WO2010020064A1 - 一种由“原型电机”形成“派生电机”的方法 - Google Patents

一种由“原型电机”形成“派生电机”的方法 Download PDF

Info

Publication number
WO2010020064A1
WO2010020064A1 PCT/CN2008/001481 CN2008001481W WO2010020064A1 WO 2010020064 A1 WO2010020064 A1 WO 2010020064A1 CN 2008001481 W CN2008001481 W CN 2008001481W WO 2010020064 A1 WO2010020064 A1 WO 2010020064A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
derived
prototype
stator
winding
Prior art date
Application number
PCT/CN2008/001481
Other languages
English (en)
French (fr)
Inventor
徐志瑶
徐馨
Original Assignee
Xu Zhiyao
Xu Xin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xu Zhiyao, Xu Xin filed Critical Xu Zhiyao
Priority to CN2008801273776A priority Critical patent/CN101946388B/zh
Priority to PCT/CN2008/001481 priority patent/WO2010020064A1/zh
Publication of WO2010020064A1 publication Critical patent/WO2010020064A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines

Definitions

  • the invention relates to the field of three-phase asynchronous motor used for frequency conversion speed regulation, and particularly relates to a method for forming a "derived motor” from a "prototype motor”. Background technique
  • the "derived motor” in the name is a concept proposed by the inventor in an invention patent application [Application No.: 200710039396.0 (hereinafter referred to as A application)] on April 12, 2007.
  • a application the three-phase asynchronous motor with a universal rated frequency of 50 Hz (or 60 Hz) is called a "prototype motor”, and the parameters of the stator winding of the "prototype motor” are designed in a sorted manner according to certain rules, and the calculation is performed.
  • Corresponding series of "derived motor” parameters, and then these parameters are made into windings, instead of the stator winding of the "prototype motor", a series of new motors can be obtained.
  • Each new motor is called a "derived motor” of a "prototype motor.”
  • Distal motors are arranged from small to large according to their rated frequency, defining five frequency bands:
  • the Y-series model of the Y-series model is Y160L-6 (llkw/6-pole) general motor, and the parameter list of the "derived motor" of the Y160L-6 general-purpose motor is obtained (see Table 1).
  • Table 1 List of parameters for ''derived motor'' redesigned for Y160L-6 (llkw/6 pole) universal motor winding
  • A applies for the parameter of the "derived motor” in the method of calculating the parameters of the "derived motor”.
  • the parameters of the "derived motor” are sparse, especially in the high frequency band to the ultra high frequency band.
  • “The parameters, 180Hz-260Hz have only two sets of “derived motor” parameters, that is to say, the calculation method in the A application can only obtain 4 "derived motors” in the high frequency band, between 180Hz-260Hz in the ultra-high frequency band. Only 2 "derived motors” can be obtained.
  • the "derived motor” produced in accordance with the method of the A application can be applied in a limited range and cannot meet the requirements of certain specific rated frequencies. Summary of the invention
  • An object of the present invention is to provide a method for obtaining a denser arrangement of parameters of a "derived motor" in each frequency band, in particular, a method of obtaining a more densely arranged parameter of a "derived motor” in a frequency band having a rated frequency greater than 120 Hz. Specifically:
  • the equivalent method is: Based on the parameters of the "prototype motor", the correlation between the "derived motor” and the “prototype motor” is obtained according to the rule that the amount of copper used in the "prototype motor” stator winding wire is equal to the amount of copper used in the "derivative motor” stator winding wire.
  • the equivalent coefficient of the joint is multiplied by the corresponding coefficient of the "prototype motor” to calculate the corresponding parameter of the "derived motor”.
  • the parameters of the corresponding "prototype motor” include the cross-sectional area of the stator winding of the "prototype motor”, the rated frequency of the “prototype motor”, the rated power of the “prototype motor” and the rating of the “prototype motor”. At least one of the currents.
  • the parameters of the corresponding "derived motor” include at least one of the conductor cross-sectional area of the stator winding of the "derived motor”, the rated frequency of the "derived motor”, the rated power of the "derived motor” and the rated current of the "derived motor”.
  • the equivalent coefficient is a product of a factor of a factor, a series-parallel factor, and a sigma-delta conversion factor.
  • the factor of the turns is the ratio of the number of turns of each coil in the stator winding of the "prototype motor” to the number of turns of each coil in the stator winding of the "derived motor”, and the number of turns of each coil in the stator winding of the "prototype motor” Reducing one turn or each additional turn forms the number of turns per coil in a "derived motor” stator winding.
  • the series-parallel factor is the coil parallel branch of each phase winding of the "derived motor” stator in the case where the total number of coils per phase winding of the "derived motor” stator is constant with respect to the total number of coils of each phase winding of the corresponding "prototype motor” stator.
  • the ⁇ - conversion factor is ⁇ ; when the three-phase winding of the "prototype motor” is connected, the three-phase winding of the "derived motor” is also connected, then ⁇ - ⁇ The conversion factor is 1; if the three-phase winding of the "derived motor” is changed to Y connection, the ⁇ - ⁇ conversion factor is 1/.
  • the parameters of the "derived motor” include the cross-sectional area of the stator winding of the "derived motor”, the rated frequency of the “derived motor”, the rated power of the “derived motor”, and the rated current of the "derived motor”, "derived The number of turns of each coil of the stator of the motor, the number of parallel branches of each phase winding of the "derived motor” stator, and at least one of the ⁇ connection or delta connection of the three-phase winding of the "derived motor”; "prototype motor”
  • the parameters include the cross-sectional area of the stator winding of the "prototype motor”, the rated frequency of the "prototype motor”, the rated power of the "prototype motor” and the rated current of the "prototype motor”, and the turns of each coil of the "prototype motor” stator winding.
  • the number of parameters of the "derived motor” obtained is greatly increased, and in particular, the number of parameters such as the rated frequency of the "derived motor” from the high frequency band to the ultra high frequency band is greatly increased, so that, in practical applications, The number of parameters such as the rated frequency of the "derived motor” that can be selected is also increased, and can be selected according to actual needs, and then the required "derived motor” can be produced.
  • DRAWINGS Figure 1 is a flow chart of the parameters for obtaining the corresponding "derived motor"
  • the invention adopts the "prototype motor” with the rated frequency of 50 Hz (or 60 Hz), obtains the corresponding parameters of the "derived motor” by the equivalent method, and makes the winding of the "derived motor” according to the parameters of the "derived motor", thereby Get the "derived motor”.
  • the correlation between the "derived motor” and the “prototype motor” is obtained according to the rule that the amount of copper used for the "prototype motor” stator winding wire is equal to the amount of copper used for the "derived motor” stator winding wire.
  • the equivalent coefficient and then multiply the equivalent coefficient by the corresponding "prototype motor” parameters to calculate the corresponding "derived motor” parameters.
  • the equivalent coefficient is the product of the number of factors, the series-parallel factor, and the ⁇ - ⁇ conversion factor.
  • the parameters of the "prototype motor” include the cross-sectional area of the stator winding of the "prototype motor”, the rated frequency of the “prototype motor”, the rated power of the “prototype motor” and the rated current of the “prototype motor”, “prototype The motor “the number of turns of each coil of the stator winding, the number of parallel branches of the “prototype motor” stator per phase winding, and at least one of the Y connection or delta connection of the three-phase winding of the "prototype motor”; the corresponding “prototype motor” "The parameters include the conductor cross-sectional area of the stator winding of the "prototype motor”, the rated frequency of the "prototype motor”, the rated power of the "prototype motor” and the rated current of the "prototype motor”; the corresponding "derived motor” The parameters include the conductor cross-sectional area of the stator winding of the "derived motor”, the rated frequency of the "derived motor”, the
  • the number of turns per coil of the "prototype motor” stator winding, the number of parallel branches of the "prototype motor” stator per phase winding or “prototype motor” is based on the rule that the amount of copper used for the "prototype motor” stator winding wire is equivalent to the amount of copper used for the "derived motor” stator winding wire, and the "derived motor” and “prototype motor” are obtained.
  • the associated equivalent coefficient which is then multiplied by the cross-sectional area of the stator winding of the "prototype motor", the rated frequency of the “prototype motor”, and the rated power of the “prototype motor” rated current of the "prototype motor” Calculate the cross-sectional area of the stator winding of the "derived motor”, the rated frequency of the "derived motor”, the rated power of the "derived motor” and the rated current of the "derived motor”.
  • the parameter A of the corresponding "prototype motor” includes the wire cross-sectional area of the stator winding of the "prototype motor", the rated frequency of the "prototype motor”, and the “prototype motor”. At least one of the rated power and the rated current of the "prototype motor", that is, the parameter A of the corresponding "prototype motor” is one or more of the above parameters, for example, the wire cut of the "prototype motor” stator winding Area, rated frequency of "prototype motor” or rated power of "prototype motor”.
  • Z is a series-parallel factor
  • Y is the ⁇ - ⁇ conversion factor
  • the factor of the factor X, the series-parallel factor Z, the factor Y definition, and the value rules are as follows:
  • the operation of the factor factor X is essentially based on the number of turns of each coil in the "prototype motor” stator winding. The number of turns of each coil in the "prototype motor” stator winding is reduced by one turn or each additional one.
  • the number of turns of each coil in the "derived motor” stator winding, N is the amount by which the number of turns of the coil is reduced or increased, and T ⁇ N is the number of turns of each coil in the stator winding of the "derived motor”.
  • the value of the series-parallel factor Z depends on the result of the series-parallel connection of each phase coil of the "derived motor” relative to the "prototype motor”.
  • the number of parallel branches of the coil in each phase winding of the "prototype motor" is usually 1, 2, 3, 4, 5, 6, 8, 10... And the number of series coils on each parallel branch is the same, and the total number of coils in each phase winding is the number of parallel branches multiplied by the number of series coils in one parallel branch.
  • the series-parallel factor Z is the coil parallel branch of each phase winding of the "derived motor” stator. The ratio of the number of paths to the number of parallel branches of each phase winding of the "prototype motor” stator.
  • the series-parallel factor Z value is 1; when the "derived motor” stator has the number of coil parallel branches per phase winding is "prototype motor” The number of parallel connection factors of the stator windings is 2 times, then the series-parallel factor Z value is 2; when the "derived motor” stator has the number of coil parallel branches per phase winding is the parallel branch of the "prototype motor” stator per phase winding 3 times the number, the series-parallel factor Z value is 3; and so on, the series-parallel factor Z value is 4, 5.
  • the serial-parallel factor Z value is 1/2;
  • the string parallel factor Z is 1/3, 1/4, 1/5 ⁇ .
  • the values of the ⁇ - ⁇ conversion factor Y are: 1, ⁇ and 1/ ⁇ .
  • the three-phase winding of the "prototype motor” When the three-phase winding of the "prototype motor” is connected, the three-phase winding of the "derived motor” is also connected, and the ⁇ - ⁇ conversion factor is 1; if the three-phase winding of the "derived motor” is changed to connect, then ⁇ - ⁇ The conversion factor is ⁇ ; when the three-phase winding of the "prototype motor” is ⁇ connection, the three-phase winding of the "derived motor” is also ⁇ connected, then the Y- ⁇ conversion factor is 1; if the three-phase winding of the "derived motor” is changed to For ⁇ connection, the ⁇ - ⁇ conversion factor is 1/ ⁇ .
  • the equivalent coefficient S is the product of the parameter factor X, the series-parallel factor ⁇ , and the ⁇ - conversion factor ⁇ . According to the above calculation, corresponding to each "prototype motor", a plurality of corresponding equivalent coefficient S values can be obtained, and each equivalent coefficient S value can calculate a set of parameters of a "derived motor”. Therefore, each "prototype motor” can form a series of "derived motors". As shown in Fig. 1, multiplication ⁇ indicates that the equivalent coefficient S is multiplied by the parameter ⁇ of the corresponding "prototype motor”. The result is the corresponding "derived motor" parameter.
  • the parameter C of the corresponding "derived motor” shown in Figure 1 includes the cross-sectional area of the stator winding of the "derived motor”, the rated frequency of the “derived motor”, the rated power of the “derived motor” and the rating of the "derived motor” At least one of the currents, for example, the cross-sectional area of the stator winding of the "derived motor”, the rated frequency of the "derived motor”, or the rated power of the "derived motor”.
  • the relationship between the corresponding parameter and the equivalent coefficient S value between the "derived motor” and the "prototype motor” in Fig. 1 is as follows:
  • the parameter of the corresponding "derived motor” C the parameter of the corresponding "prototype motor” AX S, for example:
  • the conductor cross-sectional area of the "derived motor” stator winding "the prototype motor” stator winding wire cross-sectional area XS reflects the "composite motor” stator winding wire copper amount and the "derived motor” stator winding wire equivalent copper rule . Specific example of the method
  • the equivalent method is further described by taking the Y160L-6 (llkw/6 pole) general-purpose motor exemplified in the A application as an example.
  • the "prototype motor” has 6 coils per phase winding (parallel count is 1), 28 turns per coil, and the conductor cross-sectional area of the winding
  • the above “derived motor” is merely an example of the present invention, and the equivalent method of the present invention is not limited to the above “original type motor”. It is suitable for the transformation of all "prototype motors”.
  • the factor of the factor X, the series-parallel factor ⁇ , the ⁇ - ⁇ conversion factor ⁇ , the value of the equivalent coefficient S, and the corresponding new parameter set are not limited to the cases given above, and may be selected and designed according to the needs of the actual application. "Derived motor”.
  • the "derived motor” has a rated output power of 2.4 to 3.6 times that of the "prototype motor” compared with the “prototype motor”; the rated output power of the "high-frequency””derivedmotor” is “Prototype motor” is more than 3.6 times, and "derived electricity”
  • the winding wires of the machine and the prototype motor are equivalent in terms of copper, and their current densities through the wires are equal at their respective rated currents. That is, the "derived motor” winding wires with a rated frequency greater than 120 Hz The copper consumption heat and the "prototype motor” are equivalent, and the experiment of two "derived motors” proves this.
  • the excitation current of the asynchronous induction motor is projected on the main magnetic axis, and two components of active and reactive power can be obtained.
  • the reactive component produces the main flux
  • the active component produces iron loss
  • the iron loss includes eddy current loss and hysteresis loss.
  • the eddy current loss is proportional to the square of the frequency
  • the hysteresis loss is proportional to the frequency.
  • the no-load current is almost constant without change; the power input detects the active power and finds the active component with frequency.
  • the increase in the corresponding increase is a positive increment (the positive increment also includes the mechanical wear of the motor at high speed and the active increment of the self-contained fan blade). Therefore, it is considered that the active component of the excitation current increases with the increase of the frequency, and the iron loss increases. This positive increment will reduce the efficiency of the motor.
  • Copper consumption and iron consumption are two important factors affecting the efficiency of the motor. If the "derivative motor” with a rated frequency greater than 120 Hz is basically equivalent to the "prototype motor", when they calculate the percentage of copper consumption with their respective rated powers. The percentage has dropped a lot, which means that the reduction in copper consumption at this time is equivalent to a negative increment of active loss. Moreover, this negative increment is much larger than the positive increment of the above iron loss in the absolute value, that is, the copper consumption increment I ⁇ copper cost
  • a "derived motor” with a rated frequency greater than 120 Hz not only saves a lot of raw materials during manufacturing, but also is a highly efficient motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

一种由 "原型电机"形成 "派生电机"的方法
技术领域
本发明涉及用于变频调速的三相异步电机领域, 具体涉及一种由 "原型电机"形成 "派 生电机"的方法。 背景技术
名称中的"派生电机"是本发明人在 2007年 4月 12日的一项发明专利申请 [申请号: 200710039396.0 (以下简称 A申请) ]中提出的一个概念。 A申请中, 把通用型额定频率为 50Hz (或 60Hz) 的三相异步电动机称之为"原型电机", 把对"原型电机"的定子绕组的参数按一定 规则进行排序式地设计, 计算出相应的一连串 "派生电机" 的参数, 再按这些参数一一制成 绕组,取代"原型电机"的定子绕组,就可获得一连串的新电机。每个新电机称之为"原型电机" 的"派生电机"。
"派生电机"按它们的额定频率从小到大排列, 定义了五个频段:
( 1 )超低频段, 额定频率 25Hz;
(2) 低频段, 25Hz<额定频率<50¾;
(3 ) 中频段, 501¾<额定频率 120Hz;
(4) 高频段, 1201¾<额定频率 180Hz;
(5)超高频段, 180Hz<额定频率。
A申请中, 以我国 Y系列型号是 Y160L-6 ( llkw/6极) 通用电机为例作了具体说明, 并得 到了 Y160L-6通用电机的 "派生电机"的参数列表 (参见表 1 )。 表 1 Y160L-6(llkw/6极)通用电机绕组重新设计得到的' '派生电机' '的参数列表
Figure imgf000003_0001
Figure imgf000003_0002
1
确认本 续上表
Figure imgf000004_0001
Figure imgf000004_0002
Figure imgf000004_0003
从表 1可以看到, A申请在计算"派生电机"的参数的方法中, 得到的 "派生电机"的参数排 列稀疏, 特别是高频段至超高频段, 120Hz-180Hz只有四组"派生电机"的参数, 180Hz-260Hz 只有二组"派生电机"的参数,就是说, A申请中的计算方法,只能在高频段获得 4个"派生电机", 在超高频段的 180Hz-260Hz之间只能获得 2个"派生电机"。因而,按照 A申请的方法制得的"派 生电机"能够应用的范围有限, 无法满足某些特定的额定频率的需要。 发明内容
本发明的目的在于提供一种能够获得各频段内 "派生电机"的参数排列更密集的方法, 特 别是获得额定频率大于 120Hz的频段内"派生电机"的参数排列更密集的方法。 具体为:
以额定频率 50Hz (或 60Hz) 的"原型电机"为基础, 通过等效方法, 获得相应的 "派生电 机"的参数, 按照 "派生电机"的参数制成 "派生电机" 的绕组, 从而获得 "派生电机"。
其中, 等效方法为: 以 "原型电机"的参数为基础, 按照 "原型电机"定子绕组导线用铜量与' "派生电机" 定子绕组导线用铜量相当的规则, 获得 "派生电机"与 "原型电机"之间相关联的等效系数, 再用该等效系数乘以相应的 "原型电机"的参数, 计算出相应的 "派生电机"的参数。 其中, 更具体地说, 相应的 "原型电机"的参数包括 "原型电机"的定子绕组的导线截面积、 "原型 电机"的额定频率、 "原型电机"的额定功率和 "原型电机"的额定电流中的至少一个。 相应 的 "派生电机"的参数包括 "派生电机"的定子绕组的导线截面积、 "派生电机"的额定频率、 "派生电机" 的额定功率和 "派生电机"的额定电流中的至少一个。
在上述的等效方法中, 等效系数为匝数因子、 串并联因子、 Υ-Δ转换因子的乘积。 其中, 匝数因子为 "原型电机"定子绕组中每个线圈的匝数与 "派生电机"定子绕组中每个线圈的 匝数的比值, "原型电机"定子绕组中每个线圈的匝数每减少一匝或者每增加一匝都形成一个 "派生电机"定子绕组中每个线圈的匝数。
串并联因子为在 "派生电机"定子每相绕组的线圈总数相对于对应的 "原型电机"定子 每相绕组的线圈总数不变的情况下所述 "派生电机"定子每相绕组的线圈并联支路数与所述 "原型电机"定子每相绕组的并联支路数的比值。
当"原型电机"的三相绕组为 Y连接, "派生电机"的三相绕组也是 Y连接, Υ-Δ转换因子为
1 ; 若"派生电机"的三相绕组改为 连接, 则 ¥- 转换因子为^ ; 当"原型电机"的三相绕组 为 连接, "派生电机"的三相绕组也是 连接, 则 Υ-Δ转换因子为 1 ; 若"派生电机"的三相绕 组改为 Y连接, 则 Υ-Δ转换因子为 1/ 。
在本发明中, "派生电机"的参数包括 "派生电机" 的定子绕组的导线截面积、 "派生电 机"的额定频率、 "派生电机" 的额定功率和 "派生电机" 的额定电流、 "派生电机"定子绕 组的每个线圈的匝数、 "派生电机"定子每相绕组的并联支路数以及 "派生电机"的三相绕组 的 Υ连接或 Δ连接中的至少一个; "原型电机"的参数包括 "原型电机"的定子绕组的导线截 面积、 "原型电机"的额定频率、 "原型电机"的额定功率和 "原型电机"的额定电流、 "原型 电机"定子绕组的每个线圈的匝数、 "原型电机"定子每相绕组的并联支路数以及 "原型电机" 的三相绕组的 Υ连接或△连接中的至少一个。
根据本发明的方法, 获得的 "派生电机" 的参数的数量大量地增加, 特别是高频段至超 高频段 "派生电机" 的额定频率等参数的数量被大量地增加, 这样, 在实际应用中, 可以用 来选择的 "派生电机" 的额定频率等参数的数量也就增加, 可以根据实际需要选择, 然后制 作需要的 "派生电机"。
附图说明 图 1为获取相应的 "派生电机"的参数流程框图
具体实施方式
下面, 参照图 1对本发明的实施例进行具体的说明。
本发明以额定频率为 50Hz (或 60Hz)的"原型电机"基础,通过等效方法,获得相应的"派 生电机"的参数, 按照 "派生电机"的参数制成 "派生电机"的绕组, 从而获得 "派生电机"。
其中, 等效方法为:
以 "原型电机" 的参数为基础, 按照 "原型电机"定子绕组导线用铜量与 "派生电机" 定子绕组导线用铜量相当的规则, 获得 "派生电机"与 "原型电机"之间相关联的等效系数, 再用该等效系数乘以相应的 "原型电机"的参数, 计算出相应的 "派生电机"的参数。 其中, 等效系数为匝数因子、 串并联因子、 Υ-Δ转换因子的乘积。
更具体地说, "原型电机"的参数包括 "原型电机" 的定子绕组的导线截面积、 "原型电 机"的额定频率、 "原型电机" 的额定功率和 "原型电机" 的额定电流、 "原型电机"定子绕 组的每个线圈的匝数、 "原型电机"定子每相绕组的并联支路数以及 "原型电机"的三相绕组 的 Y连接或 Δ连接中的至少一个; 相应的 "原型电机" 的参数包括 "原型电机" 的定子绕组 的导线截面积、 "原型电机" 的额定频率、 "原型电机" 的额定功率和 "原型电机"的额定电 流中的至少一个; 相应的 "派生电机"的参数包括 "派生电机" 的定子绕组的导线截面积、 "派生电机"的额定频率、 "派生电机"的额定功率和 "派生电机"的额定电流中的至少一个; "派生电机"的参数包括 "派生电机" 的定子绕组的导线截面积、 "派生电机"的额定频率、 "派生电机"的额定功率和 "派生电机"的额定电流、 "派生电机"定子绕组的每个线圈的匝 数、 "派生电机"定子每相绕组的并联支路数以及 "派生电机"的三相绕组的 Y连接或△连接 中的至少一个。
例如: 对于额定频率为 50Hz (或 60Hz) 的"原型电机", 以 "原型电机"定子绕组的每个 线圈的匝数、 "原型电机"定子每相绕组的并联支路数或 "原型电机"的三相绕组的 Y连接或 △连接为基础, 按照 "原型电机"定子绕组导线用铜量与 "派生电机"定子绕组导线用铜量 相当的规则, 获得 "派生电机"与 "原型电机"之间相关联的等效系数, 再用该等效系数乘 以 "原型电机"的定子绕组的导线截面积、 "原型电机"的额定频率、 "原型电机" 的额定功 率 "原型电机"的额定电流, 计算出 "派生电机"的定子绕组的导线截面积、 "派生电机"的 额定频率、 "派生电机" 的额定功率和 "派生电机"的额定电流。
下面结合图 1对本发明的等效方法进行阐述。 如图 1所示, 相应的 "原型电机" 的参 数 A包括 "原型电机" 的定子绕组的导线截面积、 "原型电机"的额定频率、 "原型电机" 的额定功率和 "原型电机" 的额定电流中的至少一个, 也就是说, 相应的 "原型电机"的 参数 A是上述参数中的一个或者多个, 例如, "原型电机"定子绕组的导线截面积、 "原型 电机"的额定频率或 "原型电机"的额定功率。
如图 1所示, 等效系数 S的计算公式为 S=XXZX Y。
其中, X为匝数因子;
Z为串并联因子;
Y为 Υ-Δ转换因子。
匝数因子 X、 串并联因子 Z、 换因子 Y定义以及取值规则如下:
1. 匝数因子 X为 "原型电机"定子绕组中每个线圈的匝数与 "派生电机"定子绕组中每 个线圈的匝数的比值。 更具体地说, 匝数因子 X=T/(T±N), 其中, T是"原型电机"绕组中每 个线圈的匝数, N是自然数 0、 1、 2、 3、 4、 5……。 匝数因子 X的运算实质是以 "原型电机" 定子绕组中每个线圈的匝数为基础, "原型电机"定子绕组中每个线圈的匝数每减少一匝或者 每增加一匝都形成一个 "派生电机"定子绕组中每个线圈的匝数, N即是线圈匝数减少或者 增加的量, T±N即是 "派生电机"定子绕组中每个线圈的匝数。
2. 串并联因子 Z的取值取决于 "派生电机"每相线圈串并联相对于 "原型电机"每相线 圈串并联的变化的结果。
"原型电机"每相绕组中的线圈的并联支路数通常是 1、 2、 3、 4、 5、 6、 8、 10……。 并且 各个并联支路上串联线圈的个数是相同的, 每相绕组的线圈总数是并联支路数乘以一个并联 支路中串联线圈的个数。
在 "派生电机"定子每相绕组的线圈总数相对于对应的 "原型电机"定子每相绕组的线 圈总数不变的情况下, 串并联因子 Z为 "派生电机"定子每相绕组的线圈并联支路数与 "原型 电机"定子每相绕组的并联支路数的比值。 更具体地说, 例如: 在 "派生电机"定子每相绕 组的线圈总数相对于对应的 "原型电机"定子每相绕组的线圈总数不变的情况下, 当 "派生 电机"定子每相绕组的线圈并联支路数与 "原型电机"定子每相绕组的并联支路数相同, 则 串并联因子 Z值为 1 ; 当 "派生电机"定子每相绕组的线圈并联支路数是 "原型电机"定子每 相绕组的并联支路数的 2倍, 则串并联因子 Z值为 2; 当 "派生电机"定子每相绕组的线圈并联 支路数是"原型电机"定子每相绕组的并联支路数的 3倍, 串并联因子 Z值为 3; 以此类推得串 并联因子 Z值为 4、 5……。 另一方面, 当 "原型电机"定子每相绕组的并联支路数是"派生电 机"定子每相绕组的线圈并联支路数的 2倍, 则串并联因子 Z值为 1/2; 以此类推, 得串并联 因子 Z值为 1/3、 1/4、 1/5〜〜。 c. Υ-Δ转换因子 Y的取值为: 1、 ^和 1/^。 当"原型电机"的三相绕组为 Υ连接, "派生 电机"的三相绕组也是 Υ连接, Υ-Δ转换因子为 1 ; 若"派生电机"的三相绕组改为 连接, 则 Υ- 厶转换因子为^ ; 当"原型电机"的三相绕组为△连接, "派生电机"的三相绕组也是厶连接, 则 Y-厶转换因子为 1 ; 若"派生电机"的三相绕组改为 Υ连接, 则 Υ-Δ转换因子为 1/^。
根据本实施例的说明, 等效系数 S是匝数因子 X、 串并联因子 Ζ、 ¥- 转换因子 Υ的乘积。 经上述运算的推演, 对应于每个 "原型电机", 可以得到众多对应的等效系数 S值, 而每个等 效系数 S值都可计算出一个"派生电机"的一组参数。 因此, 每个 "原型电机"都可形成一连串 的 "派生电机"。 如图 1所示, 相乘 Β表示等效系数 S与相应的 "原型电机"的参数 Α相乘。 其 得到的结果就是相应的 "派生电机" 的参数。 如图 1所示的相应的 "派生电机" 的参数 C包括 "派生电机"的定子绕组的导线截面积、 "派生电机"的额定频率、 "派生电机" 的额定功率 和 "派生电机"的额定电流中的至少一个, 例如, "派生电机"的定子绕组的导线截面积、 "派 生电机"的额定频率、 或 "派生电机"的额定功率。
更具体地说, 图 1中"派生电机"与"原型电机"之间相应的参数与等效系数 S值的关系如下: 相应的 "派生电机"的参数 C=相应的 "原型电机"的参数 AX S, 例如:
"派生电机"的额定频率 原型电机"的额定频率 X S;
"派生电机"定子绕组的导线截面积-"原型电机"定子绕组的导线截面积 X S;
"派生电机"的额定功率 Pe="原型电机"的额定功率 X S;
"派生电机"的额定电流 Ie="原型电机"的额定电流 X S。
其中, "派生电机"定子绕组的导线截面积= "原型电机"定子绕组的导线截面积 X S体现了 "原型电机"定子绕组导线用铜量与 "派生电机"定子绕组导线用铜量相当的规则。 方法的具体举例
现仍以 A申请中的例举的 Y160L-6 ( llkw/6极) 通用电机为例对等效方法作进一步说明。 该"原型电机"每相绕组为 6线圈串联(并联支数为 1 ), 每线圈为 28匝, 绕组的导线截面积
2.834mm2, 三相绕组^ 连接, 以下用两种方法分别计算:
1. 把 "派生电机"每相绕组中的 6个线圈三并二串连接, 得串并联因子 Z=3; "派生电机" 三相绕组与"原型电机"三相绕组连接相同, 得 ¥- 转换因子 Y=l ; 再对"原型电机"定子绕组 中每个线圈的匝数 Τ=28进行逐一地增一和减一的排序, 计算求得每个匝数因子 X, 然后计算 得对应的每个等效系数≤。 它们的一连串计算结果值参见表 2。 表 2 等效法对绕组三并二串后计算的 X和 S值的列表
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0004
在获得等效 ¾数 S的值后, "原型电机 "Y160L-6 ( llkw/6极) 通用电机的"派生电机"的相 关参数可一一求得, 参见表 3。
表 3 绕组三并二串后所得 S值对应的 "派生电机"绕组参数列表
Figure imgf000009_0005
Figure imgf000009_0006
等效系数 S 5.250 5.660 6.000 6.462
"派生电机"绕组的导线截面积 (mm2) 14.879 15.870 17.004 18.313
"派生电机"的额定频率 (Hz) 262.500 280.000 300.000 323.100
"派生电机"的额定功率 (kw) 57.750 61.600 66.000 71.082
"派生电机"的额定电流 (A) 131.250 140.000 150.000 161.550 续上表
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0003
2. 把每相 6个线圈作二并三串连接, 得串并联因子 Ζ=2; "派生电机"三相绕组保持"原型电 机"三相绕组的△连接, 得 Y-厶转换因子 Y=l ; 而后对 "原型电机"定子绕组中每个线圈的匝 数 Τ=28进行逐一地作增一和减一的运算, 同样可以计算求得每个匝数因子 X, 然后计算得对 应的每个等效系数 S。 它们的一连串计算结果值参见表 4。
表 4绕组二并三串后计算的 X和 S值的列表
Figure imgf000010_0004
Figure imgf000010_0005
Figure imgf000010_0006
Figure imgf000010_0007
在获得表 4的等效系数 S—连串数值后, 又可计算得"原型电机 "Y160L-6 ( llkw/6极) 用电机 "的一连串"派生电机"的相关参数, 参见表 5。 表 5 绕组二并三串后所得 S值对应的 "派生电机"绕组 .参数列表 等效系数 S 2.000 2.074 2.154 2.240 2.334 2.434
"派生电机"绕组的导线截面积 (mm2) 5.668 5.878 6.104 6.348 6.615 6.898
"派生电机"的额定频率 (Hz) 100.000 103.700 107.700 112.000 116.700 121.700
"派生电机"的额定功率 (kw) 22.000 22.814 23.694 24.640 25.674 26.774
"派生电机"的额定电流 (A) 50.000 51.850 53.850 56.000 58.350 60.850
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0004
Figure imgf000011_0005
由表 3、表 5可以看出, 本发明的方法获得的 "派生电机"的参数, 相对于 A申请来说, 大大 丰富了额定频率大于 120Hz, 即高频段和超高频段 "派生电机"的参数, 弥补了 A申请的不足。 1. 应用实例
两台按本发明的方法设计制作的"派生电机", 在某大学电机实验室分别测试。
( 1 ) "原型电机' 'Y100L-6(1.5kw/6极), 额定频率 50Hz、 额定电压 380V、 额定电流 4A、 绕组参数:每相绕组 6个线圈串联(并联支路为 1 ), 56匝每线圈, 绕组导线的截面积 0.567mm2, 三相绕组为 Y型连接。 按本发明的方法, 线圈匝数由 56匝改为 51匝, 遵循绕组用铜量基本相 当的规则, 导线的截面积相应地改为 0.636mm2 ; 把每相的 6个线圈进行三并二串地连接, 串并 联因子 Z=3; 三相绕组 Y型连接不变, ¥-^转换因子 Y=l。
等效方法计算: S=XXZX Y 3=56/(56-5) X 3 X 1=3.294
"派生电机"的额定频率 fe=50HzX S= 164.7Hz
"派生电机"的额定功率 Pe=1.5kwX S=4.94kw
实际运行检测的数据显示, 这台"派生电机"完全达到了设计的指标和要求。 特别需要指 出的是:在输出功率为额定功率的 75%—— 100%的检测时,它的效率超过了 GB18613— 2006, 关于 5.5kw/2极电机的 1级能率等级标准, 属于高能效电机。
(2) "原型电机"是 Y2 132S-4 (5.5kw/4极), 50Hz、 380V、 额定电流 11.6A; 绕组参数: 每相绕组 6个线圈串联 (并联支数为 1 ), 47匝 /线圈, 定子绕组的导线截面积 1.344mm2, 三相 绕组 Y型连接。 按等效方法, 不改变每线圈的匝数, 得 X= l ; 把每相绕组中的 6个线圈改为二 并三串连接,得串并联因子 Z=2;再把三相绕组由 Y型改为 型连接,得 Υ-Δ转换因子¥= V3。 由此得 S=XXZX Y= 1 X 2 X V3 =3.464
"派生电机"的额定频率 fe=50Hz X S = 173.2Hz
"派生电机"的额定功率 Pe=5.5kwX S= 19.1kw
由于该大学电机实验室进口的标准测功仪设备的测试容量 (6kw) 的限制, 本试验采用 了传统的功率测试方法, 即电机经皮带传动, 驱动一台输出额定功率是 15kw的直流发电机, 发电机输出接电阻负载的方法。 在 "派生电机"额定输出功率 90% ( 17.2kw) 的情况下, 运 行一小时半, 电机的表面温度达到平衡点 69Ό (测试现场的室温为 30'C )。根据电机输出功率 和温升情况的分析评估, 它也是一台高效电机。
注意, 上述 "派生电机"只是本发明的实例, 本发明的等效方法并不只适用于上述 "原 型电机"。 而是适用于所有的 "原型电机"的改造。 匝数因子 X、 串并联因子 Ζ、 Υ-Δ转换因 子¥、 等效系数 S的值以及对应的新参数组也并不只限于上文给出的情况, 可以根据实际应用 的需要选择和设计不同的 "派生电机"。
2. 分析与评估
额定频率大于 120Hz的高频段和超高频段的"派生电机"为什么会高效呢?
A申请中指出: "派生电机"与"原型电机"相比, 高频段 "派生电机"的额定输出功率是"原型电 机"的 2.4至 3.6倍; 超高频段"派生电机"的额定输出功率是"原型电机"的 3.6倍以上, 而"派生电 机"和"原型电机"的绕组导线的用铜量相当, 它们在各自的额定电流时, 流经导线的电流密度 是相等的。 也就是说, 额定频率大于 120Hz的"派生电机"绕组导线的铜耗发热和"原型电机" 是相当的, 两台"派生电机"的实验也证明了这一点。
关于定子、 转子的铁耗问题。 有文章指出, 异步感应电机的励磁电流在主磁轴投影, 可 得到有功和无功两个分量。 无功分量产生主磁通, 有功分量产生铁耗, 铁耗包括涡流损耗和 磁滞损耗。 涡流损耗与频率的平方成正比, 磁滞损耗与频率成正比。 励磁电流中的有功分量 在随频率增加的过程中对铁耗的影响和对电机效率的影响的大小,在两项测试中得到了关注。 我们观测到电机在空载运行时, 无论是低频 10Hz— 20Hz时, 还是高频 150Hz— 170Hz时, 空 载电流几乎是没有变化的常量; 电源输入端对输入有功功率检测, 发现有功分量随频率的增 加相应地上升, 是正增量(该正增量中还包括了电机高速时的机械磨损和自带扇叶的有功增 量)。所以认为励磁电流中有功分量随着频率的上升, 铁耗会有所增加。这个正增量会降低电 机的效率。
铜耗和铁耗是影响电机效率两大重要因素,如果额定频率大于 120Hz的"派生电机"的铜耗 与"原型电机"基本相当, 当它们与它们各自的额定功率去计算铜耗的百分比时, 百分比降了 许多, 也就是说这时的铜耗下降相当于一个有功损耗的负增量。 而且, 这个负增量要比上述 的铁耗的正增量在绝对值上大许多, 即铜耗增量 I Δ copper cost|>>铁耗增量 | Δ iron cost|。 把两 者综合起来,有功损耗的增量是负值。负值增量意味提升电机效率, 负值越大电机效率越高。 这就是两台样机成为高效电机的原因。
因此,额定频率大于 120Hz的"派生电机"不但在制造时可以节省大量的原材料,同时也是 一种高效率的电机。

Claims

权利要求书
1. 一种由 "原型电机"形成 "派生电机"的方法, 其特征在于,
以 "原型电机" 的参数为基础, 通过等效方法, 获得相应的 "派生电机" 的参数, 按照 "派生电机"的参数制成 "派生电机"的绕组, 从而获得 "派生电机"。
2. 根据权利要求 1所述的方法, 其特征在于,
其中, 所述等效方法为:
以所述 "原型电机" 的参数为基础, 按照 "原型电机"定子绕组导线用铜量与 "派生电 机"定子绕组导线用铜量相当的规则, 获得 "派生电机"与 "原型电机"之间相关联的等效 系数, 再用所述等效系数乘以相应的 "原型电机"的参数。
3.根据权利要求 2所述的方法, 其特征在于, '
其中, 所述相应的 "原型电机"的参数包括 "原型电机"的定子绕组的导线截面积、 "原 型电机"的额定频率、 "原型电机"的额定功率和 "原型电机"的额定电流中的至少一个; 所 述相应的 "派生电机"的参数包括 "派生电机"的定子绕组的导线截面积、 "派生电机"的额 定频率、 "派生电机" 的额定功率和 "派生电机"的额定电流中的至少一个。
4. 根据权利要求 2所述的方法, 其特征在于,
所述等效系数为匝数因子、 串并联因子、 Υ-Δ转换因子的乘积。
5. 根据权利要求 4所述的方法, 其特征在于,
所述匝数因子为 "原型电机"定子绕组中每个线圈的匝数与 "派生电机"定子绕组中每 个线圈的匝数的比值, 其中, 所述 "原型电机"定子绕组中每个线圈的匝数每减少一匝或者 每增加一匝都形成一个所述 "派生电机"定子绕组中每个线圈的匝数。
6. 根据权利要求 4所述的方法, 其特征在于,
. 所述串并联因子为在 "派生电机"定子每相绕组的线圈总数相对于对应的 "原型电机" 定子每相绕组的线圈总数不变的情况下所述 "派生电机"定子每相绕组的线圈并联支路数与 所述 "原型电机"定子每相绕组的并联支路数的比值。
7. 根据权利要求 4所述的方法, 其特征在于,
所述 Υ-Δ转换因子为: 当所述 "原型电机"的三相绕组为 Y连接, 所述"派生电机"定子的三 相绕组也是 Y连接,则所述 Υ-Δ转换因子为 1 ;若所述 "派生电机"定子的三相绕组改为△连接, 则所述 ¥- 转换因子为^ ; 当所述 "原型电机"定子的三相绕组为△连接, 所述"派生电机"定 子的三相绕组也是△连接, 则所述 Υ-Δ转换因子为 1 ; 若所述 "派生电机"定子的三相绕组改为 Y连接, 则所述 Υ-Δ转换因子为 1/VJ。
8. 根据权利要求 1所述的方法, 其特征在于,
所述 "派生电机"的参数包括如权利要求 3中所述相应的 "派生电机"的参数、 所述 "派 生电机"定子绕组的每个线圈的匝数、 所述 "派生电机"定子每相绕组的并联支路数以及所 述 "派生电机"定子的三相绕组的 Y连接或△连接中的至少一个; 所述 "原型电机" 的参数 包括如权利要求 3中所述相应的 "原型电机"的参数、 所述 "原型电机"定子绕组的每个线圈 的匝数、 所述 "原型电机"定子每相绕组的并联支路数以及所述 "原型电机"定子的三相绕 组的 Y连接或△连接中的至少一个。
PCT/CN2008/001481 2008-08-18 2008-08-18 一种由“原型电机”形成“派生电机”的方法 WO2010020064A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801273776A CN101946388B (zh) 2008-08-18 2008-08-18 一种由“原型电机”形成“派生电机”的方法
PCT/CN2008/001481 WO2010020064A1 (zh) 2008-08-18 2008-08-18 一种由“原型电机”形成“派生电机”的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001481 WO2010020064A1 (zh) 2008-08-18 2008-08-18 一种由“原型电机”形成“派生电机”的方法

Publications (1)

Publication Number Publication Date
WO2010020064A1 true WO2010020064A1 (zh) 2010-02-25

Family

ID=41706800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001481 WO2010020064A1 (zh) 2008-08-18 2008-08-18 一种由“原型电机”形成“派生电机”的方法

Country Status (2)

Country Link
CN (1) CN101946388B (zh)
WO (1) WO2010020064A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982924A (zh) * 2010-10-27 2011-03-02 徐志瑶 一种适用于变频驱动的双额定频率三相电机设计方法
CN105048727A (zh) * 2015-08-26 2015-11-11 徐志瑶 一种由“原型电机”形成“新型电机”的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790452B (zh) * 2012-08-30 2014-04-16 徐志瑶 多层次额定频率结构且规格化系列化的变频驱动电机及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2096839U (zh) * 1991-02-12 1992-02-19 马云鹏 指标接近于单速电机的三相双速电动机
CN2805187Y (zh) * 2005-05-19 2006-08-09 上海电器科学研究所(集团)有限公司 一种大功率电机双层同心式绕组结构
CN2812384Y (zh) * 2005-02-08 2006-08-30 丁振荣 交流电机设计分成多套槽位依次相邻的三相绕组及其变频
CN1852002A (zh) * 2005-12-29 2006-10-25 上海海事大学 内置径向式永磁同步电动机的直接设计方法
CN1945964A (zh) * 2005-10-08 2007-04-11 王有元 方波永磁倍频调速同步鼠笼电动机
CN101075757A (zh) * 2007-04-12 2007-11-21 徐志瑶 按负载特性和要求设计定子绕组以改造通用电机的设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2096839U (zh) * 1991-02-12 1992-02-19 马云鹏 指标接近于单速电机的三相双速电动机
CN2812384Y (zh) * 2005-02-08 2006-08-30 丁振荣 交流电机设计分成多套槽位依次相邻的三相绕组及其变频
CN2805187Y (zh) * 2005-05-19 2006-08-09 上海电器科学研究所(集团)有限公司 一种大功率电机双层同心式绕组结构
CN1945964A (zh) * 2005-10-08 2007-04-11 王有元 方波永磁倍频调速同步鼠笼电动机
CN1852002A (zh) * 2005-12-29 2006-10-25 上海海事大学 内置径向式永磁同步电动机的直接设计方法
CN101075757A (zh) * 2007-04-12 2007-11-21 徐志瑶 按负载特性和要求设计定子绕组以改造通用电机的设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982924A (zh) * 2010-10-27 2011-03-02 徐志瑶 一种适用于变频驱动的双额定频率三相电机设计方法
CN105048727A (zh) * 2015-08-26 2015-11-11 徐志瑶 一种由“原型电机”形成“新型电机”的方法

Also Published As

Publication number Publication date
CN101946388A (zh) 2011-01-12
CN101946388B (zh) 2012-02-29

Similar Documents

Publication Publication Date Title
Hosseini et al. Design, prototyping, and analysis of a low cost axial-flux coreless permanent-magnet generator
Chu et al. Simplified analytical optimization and comparison of torque densities between electrically excited and permanent-magnet machines
Tong et al. Loss and thermal analysis of a high-speed surface-mounted PMSM with amorphous metal stator core and titanium alloy rotor sleeve
Eriksson et al. Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power
Bernard et al. Design methodology of a permanent magnet synchronous machine for a screwdriver application
Hong et al. Development of a high speed induction motor for spindle systems
Han et al. Torque/power density optimization of a dual-stator brushless doubly-fed induction generator for wind power application
Chiba et al. Test results of an SRM made from a layered block of heat-treated amorphous alloys
Banchhor et al. Design, modeling, and analysis of dual rotor axial flux induction motor
Chen et al. Design of a medium-voltage high-power brushless doubly fed motor with a low-voltage fractional convertor for the circulation pump adjustable speed drive
WO2010020064A1 (zh) 一种由“原型电机”形成“派生电机”的方法
Shao et al. Design of a twelve-phase flux-switching permanent magnet machine for wind power generation
Kakosimos et al. Aerospace actuator design: A comparative analysis of permanent magnet and induction motor configurations
Chen et al. Design of a brushless doubly fed generator with simplified three-phase wound rotor
Mustafa et al. The electromagnetic modeling and the co-simulation of a direct drive axial flux permanent magnet synchronous generator
Faiz et al. Optimal design of permanent magnet synchronous generator for wind energy conversion considering annual energy input and magnet volume
Pan et al. Design of a Wound Rotor Brushless Doubly-Fed Machine With 1/5 Pole-Pair Combination
Sadeghierad et al. High-speed axial-flux permanent-magnet generator with coreless stator
Liew et al. Analysis of a segmented brushless PM machine utilising soft magnetic composites
CN114884243A (zh) 一种基于混合转子的轴向磁通永磁电机
Talebi et al. Design of an Extremely Efficient, Rare-Earth Free, 5 kW Motor in a NEMA 210 Frame
Hatziargyriou Design aspects of coreless axial flux permanent magnet generators for low cost small wind turbine applications
Akgemci et al. Design and analysis of a 2.5 MW hybrid excited synchronous wind turbine generator with two separate rotors
Keshtkar et al. Multi-objective Optimal Design of Dual Stator Winding Induction Generators Based on Genetic Algorithm and Finite Element Analysis
Wang et al. Analysis on Time-Space Distribution of Electromagnetic Loss for Aircraft Variable Frequency Generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127377.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08800503

Country of ref document: EP

Kind code of ref document: A1