WO2010020107A1 - 号码自动路由方法、更新方法、撤销方法、路由器及设备 - Google Patents

号码自动路由方法、更新方法、撤销方法、路由器及设备 Download PDF

Info

Publication number
WO2010020107A1
WO2010020107A1 PCT/CN2009/000846 CN2009000846W WO2010020107A1 WO 2010020107 A1 WO2010020107 A1 WO 2010020107A1 CN 2009000846 W CN2009000846 W CN 2009000846W WO 2010020107 A1 WO2010020107 A1 WO 2010020107A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
nlri
routing
bgp
router
Prior art date
Application number
PCT/CN2009/000846
Other languages
English (en)
French (fr)
Inventor
葛澍
孙金霞
尤梦
李伟
李威
聂宇田
李跃
魏丽红
蔺思涛
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to US13/059,934 priority Critical patent/US8665887B2/en
Priority to EP09807806.6A priority patent/EP2320611B1/en
Publication of WO2010020107A1 publication Critical patent/WO2010020107A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/52Multiprotocol routers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/741Routing in networks with a plurality of addressing schemes, e.g. with both IPv4 and IPv6

Definitions

  • the invention belongs to the field of computer networks, and relates to an extended MP-BGP, in particular to an automatic number routing method and a router based on extended MP-BGP in a communication network. Background technique
  • Border Gateway Protocol defined in the standard RFC 1771, BGP-4, can only manage the routing information of the network layer protocol IPv4.
  • IPv4 IPv6, IPX, L3VPN, etc.
  • IPv6 IPv6, IPX, L3VPN, etc.
  • the IETF has released the standard RFC2858 (Multiprotocol Extensions for BGP-4, BGP-4 multi-protocol extension) and RFC 4760.
  • the extended standard defines the Multi-Protocol Extended Border Gateway Protocol (MultiProtocol-BGP).
  • MP-BGP can support multiple network protocols, such as IPv6, IPX, and L3VPN.
  • MP-BGP extensions are backward compatible, ie routers that support MP-BGP can work simultaneously with routers that do not support MP-BGP.
  • the three pieces of information related to IPv4 are carried by the UPDATE message.
  • the three pieces of information are: Network Layer Reachability Information (NLRI) and the next hop attribute in the path attribute. (NEXT-HOP), the aggregate attribute ( AGGREGATOR ) in the path attribute.
  • the path attribute is included in the UPDATE message, regardless of whether the routing information forwarded by the UPDATE message contains NLRI information or only withdrawn information (Withdrawn).
  • the next hop information (provided by the Next-HOP attribute) is meaningful only when the destination address is reachable, and it does not make sense when the destination is unreachable (Withdrawn). Therefore, the notification of destination reachable information should be The notification of the associated next hop information is associated, and the advertisement of the destination reachable information should be isolated from the announcement of the revoked routing information.
  • BGP-4 needs to reflect network layer protocol information to NLRI and NEXT-HOP.
  • MP-BGP in RFC 2858 defines two new path attributes, namely:
  • the multi-protocol NLRI (Multi-Protocol Reachable NLRI, nicknamed MP_REACH_NLRI) attribute is used to carry a group that aggregates reachable destination information and provides next hop information for forwarding these reachable destination information.
  • Multi-protocol unreachable NLRI Multiprotocol Unreachable NLRI, nickname MPJJNREACH - NLRI
  • Both of these attributes are optional non-transitive. If the BGP speaker does not provide multi-protocol support, it simply ignores the information with these attributes and does not pass it to other BGP speakers.
  • MP_REACH-NLRI attribute The MP_REACH-NLRI attribute, MP-UNREACH-NLRI attribute, NLRI Encoding processing, error handling, and BGP capability notification for MP-BGP are described in detail below.
  • MP_REACH — NLRI attribute This attribute type code is 14, which is an optional non-forwarding attribute, used in the following situations: (a) advertising an available route to a neighbor; (b) allowing a router to advertise its network layer address, the network layer address is like the next The hop information is used to indicate the destination listed in the network layer reachable information field of the MP_NLRI attribute.
  • the MP-REACH-NLRI attribute coding structure is shown in Figure 1. The usage and meaning of each field is as follows:
  • AFI Address Family Identifier
  • SAFI Subsequent Address Family Identifier
  • Next Length of Next Hop Network Address A byte length next hop address length field indicating the length of the next hop address.
  • This field is variable in length and contains the address of the next router to the destination system.
  • NLRI Network Layer Reachability Information
  • the MP_REACH_NLRI attribute includes NEXT-HOP information (such as Length of Next Hop Network Address and Network Address of Next Hop) and NLRI, the NLRI in the BGP-4 protocol is no longer directly carried in the UPDATE message with the MP_REACH_NLRI attribute. And NEXT-HOP attributes. If the UPDATE message received by the MP-BGP router directly includes the NEXT-HOP attribute, the router should ignore the UPDATE message.
  • NEXT-HOP information such as Length of Next Hop Network Address and Network Address of Next Hop
  • MP_UNREACH_NLRI attribute This attribute type code is 15, which is an optional non-forwarding attribute used to revoke multiple unavailable routes.
  • Address Family Identifier This field carries the network layer protocol identifier associated with the underlying NLRI. The value currently defined by this field is specified in RFC 1700 (see the Address Family Numbers section).
  • SAFI Subsequent Address Family Identifier
  • NLRI encoding (13) NLRI encoding (NLRI encoding) processing.
  • the network layer reachability information is encoded into one or several binary groups similar to those shown in FIG. The usage and meaning of each field is as follows: Length: This field indicates the length of the address prefix by bit. If it is all zeros, it means that all addresses are matched.
  • Prefix This field contains an address prefix that is packed into full bytes in bits. The padding bit does not affect the true value of the prefix.
  • the BGP speaker determines that the MP_REACH-NLRI or MP UNREACH NLRI attribute in the UPDATE message is incorrect. Then the BGP speaker deletes all BGP routes advertised by the neighbor. If such an UPDATE message is received during the BGP session duration, the BGP speaker should ignore all error AFI/S AFI concurrent routes received in the session. In addition, if the BGP speaker receives such an UPDATE message, the BGP speaker may be in the process of BGP session. Error handling code error message (the NOTIFICATION message) indicated by the subcode error division to another 1 Shu “Update Message Error" and "Optional Attribute Error".
  • Capability Advertisement The BGP speaker to which MP-BGP is applied should use the capability notification procedure [BGP-CAP] to determine whether the speaker can use the multi-protocol extension method with a specific peer.
  • the parameter field is set to: Capability Code is set to 1 (indicating multi-protocol extension capability) Capability Length is set to 4.
  • the Capability value field in turn includes the "AFI,” domain, “Res.” domain and the "SAFI” domain. ,
  • AFI field - Address family identifier (16 bits), the AFI field is encoded in the same way as the AFI code set in the multi-protocol extension.
  • Res. Domain - Reserved (8-bit) region The sender should set its value to 0, and the receiver ignores it.
  • SAFI field Concurrent address family identifier (8 bits).
  • the SAFI field is encoded in the same way as the SAFI code set in the multi-protocol extension.
  • each BGP speaker should advertise the other party through the capability notification mechanism that it supports this particular route.
  • the RFC 2547bis standard defines a mechanism that allows service providers to use their own IP backbone to provide virtual personal network (VPN) services to customers.
  • RFC 2547bis VPN is also known as BGP/MPLS VPN because it uses BGP to distribute VPN routing information to the backbone of the provider and forwards VPN traffic from one site to the other using Multi-Protocol Label Switching (MPLS). On another site.
  • MPLS Multi-Protocol Label Switching
  • VPN clients manage their own networks and use the RFC 1918 private address space. Different VPN clients using the same private IPv4 address will cause address overlap, which will make BGP routing difficult because BGP assumes that each IPv4 address it carries is globally unique.
  • BGP/MPLS VPN supports a mechanism to convert non-unique IP addresses into globally unique addresses by using the VPN-IPv4 address family and deploying Multi-Protocol BGP Extensions (MP-BGP).
  • the VPN-IPv4 address prefix is a total of 12 bytes, including an 8-byte Route Distinguisher (RD) and a 4-byte IPv4 address prefix.
  • the VPN-IPv4 address structure includes:
  • the 8-byte RD consists of a 2-byte type field and a 6-byte value field.
  • the interpretation of the value field depends on the value of the type field.
  • the current type field defines three values: 0, 1, and 2.
  • Manager subfield 2 bytes
  • Assignment number subfield 4 bytes.
  • the manager subfield must contain an autonomous system number (ASN). If the ASN is taken from the public ASN space, it must be assigned by the appropriate authority; the allocation number subfield contains a number, which is taken from the number space managed by the enterprise. , and the enterprise has assigned the ASN specified by the manager field by the appropriate authority.
  • ASN autonomous system number
  • the value field is also composed of two subfields:
  • Assignment number subfield 2 bytes.
  • the manager subfield must contain an IP address. If the IP address is taken from the public IP address space, it must be assigned by an appropriate authority; the allocation number subfield contains a number, which is taken from the number space managed by the enterprise. , and the enterprise has assigned the IP address specified by the manager subfield.
  • the manager subfield contains a 4-byte BGP-AS4 number. If the ASN is taken from the public ASN space, it must be assigned by the appropriate authority; the allocation number subfield contains a number, which is taken from the number managed by the enterprise. Space, and the enterprise has assigned the ASN specified by the manager field by the appropriate authority.
  • This structure of RD ensures that the service provider providing the VPN backbone service can generate a unique RD, but this RI) itself has no special meaning.
  • each route (MP-BGP route) should contain the following contents:
  • VPN-IPv4 address prefix structure has been described above and will be encapsulated and encapsulated in the NLRI field of the MP-REACH-NLRI.
  • the NLRI is coded by BGP multi-protocol extension.
  • the AFI field value is 1 (because the network layer protocol associated with NLRI is still IP), indicating that the VPN-IPv4 address is carried.
  • the MP-BGP route also needs to carry the label assigned by the PE to the route.
  • This label is also encapsulated in the NLRI field.
  • RFC3107 Carrying Label Information in BGP-4
  • label can be carried, each tag has a length of 3 bytes, the upper 20 bits carry the tag value, and the lower 4 bits are reserved.
  • S bit When the last bit (S bit) is set to 1, the identifier has reached the bottom of the stack of the label stack. (The label encoding format at this time is slightly different from the standard MPLS label, and does not need to include the TTL field.)
  • the SAFI field of the MP-REACH-NLRI is used to indicate that the attribute carries the "Label” information (set the SAFI value to 4).
  • the PE may distribute all the routes that appear in the VRF, or it may aggregate these routes first and then distribute the aggregated routes. It is assumed that the PE has already assigned the label L to the route R, and the label mapping is distributed through the BGP. When the route R is the route generated by the aggregation of multiple routes in the VRF, the PE can finally determine how to forward the packet by searching for the corresponding VRF. , the label carried in the message is used for Determining the VRF of the final route, the tag information repository reflects the correspondence between the tag and the VRF; if R is not an aggregated route, the tag information library directly gives the output interface of the packet and the link layer encapsulation type. In this case, No need to find the VRF again.
  • the NLRI Encoding ⁇ format for the existing VPN-IPV4 protocol is shown in Figure 4.
  • the existing MP-BGP protocol supports routing of protocols such as IPv6, IPX, and L3VPN, but does not support routing E.164, E.214, and SP codes assigned by the enterprise itself. It cannot implement automatic routing E.164, E. .214, SP number function. Summary of the invention
  • An object of the present invention is to provide a defect that the MP-BGP protocol in the prior art does not support the routing of the E.164 segment, the E.214, and the SP code and the network structure that are not optimized by the enterprise.
  • Automatic number routing method, update method, pin method, router and number router device improve existing MP-BGP, realize automatic route number, and optimize network structure and improve efficiency.
  • An embodiment of the present invention provides an automatic number routing method, including: converting a number to be distributed into a number route, adding a dynamic routing protocol; generating a dynamic routing protocol message according to the number routing; and transmitting the dynamic routing protocol to the IP network through the IP network Transfer and distribute the number.
  • the embodiment of the invention further provides a route update method, including:
  • the first router converts the number into a number route, and adds the number routing information to the dynamic routing protocol
  • the first router transmits the dynamic routing protocol packet including the number routing information in the IP network, and sends the packet to the second router.
  • the second router parses the dynamic routing protocol packet to obtain the routing information of the number and the route of the corresponding number.
  • the embodiment of the invention further provides a route revocation method, including:
  • the first router generates a dynamic routing protocol revocation routing message including the number routing information; the first router transmits the revocation routing message to the second router through the IP network; The second router receives and parses the revocation route packet, obtains the number routing information, and deletes the number routing information in the routing table.
  • the embodiment of the present invention further provides a router, including: a configuration module, configured to add a number routing information to a dynamic routing protocol; and a processing module, configured to convert a number route to a number route, and add the number routing information to the dynamic routing protocol report.
  • the sending module is configured to send a message to the route reflector.
  • the embodiment of the present invention further provides a router, including: a receiving module, configured to receive a dynamic routing protocol packet; and a parsing module, configured to parse the received dynamic routing protocol packet, obtain number routing information, and obtain a number in one step.
  • the routing module is configured to delete the number routing information in the routing table when the received packet is an unrouted message.
  • the embodiment of the present invention further provides a number routing device, including: a storage module, configured to store a to-be-distributed number; a configuration module, configured to extend a dynamic routing protocol, convert the number to be distributed into a number route, and join the dynamic routing protocol.
  • an existing dynamic routing protocol such as MP-BGP
  • MP-BGP is extended to add number routing information to a dynamic routing protocol; when routers communicate based on numbers, through a dynamic routing protocol,
  • the extended MP-BGP can realize automatic number distribution between routers, thereby effectively optimizing the network structure and improving efficiency.
  • FIG. 1 is a schematic diagram of encoding of an MP-BGP-based NLRI attribute based on MP-BGP
  • FIG. 2 is a schematic diagram of encoding of an MP-BGP-based NLRI attribute based on MP-BGP
  • FIG. - BGP NLRI coding diagram ;
  • FIG. 4 is a schematic diagram of encoding of an NLRI for the VPN-IPV4 protocol based on MP-BGP
  • FIG. 5 is a flowchart of an embodiment of an NLRI encoding process based on MP-BGP in the automatic number routing method of the present invention
  • FIG. 6 is an NLRI coding process based on MP-BGP in the automatic number routing method of the present invention, Schematic diagram of an NLRI coding embodiment for the E.164 protocol;
  • FIG. 8 is a flowchart of an embodiment of an automatic number routing method based on MP-BGP according to the present invention
  • FIG. 9 is a schematic diagram of an embodiment of a router according to the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a router according to the present invention.
  • FIG. 11 is a schematic diagram of an embodiment of a number routing device according to the present invention. detailed description
  • the basic idea of the present invention is to use the address family identifier (AF) in MP-BGP to propose a new NLRI configuration method to implement MP-BGP automatic routing E.164, E. 214, SP number function.
  • the NLRI configuration includes MP-REACH-NLRI configuration and MP-UNREACH-NLRI configuration.
  • the MP-REACH-NLRI configuration of the present invention needs to modify the existing MP_REACH-NLRI route attributes accordingly.
  • the MP-UNREACH_NLRI configuration involved in the present invention needs to modify the existing MP-UNREACH-NLRI route attributes accordingly.
  • the following describes the MP_REACH-NLRI route attribute, MP-UNREACH-NLRI route attribute, and NLRL Encoding in the MP-BGP message format.
  • This field carries the connection identifier of the network layer protocol and the network address.
  • the value currently defined by this field is specified in RFC 1700 (see the Address Family Numbers section of the Address Family) section: Number Description
  • IP IP version 4
  • IP6 IP version 6
  • the management organization has ensured that the company does not repeat internally, and does not repeat with E.164. Although it cannot be globally unique, different RDs can be used to guarantee uniqueness. Therefore can also be used
  • SAFI Subsequent Address Family Identifier
  • the length of this field is 5 , which contains the address of the next router to the destination system.
  • the existing MP-BGP requires that the next hop label switching router (LSR) address be the same as the address prefix in the NLRI.
  • the next hop LSR address is IPv4
  • the address prefix in NLRI is 8 bytes RD+.
  • Long E.164 (or E.214, SP) number which is not a format. Therefore, the embodiment of the present invention will modify the existing MP-BGP.
  • the format of the MP-BGP next hop LSR address is an IPv4 address.
  • MP-BGP needs to process the next hop address format and is inconsistent with the address prefix format in NLRI. Routing.
  • variable length area lists the NLRI information of the available routes that will be advertised in this attribute. All NLRIs will be encoded as specified in "NLRI encoding" below.
  • NLRL listing the routes to be revoked from the service
  • Each NLRI is encoded in the manner specified in the "NLRI encoding" section below.
  • FIG. 5 is a flowchart of an MP-BGP-based NLRI encoding process in the automatic number routing method of the present invention. As shown in FIG. 5, this embodiment includes:
  • Step 501 Set the value of the AFI in the MP-REACH-NLRI path attribute or the MP_UNREACH-NLRI path attribute to the value of the address family corresponding to the network layer address E.164 protocol, E.214 protocol, or SP code.
  • Step 502 Set the IP-REACH_NLRI path attribute or the NLR of the MP-UNREACH-NLRI path attribute to have an address prefix of: a VPN-E.164 number, a VPN-E.214 number, or a VPN-SP number.
  • the VPN-E.164 number may include: an octet occupying eight bytes and a network layer address occupying a variable byte E.164 number; the VPN-E.214 number may include: an octet occupying eight bytes and a variable occupancy
  • the network layer address of the byte is the E.214 number; the VPN-SP number can include: an octet occupying eight bytes and a network layer address SP number occupying variable bytes.
  • a router may carry multiple VPNs with E.164 addresses, for example
  • the mobile communication E.164 VPN is used to establish the correspondence between the E.164 segment and the IP address of the mobile switching center (MSC).
  • the MMS E.164 VPN is used to establish the correspondence between the E.164 segment and the MMS center IP address.
  • BGP assumes that each address it carries is globally unique, but the E.164 numbers of different VPNs may overlap.
  • MP-BGP of this embodiment supports a mechanism by using VPN-E.
  • the .164 address family and the deployment of multi-protocol BGP extensions (MP-BGP) converts overlapping E.164 numbers into globally unique addresses.
  • E.164 address prefix has two different routes (prefixes are assigned to systems in different VPNs)
  • the E.164 address prefix is 1388/4.
  • the next hop is the IP address A of the MMS center.
  • the other E.164 address prefix is 1388/4.
  • the next hop is the IP address B of the HLR to which the segment belongs.
  • BGP will The prefix is treated like a route. As a result, it is possible that a destination is unreachable. To solve this problem, you need to: Allow BGP to eliminate prefix ambiguity, which can be supported by defining the VPN-E.164 number address family.
  • VPN-E.164 number address structure The following is a detailed description of the VPN-E.164 number address structure and the MP-BGP support for the VPN-E.164 number.
  • VPN-E.164 number address structure 1.31, VPN-E.164 number address structure:
  • the VPN-E.164 number address includes an 8-byte route identifier (Route Distinguishes cartridge RD) and a variable-length E.164 number.
  • the following figure illustrates the VPN-E.164 number address structure:
  • the 8-byte RD has the same meaning as defined by BGP/MPLS VPN. It consists of a 2-byte type field and a 6-byte value field. For details, refer to RFC4364 [4.2. Encoding of Route Distinguishers].
  • This structure of RD ensures that the service provider providing the backbone service can generate a unique RD, but this RD itself has no special meaning.
  • each route (MP-BGP route) should contain the following contents:
  • the IP address of the router itself is used as the MP-BGP next hop LSR address of the route. Since the existing MP-BGP requires the next hop LSR address and the address prefix in the NLRI to adopt the same address format, the present invention is described in section 1.14.
  • the MP-BGP is modified by the MP-BGP. Therefore, the format of the MP-BGP next hop LSR address referred to in this disclosure is an IPv4 address.
  • VPN-E.164 number address structure has been described above, it will be encoded and encapsulated in
  • the NLRI is extended with BGP multi-protocol, and the AFI field value is 8 (because the network layer protocol associated with NLRI is still E.164), indicating that the VPN-E.164 number address is carried.
  • the MP-BGP route of the present invention is used for user upper-layer service communication, after the data packet arrives at the receiver router, since different services are carried by different application layer protocols, it is not necessary to query the VPN routing table. Moreover, if the label is distributed, there is no requirement for the end-to-end MPLS to be run between the sender router and the receiver router. After the label is applied, the sender router cannot send it. Based on the above two considerations, labels are not distributed to E.164 routes. SAFI can be set to 1 at this time.
  • the aggregation of routes is an abbreviated number of decimal numbers. Regardless of the aggregation or not, the sender router knows that the ⁇ receiver's jurisdiction number segment and the receiver router address> pair can send the data packet.
  • the receiver distinguishes different services according to different upper layer protocols, and does not need to query the VPN routing table for forwarding. Different VPNs need to be distinguished by RT values when receiving different routes, so the RT value needs to be guaranteed.
  • Table 1 the RD concept in the existing VPN is introduced, and RD is used to distinguish different services (the introduction of RD also introduces the RT in the VPN).
  • the segment routing function can also be implemented, but a router does not support the function of processing multiple upper-layer telecommunication services.
  • Length indicates the length of the address prefix in bits. If it is all zeros, it means that all addresses are matched.
  • E.164 number address prefix (E.164 Prefix): This field contains a number address prefix, press Bits are packed into full bytes. The padding bit does not affect the true value of the prefix.
  • the NLRI code uses the BCD compact coding format, that is, 4 bits represent a decimal number, and of course other coding formats can be used.
  • the Type of RD is equal to 2
  • the ASN in Value is equal to 9808
  • the allocation number field is equal to 100.
  • the NLRI code is shown in Table 3:
  • export route-target For the output route target (export route-target, called export RT), it is encapsulated in the "Community" attribute.
  • the method is consistent with the VPN-IPv4 method. For detailed description, please refer to RFC4364.
  • FIG. 7 is a schematic diagram of an embodiment of an automatic number routing method applied to an MPL S/B GP VPN backbone network according to the present invention.
  • P1-P4 is the carrier router
  • PE is the provider edge router (Provider Edge)
  • CE is the customer edge router (Custom Edge)
  • Rl and R2 are routers running MP-BGP extended by the present invention.
  • RR1 and RR2 are route reflectors of R1 and R2.
  • Rl and R2 are in the same AS (Autonomous System) domain.
  • the extension of the MP-BGP of the present invention can be performed in the same BGP instance of a router as that of BGP-4 and MP-BGP. However, considering the performance of the router, it is recommended that the ASBR and RR of the traditional BGP-4 are set separately from the ASBR and RR of the present invention for the autonomous system border router (ASBR) and the route reflector (RR).
  • ASBR autonomous system border router
  • RR route reflector
  • exit-address - family configuration is similar to VPN-IPv4 except that VPN-IPv4 is different from the address used by the present invention.
  • VPN-E.164 number routing table 2.2, VPN-E.164 number routing table
  • the VPN100 route of R1 is shown in Table 4:
  • the VPN200 route of R1 is shown in Table 5:
  • the VPN100 route of R2 is shown in Table 6:
  • Routing code Same as the existing IP routing table, S refers to static route, and B refers to BGP.
  • the destination number prefix It has the same meaning as the destination network prefix in the existing IP routing table. However, the specific content stored in this embodiment is the E.164 number.
  • the prior art stores the IP network segment or address.
  • Number length The length of the digit of the decimal number in the destination number prefix field. Corresponds to the mask length in the existing IP routing table, but the mask length indicates the number of valid bits of the network prefix.
  • FIG. 8 is a flowchart of an embodiment of an automatic number routing method based on MP-BGP according to the present invention.
  • the method includes:
  • Step 801 Set the value of the AFI in the MP_REACH-NLRI path attribute or the MP_UNREACH-NLRI path attribute in the first router and the second router to a network layer address E.164 protocol, an E.214 protocol, or an SP code.
  • the corresponding address family takes a value;
  • Step 802 The first router sets the MP_REACH_NLRI path attribute in the UPDATE message or the address prefix of the NLRI in the MP_UNREACH_NLRI path attribute: VPN-E.164 number, VPN-E.214 number, or VPN-SP Code
  • Step 803 The first router sends the UPDATE message to the route transmitter.
  • Step 804 The route transmitter reflects the UPDATE message to the second router.
  • Step 805 The second router parses the UPDATE packet to obtain a VPN-E.164 number. VPN-E.214 number or VPN-SP code;
  • Step 806 The second router parses the VPN-E.164 number, the VPN-E.214 number, or the VPN-SP code to obtain the corresponding E.164 number, E.214 number, and SP code.
  • the above steps can be divided into two parts: the previous configuration work and the route distribution process.
  • the CE1-CE4 device is connected to two VPNs in different locations.
  • the PE1 and PE2 are connected by the MPLS backbone network.
  • LSP MPLS-specific label switching path
  • the PE1 and the PE2 pass the MP-CE.
  • BGP establishes a peer peer relationship to advertise VPN-IPv4 routes.
  • the R1 and R2 establish the extended MP-BGP peer relationship of the present invention through the RR1 and RR2 reflectors, and are used to advertise the VPN-E.164 segment route.
  • the first step is to configure the VRF on the PE.
  • PE1 and PE2 establish VRF for each VPN for the port connected to the CE to ensure the security of the VPN information.
  • the configuration task of the second step is BGP, that is, MP-BGP is configured between PE1 and PE2. This protocol ensures the correct distribution of VPN-IPv4 routes.
  • the third step is to establish an LSP.
  • PE1, PE2, and other carrier core routers (P routers, Provider Routers) in the MPLS backbone network request an LSP through the Label Distribution Protocol (LDP). Establish a switching path between all the data packets in the MPLS label switching mode.
  • LDP Label Distribution Protocol
  • Step 4 Configure the internal gateway protocol between CE and PE ( IGP , Interior Gateway
  • OSPF Open Shortest Path First
  • the fifth step is to configure Vl on R1 and R2.
  • Rl and R2 establish VRF for each VPN for each application to ensure the security of VPN information.
  • the configuration task of the sixth step is BGP, that is, the extended MP-BGP of the present invention is configured between R1 and R2, and the protocol can ensure the correct distribution of the VPN-E.164 number route.
  • the VPN-E.164 number route distribution process includes the route update and revocation process.
  • Rl, R2 establish a neighbor relationship according to the existing BGP mode, and R1 uses the BGP capability notification process (BGP-CAP) to determine whether R2 supports the extension method of the present invention for MP-BGP.
  • BGP-CAP BGP capability notification process
  • the ability to select the parameter field is set to: Capability Code is set to 1 (indicating multi-protocol extension capability). Capability Length is set to 4.
  • the Capability value field in turn includes the "AFI" domain, the "Res.” domain, and the "SAFI" domain. among them,
  • AFI field - address family identifier (16 bits), the AFI field is encoded in the same way as the AFI encoding in the NLRI of the present invention
  • Res. Domain - Reserved (8-bit) area The sender should set its value to 0, and the receiver ignores it;
  • each BGP speaker should advertise the other party through the capability notification mechanism that it supports this special route;
  • VPN100 puts the number segment routes 000, 001, 002, 009, 01111 (these routes should be marked with VPN) into VRF100 set up for VPN100;
  • the BGP protocol will read the segment routes 000, 001, 002, ..., 009, 01111 from VRF100 and convert these segment routes into VPN-E.164 routes, and then encapsulate them into MP_REACH - NLRI
  • the RT information is also encapsulated into the "Community" attribute.
  • the encapsulation of the RT is the same as that of the existing BGP/MLS VPN, and the present invention will not be described again.
  • the BGP protocol sets the loopbacklOO address of R1 to the next hop of the VPN-E.164 route; determines whether aggregation is required, and performs step 6) for the MP_REACH-NLRI attribute that does not perform segment route aggregation. Otherwise, go to step 7. ); 6)
  • the detailed encapsulation process of the MP-REACH-NLRI attribute is as follows:
  • AFI field Set to the value assigned by IANA to the present invention.
  • SAFI field Set to the value assigned by IANA to the present invention.
  • Length of Next Hop Network Address field Set to 4 to indicate that the next hop network address is IPv4 and the address length is 4.
  • Network Address of Next Hop (variable) field Set the loopbacklOO address of Rl to 10.10.10.100. This value can be changed in the configuration interface ⁇ i', for example, it can be changed to interface address or other loopback address or other address.
  • the Length field of NLRI Set to 76, the specific calculation method is as follows: The 000 segment is changed to binary by 12 bits according to BCD code, and the RD 8 byte is 64 bits long, so the valid length of the 000 segment is 76 bits.
  • Type field of NLRI Set to 2.
  • the Type of RD adopts the AS+ numbering method (for details, please refer to "21) VPN-IPv4 Address Structure, Part C of the present invention).
  • NLRI's Value Field field The upper 4 bytes are set to 100 and the lower 2 bytes are set to 1.
  • NLRI's E.164 Prefix field Set to decimal 000. The specific method is that the router according to Table 2, the number length field in VPN100 is equal to 3, and the first 3 digits of decimal are taken from the destination number prefix field, and the bit is complemented by compact BCD code. The complete byte principle is converted to binary 0000, 0000, 0000, 0000.
  • the NLRI encapsulation method for other segment routes 001, 002, ..., 009, 01111 is similar to 000 and will not be described in detail.
  • the encapsulated MP-REACH-NLRI is as shown in Table 8:
  • R1 is abbreviated according to the existing decimal number segment abbreviation algorithm.
  • the abbreviating algorithm is a recursive algorithm, and the aggregation of the segment route is realized by the abbreviated number of the segment.
  • the number of segment routes can be reduced by the aggregation of number segments to improve the efficiency of BGP update segment routing.
  • the MP_REACH_-NLRI encapsulation method is similar to step 6) except that the number of numbered segments is reduced.
  • the packaged MP-REACH-NLRI is shown in Table IX:
  • R1 sends BGP UPDATE packets to the route reflector RR1 and RR2 through the TCP protocol.
  • RR1 and RR2 reflect the BGP UPDATE packets to R2.
  • the process of the packet from CE->PE->P->PE->CE completely follows the existing BGP/MPLS VPN delivery mode, which is not described in detail in this embodiment;
  • CE->PE -> P->PE->CE is a normal IP network
  • BGP UPDATE packets can be forwarded according to normal IP packets. This process is also a prior art, and the present embodiment will not be described again;
  • the MP-REACH-NLRI of step 7) is taken as an example: MP-REACH-NLRI, R2 is obtained according to the existing MP-BGP method. According to the AFI and SAFI fields, it can be known that the MP-REACH-NLRI attribute is extended according to the foregoing embodiment, and is processed in step 11;
  • the E.164 prefix length is 8 bits
  • the 8-bit binary value 0000000 is read from the Value Field, and converted into a compact decimal BCD code.
  • the learned segment route is 00.
  • E.164 The prefix length is 8bit.
  • the compact decimal BCD code can be used to convert the E.164 prefix length to 2 in decimal.
  • the route number 01111 can be obtained.
  • R2 only receives the number segment route 00, 01111 issued by R1, so it is definitely the optimal route to put them into the BGP routing table, as shown in Table 10. Assume that R2 also receives other routers, such as the number segment route 00, 01111 issued by R3. At this time, R2 selects the optimal route into the BGP routing table according to the existing BGP preferred routing decision step. Table ten
  • R2 compares the Import RT attribute of each VPN of R2 and the Export RT attribute of the above-mentioned number segment routing 00, 01111, and loads the above-mentioned number of routes 00, 01111 from the BGP routing table into the routing table of VRF100, and the VPN100 routing of R2 is as shown in the table. Six is shown.
  • the present invention also adopts the MP-UNREACH-NLRI attribute for route revocation, and its NLRI encapsulation method is consistent with the MP_REACH-NLRI attribute.
  • Rl will encapsulate the MP-UN EACH-NLRI attribute into BGP packets and send it to R2 according to the existing MP-BGP method.
  • R2 decapsulates the BGP packet from the BGP packet by decapsulating the MP-REACH_NLRI attribute.
  • R2 deletes the number segment route 00, 01111 in the BGP routing table. At the same time, R2 deletes the routes in the VPN according to the existing BGP.
  • the upper-layer services in the VPN 100 can communicate with each other through the E.164 route.
  • the route distribution process in the VPN 200 is similar.
  • R1 searches the routing table of VPN 100, and obtains the "loopbacklOO" address of the next hop address of the service according to the longest match ratio principle
  • R1 performs B [CC is encapsulated into an IP packet, and the destination IP address is filled into the "loopbacklOO" address of R2;
  • the data packet is transmitted to R2 through the intermediate network
  • R2 decapsulates according to B ⁇ CC/SCTP/IP
  • R2 performs some processing on the upper layer to assemble the BICC response packet.
  • R2 queries the VPN100 routing table to obtain the R1 address loopbacklOO address and fill in the destination IP address.
  • the data packet is returned to R1 through the intermediate network
  • R1 performs decapsulation processing according to BICC/SCTP/IP.
  • FIG. 9 is a schematic diagram of an embodiment of a router of the present invention.
  • the embodiment includes: a configuration module 1 configured to add number routing information to a dynamic routing protocol.
  • a configuration module 1 configured to add number routing information to a dynamic routing protocol.
  • the MP_REACH-NLRI path attribute or MP-UNREACH The AFI value in the NLRI path attribute is configured as the network layer address E.164 number, E.214 number, or the address family corresponding to the SP code, and the MP_REACH-NLRI path attribute or MP_UNREACH-NLRI path
  • the address prefix of the NLRI in the attribute is configured as a VPN-E.164 number, a VPN-E.214 number, or a VPN-SP code;
  • the processing module 3 is configured to convert the number into a number route, and add the number routing information to the dynamic routing protocol packet;
  • the sending module 5 is configured to send a message to the route reflector.
  • the processing module 3 may further include: a detecting submodule, configured to determine, by using a dynamic routing protocol capability notification process, whether the receiving party supports automatic number routing; and executing a submodule, configured to convert the number when the measurement result is automatic routing support Route the number and add the number routing information to the dynamic routing protocol packet.
  • a detecting submodule configured to determine, by using a dynamic routing protocol capability notification process, whether the receiving party supports automatic number routing
  • executing a submodule configured to convert the number when the measurement result is automatic routing support Route the number and add the number routing information to the dynamic routing protocol packet.
  • the router of this embodiment can be configured as R1 in FIG. 7 to configure MP-REACH-NLRI path attribute or MPJJN EACH-NLRI path attribute, and support number routing such as E.164 number, E.214 number or SP code.
  • FIG. 10 is a schematic diagram of another embodiment of a router according to the present invention. As shown in FIG. 10, this embodiment includes:
  • the receiving module 2 is configured to receive a dynamic routing protocol packet
  • the parsing module 4 is configured to parse the received dynamic routing protocol packet, obtain the number routing information, and parse the route of the number in one step;
  • the processing module 6 is configured to delete the number routing information in the routing table when the received packet is an unrouted message.
  • the specific application of the router in this embodiment can be used as the R2 in FIG. 7 to parse the packet including the MP_REACH-NLRI path attribute or the MP_UNREACH-NLRI path attribute, and obtain the E.164 number, E.214 number or SP code. If the number is routed, or when the revocation packet is received, the corresponding number route in the routing table is deleted.
  • FIG. 11 is a schematic diagram of an embodiment of a number routing device according to the present invention. As shown in FIG. 11, the embodiment includes: a storage module 10, configured to store a to-be-distributed number;
  • the configuration module 20 is configured to extend the dynamic routing protocol, convert the number to be distributed into a number routing, and join the dynamic routing protocol to generate the encapsulated dynamic routing protocol packet.
  • the sending module 30 is configured to send a dynamic routing protocol packet.
  • the configuration module 20 can include:
  • the attribute sub-module is used to add a new value to the AFI and the SAFI in the MP-REACH_NLRI path attribute or the MP UNREACH NLRI path attribute, where the value indicates that the routing information carried by the NLRI is number routing information;
  • a prefix submodule configured to configure an address prefix of the NLRI in the MP_REACH_NLRI path attribute or the MP_UNREACH_NLRI path attribute as a number to be distributed; a generating submodule for using the path attribute in the attribute submodule and the prefix submodule Generate the extended border gateway protocol MP-BGP corresponding text.
  • the configuration module may further include: an identifier sub-module, configured to add a route identifier RD to the MP-BGP to distinguish different upper-layer services belonging to the same number when the same number belongs to different next-hop service addresses. After the route identifier RD is introduced, the route of the same segment will not be repeated in the BGP routing table. For details, see Table 1 and Table 2.
  • the foregoing embodiments of the present invention provide an extension scheme for the existing MP-BGP protocol, which implements automatic routing and distribution of numbers, such as an E.164 number, an E.214 number, and an SP code.
  • numbers such as an E.164 number, an E.214 number, and an SP code.
  • the extended MP-BGP protocol supports routing E.164 number, E.214 number, SP code, etc., and the extended MP-BGP protocol can implement between routers. The number is automatically distributed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

号码自动路由方法、 更新方法、 撤销方法、 路由器及设备 技术领域
本发明属于计算机网络领域, 涉及一种扩展的 MP-BGP, 尤其是涉及通 信网中基于扩展的 MP-BGP的号码自动路由方法及路由器。 背景技术
标准 RFC 1771中定义的传统的边界网关协议( Border Gateway Protocol , 简称 BGP ), 即 BGP-4, 只能管理网络层协议 IPv4的路由信息, 对于其它网 络层协议, 如 IPv6、 IPX, L3VPN协议等, 在跨自治系统传播时就受到一定 限制。
( 1 )对 BGP-4的扩展
作为对 BGP-4 的扩充, IETF 发布了标准 RFC2858 ( Multiprotocol Extensions for BGP-4, BGP-4的多协议扩展 )和 RFC 4760, 扩充的标准中定 义了多协议扩展边界网关协议 (MultiProtocol-BGP, 简称 MP-BGP ) , 该 MP-BGP能够支持多种网络协议, 如 IPv6、 IPX, L3VPN等。 MP-BGP扩展 是向后兼容的, 即支持 MP-BGP的路由器可以和不支持 MP-BGP的路由器同 时工作。
BGP-4使用的报文中, 与 IPv4相关的三条信息由 UPDATE报文携带, 这 三条信息分别是: 网络层可达信息( Network Layer Reachability Information, 简称 NLRI )、 路径属性中的下一跳属性(NEXT-HOP )、 路径属性中的聚合属 性( AGGREGATOR )。
在原有基于 BGP-4协议的系统中,路径属性是包含在 UPDATE报文中的, 不论 UPDATE报文转发的路由信息中包含了 NLRI信息或者只有撤销路由信 息( Withdrawn )。 对于 MP-BGP来说, 它认为下一跳信息 (由 Next-HOP属 性所提供) 仅仅在目的地址可达时有意义, 在目的地不可达的情况 ( Withdrawn )下是没有什么意义的。 所以目的地可达信息的通告应该和与之 相关的下一跳信息的通告相关联, 而目的地可达信息的通告应该与撤销路由 信息的通告隔离开来。
为实现对多种网络层协议的支持, BGP-4 需要将网络层协议的信息反映 到 NLRI及 NEXT-HOP中。 RFC2858中的 MP-BGP定义了两个新的路径属性, 分别为:
多 协 议 可 达 NLRI ( Multiprotocol Reachable NLRI , 简 称 MP_REACH_NLRI )属性, 用于承载聚集了可达目的地信息与提供转发这些 可达目的地信息的下一跳信息的组。
多 协议不可达 NLRI ( Multiprotocol Unreachable NLRI , 筒称 MPJJNREACH— NLRI )属性。 用于承载目的地不可达信息的组。
这两种属性均为可选非转发( Optional non-transitive )的。如果 BGP speaker 不提供多协议支持能力, 那就只是简单的忽略带有这些属性的信息, 同样也 不会将这些信息传递给别的 BGP发言人( BGP speaker )。
以 下 对 MP-BGP 所 涉 及 的 MP_REACH—NLRI 属 性 、 MP— UNREACH— NLRI属性、 NLRI编码( NLRI Encoding )处理、 错误处理、 以及使用 BGP能力通告进行详细说明。
( 11 ) MP_REACH— NLRI属性。 此属性类型码为 14, 是一个可选非转发 属性, 用于以下场合: (a)通告一个可用路由给邻居; (b) 允许一个路由器通 告它的网络层地址, 网络层地址就像下一跳信息一样用来指示被列在 MP_NLRI属性的网络层可达信息域中的目的地。 MP一 REACH— NLRI属性编 码结构如图 1所示。 每个字段的用法及意义如下:
地址族标识( Address Family Identifier, 简称 AFI ): 该字段携带网络层协 议与网络地址的连接标识。 MP-BGP采用地址族( Address Family )来区分不 同的网络层协议, 关于地址族的一些取值可以参考 RFC 1700 (参见 Address Family Numbers部分)。目前,系统实现了多种 MP-BGP扩展应用,包括对 IPv6 的扩展、 对 IPX的扩展、 对层 3虚拟个人网络 ( Framework for Layer 3 Virtual Private Networks , 简称 L3 VPN )的扩展等, 不同的扩展应用在各自的地址族 视图下配置。
并发地址^标识( Subsequent Address Family Identifier, 简称 SAFI ): 该 字段携带包含在属性中的网络层可达信息 (NLRI)类型的补充信息。
下一 _¾¾地址长度 ( Length of Next Hop Network Address ): 一个字节长度的 下一跳地址长度字段, 表明了下一跳地址的长度。
下一跳地址( Network Address of Next Hop ): 该字段长度可变, 包含了到 达目的系统的下一个路由器的地址。
网络层可达信息( Network Layer Reachability Information , 简称 NLRI ): 可变长度区域,列出了将在本属性中被通告的可用路由的 NLRI信息。当 SAFI 被设置为标准 RFC4760 中定义的某个值时, 所有 NLRI 将会按照 "NLRI encoding" 中指定的方式进行编码处理。
由于 MP— REACH_NLRI属性中包括了 NEXT-HOP信息(如 Length of Next Hop Network Address及 Network Address of Next Hop )及 NLRI, 因此拥有 MP_REACH_NLRI 属性的 UPDATE报文中不再直接承载 BGP-4 协议中的 NLRI及 NEXT-HOP属性。 如果 MP-BGP协议的路由器中接收到的 UPDATE 报文中直接包含了 NEXT-HOP属性, 那么该路由器应忽略该 UPDATE报文。
( 12 ) MP_UNREACH_NLRI属性。 此属性类型码为 15, 是一个可选非 转发属性,用于撤销多个不可用路由的场合。 MP— UNREACH— NLRI属性编码 结构如图 2所示。 每个字段的用法及意义如下:
地址族标识 (Address Family Identifier, 简称 AFI ): 该字段携带与下层 NLRI相关的网络层协议标识。 目前这个字段定义的值在 RFC1700中指定(参 见 Address Family Numbers部分 )。
并发地址族标识 ( Subsequent Address Family Identifier, 简称 SAFI ): 该 字段携带包含在属性中的网络层可达信息 (NLRI)类型的补充信息。
撤销路由 ( Withdrawn Routes ): 可变长度区域。 列出将要被从服务中撤 销的路由的 NLRL 当 SAFI被设置为 RFC4760定义的某个值, 每条 NLRI都 按照 "NLRI encoding" —节中指定的方式进行编码处理。 包含有 MP_LNREACH_NRLI属性的 UPDATE消息不用携带其他路径属 性。
( 13 ) NLRI 编码(NLRI encoding )处理。 网络层可达信息被编码成一 个或者若干个类似于如图 3所示的二元组。 每个字段的用法及意义如下: 长度(Length ): 该字段按位指出地址前缀的长度。 如果是全零, 那么表 示匹配所有地址。
前缀(Prefix ): 该字段包含一个地址前缀, 按位补齐成完整字节。 填充 位不影响前缀的真实值。
( 14 ) 错误处理。 如果某 BGP speaker 收到来自一个邻居的包含 MP— REACH— NLRJ或者 MP— UNREACH_NLRI属性的 UPDATE消息,而且该
BGP speaker 确定该 UPDATE 消 息 中 的 MP— REACH— NLRI 或者 MP UNREACH NLRI属性不正确, 那么该 BGP speaker则删除该邻居发布的 所有 BGP路由。 在 BGP会话持续时间中若是收到这种 UPDATE消息, 那么 BGP speaker应该忽略所有在会话中收到的错误 AFI/S AFI并发路由。 另外, 如果 BGP speaker收到这种 UPDATE消息, BGP speaker可能会中上 BGP会 话过程。 错误处理消息 (NOTIFICATION 消息)指示的错误码、 错误子码分 另1 殳为 "Update Message Error" 和 "Optional Attribute Error"。
( 15 )使用 BGP能力通告 (Capability Advertisement^ 应用了 MP-BGP的 BGP speaker应该使用能力通告过程 [BGP-CAP]来测定 speaker是否能够和一 个特定对等体使用多协议扩展的方法。 能力可选参数域的设置为: Capability Code被设置为 1 (指明多协议扩展能力)。 Capability Length被设置为 4。 Capability值域依次包括 "AFI,,域, "Res." 域和 "SAFI" 域。 其中,
AFI域 - 地址族标识符(16位), AFI域的编码方式同多协议扩展中所 设置的 AFI的编码方式。
Res. 域- 保留(8位) 区域。 发送方应当设其值为 0, 接收方则忽略它。
SAFI域- 并发地址族标识符( 8位), SAFI域的编码方式同多协议扩展 中所设置的 SAFI的编码方式。 为了能够在一对 BGP speaker之间为特定双向交换路由信息, 每个 BGP speaker都应该通过能力通告机制通告对方它支持这种特别的路由。
( 2 )对 BGP.'MPLS VPN所进行的扩展概述
RFC 2547bis标准定义了一种机制, 允许服务供应商使用自己的 IP骨干, 为客户提供虚拟个人网络(即 VPN )服务。 RFC 2547bis VPN也称为 BGP/MPLS VPN, 因为它使用 BGP把 VPN路由信息分布到供应商的骨干中, 并使用多 协议标签交换 ( MPLS, Multi-Protocol Label Switching )把 VPN流量从一个站 点转发到另一个站点上。
( 21 ) VPN-IPv4地址结构
VPN客户经當管理自己的网络,并使用 RFC 1918专用地址空间。不同的 VPN客户如果使用相同的专用 IPv4地址会造成地址重叠, 这会给 BGP路由 带来困难, 因为 BGP假设它携带的每个 IPv4地址都是全球唯一的。 为了解决 这个问题, BGP/MPLS VPN支持一种机制, 通过使用 VPN-IPv4地址家族及 部署多协议 BGP扩展 (MP-BGP),把非唯一的 IP地址转换成全球唯一的地址。
重叠地址空间提出的一个挑战是,如果传统 BGP看到同一个 IPv4地址前 缀有两条不同的路由(前缀被分配给不同 VPN中的系统), BGP将像仅有一条 路由一样处理前缀。 结果, 有一个 VPN系统是不可达的。 解决这个问题要求 一种机制, 允许 BGP消除前缀歧义, 这样就可以安装两条到达该地址的完全 不同的路由, 每个 VPN—条。 通过定义 VPN-IPv4地址家族, RFC 2547bis 标准支持这种功能。
VPN- IPv4 地址前缀一共 12 字节, 包括 8 字节的路由标识 (Route Distinguisher, 简称 RD)和 4字节的 IPv4地址前缀。 VPN-IPv4地址结构包括:
Type Field: 2 bytes
Value Field: 6 bytes
8字节的 RD由 2字节的类型字段和 6字节的值字段构成,值字段的解释 取决于类型字段的值, 目前类型字段定义了三种值: 0、 1和 2。
A、 当类型字段值为 0时, 值字段由两个子字段组成: 管理者子字段: 2字节;
分配编号子字段: 4字节。
管理者子字段必须包含一个自治系统编号 (ASN), 如果这个 ASN取自公 共 ASN空间,它必须由适当的权威机构分配;分配编号子字段包含一个编号, 这个编号取自企业所管理的编号空间, 而企业已经由适当的权威机构分配管 理者字段所指定的 ASN。
B、 当类型字段值为 1时, 值字段也由两个子字段组成:
管理者子字段: 4字节;
分配编号子字段: 2字节。
管理者子字段必须包含一个 IP地址, 如果这个 IP地址取自公共的 IP地 址空间, 它必须由一个适当的权威机构分配; 分配编号子字段包含一个编号, 这个编号取自企业所管理的编号空间, 而企业已经分配了管理者子字段所指 定的 IP地址。
C、 当类型字段值为 2时, 两个子字段的结构如下:
管理者子字段: 4字节;
分配编码子字段: 2字节。
管理者子字段包含 4字节长度的 BGP-AS4号, 如果这个 ASN取自公共 ASN空间, 它必须由适当的权威机构分配; 分配编号子字段包含一个编号, 这个编号取自企业所管理的编号空间, 而企业已经由适当的权威机构分配管 理者字段所指定的 ASN。
RD的这种结构保证提供 VPN主干网服务的服务提供者能够生成唯一的 RD, 但是这种 RI)本身没有特别意义。
( 22 ) MP-BGP对 VPN-IPv4的支持
当 PE之间建立了初始虚拟路由转发 ( VRF, Virtual Routing Forwarding ) 和标签交换路径( LSP, Label Switched Path )之后, 他们各自向自己的 BGP 对等体公告路由信息。 在公告路由信息时, 先将路由的 IPv4地址前缀转换成 VPN-IPv4地址前缀格式, VPN-IPv4地址前缀中的 RD在配置 VRF时指定。 PE在向 BGP对等体公告路由信息的时候, 每条路由 (MP-BGP路由)中应包含 如下内容:
1 )路由的 VI'N-IPv4地址前缀(8字节 RD + 4字节 IPv4地址前缀)。
2 ) PE自身的 IP地址作为路由的 MP-BGP下一跳标签交换路由器( LSR ) 地址,由于 MP-BGP要求下一跳 LSR地址采用相同的地址格式,所以 MP-BGP 下一跳 LSR地址的格式为 RD=0的 VPN-IPv4地址。
3 ) PE分配给该路由的标签。
4 ) 包含该路由的 VRF的输出路由目标( export RT ), 该输出路由目标作 为该路由的一个 "COMMUNITY" 属性。
5 )有可能包含该路由的 ORIGIN和 AS_PATH属性。
VPN-IPv4 地址前缀结构在前面已经描述过, 它将被编码后封装在 MP— REACH— NLRI的 NLRI字段里面。
用 BGP多协议扩展的方式来编码 NLRI, AFI字段值为 1 (因为和 NLRI 相关联的网络层协议仍然是 IP ), 表明承载 VPN-IPv4地址。
同时 MP-BGP路由还需要承载 PE分配给该路由的标签,这个标签同样也 封装在 NLRI字段里面, 这样改进了 RFC2858中的 NLRI Encoding格式, 转 换成一个格式的三元组。根据 RFC3107 ( Carrying Label Information in BGP-4 ) 的描述, 可以携带一个或者多个 "Label" , 每个标签都只有 3个字节长度, 高 20位承载标签值, 低 4位中 3位被保留, 最后一位( S位)设置为 1时标识 已经到达标签栈的栈底。 (此时的标签编码格式略不同于标准的 MPLS标签, 不需要包含 TTL字段)
当 MP-BGP承载 Label的时候, MP— REACH— NLRI的 SAFI字段用于指 出属性携带有 "Label" 信息 (将 SAFI的值设置为 4 )。
PE可能分发出现在 VRF中的所有路由, 也可能先对这些路由进行聚合, 然后分发聚合的路由。 假定 PE已经对路由 R分配了标签 L, 并且通过 BGP 分发了这种标签映射, 当路由 R是 VRF 中多条路由聚合后产生的路由, PE 通过查找相应的 VRF才能最终确定如何转发该报文, 报文所携带的标签用于 确定查找最终路由的 VRF, 标签信息库反映了标签和 VRF的对应关系; 如果 R 不是一条聚合路由, 标签信息库中直接给出报文的输出接口及链路层封装 类型, 这种情况下, 不需要再查找 VRF。 针对现有 VPN-IPV4协议的 NLRI Encoding ό 格式, 如图 4所示。
现有的 MP-BGP协议支持 IPv6、 IPX, L3VPN等协议的路由, 但是并不 支持路由 E.164号段、 E.214以及企业自己分配的 SP代码等, 不能实现自动 路由 E.164、 E.214、 SP号码的功能。 发明内容
本发明实施例的一个目的是针对上述现有技术中的 MP-BGP协议不支持 路由 E.164号段、 E.214以及企业自己分配的 SP代码、 网络结构不优化的缺 陷, 提出了一种号码自动路由方法、 更新方法、 销方法、 路由器及号码 路由器设备, 对现有 MP-BGP进行改进, 实现号码的自动路由, 并同时优化 网络结构、 提高效率。
本发明实施例提供一种号码自动路由方法, 包括: 将待分发的号码转换 为号码路由, 加入动态路由协议中; 根据号码路由生成动态路由协议报文; 将动态路由协议 ·¾1文通过 IP网络进行传输, 进行号码的分发。
本发明实施例还提供一种路由更新方法, 包括:
第一路由器将号码转换为号码路由, 并将号码路由信息加入动态路由协 议中;
第一路由器将包含号码路由信息的动态路由协议报文在 IP网络中传输, 发送至第二路由器;
第二路由器解析动态路由协议报文, 得到号码路由信息及相应号码的路 由。
本发明实施例还提供一种路由撤销方法, 包括:
第一路由器生成包含号码路由信息的动态路由协议撤销路由报文; 第一路由器将撤销路由报文通过 IP网络传输, 发送至第二路由器; 第二路由器接收并解析撤销路由报文, 获得号码路由信息, 将路由表中 的号码路由信息删除。
本发明实施例还提供一种路由器, 包括: 配置模块, 用于将号码路由信 息加入动态路由协议; 处理模块, 用于将号码的路由转换为号码路由, 并将 号码路由信息加入动态路由协议报文中; 发送模块, 用于发送报文至路由反 射器。
本发明实施例还提供一种路由器, 包括: 接收模块, 用于接收动态路由 协议报文; 解析模块, 用于对接收的动态路由协议报文进行解析, 获取号码 路由信息, 并一步解析获得号码的路由; 处理模块, 用于在接收的报文为撤 销路由报文时, 将路由表中的号码路由信息删除。
本发明实施例还提供一种号码路由设备, 包括: 存储模块, 用于存储待 分发号码; 配置模块, 用于对动态路由协议进行扩展, 将待分发的号码转换 为号码路由, 加入动态路由协议中, 生成封装后的动态路由协议报文; 发送 模块, 用于发送动态路由协议报文。
本发明的以上实施例中, 提出了一种对现有动态路由协议, 如 MP-BGP 进行扩展, 将号码路由信息加入动态路由协议; 当路由器之间基于号码进行 通信时, 通过动态路由协议, 如扩展后的 MP-BGP能够实现路由器之间的号 码自动分发, 从而可有效优化网络结构、 提高效率。 附图说明
图 1为现有的基于 MP-BGP的 MP— REACH— NLRI属性的编码示意图; 图 2为现有的基于 MP-BGP的 MP— UNREACH— NLRI属性的编码示意图; 图 3为现有的基于 MP-BGP的 NLRI的编码示意图;
图 4为现有的基于 MP-BGP,针对 VPN-IPV4协议的 NLRI的编码示意图; 图 5为本发明号码自动路由方法中基于 MP-BGP的 NLRI编码处理实施 例流程图;
图 6为采用本发明号码自动路由方法中基于 MP-BGP的 NLRI编码处理, 针对 E.164协议的 NLRI编码实施例示意图; 例示意图;
图 8为本发明基于 MP-BGP的号码自动路由方法实施例流程图; 图 9为本发明路由器的实施例示意图;
图 10为本发明另一路由器的实施例示意图;
图 11为本发明号码路由设备实施例示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案 L进一步的详细描述。 本发明的基本思路是利用 MP-BGP 中地址族标识 ( Address Family Identifier,简称 AF[ )ό 取值,提出了一种新的 NLRI配置方法,以实现 MP-BGP 自动路由 E.164、 E.214、 SP 号码的功能。 其中 NLRI 配置包括 MP— REACH一 NLRI的配置及 MP— UNREACH— NLRI的配置。 本发明所涉及的 MP— REACH— NLRI配置需要对现有 MP_REACH一 NLRI路由属性进行相应的 修改; 本发明所涉及的 MP—UNREACH_NLRI 配置需要对现有 MP— UNREACH— NLRI路由属性进行相应的修改。 以下分别对 MP-BGP消息 格式中的 MP_REACH— NLRI路由属性、 MP— UNREACH— NLRI 路由属性、 NLRL Encoding进行说明。
1、 对 MP-BGP消息格式的爹改
1.1、 MP— REACH— NLRI路由属性
MP_REACH NLRI属性中每一个字段的用法上文已做过相应解释, 下面 说明本发明与现有技术相比的新增需求:
1.11、 地址族标识( Address Family Identifier, 简称 AFI ):
这个字段携带网络层协议与网络地址的连接标识。 目前这个字段定义的 值在 RFC 1700中指定(参见地址族取值 Address Family Numbers部分)部分 下: Number Description
0 Reserved
1 IP (IP version 4)
2 IP6 (IP version 6)
3 NSAP
4 HDLC (8-bit multidrop)
5 BBN 1822
6 802 (includes all 802 media plus Ethernet "canonical format") 7 E.16
8 E.164 (SMDS, Frame Relay, ATM)
9 F.69 (Telex)
10 X.121 (X.25, Frame Relay)
11 IPX
12 Appletalk
13 Decnet IV
14 Banyan Vines
65535 Reserved
为了使得 MP-BGP能支持路由 E.164、 E.214、 SP号码, 需要确定相应的 Address Family Numbers。
1.对于 E.164协议, 按照 RFC 1700中指定的 Address Family Numbers, 可 以采用 AFI=8。
2.对于 E.214协议, 由于 E.214的格式与 E.164类似,也可以采用 AFI=8。
3.对于 SP代码, 管理机构已经保证企业内部不重复, 而且与 E.164不重 复, 虽然不能做到全球唯一,但是可用不同 RD来保证唯一性。 因此也可采用
AFI=8。
当然 AFI 采用什么值需要互联网号码分配当局 (INTERNET ASSIGNED NUMBERS AUTHORITY, 简称 IANA)分配, 不论采用什么值并不影响本发 明的实质。 1.12,并发地址族标识( Subsequent Address Family Identifier,简称 SAFI ): SAFI的使用情况如下:
- SAFI 1和 2 已经被指配。
- SAF] 3 保留。
- SAF1 5到 63 已经被 IANA使用。
- SAFI 67到 127 由 IANA按先到先得的原则指派, 具体定义参 见 RFC2434。
- SAF[ 0和 255保留。
- SAF1 128至 240 间的部分已经被私自使用。没有被用部分 IANA 已经收回。 包括: 130, 131, 135 到 139, 以及 141到 240,但是为了避免冲突 还是被保留。
- SAF1 241到 254属于允许私用部分, IANA不对此范围^分配。 SAFI如何取值不影响本发明, 本发明只是指出需要分配 AFI与 SAFI来 表示传递 E.164/E.214/SP号码路由。具体的取值可以由 IANA来分配决定。现 有已分配的 AFI、 SAFI值并不影响本发明。 本实施例中可以暂时取值 AFI=8, SAFI=1。 但本领域普通技术人员应当了解, SAFI取任何值不影响本发明, 但 是需要 IANA分配。
1.13、 Length of Next Hop Network Address (下一 if兆地址长度 ):
与现有 MP-BGP规定一致。
1.14、 Network Address of Next Hop (下一 i?兆地址):
本字段长度5 Γ变, 包含了到达目的系统的下一个路由器的地址。 现有 MP-BGP要求下一跳标签交换路由器(LSR )地址与 NLRI中地址前缀采用相 同的地址格式, 本实施例中下一跳 LSR地址采用 IPv4, NLRI中的地址前缀 采用 8字节 RD+变长 E.164(或者 E.214、 SP)号码, 两者不是一个格式。 因此 本发明的实施例将对现有 MP-BGP做出修改,当 MP_REACH_NLRI属性中的 地址族标识 AFI=8且 SAFI=1时, MP-BGP下一跳 LSR地址的格式为 IPv4地 址, 此时 MP-BGP需要处理下一跳地址格式与 NLRI中地址前缀格式不一致 的路由。
1.15、 网络层可达信息 ( Network Layer Reachability Information ):
可变长度区域, 列出了将在本属性中被通告的可用路由的 NLRI信息。 所有 NLRI将会按照下面 "NLRI encoding" 中指定的方式进行编码处理。
1.2、 MP— UNREACH— NLRI属性
各个字段修改如下:
1.21、 地址族标识 ( Address Family Identifier ):
与 MP_REACH—NLRI的爹改保持一致。
1.22、 并发地址族标识 ( Subsequent Address Family Identifier ):
与 MP— REACH_NLRI的修改保持一致。
1.23 > 撤销路由 ( Withdrawn Routes ):
可变长度区域。 列出将要被从服务中撤销的路由的 NLRL 每条 NLRI都 按照下文 "NLRI encoding" —节中指定的方式进行编码处理。
1.3、 网络层可达信息编码( NLRL Encoding )
图 5为本发明号码自动路由方法中基于 MP-BGP的 NLRI编码处理实施 例流程图, 如图 5所示, 本实施例包括:
步骤 501、 设置 MP— REACH— NLRI路径属性或 MP— UNREACH— NLRI路 径属性中的 AFI的值为网络层地址 E.164协议、 E.214协议或 SP代码对应的 地址族取值;
步骤 502、 设置 MP— REACH_NLRI路径属性或 MP— UNREACH— NLRI路 径属性中的 NLR]的地址前缀为: VPN-E.164号码、 VPN-E.214号码或 VPN-SP 号码。
其中 VPN-E.164号码可以包括: 占用八字节的 RD及占用可变字节的网 络层地址 E.164号码; VPN-E.214号码可以包括: 占用八字节的 RD及占用 可变字节的网络层地址 E.214 号码; VPN-SP 号码可以包括: 占用八字节的 RD及占用可变字节的网络层地址 SP号码。
以 E.164协议为例, 一个路由器可能承载多个 E.164地址的 VPN, 例如 移动通信 E.164 VPN用来建立 E.164号段与移动交换中心( MSC )的 IP地址 的对应关系 , 彩信 E.164 VPN用来建立 E.164号段与彩信中心 IP地址的对应 关系。 因为 BGP假设它携带的每个地址都是全球唯一的, 但是不同 VPN的 E.164号码可能会 ί叠, 为了解决这个问题,本实施例的 MP-BGP支持一种机 制, 通过使用 VPN-E.164地址家族及部署多协议 BGP扩展 (MP-BGP), 把有 重叠可能的 E.164号码转换成全球唯一的地址。
重叠地址空间提出的一个挑战是, 如果传统 BGP看到同一个 E.164地址 前缀有两条不同的路由 (前缀被分配给不同 VPN中的系统), 但恰好 E.164号 码是相同的, 例如 E.164地址前缀 1388/4, 下一跳是该号段归属彩信中心 IP 地址 A, 另外一条 E.164地址前缀 1388/4, 下一跳是该号段归属 HLR的 IP地 址 B, BGP将像仅有一条路由一样处理前缀。 结果, 有可能一个目的地不可 达。 解决这个问题需要: 允许 BGP消除前缀歧义, 通过定义 VPN-E.164号码 地址家族可以支持这种功能。
以下对 VPN-E.164号码地址结构、及 MP-BGP对 VPN-E.164号码的支持 情况进行详细说明。
1.31、 VPN-E.164号码地址结构:
VPN-E.164号码地址包括 8字节的路由标识 (Route Distinguishes 筒称 RD)和变长的 E.164号码。 下图说明了 VPN-E.164号码地址结构:
- Type】7ield: 2 bytes
- Value Field: 6 bytes
-Variable: E.164号码
8字节的 RD与 BGP/MPLS VPN所定义的含义一样, 由 2字节的类型字 段和 6字节的值字段构成, 具体描述请参考 RFC4364[4.2. Encoding of Route Distinguishers]。
RD的这种结构保证提供主干网服务的服务提供者能够生成唯一的 RD, 但是这种 RD本身没有特别意义。
1.32、 MP-BGP对 VPN-E.164号码的支持 当路由器之间建立了 BGP邻居关系之后, 它们各自向自己的 BGP邻居 公告路由信息。 在公告路由信息时, 先将 E.164号码路由转换成 VPN-E.164 号码地址格式, VPN-E.164号码地址中的 RD在配置 E.164 VRF时指定。路由 器在向 BGP对等体公告路由信息的时候, 每条路由 (MP-BGP路由)中应包含 如下内容:
a.路由器的 VPN-E.164号码地址( 8字节 RD +变长 E.164号码地址)。 b.路由器自身的 IP地址作为路由的 MP-BGP下一跳 LSR地址,由于现有 MP-BGP要求下一跳 LSR地址与 NLRI中的地址前缀采用相同的地址格式, 本发明的 1.14节对现有 MP-BGP做出修改,所以本发明所指的 MP-BGP下一 跳 LSR地址的格式为 IPv4地址。
c.包含该路由的 VRF的输出路由目标( export RT ), 该输出路由目标封装 到 BGP的 "Community" 属性中。
d.有可能包含该路由的 "ORIGIN" 和 "AS_PATH" 属性。
VPN-E.164 号码地址结构在前面已经描述过, 它将被编码后封装在
MP REACH NLRI的 NLRI属性里。
用 BGP多协议扩展编码 NLRI, AFI字段值为 8 (因为和 NLRI相关联的 网络层协议仍然是 E.164 ), 表明承载 VPN-E.164号码地址。
同时由于本发明的 MP-BGP路由用于用户上层业务通信, 数据包到达接 收方路由器后, 由于不同的业务通过不同的应用层协议承载, 所以不需要查 询 VPN路由表。 并且, 如果分发标签, 发送方路由器与接受方路由器之间并 没有要求必需运行端到端的 MPLS, 打上标签后发送方路由器反而不能发送。 基于以上两点考虑, 不给 E.164路由分发标签。 此时 SAFI可设置为 1。
对于 E.164号码路由而言, 路由的聚合是 10进制号码的缩位。 不论聚合 与否,发送方路由器知道 <接收方管辖的号段,接收方路由器地址 >对就可以发 送数据包。 接收方根据不同上层协议来区分不同业务, 并不需要查询 VPN路 由表转发。 不同的 VPN接收不同路由需要由 RT值区分, 因此 RT值需要保 为了支持一个路由器可以处理同一号段归属不同业务的情况, 例如表一 所示, 引入了现有 VPN中的 RD概念, 用 RD来区分不同的业务(引入 RD 就同时要引入 VPN中 RT )。
如果不引入 RD, 也可以实现号段路由功能, 但是一个路由器就不支持处 理多个上层电信业务的功能。
Figure imgf000018_0001
如果引入 RD, 表一中的号段路由在 BGP路由表中就不会重复, 如表二 所示:
表二
Figure imgf000018_0002
综上所述, NLRI编码(NLRI Encoding ) 的格式如图 6所示, 每个字段 域的用法和意义如下所示:
长度(Length ): Length字段按位指出地址前缀的长度。 如果是全零, 则 表示匹配所有地址。
RD的 "Type" 与 "Value"域: 8字节 RD, 与 VPN-IPv4定义完全一致。 E.164号码地址前缀(E.164 Prefix ): 该字段包含一个号码地址前缀, 按 位补齐成完整字节。 填充位不影响前缀的真实值。
下面举例说明:
假设对于 E.164号码地址前缀 861391178978, NLRI编码釆用 BCD紧凑 编码格式,即 4个比特表示一位 10进制数, 当然也可以釆用其他的编码格式。 RD的 Type等于 2, Value中 ASN等于 9808, 分配编号字字段等于 100, 则 NLRI编码如表三所示:
表三 NLRI编码表
0 7 8 15 16 23 24 31
Figure imgf000019_0001
对于输出路由目标 ( export route— target, 筒称 export RT ) , 封装在 "Community" 属性中, 方法与 VPN-IPv4 的方法一致, 详细描述请参考 RFC4364。
在 MP— UNREACH— NLRI属性中, "withdrawn"路由按照 NLRI encoding 方式封装。 在终止 BGP会话的时候将撤销所有以前公布的路由。
1.33、 错误处理
与现有 MP- BGP方式一致。
1.34、 使用 BGP能力通告 (Capability Advertisement)
与现有 MP-BGP方式一致。 但 AFI的取值为 8, SAFI取值为 1。
2、 VPN-E.164号码路由的具体实现方式
图 7为本发明号码自动路由方法中应用于 MPL S/B GP VPN骨干网的实施 例示意图。 P1-P4为运营商路由器, PE为运营商边缘路由器(Provider Edge ), CE为客户边缘路由器 (Custom Edge ), Rl , R2为运行经过本发明扩展后的 MP-BGP的路由器。 RR1、 RR2为 Rl、 R2的路由反射器。 Rl , R2处于同一 自治系统 ( AS, Autonomous System )域。
需要说明的是本发明上述实施例对 MP-BGP所做的扩展对于任何运行或 者不运行 MPLS VPN的 IP网络都是适用的。
本发明对 MP-BGP所做的扩展可以与 BGP-4, MP-BGP共存在一台路由 器的一个 BGP实例中, 互相不影响。 但是考虑路由器性能, 对于自治系统边 界路由器(ASBR )及路由反射器(RR ), 建议传统 BGP-4的 ASBR、 RR与 本发明 ASBR、 RR分开设置。
2.1、 VPN-E.164号码路由器界面配置
可能的实现方式有多种, 例如:
R1 :
E.164 vrfVPNIOO
rd 100:1
route-target export 100:1
route-target import 100:1
E.164 vrfVPN200
rd 100:2
route-target export 100:2
route-target import 100:2 interface loopback 100
ip vrf forwarding VPN 100
ip address 10.10.10.100 255.255.255.252 interface loopback 200
ip vrf forwarding VPN200
ip address 10.10.10.200 255.255.255.252 router E.164
address-family E.164 vrfVPNIOO
no auto-summary network 001
network 002
network 003
network 004
network 005
network 006
network 007
network 008
network 009
network 000
network 01111 address-family E.164 vrf VPN200
no auto-summary
network 13911178
network 13800001
network 13700001
network 13740001
network 15700001
network 15800001 router bgp 9808
/*普通的 BGP邻居 */
no synchronization
neighbor 20.20.20.1 remote-as 9808
neighbor 20.20.20.1 update-source LoopBackO
/*对于每个 VRF的特定操作, 将该 VRF的路由发布到 BGP中 */ address-family E.164 vrf VPN 100 redistribute static
no synchronization
exit-address- family address-family E.164 vrf VPN200
redistribute static
no synchronization
exit-address- family
/*对于普通的邻居, 使其可以传递 vpn E.164路由 */ address-fami ly vpnE.164
neighbor 20.20.20.1 activate
exit-address- family
R2:
E.164 vrfVPNlOO
rd 100: 1
route-target export 100: 1
route-target import 100:1
E.164 vrfVPN200
rd 100:2
route-target export 100:2
route-target import 100:2 interface loopback 100
ip vrf forwarding VPN 100
ip address 20.20.20.100 255.255.255.252 interface loopback 200 ip vrf forwarding VPN200
ip address 20.20.20.200 255.255.255.252 router E.164
address-family E.164 vrf VPN 100 no auto-summary
network 0574
network 010 network 020 address-famih' E.164 vrf VPN200
no auto-summary
network 1330
network 13 1
network 1332
network 1333
network 1334
network 1335
network 1336
network 1337
network 1338
network 13 ]
network 130
network 1339 router bgp 9808
/*普通的 BGP邻居 */ no synchronization
neighbor 10.10.10.1 remote-as 9808
neighbor 10.10.10.1 update-source LoopBackO
/*对于每个 VRF的特定操作, 将该 VRF的路由发布到 BGP中 */ address-family E.164 vrfVPNIOO
redistribute static
no synchronization
exit-address- family address-family E.164 vrf VPN200
redistribute static
no synchronization
exit-address- family
/*对于普通的邻居, 使其可以传递 vpn E.164路由 */
address-family vpnE.164
neighbor 10.10.10.1 activate
exit-address - family 配置与 VPN-IPv4类似,不同点在于 VPN-IPv4与本发明采用的地址不同。 2.2、 VPN-E.164号码路由表
R1的 VPN100路由如表四所示:
表四 R1的 VPN100路由表
路由代码 目的号码前缀 号码长度 下一 3兆地址 是否聚 合
S 000 3 R1的 loopbacklOO地址 否
S 001 3 R1的 loopbacklOO地址 否
S 002 3 R1的 loopbacklOO地址 否
S 003 3 R1的 loopbacklOO地址 否
S 004 3 R1的 loopbacklOO地址 否
S 005 3 R1的 loopbacklOO地址 否
S 006 3 R1的 loopbacklOO地址 否 s 007 3 Rl的 loopbacklOO地址 否 s 008 3 Rl的 loopbacklOO地址 否 s 009 3 Rl的 loopbacklOO地址 否 s 01111 5 Rl的 loopbacklOO地址 否
B 0574 4 R2的 loopbacklOO地址 1
B 010 3 R2的 loopbacklOO地址 1
B 020 3 R2的 loopbacklOO地址 1
R1的 VPN200路由如表五所示:
表五 R1的 VPN200路由表
Figure imgf000025_0001
R2的 VPN100路由如表六所示:
表六 R2的 VPN100路由表
Figure imgf000025_0002
s 1333 4 R2的 l oopback200地址 否 s 1 334 4 R2的 loopback200地址 否 s 1335 4 R2的 loopback200地址 否 s 1336 4 R2的 loopback200地址 否 s 1 337 4 R2的 l oopback200地址 否 s 1338 4 R2的 loopback200地址 否 s 131 3 R2的 loopback200 i也址 否
S - 130 3 R2的 l oopback200地址 否 s 1339 4 R2的 loopback200地址 否 上述表四-表七路由表中:
路由代码: 与现有 IP路由表含义相同, S指静态路由, B指 BGP。
目的号码前缀: 与现有 IP路由表中的目的网络前缀含义相同, 但本实施 例存放的具体内容为 E.164号码, 现有技术存放 IP网段或地址。
号码长度: 目的号码前缀字段中十进制号码的位数长度。 对应现有 IP路 由表中的掩码长度, 但掩码长度表示网络前缀有效比特位数。
其它: 与现有 IP路由表含义相同。
2.3、 详细步骤说明
图 8为本发明基于 MP-BGP的号码自动路由方法实施例流程图。 当第一 路由器基于 E.164协议、 E.214协议或 SP代码与第二路由器进行通信时, 该 方法包括:
步骤 801、 将第一路由器及第二路由器中的 MP— REACH—NLRI路径属性 或 MP— UNREACH— NLRI路径属性中的 AFI的值设置为网络层地址 E.164协 议、 E.214协议或 SP代码对应的地址族取值;
步骤 802、第一路由器设置 UPDATE报文中的 MP_REACH— NLRI路径属 性或 MP— UNREACH— NLRI路径属性中的 NLRI 的地址前缀为: VPN-E.164 号码、 VPN-E.214号码或 VPN-SP代码;
步骤 803、 第一路由器将 UPDATE报文发送到路由发射器;
步骤 804、 路由发射器将 UPDATE报文反射到第二路由器;
步骤 805、 第二路由器解析 UPDATE 报文, 得到 VPN-E.164 号码、 VPN-E.214号码或 VPN-SP代码;
步骤 806、 第二路由器解析 VPN-E.164号码、 VPN-E.214号码或 VPN-SP 代码得到相应的 E .164号码、 E.214号码及 SP代码。
以上步骤可以划分为两个部分: 前期的配置工作以及路由分发流程。
对照图 7的网络拓朴, 举例说明支持 E.164号码路由的 BGP/MPLS VPN 网络。 CE1-CE4 备由器接入两个处于不同位置的 VPN, PE1 和 PE2之间由 MPLS骨干网络连接, 在 PE1 和 PE2之间除了 MPLS特有的标签交换路径 ( LSP )之外,还通过 MP-BGP建立 peer对等关系,用于发布 VPN-IPv4路由。 R1与 R2通过 RR1, RR2反射器建立本发明扩展的 MP-BGP peer对等关系, 用于发布 VPN-E.164号段路由。
2.31前期的配置工作
第一步工作是配置 PE上的 VRF, PE1、 PE2针对连接 CE的端口为每个 VPN建立 VRF , 保证 VPN的信息的安全性;
第二步配置任务是 BGP, 即在 PE1与 PE2之间配置 MP-BGP, 这个协议 可以保证 VPN-IPv4路由的正确分发;
第三步工作是建立 LSP, PE1、 PE2与 MPLS骨干网络中的其他运营商核 心路由器 (P 路由器, Provider Router ) 通过标签分发协议 ( LDP, Label Distribution Protocol ), 请求获取一条 LSP, 在 PE1与 PE2之间建立一条交换 路径, 其间所有数据包都按照 MPLS的标签交换模式进行转发;
第四步配置 CE 与 PE 之间的内部网关协议 ( IGP , Interior Gateway
Protocol ) (一般采用优先开放最短路径 ( OSPF, Open Shortest Path First ) 即 可), 以便 VPN中的路由可以通告给 PE;
第五步是配置 Rl, R2上的 VRF, Rl、 R2针对每个应用为每个 VPN建 立 VRF , 保证 VPN的信息的安全性;
第六步配置任务是 BGP,即在 R1与 R2之间配置本发明扩展的 MP-BGP, 这个协议可以保证 VPN-E.164号码路由的正确分发。
2.32路由分发流程 协议配置好之后, 整个网络正常工作, R1 与 R2连通之后, VPN-E.164 号码路由分发流程包括路由更新与撤销流程。
2.321路由更新流程
1) Rl, R2按现有 BGP方式建立邻居关系, R1使用 BGP能力通告过 程(BGP-CAP ) 来测定 R2是否支持本发明对 MP-BGP所做的扩展方法。 能 力可选参数域的设置为: Capability Code被设置为 1 (指明多协议扩展能力)。 Capability Length被设置为 4。 Capability值域依次包括 "AFI"域, "Res." 域 和 "SAFI" 域。 其中,
AFI域 - 地址族标识符(16位), AFI域的编码方式同本发明 NLRI 中 AFI的编码方式;
Res. 域- 保留 (8位) 区域。 发送方应当设其值为 0, 接收方则忽略 它;
SAFI域- 并发地址族标识符(8位), 编码方式同本发明 NLRI中的 设置。为了能够在一对 BGP speaker之间为特定双向交换路由信息,每个 BGP speaker都应该通过能力通告机制通告对方它支持这种特别的路由;
2)假定 R1在 VPN100中通过手工配置 E.164号段路由 000, 001 , 002, ..., 009, 01111。 表明上述号段可通过 VPN100到达;
3) VPN100将号段路由 000, 001 , 002, 009, 01111 (这些路由应该 带有 VPN标记)放入为 VPN100而设立的 VRF100中;
4) BGP协议将从 VRF100中读取号段路由 000, 001 , 002, ..., 009, 01111 , 并将这些号段路由转换为 VPN-E.164 路由, 然后把它们封装到 MP_REACH— NLRI属性中, 同时将 RT信息封装到 "Community" 属性中。 RT的封装与现有 BGP/MLS VPN一致, 本发明不再赘述;
5) BGP协议把 R1的 LoopbacklOO地址设置为 VPN-E.164路由的下一跳; 判断是否需要聚合,对于不做号段路由聚合的 MP— REACH— NLRI属性执行步 骤 6 ), 否则执行步骤 7 ); 6) MP— REACH— NLRI属性的详细封装过程如下:
AFI字段: 置为 IANA分配给本发明的值。
SAFI字段: 置为 IANA分配给本发明的值。
Length of Next Hop Network Address字段: 置为 4, 表示下一跳网络地 址为 IPv4, 地址长度为 4。
Network Address of Next Hop (variable)字段: 置为 Rl的 loopbacklOO 地址 10.10.10.100。 该值可以在配置界面 ^ i'爹改, 例如可以改为接口地址 或其它 loopback地址或其它地址。
Reserved ( 1 octet)字段: 按现有 MP-BGP的处理方式。
NLRI的 Length字段: 置为 76, 具体计算方法如下: 000号段按 BCD 编码换成二进制占 12比特, RD 8字节长占 64比特, 因此 000号段的有 效长度为 76比特。
NLRI的 Type Field字段: 置为 2, 本实施例中 RD的 Type采用 AS+ 编号的方式(详细说明请参考本发明的 "(21 ) VPN-IPv4地址结构,, 中 C 部分的描述)。
NLRI的 Value Field字段: 高 4个字节置为 100, 低 2个字节置为 1。 NLRI的 E.164 Prefix字段: 置为十进制 000, 具体方法是路由器根据 表 2 VPN100中的号码长度字段等于 3, 从目的号码前缀字段中取出十进 制前 3位 000, 按紧凑型 BCD编码按位补齐完整字节原则转换成二进制 0000,0000,0000,0000ο 其它号段路由 001 , 002, ..., 009, 01111的 NLRI 封装方法与 000类似, 不再详细说明。
封装后的 MP— REACH— NLRI如表八如示:
表八
Address Family Identifier (2 octets) IANA分配给本发明的值
Subsequent Address Family Identifier (1 octet) IANA分配给本发明的值
Length of Next Hop Network Address (1 octet) 4
Network Address of Next Hop (variable) 10.10.10.100 ( Rl的 loopbackl OO )
Reserved (1 octet ) Length (1 octet) 76
Type Field(2 Octets) 2
Value Field(6 Octets) 100: 1
E.164 Prefix (variable) 000 (十进制号段 000按紧凑型 BCD编码,按位补 齐为完整字节的二进制编码为 2 字节长: 0000,0000,0000,0000 )
Length (1 octet) 76
Network Layer Type Field(2 Octets) 2
Reachability Value Field(6 Octets) 100: 1
Information E.164 Prefix (variable) 001 (二进制: 0000,0000,0001 ,0000 )
(variable)
Length (1 octet) 76
Type Field(2 Octets) 2
Value Field(6 Octets) 100: 1
E.164 Prefix (variable) 009 (二进制: 0000,0000, 1001 ,0000 )
Length (1 octet) 84
Type Field(2 Octets) 2
Value Field(6 Octets) 100: 1
E.164 Prefix (variable) 01 1 1 1 (二进制: 0000,0001 ,0001 ,0001 , 0001 , 0000 )
7)如果 Rl配置需要聚合号段路由命令, R1按现有的 10进制号段缩位算 法进行缩位, 该缩位算法是个递归算法, 通过号段的缩位实现号段路由的聚 合。 本实施例中 001 009号段都有, 因此可以缩位成 00号段。 通过号段的 聚合可以减少号段路由的数目提高 BGP 更新号段路由的效率。 MP_REACH_—NLRI的封装方法与步骤 6 )类似, 只是号段路由数目减少。 封 装后的 MP— REACH— NLRI示意如表九所示:
表九
Figure imgf000030_0001
Information Value Field(6 Octets) 100:】
(variable) E.164 Prefix (variable) 00 (二进制: 0000,0000 )
Length (1 octet) 84
Type Field(2 Octets) 2
Value Field(6 Octets) 100: 1
E.164 Prefix (variable) 01 1 1 1 (二进制: 0000,0001 ,0001 ,0001 , 0001, 0000 )
8) R1通过 TCP协议将 BGP UPDATE报文发送到路由反射器 RRl、 RR2, RRl、 RR2将 BGP UPDATE报文反射到 R2。 该报文从 CE->PE->P->PE->CE 的过程完全遵循现有的 BGP/MPLS VPN的传递方式, 本实施例不再详细说 明;
9)如果 CE->PE -〉 P->PE->CE为普通 IP网络, BGP UPDATE报文可以按 照普通 IP包转发。 这个过程也是现有技术, 本实施例也不再赘述;
10) R2收到 R1的 MP-BGP UPDATE报文后, 为了简单起见, 以处理 步骤 7)的 MP— REACH— NLRI 为例进行说明: 按现有 MP-BGP 方法得到 MP— REACH— NLRI, R2根据 AFI与 SAFI字段可以得知该 MP— REACH— NLRI 属性经过上述实施例所述的扩展, 转步骤 11处理;
11) 2按现有 MP-BGP的方法获取 MP— REACH_NLRI的 next-hop地
1。 根据 NLRI的长度域( length )等于 72比特, 减去 RD的 64比特( 8字 节)可知 E.164 前缀长度为 8bit, 从 Value Field之后读 8 比特二进制值 0000000,按紧凑型十进制 BCD编码转换成十进制,获知号段路由为 00。 E.164 前缀长度为 8bit按紧凑型十进制 BCD编码可以换算出 E.164前缀长度按十 进制计算为 2。 同理可以获取 01111号段路由。 本实施例中, R2只收到 R1 发布的号段路由 00, 01111, 因此肯定是最优路由将它们放入 BGP路由表, 如表十所示。假设 R2还收到其它路由器比方说 R3发布的号段路由 00, 01111 , 此时 R2按现有的 BGP优选路由决策步骤, 选出最优路由放入 BGP路由表 中。 表十
Figure imgf000032_0001
12) R2通过比较 R2各个 VPN的 Import RT与上述号段路由 00, 01111 的 Export RT属性, 把上述号段路由 00, 01111从 BGP路由表装入 VRF100 的路由表中, R2的 VPN100路由如表六所示。
2.322路由撤销流程
与 现有 的 MP-BGP —样 , 本发明 对路 由撤销也是采用 MP— UNREACH— NLRI属性, 其 NLRI的封装方法与 MP_REACH— NLRI属性 一致。
以 Rl 号段路由 00与 01111为例进行说明:
① R1首先需要从配置上做相应的删除。
② R1构造 MPJJNREACH— NLRI属性的 Withdrawn报文, 每个字段 的封装方法与 MP— REACH— NLRI 基本一致, 不再重复说明。
- MP UNREACH NLRI属性如表十一所示: 表 十一
Figure imgf000032_0002
E.164 Prefix (variable) 01111 (二进制: 0000,0001 ,0001 ,0001 , 0001 , 0000 )
③ Rl将按现有 MP-BGP的方法将 MP— UN EACH—NLRI属性封装到 BGP报文中发到 R2。
④ R2按类似解封装 MP— REACH_NLRI属性的方法,将号段路由 00 , 01111从 BGP报文中解封装。
⑤ R2删除 BGP路由表中的号段路由 00, 01111。同时 R2按现有 BGP 的做法删除 VPN中的路由。
至此, VPN100 中上层业务将可以通过 E.164 号段路由进行业务通信, VPN200中的路由分发过程与之类似, 不再举例说明。
2.33业务 文转发流程
以 R1中对 02010086进行 BICC呼叫的流程为例, 包括以下步骤:
1、 R1查找 VPN100的路由表,按最长比配原则, 得到该业务下一跳地址 是 R2的" loopbacklOO"地址;
2、 R1进行 B[CC封装成 IP包, 将目的 IP地址填成 R2的" loopbacklOO" 地址;
3、 数据包通过中间网络传送到 R2;
4、 R2根据 B〖CC/SCTP/IP进行解封装;
5、 R2进行上层一些处理, 组装 BICC回应包;
6、 R2根据主叫号码, 查询 VPN100路由表, 得到 R1地址 loopbacklOO 地址填入目的 IP地址;
7、 数据包通过中间网络返回 R1;
8、 R1根据 BICC/SCTP/IP进行解封装处理。
图 9为本发明路由器的实施例示意图。 如图 9所示, 本实施例包括: 配置模块 1 , 用于将号码路由信息加入动态路由协议, 具体的可参见上述 方法实施例的相关说明 , 如将 MP— REACH— NLRI 路径属性或 MP— UNREACH— NLRI路径属性中的 AFI值配置为网络层地址 E.164号码、 E.214号码或 SP代码对应的地址族取值, 将 MP— REACH— NLRI路径属性或 MP— UNREACH— NLRI路径属性中 NLRI的地址前缀配置为 VPN-E.164号码、 VPN-E.214号码或 VPN-SP代码等;
处理模块 3 , 用于将号码转换为号码路由, 并将号码路由信息加入动态路 由协议报文中;
发送模块 5, 用于发送报文至路由反射器。
其中, 处理模块 3 可以进一步包括: 检测子模块, 用于通过动态路由协 议能力通告过程测定接收方是否支持号码自动路由; 执行子模块, 用于在测 定结果为支持号码自动路由时, 将号码转换为号码路由, 并将号码路由信息 加入动态路由协议报文中。
本实施例路由器具体应用时可作为图 7中 Rl, 对 MP— REACH— NLRI路 径属性或 MPJJN EACH— NLRI路径属性进行配置, 支持 E.164号码、 E.214 号码或 SP代码等号码路由。
图 10为本发明另一路由器的实施例示意图。 如图 10所示, 本实施例包 括:
接收模块 2, 用于接收动态路由协议报文;
解析模块 4, 用于在支持号码自动路由时, 对接收的动态路由协议报文进 行解析, 获取号码路由信息, 并一步解析获得号码的路由;
处理模块 6, 用于在接收的报文为撤销路由报文时, 将路由表中的号码路 由信息删除。
本实施例路由器具体应用时可作为图 7中 R2,对包含 MP— REACH— NLRI 路径属性或 MP— UNREACH— NLRI路径属性的报文进行解析, 获得 E.164号 码、 E.214号码或 SP代码等号码路由, 或在收到撤销报文时, 删除路由表中 的相应号码路由。
图 11为本发明号码路由设备的实施例示意图。如图 11所示,本实施例包 括: 存储模块 10, 用于存储待分发号码;
配置模块 20, 用于对动态路由协议进行扩展, 将待分发的号码转换为号 码路由, 加入动态路由协议中, 生成封装后的动态路由协议报文;
发送模块 30, 用于发送动态路由协议报文。
其中, 配置模块 20可以包括:
属 性 子 模 块 , 用 于 将 MP— REACH_NLRI 路 径 属 性 或 MP UNREACH NLRI路径属性中的 AFI与 SAFI分别增加一种新的取值,所 述取值表示 NLRI所携带的路由信息是号码路由信息;
前 缀 子 模 块 , 用 于 将 MP— REACH_NLRI 路 径 属 性 或 MP—UNREACH— NLRI路径属性中 NLRI的地址前缀配置为待分发的号码; 生成子模块, 用于根据属性子模块和前缀子模块中的路径属性生成扩展 的边界网关协议 MP- BGP对应的艮文。
具体如何将号码信息封装进 MP-BGP可以参见前述各方法实施例, 如: 前述介绍的 1、 对 MP-BGP消息格式的修改部分及 2、 VPN-E.164号码路由的 具体实现方式部分。 配置模块还可以进一步包括: 标识子模块, 用于在同一 号码归属不同下一跳业务地址时, 在 MP-BGP中加入路由标识 RD对同一号 码归属不同上层业务进行区分。引入路由标识 RD以后,同一号段路由在 BGP 路由表中就不会重复, 可参见表一及表二的相关说明。
综上所述, 本发明的上述各实施例, 提出了一种对现有 MP-BGP协议进 行扩展方案, 实现号码的自动路由和分发, 如 E.164号码、 E.214号码及 SP 代码, 通过将 MP-BGP协议中携带号码路由信息, 使得扩展后的 MP-BGP协 议支持路由 E.164号码、 E.214号码、 SP代码等, 该扩展后的 MP-BGP协议 能够实现路由器之间的号码自动分发。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围

Claims

权 利 要 求
1、 一种号码自动路由方法, 其特征在于, 包括:
将待分发的号码转换为号码路由信息, 加入动态路由协议中;
根据所述号码路由信息生成动态路由协议报文;
将所述动态路由协议报文通过 IP网络进行传输, 通过所述动态路由协议 报文及 IP网络进行号码的分发。
2、 根据权利要求 1所述的方法, 其特征在于, 所述动态路由协议为扩展 的边界网关协议 MP- BGP。
3、 根据权利要求 2所述的方法, 其特征在于, 所述将号码路由信息加入 动态路由协议的操作具体包括:
将 MP—REACH— NLRI路径属性或 MP— UNREACH— NLRI路径属性中的 AFI与 SAFI分别增加一种新的取值, 所述取值表示 NLRI所携带的路由信息 是号码路由信息。
4、 根据权利要求 3所述的方法, 其特征在于, 所述 AFI=8, SAFI=1。
5、 根据权利要求 3所述的方法, 其特征在于, 所述将号码信息加入动态 路由协议的操作还包括:
将 MP— REACH— NLRI 路径属性或 MP— UNREACH— NLRI 路径属性中 NLRI的地址前缀配置为待分发的号码。
6、 根据权利要求 5所述的方法, 其特征在于, 所述地址前缀配置的号码 采用紧凑型 BCD编码。
7、 根据权利要求 2所述的方法, 其特征在于, 还包括:
在同一号码归属不同下一跳业务地址时, 在所述 MP- BGP中加入路由标 识 RD对同一号码归属的不同上层业务进行区分。
8、 根据权利要求 1-7中任一项所述的方法, 其特征在于, 所述号码路由 信息中的号码为 E.164号码、 E.214号码或 SP代码。
9、 根据权利要求 2-7中任一项所述的方法, 其特征在于, 所述 MP-BGP 的下一跳 LSR地址与 NLRI中的地址前缀采用不同的地址格式。
10、 根据权利要求 9所述的方法, 其特征在于, 还包括:
当 AFI与 SAFI增加的取值表示 NLRI所携带的路由信息是号码路由信息, 且下一跳 LSR地址为 IPv4地址时,处理下一跳 LSR地址的格式与 NLR1中地 址前缀的格式不同的路由。
11、 根据权利要求 10所述的方法, 其特征在于, 所述下一跳 LSR地址为 IPv4格式,所述 NLRI中的地址前缀包括: 占用八字节的 RD及占用可变字节 的网络层地址 E.164号码、 E.214号码或 SP代码。
12、 一种路由更新方法, 其特征在于, 第一路由器基于号码路由与第二 路由器进行通信, 所述方法包括:
第一路由器将号码转换为号码路由, 并将所述号码路由信息加入动态路 由协议中;
第一路由器将包含所述号码路由信息的动态路由协议报文在 IP网络中传 输, 发送至第二路由器;
第二路由器解析所述动态路由协议报文, 得到号码路由信息及相应号码 的路由。
13、 根据权利要求 12所述的方法, 其特征在于, 第一路由器和第二路由 器通过 BGP能力通告过程测定动态路由协议 MP-BGP是否支持号码自动路 由; 第一路由器在测定结果为支持号码自动路由时, 执行将所述号码转换为 号码路由。
14、 根据权利要求 12或 13所述的方法, 其特征在于, 将所述号码路由 信息加入动态路由协议包括: 将所述号码路由信息加入 MP-BGP 中的 MP_REACH_NLR[0
15、 根据权利要求 12或 13所述的方法, 其特征在于, 还包括: 将第一路由器及第二路由器中的动态路由协议设置为支持号码路由, 具 体地:
将第一路由器及第二路由器中的 MP一 REACH— NLRI 路径属性或 MP UNREACH NLRI路径属性中的 AFI的值设置为网络层地址 E.164协议、 E.212协议或 SP代码对应的地址族取值。
16、 根据权利要求 14所述的方法, 其特征在于, 还包括:
对于不做号码路由聚合的 MP— REACH— NLRI属性, 将下一跳网络地址配 置为路由器接口地址或 "loopback" 地址。
17、 根据权利要求 14所述的方法, 其特征在于, 还包括:
对于做号码路由聚合的 MP_REACH_NLRI属性,按照十进制号码缩位递 归算法进行缩位。
18、 一种路由撤销方法, 其特征在于, 包括:
第一路由器生成包含号码路由信息的动态路由协议撤销路由报文; 第一路由器将所述撤销路由报文通过 IP网络中传输,发送至第二路由器; 第二路由器接收并解析所述撤销路由报文, 获得号码路由信息, 将路由 表中的所述号码路由信息删除。
19、 一种路由器, 其特征在于, 包括:
配置模块, 用于将号码路由信息加入动态路由协议;
处理模块, 用于将所述号码转换为号码路由, 并将所述号码路由信息加 入动态路由协议报文中;
发送模块, 用于发送所述报文至路由反射器。
20、 根据权利要求 19所述的路由器, 其特征在于, 所述处理模块包括: 检测子模块, 用于通过所述动态路由协议能力通告过程测定接收方是否 支持号码自动路由;
执行子模块, 用于在测定结果为支持号码自动路由时, 将所述号码转换 为号码路由, 并将所述号码路由信息加入动态路由协议报文中。
21、 —种路由器, 其特征在于, 包括:
接收模块, 用于接收动态路由协议报文;.
解析模块, 用于对接收的动态路由协议报文进行解析, 获取号码路由信 息, 并一步解析获得所述号码的路由; 处理模块, 用于在接收的报文为撤销路由报文时, 将路由表中的所述号 码路由信息删除。
22、 一种号码路由设备, 其特征在于, 包括:
存储模块, 用于存储待分发号码;
配置模块, 用于对动态路由协议进行扩展, 将待分发的号码转换为号码 路由, 加入所述动态路由协议中, 生成封装后的动态路由协议报文;
发送模块, 用于发送所述动态路由协议报文。
23、 根据权利要求 22所述的设备, 其特征在于, 所述配置模块包括: 属 性 子 模 块 , 用 于 将 MP— REACH— NLRI 路 径 属 性 或
MP— UNREACH— NLRI路径属性中的 AFI与 SAFI分别增加一种新的取值,所 述取值表示 NLRI所携带的路由信息是号码路由信息;
前 缀 子 模 块 , 用 于 将 MP_REACH_NLRI 路 径 属 性 或 MPJU REACH— NLRI路径属性中 NLRI的地址前缀配置为待分发的号码; 生成子模块, 用于根据属性子模块和前缀子模块中的路径属性生成扩展 的边界网关协议 MP- BGP对应的报文。
24、 根据权利要求 23所述的设备, 其特征在于, 所述配置模块还包括: 标^子模块, 用于在同一号码归属不同下一跳业务地址时, 在所述
MP-BGP中加入路由标识 RD对同一号码归属不同上层业务进行区分。
PCT/CN2009/000846 2008-08-21 2009-07-29 号码自动路由方法、更新方法、撤销方法、路由器及设备 WO2010020107A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/059,934 US8665887B2 (en) 2008-08-21 2009-07-29 Number automatic routing method, updating method, withdrawing method, router and device
EP09807806.6A EP2320611B1 (en) 2008-08-21 2009-07-29 Number automatic routing method, updating method, withdrawing method, router and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810118760A CN101340372B (zh) 2008-08-21 2008-08-21 号码自动路由方法、更新方法、撤销方法、路由器及设备
CN200810118760.7 2008-08-21

Publications (1)

Publication Number Publication Date
WO2010020107A1 true WO2010020107A1 (zh) 2010-02-25

Family

ID=40214329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000846 WO2010020107A1 (zh) 2008-08-21 2009-07-29 号码自动路由方法、更新方法、撤销方法、路由器及设备

Country Status (4)

Country Link
US (1) US8665887B2 (zh)
EP (1) EP2320611B1 (zh)
CN (1) CN101340372B (zh)
WO (1) WO2010020107A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2227883B1 (en) * 2008-01-09 2012-05-02 Telefonaktiebolaget L M Ericsson (publ) Setting up a virtual private network
CN101340372B (zh) 2008-08-21 2012-09-19 中国移动通信集团公司 号码自动路由方法、更新方法、撤销方法、路由器及设备
CN101674245B (zh) * 2009-10-10 2012-06-06 华为技术有限公司 出口路由过滤方法及装置
US8411667B2 (en) * 2009-12-15 2013-04-02 At&T Intellectual Property I, L.P. Methods, apparatus and articles of manufacture to manipulate packet routing
CN102316018B (zh) * 2010-07-09 2014-12-31 中国移动通信集团公司 一种网络节点设备中路由表的更新方法以及网络节点设备
CN102710800B (zh) * 2011-03-28 2015-01-21 华为技术有限公司 一种配置路由标识符rd的方法和网络设备
CN102143077B (zh) * 2011-03-29 2014-12-10 中兴通讯股份有限公司 路由设备多业务链接实现方法、系统及路由设备
US10432587B2 (en) * 2012-02-21 2019-10-01 Aventail Llc VPN deep packet inspection
CN103475581B (zh) * 2012-06-06 2017-08-25 华为技术有限公司 一种网络标签分配方法、设备与系统
US9019973B1 (en) * 2012-09-28 2015-04-28 Juniper Networks, Inc. Static MAC address propagation in multipoint network services
JP5949491B2 (ja) * 2012-11-20 2016-07-06 富士ゼロックス株式会社 情報処理装置及びプログラム
US9621460B2 (en) * 2013-01-14 2017-04-11 Versa Networks, Inc. Connecting multiple customer sites over a wide area network using an overlay network
CN104734929B (zh) * 2013-12-18 2019-03-01 华为技术有限公司 路由扩散的方法及装置
US9634936B2 (en) * 2014-06-30 2017-04-25 Juniper Networks, Inc. Service chaining across multiple networks
CN105634940B (zh) * 2014-10-27 2020-06-16 中兴通讯股份有限公司 Sr信息获取方法及建立段路由网络的方法
US10015073B2 (en) 2015-02-20 2018-07-03 Cisco Technology, Inc. Automatic optimal route reflector root address assignment to route reflector clients and fast failover in a network environment
WO2016145071A1 (en) * 2015-03-09 2016-09-15 Vadium Technology Corporation Secure message transmission using dynamic segmentation and encryption
US9749225B2 (en) 2015-04-17 2017-08-29 Huawei Technologies Co., Ltd. Software defined network (SDN) control signaling for traffic engineering to enable multi-type transport in a data plane
CN104836901A (zh) * 2015-04-02 2015-08-12 深圳市金立通信设备有限公司 一种终端
CN106936713B (zh) 2015-12-30 2020-02-21 华为技术有限公司 一种标签管理方法,数据流处理方法及设备
CN105939262B (zh) * 2016-05-09 2020-03-06 杭州迪普科技股份有限公司 标签分配的方法及装置
CN107404439B (zh) * 2016-05-18 2020-02-21 华为技术有限公司 用于重定向数据流的方法和系统、网络设备和控制设备
WO2018000442A1 (zh) * 2016-07-01 2018-01-04 华为技术有限公司 业务功能链sfc中用于转发报文的方法、装置和系统
US10594514B2 (en) 2017-03-29 2020-03-17 At&T Intellectual Property I, L.P. Method and apparatus for creating border gateway protocol reachability on demand in a multi-protocol label switching network
CN108989208B (zh) * 2017-05-31 2021-08-10 中兴通讯股份有限公司 一种标识分配方法和装置
US10873473B2 (en) * 2017-07-17 2020-12-22 Nicira, Inc. Distributed multicast logical router
US10523455B2 (en) 2017-07-17 2019-12-31 Nicira, Inc. Distributed multicast logical router
US10218523B2 (en) 2017-07-17 2019-02-26 Nicira, Inc. Using a central controller cluster to configure a distributed multicast logical router
CN110875882B (zh) * 2018-08-30 2021-07-20 华为技术有限公司 通信方法和通信设备
US10769092B2 (en) * 2018-12-20 2020-09-08 Dell Products, L.P. Apparatus and method for reducing latency of input/output transactions in an information handling system using no-response commands
CN116782336A (zh) * 2019-10-22 2023-09-19 华为技术有限公司 一种通信方法及装置
US11252672B1 (en) * 2020-12-18 2022-02-15 Versa Networks, Inc. Access point radio channel configuration using multiprotocol border gateway protocol
US11595296B2 (en) 2021-06-29 2023-02-28 Vmware, Inc. Active-active support of multicast streams in virtualized environment
US11895010B2 (en) 2021-06-29 2024-02-06 VMware LLC Active-active support of multicast streams in virtualized environment
US11784926B2 (en) 2021-11-22 2023-10-10 Vmware, Inc. Optimized processing of multicast data messages in a host

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291445A1 (en) * 2005-06-14 2006-12-28 Luca Martini Method for auto-routing of multi-hop pseudowires
CN1949776A (zh) * 2006-11-10 2007-04-18 清华大学 扩展边界网关协议的4 over 6隧道封装及解封装方法
CN1972295A (zh) * 2006-12-01 2007-05-30 清华大学 BGP协议软件的IPv4 over IPv6扩展方法
CN101040487A (zh) * 2004-12-29 2007-09-19 思科技术公司 Igp中的bgp下一跳路由的自动路由标记
CN101052207A (zh) * 2006-04-05 2007-10-10 华为技术有限公司 一种可移动虚拟专用网的实现方法及系统
CN101155119A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 一种确定自治系统边界节点的方法、装置及路径计算方法
CN101340372A (zh) * 2008-08-21 2009-01-07 中国移动通信集团公司 号码自动路由方法、更新方法、撤销方法、路由器及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366894B1 (en) * 2002-06-25 2008-04-29 Cisco Technology, Inc. Method and apparatus for dynamically securing voice and other delay-sensitive network traffic
US6970464B2 (en) * 2003-04-01 2005-11-29 Cisco Technology, Inc. Method for recursive BGP route updates in MPLS networks
US7925778B1 (en) * 2004-02-13 2011-04-12 Cisco Technology, Inc. Method and apparatus for providing multicast messages across a data communication network
US8068408B2 (en) * 2004-11-01 2011-11-29 Alcatel Lucent Softrouter protocol disaggregation
US8953432B2 (en) * 2004-11-01 2015-02-10 Alcatel Lucent Softrouter dynamic binding protocol
CN1893419A (zh) * 2005-07-06 2007-01-10 华为技术有限公司 一种路由更新方法
CN100571264C (zh) * 2005-10-31 2009-12-16 中兴通讯股份有限公司 一种多协议标记交换虚拟专用网络跨域连接方法
US9264355B2 (en) * 2006-09-05 2016-02-16 Telefonaktiebolaget L M Ericsson (Publ) Name-address management and routing in communication networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040487A (zh) * 2004-12-29 2007-09-19 思科技术公司 Igp中的bgp下一跳路由的自动路由标记
US20060291445A1 (en) * 2005-06-14 2006-12-28 Luca Martini Method for auto-routing of multi-hop pseudowires
CN101052207A (zh) * 2006-04-05 2007-10-10 华为技术有限公司 一种可移动虚拟专用网的实现方法及系统
CN101155119A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 一种确定自治系统边界节点的方法、装置及路径计算方法
CN1949776A (zh) * 2006-11-10 2007-04-18 清华大学 扩展边界网关协议的4 over 6隧道封装及解封装方法
CN1972295A (zh) * 2006-12-01 2007-05-30 清华大学 BGP协议软件的IPv4 over IPv6扩展方法
CN101340372A (zh) * 2008-08-21 2009-01-07 中国移动通信集团公司 号码自动路由方法、更新方法、撤销方法、路由器及设备

Also Published As

Publication number Publication date
US8665887B2 (en) 2014-03-04
CN101340372B (zh) 2012-09-19
EP2320611B1 (en) 2018-01-31
EP2320611A1 (en) 2011-05-11
US20110286466A1 (en) 2011-11-24
CN101340372A (zh) 2009-01-07
EP2320611A4 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2010020107A1 (zh) 号码自动路由方法、更新方法、撤销方法、路由器及设备
JP7123174B2 (ja) マルチキャストデータ送信方法、関連装置、およびシステム
US8009674B2 (en) Transport networks supporting virtual private networks, and configuring such networks
US6526056B1 (en) Virtual private network employing tag-implemented egress-channel selection
CN111865898B (zh) 基于流规则协议的通信方法、设备和系统
US7369556B1 (en) Router for virtual private network employing tag switching
US8761043B2 (en) Setting up a virtual private network
WO2019105462A1 (zh) 报文的发送、处理方法及装置,pe节点,节点
JP4355422B2 (ja) パケットをルーティングする方法および装置
US7274704B1 (en) Piggybacking VPN information in BGP for network based VPN architectures
WO2005112350A1 (fr) Procede de gestion de chemin dans un reseau prive virtuel utilisant le protocole ipv6
WO2020134139A1 (zh) 一种业务数据的转发方法、网络设备及网络系统
WO2018032962A1 (zh) 一种信息同步的方法,装置及系统
WO2015000173A1 (zh) 建立隧道的方法、分配标签的方法、设备及网络系统
WO2006002598A1 (fr) Systeme vpn de reseau federateur hybride a site hybride et son procede de mise en oeuvre
WO2009135392A1 (zh) 一种信令控制的方法、系统及设备
WO2007041926A1 (en) A method and network appratus for processing the bgp route’s next hop change
WO2008011818A1 (fr) Procédé de fourniture d&#39;un service réseau local privé virtuel à hiérarchie et système réseau
WO2013107245A1 (zh) 在透明多链路互联(trill)网络中实现组播的方法、装置及系统
WO2017198131A1 (zh) 用于重定向数据流的方法和系统、网络设备和控制设备
CN102474451B (zh) 连接内层和外层mpls标签
CN113904981B (zh) 一种路由信息处理方法、装置、电子设备和存储介质
WO2005125103A1 (fr) Systeme de reseau prive virtuel d&#39;un site hybride et reseau de base hybride et procede de mise en oeuvre associe
JP2006514496A (ja) 非接続モードにおける仮想私設網の相互接続方法
WO2012129912A1 (zh) 一种配置路由标识符的方法和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1684/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009807806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13059934

Country of ref document: US