to miniaturization (Yagami and Suzuki, “Research Trends in Spin Transfer Magnetizing Switching” (research trend of spin injection magnetization reversal). ), Journal of Japan Society of Applied Magnetics, Vol. 28, No. 9, 2004, pp. 937-948: Non-patent document 3). According to the spin transfer method, a spin-polarized current is injected into a ferromagnetic conductor, and a direct interaction between the spin of a conduction electron carrying the current and the magnetic moment of the conductor is performed. Magnetization is reversed (hereinafter referred to as “Spin Transfer Magnetization Switching”).
 スピン注入磁化反転について図面を参照して説明する。図1は、スピン注入磁化反転を用いたデータ書き込みを説明する図である。図1において、磁気抵抗素子は、フリー層101、ピン層103、及びフリー層101とピン層103に挟まれた非磁性層であるトンネルバリヤ層102を備えている。ここで、磁化の向きが固定されたピン層103は、フリー層101よりも厚くなるように形成されており、スピン偏極電流を作る機構(スピンフィルター)としての役割を果たす。フリー層101とピン層103の磁化の向きが平行である状態は、データ“0”に対応付けられ、それらが反平行である状態は、データ“1”に対応付けられている。 Spin inversion magnetization reversal will be described with reference to the drawings. FIG. 1 is a diagram for explaining data writing using spin injection magnetization reversal. In FIG. 1, the magnetoresistive element includes a free layer 101, a pinned layer 103, and a tunnel barrier layer 102 that is a nonmagnetic layer sandwiched between the free layer 101 and the pinned layer 103. Here, the pinned layer 103 whose magnetization direction is fixed is formed so as to be thicker than the free layer 101, and plays a role as a mechanism (spin filter) for creating a spin-polarized current. The state where the magnetization directions of the free layer 101 and the pinned layer 103 are parallel is associated with data “0”, and the state where they are antiparallel is associated with data “1”.
 図1に示されるスピン注入磁化反転は、CPP(Current Perpendicular to Plane)方式により実現され、書き込み電流は膜面に垂直に注入される。具体的には、データ“0”からデータ“1”への遷移時、電流はピン層103からフリー層101へ流れる。この場合、スピンフィルターとしてのピン層103と同じスピン状態を有する電子が、フリー層101からピン層103に移動する。そして、スピントランスファー(スピン角運動量の授受)効果により、フリー層101の磁化が反転する。一方、データ“1”からデータ“0”への遷移時、電流の方向は逆転し、電流はフリー層101からピン層103へ流れる。この場合、スピンフィルターとしてのピン層103と同じスピン状態を有する電子が、ピン層103からフリー層101に移動する。スピントランスファー効果により、フリー層101の磁化が反転する。 The spin injection magnetization reversal shown in FIG. 1 is realized by a CPP (Current Perpendicular to Plane) method, and a write current is injected perpendicularly to the film surface. Specifically, current flows from the pinned layer 103 to the free layer 101 at the time of transition from data “0” to data “1”. In this case, electrons having the same spin state as the pinned layer 103 as a spin filter move from the free layer 101 to the pinned layer 103. Then, the magnetization of the free layer 101 is reversed by a spin transfer (spin angular momentum transfer) effect. On the other hand, at the transition from data “1” to data “0”, the direction of the current is reversed, and the current flows from the free layer 101 to the pinned layer 103. In this case, electrons having the same spin state as the pinned layer 103 as a spin filter move from the pinned layer 103 to the free layer 101. Due to the spin transfer effect, the magnetization of the free layer 101 is reversed.
 このように、スピン注入磁化反転では、スピン電子の移動によりデータの書き込みが行われる。膜面に垂直に注入されるスピン偏極電流の方向により、フリー層101の磁化の向きを規定することが可能である。ここで、書き込み(磁化反転)の閾値は電流密度に依存することが知られている。従って、メモリセルサイズが縮小されるにつれ、磁化反転に必要な書き込み電流が減少する。メモリセルの微細化に伴って書き込み電流が減少するため、スピン注入磁化反転は、MRAMの大容量化やメモリセルの微細化の実現にとって重要である。 Thus, in spin injection magnetization reversal, data is written by the movement of spin electrons. The direction of magnetization of the free layer 101 can be defined by the direction of the spin-polarized current injected perpendicular to the film surface. Here, it is known that the threshold for writing (magnetization reversal) depends on the current density. Therefore, as the memory cell size is reduced, the write current required for magnetization reversal decreases. Since the write current decreases with the miniaturization of the memory cell, the spin transfer magnetization reversal is important for realizing the large capacity of the MRAM and the miniaturization of the memory cell.
 関連する技術として特開2005-150303号公報(特許文献1)に磁気抵抗効果素子及び磁気メモリが記載されている。この磁気抵抗効果素子は、第1の強磁性層/トンネル障壁層/第2の強磁性層の3層構造を含む強磁性トンネル接合を有する。第1の強磁性層の保持力は、第2の強磁性層の保磁力より大きい。第2の強磁性層の端部の磁化は、第2の強磁性層の磁化容易軸方向と直交する成分を持つ方向に固着されている。 As a related technique, JP-A-2005-150303 (Patent Document 1) describes a magnetoresistive effect element and a magnetic memory. This magnetoresistive effect element has a ferromagnetic tunnel junction including a three-layer structure of a first ferromagnetic layer / tunnel barrier layer / second ferromagnetic layer. The coercive force of the first ferromagnetic layer is greater than the coercivity of the second ferromagnetic layer. The magnetization of the end portion of the second ferromagnetic layer is fixed in a direction having a component orthogonal to the easy axis direction of the second ferromagnetic layer.
 以上の例は、フリー層の2つの磁化容易方向を用いて2つの情報を記憶する方法である。一方、ピン層と反強磁性体層との間に働く交換バイアス磁界を利用して情報を記憶する方法もある。例えば、特許第2967980号公報(特許文献2)に磁姓メモリが記載されている。図2A及び図2Bは、この磁性メモリの構成を示す断面図である。図2A及び図2Bに示すように、この磁性メモリは、反強磁性体層110、磁性体ピン層111、非磁性体層112、及び磁性体センス層113を積層した構造を有している。この磁性メモリへのデータの書き込みは、反強磁性体層110を加熱して冷却するときに、データに対応した方向の磁場を磁性体ピン層111に印加する。これにより、磁性体ピン層111の磁化方向は、印加した磁場の方向を向く。そのため、磁性体ピン層111と反強磁性体層110との間に働く交換バイアス磁界の向きに対応して、反強磁性体層110の磁化状態が変化して、磁性メモリにデータが記憶される。ただし、図2Aは高抵抗状態を示し、図2Bは低抵抗状態を示している。 The above example is a method of storing two pieces of information using two easy magnetization directions of the free layer. On the other hand, there is also a method for storing information by using an exchange bias magnetic field acting between the pinned layer and the antiferromagnetic material layer. For example, Japanese Patent No. 2967980 (Patent Document 2) describes a magnetic surname memory. 2A and 2B are cross-sectional views showing the configuration of this magnetic memory. As shown in FIGS. 2A and 2B, this magnetic memory has a structure in which an antiferromagnetic layer 110, a magnetic pinned layer 111, a nonmagnetic layer 112, and a magnetic sense layer 113 are stacked. In writing data to the magnetic memory, when the antiferromagnetic layer 110 is heated and cooled, a magnetic field in a direction corresponding to the data is applied to the magnetic pinned layer 111. Thereby, the magnetization direction of the magnetic pinned layer 111 faces the direction of the applied magnetic field. For this reason, the magnetization state of the antiferromagnetic layer 110 changes corresponding to the direction of the exchange bias magnetic field acting between the magnetic pinned layer 111 and the antiferromagnetic layer 110, and data is stored in the magnetic memory. The However, FIG. 2A shows a high resistance state, and FIG. 2B shows a low resistance state.
 関連する技術として、特開2002-117510号公報(特許文献3)にフリー層を偏向させる硬質磁性体を使用したTMRセンサを設ける方法及びシステムが記載されている。この磁気抵抗センサは、記録媒体からデータを読み取り、フリー層と、ピン層と、バリア層と、硬質磁性層とを備える。フリー層は、強磁性を有し、第1の側とこれと反対側の第2の側とを有する。ピン層は、磁化の方向を有し強磁性である。このピン層の磁化の方向は特定の方向に固定されている。このピン層は前記フリー層の第1の側にある。バリア層は前記第1の側のフリー層と前記ピン層とを分離する。このバリア層は前記ピン層と前記フリー層との間の荷電粒子のトンネルを許容するに足りる薄さを備えた絶縁層である。硬質磁性層は、前記フリー層の第2の側にある。この硬質磁性層は前記フリー層を磁気的に偏向させる。 As a related technique, Japanese Patent Laid-Open No. 2002-117510 (Patent Document 3) describes a method and system for providing a TMR sensor using a hard magnetic material that deflects a free layer. This magnetoresistive sensor reads data from a recording medium, and includes a free layer, a pin layer, a barrier layer, and a hard magnetic layer. The free layer has ferromagnetism and has a first side and a second side opposite to the first side. The pinned layer has a magnetization direction and is ferromagnetic. The direction of magnetization of the pinned layer is fixed in a specific direction. This pinned layer is on the first side of the free layer. The barrier layer separates the first-side free layer and the pinned layer. This barrier layer is an insulating layer having a thickness sufficient to allow a tunnel of charged particles between the pinned layer and the free layer. The hard magnetic layer is on the second side of the free layer. This hard magnetic layer magnetically deflects the free layer.
 関連する技術として、特開2003-124541号公報(特許文献4)に交換結合膜、磁気抵抗効果素子、磁気ヘッド及び磁気ランダムアクセスメモリが開示されている。この交換結合膜は、反強磁性体層と、交換結合付与層と、交換結合エンハンス層と、を有する。反強磁性体層は、不規則合金からなる。交換結合付与層は、Co又は面心立方晶構造のCoFe合金の強磁性体からなり前記反強磁性体層に接し前記反強磁性体層との界面において交換結合を与える。交換結合エンハンス層は、この交換結合付与層における前記反強磁性体層の反対側の面に配置されFe又は体心立方晶構造のCoFe合金の強磁性体からなり前記交換結合付与層により与えられた交換結合を増幅する。 As a related technique, Japanese Unexamined Patent Application Publication No. 2003-124541 (Patent Document 4) discloses an exchange coupling film, a magnetoresistive effect element, a magnetic head, and a magnetic random access memory. This exchange coupling film includes an antiferromagnetic material layer, an exchange coupling imparting layer, and an exchange coupling enhancement layer. The antiferromagnetic material layer is made of a disordered alloy. The exchange coupling imparting layer is made of a ferromagnetic material of Co or a CoFe alloy having a face-centered cubic crystal structure and is in contact with the antiferromagnetic material layer to provide exchange coupling at the interface with the antiferromagnetic material layer. The exchange coupling enhancement layer is disposed on the surface opposite to the antiferromagnetic layer in the exchange coupling imparting layer and is made of a ferromagnetic material of Fe or a body-centered cubic CoFe alloy and is provided by the exchange coupling imparting layer. Amplify exchange bonds.
 関連する技術として、特開2005-116658号公報(特許文献5)に磁気抵抗メモリ装置が開示されている。この磁気抵抗メモリ装置は、複数のワード線及びビット線と、複数の磁気抵抗メモリ素子とを配置している。複数のワード線及びビット線は、半導体基板上に、非接触で交差してマトリックスを構成する。複数の磁気抵抗メモリ素子は、前記複数のビット線とワード線の各交差部付近に配置され磁化方向が可変なフリー層と磁化方向が固定された磁化固定層とを絶縁層を介して積層している。磁気抵抗メモリ装置は、前記ビット線とワード線に流す磁化電流により選択される交差部の磁気抵抗メモリ素子に磁化情報を書込み、トンネル効果により前記磁気抵抗メモリ素子を流れる電流の抵抗変化を検出して磁化情報を読出す。前記複数のビット線とワード線の各交差部から外れた位置に前記複数の磁気抵抗メモリ素子を配置し、各交差部のビット線とワード線の間に、各磁気抵抗メモリ素子のフリー層磁性体のみを延在させたフリー層延在部を非接触で配置させる。 As a related technique, a magnetoresistive memory device is disclosed in Japanese Patent Laid-Open No. 2005-116658 (Patent Document 5). In this magnetoresistive memory device, a plurality of word lines and bit lines and a plurality of magnetoresistive memory elements are arranged. The plurality of word lines and bit lines intersect on the semiconductor substrate in a non-contact manner to form a matrix. A plurality of magnetoresistive memory elements are formed by laminating a free layer having a variable magnetization direction and a magnetization fixed layer having a fixed magnetization direction interposed between the plurality of bit lines and the word lines and intersecting each other through an insulating layer. ing. The magnetoresistive memory device writes magnetization information to a magnetoresistive memory element at an intersection selected by a magnetizing current flowing through the bit line and the word line, and detects a resistance change of the current flowing through the magnetoresistive memory element by a tunnel effect. To read the magnetization information. The plurality of magnetoresistive memory elements are arranged at positions deviated from the intersections of the plurality of bit lines and word lines, and the free layer magnetism of each magnetoresistive memory element is disposed between the bit lines and the word lines at each intersection. The free layer extension part which extended only the body is arrange | positioned non-contactingly.
 関連する技術として、特開2007-220945号公報(特許文献6)に、磁気抵抗効果素子,磁気ヘッド,磁気再生装置,および磁気抵抗素子の製造方法が開示されている。この磁気抵抗効果素子は、磁気抵抗効果膜と,磁気結合層と,強磁性層と,反強磁性層と,バイアス機構部と,一対の電極とを具備する。磁気抵抗効果膜は、外部磁界に応じて磁化の方向が変化する磁性体膜を有する磁化自由層と,磁化の方向が実質的に一方に固着される磁性体膜を有する磁化固着層と,前記磁化自由層と前記磁化固着層の間に配置される中間層と,を有する。磁気結合層は、前記磁気抵抗効果膜の前記磁化固着層上に配置される。強磁性層は、前記磁気結合層上に配置される。反強磁性層は、前記強磁性層上に配置される。バイアス機構部は、前記磁化自由層に対して,前記磁気抵抗効果膜の膜面に略平行かつ前記磁化固着層の磁化方向に略垂直な方向のバイアス磁界を加える。一対の電極は、前記磁気抵抗効果膜に,前記磁化固着層から前記磁化自由層に向かう方向の電流を通電する。バイアスポイントが50%より大きい。 As a related technique, Japanese Patent Application Laid-Open No. 2007-220945 (Patent Document 6) discloses a magnetoresistive effect element, a magnetic head, a magnetic reproducing device, and a method of manufacturing a magnetoresistive element. The magnetoresistive effect element includes a magnetoresistive effect film, a magnetic coupling layer, a ferromagnetic layer, an antiferromagnetic layer, a bias mechanism part, and a pair of electrodes. The magnetoresistive film includes a magnetization free layer having a magnetic film whose magnetization direction changes according to an external magnetic field, a magnetization fixed layer having a magnetic film whose magnetization direction is substantially fixed to one side, An intermediate layer disposed between the magnetization free layer and the magnetization pinned layer. The magnetic coupling layer is disposed on the magnetization pinned layer of the magnetoresistive effect film. The ferromagnetic layer is disposed on the magnetic coupling layer. The antiferromagnetic layer is disposed on the ferromagnetic layer. The bias mechanism unit applies a bias magnetic field to the magnetization free layer in a direction substantially parallel to the film surface of the magnetoresistive film and substantially perpendicular to the magnetization direction of the magnetization pinned layer. The pair of electrodes energize the magnetoresistive film with a current in a direction from the magnetization fixed layer to the magnetization free layer. Bias point is greater than 50%.
特開2005-150303号公報JP 2005-150303 A 特許第2967980号公報Japanese Patent No. 2967980 特開2002-117510号公報JP 2002-117510 A 特開2003-124541号公報JP 2003-124541 A 特開2005-116658号公報JP-A-2005-116658 特開2007-220945号公報JP 2007-220945 A
 発明者の研究から、書き込み電流の大きさとデータ記憶の熱擾乱耐性との間に相関があることが明らかになった。すなわち、低電流でデータを書き込めるほど熱擾乱によるデータ破壊が起き易く、低電流化しても信頼性を確保することが困難であることが判明した。また、交換バイアス磁界を用いた磁気抵抗素子の場合では、磁性体ピン層と接する反強磁性体層を加熱する必要があり、磁性体ピン層のもう一方の面と接するトンネル絶縁膜(非磁性体層)も加熱されることになる。このときトンネル絶縁膜と周辺材料との間の材料拡散やトンネル絶縁膜そのものの変質により素子特性が変動し、素子寿命や信頼性の確保が難しいという問題が明らかになった。熱擾乱耐性が高く、信頼性の高い磁気抵抗記憶装置が望まれる。また、フリー層の磁化容易方向を用いた磁気抵抗素子では、一般的に2つしか磁化容易方向がない。また、発明者の研究から、磁化容易方向を多方向にすると制御が著しく困難になることが判明した。すなわち、一つの磁気抵抗素子において、多値の記憶は困難である。多値記憶が可能な磁気抵抗記憶装置が求められる。 The inventors' research has revealed that there is a correlation between the magnitude of the write current and the thermal disturbance tolerance of data storage. That is, it has been found that the more data can be written at a lower current, the more likely data destruction occurs due to thermal disturbance, and it is difficult to ensure reliability even when the current is reduced. In the case of a magnetoresistive element using an exchange bias magnetic field, it is necessary to heat an antiferromagnetic layer in contact with the magnetic pinned layer, and a tunnel insulating film (nonmagnetic) in contact with the other surface of the magnetic pinned layer. The body layer) is also heated. At this time, the element characteristics fluctuated due to material diffusion between the tunnel insulating film and the peripheral material and alteration of the tunnel insulating film itself, and it became clear that it was difficult to ensure the element life and reliability. A highly reliable magnetoresistive memory device having high thermal disturbance resistance is desired. In general, a magnetoresistive element using the easy magnetization direction of the free layer has only two easy magnetization directions. Further, the inventors' research has revealed that control becomes extremely difficult when the easy magnetization direction is set to multiple directions. That is, it is difficult to store multiple values in one magnetoresistive element. A magnetoresistive storage device capable of multi-value storage is required.
 本発明の目的は、熱擾乱耐性が高く信頼性の高い磁気抵抗記憶装置を提供することにある。 An object of the present invention is to provide a magnetoresistive memory device having high thermal disturbance resistance and high reliability.
 本発明の磁気抵抗記憶装置は、第1の構造体と、第2の構造体と、昇温手段と、磁化方向設定手段とを具備する。第1の構造体は、磁化方向を固定した第1の磁性体と第1の非磁性体とデータにより磁化状態が変化する第2の磁性体とを積層している。第2の構造体は、反強磁性体と第3の磁性体とを積層している。昇温手段は、反強磁性体を所望の温度に昇温する。磁化方向設定手段は、第3の磁性体の磁化方向を所望の方向に向ける。反強磁性体と第3の磁性体とが交換結合する。第2の磁性体と第3の磁性体とが磁気的に結合する。 The magnetoresistive storage device of the present invention includes a first structure, a second structure, a temperature raising means, and a magnetization direction setting means. The first structure is formed by laminating a first magnetic body whose magnetization direction is fixed, a first nonmagnetic body, and a second magnetic body whose magnetization state changes according to data. The second structure is formed by laminating an antiferromagnetic material and a third magnetic material. The temperature raising means raises the temperature of the antiferromagnetic material to a desired temperature. The magnetization direction setting means directs the magnetization direction of the third magnetic body in a desired direction. The antiferromagnetic material and the third magnetic material are exchange coupled. The second magnetic body and the third magnetic body are magnetically coupled.
 本発明の磁気抵抗記憶装置の書き込み方法は、上記の磁気抵抗記憶装置を準備することと、昇温手段により反強磁性体を所望の温度に昇温し、磁化方向設定手段により第3の磁性体の磁化方向を書き込むデータに対応した方向に設定することと、昇温手段及び磁化方向設定手段を停止して反強磁性体を降温し、第3の磁性体の磁化方向を固定することを具備する。 The magnetoresistive memory device writing method of the present invention comprises preparing the above magnetoresistive memory device, raising the temperature of the antiferromagnetic material to a desired temperature by the temperature raising means, and applying the third magnetic property by the magnetization direction setting means. Setting the magnetization direction of the body to a direction corresponding to the data to be written, and stopping the temperature raising means and the magnetization direction setting means to lower the temperature of the antiferromagnetic material and fixing the magnetization direction of the third magnetic material. It has.
 本発明により、熱擾乱耐性が高く、多値記憶が可能であり、信頼性の高い磁気抵抗記憶装置を提供することができる。 According to the present invention, it is possible to provide a highly reliable magnetoresistive memory device that is highly resistant to thermal disturbance and capable of multi-value storage.
図1は、関連技術でのスピン注入磁化反転を用いたデータ書き込みを説明する図である。FIG. 1 is a diagram for explaining data writing using spin injection magnetization reversal in the related art. 図2Aは、関連技術での磁性メモリの構成を示す断面図である。FIG. 2A is a cross-sectional view showing a configuration of a magnetic memory in the related art. 図2Bは、関連技術での磁性メモリの構成を示す断面図である。FIG. 2B is a cross-sectional view showing a configuration of a magnetic memory in the related art. 図3Aは、本発明の実施の形態に係る磁気抵抗記憶装置における磁気抵抗記憶素子の主要部の構成を示す概略断面図である。FIG. 3A is a schematic cross-sectional view showing the configuration of the main part of the magnetoresistive memory element in the magnetoresistive memory device according to the embodiment of the present invention. 図3Bは、本発明の実施の形態に係る磁気抵抗記憶装置における磁気抵抗記憶素子の主要部の構成を示す概略断面図である。FIG. 3B is a schematic cross-sectional view showing a configuration of a main part of the magnetoresistive memory element in the magnetoresistive memory device according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る第一の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。FIG. 4 is a circuit diagram showing the configuration of the memory array portion of the magnetoresistive memory device as a first example according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る第一の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。FIG. 5 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a first example according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る第一の実施例として磁気抵抗記憶装置の主要部の構成を示す上面図である。FIG. 6 is a top view showing a configuration of a main part of the magnetoresistive memory device as a first example according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る第二の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。FIG. 7 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a second example according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る第二の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。FIG. 8 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る第二の実施例として磁気抵抗記憶装置の主要部の構成を示す上面図である。FIG. 9 is a top view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention. 図10は、本発明の実施の形態に係る第三の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。FIG. 10 is a circuit diagram showing a configuration of a memory array section of a magnetoresistive storage device as a third example according to the embodiment of the present invention. 図11Aは、本発明の実施の形態に係る第三の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。FIG. 11A is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention. 図11Bは、本発明の実施の形態に係る第三の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。FIG. 11B is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention. 図12は、本発明の実施の形態に係る第三の実施例として磁気抵抗記憶装置の主要部の構成を示す上面図である。FIG. 12 is a top view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention. 図13は、本発明の実施の形態に係る第四の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。FIG. 13 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention. 図14Aは、本発明の実施の形態に係る第四の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。FIG. 14A is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention. 図14Bは、本発明の実施の形態に係る第四の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。FIG. 14B is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention.
 以下、本発明の磁気抵抗記憶装置の実施の形態に関して、添付図面を参照して説明する。図3A及び図3Bは、本発明の実施の形態に係る磁気抵抗記憶装置における磁気抵抗記憶素子の主要部の構成を示す概略断面図である。 Hereinafter, embodiments of the magnetoresistive storage device of the present invention will be described with reference to the accompanying drawings. 3A and 3B are schematic cross-sectional views showing the configuration of the main part of the magnetoresistive memory element in the magnetoresistive memory device according to the embodiment of the present invention.
(構成の説明)
 磁気抵抗記憶装置は、複数の磁気抵抗記憶素子を有している。図3A及び図3Bでは、一つの磁気抵抗記憶素子のみ示している。各磁気抵抗記憶素子は、読み出し構造体6と、記憶構造体9と、昇温手段11と、磁化方向設定手段12とを具備する。読み出し構造体6は、第1の磁性体1と、第1の非磁性体2と、第2の磁性体3と、第1の端子4と、第2の端子5とを有する。第1の磁性体1は、磁化方向を固定されている。第1の非磁性体2は、第1の磁性体1と第2の磁性体3との間に設けられている。第2の磁性体3は、データにより磁化状態が変化する。第1の磁性体1と第1の非磁性体2と第2の磁性体3とは、MTJを構成している。第1の端子4は、第1の磁性体1に電気的に接続されている。第2の端子5は、第2の磁性体3に電気的に接続されている。記憶構造体9は、反強磁性体7と、第3の磁性体8とを有する。第3の磁性体8は、反強磁性体7と交換バイアス磁界で結合している。昇温手段11は、反強磁性体7を第1の温度10に加熱する。磁化方向設定手段12は、第3の磁性体8の磁化方向を所望の方向に設定する。
(Description of configuration)
The magnetoresistive memory device has a plurality of magnetoresistive memory elements. 3A and 3B show only one magnetoresistive memory element. Each magnetoresistive memory element includes a read structure 6, a memory structure 9, a temperature raising means 11, and a magnetization direction setting means 12. The readout structure 6 includes a first magnetic body 1, a first nonmagnetic body 2, a second magnetic body 3, a first terminal 4, and a second terminal 5. The first magnetic body 1 has a fixed magnetization direction. The first nonmagnetic body 2 is provided between the first magnetic body 1 and the second magnetic body 3. The magnetization state of the second magnetic body 3 changes according to data. The first magnetic body 1, the first non-magnetic body 2, and the second magnetic body 3 constitute an MTJ. The first terminal 4 is electrically connected to the first magnetic body 1. The second terminal 5 is electrically connected to the second magnetic body 3. The memory structure 9 includes an antiferromagnetic material 7 and a third magnetic material 8. The third magnetic body 8 is coupled to the antiferromagnetic body 7 by an exchange bias magnetic field. The temperature raising means 11 heats the antiferromagnetic material 7 to the first temperature 10. The magnetization direction setting means 12 sets the magnetization direction of the third magnetic body 8 to a desired direction.
 第2の磁性体3と第3の磁性体8とは静磁界を介して磁気的に結合している。昇温手段11による加熱時の第1の温度10は、第3の磁性体8に、第3の磁性体8の当初の磁化方向と異なる方向の磁界がかかっているとき、その磁界により第3の磁性体8の磁化方向と反強磁性体7の磁化状態が変化する温度である。この変化による変化量としては、できるだけ高いことが好ましいが、少なくとも判別可能な範囲として50%を超える量であることが好ましい。より好ましくは100%である。第1の磁性体1と第2の磁性体3との磁化方向は2つの平行する面内にある。第3の磁性体8の磁化方向は、同様の平行する面内であってもよいし、他の異なる面内であってもよい。 The second magnetic body 3 and the third magnetic body 8 are magnetically coupled via a static magnetic field. The first temperature 10 at the time of heating by the temperature raising means 11 is such that when the magnetic field in a direction different from the initial magnetization direction of the third magnetic body 8 is applied to the third magnetic body 8, The temperature at which the magnetization direction of the magnetic body 8 and the magnetization state of the antiferromagnetic body 7 change. The amount of change due to this change is preferably as high as possible, but is preferably an amount that exceeds 50% as a discriminable range. More preferably, it is 100%. The magnetization directions of the first magnetic body 1 and the second magnetic body 3 are in two parallel planes. The magnetization direction of the third magnetic body 8 may be in the same parallel plane or in another different plane.
 なお、昇温手段11は、図に示されるように磁気抵抗記憶素子毎に設けられていても良いし、複数の磁気抵抗記憶素子毎や磁気抵抗記憶装置全体に一つ設けられていても良い。同様に、磁化方向設定手段12は、図に示されるように磁気抵抗記憶素子毎に設けられていても良いし、複数の磁気抵抗記憶素子毎や磁気抵抗記憶装置全体に一つ設けられていても良い。更に、昇温手段11と磁化方向設定手段12とは一体であっても良い。 The temperature raising means 11 may be provided for each magnetoresistive memory element as shown in the figure, or may be provided for each of a plurality of magnetoresistive memory elements or for the entire magnetoresistive memory device. . Similarly, the magnetization direction setting means 12 may be provided for each magnetoresistive memory element as shown in the figure, or one for each of the plurality of magnetoresistive memory elements or the entire magnetoresistive memory device. Also good. Furthermore, the temperature raising means 11 and the magnetization direction setting means 12 may be integrated.
 (書き込み動作)
 次に、本実施の形態に係る磁気抵抗記憶装置の書き込み動作について説明する。書き込み動作は、昇温手段11による反強磁性体7の第1の温度10への加熱と、磁化方向設定手段12による第3の磁性体8の磁化方向設定とを実施することで行う。
(Write operation)
Next, the write operation of the magnetoresistive memory device according to this embodiment will be described. The writing operation is performed by heating the antiferromagnetic body 7 to the first temperature 10 by the temperature raising means 11 and setting the magnetization direction of the third magnetic body 8 by the magnetization direction setting means 12.
 すなわち、まず、(1)昇温手段11により反強磁性体7を第1の温度10に加熱するとともに、磁化方向設定手段12により第3の磁性体8へ書き込まれるデータに対応した磁界を発生させる。このとき、昇温手段11及び磁化方向設定手段12の開始は、どちらかが先でも同時でもよい。これにより、第3の磁性体8の磁化方向が、書き込まれるデータに対応した方向に変化する。このとき、反強磁性体7は、第1の温度10になっているので、第3の磁性体8の磁化状態に従って反強磁性体7の磁化状態が変化する。すなわち、第3の磁性体8の磁化方向が書き込まれるデータに対応した方向に設定されることで、反強磁性体7の磁化状態もこれを支持する状態、すなわち書き込まれるデータに対応した状態になる。なお、加熱する温度としては、反強磁性体(例えばPtMn)のブロッキング温度が250℃程度であり、また、装置として150℃程度で使用できるようにすることを考えると、間の200℃以上であることが望ましい。ブロッキング温度より低くても良いのは、反強磁性体ではグレイン単位で確率的に磁化変化が起き(エネルギーバリアの小さいグレインから磁化変化が起き)、全てのグレインが変化しなくても、ある程度のグレインが変化すれば問題ないからである。また、温度の上限は、MTJのトンネル膜(第1の非磁性体2)の特性劣化を抑える制限から400℃程度である。 That is, first, (1) the antiferromagnet 7 is heated to the first temperature 10 by the temperature raising means 11 and a magnetic field corresponding to the data written to the third magnetic body 8 is generated by the magnetization direction setting means 12. Let At this time, either the temperature raising means 11 or the magnetization direction setting means 12 may be started earlier or at the same time. As a result, the magnetization direction of the third magnetic body 8 changes to a direction corresponding to the data to be written. At this time, since the antiferromagnetic body 7 is at the first temperature 10, the magnetization state of the antiferromagnetic body 7 changes according to the magnetization state of the third magnetic body 8. That is, by setting the magnetization direction of the third magnetic body 8 to a direction corresponding to the data to be written, the magnetization state of the antiferromagnetic body 7 is also supported, that is, a state corresponding to the data to be written. Become. As for the heating temperature, the blocking temperature of the antiferromagnetic material (for example, PtMn) is about 250 ° C., and considering that the device can be used at about 150 ° C., the heating temperature is between 200 ° C. and above. It is desirable to be. The reason why the temperature may be lower than the blocking temperature is that, in antiferromagnetic materials, a magnetization change occurs in units of grains (magnetization change occurs from grains with a small energy barrier), and even if all the grains do not change, some degree This is because there is no problem if the grain changes. The upper limit of the temperature is about 400 ° C. due to the limitation of suppressing the deterioration of characteristics of the MTJ tunnel film (first nonmagnetic material 2).
 その後、(2)昇温手段11及び磁化方向設定手段12を停止する。このとき、先に昇温手段11を停止し、その後に磁化方向設定手段12を停止するという順番が望ましい。反強磁性体7の温度がある程度高い状態で磁化方向設定手段12を先に停止すると、第3の磁性体8の磁化状態が熱擾乱で乱れ、反強磁性体7の状態も乱れてしまうことが予想されるからである。昇温手段11の停止により、反強磁性体7及び第3の磁性体8は冷却される。冷却後は、反強磁性体7の磁化状態は変化しないため、第3の磁性体8の磁化方向は磁化方向設定手段12による設定のまま固定される。このように第3の磁性体8の磁化方向を所望の方向に固定することでデータの書き込みを行う。すなわち、記憶構造体9にデータが書き込まれる。第3の磁性体8の磁化方向は、磁化方向設定手段12が対応していれば向くことが可能なあらゆる方向が可能である。 Thereafter, (2) the temperature raising means 11 and the magnetization direction setting means 12 are stopped. At this time, the order of stopping the temperature raising means 11 first and then stopping the magnetization direction setting means 12 is desirable. If the magnetization direction setting means 12 is stopped first when the temperature of the antiferromagnetic body 7 is high to some extent, the magnetization state of the third magnetic body 8 is disturbed by thermal disturbance, and the state of the antiferromagnetic body 7 is also disturbed. This is because it is expected. By stopping the temperature raising means 11, the antiferromagnetic material 7 and the third magnetic material 8 are cooled. After cooling, since the magnetization state of the antiferromagnetic material 7 does not change, the magnetization direction of the third magnetic material 8 is fixed as set by the magnetization direction setting means 12. In this way, data is written by fixing the magnetization direction of the third magnetic body 8 in a desired direction. That is, data is written to the storage structure 9. The magnetization direction of the third magnetic body 8 can be any direction that can be directed as long as the magnetization direction setting means 12 corresponds.
 ここで、第3の磁性体8は第2の磁性体3と静磁場を介して結合している。そのため、第3の磁性体8の磁化方向がデータ書き込みに対応して変化した場合、それに応答して、第2の磁性体3の磁化方向も書き込まれたデータに対応する方向に変化する。すなわち、読み出し構造体6にもデータが書き込まれことになる。 Here, the third magnetic body 8 is coupled to the second magnetic body 3 via a static magnetic field. Therefore, when the magnetization direction of the third magnetic body 8 changes corresponding to the data writing, the magnetization direction of the second magnetic body 3 also changes in a direction corresponding to the written data. That is, data is also written into the read structure 6.
 図3Aは、第1の磁性体1の磁化方向と第2の磁性体3の磁化方向とが“平行”な状態である低抵抗状態(抵抗値:R)を示し、例えばデータ“0”に対応付けることができる。一方、図3Bは、第1の磁性体1の磁化方向と第2の磁性体3の磁化方向とが“反平行”な状態である高抵抗状態(抵抗値:R+ΔR)を示し、例えばデータ“1”に対応付けることができる。この他、既述のように第3の磁性体8の磁化方向はあらゆる方向が可能なので、第3の磁性体8と磁気的に結合している第2の磁性体3の磁化方向も同様にあらゆる方向が可能となる。それにより、第2の磁性体3の磁化方向を、図3Aの“平行”な状態と図3Bの“反平行”な状態との間の中間的な状態にすることも可能となる。その中間的な状態(複数可)を用いることで、データ“0”や“1”だけでなく、その他のデータを記憶することができる。すなわち、複数の方向に対して複数のデータを対応させることで、多値記憶を行わせることが可能となる。 FIG. 3A shows a low resistance state (resistance value: R) in which the magnetization direction of the first magnetic body 1 and the magnetization direction of the second magnetic body 3 are “parallel”. Can be associated. On the other hand, FIG. 3B shows a high resistance state (resistance value: R + ΔR) in which the magnetization direction of the first magnetic body 1 and the magnetization direction of the second magnetic body 3 are “anti-parallel”. 1 ". In addition, since the magnetization direction of the third magnetic body 8 can be any direction as described above, the magnetization direction of the second magnetic body 3 that is magnetically coupled to the third magnetic body 8 is also the same. All directions are possible. Accordingly, the magnetization direction of the second magnetic body 3 can be set to an intermediate state between the “parallel” state in FIG. 3A and the “antiparallel” state in FIG. 3B. By using the intermediate state (s), not only data “0” and “1” but also other data can be stored. That is, multivalue storage can be performed by associating a plurality of data with a plurality of directions.
(読み出し動作)
 次に、本実施の形態に係る磁気抵抗記憶装置の読み出し動作について説明する。読み出し動作は、読み出し構造体6の第1の端子4と第2の端子5との間の抵抗値を評価することで、書き込まれていたデータを判断する。
(Read operation)
Next, the read operation of the magnetoresistive memory device according to this embodiment will be described. In the read operation, the written data is determined by evaluating the resistance value between the first terminal 4 and the second terminal 5 of the read structure 6.
 抵抗値は、第1の磁性体1と第2の磁性体3との磁化方向の相違(例示:角度)により決定される。第1の磁性体1の磁化方向と第2の磁性体3の磁化方向とが“平行”な状態(角度0度)ならば、低抵抗状態(抵抗値:R)となる。一方、“反平行”な状態(角度180度)ならば、高抵抗状態(抵抗値:R+ΔR)となる。その中間の状態ならば、中間の抵抗状態(抵抗値:R+Δr、0<Δr<ΔR)となる。具体的には、第1の磁性体1の磁化方向は固定されているため、第2の磁性体3の磁化方向により決定される。既述のように、第2の磁性体3の磁化方向は書き込まれたデータに対応する方向のため、抵抗値は書き込まれたデータにより決定されることになる。 The resistance value is determined by the difference in magnetization direction (eg, angle) between the first magnetic body 1 and the second magnetic body 3. If the magnetization direction of the first magnetic body 1 and the magnetization direction of the second magnetic body 3 are in a “parallel” state (angle 0 degree), a low resistance state (resistance value: R) is obtained. On the other hand, if it is in an “antiparallel” state (angle 180 degrees), it becomes a high resistance state (resistance value: R + ΔR). In the intermediate state, an intermediate resistance state (resistance value: R + Δr, 0 <Δr <ΔR) is obtained. Specifically, since the magnetization direction of the first magnetic body 1 is fixed, it is determined by the magnetization direction of the second magnetic body 3. As described above, since the magnetization direction of the second magnetic body 3 is a direction corresponding to the written data, the resistance value is determined by the written data.
 読み出し方法の具体的な例としては、まず、(1)第1の端子4と第2の端子5との間に定電圧又は定電流を印加する。そして、(2)第1の端子4と第2の端子5との間に流れる電流や電流を流して発生する電圧を、基準値と比較して、磁気抵抗記憶素子(読み出し構造体6)の抵抗状態を判別する。その抵抗状態の判別により、データを読み出すことができる。 As a specific example of the reading method, first, (1) a constant voltage or a constant current is applied between the first terminal 4 and the second terminal 5. (2) The current generated between the first terminal 4 and the second terminal 5 and the voltage generated by passing the current are compared with the reference value, and the magnetoresistive memory element (reading structure 6) Determine the resistance state. Data can be read out by determining the resistance state.
 本実施の形態によれば、書き込み動作において加熱されるのは記憶構造体9の反強磁性体7である。反強磁性体7に接する第3の磁性体8も同程度まで加熱される。しかし、読み出し構造体6はこれらと離れて(層間絶縁膜が介在している)配置されているため、その温度の上昇が小さい。このため、図2A及び図2Bに記載の関連技術の構造に比べて第1の非磁性体2(トンネル絶縁膜)の温度上昇を小さくすることができる。それにより、熱拡散によるトンネル絶縁膜と周辺材料との材料拡散や変質を大幅に抑制することができる。その結果、素子特性の変動による信頼性劣化を抑制することができる。 According to the present embodiment, it is the antiferromagnetic material 7 of the memory structure 9 that is heated in the write operation. The third magnetic body 8 in contact with the antiferromagnetic body 7 is also heated to the same extent. However, since the readout structure 6 is arranged away from these (interlayer insulating film is interposed), the temperature rise is small. For this reason, the temperature rise of the 1st nonmagnetic body 2 (tunnel insulating film) can be made small compared with the structure of the related art described in FIG. 2A and FIG. 2B. Thereby, material diffusion and alteration between the tunnel insulating film and the peripheral material due to thermal diffusion can be significantly suppressed. As a result, it is possible to suppress deterioration in reliability due to variations in element characteristics.
 図3A及び図3Bにおいて、読み出し構造体6と記憶構造体9との位置関係は重なっている。すなわち、第2の磁性体3の面を第3の磁性体8の面へ半導体基板面に垂直に投射した場合、第2の磁性体3の面の射影は第3の磁性体8の面と重なっている。ただし、第3の磁性体8が第2の磁性体3と静磁場を介して結合していれば、読み出し構造体6と記憶構造体9との位置関係は重なっていても全く重ならなくてもよい。ここで、反強磁性体7と第1の非磁性体2との距離は、従来(図2A及び図2B)は数nm程度であったが、少なくともこれより広く、たとえば100nm離すことが望ましい。 3A and 3B, the positional relationship between the readout structure 6 and the storage structure 9 overlaps. That is, when the surface of the second magnetic body 3 is projected perpendicularly to the surface of the semiconductor substrate onto the surface of the third magnetic body 8, the projection of the surface of the second magnetic body 3 is the same as the surface of the third magnetic body 8. overlapping. However, if the third magnetic body 8 is coupled to the second magnetic body 3 through a static magnetic field, the positional relationship between the readout structure 6 and the storage structure 9 does not overlap at all. Also good. Here, the distance between the antiferromagnetic material 7 and the first non-magnetic material 2 has been about several nanometers in the past (FIGS. 2A and 2B), but is preferably at least wider, for example, 100 nm apart.
 それぞれの磁性体は単層でも良く、また複数の磁性体を積層した構成でも良く、更に、非磁性体を介して複数の磁性体を磁気的に結合させて積層した構成でも良い。また、第1の磁性体1の磁化固定方法は、例えば、第1の磁性体1と反強磁性結合する反強磁性体との積層構造を用いる方法や、一方向に長く大きな形状異方性を持たせる方法で行う。第2の磁性体3及び第3の磁性体8は、それぞれ第3の磁性体8との静磁結合及び磁化方向設定手段12により容易に磁化方向が変化することが望ましい。このため、面内方向に磁化が向きやすい磁性体を用いる場合、その形状としては形状異方性がつかない円形がもっとも望ましい。円形の場合、あらゆる方向に磁化方向を向かせやすいので、多値記憶にも優れている。また、磁性体には結晶磁気異方性も存在するため、これを相殺するような形状異方性を設けるため、その形状としては楕円形にする方が望ましい場合もある。面に垂直な方向に磁化が向きやすい磁性体を用いる場合、薄膜化するなどの方法で磁化方向を変化し易くする。またどちらも、磁性体材料や膜構成によって、実現することも可能である。以下、本発明の実施の形態に係る磁気抵抗記憶装置の実施例について説明する。 Each magnetic body may be a single layer, a structure in which a plurality of magnetic bodies are stacked, or a structure in which a plurality of magnetic bodies are magnetically coupled via a non-magnetic body. Further, the magnetization fixing method of the first magnetic body 1 may be, for example, a method using a laminated structure of the first magnetic body 1 and an antiferromagnetic body that is antiferromagnetically coupled, or a long shape anisotropy that is long in one direction. This is done by giving It is desirable that the magnetization directions of the second magnetic body 3 and the third magnetic body 8 are easily changed by the magnetostatic coupling with the third magnetic body 8 and the magnetization direction setting means 12. For this reason, when using a magnetic body in which magnetization is easily oriented in the in-plane direction, the shape is most preferably a circular shape having no shape anisotropy. In the case of a circular shape, the magnetization direction is easy to be directed in all directions, so that it is excellent in multivalue storage. In addition, since the magnetic material also has magnetocrystalline anisotropy, in order to provide a shape anisotropy that cancels this, it may be desirable to use an elliptical shape. When using a magnetic material whose magnetization is easily oriented in a direction perpendicular to the surface, the magnetization direction is easily changed by a method such as thinning. In addition, both can be realized by a magnetic material or a film configuration. Examples of the magnetoresistive memory device according to the embodiment of the present invention will be described below.
 (第一の実施例)
 次に、本発明の実施の形態に係る第一の実施例について説明する。図4は、本発明の実施の形態に係る第一の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。図5は、本発明の実施の形態に係る第一の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。図6は、本発明の実施の形態に係る第一の実施例として磁気抵抗記憶装置の主要部の構成を示す上面図である。
(First embodiment)
Next, a first example according to the embodiment of the present invention will be described. FIG. 4 is a circuit diagram showing the configuration of the memory array portion of the magnetoresistive memory device as a first example according to the embodiment of the present invention. FIG. 5 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a first example according to the embodiment of the present invention. FIG. 6 is a top view showing a configuration of a main part of the magnetoresistive memory device as a first example according to the embodiment of the present invention.
 図4を参照して、磁気抵抗記憶装置のメモリアレイ部63は、複数のワード線50と、複数のビット線51と、複数の読み出し構造体52と、複数の記憶構造体53と、複数の選択トランジスタ54と、ワード線制御回路61と、ビット線制御回路62とを具備する。複数のワード線50は、一方向(X方向)に延在している。複数のビット線51は、一方向(Y方向)に延在している。複数の読み出し構造体52は、複数のワード線50と複数のビット線51との複数の交点の近傍にアレイ状に配置されている。複数の記憶構造体53は、複数の読み出し構造体52の近傍に配置されている。複数の選択トランジスタ54は、複数の読み出し構造体52に対応して配置されている。読み出し構造体52の一つの端子はビット線51に、もう一つの端子は選択トランジスタ54のドレインに接続される。選択トランジスタ54のソースは接地される。選択トランジスタ54のゲートは、対応するワード線50に接続される。ワード線制御回路61は、複数のワード線50の一端を接続され、各ワード線50の選択、電流/電圧の印加を制御する。ビット線制御回路62は、複数のビット線51の一端を接続され、各ビット線51の選択、電流/電圧の印加を制御する。メモリセル60は、上記の読み出し構造体52と記憶構造体53と選択トランジスタ54とを備えている。メモリアレイ部63は、アレイ上に配置された複数のメモリセル60を有している。磁気抵抗記憶装置は、更に、メモリアレイ部63の全体に磁界を印加する電磁石(図示されず:磁化方向設定手段12に対応)と、所望の記憶構造体53にレーザを照射するレーザ照射装置(図示されず:昇温手段11に対応)を有している。 Referring to FIG. 4, the memory array unit 63 of the magnetoresistive memory device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of memory structures 53, and a plurality of memory structures 53. A selection transistor 54, a word line control circuit 61, and a bit line control circuit 62 are provided. The plurality of word lines 50 extend in one direction (X direction). The plurality of bit lines 51 extend in one direction (Y direction). The plurality of read structures 52 are arranged in an array in the vicinity of a plurality of intersections between the plurality of word lines 50 and the plurality of bit lines 51. The plurality of storage structures 53 are arranged in the vicinity of the plurality of readout structures 52. The plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52. One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54. The source of the selection transistor 54 is grounded. The gate of the selection transistor 54 is connected to the corresponding word line 50. The word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage. The bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage. The memory cell 60 includes the read structure 52, the storage structure 53, and the selection transistor 54 described above. The memory array unit 63 has a plurality of memory cells 60 arranged on the array. The magnetoresistive storage device further includes an electromagnet (not shown: corresponding to the magnetization direction setting means 12) that applies a magnetic field to the entire memory array section 63, and a laser irradiation device (which irradiates a desired storage structure 53 with a laser). (Not shown: corresponding to the temperature raising means 11).
 次に、図5を参照して、記憶構造体53と読み出し構造体52の構成について説明する。選択トランジスタ54を含むトランジスタや、配線等が形成された半導体基板(図示されず)上に、膜厚100nmのSiO層間絶縁膜71が設けられている。SiO層間絶縁膜71中には、下層配線と接続される膜厚100nmのタングステンプラグ70が設けられている。SiO層間絶縁膜71上にタングステンプラグ70と接続されるように、膜厚10nmのTa膜72が設けられている。そのTa膜72上に膜厚20nmの反強磁性体PtMn膜73、膜厚3nmの下ピン層CoFe膜74、膜厚3nmの非磁性体層Ru膜75、膜厚3nmの上ピン層CoFe膜76、膜厚1nmのトンネル絶縁層MgO膜77、膜厚2nmのフリー層CoFeB膜78、膜厚50nmのTa膜79がこの順に積層されている。フリー層CoFeB膜78及びTa膜79は、膜厚2nmのSiN膜80で保護されている。CoFe膜74、Ru膜75、CoFe膜76、MgO膜77及びCoFeB膜78で構成される読み出し構造体52の形状は、図6に示されるように、直径が1μmの円形である。読み出し構造体52を覆うように、膜厚400nmのSiO層間絶縁膜81が設けられている。SiO層間絶縁膜81中には、Ta膜79の上部に接続される膜厚300nmのCuプラグ82が設けられている。SiO層間絶縁膜81上にCuプラグ82と接続されるように、膜厚200nmのAlCu膜83が設けられている。AlCu膜83を覆うように膜厚300nmのSiO層間絶縁膜84が設けられている。続いて、SiO層間絶縁膜84上に、膜厚10nmのTa膜85、膜厚20nmの反強磁性体PtMn膜86、膜厚6nmの磁性体CoPt膜87、膜厚50nmのTa膜88がこの順に積層されている。PtMn膜86及びCoPt膜87で構成される記憶構造体53の形状は、図6に示されるように、直径が3μmの円形である。CoPt膜87とPtMn膜86とは強固に交換結合されている。磁化しやすい方向は、CoFe膜74が膜面内方向であり、CoPt膜87が膜面に垂直方向である。 Next, the configuration of the storage structure 53 and the read structure 52 will be described with reference to FIG. An SiO 2 interlayer insulating film 71 having a thickness of 100 nm is provided on a semiconductor substrate (not shown) on which transistors including the selection transistor 54, wirings, and the like are formed. In the SiO 2 interlayer insulating film 71, a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided. A Ta film 72 having a thickness of 10 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70. On the Ta film 72, an antiferromagnetic PtMn film 73 having a thickness of 20 nm, a lower pinned layer CoFe film 74 having a thickness of 3 nm, a nonmagnetic layer Ru film 75 having a thickness of 3 nm, and an upper pinned layer CoFe film having a thickness of 3 nm. 76, a tunnel insulating layer MgO film 77 having a thickness of 1 nm, a free CoFeB film 78 having a thickness of 2 nm, and a Ta film 79 having a thickness of 50 nm are stacked in this order. The free layer CoFeB film 78 and the Ta film 79 are protected by a SiN film 80 having a thickness of 2 nm. The shape of the readout structure 52 composed of the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 is a circle having a diameter of 1 μm, as shown in FIG. A 400-nm-thick SiO 2 interlayer insulating film 81 is provided so as to cover the readout structure 52. In the SiO 2 interlayer insulating film 81, a Cu plug 82 having a thickness of 300 nm connected to the upper portion of the Ta film 79 is provided. An AlCu film 83 having a thickness of 200 nm is provided on the SiO 2 interlayer insulating film 81 so as to be connected to the Cu plug 82. A 300 nm thick SiO 2 interlayer insulating film 84 is provided so as to cover the AlCu film 83. Subsequently, a 10 nm thick Ta film 85, a 20 nm thick antiferromagnetic PtMn film 86, a 6 nm thick magnetic CoPt film 87, and a 50 nm thick Ta film 88 are formed on the SiO 2 interlayer insulating film 84. They are stacked in this order. The shape of the memory structure 53 composed of the PtMn film 86 and the CoPt film 87 is a circle having a diameter of 3 μm, as shown in FIG. The CoPt film 87 and the PtMn film 86 are firmly exchange coupled. The direction in which magnetization is easy is the in-plane direction of the CoFe film 74 and the direction perpendicular to the film surface of the CoPt film 87.
 次に、図4及び図5を参照して、データの書き込み動作について説明する。まず、用意されたレーザ照射装置が、書き込みを行うワードアドレス及びビットアドレスに基づいて、書き込みを行うメモリセル60の記憶構造体53にレーザを照射し、所望の温度(例示:200℃)に昇温する。更に、用意された電磁石が、基板全体に上下方向のうち所望の方向(書き込まれるデータに対応する方向)の磁場を印加する。それにより、CoPt膜87の磁化方向は、書き込まれるデータに対応する方向を有する印加磁場に沿った方向に向く。このとき、記憶構造体53のPtMn膜86はCoPt膜87の磁化方向に従い磁化状態が変化する温度になっている。そのため、PtMn膜86の磁化方向は、書き込まれるデータに対応する方向を有する印加磁場に沿った方向に向く。次に、レーザ照射装置がレーザ照射を停止して記憶構造体53を降温すると、PtMn膜86はCoPt膜87の磁化方向を支持する磁化状態となる。このため、電磁石が磁場の印加を停止した後もCoPt膜87の磁化方向は固定されたままとなる。このように記憶構造体53のCoPt膜87の磁化方向を所望の方向(書き込まれるデータに対応する方向)に設定することでデータの書き込みができる。このとき、CoPt膜87とCoFeB膜78との静磁結合により、CoFeB膜78の磁化方向もまた書き込まれるデータに対応する方向に向く。 Next, the data write operation will be described with reference to FIG. 4 and FIG. First, the prepared laser irradiation apparatus irradiates the storage structure 53 of the memory cell 60 to be written with a laser based on the word address and bit address to be written, and raises the temperature to a desired temperature (eg, 200 ° C.). Warm up. Further, the prepared electromagnet applies a magnetic field in a desired direction (a direction corresponding to data to be written) in the vertical direction to the entire substrate. Thereby, the magnetization direction of the CoPt film 87 is directed along the applied magnetic field having a direction corresponding to the data to be written. At this time, the PtMn film 86 of the memory structure 53 is at a temperature at which the magnetization state changes according to the magnetization direction of the CoPt film 87. Therefore, the magnetization direction of the PtMn film 86 is oriented in the direction along the applied magnetic field having a direction corresponding to the data to be written. Next, when the laser irradiation apparatus stops the laser irradiation and the temperature of the memory structure 53 is lowered, the PtMn film 86 is in a magnetization state that supports the magnetization direction of the CoPt film 87. For this reason, the magnetization direction of the CoPt film 87 remains fixed even after the electromagnet stops applying the magnetic field. In this way, data can be written by setting the magnetization direction of the CoPt film 87 of the memory structure 53 to a desired direction (direction corresponding to data to be written). At this time, due to magnetostatic coupling between the CoPt film 87 and the CoFeB film 78, the magnetization direction of the CoFeB film 78 is also directed to the direction corresponding to the data to be written.
 次に、図4及び図5を参照して、データの読み出し動作について説明する。まず、ワード線制御回路61が、読み出しを行うワードアドレスのワード線50を選択し、所定の電圧を印加する。それにより、対応する選択トランジスタ54がオン状態になる。そして、ビット線制御回路62が、読み出しを行うビットアドレスのビット線51を選択し、読み出し電流20μAを印加する。読み出し構造体52のCoFeB膜78は記憶構造体53のCoPt膜87との静磁結合により、右向き及び左向きのいずれか一方に設定される。このときの抵抗値をそれぞれ10kΩ及び20kΩとして、各トランジスタのオン抵抗が1kΩとすると、ビット線51の電位はそれぞれ0.21V及び0.41Vとなる。したがって、ビット線51の電位を例えば差動センスアンプに入力することで、書き込まれているデータを判別することができる。 Next, the data read operation will be described with reference to FIGS. First, the word line control circuit 61 selects the word line 50 of the word address to be read and applies a predetermined voltage. Thereby, the corresponding selection transistor 54 is turned on. Then, the bit line control circuit 62 selects the bit line 51 of the bit address to be read and applies a read current of 20 μA. The CoFeB film 78 of the read structure 52 is set to either the right direction or the left direction by magnetostatic coupling with the CoPt film 87 of the memory structure 53. When the resistance values at this time are 10 kΩ and 20 kΩ, respectively, and the on-resistance of each transistor is 1 kΩ, the potential of the bit line 51 is 0.21 V and 0.41 V, respectively. Therefore, by writing the potential of the bit line 51 to, for example, a differential sense amplifier, written data can be determined.
 次に、図5を参照して、記憶構造体53と読み出し構造体52の製造方法について説明する。選択トランジスタ54を含むトランジスタ、配線等が形成された半導体基板(図示されず)上に、下層配線と接続されるタングステンプラグ70を設けたSiO層間絶縁膜71を100nm形成する。次に、SiO層間絶縁膜71上に、Ta膜72を10nm、反強磁性体PtMn膜73を20nm、下ピン層CoFe膜74を3nm、非磁性体層Ru膜75を3nm、上ピン層CoFe膜76を3nm、トンネル絶縁層MgO膜77を1nm、フリー層CoFeB膜78を2nm、及びTa膜79を50nm、この順にスパッタリング法により積層して成膜する。その後、275℃2時間1T程度の磁場中でアニールし、ピン層(下ピン層CoFe膜74、上ピン層CoFe膜76)の磁化方向を設定する。続いて、フォトリソグラフィ技術と反応性イオンエッチング技術(以下、RIEと記す)により読み出し構造体形状にTa膜79を加工する。そして、アッシング処理によりレジストを除去した後、Ta膜79をマスクとして、ミリング法によりCoFeB膜78を読み出し構造体形状に加工する。次に、基板全面を覆うようにSiN膜80をCVD法により30nm形成し、読み出し構造体52の上部の側壁を保護する。続いて、フォトリソグラフィ技術とミリング法により、MgO膜77からTa膜72までを加工する。本実施例のフリー層(CoFeB膜78)の形状は図6に示すように直径が1μmの円形である。続いて、基板全面を覆うようにSiO層間絶縁膜81を500nmCVD法で成膜した後、化学的機械研磨技術(以下、CMPと記す)により平坦化する。Ta膜79上のSiO層間絶縁膜81をRIEにより除去してビアを形成し、Cuを埋め込みCuプラグ82を形成する。その後、全面にAlCu膜83をスパッタ成膜し、RIE技術を用いて加工して配線(ビット線51)を形成する。更に、基板全面を覆うように、SiO層間絶縁膜84を400nm形成してCMPで平坦化する。その後、Ta膜85を10nm、反強磁性体PtMn膜86を20nm、磁性体CoPt膜87を6nm、Ta膜88を50nm、この順にスパッタリング法により積層して成膜する。そして、フォトリソグラフィ技術とミリング法によりパターニングを行い、記憶構造体53を形成する。図6に示されるように、この記憶構造体53は直径が3μmの円形である。この後、275℃2時間1T程度の磁場中でアニールを行い、CoPt膜87とPtMn膜86の交換結合を強固にする。このとき、磁化しやすい方向は、CoFe膜74は膜面(xy平面)内方向、CoPt膜87は膜面に垂直(z方向)方向であるため、膜面(xy平面)に対して45度傾けた方向に磁場印加する。 Next, a method for manufacturing the memory structure 53 and the read structure 52 will be described with reference to FIG. A SiO 2 interlayer insulating film 71 provided with a tungsten plug 70 connected to a lower layer wiring is formed to 100 nm on a semiconductor substrate (not shown) on which a transistor including the selection transistor 54, wiring, and the like are formed. Next, on the SiO 2 interlayer insulating film 71, the Ta film 72 is 10 nm, the antiferromagnetic PtMn film 73 is 20 nm, the lower pinned layer CoFe film 74 is 3 nm, the nonmagnetic layer Ru film 75 is 3 nm, and the upper pinned layer. The CoFe film 76 is formed by stacking 3 nm, the tunnel insulating layer MgO film 77 by 1 nm, the free layer CoFeB film 78 by 2 nm, and the Ta film 79 by 50 nm in this order by sputtering. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours, and the magnetization direction of the pinned layer (the lower pinned layer CoFe film 74 and the upper pinned layer CoFe film 76) is set. Subsequently, the Ta film 79 is processed into a readout structure shape by a photolithography technique and a reactive ion etching technique (hereinafter referred to as RIE). Then, after removing the resist by ashing, the CoFeB film 78 is processed into a readout structure by a milling method using the Ta film 79 as a mask. Next, an SiN film 80 is formed to have a thickness of 30 nm by the CVD method so as to cover the entire surface of the substrate, and the upper side wall of the readout structure 52 is protected. Subsequently, the MgO film 77 to the Ta film 72 are processed by a photolithography technique and a milling method. The shape of the free layer (CoFeB film 78) of this example is a circle having a diameter of 1 μm as shown in FIG. Subsequently, an SiO 2 interlayer insulating film 81 is formed by a 500 nm CVD method so as to cover the entire surface of the substrate, and then planarized by a chemical mechanical polishing technique (hereinafter referred to as CMP). The SiO 2 interlayer insulating film 81 on the Ta film 79 is removed by RIE to form vias, and Cu is embedded to form Cu plugs 82. Thereafter, an AlCu film 83 is formed on the entire surface by sputtering, and processed by using the RIE technique to form a wiring (bit line 51). Further, an SiO 2 interlayer insulating film 84 is formed to a thickness of 400 nm so as to cover the entire surface of the substrate, and is planarized by CMP. Thereafter, the Ta film 85, 10 nm of the antiferromagnetic PtMn film 86, 20 nm of the magnetic CoPt film 87, and 6 nm of the Ta film 88 are stacked in this order by sputtering. Then, patterning is performed by a photolithography technique and a milling method to form the memory structure 53. As shown in FIG. 6, the memory structure 53 is circular with a diameter of 3 μm. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours to strengthen the exchange coupling between the CoPt film 87 and the PtMn film 86. At this time, since the CoFe film 74 is in the film surface (xy plane) inward direction and the CoPt film 87 is in the direction perpendicular to the film surface (z direction), the magnetization direction is 45 degrees with respect to the film surface (xy plane). Apply a magnetic field in the tilted direction.
 本実施例では、書き込み動作で昇温が必要な反強磁性体とトンネル絶縁膜との距離が、従来(図2A及び図2B)は数nmであったのに対し、1μm程度にまで広げることができる。また、反強磁性体とトンネル絶縁膜との間に数百nmの層間絶縁膜があるため熱の伝導が妨げられ、従来(図2A及び図2B)に比べ温度上昇を抑制することが可能となる。これによりトンネル絶縁膜の信頼性が向上する。この磁性記憶装置は、サイズが大きいため数十ビット程度の容量の記憶が適しており、基板状態での装置自体の評価を行って得られたパラメータの記録や、複数使用回路を用意していた場合の採用回路情報をヒューズの代わりに記憶するのに用いることができる。 In this embodiment, the distance between the antiferromagnetic material and the tunnel insulating film that requires a temperature increase in the write operation is several nanometers compared to the conventional distance (FIGS. 2A and 2B), which is several nanometers. Can do. In addition, since there is an interlayer insulating film of several hundreds of nanometers between the antiferromagnetic material and the tunnel insulating film, heat conduction is hindered, and it is possible to suppress a temperature rise compared to the conventional (FIGS. 2A and 2B). Become. This improves the reliability of the tunnel insulating film. This magnetic storage device is suitable for storing a capacity of about several tens of bits because of its large size, and has prepared a recording of parameters obtained by evaluating the device itself in a substrate state and a circuit for multiple use. The adopted circuit information can be used to store instead of the fuse.
 磁性抵抗記憶素子におけるフリー層やピン層として磁性体や磁性体同士を磁気的に結合させる非磁性体を複数積層した構成を用いても良い。 A structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
 (第二の実施例)
 次に、本発明の実施の形態に係る第二の実施例について説明する。図7は、本発明の実施の形態に係る第二の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。図8は、本発明の実施の形態に係る第二の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。図9は、本発明の実施の形態に係る第二の実施例として磁気抵抗記憶装置の主要部の構成を示す上面図である。
(Second embodiment)
Next, a second example according to the embodiment of the present invention will be described. FIG. 7 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a second example according to the embodiment of the present invention. FIG. 8 is a cross-sectional view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention. FIG. 9 is a top view showing a configuration of a main part of a magnetoresistive memory device as a second example according to the embodiment of the present invention.
 図7を参照して、磁気抵抗記憶装置のメモリアレイ部63は、複数のワード線50と、複数のビット線51と、複数の読み出し構造体52と、複数の記憶構造体53と、複数の選択トランジスタ54と、複数の抵抗体55と、複数の書き込み選択トランジスタ56と、複数の書き込みワード線57と、ワード線制御回路61と、ビット線制御回路62とを具備する。複数のワード線50は、一方向(X方向)に延在している。複数のビット線51は、一方向(Y方向)に延在している。複数の読み出し構造体53は、複数のワード線50と複数のビット線51との複数の交点の近傍にアレイ状に配置されている。複数の記憶構造体53は、複数の読み出し構造体52の近傍に配置されている。複数の抵抗体55は、複数の記憶構造体53に対応してその下に配置されている。複数の選択トランジスタ54は、複数の読み出し構造体52に対応して配置されている。複数の選択トランジスタ56は、複数の抵抗体55に対応して配置されている。複数の書き込みワード線57は、一方向(X方向)に延在している。読み出し構造体52の一つの端子はビット線51に、もう一つの端子は選択トランジスタ54のドレインに接続される。選択トランジスタ54のソースは接地される。選択トランジスタ54のゲートは、対応するワード線50に接続される。抵抗体55の一方の端子はビット線51に、もう一方の端子は書き込み選択トランジスタ56のドレインに接続される。書き込み選択トランジスタ56のソースは接地される。書き込み選択トランジスタ56のゲートは、対応する書き込みワード線57に接続される。ワード線制御回路61は、複数のワード線50の一端を接続され、各ワード線50の選択、電流/電圧の印加を制御する。更に、複数の書き込みワード線57の一端を接続され、各書き込みワード線57の選択、電流/電圧の印加を制御する。ビット線制御回路62は、複数のビット線51の一端を接続され、各ビット線51の選択、電流/電圧の印加を制御する。メモリセル60は、上記の読み出し構造体52と記憶構造体53と選択トランジスタ54と書き込み選択トランジスタ56と抵抗体55とを備えている。メモリアレイ部63は、アレイ上に配置された複数のメモリセル60を有している。なお、本実施例では、抵抗体55は昇温手段11として機能し、ビット線51は磁化方向設定手段12として機能する。ただし、抵抗体55が磁化方向設定手段12としての機能も併せ持っていても良い。 Referring to FIG. 7, the memory array unit 63 of the magnetoresistive storage device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of storage structures 53, and a plurality of memory structures 53. A selection transistor 54, a plurality of resistors 55, a plurality of write selection transistors 56, a plurality of write word lines 57, a word line control circuit 61, and a bit line control circuit 62 are provided. The plurality of word lines 50 extend in one direction (X direction). The plurality of bit lines 51 extend in one direction (Y direction). The plurality of read structures 53 are arranged in an array in the vicinity of a plurality of intersections between the plurality of word lines 50 and the plurality of bit lines 51. The plurality of storage structures 53 are arranged in the vicinity of the plurality of readout structures 52. The plurality of resistors 55 are arranged below the corresponding memory structures 53. The plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52. The plurality of selection transistors 56 are arranged corresponding to the plurality of resistors 55. The plurality of write word lines 57 extend in one direction (X direction). One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54. The source of the selection transistor 54 is grounded. The gate of the selection transistor 54 is connected to the corresponding word line 50. One terminal of the resistor 55 is connected to the bit line 51 and the other terminal is connected to the drain of the write selection transistor 56. The source of the write selection transistor 56 is grounded. The gate of the write selection transistor 56 is connected to the corresponding write word line 57. The word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage. Further, one end of a plurality of write word lines 57 is connected to control selection of each write word line 57 and application of current / voltage. The bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage. The memory cell 60 includes the read structure 52, the memory structure 53, the selection transistor 54, the write selection transistor 56, and the resistor 55. The memory array unit 63 has a plurality of memory cells 60 arranged on the array. In this embodiment, the resistor 55 functions as the temperature raising means 11 and the bit line 51 functions as the magnetization direction setting means 12. However, the resistor 55 may also have a function as the magnetization direction setting means 12.
 次に、図8を参照して、記憶構造体53と読み出し構造体52の構成について説明する。選択トランジスタ54を含むトランジスタや、配線等が形成された半導体基板(図示されず)上に、膜厚10nmの抵抗体55が設けられている。抵抗体55を含む基板全体を覆うように、膜厚100nmのSiO層間絶縁膜71が設けられている。SiO層間絶縁膜71中には、下層配線と接続される膜厚100nmのタングステンプラグ70が設けられている。SiO層間絶縁膜71上にタングステンプラグ70と接続されるように、膜厚10nmのTa膜72が設けられている。また、Ta膜72の近傍に同じ膜厚10nmの他のTa膜72aが設けられている。そのTa膜72上に膜厚20nmの反強磁性体PtMn膜73、膜厚3nmの下ピン層CoFe膜74、膜厚3nmの非磁性体層Ru膜75、膜厚3nmの上ピン層CoFe膜76、膜厚1nmのトンネル絶縁層MgO膜77、膜厚2nmのフリー層CoFeB膜78、膜厚50nmのTa膜79がこの順に積層されている。また、隣接して、そのTa膜72a上に膜厚20nmの反強磁性体PtMn膜73a、膜厚3nmの磁性体CoFe膜74a、膜厚3nmの非磁性体層Ru膜75aがこの順に積層されている。フリー層CoFeB膜78及びTa膜79は、膜厚2nmのSiN膜80で保護されている。CoFe膜74、Ru膜75、CoFe膜76、MgO膜77及びCoFeB膜78で構成される読み出し構造体52の形状は、図9に示されるように、直径が0.2μmの円形である。同様に、PtMn膜73a及びCoFe膜74aで構成される記憶構造体53の形状は、図9に示されるように、直径が0.2μmの円形である。読み出し構造体52及び記憶構造体53を覆うように、膜厚40nmのSiO層間絶縁膜81が設けられている。SiO層間絶縁膜81中には、Ta膜79の上部に接続される膜厚300nmのCuプラグ82が設けられている。SiO層間絶縁膜81上にCuプラグ82と接続されるように、膜厚200nmのAlCu膜83が設けられている。CoFe膜74aとPtMn膜73aとは強固に交換結合されている。磁化しやすい方向は、CoFe膜74が膜面内方向であり、CoFe膜74aも膜面内方向である。 Next, the configuration of the storage structure 53 and the read structure 52 will be described with reference to FIG. A resistor 55 having a thickness of 10 nm is provided over a transistor including the selection transistor 54 and a semiconductor substrate (not shown) on which wirings and the like are formed. A 100 nm thick SiO 2 interlayer insulating film 71 is provided so as to cover the entire substrate including the resistor 55. In the SiO 2 interlayer insulating film 71, a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided. A Ta film 72 having a thickness of 10 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70. Further, another Ta film 72 a having the same thickness of 10 nm is provided in the vicinity of the Ta film 72. On the Ta film 72, an antiferromagnetic PtMn film 73 having a thickness of 20 nm, a lower pinned layer CoFe film 74 having a thickness of 3 nm, a nonmagnetic layer Ru film 75 having a thickness of 3 nm, and an upper pinned layer CoFe film having a thickness of 3 nm. 76, a tunnel insulating layer MgO film 77 having a thickness of 1 nm, a free CoFeB film 78 having a thickness of 2 nm, and a Ta film 79 having a thickness of 50 nm are stacked in this order. Adjacently, an antiferromagnetic PtMn film 73a having a thickness of 20 nm, a magnetic CoFe film 74a having a thickness of 3 nm, and a nonmagnetic layer Ru film 75a having a thickness of 3 nm are stacked in this order on the Ta film 72a. ing. The free layer CoFeB film 78 and the Ta film 79 are protected by a SiN film 80 having a thickness of 2 nm. The shape of the readout structure 52 composed of the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 is a circle having a diameter of 0.2 μm, as shown in FIG. Similarly, the shape of the memory structure 53 composed of the PtMn film 73a and the CoFe film 74a is a circle having a diameter of 0.2 μm, as shown in FIG. A 40 nm-thickness SiO 2 interlayer insulating film 81 is provided so as to cover the readout structure 52 and the memory structure 53. In the SiO 2 interlayer insulating film 81, a Cu plug 82 having a thickness of 300 nm connected to the upper portion of the Ta film 79 is provided. An AlCu film 83 having a thickness of 200 nm is provided on the SiO 2 interlayer insulating film 81 so as to be connected to the Cu plug 82. The CoFe film 74a and the PtMn film 73a are strongly exchange coupled. The direction in which magnetization is easy is the in-film direction of the CoFe film 74 and the in-film direction of the CoFe film 74a.
 次に、図7及び図8を参照して、データの書き込み動作について説明する。まず、ワード線制御回路62は、書き込みを行うワードアドレスの書き込みワード線57を選択し、所定の電圧を印加する。それにより、対応する書き込み選択トランジスタ56がオン状態になる。一方、ビット線制御回路61は、書き込みを行うビットアドレスのビット線51を選択し、所定の電圧を印加する。それにより、対応する抵抗体55は、内部に電流が流れることで発熱する。その発熱により、対応する記憶構造体53のCoFe膜74aを所望の温度(例示:280℃)に昇温する。ここで、ビット線51に流れる電流の向きにより、二方向の磁場のうちのいずれかの方向の磁場(書き込まれるデータに対応する方向)が発生する。それにより、CoFe膜74aの磁化方向は、書き込まれるデータに対応する方向を有する磁場に沿った方向に向く。このとき、記憶構造体53のPtMn膜73aはCoFe膜74aの磁化方向に従い磁化状態が変化する温度になっている。そのため、PtMn膜73aは書き込まれるデータに対応する方向を有する印加磁場に沿った方向に向く。次に、書き込み選択トランジスタ56をオフ状態にするとPtMn膜73aはCoFe膜74aの磁化方向を支持する磁化状態となる。このため、ビット線電位を下げても磁場を停止した後もCoFe膜74aの磁化方向は固定されたままとなる。このように記憶構造体53のCoFe膜74aの磁化方向を所望の方向(書き込まれるデータに対応する方向)に設定することでデータの書き込みができる。このとき、CoFe膜74aとCoFeB膜78との静磁結合により、CoFeB膜78の磁化方向もまた書き込まれるデータに対応する方向に向く。 Next, the data write operation will be described with reference to FIG. 7 and FIG. First, the word line control circuit 62 selects a write word line 57 of a word address to be written and applies a predetermined voltage. Accordingly, the corresponding write selection transistor 56 is turned on. On the other hand, the bit line control circuit 61 selects a bit line 51 of a bit address to be written and applies a predetermined voltage. As a result, the corresponding resistor 55 generates heat when a current flows through it. Due to the heat generation, the CoFe film 74a of the corresponding memory structure 53 is heated to a desired temperature (eg, 280 ° C.). Here, depending on the direction of the current flowing through the bit line 51, a magnetic field in one of the two magnetic fields (direction corresponding to the data to be written) is generated. Thereby, the magnetization direction of the CoFe film 74a is directed in a direction along the magnetic field having a direction corresponding to the data to be written. At this time, the PtMn film 73a of the memory structure 53 is at a temperature at which the magnetization state changes according to the magnetization direction of the CoFe film 74a. Therefore, the PtMn film 73a faces in the direction along the applied magnetic field having a direction corresponding to the data to be written. Next, when the write selection transistor 56 is turned off, the PtMn film 73a enters a magnetization state that supports the magnetization direction of the CoFe film 74a. For this reason, even if the bit line potential is lowered, the magnetization direction of the CoFe film 74a remains fixed even after the magnetic field is stopped. In this way, data can be written by setting the magnetization direction of the CoFe film 74a of the memory structure 53 to a desired direction (direction corresponding to data to be written). At this time, due to the magnetostatic coupling between the CoFe film 74a and the CoFeB film 78, the magnetization direction of the CoFeB film 78 is also directed to the direction corresponding to the data to be written.
 次に、データの読み出し動作についてであるが、本実施例に係るデータの読み出し動作は第一の実施例と同様であるのでその説明を省略する。 Next, regarding the data read operation, the data read operation according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
 次に、図8を参照して、記憶構造体53と読み出し構造体52の製造方法について説明する。選択トランジスタ54や書き込み選択トランジスタ56を含むトランジスタ、配線等、及び抵抗体55が形成された半導体基板(図示されず)上に、下層配線と接続されるタングステンプラグ70を設けたSiO層間絶縁膜71を100nm形成する。次に、SiO層間絶縁膜71上に、Ta膜72を10nm、反強磁性体PtMn膜73を20nm、下ピン層CoFe膜74を3nm、非磁性体層Ru膜75を3nm、上ピン層CoFe膜76を3nm、トンネル絶縁層MgO膜77を1nm、フリー層CoFeB膜78を2nm、及びTa膜79を50nm、この順にスパッタリング法により積層して成膜する。その後、275℃2時間1T程度の磁場中でアニールし、ピン層(下ピン層CoFe膜74、上ピン層CoFe膜76)の磁化方向を設定する。続いて、フォトリソグラフィ技術とRIEにより読み出し構造体形状にTa膜79を加工する。そして、アッシング処理によりレジストを除去した後、Ta膜79をマスクとして、ミリング法によりCoFeB膜78を読み出し構造体形状に加工する。次に、基板全面を覆うようにSiN膜80をCVD法により30nm形成し、読み出し構造体52の上部の側壁を保護する。続いて、フォトリソグラフィ技術とミリング法により、MgO膜77と上ピン層CoFe膜76とを加工する。更に、読み出し構造体52について、Ta膜79をマスクとしてRu膜75からTa膜72までを加工する。それと同時に、記憶構造体53について、レジストをマスクとしてRu膜75からTa膜72までを加工する。記憶構造体53については、区別のために添え字“a”を付けてRu膜75a、CoFe膜74a、PtMn膜73a、Ta膜72aとする。これにより読み出し構造体52と記憶構造体53とが形成できる。図9に示されるように、本実施例では読み出し構造体52も記憶構造体53も直径が0.2μmの円形である。その後、基板全面を覆うようにSiO層間絶縁膜81を500nmCVD法で成膜した後、化学的機械研磨技術(以下、CMPと記す)により平坦化する。Ta膜79上のSiO層間絶縁膜81をRIEにより除去してビアを形成し、Cuを埋め込みCuプラグ82を形成する。その後、全面にAlCu膜83をスパッタ成膜し、RIE技術を用いて加工して配線(ビット線51)を形成する。 Next, a method for manufacturing the memory structure 53 and the read structure 52 will be described with reference to FIG. SiO 2 interlayer insulating film in which a tungsten plug 70 connected to a lower layer wiring is provided on a semiconductor substrate (not shown) on which a transistor 55 including a selection transistor 54 and a write selection transistor 56, a wiring, etc., and a resistor 55 are formed. 71 is formed to 100 nm. Next, on the SiO 2 interlayer insulating film 71, the Ta film 72 is 10 nm, the antiferromagnetic PtMn film 73 is 20 nm, the lower pinned layer CoFe film 74 is 3 nm, the nonmagnetic layer Ru film 75 is 3 nm, and the upper pinned layer. The CoFe film 76 is formed by stacking 3 nm, the tunnel insulating layer MgO film 77 by 1 nm, the free layer CoFeB film 78 by 2 nm, and the Ta film 79 by 50 nm in this order by sputtering. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours, and the magnetization direction of the pinned layer (the lower pinned layer CoFe film 74 and the upper pinned layer CoFe film 76) is set. Subsequently, the Ta film 79 is processed into a readout structure shape by photolithography and RIE. Then, after removing the resist by ashing, the CoFeB film 78 is processed into a readout structure by a milling method using the Ta film 79 as a mask. Next, an SiN film 80 is formed to have a thickness of 30 nm by the CVD method so as to cover the entire surface of the substrate, and the upper side wall of the readout structure 52 is protected. Subsequently, the MgO film 77 and the upper pinned CoFe film 76 are processed by a photolithography technique and a milling method. Further, the read structure 52 is processed from the Ru film 75 to the Ta film 72 using the Ta film 79 as a mask. At the same time, the Ru structure 75 to the Ta film 72 are processed for the memory structure 53 using the resist as a mask. For the memory structure 53, a subscript “a” is added for distinction to form a Ru film 75a, a CoFe film 74a, a PtMn film 73a, and a Ta film 72a. As a result, the read structure 52 and the storage structure 53 can be formed. As shown in FIG. 9, in this embodiment, both the readout structure 52 and the storage structure 53 are circular with a diameter of 0.2 μm. Thereafter, an SiO 2 interlayer insulating film 81 is formed by a 500 nm CVD method so as to cover the entire surface of the substrate, and then planarized by a chemical mechanical polishing technique (hereinafter referred to as CMP). The SiO 2 interlayer insulating film 81 on the Ta film 79 is removed by RIE to form vias, and Cu is embedded to form Cu plugs 82. Thereafter, an AlCu film 83 is formed on the entire surface by sputtering, and processed by using the RIE technique to form a wiring (bit line 51).
 本実施例では、記憶構造体53と読み出し構造体52とを同時に成膜する。そのため、製造工程が容易になる。加えて、本実施例では、抵抗体55が昇温手段11の機能を有し、ビット線51が磁化方向設定手段12の機能を有し、いずれもメモリアレイ部63に内蔵されているので、磁性抵抗記憶装置の素子構成を簡略化でき、微細化が容易となる。更に、この磁性抵抗記憶装置は、昇温手段(抵抗体55)を内蔵するためユーザ側で書き換えが可能である。また、出荷時の検査により、リダンダンシメモリブロックのブロック選択データを記憶するのに利用できる。 In this embodiment, the storage structure 53 and the readout structure 52 are formed simultaneously. This facilitates the manufacturing process. In addition, in this embodiment, the resistor 55 has the function of the temperature raising means 11, and the bit line 51 has the function of the magnetization direction setting means 12, both of which are built in the memory array unit 63. The element configuration of the magnetoresistive memory device can be simplified and miniaturization is facilitated. Furthermore, since this magnetoresistive memory device incorporates the temperature raising means (resistor 55), it can be rewritten on the user side. Further, it can be used to store block selection data of the redundancy memory block by inspection at the time of shipment.
 なお、図7において、記憶構造体53へ印加する磁場は、ビット線51の配線電流による磁場を用いている。そのため、磁場の方向は二方向である。しかし、本実施例の応用として、ビット線51と直交する別配線を用意して電流を流すことで、その別配線電流による磁場とビット線51の配線電流による磁場との合成磁場とすることも可能である。その場合、両配線を流れる電流の大きさを独立して制御することで、あらゆる方向への磁場を形成することができる。それにより、異方性の無い記憶構造体53の磁化方向を任意の方向に設定することができる。この場合、その方向に対応させて、多値、およびアナログデータの記録が可能となる。 In FIG. 7, the magnetic field applied to the memory structure 53 is a magnetic field generated by the wiring current of the bit line 51. Therefore, the direction of the magnetic field is two directions. However, as an application of the present embodiment, by preparing a separate wiring orthogonal to the bit line 51 and flowing a current, a combined magnetic field of the magnetic field due to the separate wiring current and the magnetic field due to the wiring current of the bit line 51 may be obtained. Is possible. In that case, a magnetic field in any direction can be formed by independently controlling the magnitude of the current flowing through both wirings. Thereby, the magnetization direction of the memory structure 53 having no anisotropy can be set to an arbitrary direction. In this case, multi-value and analog data can be recorded corresponding to the direction.
 磁性抵抗記憶素子におけるフリー層やピン層として磁性体や磁性体同士を磁気的に結合させる非磁性体を複数積層した構成を用いても良い。 A structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
 (第三の実施例)
 次に、本発明の実施の形態に係る第三の実施例について説明する。図10は、本発明の実施の形態に係る第三の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。図11A及び図11Bは、本発明の実施の形態に係る第三の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。ただし、図11Aは低抵抗状態を示し、図11Bは高抵抗状態をそれぞれ示す。図12は、本発明の実施の形態に係る第三の実施例として磁気抵抗記憶装置の主要部の構成を示す上面図である。
(Third embodiment)
Next, a third example according to the embodiment of the present invention will be described. FIG. 10 is a circuit diagram showing a configuration of a memory array section of a magnetoresistive storage device as a third example according to the embodiment of the present invention. 11A and 11B are cross-sectional views showing the configuration of the main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention. However, FIG. 11A shows a low resistance state, and FIG. 11B shows a high resistance state. FIG. 12 is a top view showing a configuration of a main part of a magnetoresistive memory device as a third example according to the embodiment of the present invention.
 図10を参照して、磁気抵抗記憶装置のメモリアレイ部63は、複数のワード線50と、複数のビット線51と、複数の読み出し構造体52と、複数の記憶構造体53と、複数の選択トランジスタ54と、複数の書き込み選択トランジスタ56と、複数の書き込みワード線57と、ワード線制御回路61と、ビット線制御回路62とを具備する。複数のワード線50は、一方向(X方向)に延在している。複数のビット線51は、一方向(Y方向)に延在している。複数の記憶構造体53は、アレイ状に配置されている。複数の記憶構造体53の各々は、対応するビット線51の下側に接して配置されている。複数の読み出し構造体52は、アレイ状に配置されている。複数の読み出し構造体52の各々は、対応するビット線51における記憶構造体53とは反対側に接して配置されている。複数の選択トランジスタ54は、複数の読み出し構造体52に対応して配置されている。複数の選択トランジスタ56は、複数の記憶構造体53に対応して配置されている。複数の書き込みワード線57は、一方向(X方向)に延在している。読み出し構造体52の一つの端子はビット線51に、もう一つの端子は選択トランジスタ54のドレインに接続される。選択トランジスタ54のソースは接地される。選択トランジスタ54のゲートは、対応するワード線50に接続される。記憶構造体53の一方の端子はビット線51に、ビット線51とは反対の面に設けられた端子は書き込み選択トランジスタ56のドレインに接続される。書き込み選択トランジスタ56のソースは接地される。書き込み選択トランジスタ56のゲートは、対応する書き込みワード線57に接続される。ワード線制御回路61は、複数のワード線50の一端を接続され、各ワード線50の選択、電流/電圧の印加を制御する。更に、複数の書き込みワード線57の一端を接続され、各書き込みワード線57の選択、電流/電圧の印加を制御する。ビット線制御回路62は、複数のビット線51の一端を接続され、各ビット線51の選択、電流/電圧の印加を制御する。メモリセル60は、上記の読み出し構造体52と記憶構造体53と選択トランジスタ54と書き込み選択トランジスタ56とを備えている。メモリアレイ部63は、アレイ上に配置された複数のメモリセル60を有している。なお、本実施例では、記憶構造体53は昇温手段11として機能し、ビット線51は磁化方向設定手段12として機能する。 Referring to FIG. 10, the memory array unit 63 of the magnetoresistive storage device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of storage structures 53, and a plurality of memory structures 53. A selection transistor 54, a plurality of write selection transistors 56, a plurality of write word lines 57, a word line control circuit 61, and a bit line control circuit 62 are provided. The plurality of word lines 50 extend in one direction (X direction). The plurality of bit lines 51 extend in one direction (Y direction). The plurality of storage structures 53 are arranged in an array. Each of the plurality of storage structures 53 is arranged in contact with the lower side of the corresponding bit line 51. The plurality of readout structures 52 are arranged in an array. Each of the plurality of read structures 52 is disposed in contact with the opposite side of the corresponding bit line 51 from the memory structure 53. The plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52. The plurality of selection transistors 56 are arranged corresponding to the plurality of storage structures 53. The plurality of write word lines 57 extend in one direction (X direction). One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54. The source of the selection transistor 54 is grounded. The gate of the selection transistor 54 is connected to the corresponding word line 50. One terminal of the memory structure 53 is connected to the bit line 51, and a terminal provided on the surface opposite to the bit line 51 is connected to the drain of the write selection transistor 56. The source of the write selection transistor 56 is grounded. The gate of the write selection transistor 56 is connected to the corresponding write word line 57. The word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage. Further, one end of a plurality of write word lines 57 is connected to control selection of each write word line 57 and application of current / voltage. The bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage. The memory cell 60 includes the read structure 52, the storage structure 53, the selection transistor 54, and the write selection transistor 56 described above. The memory array unit 63 has a plurality of memory cells 60 arranged on the array. In this embodiment, the storage structure 53 functions as the temperature raising means 11, and the bit line 51 functions as the magnetization direction setting means 12.
 次に、図11A及び図11Bを参照して、記憶構造体53と読み出し構造体52の構成について説明する。選択トランジスタ54や書き込み選択トランジスタ56を含むトランジスタや、配線等が形成された半導体基板(図示されず)上に、膜厚100nmのSiO層間絶縁膜71が設けられている。SiO層間絶縁膜71中には、下層配線と接続される膜厚100nmのタングステンプラグ70が設けられている。SiO層間絶縁膜71上にタングステンプラグ70と接続されるように、膜厚20nmのTa膜85が設けられている。そのTa膜85上に膜厚20nmの反強磁性体PtMn膜86、膜厚3nmの磁性体CoFe膜87、及び膜厚50nmのTa膜88がこの順に積層されている。図12に示されるように、PtMn膜86及びCoFe膜87により構成される記憶構造体53は、直径が0.2μmの円形である。Ta膜88上には、ビット線51としてのCu膜93が設けられている。Cu膜93上には、膜厚10nmのTa膜79、膜厚2nmのフリー層NiFe膜78、膜厚1nmのトンネル絶縁層MgO膜77、膜厚3nmのピン層CoFe膜76、膜厚1nmのRu膜75、膜厚3nmのピン層CoFe膜74、膜厚20nmの反強磁性体PtMn膜73、膜厚50nmのTa膜72がこの順に積層されている。図12に示されるように、CoFe膜74、Ru膜75、CoFe膜76、MgO膜77及びCoFeB膜78で構成される読み出し構造体52の形状は、直径が0.2μmの円形である。CoPt膜87とPtMn膜86とは強固に交換結合されている。 Next, with reference to FIGS. 11A and 11B, configurations of the storage structure 53 and the read structure 52 will be described. An SiO 2 interlayer insulating film 71 having a thickness of 100 nm is provided on a semiconductor substrate (not shown) on which a transistor including the selection transistor 54 and the write selection transistor 56, wiring, and the like are formed. In the SiO 2 interlayer insulating film 71, a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided. A Ta film 85 having a thickness of 20 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70. On the Ta film 85, an antiferromagnetic PtMn film 86 having a thickness of 20 nm, a magnetic CoFe film 87 having a thickness of 3 nm, and a Ta film 88 having a thickness of 50 nm are stacked in this order. As shown in FIG. 12, the memory structure 53 including the PtMn film 86 and the CoFe film 87 has a circular shape with a diameter of 0.2 μm. On the Ta film 88, a Cu film 93 as the bit line 51 is provided. On the Cu film 93, a Ta film 79 having a thickness of 10 nm, a free NiFe film 78 having a thickness of 2 nm, a tunnel insulating layer MgO film 77 having a thickness of 1 nm, a pinned CoFe film 76 having a thickness of 3 nm, and a 1 nm thickness. A Ru film 75, a pinned CoFe film 74 having a thickness of 3 nm, an antiferromagnetic PtMn film 73 having a thickness of 20 nm, and a Ta film 72 having a thickness of 50 nm are stacked in this order. As shown in FIG. 12, the readout structure 52 composed of the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 has a circular shape with a diameter of 0.2 μm. The CoPt film 87 and the PtMn film 86 are firmly exchange coupled.
 なお、図11Aは、ピン層CoFe膜76の磁化方向とフリー層NiFe膜78の磁化方向とが“平行”な状態である低抵抗状態(抵抗値:R)を示し、例えばデータ“0”に対応付けることができる。一方、図11Bは、ピン層CoFe膜76の磁化方向とフリー層NiFe膜78の磁化方向とが“反平行”な状態である高抵抗状態(抵抗値:R+ΔR)を示し、例えばデータ“1”に対応付けることができる。 FIG. 11A shows a low resistance state (resistance value: R) where the magnetization direction of the pinned CoFe film 76 and the magnetization direction of the free NiFe film 78 are “parallel”. Can be associated. On the other hand, FIG. 11B shows a high resistance state (resistance value: R + ΔR) in which the magnetization direction of the pinned CoFe film 76 and the magnetization direction of the free NiFe film 78 are “anti-parallel”. For example, data “1” Can be associated.
 次に、図10、図11A及び図11Bを参照して、データの書き込み動作について説明する。まず、ワード線制御回路62は、書き込みを行うワードアドレスの書き込みワード線57を選択し、所定の電圧を印加する。それにより、対応する書き込み選択トランジスタ56をオン状態になる。一方、ビット線制御回路61は、書き込みを行うビットアドレスのビット線51を選択し、所定の電圧を印加する。それにより、対応する記憶構造体53は、内部に電流が流れることで発熱する。その発熱により、その記憶構造体53の反強磁性体CoFe膜87を所望の温度(例示:290℃)に昇温する。ここで、ビット線51に流れる電流の向きにより、二方向の磁場のうちのいずれかの方向の磁場(書き込まれるデータに対応する方向)が発生する。それにより、CoFe膜87の磁化方向は、書き込まれるデータに対応する方向を有する磁場に沿った方向に向く。このとき、記憶構造体53のPtMn膜86はCoFe膜74の磁化方向に従い磁化状態が変化する温度になっている。そのため、PtMn膜86は書き込まれるデータに対応する方向を有する印加磁場に沿った方向に向く。次に、書き込み選択トランジスタ56をオフ状態にするとPtMn膜86はCoFe膜87の磁化方向を支持する磁化状態となる。このため、ビット線電位を下げても磁場を停止した後もCoFe膜87の磁化方向は固定されたままとなる。このように記憶構造体53のCoFe膜87の磁化方向を所望の方向(書き込まれるデータに対応する方向)に設定することでデータの書き込みができる。このとき、CoFe膜87とCoFeB膜78との静磁結合により、CoFeB膜78の磁化方向もまた書き込まれるデータに対応する方向に向く。 Next, the data write operation will be described with reference to FIGS. 10, 11A, and 11B. First, the word line control circuit 62 selects a write word line 57 of a word address to be written and applies a predetermined voltage. Accordingly, the corresponding write selection transistor 56 is turned on. On the other hand, the bit line control circuit 61 selects a bit line 51 of a bit address to be written and applies a predetermined voltage. As a result, the corresponding memory structure 53 generates heat when a current flows therethrough. Due to the heat generation, the antiferromagnetic CoFe film 87 of the memory structure 53 is heated to a desired temperature (eg, 290 ° C.). Here, depending on the direction of the current flowing through the bit line 51, a magnetic field in one of the two magnetic fields (direction corresponding to the data to be written) is generated. Thereby, the magnetization direction of the CoFe film 87 is directed along the magnetic field having a direction corresponding to the data to be written. At this time, the PtMn film 86 of the memory structure 53 is at a temperature at which the magnetization state changes according to the magnetization direction of the CoFe film 74. Therefore, the PtMn film 86 is oriented in a direction along the applied magnetic field having a direction corresponding to the data to be written. Next, when the write selection transistor 56 is turned off, the PtMn film 86 enters a magnetization state that supports the magnetization direction of the CoFe film 87. For this reason, even if the bit line potential is lowered, the magnetization direction of the CoFe film 87 remains fixed even after the magnetic field is stopped. In this way, data can be written by setting the magnetization direction of the CoFe film 87 of the memory structure 53 to a desired direction (direction corresponding to the data to be written). At this time, due to magnetostatic coupling between the CoFe film 87 and the CoFeB film 78, the magnetization direction of the CoFeB film 78 is also directed to the direction corresponding to the data to be written.
 次に、データの読み出し動作についてであるが、本実施例に係るデータの読み出し動作は第一の実施例と同様であるのでその説明を省略する。 Next, regarding the data read operation, the data read operation according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
 次に、図11A及び図11Bを参照して、記憶構造体53と読み出し構造体52の製造方法について説明する。選択トランジスタ54や書き込み選択トランジスタ56を含むトランジスタ、配線等が形成された半導体基板(図示されず)上に、下層配線と接続されるタングステンプラグ70を設けたSiO層間絶縁膜71を100nm形成する。次に、SiO層間絶縁膜71上に、Ta膜85を20nm、反強磁性体PtMn膜86を20nm、磁性体CoFe膜87を3nm、Ta膜88を50nm、この順にスパッタリング法により積層して成膜する。次に、フォトリソグラフィ技術とRIEにより記憶構造体形状にTa膜88を加工する。そして、アッシング処理によりレジストを除去した後、Ta膜88をマスクとして、ミリング法によりCoFe膜87からTa膜85を加工する。これにより記憶構造体53が形成される。次に、基板全面を覆うようにSiO層間絶縁膜(図示されず)を50nmCVD法で成膜した後、CMPにより平坦化し、Ta膜88表面を露出させる。続いて、SiN膜(図示されず)を20nmとSiO層間絶縁膜(図示されず)を400nm形成する。そして、そこにビット線用の溝を開口し、Cu膜93(ビット線51)を埋め込む。その後、基板全面を覆うようにTa膜79を10nm、フリー層NiFe膜78を2nm、トンネル絶縁層MgO膜77を1nm、ピン層CoFe膜76を3nm、Ru膜75を1nm、ピン層CoFe膜74を3nm、反強磁性体PtMn膜73を20nm、Ta膜72を50nm、この順にスパッタリング法により積層して成膜する。その後、275℃2時間1T程度の磁場中でアニールし、ピン層(CoFe膜74、CoFe膜76)の磁化方向を設定する。続いて、フォトリソグラフィ技術とRIEにより読み出し構造体形状にTa膜72を加工する。アッシング処理によりレジストを除去した後、Ta膜72をマスクとして、ミリング法によりPtMn膜73からTa膜79を加工する。これにより、読み出し構造体52が形成できる。本実施例のフリー層形状は直径が0.2μmの円形である。これ以降のプロセスは第二の実施例と同様であるので、その説明を省略する。 Next, with reference to FIGS. 11A and 11B, a method for manufacturing the memory structure 53 and the read structure 52 will be described. An SiO 2 interlayer insulating film 71 provided with a tungsten plug 70 connected to a lower layer wiring is formed to 100 nm on a semiconductor substrate (not shown) on which transistors including the selection transistor 54 and the write selection transistor 56, wirings, and the like are formed. . Next, on the SiO 2 interlayer insulating film 71, the Ta film 85 is laminated by 20 nm, the antiferromagnetic PtMn film 86 is 20 nm, the magnetic CoFe film 87 is 3 nm, the Ta film 88 is laminated by 50 nm in this order. Form a film. Next, the Ta film 88 is processed into a memory structure shape by photolithography and RIE. Then, after removing the resist by ashing, the Ta film 85 is processed from the CoFe film 87 by the milling method using the Ta film 88 as a mask. Thereby, the memory structure 53 is formed. Next, an SiO 2 interlayer insulating film (not shown) is formed by a 50 nm CVD method so as to cover the entire surface of the substrate, and then planarized by CMP to expose the surface of the Ta film 88. Subsequently, a SiN film (not shown) is formed with a thickness of 20 nm, and a SiO 2 interlayer insulating film (not shown) is formed with a thickness of 400 nm. Then, a bit line groove is opened there, and a Cu film 93 (bit line 51) is embedded. Thereafter, the Ta film 79 is 10 nm, the free layer NiFe film 78 is 2 nm, the tunnel insulating layer MgO film 77 is 1 nm, the pinned layer CoFe film 76 is 3 nm, the Ru layer 75 is 1 nm, and the pinned layer CoFe film 74 so as to cover the entire surface of the substrate. 3 nm, the antiferromagnetic PtMn film 73 is 20 nm, and the Ta film 72 is 50 nm, which are stacked in this order by sputtering. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours to set the magnetization direction of the pinned layer (CoFe film 74, CoFe film 76). Subsequently, the Ta film 72 is processed into a readout structure shape by photolithography and RIE. After removing the resist by ashing, the Ta film 79 is processed from the PtMn film 73 by the milling method using the Ta film 72 as a mask. Thereby, the readout structure 52 can be formed. The free layer shape of the present example is a circle having a diameter of 0.2 μm. Since the subsequent processes are the same as those in the second embodiment, the description thereof is omitted.
 本実施例では、反強磁性体自体(記憶構造体53自体)を発熱させているため、第二の実施例で用いた抵抗体55が必要ない。また、記憶構造体53と読み出し構造体53で配線(ビット線51)を共有することができる。それにより、磁性抵抗記憶装置の素子構成を簡略化でき、微細化が容易となる。 In this embodiment, since the antiferromagnetic material itself (memory structure 53 itself) is heated, the resistor 55 used in the second embodiment is not necessary. In addition, the memory structure 53 and the read structure 53 can share the wiring (bit line 51). As a result, the element configuration of the magnetoresistive memory device can be simplified and miniaturization is facilitated.
 磁性抵抗記憶素子におけるフリー層やピン層として磁性体や磁性体同士を磁気的に結合させる非磁性体を複数積層した構成を用いても良い。 A structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
 (第四の実施例)
 次に、本発明の実施の形態に係る第四の実施例について説明する。図13は、本発明の実施の形態に係る第四の実施例として磁気抵抗記憶装置のメモリアレイ部の構成を示す回路図である。図14A及び図14Bは、本発明の実施の形態に係る第四の実施例として磁気抵抗記憶装置の主要部の構成を示す断面図である。ただし、図14Aは低抵抗状態を示し、図14Bは高抵抗状態をそれぞれ示す。
(Fourth embodiment)
Next, a fourth example according to the embodiment of the present invention will be described. FIG. 13 is a circuit diagram showing a configuration of a memory array portion of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention. 14A and 14B are cross-sectional views showing the configuration of the main part of a magnetoresistive memory device as a fourth example according to the embodiment of the present invention. However, FIG. 14A shows a low resistance state, and FIG. 14B shows a high resistance state.
 図13を参照して、磁気抵抗記憶装置のメモリアレイ部63は、複数のワード線50と、複数のビット線51と、複数の読み出し構造体52と、複数の記憶構造体53と、複数の選択トランジスタ54と、複数の書き込み選択トランジスタ56と、複数の書き込みワード線57と、複数の書き込みビット線94と、ワード線制御回路61と、ビット線制御回路62とを具備する。複数のワード線50は、一方向(X方向)に延在している。複数のビット線51は、一方向(Y方向)に延在している。複数の読み出し構造体52は、アレイ状に配置されている。複数の読み出し構造体52の各々は、対応するビット線51上に配置されている。複数の記憶構造体53は、アレイ状に配置されている。複数の記憶構造体53の各々は、対応する書き込みビット線94の下側に接して配置されている。複数の選択トランジスタ54は、複数の読み出し構造体52に対応して配置されている。複数の選択トランジスタ56は、複数の記憶構造体53に対応して配置されている。複数の書き込みワード線57は、一方向(X方向)に延在している。複数の書き込みビット線94は、一方向(Y方向)に延在している。読み出し構造体52の一つの端子はビット線51に、もう一つの端子は選択トランジスタ54のドレインに接続される。選択トランジスタ54のソースは接地される。選択トランジスタ54のゲートは、対応するワード線50に接続される。記憶構造体53の一方の端子は書き込みビット線94に、書き込みビット線94とは反対の面に設けられた端子は書き込み選択トランジスタ56のドレインに接続される。書き込み選択トランジスタ56のソースは接地される。書き込み選択トランジスタ56のゲートは、対応する書き込みワード線57に接続される。ワード線制御回路61は、複数のワード線50の一端を接続され、各ワード線50の選択、電流/電圧の印加を制御する。更に、複数の書き込みワード線57の一端を接続され、各書き込みワード線57の選択、電流/電圧の印加を制御する。ビット線制御回路62は、複数のビット線51の一端を接続され、各ビット線51の選択、電流/電圧の印加を制御する。更に、複数の書き込みビット線94の一端を接続され、各書き込みビット線94の選択、電流/電圧の印加を制御する。メモリセル60は、上記の読み出し構造体52と記憶構造体53と選択トランジスタ54と書き込み選択トランジスタ56とを備えている。メモリアレイ部63は、アレイ上に配置された複数のメモリセル60を有している。なお、本実施例では、記憶構造体53は昇温手段11として機能し、書き込みビット線94は磁化方向設定手段12として機能する。 Referring to FIG. 13, the memory array unit 63 of the magnetoresistive memory device includes a plurality of word lines 50, a plurality of bit lines 51, a plurality of read structures 52, a plurality of memory structures 53, and a plurality of memory structures 53. A selection transistor 54, a plurality of write selection transistors 56, a plurality of write word lines 57, a plurality of write bit lines 94, a word line control circuit 61, and a bit line control circuit 62 are provided. The plurality of word lines 50 extend in one direction (X direction). The plurality of bit lines 51 extend in one direction (Y direction). The plurality of readout structures 52 are arranged in an array. Each of the plurality of read structures 52 is disposed on the corresponding bit line 51. The plurality of storage structures 53 are arranged in an array. Each of the plurality of storage structures 53 is arranged in contact with the lower side of the corresponding write bit line 94. The plurality of selection transistors 54 are arranged corresponding to the plurality of readout structures 52. The plurality of selection transistors 56 are arranged corresponding to the plurality of storage structures 53. The plurality of write word lines 57 extend in one direction (X direction). The plurality of write bit lines 94 extend in one direction (Y direction). One terminal of the read structure 52 is connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 54. The source of the selection transistor 54 is grounded. The gate of the selection transistor 54 is connected to the corresponding word line 50. One terminal of the memory structure 53 is connected to the write bit line 94, and a terminal provided on the surface opposite to the write bit line 94 is connected to the drain of the write selection transistor 56. The source of the write selection transistor 56 is grounded. The gate of the write selection transistor 56 is connected to the corresponding write word line 57. The word line control circuit 61 is connected to one end of a plurality of word lines 50 and controls selection of each word line 50 and application of current / voltage. Further, one end of a plurality of write word lines 57 is connected to control selection of each write word line 57 and application of current / voltage. The bit line control circuit 62 is connected to one end of the plurality of bit lines 51 and controls selection of each bit line 51 and application of current / voltage. Further, one end of a plurality of write bit lines 94 is connected to control selection of each write bit line 94 and application of current / voltage. The memory cell 60 includes the read structure 52, the storage structure 53, the selection transistor 54, and the write selection transistor 56 described above. The memory array unit 63 has a plurality of memory cells 60 arranged on the array. In this embodiment, the storage structure 53 functions as the temperature raising means 11, and the write bit line 94 functions as the magnetization direction setting means 12.
 次に、図14A及び図14Bを参照して、記憶構造体53と読み出し構造体52の構成について説明する。書き込み選択トランジスタを含むトランジスタや、配線等が形成された半導体基板(図示されず)上に、膜厚100nmのSiO層間絶縁膜71が設けられている。SiO層間絶縁膜71中には、下層配線と接続される膜厚100nmのタングステンプラグ70が設けられている。SiO層間絶縁膜71上にタングステンプラグ70と接続されるように、膜厚20nmのTa膜85が設けられている。そのTa膜85上に膜厚20nmの反強磁性体PtMn膜86、膜厚3nmの磁性体CoFe膜87、及び膜厚50nmのTa膜88がこの順に積層されている。PtMn膜86及びCoFe膜87により構成される記憶構造体53は、例えば、直径が0.2μmの円形である。Ta膜87上には、書き込みビット線94としてのAlCu膜83が設けられている。AlCu膜83(書き込みビット線94)上には、SiO層間絶縁膜84を介して、ビット線51としての他のAlCu膜83が設けられている。AlCu膜83上には、膜厚10nmのTa膜79、膜厚2nmのフリー層NiFe膜78、膜厚1nmのトンネル絶縁層MgO膜77、膜厚3nmのピン層CoFe膜76、膜厚1nmのRu膜75、膜厚3nmのピン層CoFe膜74、膜厚20nmの反強磁性体PtMn膜73、膜厚50nmのTa膜72がこの順に積層されている。CoFe膜74、Ru膜75、CoFe膜76、MgO膜77及びCoFeB膜78で構成される読み出し構造体52の形状は、例えば、直径が0.2μmの円形である。Ta膜72上には、他のSiO層間絶縁膜71(膜厚100nm)中に埋め込まれた他のタングステンプラグ70(膜厚100nm)が設けられている。SiO層間絶縁膜71上には、選択トランジスタ54を含むトランジスタや、配線等が形成された半導体基板(図示されず)が逆向き(電子素子の搭載面を-Z方向に向ける方向)に設けられている。 Next, with reference to FIGS. 14A and 14B, configurations of the storage structure 53 and the read structure 52 will be described. A SiO 2 interlayer insulating film 71 having a thickness of 100 nm is provided on a semiconductor substrate (not shown) on which a transistor including a write selection transistor, wiring, and the like are formed. In the SiO 2 interlayer insulating film 71, a tungsten plug 70 having a thickness of 100 nm connected to the lower layer wiring is provided. A Ta film 85 having a thickness of 20 nm is provided on the SiO 2 interlayer insulating film 71 so as to be connected to the tungsten plug 70. On the Ta film 85, an antiferromagnetic PtMn film 86 having a thickness of 20 nm, a magnetic CoFe film 87 having a thickness of 3 nm, and a Ta film 88 having a thickness of 50 nm are stacked in this order. The memory structure 53 constituted by the PtMn film 86 and the CoFe film 87 is, for example, a circle having a diameter of 0.2 μm. On the Ta film 87, an AlCu film 83 as a write bit line 94 is provided. On the AlCu film 83 (write bit line 94), another AlCu film 83 as the bit line 51 is provided via the SiO 2 interlayer insulating film 84. On the AlCu film 83, a 10 nm thick Ta film 79, a 2 nm thick free layer NiFe film 78, a 1 nm thick tunnel insulating layer MgO film 77, a 3 nm thick pinned layer CoFe film 76, a 1 nm thick film. A Ru film 75, a pinned CoFe film 74 having a thickness of 3 nm, an antiferromagnetic PtMn film 73 having a thickness of 20 nm, and a Ta film 72 having a thickness of 50 nm are stacked in this order. The shape of the readout structure 52 including the CoFe film 74, the Ru film 75, the CoFe film 76, the MgO film 77, and the CoFeB film 78 is, for example, a circle having a diameter of 0.2 μm. On the Ta film 72, another tungsten plug 70 (100 nm thick) embedded in another SiO 2 interlayer insulating film 71 (100 nm thick) is provided. On the SiO 2 interlayer insulating film 71, a transistor including the selection transistor 54, a semiconductor substrate (not shown) on which wiring and the like are formed is provided in the reverse direction (direction in which the mounting surface of the electronic element is directed in the −Z direction). It has been.
 なお、図14Aは、ピン層CoFe膜76の磁化方向とフリー層NiFe膜78の磁化方向とが“平行”な状態である低抵抗状態(抵抗値:R)を示し、例えばデータ“0”に対応付けることができる。一方、図14Bは、ピン層CoFe膜76の磁化方向とフリー層NiFe膜78の磁化方向とが“反平行”な状態である高抵抗状態(抵抗値:R+ΔR)を示し、例えばデータ“1”に対応付けることができる。 FIG. 14A shows a low resistance state (resistance value: R) in which the magnetization direction of the pinned CoFe film 76 and the magnetization direction of the free layer NiFe film 78 are “parallel”. Can be associated. On the other hand, FIG. 14B shows a high resistance state (resistance value: R + ΔR) in which the magnetization direction of the pinned layer CoFe film 76 and the magnetization direction of the free layer NiFe film 78 are “antiparallel”. For example, data “1” Can be associated.
 次に、データの書き込み動作及び読み出し動作についてであるが、本実施例に係るデータの書き込み動作及び読み出し動作は第三の実施例と同様であるのでその説明を省略する。 Next, regarding the data write operation and read operation, the data write operation and read operation according to the present embodiment are the same as those of the third embodiment, and the description thereof will be omitted.
 次に、図14A及び図14Bを参照して、記憶構造体53と読み出し構造体52の製造方法について説明する。書き込み選択トランジスタ56を含むトランジスタ、配線等が形成された半導体基板(図示されず)上に、下層配線と接続されるタングステンプラグ70を設けたSiO層間絶縁膜71を100nm形成する。次に、SiO層間絶縁膜71上に、Ta膜85を20nm、反強磁性体PtMn膜86を20nm、磁性体CoFe膜87を3nm、Ta膜88を50nm、この順にスパッタリング法により積層して成膜する。次に、フォトリソグラフィ技術とRIEにより記憶構造体形状にTa膜88を加工する。そして、アッシング処理によりレジストを除去した後、Ta膜88をマスクとして、ミリング法によりCoFe膜87からTa膜85を加工する。これにより記憶構造体53が形成される。次に、基板全面を覆うようにSiO層間絶縁膜95を50nmCVD法で成膜した後、CMPにより平坦化し、Ta膜88表面を露出させる。次に、AlCu膜83を成膜し、加工して配線(書き込みビット線94)を形成する。
 一方、選択トランジスタ54を含むトランジスタ、配線等が形成された新たな半導体基板(図示されず)上に、下層配線と接続されるタングステンプラグ70を設けたSiO層間絶縁膜71を100nm形成する。次に、SiO層間絶縁膜71上に、Ta膜72を20nm、反強磁性体PtMn膜73を20nm、ピン層CoFe膜74を3nm、Ru膜75を1nm、ピン層CoFe膜76を3nm、トンネル絶縁層MgO膜77を1nm、フリー層NiFe膜78を2nm、Ta膜79を10nm、この順でスパッタリング法により積層して成膜する。その後、275℃2時間1T程度の磁場中でアニールし、ピン層(CoFe膜74、CoFe膜76)の磁化方向を設定する。続いて、フォトリソグラフィ技術とRIEにより読み出し構造体形状にTa膜79を加工する。アッシング処理によりレジストを除去した後、Ta膜79をマスクとして、ミリング法によりTa膜79からTa膜72を加工する。これにより、読み出し構造体52が形成できる。次に、基板全面を覆うようにSiO層間絶縁膜81を50nmCVD法で成膜した後、CMPにより平坦化し、Ta膜79表面を露出させる。次に、AlCu膜83を成膜し、加工して配線(ビット線51)を形成する。本実施例のフリー層形状は直径が0.2μmの円形である。両半導体基板において、良好な磁気抵抗記憶装置を選別後、その良好な磁気抵抗記憶装置である良チップを切り出し、両者を張り付ける。両者の位置合わせは、赤外線の透過映像を用いても良いし、読み出し構造体52の出力が良好となる位置を検出してその位置で固定する方法でも良い。両基板にバンプを設けることで電気的に接続することが可能である。メモリアレイ部63の外周の制御部分で接続すると端子が少なくて済む他、電源だけ接続しても良い。
Next, with reference to FIGS. 14A and 14B, a method for manufacturing the memory structure 53 and the readout structure 52 will be described. An SiO 2 interlayer insulating film 71 provided with a tungsten plug 70 connected to a lower layer wiring is formed to 100 nm on a semiconductor substrate (not shown) on which a transistor including the write selection transistor 56, wiring, and the like are formed. Next, on the SiO 2 interlayer insulating film 71, the Ta film 85 is laminated by 20 nm, the antiferromagnetic PtMn film 86 is 20 nm, the magnetic CoFe film 87 is 3 nm, the Ta film 88 is laminated by 50 nm in this order. Form a film. Next, the Ta film 88 is processed into a memory structure shape by photolithography and RIE. Then, after removing the resist by ashing, the Ta film 85 is processed from the CoFe film 87 by the milling method using the Ta film 88 as a mask. Thereby, the memory structure 53 is formed. Next, an SiO 2 interlayer insulating film 95 is formed by a 50 nm CVD method so as to cover the entire surface of the substrate, and then flattened by CMP to expose the surface of the Ta film 88. Next, an AlCu film 83 is formed and processed to form a wiring (write bit line 94).
On the other hand, an SiO 2 interlayer insulating film 71 having a tungsten plug 70 connected to the lower layer wiring is formed to a thickness of 100 nm on a new semiconductor substrate (not shown) on which a transistor including the selection transistor 54, wiring, and the like are formed. Next, on the SiO 2 interlayer insulating film 71, the Ta film 72 is 20 nm, the antiferromagnetic PtMn film 73 is 20 nm, the pinned layer CoFe film 74 is 3 nm, the Ru film 75 is 1 nm, the pinned layer CoFe film 76 is 3 nm, The tunnel insulating layer MgO film 77 is formed by laminating 1 nm, the free layer NiFe film 78 by 2 nm, and the Ta film 79 by 10 nm in this order by sputtering. Thereafter, annealing is performed in a magnetic field of about 1 T at 275 ° C. for 2 hours, and the magnetization direction of the pinned layer (CoFe film 74, CoFe film 76) is set. Subsequently, the Ta film 79 is processed into a readout structure shape by photolithography and RIE. After removing the resist by ashing, the Ta film 72 is processed from the Ta film 79 by the milling method using the Ta film 79 as a mask. Thereby, the readout structure 52 can be formed. Next, an SiO 2 interlayer insulating film 81 is formed by a 50 nm CVD method so as to cover the entire surface of the substrate, and then flattened by CMP to expose the surface of the Ta film 79. Next, an AlCu film 83 is formed and processed to form a wiring (bit line 51). The free layer shape of the present example is a circle having a diameter of 0.2 μm. In both semiconductor substrates, after selecting a good magnetoresistive memory device, a good chip which is the good magnetoresistive memory device is cut out and pasted together. The alignment between the two may be performed by using an infrared transmission image, or by detecting a position where the output of the readout structure 52 is good and fixing it at that position. Electrical connection is possible by providing bumps on both substrates. If the connection is made at the control portion on the outer periphery of the memory array section 63, the number of terminals can be reduced, and only the power source may be connected.
 本実施例では、記憶構造体53を形成する半導体基板と、読み出し構造体52を形成する半導体基板とを別の半導体基板としている。そのため、それぞれの半導体基板ではプロセスが少ないので歩留まりを向上させることができる。また、良チップを選別した後に、選別されたチップの貼り付けを行うため、良品率の向上が期待できる。 In this embodiment, the semiconductor substrate on which the memory structure 53 is formed and the semiconductor substrate on which the reading structure 52 is formed are different semiconductor substrates. Therefore, since each semiconductor substrate has few processes, the yield can be improved. Further, since the selected chips are attached after selecting the good chips, an improvement in the non-defective product rate can be expected.
 磁性抵抗記憶素子におけるフリー層やピン層として磁性体や磁性体同士を磁気的に結合させる非磁性体を複数積層した構成を用いても良い。 A structure in which a plurality of nonmagnetic materials that magnetically couple magnetic materials or magnetic materials to each other may be used as a free layer or a pinned layer in the magnetoresistive memory element.
 以上説明したように、本発明によれば、加熱を必要とする部位(記憶構造体の反強磁性体)と素子の信頼性にとって重要な部位(読み出し構造体の非磁性体)との距離を、従来の数nmから100nm程度以上に広げることができる。そのため、加熱による信頼性劣化を抑制することができる。また、反強磁性体と磁性体との交換結合を用いて記憶構造体にデータを記憶するため、熱擾乱により確率的にデータが破壊される従来のMTJと比較して、熱擾乱に強く極めてデータが破壊され難い。加えて、多値記憶が可能となる。更に、記憶素子(記憶構造体)と読み出し素子(読み出し構造体)とが異なるため、読み出し素子が記憶素子に書き込む際の熱の影響を受けにくく、信頼性が向上できるという効果が得られる。これにより、高信頼性多値磁気抵抗記憶装置が実現できる。 As described above, according to the present invention, the distance between a portion that requires heating (an antiferromagnetic material of the memory structure) and a portion that is important for the reliability of the element (the nonmagnetic material of the readout structure) is increased. It can be expanded from the conventional several nm to about 100 nm or more. Therefore, reliability deterioration due to heating can be suppressed. In addition, since data is stored in the memory structure using exchange coupling between the antiferromagnetic material and the magnetic material, the data is stochastically resistant to thermal disturbance compared to the conventional MTJ in which data is stochastically destroyed by thermal disturbance. Data is hard to be destroyed. In addition, multilevel storage is possible. Further, since the memory element (memory structure) and the reading element (reading structure) are different from each other, the reading element is hardly affected by heat when writing to the memory element, and the reliability can be improved. Thereby, a highly reliable multi-value magnetoresistive memory device can be realized.
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、技術的に矛盾が無い限り、各実施例の技術は、その全部又は一部を互いに組み合わせて使用することができる。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. In addition, as long as there is no technical contradiction, all or part of the techniques of the embodiments can be used in combination with each other.
 この出願は、2008年8月18日に出願された特許出願番号2008-209913号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2008-209913 filed on Aug. 18, 2008, claiming the benefit of priority from that application, the disclosure of that application should be cited Is incorporated here as it is.

Claims (14)

  1.  磁化方向を固定した第1の磁性体と第1の非磁性体とデータにより磁化状態が変化する第2の磁性体とを積層した第1の構造体と、
     反強磁性体と第3の磁性体とを積層した第2の構造体と、
     前記反強磁性体を所望の温度に昇温する昇温手段と、
     前記第3の磁性体の磁化方向を所望の方向に向ける磁化方向設定手段とを具備し、
     前記反強磁性体と前記第3の磁性体とが交換結合し、
     前記第2の磁性体と前記第3の磁性体とが磁気的に結合する
     磁気抵抗記憶装置。
    A first structure in which a first magnetic body whose magnetization direction is fixed, a first non-magnetic body, and a second magnetic body whose magnetization state changes according to data;
    A second structure in which an antiferromagnetic material and a third magnetic material are stacked;
    A temperature raising means for raising the temperature of the antiferromagnetic material to a desired temperature;
    Magnetization direction setting means for directing the magnetization direction of the third magnetic body in a desired direction,
    The antiferromagnetic material and the third magnetic material are exchange coupled,
    A magnetoresistive storage device in which the second magnetic body and the third magnetic body are magnetically coupled.
  2.  前記昇温手段は、前記第2の構造体内又はその近傍に設けられ、自身を流れる電流により発熱して前記反強磁性体を前記所望の温度に昇温する
     請求の範囲1に記載の磁気抵抗記憶装置。
    The magnetoresistance according to claim 1, wherein the temperature raising means is provided in or near the second structure and generates heat by a current flowing through the second structure to raise the temperature of the antiferromagnetic material to the desired temperature. Storage device.
  3.  前記昇温手段は、前記第2の構造体とは別に設けられた抵抗体であり、
     前記抵抗体は、自身を流れる電流により発熱して前記反強磁性体を前記所望の温度に昇温する
     請求の範囲2に記載の磁気抵抗記憶装置。
    The temperature raising means is a resistor provided separately from the second structure,
    The magnetoresistive storage device according to claim 2, wherein the resistor generates heat by a current flowing through the resistor to raise the temperature of the antiferromagnetic material to the desired temperature.
  4.  前記昇温手段が前記第2の構造体自体であり、
     前記第2の構造体は、自身を流れる電流により発熱して前記反強磁性体を前記所望の温度に昇温する
     請求の範囲2に記載の磁気抵抗記憶装置。
    The temperature raising means is the second structure itself;
    The magnetoresistive storage device according to claim 2, wherein the second structure generates heat by a current flowing through the second structure to raise the temperature of the antiferromagnetic material to the desired temperature.
  5.  前記磁化方向設定手段が前記第2の構造体近傍に設けられた配線であり、
     前記第2の構造体は、前記配線に流れる電流で誘起される磁場により前記第3の磁性体の前記磁化方向を前記所望の方向に向ける
     請求の範囲1乃至4のいずれか一項に記載の磁気抵抗記憶装置。
    The magnetization direction setting means is a wiring provided in the vicinity of the second structure;
    5. The second structure body according to claim 1, wherein the magnetization direction of the third magnetic body is directed to the desired direction by a magnetic field induced by a current flowing in the wiring. 6. Magnetoresistive memory device.
  6.  前記磁化方向設定手段が、前記第3の磁性体に磁場を印加する磁場発生装置である
     請求の範囲1乃至4のいずれか一項に記載の磁気抵抗記憶装置。
    The magnetoresistive storage device according to any one of claims 1 to 4, wherein the magnetization direction setting unit is a magnetic field generator that applies a magnetic field to the third magnetic body.
  7.  前記第2の磁性体の磁化容易方向及び前記第3の磁性体の磁化容易方向が、どちらも面内方向、どちらも面にほぼ垂直な方向、及び、一方が面内方向で他方が面にほぼ垂直な方向、のいずれかである
     請求の範囲1乃至6のいずれか一項に記載の磁気抵抗記憶装置。
    The easy magnetization direction of the second magnetic material and the easy magnetization direction of the third magnetic material are both in-plane directions, both directions substantially perpendicular to the surface, and one is in-plane direction and the other is in the surface. The magnetoresistive storage device according to claim 1, wherein the magnetoresistive storage device is in a substantially vertical direction.
  8.  前記第2の磁性体の磁化容易方向及び前記第3の磁性体の磁化容易方向がどちらも面内方向であり、
     前記第2の磁性体の形状及び前記第3の磁性体の形状は、どちらも略円形状である
     請求の範囲7に記載の磁気抵抗記憶装置。
    Both the easy magnetization direction of the second magnetic body and the easy magnetization direction of the third magnetic body are in-plane directions,
    The magnetoresistive storage device according to claim 7, wherein both the shape of the second magnetic body and the shape of the third magnetic body are substantially circular.
  9.  前記昇温手段は、前記第2の構造体毎に配置されている
     請求の範囲1乃至8のいずれか一項に記載の磁気抵抗記憶装置。
    The magnetoresistive storage device according to claim 1, wherein the temperature raising unit is disposed for each of the second structures.
  10.  前記磁化方向設定手段は、前記第2の構造体毎に配置されている
     請求の範囲1乃至9のいずれか一項に記載の磁気抵抗記憶装置。
    The magnetoresistive storage device according to any one of claims 1 to 9, wherein the magnetization direction setting means is arranged for each of the second structures.
  11.  前記所望の温度が200℃以上である
     請求の範囲1乃至10のいずれか一項に記載の磁気抵抗記憶装置。
    The magnetoresistive storage device according to any one of claims 1 to 10, wherein the desired temperature is 200 ° C or higher.
  12.  前記反強磁性体と前記第1の非磁性体との最短距離が、100nm以上である
     請求の範囲1乃至11のいずれか一項に記載の磁気抵抗記憶装置。
    The magnetoresistive storage device according to any one of claims 1 to 11, wherein a shortest distance between the antiferromagnetic material and the first nonmagnetic material is 100 nm or more.
  13.  請求の範囲1乃至12のいずれか一項に記載の磁気抵抗記憶装置を準備することと、
     前記昇温手段により前記反強磁性体を所望の温度に昇温し、前記磁化方向設定手段により前記第3の磁性体の磁化方向を書き込むデータに対応した方向に設定することと、
     前記昇温手段及び前記磁化方向設定手段を停止して前記反強磁性体を降温し、前記第3の磁性体の前記磁化方向を固定することと
     を具備する
     磁気抵抗記憶装置の書き込み方法。
    Preparing the magnetoresistive storage device according to any one of claims 1 to 12,
    Raising the temperature of the antiferromagnetic material to a desired temperature by the temperature raising means, and setting the magnetization direction of the third magnetic material to a direction corresponding to data to be written by the magnetization direction setting means;
    A method of writing to a magnetoresistive storage device comprising: stopping the temperature raising means and the magnetization direction setting means to lower the temperature of the antiferromagnetic material and fixing the magnetization direction of the third magnetic material.
  14.  前記昇温手段の停止のタイミングが、前記磁化方向設定手段の停止のタイミングの前である
     請求の範囲13に記載の磁気抵抗記憶装置の書き込み方法。
    The writing method of the magnetoresistive storage device according to claim 13, wherein the timing of stopping the temperature raising means is before the timing of stopping the magnetization direction setting means.
PCT/JP2009/062713 2008-08-18 2009-07-14 Magnetoresistive storage device WO2010021213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-209913 2008-08-18
JP2008209913 2008-08-18

Publications (1)

Publication Number Publication Date
WO2010021213A1 true WO2010021213A1 (en) 2010-02-25

Family

ID=41707091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062713 WO2010021213A1 (en) 2008-08-18 2009-07-14 Magnetoresistive storage device

Country Status (1)

Country Link
WO (1) WO2010021213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533190A (en) * 2009-07-13 2012-12-20 シーゲイト テクノロジー エルエルシー Resistive sensing element assisted by static magnetic field

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230468A (en) * 2000-02-17 2001-08-24 Sharp Corp Magnetic tunnel junction element and magnetic memory using the same
JP2002208681A (en) * 2001-01-11 2002-07-26 Canon Inc Magnetic thin-film memory element, magnetic thin-film memory, and information recording method
JP2006179694A (en) * 2004-12-22 2006-07-06 Sony Corp Memory element
JP2006332218A (en) * 2005-05-25 2006-12-07 Hitachi Ltd Magnetic recording apparatus using heat assist type spin injection magnetization reversal
JP2009147330A (en) * 2007-12-05 2009-07-02 Commiss Energ Atom Magnetic element with thermally-assisted writing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230468A (en) * 2000-02-17 2001-08-24 Sharp Corp Magnetic tunnel junction element and magnetic memory using the same
JP2002208681A (en) * 2001-01-11 2002-07-26 Canon Inc Magnetic thin-film memory element, magnetic thin-film memory, and information recording method
JP2006179694A (en) * 2004-12-22 2006-07-06 Sony Corp Memory element
JP2006332218A (en) * 2005-05-25 2006-12-07 Hitachi Ltd Magnetic recording apparatus using heat assist type spin injection magnetization reversal
JP2009147330A (en) * 2007-12-05 2009-07-02 Commiss Energ Atom Magnetic element with thermally-assisted writing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533190A (en) * 2009-07-13 2012-12-20 シーゲイト テクノロジー エルエルシー Resistive sensing element assisted by static magnetic field

Similar Documents

Publication Publication Date Title
JP5623507B2 (en) Magnetic layered body having spin torque switching and having a layer for assisting switching of spin torque
JP5015600B2 (en) Magnetic memory device
JP5338666B2 (en) Domain wall random access memory
JP5201539B2 (en) Magnetic random access memory
JP5447596B2 (en) Magnetic random access memory and operation method thereof
US8687414B2 (en) Magnetic memory element and magnetic random access memory
JP4997789B2 (en) Magnetic memory
JP2005535125A (en) Magnetic element using spin transfer and MRAM device using magnetic element
JP2001237472A (en) Magnetoresistance effect element, magnetoresistance effect storage element, and method for storing digital signal
JP2004023070A (en) Magnetoresistive effect element, magnetic memory device, and method of manufacturing them
JP2008171882A (en) Storage element and memory
JP5504704B2 (en) Memory element and memory
JP2014072393A (en) Storage element, storage device, magnetic head
JP2012028489A (en) Magnetic storage device
WO2010053039A1 (en) Initialization method for a magnetic storage element
JP2005203702A (en) Magnetoresistice effect element and magnetic memory device
JP2004303837A (en) Magnetic storage cell, magnetic memory device, and its manufacturing method
JP2003188359A (en) Magneto-resistive device including magnetically soft synthetic ferrimagnet reference layer
JP2004087870A (en) Magnetoresistive effect element and magnetic memory device
JP5445029B2 (en) Magnetoresistive element and domain wall random access memory
JP2002353417A (en) Magnetoresistive effect element and magnetic memory device
JP4492052B2 (en) Magnetic storage cell and magnetic memory device
JP2004311513A (en) Magnetic memory device and its manufacturing method
JP5625380B2 (en) Magnetoresistive memory element and magnetic random access memory
WO2010021213A1 (en) Magnetoresistive storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09808149

Country of ref document: EP

Kind code of ref document: A1