WO2010019910A1 - Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents - Google Patents
Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents Download PDFInfo
- Publication number
- WO2010019910A1 WO2010019910A1 PCT/US2009/053931 US2009053931W WO2010019910A1 WO 2010019910 A1 WO2010019910 A1 WO 2010019910A1 US 2009053931 W US2009053931 W US 2009053931W WO 2010019910 A1 WO2010019910 A1 WO 2010019910A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pyrrol
- methylphenyl
- carbamoyl
- propanoic acid
- compound
- Prior art date
Links
- 0 CCOC(CCc1ccc(-c(cc2)ccc2Br)[n]1*)=O Chemical compound CCOC(CCc1ccc(-c(cc2)ccc2Br)[n]1*)=O 0.000 description 10
- WYECURVXVYPVAT-UHFFFAOYSA-N CC(c(cc1)ccc1Br)=O Chemical compound CC(c(cc1)ccc1Br)=O WYECURVXVYPVAT-UHFFFAOYSA-N 0.000 description 1
- VGGJLBJOBCTBJD-UHFFFAOYSA-N CCOC(CCC(CCC(c(cc1)ccc1Br)=O)=O)=O Chemical compound CCOC(CCC(CCC(c(cc1)ccc1Br)=O)=O)=O VGGJLBJOBCTBJD-UHFFFAOYSA-N 0.000 description 1
- HENDYODRFORTTJ-UHFFFAOYSA-N CCOC(CCc1ccc(-c(ccc(Cl)c2)c2NC=O)[n]1-c(c(C)c1)ccc1C#N)=O Chemical compound CCOC(CCc1ccc(-c(ccc(Cl)c2)c2NC=O)[n]1-c(c(C)c1)ccc1C#N)=O HENDYODRFORTTJ-UHFFFAOYSA-N 0.000 description 1
- GFISDBXSWQMOND-UHFFFAOYSA-N COC(CC1)OC1OC Chemical compound COC(CC1)OC1OC GFISDBXSWQMOND-UHFFFAOYSA-N 0.000 description 1
- IATZHNXJWKGKCU-UHFFFAOYSA-N Cc(cc(cc1)C#N)c1-[n]1c(C=O)ccc1 Chemical compound Cc(cc(cc1)C#N)c1-[n]1c(C=O)ccc1 IATZHNXJWKGKCU-UHFFFAOYSA-N 0.000 description 1
- LLVRPQSZRMFCRF-UHFFFAOYSA-N Cc(cc(cc1)C(N)=O)c1-[n]1cccc1 Chemical compound Cc(cc(cc1)C(N)=O)c1-[n]1cccc1 LLVRPQSZRMFCRF-UHFFFAOYSA-N 0.000 description 1
- CUJSSIOATYIWKA-UHFFFAOYSA-N Cc(cc(cc1)C(N)=O)c1N Chemical compound Cc(cc(cc1)C(N)=O)c1N CUJSSIOATYIWKA-UHFFFAOYSA-N 0.000 description 1
- JKCPPRQNCFVBSW-UHFFFAOYSA-N Cc1cc(C(N)=O)ccc1-[n]1c(-c(ccc(Cl)c2)c2NC=O)ccc1CCC(O)=O Chemical compound Cc1cc(C(N)=O)ccc1-[n]1c(-c(ccc(Cl)c2)c2NC=O)ccc1CCC(O)=O JKCPPRQNCFVBSW-UHFFFAOYSA-N 0.000 description 1
- HYBBIBNJHNGZAN-UHFFFAOYSA-N O=Cc1ccc[o]1 Chemical compound O=Cc1ccc[o]1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4178—1,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/402—1-aryl substituted, e.g. piretanide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/4025—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
- A61K31/4155—1,2-Diazoles non condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/10—Drugs for genital or sexual disorders; Contraceptives for impotence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/06—Free radical scavengers or antioxidants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/32—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D207/323—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/32—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D207/325—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
- C07D207/327—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/32—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D207/33—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D207/337—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/10—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
Definitions
- the present invention is directed to novel pyrrole inhibitors of S- nitrosoglutathione reductase, pharmaceutical compositions comprising such inhibitors, and methods of making and using the same.
- the chemical compound nitric oxide is a gas with chemical formula NO.
- NO is one of the few gaseous signaling molecules known in biological systems, and plays an important role in controlling various biological events.
- the endothelium uses NO to signal surrounding smooth muscle in the walls of arterioles to relax, resulting in vasodilation and increased blood flow to hypoxic tissues.
- NO is also involved in regulating smooth muscle proliferation, platelet function, neurotransmission, and plays a role in host defense.
- nitric oxide is highly reactive and has a lifetime of a few seconds, it can both diffuse freely across membranes and bind to many molecular targets. These attributes make NO an ideal signaling molecule capable of controlling biological events between adjacent cells and within cells.
- NO is a free radical gas, which makes it reactive and unstable, thus NO is shortlived in vivo, having a half life of 3-5 seconds under physiologic conditions.
- NO can combine with thiols to generate a biologically important class of stable NO adducts called 5-nitrosothiols (SNO' s).
- SNO' s 5-nitrosothiols
- This stable pool of NO has been postulated to act as a source of bioactive NO and as such appears to be critically important in health and disease, given the centrality of NO in cellular homeostasis (Stamler et al., Proc. Natl. Acad. ScL USA, 89:7674-7677 (1992)).
- GSNO provides a therapeutically promising target to consider when NO modulation is pharmacologically warranted.
- NOS nitric oxide synthetase
- GSNOR 5-nitrosoglutathione reductase
- GSNOR shows greater activity toward GSNO than other substrates (Jensen et al., 1998; Liu et al., 2001) and appears to mediate important protein and peptide denitrosating activity in bacteria, plants, and animals.
- GSNOR appears to be the major GSNO-metabolizing enzyme in eukaryotes (Liu et al., 2001).
- GSNO can accumulate in biological compartments where GSNOR activity is low or absent (e.g. airway lining fluid) (Gaston et al., 1993).
- GSNO specifically has been implicated in physiologic processes ranging from the drive to breathe (Lipton et al., Nature, 413:171-174 (2001)) to regulation of the cystic fibrosis transmembrane regulator (Zaman et al., Biochem Biophys Res Commun, 284:65-70 (2001), to regulation of vascular tone, thrombosis and platelet function (de Belder et al., Cardiovasc Res. 1994 May; 28(5):691-4. (1994); Z. Kaposzta, A et al., Circulation; 106(24): 3057 - 3062, 2002) as well as host defense (de Jesus-Berrios et al., Curr.
- GSNOR 5-nitrosoglutathione reductase
- the present invention provides novel pyrrole compounds useful as S- nitrosoglutathione reductase ("GSNOR") inhibitors.
- GSNOR S- nitrosoglutathione reductase
- the invention encompasses pharmaceutically acceptable salts, prodrugs, and metabolites of the described GSNOR inhibitors.
- pharmaceutical compositions comprising at least one GSNOR inhibitor and at least one pharmaceutically acceptable carrier.
- the compositions of the present invention can be prepared in any suitable pharmaceutically acceptable dosage form.
- the present invention provides a method for inhibiting 5-nitrosoglutathione reductase in a subject in need thereof. Such a method comprises administering a therapeutically effective amount of a pharmaceutical composition comprising at least one GSNOR inhibitor or a pharmaceutically acceptable salt thereof, a prodrug or metabolite thereof, in combination with at least one pharmaceutically acceptable carrier.
- the GSNOR inhibitor can be a novel compound according to the invention, or it can be a known compound which previously was not known to be an inhibitor of GSNOR.
- the present invention also provides a method of treating a disorder ameliorated by NO donor therapy in a subject in need thereof.
- Such a method comprises administering a therapeutically effective amount of a pharmaceutical composition comprising at least one GSNOR inhibitor or a pharmaceutically acceptable salt thereof, a prodrug, or metabolite thereof, in combination with at least one pharmaceutically acceptable carrier.
- the GSNOR inhibitor can be a novel compound according to the invention, or it can be a known compound which previously was not known to be an inhibitor of GSNOR.
- the present invention also provides a method of treating a cell proliferative disorder in a subject in need thereof. Such a method comprises administering a therapeutically effective amount of a pharmaceutical composition comprising at least one GSNOR inhibitor or a pharmaceutically acceptable salt thereof, a prodrug, or metabolite thereof, in combination with at least one pharmaceutically acceptable carrier.
- the GSNOR inhibitor can be a novel compound according to the invention, or it can be a known compound which previously was not known to be an inhibitor of GSNOR.
- the methods of the invention encompass administration with one or more secondary active agents. Such administration can be sequential or in a combination composition.
- GSNOR 5-nitrosoglutathione reductase
- Human GSNOR nucleotide and amino acid sequence information can be obtained from the National Center for Biotechnology Information (NCBI) databases under Accession Nos. M29872, NM_000671.
- Mouse GSNOR nucleotide and amino acid sequence information can be obtained from NCBI databases under Accession Nos. NM_007410.
- CDS designates coding sequence.
- SNP designates single nucleotide polymorphism.
- Other related GSNOR nucleotide and amino acid sequences, including those of other species, can be found in U.S. Patent Application 2005/0014697.
- GSNOR has been shown to function in vivo and in vitro to metabolize 5-nitrosoglutathione (GSNO) and protein 5-nitrosothiols (SNOs) to modulate NO bioactivity, by controlling the intracellular levels of low mass NO donor compounds and preventing protein nitrosylation from reaching toxic levels.
- GSNO 5-nitrosoglutathione
- SNOs protein 5-nitrosothiols
- the present invention provides pharmaceutical agents that are potent inhibitors of GSNOR.
- pharmaceutical agents that are potent inhibitors of GSNOR.
- substituted pyrrole analogs that are inhibitors of GSNOR having the structures depicted below (Formulas I and II), or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof.
- Tri- substituted pyrrole analogs are potent inhibitors of GSNOR.
- analog refers to a compound having similar chemical structure or function as compounds of Formula I- II that retains the pyrrole ring.
- Some pyrrole analogs of the invention can also exist in various isomeric forms, including configurational, geometric and conformational isomers, as well as existing in various tautomeric forms, particularly those that differ in the point of attachment of a hydrogen atom.
- the term “isomer” is intended to encompass all isomeric forms of a compound including tautomeric forms of the compound.
- Illustrative compounds having asymmetric centers can exist in different enantiomeric and diastereomeric forms.
- a compound can exist in the form of an optical isomer or a diastereomer. Accordingly, the invention encompasses compounds in the forms of their optical isomers, diastereomers and mixtures thereof, including racemic mixtures.
- the depicted structure controls.
- stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold, wedged, or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of the described compound.
- the levels of the 5-nitrosoglutathione reductase in the biological sample can be determined by the methods described in U.S. Patent Application Publication No. 2005/0014697.
- biological sample includes, but is not limited to, samples of blood (e.g., serum, plasma, or whole blood), urine, saliva, sweat, breast milk, vaginal secretions, semen, hair follicles, skin, teeth, bones, nails, or other secretions, body fluids, tissues, or cells.
- acyl includes compounds and moieties that contain the acetyl radical (CH 3 CO-) or a carbonyl group to which a straight or branched chain lower alkyl residue is attached.
- alkyl refers to a straight or branched chain, saturated hydrocarbon having the indicated number of carbon atoms.
- (C 1 -C O ) alkyl is meant to include, but is not limited to methyl, ethyl, propyl, isopropyl, butyl, sec- butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, isohexyl, and neohexyl.
- An alkyl group can be unsubstituted or optionally substituted with one or more substituents as described herein.
- alkenyl refers to a straight or branched chain unsaturated hydrocarbon having the indicated number of carbon atoms and at least one double bond.
- Examples of a (C 2 -Cs) alkenyl group include, but are not limited to, ethylene, propylene, 1-butylene, 2-butylene, isobutylene, sec-butylene, 1-pentene, 2-pentene, isopentene, 1-hexene, 2-hexene, 3-hexene, isohexene, 1-heptene, 2-heptene, 3-heptene, isoheptene, 1-octene, 2-octene, 3-octene, 4-octene, and isooctene.
- alkenyl group can be unsubstituted or optionally substituted with one or more substituents as described herein.
- alkynyl refers to a straight or branched chain unsaturated hydrocarbon having the indicated number of carbon atoms and at least one triple bond.
- Examples of a (C 2 -Cg) alkynyl group include, but are not limited to, acetylene, propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1-hexyne, 2-hexyne, 3-hexyne, 1- heptyne, 2-heptyne, 3-heptyne, 1-octyne, 2-octyne, 3-octyne and 4-octyne.
- An alkynyl group can be unsubstituted or optionally substituted with one or more substituents as described herein.
- alkoxy refers to an -O-alkyl group having the indicated number of carbon atoms.
- a (C 1 -C O ) alkoxy group includes -O-methyl, -O-ethyl, -O-propyl, -O-isopropyl, -O-butyl, -O-sec-butyl, -O-tert-butyl, -O-pentyl, -O- isopentyl, -O-neopentyl, -O-hexyl, -O-isohexyl, and -O-neohexyl.
- aminoalkyl refers to an alkyl group (typically one to six carbon atoms) wherein one or more of the C 1 -C 6 alkyl group's hydrogen atoms is replaced with an amine of formula -N(R C ) 2 , wherein each occurrence of R c is independently - H or (C 1 -C O ) alkyl.
- aminoalkyl groups include, but are not limited to, -CH 2 NH 2 , -CH 2 CH 2 NH 2 -, -CH 2 CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 CH 2 NH 2 , -CH 2 CH 2 CH2N(CH3) 2 , t-butylaminomethyl, isopropylaminomethyl and the like.
- aryl refers to a 5- to 14-membered monocyclic, bicyclic or tricyclic aromatic ring system.
- Examples of an aryl group include phenyl and naphthyl.
- An aryl group can be unsubstituted or optionally substituted with one or more substituents as described herein below.
- Examples of aryl groups include phenyl or aryl heterocycles such as, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole, isoxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
- bioactivity indicates an effect on one or more cellular or extracellular process (e.g., via binding, signaling, etc.) which can impact physiological or pathophysiological processes.
- carbonyl or “carboxy” or “carboxyl” includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom.
- moieties containing a carbonyl include, but are not limited to, aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc.
- C m -C n means “m” number of carbon atoms to "n” number of carbon atoms.
- C 1 -C O means one to six carbon atoms (C 1 , C 2 , C 3 , C 4 , C5 or Ce).
- C 2 -C O includes two to six carbon atoms (C 2 , C 3 , C 4 , C5 or Ce).
- C 3 -C O includes three to six carbon atoms (C 3 , C 4 , C5 or Ce).
- cycloalkyl refers to a 3- to 14-membered saturated or unsaturated non-aromatic monocyclic, bicyclic or tricyclic hydrocarbon ring system. Included in this class are cycloalkyl groups which are fused to a benzene ring.
- Representative cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclobutenyl, cyclopentyl, cyclopentenyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, 1,3- cyclohexadienyl, cycloheptyl, cycloheptenyl, 1,3-cycloheptadienyl, 1,4-cycloheptadienyl, - 1,3,5-cycloheptatrienyl, cyclooctyl, cyclooctenyl, 1,3-cyclooctadienyl, 1,4-cyclooctadienyl, - 1,3,5-cyclooctatrienyl, decahydronaphthalene, octahydronaphthalene, hexahydronaphthalene, octahydroinden
- cycloalkyl group can be unsubstituted or optionally substituted with one or more substituents as described herein below.
- halogen includes fluorine, bromine, chlorine, iodine, etc.
- haloalkyl refers to a C 1 -C 6 alkyl group wherein from one or more of the C 1 -C 6 alkyl group's hydrogen atom is replaced with a halogen atom, which can be the same or different.
- haloalkyl groups include, but are not limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, pentachloroethyl, and 1,1,1 -trifluoro-2-bromo-2-chloroethyl.
- heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain alkyl, or combinations thereof, consisting of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
- the heteroatom(s) O, N and S can be placed at any position of the heteroalkyl group.
- Up to two heteroatoms can be consecutive, such as, for example, -CH 2 -NH-OCH 3 .
- a prefix such as (C 2 -Cs) is used to refer to a heteroalkyl group
- the number of carbons (2 to 8, in this example) is meant to include the heteroatoms as well.
- a C 2 -heteroalkyl group is meant to include, for example, -CH 2 OH (one carbon atom and one heteroatom replacing a carbon atom) and -CH 2 SH.
- a heteroalkyl group can be an oxyalkyl group.
- (C 2 -Cs) oxyalkyl is meant to include, for example -CH 2 -O-CH 3 (a C 3 -oxyalkyl group with two carbon atoms and one oxygen replacing a carbon atom), -CH 2 CH 2 CH 2 CH 2 OH, - OCH 2 CH 2 OCH 2 CH 2 OH, - OCH 2 CH(OH)CH 2 OH, and the like.
- heteroaryl refers to an aromatic heterocycle ring of
- heteroaryls are triazolyl, tetrazolyl, oxadiazolyl, pyridyl, furyl, benzofuranyl, thienyl (thiophen-yl), benzothienyl, quinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, quinazolinyl, pyrimidyl, azepinyl,
- heteroaryl group can be unsubstituted or optionally substituted with one or more substituents as described herein below.
- heteroatom is meant to include oxygen (O), nitrogen (N), and sulfur (S).
- heterocycle refers to 3- to 14-membered ring systems which are either saturated, unsaturated, or aromatic, and which contains from 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms can be optionally oxidized, and the nitrogen heteroatom can be optionally quaternized, including, including monocyclic, bicyclic, and tricyclic ring systems.
- the bicyclic and tricyclic ring systems may encompass a heterocycle or heteroaryl fused to a benzene ring.
- the heterocycle can be attached via any heteroatom or carbon atom, where chemically acceptable.
- Heterocycles include heteroaryls as defined above.
- heterocycles include, but are not limited to, aziridinyl, oxiranyl, thiiranyl, triazolyl, tetrazolyl, azirinyl, diaziridinyl, diazirinyl, oxaziridinyl, azetidinyl, azetidinonyl, oxetanyl, thietanyl, piperidinyl, piperazinyl, morpholinyl, pyrrolyl, oxazinyl, thiazinyl, diazinyl, dioxanyl, triazinyl, tetrazinyl, imidazolyl, tetrazolyl, pyrrolidinyl, isoxazolyl, furanyl, furazanyl, pyridinyl, oxazolyl, benzoxazolyl, benzisoxazolyl, thiazolyl, benzthi
- heterocycle group can be unsubstituted or optionally substituted with one or more substituents as described herein below.
- heterocycloalkyl by itself or in combination with other terms, represents, unless otherwise stated, cyclic versions of “heteroalkyl.” Additionally, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule.
- heterocycloalkyl examples include l-(l,2,5,6-tetrahydropyridyl), 1- piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3 -morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1 -piperazinyl, 2-piperazinyl, and the like.
- hydroxyalkyl refers to an alkyl group having the indicated number of carbon atoms wherein one or more of the hydrogen atoms in the alkyl group is replaced with an -OH group.
- hydroxyalkyl groups include, but are not limited to, -CH 2 OH, -CH 2 CH 2 OH, -CH 2 CH 2 CH 2 OH, -CH 2 CH 2 CH 2 CH 2 OH, - CH 2 CH 2 CH 2 CH 2 OH, -CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 OH, and branched versions thereof.
- hydroxy or "hydroxyl” includes groups with an -OH or -O " .
- stereoisomer means one stereoisomer of a compound that is substantially free of other stereoisomers of that compound.
- a stereomerically pure compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
- a stereomerically pure compound having two chiral centers will be substantially free of other diastereomers of the compound.
- a stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, for example greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, or greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, or greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
- protein is used synonymously with “peptide,” “polypeptide,” or “peptide fragment.”
- a “purified” polypeptide, protein, peptide, or peptide fragment is substantially free of cellular material or other contaminating proteins from the cell, tissue, or cell-free source from which the amino acid sequence is obtained, or substantially free from chemical precursors or other chemicals when chemically synthesized.
- modulate is meant to refer to an increase or decrease the levels of a peptide or a polypeptide, or to increase or decrease the stability or activity of a peptide or a polypeptide.
- inhibitor is meant to refer to a decrease in the levels of a peptide or a polypeptide or to decrease in the stability or activity of a peptide or a polypeptide.
- the peptide which is modulated or inhibited is S- nitrosoglutathione (GSNO) or protein 5-nitrosothiols (SNOs).
- nitric oxide and “NO” encompass uncharged nitric oxide and charged nitric oxide species, particularly including nitrosonium ion (NO + ) and nitroxyl ion (NO " ).
- the reactive form of nitric oxide can be provided by gaseous nitric oxide.
- the term "pharmaceutically acceptable” means approved by a regulatory agency of a federal or a state government or listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals and, more particularly, in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered and includes, but is not limited to such sterile liquids as water and oils.
- a "pharmaceutically acceptable salt” or “salt” of a GSNOR inhibitor is a product of the disclosed compound that contains an ionic bond, and is typically produced by reacting the disclosed compound with either an acid or a base, suitable for administering to a subject.
- a pharmaceutically acceptable salt can include, but is not limited to, acid addition salts including hydrochlorides, hydrobromides, phosphates, sulphates, hydrogen sulphates, alkylsulphonates, arylsulphonates, arylalkylsulfonates, acetates, benzoates, citrates, maleates, fumarates, succinates, lactates, and tartrates; alkali metal cations such as Li, Na, K, alkali earth metal salts such as Mg or Ca, or organic amine salts.
- a "pharmaceutical composition” is a formulation comprising the disclosed compounds in a form suitable for administration to a subject.
- a pharmaceutical composition of the invention is preferably formulated to be compatible with its intended route of administration. Examples of routes of administration include, but are not limited to, oral and parenteral, e.g., intravenous, intradermal, subcutaneous, inhalation, topical, transdermal, transmucosal, and rectal administration.
- substituted means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound.
- 2 hydrogens on the atom are replaced.
- R d ' , R d ' ' and R d ' ' ' each independently refer to hydrogen, unsubstituted (C 1 -
- R d ' and R d " are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6- or 7- membered ring.
- -NR d 'R d " can represent 1-pyrrolidinyl or 4-morpholinyl.
- an alkyl or heteroalkyl group will have from zero to three substituents, with those groups having two or fewer substituents being exemplary of the present invention.
- An alkyl or heteroalkyl radical can be unsubstituted or monosubstituted. In some embodiments, an alkyl or heteroalkyl radical will be unsubstituted.
- R 6 ', R 6 " and R 6 '" are independently selected from hydrogen, unsubstituted
- an aryl or heteroaryl group will have from zero to three substituents, with those groups having two or fewer substituents being exemplary in the present invention.
- an aryl or heteroaryl group will be unsubstituted or monosubstituted.
- an aryl or heteroaryl group will be unsubstituted.
- Two of the substituents on adjacent atoms of an aryl or heteroaryl ring in an aryl or heteroaryl group as described herein may optionally be replaced with a substituent of the formula -T-C(O)-(CH 2 ) q -U-, wherein T and U are independently -NH-, -O-, -CH 2 - or a single bond, and q is an integer of from 0 to 2.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -J-(CH 2 ) r -K-, wherein J and K are independently -CH 2 -, -O-, -NH-, -S-, -S(O)-, - S(O) 2 -, -S(O) 2 NR 5 - or a single bond, and r is an integer of from 1 to 3.
- One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -(CH 2 ) s -X-(CH 2 ) r , where s and t are independently integers of from 0 to 3, and X is -O-, -NR f '-, -S-, -S(O)-, -S(O) 2 -, or - S(O) 2 NR a '-.
- the substituent R f ' in -NR f '- and -S(O) 2 NR 5 - is selected from hydrogen or unsubstituted (C 1 -C O ) alkyl.
- “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- the term "therapeutically effective amount” generally means the amount necessary to ameliorate at least one symptom of a disorder to be prevented, reduced, or treated as described herein.
- the phrase "therapeutically effective amount” as it relates to the GSNOR inhibitors of the present invention shall mean the GSNOR inhibitor dosage that provides the specific pharmacological response for which the GSNOR inhibitor is administered in a significant number of subjects in need of such treatment. It is emphasized that a therapeutically effective amount of a GSNOR inhibitor that is administered to a particular subject in a particular instance will not always be effective in treating the conditions/diseases described herein, even though such dosage is deemed to be a therapeutically effective amount by those of skill in the art. [0068] C. S-Nitrosoglutathione Reductase Inhibitors
- the present invention provides a compound having a structure shown in Formula I, or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof:
- Ar is selected from the group consisting of phenyl and thiophen-yl
- R 1 is selected from the group consisting of unsubstituted imidazolyl, substituted imidazolyl, chloro, bromo, fluoro, hydroxy, and methoxy;
- R 2 is selected from the group consisting of hydrogen, methyl, chloro, fluoro, hydroxy, methoxy, ethoxy, propoxy, carbamoyl, dimethylamino, amino, formamido, and trifluoromethyl;
- X is selected from the group consisting of CO and SO 2 .
- suitable identities for R 1 include, but are not limited to, unsubstituted imidazolyl and substituted imidazolyl. Suitable substitutions for the substituted imidazolyl group include, but are not limited to, C 1 -C 6 alkyl.
- ArR 1 R 2 identities include, but are not limited to,
- R 3 is selected from H, methyl, and ethyl.
- ArR 1 identities include, but are not limited to, 4-chlorophenyl, 3-chlorophenyl, 4-bromophenyl, 3-bromophenyl, 4-fluorophenyl, 3- fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 3-methoxyphenyl, 2-methoxyphenyl, 4- chlorothiophen-2-yl, 5-chlorothiophen-2-yl, 3-bromothiophen-2-yl, 4-bromothiophen-2-yl, 5- bromothiopheny-2-yl, and 5-bromothiophen-3-yl.
- the present invention provides a compound having a structure shown in Formula II, or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof: wherein:
- Ar is selected from the group consisting of phenyl and thiophen-yl
- R 4 is selected from the group consisting of unsubstituted imidazolyl and substituted imidazolyl;
- R 5 is selected from the group consisting of hydrogen, fluoro, hydroxy, and methoxy
- Re is selected from the group consisting of hydrogen, chloro, bromo, and fluoro
- R 7 is selected from the group consisting of hydrogen, and methyl
- R 8 is selected from the group consisting of CONH 2 , SO 2 NH 2 , and NHSO 2 CH 3 .
- suitable identities for ArR 4 Rs include, but are not limited to,
- R 9 is selected from H, methyl, and ethyl.
- the compounds described herein may have asymmetric centers.
- GSNOR inhibitor compounds 1-70 of Table 1 had an IC 50 of about ⁇ 15 ⁇ M.
- GSNOR inhibitor compounds 1-12, 14-15, 17-19, 22-36, 38-42, 44-56, 58-69 of Table 1 had an IC50 of about less than 1.0 ⁇ M.
- compositions Comprising a GSNOR Inhibitor
- the invention encompasses pharmaceutical compositions comprising at least one GSNOR inhibitor described herein and at least one pharmaceutically acceptable carrier. Suitable carriers are described in "Remington: The Science and Practice, Twentieth Edition,” published by Lippincott Williams & Wilkins, which is incorporated herein by reference. Pharmaceutical compositions according to the invention may also comprise one or more non- GSNOR inhibitor active agents.
- compositions of the invention can comprise novel
- the pharmaceutical compositions can comprise known compounds which previously were not know to have GSNOR inhibitor activity, or a combination thereof.
- the GSNOR inhibitors can be utilized in any pharmaceutically acceptable dosage form, including but not limited to injectable dosage forms, liquid dispersions, gels, aerosols, ointments, creams, lyophilized formulations, dry powders, tablets, capsules, controlled release formulations, fast melt formulations, delayed release formulations, extended release formulations, pulsatile release formulations, mixed immediate release and controlled release formulations, etc.
- the GSNOR inhibitors described herein can be formulated: (a) for administration selected from the group consisting of oral, pulmonary, intravenous, intra-arterial, intrathecal, intra-articular, rectal, ophthalmic, colonic, parenteral, intracisternal, intravaginal, intraperitoneal, local, buccal, nasal, and topical administration; (b) into a dosage form selected from the group consisting of liquid dispersions, gels, aerosols, ointments, creams, tablets, sachets and capsules; (c) into a dosage form selected from the group consisting of lyophilized formulations, dry powders, fast melt formulations, controlled release formulations, delayed release formulations, extended release formulations, pulsatile release formulations, and mixed immediate release and controlled release formulations; or (d) any combination thereof.
- an inhalation formulation can be used to achieve high local concentrations.
- Formulations suitable for inhalation include dry powder or aerosolized or vaporized solutions, dispersions, or suspensions capable of being dispensed by an inhaler or nebulizer into the endobronchial or nasal cavity of infected patients to treat upper and lower respiratory bacterial infections.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can comprise one or more of the following components: (1) a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; (2) antibacterial agents such as benzyl alcohol or methyl parabens; (3) antioxidants such as ascorbic acid or sodium bisulfite; (4) chelating agents such as ethylenediaminetetraacetic acid; (5) buffers such as acetates, citrates or phosphates; and (5) agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- a parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injectable use may comprise sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF, Parsippany, NJ.) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid to the extent that easy syringability exists.
- the pharmaceutical composition should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium comprising, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars, polyalcohols such as manitol or sorbitol, and inorganic salts such as sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the active reagent
- dispersions are prepared by incorporating at least one GSNOR inhibitor into a sterile vehicle that contains a basic dispersion medium and any other required ingredients.
- exemplary methods of preparation include vacuum drying and freeze-drying, both of which yield a powder of the GSNOR inhibitor plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed, for example, in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the GSNOR inhibitor can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the compounds are delivered in the form of an aerosol spray from pressured container or dispenser that contains a suitable propellant, e.g., a gas such as carbon dioxide, a nebulized liquid, or a dry powder from a suitable device.
- a suitable propellant e.g., a gas such as carbon dioxide, a nebulized liquid, or a dry powder from a suitable device.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active reagents are formulated into ointments, salves, gels, or creams as generally known in the art.
- the reagents can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
- the GSNOR inhibitors are prepared with carriers that will protect against rapid elimination from the body.
- a controlled release formulation can be used, including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
- suspensions of the GSNOR inhibitors may be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes.
- Non-lipid polycationic amino polymers may also be used for delivery.
- the suspension may also include suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of GSNOR inhibitor calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the GSNOR inhibitor and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active agent for the treatment of individuals.
- compositions according to the invention comprising at least one GSNOR inhibitor can comprise one or more pharmaceutical excipients.
- excipients include, but are not limited to binding agents, filling agents, lubricating agents, suspending agents, sweeteners, flavoring agents, preservatives, buffers, wetting agents, disintegrants, effervescent agents, and other excipients.
- excipients are known in the art.
- Exemplary excipients include: (1) binding agents which include various celluloses and cross-linked polyvinylpyrrolidone, microcrystalline cellulose, such as Avicel ® PHlOl and Avicel ® PH102, silicified microcrystalline cellulose (ProSolv SMCCTM), gum tragacanth and gelatin; (2) filling agents such as various starches, lactose, lactose monohydrate, and lactose anhydrous; (3) disintegrating agents such as alginic acid, Primogel, corn starch, lightly crosslinked polyvinyl pyrrolidone, potato starch, maize starch, and modified starches, croscarmellose sodium, cross-povidone, sodium starch glycolate, and mixtures thereof; (4) lubricants, including agents that act on the flowability of a powder to be compressed, include magnesium stearate, colloidal silicon dioxide, such as Aerosil ® 200, talc, stearic acid, calcium stearate, and silica gel;
- Suitable organic acids include, for example, citric, tartaric, malic, fumaric, adipic, succinic, and alginic acids and anhydrides and acid salts.
- Suitable carbonates and bicarbonates include, for example, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium glycine carbonate, L-lysine carbonate, and arginine carbonate. Alternatively, only the sodium bicarbonate component of the effervescent couple may be present.
- kits comprising the compositions of the invention.
- kits can comprise, for example, (1) at least one GSNOR inhibitor; and (2) at least one pharmaceutically acceptable carrier, such as a solvent or solution.
- Additional kit components can optionally include, for example: (1) any of the pharmaceutically acceptable excipients identified herein, such as stabilizers, buffers, etc., (2) at least one container, vial or similar apparatus for holding and/or mixing the kit components; and (3) delivery apparatus, such as an inhaler, nebulizer, syringe, etc.
- delivery apparatus such as an inhaler, nebulizer, syringe, etc.
- GSNOR inhibitors of the invention can readily be synthesized using known synthetic methodologies or via a modification of known synthetic methodologies. As would be readily recognized by a skilled artisan, the methodologies described below allow the synthesis of pyrroles having a variety of substituents. Exemplary synthetic methods are described in the examples below.
- reaction of 2-furaldehyde with an appropriately substituted acetophenone followed by treatment with a strong acid gives the appropriately substituted 1,4,7-trione.
- Cyclization of the trione to the corresponding 1,2,5- trisubstituted pyrrole is readily achieved by reacting the trione with a primary amine in the presence of /7-toluenesulfonic acid.
- further derivatization of the phenyl ring at C5 of the pyrrole is readily achieved, for example, by various cross-coupling reactions.
- enantiomers and diastereomers can be achieved by routine procedures known in the art.
- the separation of enantiomers of a compound can be achieved by the use of chiral HPLC and related chromatographic techniques.
- Diastereomers can be similarly separated. In some instances, however, diastereomers can simply be separated physically, such as, for example, by controlled precipitation or crystallization.
- the process of the invention when carried out as prescribed herein, can be conveniently performed at temperatures that are routinely accessible in the art.
- the process is performed at a temperature in the range of about 25 0 C to about
- the temperature is in the range of about 4O 0 C to about
- the temperature is in the range of about 5O 0 C to about
- the base is not nucleophilic.
- the base is selected from carbonates, phosphates, hydroxides, alkoxides, salts of disilazanes, and tertiary amines.
- the process of the invention when performed as described herein, can be substantially complete after several minutes to after several hours depending upon the nature and quantity of reactants and reaction temperature.
- the determination of when the reaction is substantially complete can be conveniently evaluated by ordinary techniques known in the art such as, for example, HPLC, LCMS, TLC, and 1 H NMR.
- the invention encompasses methods of preventing or treating (e.g., alleviating one or more symptoms of) medical conditions through use of one or more of the disclosed compounds.
- the methods comprise administering a therapeutically effective amount of a
- compositions of the invention can also be used for prophylactic therapy.
- the GSNOR inhibitor used in the methods of treatment according to the invention can be: (1) a novel GSNOR inhibitor described herein, or a pharmaceutically acceptable salt thereof, a prodrug thereof, or a metabolite thereof; (2) a compound which was known prior to the present invention, but wherein it was not known that the compound is a GSNOR inhibitor, or a pharmaceutically acceptable salt thereof, a prodrug thereof, or a metabolite thereof; or (3) a compound which was known prior to the present invention, and wherein it was known that the compound is a GSNOR inhibitor, but wherein it was not known that the compound is useful for the methods of treatment described herein, or a pharmaceutically acceptable salt thereof, a prodrug thereof, or a metabolite thereof.
- the patient can be any animal, domestic, livestock or wild, including, but not limited to cats, dogs, horses, pigs and cattle, and preferably human patients. As used herein, the terms patient and subject may be used interchangeably.
- modulation may be achieved, for example, by administering one or more of the disclosed compounds that disrupts or down-regulates GSNOR function, or decreases GSNOR levels.
- These compounds may be administered with other GSNOR inhibitor agents, such as anti- GSNOR antibodies or antibody fragments, GSNOR antisense, iRNA, or small molecules, or other inhibitors, alone or in combination with other agents as described in detail herein.
- the present invention provides a method of treating a subject afflicted with a disorder ameliorated by NO donor therapy. Such a method comprises administering to a subject a therapeutically effective amount of a GSNOR inhibitor.
- treating describes the management and care of a patient for the purpose of combating a disease, condition, or disorder and includes the administration of a compound of the present invention to prevent the onset of the symptoms or complications, alleviating the symptoms or complications, or eliminating the disease, condition or disorder. More specifically, “treating” includes reversing, attenuating, alleviating, minimizing, suppressing or halting at least one deleterious symptom or effect of a disease (disorder) state, disease progression, disease causative agent (e.g., bacteria or viruses), or other abnormal condition. Treatment is continued as long as symptoms and/or pathology ameliorate.
- a disease disorder
- disease causative agent e.g., bacteria or viruses
- the disorders can include pulmonary disorders associated with hypoxemia and/or smooth muscle constriction in the lungs and/or lung infection and/or lung injury (e.g., pulmonary hypertension, ARDS, asthma, pneumonia, pulmonary fibrosis/interstitial lung diseases, cystic fibrosis, COPD) cardiovascular disease and heart disease, including conditions such as hypertension, ischemic coronary syndromes, atherosclerosis, glaucoma, diseases characterized by angiogenesis (e.g., coronary artery disease), disorders where there is risk of thrombosis occurring, disorders where there is risk of restenosis occurring, chronic inflammatory diseases (e.g., AID dementia and psoriasis), diseases where there is risk of apoptosis occurring (e.g., heart failure, atherosclerosis, heart failure, degenerative neurologic disorders, arthritis and liver injury (ischemic or alcoholic)), impotence, obesity caused by eating in response to craving for food, stroke, reperfusion injury (e.g., traumatic muscle), pulmonary
- the compounds of the present invention or a pharmaceutically acceptable salt thereof, or a prodrug or metabolite thereof can be administered in combination with an NO donor.
- An NO donor donates nitric oxide or a related redox species and more generally provides nitric oxide bioactivity, that is activity which is identified with nitric oxide, e.g., vasorelaxation or stimulation or inhibition of a receptor protein, e.g., ras protein, adrenergic receptor, NFKB.
- NO donors including S-nitroso, O-nitroso, C-nitroso and N-nitroso compounds and nitro derivatives thereof and metal NO complexes, but not excluding other NO bioactivity generating compounds, useful herein are described in "Methods in Nitric Oxide Research," Feelisch et al. eds., pages 71-115 (J. S., John Wiley & Sons, New York, 1996), which is incorporated herein by reference.
- NO donors which are C-nitroso compounds where nitroso is attached to a tertiary carbon which are useful herein include those described in U.S. Pat. No. 6,359,182 and in WO 02/34705.
- S-nitroso compounds including S-nitrosothiols useful herein, include, for example, S-nitrosoglutathione, S-nitroso-N-acetylpenicillamine, S-nitroso-cysteine and ethyl ester thereof, S-nitroso cysteinyl glycine, S-nitroso-gamma-methyl-L-homocysteine, S- nitroso-L-homocysteine, S-nitroso-gamma-thio-L-leucine, S-nitroso-delta-thio-L-leucine, and S-nitrosoalbumin.
- NO donors useful herein are sodium nitroprusside (nipride), ethyl nitrite, isosorbide, nitroglycerin, SIN 1 which is molsidomine, furoxamines, N-hydroxy (N-nitrosamine) and perfluorocarbons that have been saturated with NO or a hydrophobic NO donor.
- the present invention also provides a method of treating a subject afflicted with pathologically proliferating cells where the method comprises administering to said subject a therapeutically effective amount of an inhibitor of GSNOR.
- the inhibitors of GSNOR are the compounds as defined above, or a pharmaceutically acceptable salt thereof, or a prodrug or metabolite thereof, in combination with a pharmaceutically acceptable carrier. Treatment is continued as long as symptoms and/or pathology ameliorate.
- the pathologically proliferating cells can be pathologically proliferating microbes.
- the microbes involved can be those where GSNOR is expressed to protect the microbe from nitrosative stress or where a host cell infected with the microbe expresses the enzyme, thereby protecting the microbe from nitrosative stress.
- pathologically proliferating microbes is used herein to mean pathologic microorganisms including but not limited to pathologic bacteria, pathologic viruses, pathologic Chlamydia, pathologic protozoa, pathologic Rickettsia, pathologic fungi, and pathologic mycoplasmata. More detail on the applicable microbes is set forth at columns 11 and 12 of U.S. Pat. No. 6,057,367.
- host cells infected with pathologic microbes includes not only mammalian cells infected with pathologic viruses but also mammalian cells containing intracellular bacteria or protozoa, e.g., macrophages containing Mycobacterium tuberculosis, Mycobacterium leper (leprosy), or Salmonella typhi (typhoid fever).
- the pathologically proliferating cells can be pathologic helminths.
- pathologic helminths is used herein to refer to pathologic nematodes, pathologic trematodes and pathologic cestodes. More detail on the applicable helminths is set forth at column 12 of U.S. Pat. No.
- the pathologically proliferating cells can be pathologically proliferating mammalian cells.
- pathologically proliferating mammalian cells means cells of the mammal that grow in size or number in said mammal so as to cause a deleterious effect in the mammal or its organs.
- the term includes, for example, the pathologically proliferating or enlarging cells causing restenosis, the pathologically proliferating or enlarging cells causing benign prostatic hypertrophy, the pathologically proliferating cells causing myocardial hypertrophy and proliferating cells at inflammatory sites such as synovial cells in arthritis or cells associated with a cell proliferation disorder.
- the term "cell proliferative disorder” refers to conditions in which the unregulated and/or abnormal growth of cells can lead to the development of an unwanted condition or disease, which can be cancerous or non-cancerous, for example a psoriatic condition.
- psoriatic condition refers to disorders involving keratinocyte hyperproliferation, inflammatory cell infiltration, and cytokine alteration.
- the cell proliferative disorder can be a precancerous condition or cancer.
- the cancer can be primary cancer or metastatic cancer, or both.
- cancer includes solid tumors, such as lung, breast, colon, ovarian, pancreas, prostate, adenocarcinoma, squamous carcinoma, sarcoma, malignant glioma, leiomyosarcoma, hepatoma, head and neck cancer, malignant melanoma, non-melanoma skin cancers, as well as hematologic tumors and/or malignancies, such as leukemia, childhood leukemia and lymphomas, multiple myeloma, Hodgkin's disease, lymphomas of lymphocytic and cutaneous origin, acute and chronic leukemia such as acute lymphoblastic, acute myelocytic or chronic myelocytic leukemia, plasma cell neoplasm, lymphoid neoplasm and cancers associated with AIDS.
- solid tumors such as lung, breast, colon, ovarian, pancreas, prostate, adenocarcinoma, squamous carcinoma, sarcom
- proliferative diseases which may be treated using the compositions of the present invention are epidermic and dermoid cysts, lipomas, adenomas, capillary and cutaneous hemangiomas, lymphangiomas, nevi lesions, teratomas, nephromas, myofibromatosis, osteoplastic tumors, and other dysplastic masses and the like.
- proliferative diseases include dysplasias and disorders of the like.
- the treating cancer comprises a reduction in tumor size, decrease in tumor number, a delay of tumor growth, decrease in metastaic lesions in other tissues or organs distant from the primary tumor site, an improvement in the survival of patients, or an improvement in the quality of patient life, or at least two of the above.
- the treating a cell proliferative disorder comprises a reduction in the rate of cellular proliferation, reduction in the proportion of proliferating cells, a decrease in size of an area or zone of cellular proliferation, or a decrease in the number or proportion of cells having an abnormal appearance or morphology, or at least two of the above.
- the compounds of the present invention or a pharmaceutically acceptable salt thereof, a prodrug thereof, or metabolite thereof can be administered in combination with a second chemotherapeutic agent.
- the second chemotherapeutic agent is selected from the group consisting of tamoxifen, raloxifene, anastrozole, exemestane, letrozole, cisplatin, carboplatin, paclitaxel, cyclophosphamide, lovastatin, minosine, gemcitabine, araC, 5-fluorouracil, methotrexate, docetaxel, goserelin, vincristin, vinblastin, nocodazole, teniposide, etoposide, epothilone, navelbine, camptothecin, daunonibicin, dactinomycin, mitoxantrone, amsacrine, doxorubicin, epirub
- the compounds of the present invention or a pharmaceutically acceptable salt thereof, a prodrug thereof, or metabolite thereof can be administered in combination with an agent that imposes nitrosative or oxidative stress.
- Agents for selectively imposing nitrosative stress to inhibit proliferation of pathologically proliferating cells in combination therapy with GSNOR inhibitors herein and dosages and routes of administration therefore include those disclosed in U.S. Pat. No. 6,057,367, which is incorporated herein.
- Supplemental agents for imposing oxidative stress i.e., agents that increase GSSG (oxidized glutathione) over GSH (glutathione) ratio or NAD(P) over NAD(P)H ratio or increase thiobarbituric acid derivatives
- GS- FDH inhibitors include, for example, L-buthionine-S-sulfoximine (BSO), glutathione reductase inhibitors (e.g., BCNU), inhibitors or uncouplers of mitochondrial respiration and drugs that increase reactive oxygen species (ROS), e.g., adriamycin, in standard dosages with standard routes of administration.
- BSO L-buthionine-S-sulfoximine
- ROS reactive oxygen species
- GSNOR inhibitors may also be co-administered with a phosphodiesterase inhibitor (e.g., rolipram, cilomilast, roflumilast, Viagra ® (sildenifil citrate), Cialis ® (tadalafil), Levitra ® (vardenifil), etc.), a ⁇ -agonist, a steroid, or a leukotriene antagonist (LTD4).
- a phosphodiesterase inhibitor e.g., rolipram, cilomilast, roflumilast, Viagra ® (sildenifil citrate), Cialis ® (tadalafil), Levitra ® (vardenifil), etc.
- a phosphodiesterase inhibitor e.g., rolipram, cilomilast, roflumilast, Viagra ® (sildenifil citrate), Cialis ® (tadalafil), Levitra ® (vardenif
- GSNOR inhibitors may be used as a means to improve ⁇ -adrenergic signaling.
- GPCRs G protein coupled receptors
- the therapeutically effective amount for the treatment of a subject afflicted with a disorder ameliorated by NO donor therapy is the GSNOR inhibiting amount in vivo that causes amelioration of the disorder being treated or protects against a risk associated with the disorder.
- a therapeutically effective amount is a bronchodilating effective amount
- cystic fibrosis a therapeutically effective amount is an airway obstruction ameliorating effective amount
- ARDS a therapeutically effective amount is a hypoxemia ameliorating effective amount
- for heart disease a therapeutically effective amount is an angina relieving or angiogenesis inducing effective amount
- for hypertension a therapeutically effective amount is a blood pressure reducing effective amount
- ischemic coronary disorders a therapeutic amount is a blood flow increasing effective amount
- a therapeutically effective amount is an endothelial dysfunction reversing effective amount
- for glaucoma a therapeutic amount is an intraocular pressure reducing effective amount
- for diseases characterized by an asthma a therapeutically effective amount is a bronchod
- the therapeutically effective amount for the treatment of a subject afflicted with pathologically proliferating cells means a GSNOR inhibiting amount in vivo which is an antiproliferative effective amount.
- antiproliferative effective amount as used herein means an amount causing reduction in rate of proliferation of at least about 20%, at least about 10%, at least about 5%, or at least about 1%.
- the dosage i.e., the therapeutically effective amount
- the compounds of the present invention or a pharmaceutically acceptable salt thereof, or a prodrug or metabolite thereof, can be applied to various apparatus in circumstances when the presence of such compounds would be beneficial.
- Such apparatus can be any device or container, for example, implantable devices in which a GSNOR inhibitor can be used to coat a surgical mesh or cardiovascular stent prior to implantation in a patient.
- the GSNOR inhibitors of the present invention can also be applied to various apparatus for in vitro assay purposes or for culturing cells.
- the compounds of the present invention or a pharmaceutically acceptable salt thereof, or a prodrug or metabolite thereof, can also be used as an agent for the development, isolation or purification of binding partners to GSNOR inhibitor compounds, such as antibodies, natural ligands, and the like. Those skilled in the art can readily determine related uses for the compounds of the present invention.
- Example 1 General and specific methods of preparing novel GSNOR pyrrole inhibitors
- This example describes schemes for preparing the GSNOR inhibitors depicted in Table 1. Some schemes are specific to a particular compound, while others are general schemes that include an exemplary method for preparing a representative compound. Following the schemes are methods which describe the preparation of intermediates that were used in select schemes.
- Scheme 1 A general scheme for preparing GSNOR inhibitors with structure ID
- Step 1 Synthesis of (E)-3-Furan-2-yl-l-(4-methoxy-phenyl)-propenone.
- a solution of 2-furaldehyde (5.85 g, 60.92 mmol) was added to a methanol solution (120 mL) of 4-methoxy acetophenone (8.5 g, 56.6 mmol), followed by the addition of sodium methoxide (3.1 g, 56.6 mmol).
- the reaction mixture was stirred at room temperature for 16 h, followed by removal of the solvent in vacuo.
- the resultant mixture was diluted with water (130 mL) and extracted with ethyl acetate (350 mL).
- Step 2 Synthesis of l-(4-Methoxy-phenyl)-decane-l,4,7-trione. Cone. HCl
- Step 3 Synthesis of 3-[l-(4-Carbamoyl-2-methyl-phenyl)-5-(4-methoxy- phenyl)-lH-pyrrol-2-yl] propanoic acid ethyl ester.
- 4-amino-3-methylbenzamide 180 mg, 1.2 mmol
- l-(4-methoxy-phenyl)-decane-l,4,7-trione 350 mg, 1.2 mmol
- ethanol ethanol
- p-toluenesulfonic acid monohydrate abbreviated TsOH or pTsOH
- Step 4 Synthesis of 3-[l-(4-Carbamoyl-2-methyl-phenyl)-5-(4-methoxy- phenyl)-lH-pyrrol-2-yl] -propanoic acid.
- Step 1 Synthesis of l-(4-bromophenyl)-3-(furan-2-yl)prop-2-en-l-one
- Step 2 Synthesis of ethyl 7-(4-bromophenyl)-4,7-dioxoheptanoate (5B).
- Step 1 Synthesis of 3-methyl-4-(lH-pyrrol-l-yl)benzamide (6A).
- the 2,5- dimethoxy-tetrahydrofuran (106 g, 80 mmol) was added to the solution of 4-amino-3- methylbenzamide (100 g, 66.7 mmol) in AcOH (30OmL).
- the mixture was stirred at 8O 0 C for about 1.5 h and then cooled to room temperature.
- the solution of Na 2 CO 3 was added dropwise at O 0 C and extracted with ethyl acetate for three times.
- the combined organic layers were washed with brine, dried over Na 2 SO 4 , concentrated and washed with petroleum ether.
- the resultant solid was filtrated and dried to afford 3-methyl-4-(lH-pyrrol-l-yl)benzamide as a pale solid (89.7 g, yield 67%).
- Step 2 Synthesis of 4-(2-formyl-lH-pyrrol-l-yl)-3-methylbenzonitrile
- Step 3 Synthesis of ethyl 3-(l-(4-cyano-2-methylphenyl)-lH-pyrrol-2- yl)acrylate (6C).
- Step 4 Synthesis of ethyl 3-(l-(4-cyano-2-methylphenyl)-lH-pyrrol-2- yl)propanoate (6D).
- Step 5 Synthesis of ethyl 3-(5-bromo-l-(4-cyano-2-methylphenyl)-lH- pyrrol-2-yl)propanoate (6E). NBS (4.76g, 1 equiv) was added portionwise to a solution of ethyl 3-(l-(4-cyano-2-methylphenyl)-lH-pyrrol-2-yl)propanoate in DMF at O 0 C during 45 min. After addition, the mixture was stirred at room temperature for 30 min, then poured into water, and extracted with ethyl acetate for three times.
- Step 6 Synthesis of ethyl 3-(5-(benzo[d][l,3]dioxol-5-yl)-l-(4-cyano-2- methylphenyl)-lH-pyrrol-2-yl)propanoate.
- Step 7 and Step 8 Synthesis of 3-(5-(benzo[d][l,3]dioxol-5-yl)-l-(4- carbamoyl-2-methylphenyl)-lH-pyrrol-2-yl)propanoic acid.
- Scheme 9a A general scheme for preparing GSNOR inhibitors with structure 9a- C
- reaction mixture was then submitted to microwave irradiation for 30 minutes at 120 0 C.
- the reaction mixture was then added to water (10 mL), extracted into ethyl acetate (3x10 mL). The ethyl acetate extracts were combined, washed with water (5 mL) and then brine (5 mL). The organic layer was then dried over MgSO 4 .
- Scheme 19 A general scheme for preparing GSNOR inhibitors with structure 19F
- Ar2 benzothiazol-6-yl.
- 3-[2-(3-Benzothiazol-6-yl-3-oxo- propyl)-[l, 3]dioxolan-2-yl]-propionic acid ethyl ester (19C) (100 mg, 0.28 mmol) was dissolved in THF (1 mL). 3N HCl was added and stirred at room temperature. After 12 hrs, the reaction was diluted with water and extracted with EtOAc (3 times).
- P-toluenesulfonic acid 9.9 mg, 0.05 mmol
- 4-amino-3-methyl benzamide 37 mg, 0.24 mmol
- the vial was capped tightly and heated to 80 0 C in an oil bath. After the 12 hrs, the reaction was cooled and concentrated in vacuo.
- the crude material was dissolved in N, N-dimethylforamide (1 mL). Potassium carbonate (44 mg, 0.32 mmol) was added. Then iodoethane (0.01 mL, 0.17 mmol) was added.
- the reaction was stirred at room temperature for 12 hrs.
- the reaction was diluted with water and extracted with ethyl acetate.
- Scheme 20 A general scheme for preparing GSNOR inhibitors with structure 2OC
- Scheme 33 A general scheme for preparing GSNOR inhibitors with structure 33C
- Scheme 34 A general scheme for preparing GSNOR inhibitors with structure 34C
- Scheme 36 A general scheme for preparing GSNOR inhibitors with structure 36D
- Method 17 intentionally omitted.
- Method 18 Synthesis of 3-methoxy-4-(4,4,5,5-tetramethyl-l,3,2- dioxaborolan-2-yl)phenol
- Compound 27-3 Compound 27-2 (10 g, 43.6 mmol) was added to a flask containing 1 N NaOH (36 ml ) and the mixture was stirred at room temperature for 3 hours. The solvent was removed and the residue was washed with EtOH. 27-3 was isolated by filtration as a pale solid (8.8 g, yield 88 %).
- Compound 27-4 Compound 27-3 (16 g, 63.7 mmol) and DMF (20 ml) were added to a flask and then SOCl 2 (18.4 g, 155 mol) was added dropwise at -30-40 0 C. When the addition was complete, the mixture was stirred at room temperature for 2 hours. Then the mixture was added to ice slowly and solid appeared. The solid was isolated by filtration and dried to give 27-4 as a pale solid (6.0 g, yield 38 %).
- Method 29 Method 32 intentionally omitted.
- Method 33 Synthesis of N-(3-methoxy-4-(4,4,5,5-tetramethyl-l,3,2- dioxaborolan-2-yl)phenyl)formamide
- GSNOR fermentation Pre-cultures were grown from stabs of a GSNOR glycerol stock in 2XYT media containing 100ug/ml ampicillin after an overnight incubation at 37 0 C. Cells were then added to fresh 2XYT (4L) containing ampicillin and grown to an OD ( A 600 ) of 0.6-0.9 at 37 0 C before induction. GSNOR expression was induced with 0.1% arabinose in an overnight incubation at 2O 0 C.
- GSNOR Purification E. coli cell paste was lysed by nitrogen cavitation and the clarified lysate purified by Ni affinity chromatography on an AKTA FPLC (Amersham Pharmacia). The column was eluted in 2OmM Tris pH 8.0 / 250 mM NaCl with a 0-50OmM imidazole gradient. Eluted GSNOR fractions containing the Smt-GSNOR fusion were digested overnight with UIp- 1 at 4 0 C to remove the affinity tag then re-run on the Ni column under the same conditions. GSNOR was recovered in the flowthrough fraction and for crystallography is further purified by Q-Sepharose and Heparin flowthrough chromatography in 2OmM Tris pH 8.0, ImM DTT, lOuM ZnSO 4 .
- GSNOR assay Procedure: GSNO and Enzyme/NADH Solutions are made up fresh each day. The Solutions are filtered and allowed to warm to room temperature. GSNO Solution: 100 mM NaPO4 (pH 7.4), 0.480 mM GSNO. 396 ⁇ L of GSNO Solution is added to a cuvette followed by 8 ⁇ L of test compound in DMSO (or DMSO only for full reaction control) and mixed with the pipette tip. Compounds to be tested are made up at a stock concentration of 10 mM in 100% DMSO. 2 fold serial dilutions are done in 100% DMSO.
- Enzyme/NADH Solution 100 mM NaPO4 (pH 7.4), 0.600 mM NADH, 1.0 ⁇ g/mL GSNO Reductase. 396 ⁇ L of the Enzyme/NADH Solution is added to the cuvette to start the reaction. The cuvette is placed in the Cary 3E UV/Visible Spectrophotometer and the change in 340 nm absorbance/min at 25 0 C is recorded for 3 minutes. The assays are done in triplicate for each compound concentration.
- IC50's for each compound are calculated using the standard curve analysis in the Enzyme Kinetics Module of SigmaPlot. [00271] Final assay conditions: 100 mM NaPO4, pH 7.4, 0.240 mM GSNO, 0.300 mM NADH, 0.5 ⁇ g/mL GSNO Reductase and 1% DMSO. Final volume: 800 ⁇ L/cuvette.
- Example 3 GSNOR inhibition assay in an in vivo animal model
- mice were then challenged with an aerosol of increasing dosages of the bronchoconstrictive agent methacholine, a pharmacologic agent commonly used in determining the degree of bronchial hyper-reactivity in experimental subjects.
- methacholine a pharmacologic agent commonly used in determining the degree of bronchial hyper-reactivity in experimental subjects.
- mice were exposed to an increasing concentration of methacholine, each dose being presented for 3 minutes, during which time readings were taken.
- Doses of methacholine were 0 mg/ml, 5 mg/ml, 20 mg/ml, and 50 mg/ml.
- the degree of bronchial hyper-reactivity was measured as the 'Enhanced Pause' (Penh), a unit-less index of airway hyper-reactivity (Dohi et al, Lab Invest. 79(12): 1559-1571, 1999).
- Compound 1 produced lower broncho-constrictive responses in these test animals compared with vehicle-only dosed animals. These results are consistent with a greater level of bioactive SNO' s available to counter the broncho- constrictive methacholine challenge.
- OVA ovalbumin
- GSNOR inhibitors for efficacy against methacholine (MCh) -induced bronchoconstriction/airway hyper-reactivity. This is a widely used and well characterized model that presents with an acute, allergic asthma phenotype with similarities to human asthma.
- Efficacy of GSNOR inhibitors were assessed using a prophylactic protocol in which GSNOR inhibitors were administered prior to challenge with MCh. Bronchoconstriction in response to challenge with increasing doses of MCh was assessed using whole body plethysmography (P enh ; Buxco). The amount of eosinophil infiltrate into the bronchoaveolar lavage fluid (BALF) was also determined as a measure of lung inflammation. The effect of GSNOR inhibitors were compared to vehicles and to Combivent (inhaled; IH) as the positive control.
- IH methacholine
- OVA 500 ⁇ g/ml
- PBS 10% (w/v) aluminum potassium sulfate
- distilled water distilled water
- IP intraperitoneal
- mice were anesthetized by IP injection of a 0.2-mL mixture of ketamine and xylazine (0.44 and 6.3 mg/mL, respectively) in normal saline and were placed on a board in the supine position. Two hundred fifty micrograms (100 ⁇ l of a 2.5 mg/ml) of OVA (on day 8) and 125 ⁇ g (50 ⁇ l of 2.5 mg/ml) OVA (on days 15, 18, and 21) were placed on the back of the tongue of each animal.
- Pulmonary function testing (Penh) [00284] In vivo airway responsiveness to methacholine was measured 24 h after the last OVA challenge in conscious, freely moving, spontaneously breathing mice with whole body plethysmography using a Buxco chamber (Wilmington, NC). Mice were challenged with aerosolized saline or increasing doses of methacholine (5, 20 and 50 mg/mL) generated by an ultrasonic nebulizer for 2 min. The degree of bronchoconstriction was expressed as enhanced pause (P enh X a calculated dimensionless value, which correlates with the measurement of airway resistance, impedance, and intrapleural pressure in the same mouse.
- P en h [(T e /T r - 1) x (PEF/PIF)], where T e is expiration time, T r is relaxation time, PEF is peak expiratory flow, and PIF is peak inspiratory flow x 0.67 coefficient.
- T e expiration time
- T r relaxation time
- PEF peak expiratory flow
- PIF peak inspiratory flow x 0.67 coefficient.
- the time for the box pressure to change from a maximum to a user-defined percentage of the maximum represents the relaxation time.
- the T r measurement begins at the maximum box pressure and ends at 40%.
- mice were exsanguinated by cardiac puncture, and then BALF was collected from either both lungs or from the right lung after tying off the left lung at the mainstem bronchus.
- Total BALF cells were counted from a 0.05 mL aliquot, and the remaining fluid is centrifuged at 200 x g for 10 min at 4 0 C. Cell pellets were resuspended in saline containing 10% BSA with smears made on glass slides. Eosinophils were stained for 5 min. with 0.05% aqueous eosin and 5% acetone in distilled water, rinsed with distilled water, and counterstained with 0.07% methylene blue.
- GSNOR Inhibitors and Controls were stained for 5 min. with 0.05% aqueous eosin and 5% acetone in distilled water, rinsed with distilled water, and counterstained with 0.07% methylene blue.
- GSNOR inhibitors were reconstituted in phosphate buffered saline (PBS), pH 8.
- GSNOR inhibitors were administered to mice (10 mL/kg) as a single dose either intravenously (IV) or orally via gavage. Dosing was performed from 30 min. to 24 h prior to MCh challenge. Effect of GSNOR inhibitors were compared to PBS vehicle dosed in the same manner. [00289] Combivent was used as the positive control in all studies. Combivent
- Combivent was administered 48 h, 24 h, and 1 h prior to MCh challenge. Each puff (or dose) of Combivent provided a dose of 18 ⁇ g ipatropium bromide (IpBr) and 103 ⁇ g albuterol sulfate or approximately 0.9 mg/kg IpBr and 5 mg/kg albuterol.
- IpBr ipatropium bromide
- Compound 1 administered intravenously (IV) was efficacious against experimental asthma as noted by attenuation of methacholine (MCh) induced bronchoconstriction and pulmonary inflammation.
- Significant efficacy with Compound 1 was observed with a single IV dose of 0.01 mg/kg at 24 h prior to MCh.
- Eosinophil infiltration into the bronchoaveolar lavage fluid (BALF) was reduced by 98% (p ⁇ 0.0001).
- Compound 2 administered intravenously (IV) was efficacious against experimental asthma as noted by attenuation of methacholine (MCh) induced bronchoconstriction.
- Significant efficacy with Compound 2 was observed with a single IV dose of 0.01, 0.1, and 1 mg/kg at 24 h prior to MCh.
- Compound 6 administered intravenously (IV) or orally was efficacious against experimental asthma as noted by attenuation of methacholine (MCh) induced bronchoconstriction and pulmonary inflammation.
- Significant efficacy with Compound 6 was observed with a single IV dose of 1 mg/kg at 24 h prior to MCh.
- Eosinophil infiltration into the bronchoaveolar lavage fluid (BALF) was reduced by 92% (p ⁇ 0.0001).
- Significant efficacy with Compound 6 was also observed with a single oral dose of 30 mg/kg at 24 h prior to MCh.
- Compound 7 administered intravenously (IV) was efficacious against experimental asthma as noted by attenuation of methacholine (MCh) induced bronchoconstriction.
- Significant efficacy with Compound 7 was observed with a single IV dose of 0.1 and 1 mg/kg at 24 h prior to MCh.
- Compound 26 administered intravenously (IV) or orally was efficacious against experimental asthma as noted by attenuation of methacholine (MCh) induced bronchoconstriction and pulmonary inflammation.
- Significant efficacy with Compound 26 was observed with a single IV dose of 0.1, 1, and 10 mg/kg at 24 h prior to MCh.
- Eosinophil infiltration into the BALF was reduced by 94% (p ⁇ 0.0001).
- Significant efficacy with Compound 26 was also observed with a single oral dose of 30 mg/kg at 24 h prior to MCh.
- Compound 33 administered intravenously was efficacious against experimental asthma as noted by attenuation of methacholine (MCh) induced bronchoconstriction and pulmonary inflammation.
- Significant efficacy with Compound 33 was observed with a single IV dose of 1 mg/kg at 24 h prior to MCh.
- Eosinophil infiltration into the bronchoaveolar lavage fluid (BALF) was reduced by 61% (p ⁇ 0.0001).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pulmonology (AREA)
- Hematology (AREA)
- Ophthalmology & Optometry (AREA)
- Neurosurgery (AREA)
- Hospice & Palliative Care (AREA)
- Diabetes (AREA)
- Rheumatology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Toxicology (AREA)
- Endocrinology (AREA)
- Child & Adolescent Psychology (AREA)
- Obesity (AREA)
- Pain & Pain Management (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- Gynecology & Obstetrics (AREA)
- Psychiatry (AREA)
- Reproductive Health (AREA)
- Immunology (AREA)
- Orthopedic Medicine & Surgery (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200931431A SI2315591T1 (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
CA2734154A CA2734154C (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
DK09807383.6T DK2315591T3 (en) | 2008-08-15 | 2009-08-14 | NOVEL PYRROLE INHIBITORS OF S-nitrosoglutathione-reductase as therapeutic agents |
BRPI0917017A BRPI0917017B8 (en) | 2008-08-15 | 2009-08-14 | s-nitrosoglutathione reductase pyrrole inhibitors as therapeutic agents |
RU2011109339/04A RU2500668C2 (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
US13/057,220 US8673961B2 (en) | 2008-08-15 | 2009-08-14 | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
EP09807383.6A EP2315591B1 (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
JP2011523205A JP2012500219A (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
AU2009281747A AU2009281747B2 (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
ES09807383.6T ES2572615T3 (en) | 2008-08-15 | 2009-08-14 | New pyrrolic inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
CN2009801410890A CN102186478B (en) | 2008-08-15 | 2009-08-14 | Pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
IL211056A IL211056A (en) | 2008-08-15 | 2011-02-03 | Phenyl-pyrrolyl propanoic acid compound, a pharmaceutical composition comprising the compound, use of the compound in the preparation of a medicament, the compound for use as a medicament and a method of making the pharmaceutical composition |
ZA2011/00966A ZA201100966B (en) | 2008-08-15 | 2011-02-07 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
HK11111007.5A HK1156540A1 (en) | 2008-08-15 | 2011-10-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents s- |
US14/173,377 US8957105B2 (en) | 2008-08-15 | 2014-02-05 | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US14/598,062 US9180119B2 (en) | 2008-08-15 | 2015-01-15 | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US14/922,928 US9498466B2 (en) | 2008-08-15 | 2015-10-26 | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
HRP20160658TT HRP20160658T1 (en) | 2008-08-15 | 2016-06-13 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
SM201600177T SMT201600177B (en) | 2008-08-15 | 2016-06-16 | NEW PYRROLIC INHIBITORS OF S-NITROSOGLUTATION AND REDUCED AS THERAPEUTIC AGENTS |
US15/345,767 US9814700B2 (en) | 2008-08-15 | 2016-11-08 | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8931308P | 2008-08-15 | 2008-08-15 | |
US61/089,313 | 2008-08-15 | ||
US11698208P | 2008-11-21 | 2008-11-21 | |
US61/116,982 | 2008-11-21 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/057,220 A-371-Of-International US8673961B2 (en) | 2008-08-15 | 2009-08-14 | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US14/173,377 Continuation US8957105B2 (en) | 2008-08-15 | 2014-02-05 | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010019910A1 true WO2010019910A1 (en) | 2010-02-18 |
Family
ID=41669340
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/053923 WO2010019903A1 (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
PCT/US2009/053931 WO2010019910A1 (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/053923 WO2010019903A1 (en) | 2008-08-15 | 2009-08-14 | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
Country Status (23)
Country | Link |
---|---|
US (7) | US8691816B2 (en) |
EP (3) | EP2318006B1 (en) |
JP (4) | JP2012500216A (en) |
KR (1) | KR20110042364A (en) |
CN (1) | CN102186478B (en) |
AU (1) | AU2009281747B2 (en) |
BR (1) | BRPI0917017B8 (en) |
CA (1) | CA2734154C (en) |
CY (2) | CY1117524T1 (en) |
DK (2) | DK2318006T3 (en) |
ES (2) | ES2572615T3 (en) |
HK (2) | HK1156540A1 (en) |
HR (2) | HRP20160658T1 (en) |
HU (2) | HUE027659T2 (en) |
IL (1) | IL211056A (en) |
LT (1) | LT2318006T (en) |
PL (2) | PL2315591T3 (en) |
PT (1) | PT2318006T (en) |
RU (1) | RU2500668C2 (en) |
SI (2) | SI2315591T1 (en) |
SM (2) | SMT201600177B (en) |
WO (2) | WO2010019903A1 (en) |
ZA (1) | ZA201100966B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012009227A1 (en) * | 2010-07-16 | 2012-01-19 | N30 Pharmaceuticals, Llc | Novel dihydropyridin-2(1h)-one compounds as s-nitrosoglutathione reductase inhibitors and neurokinin-3 receptor antagonists |
WO2013006635A1 (en) * | 2011-07-05 | 2013-01-10 | N30 Pharmaceuticals, Llc | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents for liver toxicity |
JP2013514363A (en) * | 2009-12-16 | 2013-04-25 | エヌサーティー・ファーマシューティカルズ・インコーポレーテッド | Novel thiophene inhibitor of S-nitrosoglutathione reductase |
US8470857B2 (en) | 2008-08-15 | 2013-06-25 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US8642628B2 (en) | 2008-08-15 | 2014-02-04 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase |
US8673961B2 (en) | 2008-08-15 | 2014-03-18 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
JP2014506875A (en) * | 2010-12-16 | 2014-03-20 | エヌ30 ファーマシューティカルズ,インコーポレイテッド | Novel substituted bicyclic aromatic compounds as S-nitrosoglutathione reductase inhibitors |
US8906933B2 (en) | 2010-09-24 | 2014-12-09 | N30 Pharmaceuticals, Inc. | Dihydropyrimidin-2(1H)-one compounds as neurokinin-3 receptor antagonists |
CN104529995A (en) * | 2014-12-30 | 2015-04-22 | 白银摩尔化工有限责任公司 | Air catalytic oxidation hydrogen bromide method for preparing 2,3,5-tribromo thiophene |
WO2017122754A1 (en) | 2016-01-12 | 2017-07-20 | 日本ケミファ株式会社 | Voltage-dependent t-type calcium channel inhibitor |
EP4050011A4 (en) * | 2020-12-31 | 2022-10-12 | Nanjing Medical University | Oral gsnor inhibitors and pharmaceutical use thereof |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8455513B2 (en) | 2007-01-10 | 2013-06-04 | Aerie Pharmaceuticals, Inc. | 6-aminoisoquinoline compounds |
US8450344B2 (en) | 2008-07-25 | 2013-05-28 | Aerie Pharmaceuticals, Inc. | Beta- and gamma-amino-isoquinoline amide compounds and substituted benzamide compounds |
CA2929545C (en) | 2009-05-01 | 2019-04-09 | Aerie Pharmaceuticals, Inc. | Dual mechanism inhibitors for the treatment of disease |
EP2624695B1 (en) | 2010-10-08 | 2015-09-23 | Nivalis Therapeutics, Inc. | Novel substituted quinoline compounds as s-nitrosoglutathione reductase inhibitors |
US20140135396A1 (en) * | 2011-07-05 | 2014-05-15 | Beth Israel Deaconess Medical Center, Inc. | Treatment of Acetaminophen-Induced Liver Damage by the Administration of Modulators of Nitric Oxide |
TW201341367A (en) | 2012-03-16 | 2013-10-16 | Axikin Pharmaceuticals Inc | 3,5-diaminopyrazole kinase inhibitors |
EP4335507A3 (en) | 2013-03-15 | 2024-06-05 | Aerie Pharmaceuticals, Inc. | Combination therapy |
NZ631142A (en) | 2013-09-18 | 2016-03-31 | Axikin Pharmaceuticals Inc | Pharmaceutically acceptable salts of 3,5-diaminopyrazole kinase inhibitors |
WO2015067630A1 (en) | 2013-11-08 | 2015-05-14 | Bayer Pharma Aktiengesellschaft | Substituted uracils and use thereof |
CN105873919A (en) | 2013-11-08 | 2016-08-17 | 拜耳医药股份有限公司 | Substituted uracils as chymase inhibitors |
JP6364967B2 (en) * | 2014-05-30 | 2018-08-01 | 東ソー株式会社 | Method for producing dithienobenzodithiophene |
MY191736A (en) | 2014-12-23 | 2022-07-13 | Axikin Pharmaceuticals Inc | 3,5-diaminopyrazole kinase inhibitors |
CN104557656B (en) * | 2015-01-13 | 2016-06-01 | 佛山市赛维斯医药科技有限公司 | The compound of Halogen benzene and diene adamantane structure, Preparation Method And The Use |
US10399946B2 (en) | 2015-09-10 | 2019-09-03 | Laurel Therapeutics Ltd. | Solid forms of an S-Nitrosoglutathione reductase inhibitor |
CN105218397B (en) * | 2015-09-25 | 2017-05-10 | 济南大学 | Method for synthesizing 2-azidomethyl-4-nitrobenzoyl chloride |
US10537557B2 (en) | 2016-01-27 | 2020-01-21 | Case Western Reserve University | Methods of treating respiratory disorders |
ES2823190T3 (en) | 2016-03-31 | 2021-05-06 | Oncternal Therapeutics Inc | Indoline analogues and uses thereof |
TW201806596A (en) * | 2016-08-01 | 2018-03-01 | 中央研究院 | Antiviral agents |
MX2019002396A (en) | 2016-08-31 | 2019-07-08 | Aerie Pharmaceuticals Inc | Ophthalmic compositions. |
US9840468B1 (en) | 2016-12-30 | 2017-12-12 | Aerie Pharmaceuticals, Inc. | Methods for the preparation of 6-aminoisoquinoline |
MX2019011784A (en) | 2017-03-31 | 2019-11-18 | Aerie Pharmaceuticals Inc | Aryl cyclopropyl-amino-isoquinolinyl amide compounds. |
JP2020100564A (en) * | 2017-04-03 | 2020-07-02 | 京都薬品工業株式会社 | Read-through inducer and pharmaceutical use thereof |
CA3059631A1 (en) * | 2017-04-11 | 2018-10-18 | Saje Pharma, Llc | Carbazole compounds and methods of use thereof |
WO2018208793A1 (en) | 2017-05-08 | 2018-11-15 | Musc Foundation For Research Development | S-nitrosoglutathiome (gsno) and gsno reductase inhibitors for use in therapy |
CA3112391A1 (en) | 2018-09-14 | 2020-03-19 | Aerie Pharmaceuticals, Inc. | Aryl cyclopropyl-amino-isoquinolinyl amide compounds |
CN110015963A (en) * | 2019-04-12 | 2019-07-16 | 上海优合生物科技有限公司 | A kind of preparation method of the chloro- 6- methylaniline of 2- |
US20230357154A1 (en) * | 2019-08-08 | 2023-11-09 | Treventis Corporation | Butyrylcholinesterase compounds and use in diseases of the nervous system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522811A (en) | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
US4792568A (en) * | 1986-04-14 | 1988-12-20 | Rorer Pharmaceutical Corporation | Aryl pyrroles as useful antiallergy compounds |
US6057367A (en) | 1996-08-30 | 2000-05-02 | Duke University | Manipulating nitrosative stress to kill pathologic microbes, pathologic helminths and pathologically proliferating cells or to upregulate nitrosative stress defenses |
US6359182B1 (en) | 2000-10-26 | 2002-03-19 | Duke University | C-nitroso compounds and use thereof |
US20050014697A1 (en) | 2003-06-04 | 2005-01-20 | Stamler Jonathan S. | Compositions and methods for modulating S-nitrosoglutathione reductase |
WO2006012642A2 (en) * | 2004-07-30 | 2006-02-02 | Exelixis, Inc. | Pyrrole derivatives as pharmaceutical agents |
WO2009076665A1 (en) | 2007-12-13 | 2009-06-18 | Indiana University Research And Technology Corporation | Materials and methods for inhibiting mammalian s-nitrosoglutathione reductase |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3168527A (en) | 1962-06-14 | 1965-02-02 | Parke Davis & Co | 1-aryl-5-(p-fluorophenyl)-pyrrole-2-propionic acid compounds |
US3168528A (en) | 1962-06-14 | 1965-02-02 | Parke Davis & Co | 1-(p-nitrophenyl) and 1-(p-cyanophenyl)-5-arylpyrrole-2-propionic acid compounds |
GB997043A (en) | 1962-06-14 | 1965-06-30 | Parke Davis & Co | Derivatives of 1,5-diarylpyrrole-2-propionic acid |
US3168529A (en) * | 1962-06-14 | 1965-02-02 | Parke Davis & Co | 1-(p-lower alkanoylphenyl)-5-arylpyrrole-2-propionic acid compounds |
US3168532A (en) | 1963-06-12 | 1965-02-02 | Parke Davis & Co | 1, 5-diarylpyrrole-2-propionic acid compounds |
US3168531A (en) | 1963-06-12 | 1965-02-02 | Parke Davis & Co | 1-aryl-5-(p-lower alkoxyphenyl)-pyrrole-2-propionic acid compounds |
FR1393615A (en) | 1964-03-05 | 1965-03-26 | Inst Organiycheskoi Khim Im N | Process for preparing nu-vinylpyrrolidone |
US3427305A (en) * | 1966-11-01 | 1969-02-11 | Searle & Co | 5 - ((halo/alkoxy)phenyl) - 1 - (p - sulfonamido(phenyl/benzyl)) - 2 - pyrrolepropionic acids |
US3752826A (en) * | 1970-01-26 | 1973-08-14 | Mcneilab Inc | Aroyl substituted pyrroles |
US4694018A (en) | 1985-11-29 | 1987-09-15 | G. D. Serale & Co. | Substituted 1,5-diphenyl-2-pyrrolepropionic acids and derivatives |
US4826869A (en) | 1988-02-19 | 1989-05-02 | Syntex (U.S.A.) Inc. | N-(lower alkyl)-2-(3'ureidobenzyl)pyrrolidines |
US5189051A (en) | 1990-05-10 | 1993-02-23 | E. I. Du Pont De Nemours And Company | Treatment of glaucoma and ocular hypertension with pyrrole angiotensin-II receptor antagonists |
DE4036706A1 (en) | 1990-11-17 | 1992-05-21 | Hoechst Ag | METHOD FOR THE TREATMENT OF CARDIALS AND VASCULAR HYPERTROPHY AND HYPERPLASIA |
US5187271A (en) | 1991-02-28 | 1993-02-16 | G. D. Searle & Co. | N-substituted (α-imidazolyl-toluyl) pyrrole compounds for treatment of circulatory disorders |
US6008368A (en) | 1993-04-28 | 1999-12-28 | G. D. Searle & Co. | Pharmaceutical compositions for treatment of circulatory disorders using N-substituted (α-imidazolyl-toluyl) pyrrole aniotensin II antagonists |
US5451597A (en) | 1993-05-27 | 1995-09-19 | G.D. Searle & Co. | Treatment of circulatory disorders using n-substituted (α-imidazolyl-toluyl) pyrrole angiotensin II antagonists |
US5840751A (en) | 1993-11-19 | 1998-11-24 | Warner-Lambert Company | 5,6-dihydropyrone derivatives as protease inhibitors and antiviral agents |
EP0952828B1 (en) * | 1996-11-13 | 2006-08-16 | Cold Spring Harbor Laboratory | Therapeutic uses for nitric oxide inhibitors |
ES2208964T3 (en) | 1996-12-10 | 2004-06-16 | G.D. SEARLE & CO. | PIRROLYL COMPOUNDS SUBSTITUTED FOR THE TREATMENT OF INFLAMMATION. |
FR2782720B1 (en) | 1998-09-01 | 2001-10-12 | Oreal | USE IN HAIR DYEING OF CONDENSATES OF QUINOLINE-5,8-DIONES OR OF QUINOXALINE-5,8-DIONES AND OF PYRROLES, ANILINES OR SUBSTITUTED INDOLES |
US6355812B1 (en) * | 1999-06-11 | 2002-03-12 | Orth-Mcneil Pharmaceutical, Inc. | Methods for the synthesis of dioxoalkanoic acid compounds |
US6589978B2 (en) * | 2000-06-30 | 2003-07-08 | Hoffman-La Roche Inc. | 1-sulfonyl pyrrolidine derivatives |
US7049308B2 (en) * | 2000-10-26 | 2006-05-23 | Duke University | C-nitroso compounds and use thereof |
US7179791B2 (en) * | 2001-01-11 | 2007-02-20 | Duke University | Inhibiting GS-FDH to modulate NO bioactivity |
WO2003000249A1 (en) | 2001-06-26 | 2003-01-03 | Takeda Chemical Industries, Ltd. | Function regulator for retinoid relative receptor |
GB0119172D0 (en) * | 2001-08-06 | 2001-09-26 | Melacure Therapeutics Ab | Phenyl pyrrole derivatives |
GB0212785D0 (en) | 2002-05-31 | 2002-07-10 | Glaxo Group Ltd | Compounds |
CA2495216A1 (en) | 2002-08-12 | 2004-02-19 | Sugen, Inc. | 3-pyrrolyl-pyridopyrazoles and 3-pyrrolyl-indazoles as novel kinase inhibitors |
GB0229581D0 (en) | 2002-12-19 | 2003-01-22 | Cyclacel Ltd | Use |
US20060270628A1 (en) | 2003-04-29 | 2006-11-30 | Jagattaran Das | Antiinfective 1,2,3-triazole derivatives, process for their preparation and pharmaceutical compositions containing them |
CN1679552A (en) | 2004-03-15 | 2005-10-12 | 永信药品工业股份有限公司 | Preferential inhibition of release of pro-inflammatory cytokines |
MY144903A (en) | 2004-06-17 | 2011-11-30 | Novartis Ag | Pyrrolopyridine derivatives and their use as crth2 antagonists |
CN101006052B (en) | 2004-07-30 | 2013-11-06 | 埃克塞利希斯股份有限公司 | Pyrrole derivatives as pharmaceutical agents |
FR2881426B1 (en) * | 2005-02-03 | 2007-03-30 | Aventis Pharma Sa | SUBSTITUTED PYROLLES AND IMIDAZOLES, COMPOSITIONS CONTAINING THE SAME, PROCESS FOR FRABRICATION AND USE |
JP2006290791A (en) | 2005-04-11 | 2006-10-26 | Astellas Pharma Inc | Azole-substituted sulfonylbenzene derivative |
EP1928859A1 (en) | 2005-06-17 | 2008-06-11 | Carex SA | Pyrazole derivates as cannabinoid receptor modulators |
JP2008546802A (en) | 2005-06-24 | 2008-12-25 | ジェネラブズ テクノロジーズ インコーポレーティッド | Heteroaryl derivatives for treating viruses |
CA2613458A1 (en) | 2005-07-12 | 2007-01-18 | Acadia Pharmaceuticals Inc. | Compounds with activity at retinoic acid receptors |
AU2009244790B2 (en) | 2008-05-09 | 2013-09-12 | Duke University | Treatment for diseases relying on discovery that thioredoxin mediates nitric oxide release in cells |
ES2572615T3 (en) | 2008-08-15 | 2016-06-01 | Nivalis Therapeutics, Inc. | New pyrrolic inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
EP2318007B1 (en) | 2008-08-15 | 2013-01-23 | N30 Pharmaceuticals, Inc. | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents |
US8642628B2 (en) | 2008-08-15 | 2014-02-04 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase |
WO2010107476A1 (en) | 2009-03-19 | 2010-09-23 | Duke University | Inhibiting gsnor |
US8586624B2 (en) | 2009-12-16 | 2013-11-19 | N30 Pharmaceuticals, Inc. | Thiophene inhibitors of S-nitrosoglutathione reductase |
US20140113945A1 (en) | 2011-07-05 | 2014-04-24 | N30 Pharmaceuticals, Inc. | Novel Pyrrole Inhibitors of S-Nitrosoglutathione Reductase as Therapeutic Agents for Liver Toxicity |
-
2009
- 2009-08-14 ES ES09807383.6T patent/ES2572615T3/en active Active
- 2009-08-14 JP JP2011523200A patent/JP2012500216A/en not_active Withdrawn
- 2009-08-14 CA CA2734154A patent/CA2734154C/en active Active
- 2009-08-14 WO PCT/US2009/053923 patent/WO2010019903A1/en active Application Filing
- 2009-08-14 ES ES09807378.6T patent/ES2610158T3/en active Active
- 2009-08-14 BR BRPI0917017A patent/BRPI0917017B8/en not_active IP Right Cessation
- 2009-08-14 HU HUE09807383A patent/HUE027659T2/en unknown
- 2009-08-14 DK DK09807378.6T patent/DK2318006T3/en active
- 2009-08-14 RU RU2011109339/04A patent/RU2500668C2/en not_active IP Right Cessation
- 2009-08-14 CN CN2009801410890A patent/CN102186478B/en active Active
- 2009-08-14 US US13/057,171 patent/US8691816B2/en not_active Expired - Fee Related
- 2009-08-14 EP EP09807378.6A patent/EP2318006B1/en active Active
- 2009-08-14 SI SI200931431A patent/SI2315591T1/en unknown
- 2009-08-14 PL PL09807383.6T patent/PL2315591T3/en unknown
- 2009-08-14 JP JP2011523205A patent/JP2012500219A/en active Pending
- 2009-08-14 US US13/057,220 patent/US8673961B2/en active Active
- 2009-08-14 SI SI200931581A patent/SI2318006T1/en unknown
- 2009-08-14 EP EP09807383.6A patent/EP2315591B1/en active Active
- 2009-08-14 LT LTEP09807378.6T patent/LT2318006T/en unknown
- 2009-08-14 PT PT98073786T patent/PT2318006T/en unknown
- 2009-08-14 DK DK09807383.6T patent/DK2315591T3/en active
- 2009-08-14 KR KR20117005976A patent/KR20110042364A/en not_active Application Discontinuation
- 2009-08-14 EP EP16150296.8A patent/EP3069721A1/en not_active Withdrawn
- 2009-08-14 HU HUE09807378A patent/HUE031580T2/en unknown
- 2009-08-14 AU AU2009281747A patent/AU2009281747B2/en not_active Ceased
- 2009-08-14 PL PL09807378T patent/PL2318006T3/en unknown
- 2009-08-14 WO PCT/US2009/053931 patent/WO2010019910A1/en active Application Filing
-
2011
- 2011-02-03 IL IL211056A patent/IL211056A/en not_active IP Right Cessation
- 2011-02-07 ZA ZA2011/00966A patent/ZA201100966B/en unknown
- 2011-10-14 HK HK11111007.5A patent/HK1156540A1/en not_active IP Right Cessation
- 2011-10-18 HK HK11111135.0A patent/HK1156846A1/en not_active IP Right Cessation
-
2014
- 2014-02-05 US US14/173,377 patent/US8957105B2/en not_active Expired - Fee Related
- 2014-03-11 US US14/204,849 patent/US9138427B2/en not_active Expired - Fee Related
- 2014-10-20 JP JP2014213583A patent/JP2015038132A/en active Pending
- 2014-10-20 JP JP2014213744A patent/JP5917650B2/en not_active Expired - Fee Related
-
2015
- 2015-01-15 US US14/598,062 patent/US9180119B2/en not_active Expired - Fee Related
- 2015-10-26 US US14/922,928 patent/US9498466B2/en active Active
-
2016
- 2016-05-18 CY CY20161100428T patent/CY1117524T1/en unknown
- 2016-06-13 HR HRP20160658TT patent/HRP20160658T1/en unknown
- 2016-06-16 SM SM201600177T patent/SMT201600177B/en unknown
- 2016-11-08 US US15/345,767 patent/US9814700B2/en active Active
-
2017
- 2017-01-09 HR HRP20170019TT patent/HRP20170019T1/en unknown
- 2017-01-10 CY CY20171100029T patent/CY1118454T1/en unknown
- 2017-01-19 SM SM201700037T patent/SMT201700037B/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522811A (en) | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
US4792568A (en) * | 1986-04-14 | 1988-12-20 | Rorer Pharmaceutical Corporation | Aryl pyrroles as useful antiallergy compounds |
US6057367A (en) | 1996-08-30 | 2000-05-02 | Duke University | Manipulating nitrosative stress to kill pathologic microbes, pathologic helminths and pathologically proliferating cells or to upregulate nitrosative stress defenses |
US6359182B1 (en) | 2000-10-26 | 2002-03-19 | Duke University | C-nitroso compounds and use thereof |
WO2002034705A2 (en) | 2000-10-26 | 2002-05-02 | Duke University | C-nitroso compounds and use thereof |
US20050014697A1 (en) | 2003-06-04 | 2005-01-20 | Stamler Jonathan S. | Compositions and methods for modulating S-nitrosoglutathione reductase |
WO2006012642A2 (en) * | 2004-07-30 | 2006-02-02 | Exelixis, Inc. | Pyrrole derivatives as pharmaceutical agents |
WO2009076665A1 (en) | 2007-12-13 | 2009-06-18 | Indiana University Research And Technology Corporation | Materials and methods for inhibiting mammalian s-nitrosoglutathione reductase |
Non-Patent Citations (10)
Title |
---|
DE BELDER ET AL., CARDIOVASC RES., vol. 28, no. 5, May 1994 (1994-05-01), pages 691 - 4 |
DE JESUS-BERRIOS ET AL., CURR. BIOL., vol. 13, 2003, pages 1963 - 1968 |
FEELISCH ET AL.: "Methods in Nitric Oxide Research", 1996, JOHN WILEY & SONS, pages: 71 - 115 |
LIU ET AL., CELL, vol. 116, no. 4, 2004, pages 617 - 628 |
QUE ET AL., SCIENCE, vol. 308, no. 5728, 2005, pages 1618 - 1621 |
REMINGTON: "The Science and Practice, 20th ed.", LIPPINCOTT WILLIAMS & WILKINS |
See also references of EP2315591A4 |
STAMLER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 7674 - 7677 |
Z. KAPOSZTA, A ET AL., CIRCULATION, vol. 106, no. 24, 2002, pages 3057 - 3062 |
ZHANG X.P, J. CARDIOVASCULAR PHARMACOLOGY, vol. 39, 2002, pages 208 - 214 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9138427B2 (en) | 2008-08-15 | 2015-09-22 | Nivalis Therapeutics, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US8957105B2 (en) | 2008-08-15 | 2015-02-17 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US9180119B2 (en) | 2008-08-15 | 2015-11-10 | Nivalis Therapeutics, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US8470857B2 (en) | 2008-08-15 | 2013-06-25 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US8642628B2 (en) | 2008-08-15 | 2014-02-04 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase |
US8673961B2 (en) | 2008-08-15 | 2014-03-18 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US9029402B2 (en) | 2008-08-15 | 2015-05-12 | Nivalis Therapeutics, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase |
US8686015B2 (en) | 2008-08-15 | 2014-04-01 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US8691816B2 (en) | 2008-08-15 | 2014-04-08 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US9498466B2 (en) | 2008-08-15 | 2016-11-22 | Nivalis Therapeutics, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US8846736B2 (en) | 2008-08-15 | 2014-09-30 | N30 Pharmaceuticals, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
US9814700B2 (en) | 2008-08-15 | 2017-11-14 | Nivalis Therapeutics, Inc. | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents |
JP2013514363A (en) * | 2009-12-16 | 2013-04-25 | エヌサーティー・ファーマシューティカルズ・インコーポレーテッド | Novel thiophene inhibitor of S-nitrosoglutathione reductase |
US9283213B2 (en) | 2010-07-16 | 2016-03-15 | Nivalis Therapeutics, Inc. | Dihydropyridin-2(1H)-one compounds as S-nitrosoglutathione reductase inhibitors and neurokinin-3 receptor antagonists |
US8946434B2 (en) | 2010-07-16 | 2015-02-03 | N30 Pharmaceuticals, Inc. | Dihydropyridin-2(1H)-one compound as S-nirtosoglutathione reductase inhibitors and neurokinin-3 receptor antagonists |
WO2012009227A1 (en) * | 2010-07-16 | 2012-01-19 | N30 Pharmaceuticals, Llc | Novel dihydropyridin-2(1h)-one compounds as s-nitrosoglutathione reductase inhibitors and neurokinin-3 receptor antagonists |
US8906933B2 (en) | 2010-09-24 | 2014-12-09 | N30 Pharmaceuticals, Inc. | Dihydropyrimidin-2(1H)-one compounds as neurokinin-3 receptor antagonists |
JP2014506875A (en) * | 2010-12-16 | 2014-03-20 | エヌ30 ファーマシューティカルズ,インコーポレイテッド | Novel substituted bicyclic aromatic compounds as S-nitrosoglutathione reductase inhibitors |
WO2013006635A1 (en) * | 2011-07-05 | 2013-01-10 | N30 Pharmaceuticals, Llc | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents for liver toxicity |
CN104529995A (en) * | 2014-12-30 | 2015-04-22 | 白银摩尔化工有限责任公司 | Air catalytic oxidation hydrogen bromide method for preparing 2,3,5-tribromo thiophene |
WO2017122754A1 (en) | 2016-01-12 | 2017-07-20 | 日本ケミファ株式会社 | Voltage-dependent t-type calcium channel inhibitor |
US11667616B2 (en) | 2020-12-31 | 2023-06-06 | Nanjing Medical University | Oral GSNOR inhibitor and pharmaceutical use thereof |
EP4050011A4 (en) * | 2020-12-31 | 2022-10-12 | Nanjing Medical University | Oral gsnor inhibitors and pharmaceutical use thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9814700B2 (en) | Pyrrole inhibitors of S-nitrosoglutathione reductase as therapeutic agents | |
US9707212B2 (en) | S-nitrosoglutathione reductase inhibitors | |
EP2318007B1 (en) | Novel pyrrole inhibitors of s-nitrosoglutathione reductase as therapeutic agents | |
EP2315590B1 (en) | Pyrrole inhibitors of s-nitrosoglutathione reductase | |
EP2512247B1 (en) | Novel thiophene inhibitors of s-nitrosoglutathione reductase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980141089.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09807383 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13057220 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 211056 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009281747 Country of ref document: AU Ref document number: 579/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009807383 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2734154 Country of ref document: CA Ref document number: 2011523205 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009281747 Country of ref document: AU Date of ref document: 20090814 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117005976 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011109339 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0917017 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110215 |