WO2010018878A1 - Reflective film for illuminating device - Google Patents

Reflective film for illuminating device Download PDF

Info

Publication number
WO2010018878A1
WO2010018878A1 PCT/JP2009/064480 JP2009064480W WO2010018878A1 WO 2010018878 A1 WO2010018878 A1 WO 2010018878A1 JP 2009064480 W JP2009064480 W JP 2009064480W WO 2010018878 A1 WO2010018878 A1 WO 2010018878A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
weight
transparent
reflective film
particles
Prior art date
Application number
PCT/JP2009/064480
Other languages
French (fr)
Japanese (ja)
Inventor
武久慶太
栂野真也
楠目博
Original Assignee
帝人デュポンフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008208531A external-priority patent/JP2010044238A/en
Priority claimed from JP2008209794A external-priority patent/JP5388505B2/en
Application filed by 帝人デュポンフィルム株式会社 filed Critical 帝人デュポンフィルム株式会社
Priority to CN2009801314802A priority Critical patent/CN102124380A/en
Priority to KR1020157036169A priority patent/KR20160003894A/en
Publication of WO2010018878A1 publication Critical patent/WO2010018878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a reflective film used in an illuminating device, and more particularly to a reflective film for an illuminating device used as a reflective film of a backlight unit of a liquid crystal display device.
  • Liquid crystal display devices include a backlight system in which a light source is placed on the back of a backlight unit and a sidelight system in which a light source is placed on a side surface.
  • a reflective film is installed on the back surface of the backlight unit in order to prevent light from the light source from escaping to the back surface of the screen.
  • This reflective film is required to have a thin and high reflectance.
  • a white film in which a white pigment is added to polyester Japanese Patent Laid-Open Nos. 2004-0050479 and 2004-330727)
  • a white film containing fine bubbles inside Japanese Patent Laid-Open No. No.
  • a cold cathode tube is generally used as a light source in the backlight unit
  • the fluorescent whitening agent is absorbed by ultraviolet rays emitted from the cold cathode ray tube.
  • the effect of improving the reflectivity is lost over time.
  • the fluorescent whitening agent is excited by ultraviolet rays and emits blue light in the first place. The effect of improving the reflectance by the white agent cannot be obtained.
  • the present inventor When the specular reflection of the reflective film is strong, the present inventor returns reflected light to the light source installed in front of the reflective film in the backlight unit, that is, between the reflective film and the display surface, and the light is displayed. We paid attention to the fact that the loss of light was caused because it did not reach the surface, causing the brightness to decrease.
  • the present invention is used as a reflective film in a backlight unit of a backlight type liquid crystal display device by suppressing specular reflection by a reflective film and providing reflected light with directivity that avoids a light source in front of the reflected light.
  • Another object of the present invention is to provide a reflection film for a lighting device that can obtain high brightness.
  • the second object of the present invention is to provide a reflective film for an illuminating device that can obtain high luminance when used as a reflective film in a backlight unit of a backlight type liquid crystal display device and is excellent in workability. There is.
  • the third object of the present invention is to obtain high luminance when used as a reflective film in a backlight unit of a backlight type liquid crystal display device, and to suppress yellowing over time with little color shift.
  • Another object of the present invention is to provide a reflective film for a lighting device.
  • the present invention comprises a white film and a transparent protrusion having a height of 3 to 50 ⁇ m provided on the surface of the white film, and the coverage by the transparent protrusion on the surface of the white film is 50 to 100%.
  • the transparent protrusion is made of transparent particles, and the transparent film having an exposure rate of 5 to 100% covers the surface of the white film at a coverage of 50 to 100% on the surface of the reflective film.
  • the present invention comprises a white film and transparent protrusions having a height of 3 to 50 ⁇ m by transparent particles covering the surface of the white film, and 50 to 100 transparent particles having an exposure rate of 5 to 100% on the surface of the white film.
  • covers the white film surface with the coverage of 100% is included as a preferable aspect.
  • the reflection film for illuminating devices which can obtain high brightness
  • a reflection film for a lighting device that can obtain high luminance when used as a reflection film in a backlight unit of a backlight type liquid crystal display device and is excellent in workability. be able to.
  • when used as a reflective film in a backlight unit of a backlight type liquid crystal display device when used as a reflective film in a backlight unit of a backlight type liquid crystal display device, high luminance can be obtained, and there is little color shift, and yellowing with time is suppressed. It is possible to provide a reflective film for a lighting device.
  • the white film in the present invention is a film made of a thermoplastic resin and having a white colorant or a void-forming substance contained in the film so as to exhibit a white color.
  • the thermoplastic resin constituting the film include polyester, polyolefin, and polystyrene. Polyester is preferred from the viewpoint of achieving both mechanical properties and thermal stability.
  • polyester which consists of a dicarboxylic acid component and a diol component is used as polyester.
  • dicarboxylic acid component examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, and sebacic acid.
  • diol component examples include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol.
  • aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable.
  • Polyethylene terephthalate may be a homopolymer, but a copolymer is preferred.
  • the white film may consist of a single layer or a plurality of layers.
  • a white film When a white film consists of a several layer, it is preferable that it is a laminated
  • the white reflective layer is preferably a layer containing a relatively large amount of voids
  • the support layer is preferably a layer containing relatively few voids or no voids.
  • the polyester used for the white reflective layer is preferably a copolymer polyester, and the proportion of the copolymer component is, for example, 3 to 20 mol%, preferably 4 to 15 mol%, more preferably based on the total dicarboxylic acid component. 5 to 13 mol%.
  • the white reflective layer preferably contains a phosphor.
  • the phosphor content is preferably 0.1 to 7% by weight based on the weight of the white reflective layer.
  • an inorganic phosphor is preferable.
  • the phosphor for example, those described later can be used.
  • the white colorant or void forming substance used for the white film for example, inorganic particles and organic particles can be used.
  • the white colorant it is preferable to use white inorganic particles.
  • the white inorganic particles include barium sulfate, titanium dioxide, silicon dioxide, and calcium carbonate particles.
  • the average particle size of the inorganic particles is, for example, 0.2 to 3.0 ⁇ m, preferably 0.3 to 2.5 ⁇ m, and more preferably 0.4 to 2.0 ⁇ m.
  • the inorganic particles may have any particle shape, for example, a plate shape or a spherical shape.
  • the inorganic particles may be subjected to a surface treatment for improving dispersibility.
  • resin particles that are incompatible with polyester are used as the organic particles.
  • the organic particles silicone resin particles and polytetrafluoroethylene particles are preferable.
  • the average particle diameter of the organic particles is, for example, 0.2 to 10 ⁇ m, preferably 0.3 to 8.0 ⁇ m, and more preferably 0.4 to 6.0 ⁇ m.
  • the organic particles in this range it is possible to obtain a film that can be appropriately dispersed in the polyester, is less likely to aggregate, and has no coarse protrusions.
  • the light reflectance of the white film is preferably 95% or more, more preferably 96% or more, and particularly preferably 97% or more as the reflectance at a wavelength of 550 nm.
  • the reflective film for lighting device of the present invention comprises a white film and a transparent protrusion having a height of 3 to 50 ⁇ m provided on the surface of the film.
  • Transparent protrusions may be provided continuously or discontinuously.
  • the coverage by the transparent protrusions on the white film surface is 50 to 100%, preferably 60 to 100%, more preferably 70 to 100%, and particularly preferably 80 to 100%. If the coverage is less than 50%, the directivity of light that avoids the front light source is impaired, and improvement in luminance cannot be expected.
  • the coverage is measured with respect to a measurement area having a total length of 6 mm in a measurement area having a length of 3 mm in each of two orthogonal directions in the film plane, and the white film surface is covered with a transparent protrusion in the measurement area. Is defined as the percentage that is. Specifically, using a microtome, a section is cut out so that the thickness direction of the film becomes a cut surface, and this section sample is made 3000 times using a Hitachi S-4700 field emission scanning electron microscope.
  • the transparent protrusion only needs to be formed of a transparent substance, and may be formed of any substance of an organic substance and an inorganic substance.
  • the light transmittance of the substance forming the transparent protrusions is, for example, 50% or more, preferably 60% or more, and more preferably 70% or more.
  • the transparent protrusions are preferably those that do not absorb light in the visible region in order to prevent coloring.
  • the shape of the transparent protrusion is, for example, a dome shape or a pyramid shape, or a pyramid shape other than the pyramid shape, for example, a triangular pyramid shape, a hexagonal pyramid shape, an octagonal pyramid shape, and preferably a dome shape or a pyramid shape. Particularly preferred is a dome shape.
  • the dome-shaped protrusion may be a protrusion having a smooth convex surface, and is preferably a hemispherical surface, a spherical surface or a part of a spheroid surface, and particularly preferably a hemispherical surface.
  • the hemispherical surface does not necessarily have to be half of a sphere, and corresponds to a dome-shaped protrusion if a part of the spherical surface protrudes to the surface in a convex shape.
  • the pyramid shape means a square shape, but when the transparent protrusion is a pyramid shape, the length of one side of the bottom surface of each pyramid is preferably 5 to 50 ⁇ m.
  • the shape of the pyramid is preferably perfect quadrature, but may be a shape in which a part of the pyramid, for example, a vertex is cut off.
  • the height of the transparent protrusion in the present invention is 3 to 50 ⁇ m. If the height is less than 3 ⁇ m, the directivity of light cannot be obtained, and if it exceeds 50 ⁇ m, the projections may drop off or the effect of imparting directivity to reflected light may vary greatly depending on the backlight design, that is, the position of the light source. Will arise.
  • the average diameter of the bottom surface of each dome is preferably 5 to 50 ⁇ m. By setting the average diameter in this range, it is preferable that the protrusions can be prevented from dropping without impairing the effect of imparting directivity to the reflected light. In the case of a dome shape, the most preferable shape is a hemisphere.
  • organic substances that form transparent protrusions include UV curable resins, thermosetting resins, acrylic resins, silicone resins, styrene resins, and urethane resins. Acrylic resins and styrene resins are preferred because they hardly absorb light in the visible light region.
  • glass is preferable.
  • the transparent protrusions can be formed, for example, by placing a thermosetting resin or UV curable resin filled in a mold in accordance with the shape of the protrusions on the film, and thermosetting or UV curing, for example, It can be formed by supporting transparent particles on the surface of a white film with a binder.
  • the former method is a preferable method when forming a pyramidal protrusion
  • the latter method is a preferable method when forming a dome-shaped protrusion, which will be described in detail later.
  • a radical capable of reacting a reactive group-containing compound such as a (meth) acryloyl group, a vinyl group, or an epoxy group with this reactive group-containing compound by UV irradiation A mixture of a compound that generates an active species such as a cation can be used. From the viewpoint of curing speed, a combination of a reactive group-containing compound (monomer) containing an unsaturated group such as a (meth) acryloyl group or a vinyl group and a radical photopolymerization initiator that generates a radical by UV light is preferable.
  • Examples of the (meth) acryloyl group compound include phenoxyethyl (meth) acrylate, phenoxy-2-methylethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, 2-phenylphenoxyethyl (meth) acrylate, 4-phenylphenoxyethyl (meth) acrylate, 3- (2-phenylphenyl) -2-hydroxypropyl (meth) acrylate, and p-cumylphenol reacted with ethylene oxide ( (Meth) acrylate, ethylene oxide-added bisphenol A (meth) acrylate, propylene oxide-added bisphenol A (meth) acrylate, bisphenol A diglycidyl ether and (meth) acrylate Bisphenol A epoxy (meth) acrylate obtained by epoxy ring opening with acid, bisphenol F epoxy (meth) acrylate obtained by
  • the transparent protrusions in the reflective film for an illuminating device of the present invention are preferably supported by the surface of the white film and are made of transparent particles covering the surface of the white film. That is, the reflective film for an illumination device of the present invention is preferably composed of a white film and transparent particles covering the surface of the white film.
  • the transparent particles are composed of a curved surface or a shape composed of a curved surface and a plane in order to collect light. As this shape, for example, a spherical shape, a rugby ball shape, or a convex lens shape can be used. In order to effectively improve the luminance, an aspect ratio of 3 or less is preferable, and an aspect ratio of 1.2 or less is more preferable.
  • a particularly preferred shape is a spherical particle.
  • the aspect ratio is major axis / minor axis.
  • the particle diameter of the transparent particles is a value obtained by taking the average of the major axis and the minor axis when the transparent particles are not spherical.
  • the size of the transparent particles forming the transparent protrusions is, for example, 3 to 50 ⁇ m, preferably 5 to 50 ⁇ m, more preferably 7 to 45 ⁇ m, particularly preferably 8 to 40 ⁇ m, as an average particle diameter measured with an electron microscope.
  • the thickness is preferably 10 to 30 ⁇ m.
  • the transparent particles have a volume 50% particle diameter D50 of 3 to 50 ⁇ m as measured by a particle size distribution meter, and a ratio of the volume 10% particle diameter D10 to the volume 90% particle diameter D90 of D10 / D90 is 0.00. It is preferably 30 to 0.98, more preferably 0.30 to 0.70.
  • the ratio D10 / D90 is within this range, it is possible to obtain a contribution to increasing the luminance without burying particles having a small particle size in the binder, and to prevent the particles having a large particle size from falling off. Can do.
  • the upper limit of the ratio D10 / D90 is, for example, 0.98.
  • the relationship between the height of the protrusion and the particle size of the transparent particle when the transparent protrusion is formed of transparent particles for example, when the transparent protrusion is formed using transparent particles having an average particle diameter of 20 ⁇ m, the transparent particle is used as the binder.
  • the height of the transparent protrusion is 10 ⁇ m. If it is supported on the white film without being buried in the binder, the height of the transparent protrusion is 20 ⁇ m.
  • the transparent protrusions are formed of transparent particles, the transparent protrusions formed by the transparent particles are 50 to 100%, preferably 60 to 100%, more preferably 70 to 100%, and particularly preferably 80 to 100%.
  • the surface of the white film is coated at a coverage rate. That is, the reflective film of the present invention is a reflective film composed of a white film and transparent particles covering the surface of the white film, and 50 to 100 transparent particles having an exposure rate of 5 to 100% on the surface of the reflective film.
  • the white film surface is coated with a coverage of%. If the coverage by the transparent particles is less than 50%, the directivity of light is impaired and an increase in luminance cannot be expected.
  • the coverage of the white film with transparent particles is observed for a measurement area of 6 mm in total in a measurement area of 3 mm in length in each of two orthogonal directions in the film plane. Defined as the percentage covered by transparent particles.
  • the section sample 1 is cut out so that one direction randomly selected in the film plane and the thickness direction of the film become the cutting plane, and one random direction selected in the section sample 1 is selected.
  • the slice sample 2 is cut out so that the direction perpendicular to the thickness direction and the thickness direction are cut surfaces, the region of the coating film surface of the binder of the slice sample 1 is 3 mm in length, and the length of the coating film surface of the binder of the slice sample 2 is 3 mm.
  • the measurement region having a total length of 6 mm with respect to the above region was observed at a magnification of 3000 times using a S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd.
  • the lengths of the portions of the film surface that are not covered with are integrated to obtain the following formula (see FIG. 7).
  • Coverage with transparent particles (6 mm- (integrated length of the portion not covered with transparent particles (mm))) / 6mm x 100 (%)
  • the maximum diameter portion of the transparent particle is outside the coating surface on the cut surface, it is considered that the portion covered with the maximum diameter of the transparent particle is covered with the transparent particle, and the maximum diameter of the transparent particle If the part is inside the coating surface, that is, if it is sinking in the coating film, the maximum diameter of the dome-shaped protrusion formed by the portion of the transparent particle that is outside the coating film is covered with the particle.
  • the transparent particles treated as covering the surface of the white film are those in which part or all of the transparent particles are exposed on the surface of the reflective film.
  • This exposure means exposure at an exposure rate of 5 to 100%, preferably 10 to 100%, more preferably 20 to 100% as defined in the present invention. As described above, if the exposure rate is less than 5%, it is not possible to obtain the light condensing effect by the exposed particles according to the present invention if the exposure rate is less than 5%. Because.
  • the transparent particles are supported on the surface of the white film by a coating film of a binder provided on the surface of the white film. For this reason, a part of transparent particle is in contact with the coating film of a binder, or is sinking.
  • the exposure rate of 100% corresponds to the situation where the white film surface and the transparent particle surface are in contact with each other on the cut surface, and the surface of the white film is supported by the binder.
  • the exposure rate of 0% is the white film surface on the cut surface.
  • the transparent particles are completely submerged in the binder coating film provided on the surface, and the exposure rate of 50% is the transparent particles in the binder coating film provided on the white film surface at the cut surface. Is half filled and the other half protrudes out of the coating.
  • the exposure rate is calculated by drawing a straight line passing through the center of the cross section of the transparent particle in the cut surface of the slice sample and perpendicular to the coating surface of the film. Of the two points that intersect the surface of the transparent particles in the plane, S is the point on the exposed surface, T is the point on the unexposed surface, and the straight line is the coating surface of the binder.
  • Exposure rate (Distance between S and B) / (distance between S and T) ⁇ 100 (%)
  • the center of the cross section of the transparent particle in the cut surface is the center of the circle of the cross section when the particle is spherical, and the center of gravity of the cross section when the particle is non-spherical.
  • transparent particles both inorganic transparent particles and organic transparent particles can be used. These may use a plurality of particles together.
  • the transparent particles preferably have a light transmittance of 50% or more, preferably 60% or more, and more preferably 70% or more, and preferably have no light absorption in the visible region.
  • organic transparent particles for example, acrylic particles, silicone particles, and styrene particles can be used. Acrylic particles and styrene particles are preferred because they hardly absorb light in the visible light region.
  • inorganic transparent particles for example, glass particles can be used.
  • the transparent particles that form the transparent protrusions may be supported on the white film so that the particles do not overlap in the normal direction of the film, and are supported so that many transparent particles overlap in the normal direction of the white film. May be.
  • 2 to 30 transparent particles having a particle diameter of 5 to 100 ⁇ m may be included in a direction perpendicular to the film surface between the surface of the white film and the surface of the transparent particle layer.
  • the transparent particle layer is supported on the white film by the transparent particles being bonded to each other by the binder.
  • the height of the transparent protrusion is determined by specifying the vertex of the transparent particle positioned on the outermost surface of the transparent particle layer and the reference surface of the binder supporting the transparent particle layer, and measuring the height of the vertex from the reference surface. Is required.
  • the reference surface of the binder is a surface obtained by averaging the surface of the binder covering other transparent particles that support the transparent particles on the outermost surface from the lower side (that is, the side close to the white film).
  • binder As the binder in the coating film of the binder that supports the transparent particles on the surface of the white film, an acrylic resin, a polyester resin, a polyurethane resin, a polyesteramide resin, a polyolefin resin, a copolymer or a blend thereof can be used.
  • the binder may be crosslinked by blending an isocyanate, melamine, or epoxy crosslinking agent.
  • the amount of the binder with respect to 100 parts by weight of the transparent particles is, for example, 5 to 200 parts by weight, preferably 10 to 100 parts by weight, and more preferably 10 to 70 parts by weight. By setting the ratio in this range, it is possible to obtain a light collecting effect by the transparent particles without dropping the particles.
  • the amount of the binder of the coating film in the present invention is the amount of the binder solid content in the coating film after drying. .
  • the coating film of the binder preferably contains a phosphor.
  • the transparent particles are preferably supported on the white film by a coating film of a binder composition containing a binder and a phosphor.
  • a binder composition containing a binder and a phosphor.
  • the ratio of the transparent particles supported on the film surface and the binder composition of the coating film is used to obtain a film without dropping particles while effectively improving the luminance.
  • the binder composition is preferably 70 to 30 parts by weight with respect to 30 to 70 parts by weight of the transparent particles.
  • a binder composition is the weight of the solid part except a solvent.
  • the phosphor content in the binder composition is preferably 1 to 20%, 5 to 20% by weight, and more preferably 10 to 20% by weight, based on the weight of the binder composition. If it is less than 1% by weight, the effect of obtaining a high reflectance cannot be obtained. If it exceeds 20% by weight, the film is highly colored by the phosphor, and color shift occurs when used as a reflector of a liquid crystal display device.
  • a phosphor that is excited by light having a wavelength of 400 to 450 nm and emits light having a wavelength of 500 to 600 nm is used as the phosphor.
  • the excitation wavelength of the phosphor in the present invention is in the band of 400 to 450 nm and the emission wavelength is in the range of 500 to 600 nm, but the excitation wavelength is not in this range or the emission wavelength is in this range. Otherwise, it is not possible to obtain a reflective film that is not colored and has a high reflectance.
  • the phosphor in the present invention may be an inorganic phosphor made of an inorganic substance or an organic phosphor made of an organic substance.
  • the phosphor in the present invention needs to emit stable fluorescence over a long period of time, and must not be altered or decomposed by ultraviolet rays. If the phosphor is altered or decomposed, the film will turn yellow, and accurate color reproduction will not be possible when used as a reflector of a liquid crystal display device. Further, when the phosphor is altered or decomposed, the phosphor does not emit light, and the luminance due to the phosphor decreases when used as a reflector of a liquid crystal display device. For this reason, as the phosphor in the present invention, an inorganic phosphor that is less susceptible to alteration and decomposition than an organic phosphor and is stable is preferable.
  • inorganic phosphors that satisfy the requirements for the excitation wavelength and emission wavelength include alkaline earth metal sulfides having a rock salt crystal structure, such as zinc sulfide (ZnS), strontium sulfide (SrS), and yttrium oxide (Y 2 O 2 ) As a base, and a phosphor containing europium (Eu) or copper (Cu) as an activator can be used.
  • ZnS zinc sulfide
  • SrS strontium sulfide
  • Y 2 O 2 yttrium oxide
  • Ba 3 MgAl 10 O 17 Barium-magnesium-aluminum composite oxide
  • a phosphor containing europium (Eu) or manganese (Mn) as an activator can be used.
  • inorganic phosphors include, for example, green light emitting inorganic phosphor 2210 (made by Kasei Optronics, using ZnS as a base material and Cu as an activator), red inorganic phosphor D1110 (manufactured by Nemoto Special Chemical Co., Ltd.), Y 2 O 3 As a matrix, Eu as an activator), blue inorganic phosphor D1230 (manufactured by Nemoto Special Chemical Co., Ltd., SrS as a matrix, Eu as an activator), green inorganic phosphor KX732A (made by Kasei Optronics, Barium / magnesium / aluminum composite oxide (Ba 3 MgAl 10 O 17 ) As a base material and Eu and Mn as activators).
  • green light emitting inorganic phosphor 2210 made by Kasei Optronics, using ZnS as a base material and Cu as an activator
  • red inorganic phosphor D1110 manufactured by Nemoto Special Chemical Co.
  • benzoxazole-based fluorescent agents styryl-oxazole-based fluorescent agents, and naphthalimide-based fluorescent agents are preferred because of their high durability and high effect of improving reflectance.
  • yeast bright OB- 1 benzoxazole-based fluorescent agent manufactured by Eastman
  • Uvitex-OB styryl-oxazole-based fluorescent agent manufactured by Ciba Geigy
  • Lumogen Green 850 naphthalimide-based fluorescent agent manufactured by BASF
  • the light reflectance of the reflective film for an illuminating device of the present invention is preferably 96% or more for light having a wavelength of 550 nm, whether or not the binder composition of the coating film contains a phosphor. A high luminance can be obtained when the reflectance is 96% or more.
  • the binder composition of the coating film preferably contains an ultraviolet absorber in order to prevent deterioration due to ultraviolet rays.
  • an ultraviolet absorber in the present invention, a substance having ultraviolet absorbing ability is used. This may be an organic compound or an inorganic compound.
  • a benzophenone UV absorber for example, a benzotriazole UV absorber, a triazine UV absorber, a cyanoacrylate UV absorber, a salicylic acid UV absorber, a benzoate UV absorbers and oxalic anilide UV absorbers can be used.
  • an inorganic compound for example, a silylated modified product such as an alkoxy carbamyl adduct of alkoxysilyl or alkanoylsilyl, an epoxy of a hydroxyl group and an epoxy group-containing silane compound of an aromatic ultraviolet absorber such as 2,4-dihydroxybenzophenone
  • a silylation-modified ultraviolet absorber obtained by reacting with a group can be used.
  • the binder composition of the coating film contains an ultraviolet absorber
  • the content may be an amount that can prevent the deterioration of the organic phosphor, and an ultraviolet absorber contained in an amount necessary for this purpose. It only has to be.
  • This amount is preferably 1 to 15% by weight, more preferably 2 to 5% by weight, based on the weight of the binder composition, when the ultraviolet absorber is of a low molecular type. By containing in this range, it is possible to effectively prevent the organic phosphor from being deteriorated by ultraviolet rays and to obtain a coating film without coloring.
  • the ultraviolet absorber a polymer type may be used. In this case, for example, a copolymer obtained by copolymerizing a monomer component having a substituent having ultraviolet absorbing ability with another monomer component can be used. As this copolymer, for example, a polymer obtained by copolymerization of a benzotriazole-based reactive monomer and an acrylic monomer can be preferably used.
  • the copolymerization amount of the monomer having a substituent having an ultraviolet absorptivity is preferably 10% by weight based on the total amount of all monomers constituting the copolymer. Above, more preferably 20% by weight or more, particularly preferably 35% by weight or more. Of course, it may be a homopolymer of a monomer having a substituent having ultraviolet absorbing ability. If it is less than 10% by weight, the organic phosphor cannot be prevented from being deteriorated by ultraviolet rays. From the viewpoint of obtaining a tough coating film, the molecular weight of the copolymer is preferably 5000 or more, more preferably 10,000 or more, and particularly preferably 20000 or more.
  • copolymerized polymers can be used as a coating solution in a state dissolved or dispersed in an organic solvent or water.
  • commercially available hybrid ultraviolet absorbing polymers such as U-double (manufactured by Nippon Shokubai Co., Ltd.) can be used as the ultraviolet absorber.
  • Light stabilizer In addition to the ultraviolet absorber, it is preferable to use a light stabilizer in combination with the binder composition of the coating film from the viewpoint of obtaining excellent durability. In this case, the blending amount of the light stabilizer is, for example, 0.1 to 5% by weight, preferably 0.5 to 3% by weight, based on the weight of the binder composition. As the light stabilizer, a hindered amine light stabilizer is preferable.
  • the film used as the reference film differs depending on the table on which the evaluation results are described. The following films were used as reference films.
  • Table 1 Film of Comparative Example 1-1 having no transparent protrusions.
  • Table 2 Film of Comparative Example 2-1 without projections made of transparent particles.
  • Table 3 Film of Comparative Example 3-1, which is not provided with protrusions made of transparent particles.
  • Table 4 Film of Reference Example 1-1 in which the binder of the coating film does not contain a phosphor.
  • Table 5 Film of Comparative Example 5-1, which is not provided with protrusions made of transparent particles.
  • Aspect ratio major axis / minor axis (3-3)
  • D50 of transparent particles Using a particle size distribution meter (LA-950, manufactured by Horiba, Ltd.), the particle size distribution of the transparent particles of the raw material was obtained, and the particle size at which the passing percentage was 50% by weight was defined as D50.
  • D10 / D90 of transparent particles Using a particle size distribution meter (LA-950, manufactured by HORIBA, Ltd.), the particle size distribution of the transparent particles of the raw material is obtained, and the particle diameter at which the passing percentage is 10 wt% is D10, and the passing percentage is 90 wt%. The particle diameter was set to D90, and D10 / D90 was calculated.
  • Average particle size of inorganic and organic particles of white film The average particle size of the inorganic and organic particles of the white film was determined by obtaining the particle size distribution of the raw material particles with a particle size distribution meter (LA-950, manufactured by HORIBA, Ltd.), and the particle size at d50 was defined as the average particle size.
  • (5) Coating thickness The cross section of the film sample was observed and photographed with a digital microscope (HIROX Co. Ltd., HI-SCOPE Advanced KH-3000) at a magnification of 5 times, the thickness of the binder was judged from the photograph, and 10 points were arbitrarily measured. Their average value was determined.
  • the section sample 1 is a section sample cut so that one direction randomly selected in the film plane and the thickness direction of the film are cut surfaces, and the section sample 2 is a random sample selected in the section sample 1. It is the section
  • the exposure rate when a straight line passing through the center of the cross section of the transparent particle in the cut surface of the slice sample and perpendicular to the coating surface of the film is drawn, this straight line intersects the surface of the transparent particle in the cut surface of the film slice.
  • S is the point on the exposed surface
  • T is the point on the unexposed surface
  • B is the point where the straight line intersects the coating surface of the binder.
  • the center of the cross section of the transparent particle in the cut surface is the center of the circle of the cross section when the particle is spherical, and the center of gravity of the cross section when the particle is non-spherical.
  • the irradiation time in this evaluation was 50 hours, and the color change before and after the irradiation was evaluated. Irradiance by irradiation is 18mW / cm 2 Met.
  • Irradiance by irradiation is 18mW / cm 2 Met.
  • measurement was performed from the reflective layer side.
  • Measurement is performed using a fluorescence spectrophotometer F-4500 (manufactured by Hitachi) in the region of excitation wavelength of 400 to 450 nm and emission wavelength of 380 to 780 nm, and the presence or absence of fluorescence emission due to excitation is observed. The emission peak wavelength was determined from the spectrum. (12) Presence or absence of particles falling An acrylic plate having a right side with a thickness of 2 mm and a width of 20 mm was pressed vertically against the reflective surface of the film sample with a load of 300 g, and the distance of 30 mm was reciprocated 10 times. The adhesion state of the powder to the acrylic board at this time was confirmed visually and evaluated according to the following criteria. ⁇ : Almost no generation of powder can be confirmed.
  • Luminance improvement rate and luminance maintenance rate 13-1) Brightness improvement rate as a reflector Measured and evaluated by incorporating a film into the backlight.
  • the backlight used was a direct type backlight (diagonal 20 inches) unit used for a liquid crystal television set (AQUAS-20V manufactured by SHARP) prepared for evaluation. Instead of the light reflection sheet originally incorporated, A film to be measured was incorporated. The measurement was performed by dividing the backlight surface into 4 ⁇ 2 ⁇ 2 sections and determining the front luminance after 1 hour of lighting. Luminance was measured using BM-7 manufactured by Topcon Corporation. The measurement angle is 1 °, and the distance between the luminance meter and the backlight is 50 cm.
  • the backlight surface was divided into four parts, a straight line passing through the center of the backlight surface and parallel to the width direction of the backlight surface, and a straight line passing through the center of the backlight surface and parallel to the vertical direction of the backlight surface.
  • the center of each region was taken as the measurement point.
  • the luminance at each of the four measurement points was measured, and a simple average was obtained to obtain the average luminance.
  • the luminance improvement rate was calculated by the following formula using the average luminance obtained with the film before and after the application of the fluorescent material.
  • the backlight used was a direct type backlight (diagonal 20 inches) unit used for a liquid crystal television set (AQUAS-20V manufactured by SHARP) prepared for evaluation.
  • a film to be measured was incorporated.
  • the measurement was performed by dividing the backlight surface into 4 ⁇ 2 ⁇ 2 sections and determining the front luminance after 1 hour of lighting.
  • the chromaticity was measured using Topcon BM-7.
  • the measurement angle is 1 °, and the distance between the luminance meter and the backlight is 50 cm.
  • the backlight surface was divided into four parts, a straight line passing through the center of the backlight surface and parallel to the width direction of the backlight surface, and a straight line passing through the center of the backlight surface and parallel to the vertical direction of the backlight surface. The center of each region was taken as the measurement point.
  • ⁇ x coordinates before durability test (x)-coordinates after durability test (x)
  • ⁇ y coordinates before durability test (y)-coordinates after durability test (y)
  • ⁇ xy ( ⁇ x 2 + ⁇ y 2 ) 1/2
  • ⁇ xy ( ⁇ x 2 + ⁇ y 2 ) 1/2
  • Transparent acrylic particles with an average particle size of 30 ⁇ m MBX-20SS Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 20 ⁇ m MBX-15SS Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 15 ⁇ m MBX-12SS Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 12 ⁇ m MBX-10SS Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 10 ⁇ m MBX-50 Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 50 ⁇ m MBX-30 Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 30 ⁇ m MBX-20 Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 20 ⁇ m MBX-15 Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 15 ⁇ m MBX-12 Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 12 ⁇ m MBX-8 Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 8 ⁇ m MBX-5 Made by Sekisui Plastics Co., Ltd.
  • Transparent acrylic particles with an average particle size of 5 ⁇ m J-120 Transparent glass particles with an average particle size of 105 ⁇ m manufactured by Potters-Ballottini MX-1000: Made by Soken Chemical Co., Ltd.
  • Transparent acrylic particles with an average particle size of 10 ⁇ m MX-150 Made by Soken Chemical Co., Ltd.
  • Transparent acrylic particles with an average particle size of 2 ⁇ m MR-20G Made by Soken Chemical Co., Ltd.
  • Transparent cross-linked acrylic particles with an average particle size of 20 ⁇ m MR-10G Made by Soken Chemical Co., Ltd.
  • Example 1-1 On the reflective layer of the white film, a coating solution having the composition shown in the following preparation recipe is applied with a die coating apparatus to a wet thickness of 20 g / m. 2 After coating with the coating amount, a reflective film was obtained by drying in an oven.
  • Preparation recipe 1-1) Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight) Acrylic binder: Nippon Shokubai Co., Ltd.
  • Example 1-2 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 10 g / m. 2
  • a reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-2) -Protrusion forming material Sekisui Plastics Co., Ltd.
  • Example 1-3 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 25 g / m. 2 A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-3 Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-30SS (32% by weight) -Acrylic binder: DIC Corporation Acridic A807BA (25% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) ⁇ Organic solvent: methyl ethyl ketone (40% by weight)
  • the composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
  • Example 1-4 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 30 g / m.
  • Example 2 A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-4 Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-50SS (25% by weight) -Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (38% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: ethyl acetate (34% by weight)
  • the composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
  • Example 1-5 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m. 2
  • a reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-5) Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-15SS (19% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (37% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 1-6 A quadrangular pyramid-shaped protrusion was formed on the entire surface of the white film with no gap. That is, a coating liquid having the composition shown in the following preparation recipe is poured into a SUS mold so as to form a quadrangular pyramid, and a white film is adhered to the SUS mold, and UV is applied with a high-pressure mercury lamp (Toscurer manufactured by Harrison Toshiba Lighting). The coating liquid was cured by irradiating light and dried in an oven at 100 ° C.
  • a high-pressure mercury lamp Toscurer manufactured by Harrison Toshiba Lighting
  • FIG. 1 shows a schematic diagram of the square thrust portion of the mold used for forming the square thrust projection.
  • Preparation recipe 1-6 UV curable resin ⁇ Daicel UC EB3700 (Bisphenol A type epoxy acrylate) (25% by weight) ⁇ Shin Nakamura Chemical Co., Ltd.
  • BPE200 Ethylene oxide-added bisphenol A methacrylic ester (8% by weight) ⁇ Daiichi Pharmaceutical Co., Ltd.
  • Example 1-7 On a white film, a wet coating amount of 15 g / m is applied to the coating solution having the composition of the preparation recipe 6 in Example 1-6 using a die coating apparatus.
  • Example 1-8 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m.
  • Example 2 A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-8) Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (20% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight) -Phosphor: Eastman East Bright OB-1 (3.4% by weight) ⁇ Organic solvent: butyl acetate (36.6% by weight) The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
  • Example 1-9 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m. 2
  • a reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-9) Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (20% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 1-10 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m. 2
  • a reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-10) Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight) Acrylic binder: Nippon Shokubai Co., Ltd.
  • Example 2 A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-7) -Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (57 wt%) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
  • Organic solvent butyl acetate (40% by weight)
  • Table 1-2 The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
  • Comparative Example 1-3 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 2 g / m.
  • Example 2 A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-8) Protrusion forming material: Soken Chemical Co., Ltd. MX-150 (30% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: butyl acetate (40% by weight)
  • the composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
  • Comparative Example 1-4 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, wet thickness 80g / m 2 A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-8) Protrusion forming material: Potters-Ballottini J-120 ,,,,,,,,,,,,,, And,,,,,,,,,,,,,, 2015, 2015, 2015 will be: ⁇ 50% (30% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 1-5 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m. 2 A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
  • Preparation recipe 1-9) Protrusion forming material: Sekisui Plastics Co., Ltd.
  • MBX-50 (3% by weight) -Acrylic binder: DIC Corporation Acridic A807BA (50% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: butyl acetate (44% by weight)
  • Table 1-2 The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
  • Comparative Example 1-6 A reflective film provided with a prism in the reflective layer was obtained in the same manner as in Example 1-6, except that the shape of the prism provided on the reflective layer of the white film was changed to the shape shown in FIG. The evaluation results are shown in Table 1-3.
  • Comparative Example 1-7 A film was obtained by processing the surface in the same manner as in Example 1-7 except that the shape of the prism provided on the reflective layer of the white film was changed to the shape shown in FIG. The evaluation results are shown in Table 1-3.
  • Example 2-1 On the reflective layer of the white film, a coating solution having the composition shown in the following preparation recipe is applied with a die coating apparatus to a wet thickness of 25 g / m. 2 After coating with the coating amount, a reflective film was obtained by drying in an oven.
  • Example 2-2 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 12 g / m. 2
  • a reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Example 2-3 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m. 2 A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Preparation recipe 2-3 ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-50SS (32% by weight) -Acrylic binder: DIC Corporation Acridic A807BA (25% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: butyl acetate (40% by weight)
  • Table 2-2 The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
  • Example 2-4 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 10 g / m.
  • Example 2 A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Preparation recipe 2-4 ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-12SS (38% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (25% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: ethyl acetate (34% by weight)
  • Table 2-2 The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
  • Example 2-5 Change the coating liquid to a coating liquid with the composition shown in the following preparation recipe, wet thickness 7g / m 2 A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Preparation recipe 2-5) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-10SS (19% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (37% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 2-6 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 8 g / m. 2
  • a reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Preparation recipe 2-6) -Transparent particles: Soken Chemical Co., Ltd. MX-1000 (40% by weight) Acrylic binder: Nippon Shokubai Co., Ltd.
  • Preparation recipe 2-7) -Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (57 wt%) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: butyl acetate (40% by weight)
  • Table 2-2 The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
  • Comparative Example 2-3 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 2 g / m. 2 A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Preparation recipe 2-8) -Particles: Soken Chemical Co., Ltd. MX-150 (30% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: butyl acetate (40% by weight)
  • Table 2-2 The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
  • Comparative Example 2-4 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, wet thickness 80g / m 2 A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Preparation recipe 2-9) ⁇ Particles: Potters-Ballottini J-120 ,,,,,,,,,,,,, And,,,,,,,,,,,,,, 2015, 2015 will be: ⁇ 50% (30% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: butyl acetate (40% by weight) The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
  • Comparative Example 2-5 Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m. 2
  • a reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
  • Preparation recipe 2-10) ⁇ Particle: Sekisui Plastics Co., Ltd.
  • MBX-50 3% by weight
  • -Acrylic binder DIC Corporation Acridic A807BA (50% by weight)
  • Crosslinking agent Nippon Polyurethane Industry Co., Ltd.
  • MBX-8 (1% by weight) -Acrylic binder: DIC Corporation Acridic A807BA (56% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight) Organic solvent: butyl acetate (40% by weight)
  • Table 2-2 The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
  • Example 3-1 132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the total dicarboxylic acid component of the polyester), 98 parts by weight of ethylene glycol, 1.0 part by weight of diethylene glycol, 0.05 part by weight of manganese acetate, acetic acid 0.012 parts by weight of lithium was charged into a rectification column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction.
  • Barium sulfate particles having an average particle diameter of 1.2 ⁇ m and phosphors are added to the same polyester, and 47% by weight of barium sulfate particles and 5.5% by weight of green light emitting inorganic phosphor KX732A (made by Kasei Optonix) are contained.
  • a polyester composition for a white reflective layer was obtained. Using these polyester compositions, each was supplied to two extruders heated to 270 ° C., and the polyester composition for the support layer and the polyester composition for the white reflective layer were combined into the reflective layer / support layer layer. The two-layer feed block device was used to form the structure, and the sheet was formed into a sheet from a die while maintaining the laminated state.
  • the unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 25 ° C. is stretched 2.9 times in the longitudinal direction (longitudinal direction) in an atmosphere heated to 95 ° C., and cooled by a roll group at 25 ° C. did. Subsequently, while holding both ends of the longitudinally stretched film with clips, the film was stretched 3.6 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 ° C. while being guided to a tenter. Thereafter, heat setting is carried out at a temperature of 215 ° C.
  • Example 3-2 A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe.
  • Preparation recipe 3-2) ⁇ Transparent particles: Sekisui Plastics Co., Ltd.
  • MBX-15 (35% by weight) Acrylic binder: Nippon Shokubai Co., Ltd.
  • Example 3-3 A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe. Preparation recipe 3-3) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-50 (32% by weight) Acrylic binder: Nippon Shokubai Co., Ltd.
  • Example 3-4 A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe.
  • Preparation recipe 3-4) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-12 (38% by weight) Acrylic binder: Nippon Shokubai Co., Ltd.
  • Example 3-5 A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe.
  • Preparation recipe 3-5 ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-5 (19% by weight) Acrylic binder: Nippon Shokubai Co., Ltd.
  • Example 3-6 A reflective film was prepared in the same manner as in Example 3-2 except that the phosphor added to the white reflective layer of the white base film was changed to 2.5% by weight of the green light emitting inorganic phosphor 2210 (made by Kasei Optonix). Obtained.
  • the composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
  • Example 3-7 A reflective film was prepared in the same manner as in Example 3-2 except that the phosphor added to the white reflective layer of the white base film was changed to 0.1% by weight of organic fluorescent brightener OB-1 (Eastman). Obtained.
  • the composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
  • Comparative Example 3-1 A white base film was obtained in the same manner as in Example 3-1, except that no phosphor was added to the white reflective layer of the white base film, and the white base film was not coated with the coating liquid. Evaluated. The evaluation results are shown in Table 3-3.
  • Comparative Example 3-3 A reflective film is obtained in the same manner as in Example 3-2 except that no phosphor is added to the white reflective layer of the white base film and the coating liquid is changed to a coating liquid having the composition shown in the following preparation recipe. It was.
  • Preparation recipe 3-6 ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15 (10% by weight) -Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (48% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Coronate HL (2% by weight) Organic solvent: butyl acetate (40% by weight)
  • Table 3-2 The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3. Although the color shift due to coloring was small, the increase in luminance was small.
  • Comparative Example 3-4 A reflective film is obtained in the same manner as in Example 3-2 except that no phosphor is added to the white reflective layer of the white base film and the coating solution is changed to a coating solution having the composition shown in the following preparation recipe. It was. ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15 (2% by weight) -Acrylic binder: Nippon Shokubai Co., Ltd.
  • Comparative Example 3-7 The white base film of Example 3-7 was evaluated without applying the coating liquid to the white base film. The evaluation results are shown in Table 3-3. Although the color shift due to coloring was small, the increase in luminance was small. Comparative Example 3-8 A reflective film was obtained in the same manner as in Comparative Example 3-5 except that the amount of the green light emitting inorganic phosphor KX732A added to the reflective layer of the white base film was changed to 17% by weight. The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
  • Comparative Example 3-9 A reflective film was obtained in the same manner as in Comparative Example 3-5 except that the amount of the green light emitting inorganic phosphor 2210 added to the reflective layer of the white base film was changed to 8% by weight.
  • the composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3. Although the increase in luminance was large, color misregistration due to coloring was large, making it difficult to use practically.
  • Example 4-1 On the reflective layer of the white film, with a die coating device, a coating solution having the composition shown in the following preparation recipe is applied so that the binder thickness after drying is 4 ⁇ m, and then dried in an oven.
  • a reflective film was obtained.
  • Preparation recipe 4-1) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15SS (35% by weight) ⁇ Phosphor: Kasei Optonix KX-732A (10% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight) Organic solvent: butyl acetate (30% by weight)
  • Table 4-2 The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
  • Example 4-2 A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to the coating liquid having the composition shown in the following preparation recipe and the binder thickness after drying was 8 ⁇ m.
  • Preparation recipe 4-2) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-50SS (32% by weight) ⁇ Phosphor: Kasei Optonix KX-732A (10% by weight) -Acrylic binder: DIC Corporation Acridic A807BA (25% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 4-3 A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe and applied.
  • Preparation recipe 4-3) -Transparent particles: Soken Chemical Co., Ltd. MX-1000 (40% by weight) ⁇ Phosphor: Kasei Optonics 2210 (5% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (25% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Coronate HL (2% by weight) ⁇ Organic solvent: methyl ethyl ketone (28% by weight)
  • the composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
  • Reference example 4-1 A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe and applied.
  • Preparation recipe 4-4) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15SS (35% by weight) Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Coronate HL (2% by weight) Organic solvent: butyl acetate (40% by weight)
  • Table 4-2 The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
  • Comparative Example 4-4 A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe and applied.
  • Preparation recipe 4-5 ⁇ Phosphor: Kasei Optonix KX-732A (10% by weight) -Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (57 wt%) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 5-1 On the reflective layer of the white film, a coating solution having the composition shown in the following preparation recipe is applied with a die coating apparatus so that the binder thickness after drying is 8 ⁇ m, and then dried in an oven. A reflective film was obtained.
  • Preparation recipe 5-1) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-12 (35% by weight) -Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (21% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 5-2 A reflective film was obtained in the same manner as in Example 5-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following liquid preparation recipe and the binder thickness after drying was 10 ⁇ m.
  • Preparation recipe 5-2) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15 (35% by weight) -Acrylic binder: DIC Corporation Acridic A807BA (21% by weight) ⁇ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd.
  • Example 5-3 A reflective film was obtained in the same manner as in Example 5-1, except that the coating liquid was changed to the coating liquid having the composition shown in the following preparation recipe and the coating was dried so that the binder thickness after drying was 14 ⁇ m.
  • Preparation recipe 5-3) ⁇ Transparent particles: Sekisui Plastics Co., Ltd. MBX-20 (35% by weight) -Acrylic binder: Nippon Shokubai Co., Ltd.
  • the reflective film for an illuminating device of the present invention can be used as a reflective plate for an illuminating device, and is also used as a reflective film for a backlight unit of a liquid crystal display device. It can be suitably used as a reflective film used in a backlight unit of a light-type liquid crystal display device.

Abstract

A reflective film for illuminating devices, which is characterized in that the reflective film is composed of a white film and transparent projections each formed on the surface of the white film and having a height of 3-50 μm, and in that the coverage of the white film surface by the transparent projections is 50-100%.  High luminance can be achieved when the reflective film for illuminating devices is used as a reflective film in a backlight unit of a backlight-type liquid crystal display device.

Description

照明装置用反射フィルムReflective film for lighting equipment
 本発明は、照明装置に用いられる反射フィルムに関し、詳しくは液晶表示装置のバックライトユニットの反射フィルムとして用いられる照明装置用反射フィルムに関する。 The present invention relates to a reflective film used in an illuminating device, and more particularly to a reflective film for an illuminating device used as a reflective film of a backlight unit of a liquid crystal display device.
 液晶表示装置には、バックライトユニットの背面に光源を置くバックライト方式と、側面に光源を置くサイドライト方式がある。いずれの方式においても、光源からの光が画面の背面へ逃げるのを防ぐために、バックライトユニットの背面に反射フィルムが設置されている。この反射フィルムには、薄くかつ高い反射率を備えることが求められる。
 従来、この反射フィルムとして、白色顔料をポリエステルに添加した白色フィルム(特開2004−050479号公報、特開2004−330727号公報)や、内部に微細な気泡を含有する白色フィルム(特開平6−322153号公報、特開平7−118433号公報)が用いられてきた。
 バックライト方式の液晶表示装置において、輝度の向上は、反射フィルムの反射率を向上することによりある程度は達成できるが、反射率の向上だけでは限界がある。
 フィルム自体の反射率を向上させる他に、輝度を向上する方策としては、反射フィルムに蛍光増白剤を配合することが検討されており、蛍光増白剤を反射フィルムの表面にコーティングすることが提案されている(特開2002−40214号公報)。しかし、バックライトユニットには光源として一般的に冷陰極管が使われていることから、白色フィルムの表面に蛍光増白剤をコーティングすると、冷陰極線管から放射される紫外線によって蛍光増白剤が劣化し、反射率向上の効果は経時的に失われていく。紫外線による蛍光増白剤の劣化を紫外線吸収剤によって防止しようにも、そもそも蛍光増白剤は紫外線によって励起され青色の発光を示すものであるため、紫外線吸剤を配合してしまっては蛍光増白剤による反射率向上の効果を得ることができない。
Liquid crystal display devices include a backlight system in which a light source is placed on the back of a backlight unit and a sidelight system in which a light source is placed on a side surface. In either method, a reflective film is installed on the back surface of the backlight unit in order to prevent light from the light source from escaping to the back surface of the screen. This reflective film is required to have a thin and high reflectance.
Conventionally, as this reflective film, a white film in which a white pigment is added to polyester (Japanese Patent Laid-Open Nos. 2004-0050479 and 2004-330727), and a white film containing fine bubbles inside (Japanese Patent Laid-Open No. No. 322153 and JP-A-7-118433 have been used.
In a backlight type liquid crystal display device, improvement in luminance can be achieved to some extent by improving the reflectance of the reflective film, but there is a limit only by improving the reflectance.
In addition to improving the reflectance of the film itself, as a measure to improve the brightness, it has been studied to add a fluorescent whitening agent to the reflective film, and coating the surface of the reflective film with the fluorescent whitening agent It has been proposed (Japanese Patent Laid-Open No. 2002-40214). However, since a cold cathode tube is generally used as a light source in the backlight unit, when a fluorescent whitening agent is coated on the surface of a white film, the fluorescent whitening agent is absorbed by ultraviolet rays emitted from the cold cathode ray tube. The effect of improving the reflectivity is lost over time. In order to prevent the deterioration of the fluorescent whitening agent due to ultraviolet rays, the fluorescent whitening agent is excited by ultraviolet rays and emits blue light in the first place. The effect of improving the reflectance by the white agent cannot be obtained.
 本発明者は、反射フィルムの鏡面反射が強いとバックライトユニットの中で反射フィルムの前方、すなわち反射フィルムと表示面の間、に設置されている光源自体に反射光が返り、その光は表示面に到達しないため光のロスが生じて輝度低下の原因になっていることに着目した。
 本発明は、反射フィルムによる鏡面反射を抑え、前方の光源を回避する指向性を反射光に付与して反射させることにより、バックライト方式の液晶表示装置のバックライトユニットに反射フィルムとして用いたときに高い輝度を得ることのできる照明装置用反射フィルムを提供することを課題とする。
 本発明の第二の目的は、バックライト方式の液晶表示装置のバックライトユニットに反射フィルムとして用いたときに高い輝度を得ることのできるとともに、加工性に優れた照明装置用反射フィルムを提供することにある。
 本発明の第三の目的は、バックライト方式の液晶表示装置のバックライトユニットに反射フィルムとして用いたときに高い輝度を得ることができ、かつ、色ずれが少なく、経時的な黄変が抑制された照明装置用反射フィルムを提供することにある。
When the specular reflection of the reflective film is strong, the present inventor returns reflected light to the light source installed in front of the reflective film in the backlight unit, that is, between the reflective film and the display surface, and the light is displayed. We paid attention to the fact that the loss of light was caused because it did not reach the surface, causing the brightness to decrease.
When the present invention is used as a reflective film in a backlight unit of a backlight type liquid crystal display device by suppressing specular reflection by a reflective film and providing reflected light with directivity that avoids a light source in front of the reflected light. Another object of the present invention is to provide a reflection film for a lighting device that can obtain high brightness.
The second object of the present invention is to provide a reflective film for an illuminating device that can obtain high luminance when used as a reflective film in a backlight unit of a backlight type liquid crystal display device and is excellent in workability. There is.
The third object of the present invention is to obtain high luminance when used as a reflective film in a backlight unit of a backlight type liquid crystal display device, and to suppress yellowing over time with little color shift. Another object of the present invention is to provide a reflective film for a lighting device.
 すなわち本発明は、白色フィルムおよび該白色フィルムの表面に設けられた高さ3~50μmの透明な突起からなり、該白色フィルム表面の透明な突起による被覆率が50~100%であることを特徴とする照明装置用反射フィルムである。
 本発明は、好ましい態様として、透明な突起が透明粒子からなり、反射フィルムの表面において5~100%の露出率の透明粒子が50~100%の被覆率で白色フィルム表面を被覆している態様を含む。すなわち、本発明は、白色フィルムおよび該白色フィルムの表面を被覆する透明粒子による高さ3~50μmの透明な突起からなり、該白色フィルム表面において5~100%の露出率の透明粒子が50~100%の被覆率で白色フィルム表面を被覆している照明装置用反射フィルムを好ましい態様として含む。
That is, the present invention comprises a white film and a transparent protrusion having a height of 3 to 50 μm provided on the surface of the white film, and the coverage by the transparent protrusion on the surface of the white film is 50 to 100%. It is a reflection film for lighting devices.
In a preferred embodiment of the present invention, the transparent protrusion is made of transparent particles, and the transparent film having an exposure rate of 5 to 100% covers the surface of the white film at a coverage of 50 to 100% on the surface of the reflective film. including. That is, the present invention comprises a white film and transparent protrusions having a height of 3 to 50 μm by transparent particles covering the surface of the white film, and 50 to 100 transparent particles having an exposure rate of 5 to 100% on the surface of the white film. The reflective film for lighting devices which coat | covers the white film surface with the coverage of 100% is included as a preferable aspect.
 本発明によれば、バックライト方式の液晶表示装置のバックライトユニットに反射フィルムとして用いたときに高い輝度を得ることのできる照明装置用反射フィルムを提供することができる。
 第二に、本発明よれば、バックライト方式の液晶表示装置のバックライトユニットに反射フィルムとして用いたときに高い輝度を得ることのできるとともに、加工性に優れた照明装置用反射フィルムを提供することができる。
 第三に、本発明よれば、バックライト方式の液晶表示装置のバックライトユニットに反射フィルムとして用いたときに高い輝度を得ることができ、かつ、色ずれが少なく、経時的な黄変が抑制された照明装置用反射フィルムを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the reflection film for illuminating devices which can obtain high brightness | luminance when it uses as a reflection film for the backlight unit of a liquid crystal display device of a backlight system can be provided.
Secondly, according to the present invention, there is provided a reflection film for a lighting device that can obtain high luminance when used as a reflection film in a backlight unit of a backlight type liquid crystal display device and is excellent in workability. be able to.
Third, according to the present invention, when used as a reflective film in a backlight unit of a backlight type liquid crystal display device, high luminance can be obtained, and there is little color shift, and yellowing with time is suppressed. It is possible to provide a reflective film for a lighting device.
実施例1−6において四角推型の突起の形成に用いた金型の四角推部分の模式図である。It is a schematic diagram of the square thrust part of the metal mold | die used for formation of the square thrust type protrusion in Example 1-6. 実施例1−7においてプリズム状の凹凸を設けたニップローラーを用いて塗布層に凹凸を形成するときに塗布層に形成されるプリズム状の凹凸の形状である。It is the shape of the prism-shaped unevenness | corrugation formed in an application layer, when forming an unevenness | corrugation in an application layer using the nip roller which provided the prism-shaped unevenness | corrugation in Example 1-7. 比較例1−6において四角推型の突起の形成に用いた金型の四角推部分の模式図である。It is a schematic diagram of the square thrust part of the metal mold | die used for formation of the square thrust type protrusion in Comparative Example 1-6. 比較例1−7においてプリズム状の凹凸を設けたニップローラーを用いて塗布層に凹凸を形成するときに塗布層に形成されるプリズム状の凹凸の形状である。It is the shape of the prism-shaped unevenness | corrugation formed in an application layer, when forming an unevenness | corrugation in an application layer using the nip roller which provided the prism-shaped unevenness | corrugation in Comparative Example 1-7. 透明な突起によるフィルムの被覆率の測定において、ミクロトームを用いて切断したフィルム切断面の模式図である。It is a schematic diagram of the film cut surface cut | disconnected using the microtome in the measurement of the coverage of the film by a transparent protrusion. 透明粒子により形成された透明な突起によるフィルムの被覆率の測定において、ミクロトームを用いて切断したフィルムの切断面の模式図である。It is a schematic diagram of the cut surface of the film cut | disconnected using the microtome in the measurement of the coverage of the film by the transparent protrusion formed with the transparent particle. 透明粒子により形成された透明な突起によるフィルムの被覆率の測定において、ミクロトームを用いて切断したフィルムの切断面の模式図である。It is a schematic diagram of the cut surface of the film cut | disconnected using the microtome in the measurement of the coverage of the film by the transparent protrusion formed with the transparent particle.
 以下、本発明を詳細に説明する。
 白色フィルム
 本発明における白色フィルムは、熱可塑性樹脂からなり、白色の着色剤またはボイド形成物質をフィルム中に含有させることによって白色を呈するようにしたフィルムである。
 フィルムを構成する熱可塑性樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリスチレンを挙げることができ、機械的特性および熱安定性を両立させる観点からポリエステルが好ましい。
 白色フィルムの熱可塑性樹脂としてポリエステルを用いる場合、ポリエステルとしては、ジカルボン酸成分とジオール成分とからなるポリエステルを用いる。このジカルボン酸成分としては、例えばテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、アジピン酸、セバシン酸を挙げることができる。ジオール成分としては、例えばエチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオールを挙げることができる。
 これらのポリエステルのなかでも芳香族ポリエステルが好ましく、特にポリエチレンテレフタレートが好ましい。ポリエチレンテレフタレートはホモポリマーであってもよいが、共重合ポリマーが好ましい。
 白色フィルムは、単層からなってもよく、複数の層からなってもよい。白色フィルムは、複数の層からなる場合、光を反射する白色反射層とこれを支持する支持層からなる積層フィルムであることが好ましい。この積層フィルムにおいて、白色反射層は比較的多くのボイドを含有する層であり、支持層は比較的少ないボイドを含有するかボイドを含有しない層であることが好ましい。白色反射層に用いるポリエステルは、共重合ポリエステルであることが好ましく、共重合成分の割合は、全ジカルボン酸成分を基準として、例えば3~20モル%、好ましくは4~15モル%、さらに好ましくは5~13モル%である。共重合成分の割合をこの範囲とすることによって、ボイドを比較的多く含有する白色反射層についても優れた製膜性を得ることができ、熱寸法安定性に優れた白色フィルムを得ることできる。
 白色フィルムが複数の層からなる場合、白色反射層は蛍光体を含有することが好ましい。この場合、蛍光体の含有量は白色反射層の重量を基準に好ましくは0.1~7重量%である。この範囲で含有することにより、蛍光体による白色反射層の着色なく、輝度を向上することができ、照明装置の反射フィルムとして用いたときに正確な色再現のできる反射フィルムを得ることができる。
 蛍光体として、無機蛍光体、有機蛍光体のいずれも用いることができる。長期間にわたり安定した蛍光の機能を維持するために、無機蛍光体が好ましい。蛍光体としては、例えば、後に説明するものを用いることができる。
 白色のフィルムに用いる白色の着色剤またはボイド形成物質として、例えば無機粒子、有機粒子を用いることができる。
 白色の着色剤としては、白色の無機粒子を用いることが好ましい。ボイド形成物質として無機粒子を用いる場合、白色の無機粒子を用いることが好ましい。白色の無機粒子としては、硫酸バリウム、二酸化チタン、二酸化珪素、炭酸カルシウムの粒子を例示することができる。無機粒子の平均粒径は、例えば0.2~3.0μm、好ましくは0.3~2.5μm、さら好ましくは0.4~2.0μmである。この範囲の平均粒径の無機粒子を用いることで、ポリエステル中で適度に分散させることができ、粒子の凝集が起こりずらく、粗大突起のないフィルムを得ることができ、同時に、フィルムの表面が荒れすぎず、適切な範囲に光沢度をコントロールすることができる。なお、無機粒子は、どのような粒子形状でもあってもよく、例えば、板状、球状であってもよい。無機粒子は、分散性を向上させるための表面処理を行ってあってもよい。
 ボイド形成物質として有機粒子を用いる場合、有機粒子としてはポリエステルに非相溶な樹脂の粒子を用いる。この有機粒子としては、シリコーン樹脂粒子、ポリテトラフルオロエチレン粒子が好ましい。有機粒子の平均粒径は、例えば0.2~10μm、好ましくは0.3~8.0μm、さらに好ましくは0.4~6.0μmである。この範囲の有機粒子を用いることで、ポリエステル中に適度に分散させることができ、粒子の凝集が起こりずらく、粗大突起のないフィルムを得ることができる。
 高い輝度を得る観点から、白色フィルムの光線反射率は、波長550nmにおける反射率として、好ましくは95%以上、さらに好ましくは96%以上、特に好ましくは97%以上である。
 透明な突起
 本発明の照明装置用反射フィルムは、白色フィルムおよび該フィルムの表面に設けられた高さ3~50μmの透明な突起からなる。透明な突起は連続して設けられていてもよく、不連続に設けられていてもよい。
 本発明においては、白色フィルム表面の透明な突起による被覆率は50~100%、好ましくは60~100%、さらに好ましくは70~100%、特に好ましくは80~100%である。被覆率が50%未満であると前方の光源を回避する光の指向性が損なわれ、輝度の向上が期待できない。
 本発明において、被覆率は、フィルム面内の直交する二方向のそれぞれ長さ3mmの測定領域の合計長さ6mmの測定領域について観察を行い、測定領域において白色フィルム表面を透明な突起が被覆している割合として定義される。
 具体的には、ミクロトームを用いてフィルムの厚み方向が切断面となるように切片を切り出してサンプルと、この切片サンプルを日立製作所製S−4700形電界放出形走査電子顕微鏡を用い倍率3000倍にて観察し、フィルム面内の直交する二方向のそれぞれ長さ3mmの測定領域の合計長さ6mmの測定領域について観察を行い、測定領域において透明な突起で被覆されていない部分の長さを積算して、下記式で算出する。
 被覆率
 =(6mm−(透明な突起に被覆されていない部分の積算長さ(mm)))
   /6mm × 100(%)
 なお、透明な突起の最大径部分が塗膜表面より外側に出ている場合には、透明粒子の最大径で覆われる部分を透明な突起に被覆されているとみなす。
 透明な突起は、透明な物質で形成されていればよく、有機物および無機物のいずれの物質で形成されていてもよい。また、有機物と無機物との混合物で形成してもよく、有機物と無機物との複合物で形成してもよい。透明な突起を形成する物質の光線透過率は、例えば50%以上、好ましくは60%以上、さらに好ましくは70%以上である。透明な突起は、着色を防止するために、可視領域において光の吸収がないものがよい。
 透明な突起の形状は、例えば、ドーム状またはピラミッド状であるか、ピラミッド状以外の角錐状、例えば、三角錐状、六角錐状、八角錘状であり、好ましくはドーム状またはピラミッド状であり、特に好ましくはドーム状である。ドーム状の突起は、なめらかな凸面を備える突起であればよく、半球面であるか、球面または回転楕円体面の一部であることが好ましく、半球面であることが特に好ましい。半球面は必ずしも球の半分である必要はなく、球面の一部分が凸状に表面に突出していればドーム状の突起に該当する。
 ピラミッド状は、四角推状を意味するが、透明な突起がピラミッド状である場合、個々のピラミッドの底面の一辺の長さが5~50μmであることが好ましい。この範囲の一辺の長さとすることによって、反射光に指向性を付与する効果を損なわずに突起の脱落を防止することができて好ましい。ピラミッドの形状は、完全な四角推が好ましいが、四角錐の一部、例えば頂点が切り取られた形状であってもよい。
 本発明における透明な突起の高さは3~50μmである。高さが3μm未満であると光の指向性が得られず、50μmを超えると突起が脱落したり、反射光に指向性を付与する効果がバックライトの設計、すなわち光源の位置によって大きく変わる懸念が生じてくる。
 透明な突起がドーム状である場合、個々のドームの底面の平均径は、好ましくは5~50μmである。この範囲の平均径とすることによって、反射光に指向性を付与する効果を損なわずに突起の脱落を防止することができて好ましい。ドーム状である場合、最も好ましい形状は半球状である。
 透明な突起を形成する有機物としては、例えば、UV硬化性樹脂、熱硬化性樹脂、アクリル樹脂、シリコーン樹脂、スチレン樹脂、ウレタン樹脂を用いることができる。可視光領域における光の吸収が殆ど無いことから、アクリル樹脂およびスチレン樹脂が好ましい。透明な突起を形成する無機物としては、ガラスが好ましい。
 透明な突起は、例えば突起の形状に合わせた金型に充填した熱硬化性樹脂またはUV硬化性樹脂をフィルムのうえに配置して、熱硬化またはUV硬化させることによって形成することができ、例えば、透明粒子をバインダーで白色フィルムの表面に支持することで形成することができる。前者の方法は、ピラミッド状の突起を形成するときに好ましい方法であり、後者の方法は後に詳述するがドーム状の突起を形成するときに好ましい方法である。
 硬化性樹脂として、UV硬化性樹脂を用いる場合には、(メタ)アクロイル基、ビニル基やエポキシ基などの反応性基含有化合物と、UV照射によってこの反応性基含有化合物を反応させ得るラジカルやカチオンといった活性種を発生する化合物と、を混合したものを用いることができる。
 硬化の速さからは、(メタ)アクロイル基、ビニル基などの不飽和基を含有する反応性基含有化合物(モノマー)とUV光によりラジカルを発生する光ラジカル重合開始剤の組み合わせが好ましい。(メタ)アクロイル基化合物としては、例えば、フェノキシエチル(メタ)アクリレート、フェノキシ−2−メチルエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、2−フェニルフェノキシエチル(メタ)アクリレート、4−フェニルフェノキシエチル(メタ)アクリレート、3−(2−フェニルフェニル)−2−ヒドロキシプロピル(メタ)アクリレート、エチレンオキシドを反応させたp−クミルフェノールの(メタ)アクリレート、エチレンオキシド付加ビスフェノールA(メタ)アクリル酸エステル、プロピレンオキシド付加ビスフェノールA(メタ)アクリル酸エステル、ビスフェノールAジグリシジルエーテルと(メタ)アクリル酸とのエポキシ開環で得られるビスフェノールAエポキシ(メタ)アクリレート、ビスフェノールFジグリシジルエーテルと(メタ)アクリル酸とのエポキシ開環反応にで得られるビスフェノールFエポキシ(メタ)アクリレートを挙げることができる。
 透明粒子による突起
 本発明の照明装置用反射フィルムにおける透明な突起は、好ましくは白色フィルムの表面に支持され、白色フィルムの表面を被覆する透明粒子からなる。すなわち、本発明の照明装置用反射フィルムは、好ましくは、白色フィルムおよび該白色フィルムの表面を被覆する透明粒子からなる。
 透明粒子は、光を集光するために曲面で構成されるか、曲面と平面で構成される形状のものを用いる。この形状として、例えば、球状、ラグビーボール状、凸レンズ状のものを用いることができる。効果的に輝度を向上するために、アスペクト比が3以下のものが好ましく、さらにアスペクト比が1.2以下のものが好ましい。特に好ましい形状は球状粒子である。なお、アスペクト比は長径/短径である。そして、透明粒子の粒子径は、透明粒子が球状でない場合には、長径と短径の平均をとった値である。
 透明な突起を形成する透明粒子の大きさは、電子顕微鏡での測定による平均粒径として、例えば3~50μm、好ましくは5~50μm、さらに好ましくは7~45μm、特に好ましくは8~40μm、最も好ましくは10~30μmである。この範囲の平均粒径の透明粒子を用いることによって、高さ3~50μmの透明な突起を形成することができ、光の指向性をコントロールし易く、しかも粒子の脱落が発生し難く、塗工の際に筋状の塗布欠陥が発生し難い、反射フィルムを得ることができる。
 この透明粒子は、粒度分布計による測定による体積50%粒径D50が3~50μmであり、かつ、体積10%粒径D10と体積90%粒径D90との比であるD10/D90が0.30~0.98、さらには0.30~0.70であることが好ましい。比D10/D90がこの範囲であることで、粒径の小さい粒子がバインダー中に埋没することなく、輝度上昇への寄与を得ることができ、また、粒径の大きい粒子の脱落を防止することができる。比D10/D90は大きいほど粒度分布がシャープとなるが、単一の粒径の粒子を得ることは困難であることから、比D10/D90の上限は例えば0.98である。
 透明な突起を透明粒子で形成する場合の突起の高さと透明粒子の粒径との関係について、例えば、平均粒径20μmの透明粒子を用いて透明な突起を形成する場合、透明粒子がバインダーに半分埋もれた状態で白色フィルム上に支持されていれば透明な突起の高さは10μmとなる。バインダーにほとんど埋もれずに白色フィルム上に支持されていれば透明な突起の高さは20μmとなる。
 透明な突起を透明粒子で形成する場合、透明粒子により形成された透明な突起は、50~100%、好ましくは60~100%、さらに好ましくは70~100%、特に好ましくは80~100%の被覆率で白色フィルム表面を被覆している。すなわち、本発明の反射フィルムは、白色フィルムおよび該白色フィルムの表面を被覆する透明粒子からなる反射フィルムであって、該反射フィルムの表面において5~100%の露出率の透明粒子が50~100%の被覆率で白色フィルム表面を被覆している。透明粒子による被覆率が50%未満であると光の指向性が損なわれ輝度上昇が期待できない。
 本発明において、白色フィルムの透明粒子による被覆率は、フィルム面内の直交する二方向のそれぞれ長さ3mmの測定領域の合計長さ6mmの測定領域について観察を行い、測定領域において白色フィルム表面を透明粒子が被覆している割合として定義される。
 具体的には、ミクロトームを用いて、フィルム面内に無作為に選んだ一方向とフィルムの厚み方向が切断面となるように切片サンプル1を切り出し、切片サンプル1で選んだ無作為な一方向と直交する方向と厚み方向が切断面となるように切片サンプル2を切り出し、切片サンプル1のバインダーの塗膜面の長さ3mmの領域と、切片サンプル2のバインダーの塗膜面の長さ3mmの領域との合計長さ6mmの測定領域について、日立製作所製S−4700形電界放出形走査電子顕微鏡を用い、倍率3000倍にて観察し、切片サンプルの切断面内における測定領域において、透明粒子に被覆されていないフィルム表面の部分の長さを積算して、下記式で求める(図7参照)。
 透明粒子による被覆率
 =(6mm−(透明粒子に被覆されていない部分の積算長さ(mm)))
   /6mm × 100(%)
 なお、切断面において透明粒子の最大径部分が塗膜表面より外側に出ている場合には、透明粒子の最大径で覆われる部分を透明粒子に被覆されているとみなし、透明粒子の最大径部分が塗膜表面より内側にある場合、すなわち塗膜中に沈みこんでいる場合には、透明粒子のうち塗膜より外に出ている部分が作るドーム状突起の最大径を、粒子に被覆されているとみなす。
 透明粒子による被覆率の算出において、白色フィルム表面を被覆しているとして扱う透明粒子は、反射フィルムの表面に透明粒子の一部分または全部が露出しているものである。この露出は、本発明で定義する露出率で5~100%、好ましくは10~100%、さらに好ましくは20~100%の露出率での露出をいう。このように、露出率5%未満の透明粒子を被覆している粒子として扱わないのは、露出率が5%未満であると本発明の目的とする露出粒子による集光効果を得ることができないからである。
 好ましい態様において、透明粒子は、白色フィルムの表面に設けられたバインダーの塗膜によって白色フィルムの表面に支持されている。このため、透明粒子の一部は、バインダーの塗膜に接するか、沈み込んでいる。なお、露出率100%は、切断面において、白色フィルム表面と透明粒子表面が接する形でバインダーによって白色フィルムの表面に支えられている状況にあたり、露出率0%は、切断面において、白色フィルム表面に設けられたバインダーの塗膜の中に透明粒子が完全に沈み込んでいる状態であり、露出率50%は、切断面において、白色フィルム表面に設けられたバインダーの塗膜の中に透明粒子の半分が埋まり、残りの半分が塗膜の外に突出している状態である。
 より正確に露出率を定義すると、露出率は、切片サンプルの切断面内における透明粒子の断面の中心を通りフィルムの塗膜面に垂直な直線を引いたときに、この直線がフィルム切片の切断面内において透明粒子の表面と交わる2つの点のうち、露出した側の表面にある点をS、露出していない側の表面にある点をTとし、さきの直線がバインダーの塗膜面と交わる点をBとしたとき、(SとBとの間の距離)/(SとTとの間の距離)で表される。
 すなわち、露出率(%)は、下記式で定義される。
 露出率
 =(SとBとの間の距離)/(SとTとの間の距離)×100(%)
 なお、切断面内における透明粒子の断面の中心は、粒子が球状の場合はその断面の円の中心とし、粒子が非球状の場合は、その断面の重心とする。
 透明粒子としては、無機透明粒子および有機透明粒子のいずれも用いることができる。これらは複数の粒子を併用してもよい。透明粒子は、それを構成する素材自体の光線透過率が50%以上、好ましくは60%以上、さらに好ましくは70%以上であるものがよく、可視領域において光の吸収がないものが好ましい。
 有機透明粒子として、例えば、アクリル粒子、シリコーン粒子、スチレン粒子を用いることができる。可視光領域における光の吸収が殆ど無いことから、アクリル粒子、スチレン粒子が好ましい。また、無機透明粒子としては、例えばガラス粒子を用いることができる。
 透明な突起を形成する透明粒子は、白色フィルム上にフィルムの垂線方向に粒子が重なることのないように支持されていてもよく、透明粒子が白色フィルムの垂線方向に多数重なるように支持されていてもよい。後者の場合、白色フィルムの表面から透明粒子層の表面までの間のフィルム面に垂直な方向に粒子径5~100μmの透明粒子が2~30個含まれていてもよい。この場合、透明粒子層は、透明粒子がバインダーによって相互に接着されることで白色フィルムの上に支持される。
 この場合、透明な突起の高さは、透明粒子層の最表面に位置する透明粒子の頂点と、これを支持するバインダーの基準面とを特定し、基準面からの頂点の高さを測定することで求められる。この場合のバインダーの基準面は、最表面の透明粒子を下側(すなわち、白色フィルムに近い側)から支持する他の透明粒子を被覆するバインダーの表面を平均化した面である。
 バインダー
 透明粒子を白色フィルムの表面に支持するバインダーの塗膜におけるバインダーとしては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルアミド樹脂、ポリオレフィン樹脂、これらの共重合体やブレンド物を用いることができる。バインダーには上述のバインダーの他に、イソシアネート系、メラミン系、エポキシ系の架橋剤を配合して架橋されていてもよい。
 バインダーの塗膜が蛍光体を含有しない場合、透明粒子100重量部に対するバインダーの量は、例えば5~200重量部、好ましくは10~100重量部、さらに好ましくは10~70重量部である。この範囲の割合とすることで、粒子が脱落することなく、透明粒子による集光効果を得ることができる。なお、市販のバインダーは、アクリル樹脂等のバインダー固形分が溶媒に溶解した態様で販売されているが、本発明における塗膜のバインダーの量は乾燥後の塗膜におけるバインダー固形分の量である。
 バインダーの塗膜は、蛍光体を含有することが好ましい。すなわち、本発明において、透明粒子は、バインダーおよび蛍光体を含有するバインダー組成物の塗膜により白色フィルム上に支持されていることが好ましい。バインダー組成物に蛍光体が含有される場合、輝度を効果的に向上しながら粒子の脱落のないフィルムを得るために、フィルム表面に支持された透明粒子と塗膜のバインダー組成物との割合は、好ましくは、透明粒子30~70重量部に対してバインダー組成物70~30重量部である。なお、バインダー組成物は溶剤を除いた固型分の重さである。
 バインダー組成物が蛍光体を含有する場合、蛍光体の含有量は、C光源で測定したXYZ表色系における反射フィルム色度が、x=0.290~0.330、y=0.300~0.340となる範囲であることが好ましい。このため、バインダー組成物における蛍光体の含有量は、バインダー組成物の重量を基準として、好ましくは1~20%、5~20重量%、さらに好ましくは10~20重量%である。1重量%未満であると高い反射率を得る効果が得られない。20重量%を超えると蛍光体によるフィルムの着色が大きく、液晶表示装置の反射板として用いたときに色ずれが起こる。
 蛍光体
 蛍光体を含有するバインダー組成物によって塗膜を形成する場合、蛍光体としては、400~450nmの波長の光で励起し、500~600nmの波長を発光する蛍光体を用いる。これは、本発明における蛍光体の励起波長が400~450nmの帯域にあり、かつ発光波長が500~600nmにあることを意味するが、励起波長がこの範囲にないか、発光波長がこの範囲にないと、着色がなく高い反射率を備える反射フィルムを得ることができない。励起波長が400~450nmの領域になく、400nm未満の領域にのみあると反射板として用いたときに高い反射率を得ることができず、450nmを超える領域にのみあると可視光の吸収による着色が見られ、白色の反射フィルムを得ることができない。発光波長が500~600nmの領域になく、500nm未満または600nmを超える領域にあると、液晶表示装置の反射板として用いたときに反射率の向上の効果が得られず、蛍光体による輝度向上の効果を得ることができない。
 本発明における蛍光体は、無機物質からなる無機蛍光体であってもよく、有機物質からなる有機蛍光体であってもよい。本発明における蛍光体は長期間に亘り安定的に蛍光発光することが必要であり、紫外線による変質や分解をしないことが必要である。蛍光体が変質や分解をすると、フィルムが黄変してしまい、液晶表示装置の反射板として用いたときに正確な色再現ができなくなる。また、蛍光体が変質や分解をすると、蛍光体が発光しなくなり、液晶表示装置の反射板として用いたときに蛍光体による輝度が低下してしまう。このため、本発明における蛍光体として、有機蛍光体より変質や分解が起き難く安定している無機蛍光体が好ましい。
 上記の励起波長および発光波長についての要件を満足する無機蛍光体として、岩塩型結晶構造をもつアルカリ土類金属硫化物、例えば硫化亜鉛(ZnS)、硫化ストロンチウム(SrS)、酸化イットリウム(Y)を母体とし、賦活剤としてユウロピウム(Eu)や銅(Cu)を含有する蛍光体を用いることができる。また、バリウム・マグネシウム・アルミニウム複合酸化物(BaMgAl1017)を母体とし、賦活剤としてユウロピウム(Eu)やマンガン(Mn)を含有する蛍光体を用いることができる。また、リン酸ランタン(LaPO)を母体として、賦活剤としてCe、Tbを含有する蛍光体を用いることができる。
 無機蛍光体として、市販のものでは、例えば、緑色発光無機蛍光体2210(化成オプトロニクス社製 ZnSを母体として、Cuを賦活物質としてなる)、赤色無機蛍光体D1110(根本特殊化学(株)製、Yを母体として、Euを賦活物質としてなる)、青色無機蛍光体D1230(根本特殊化学(株)製、SrSを母体として、Euを賦活物質としてなる)、緑色無機蛍光体KX732A(化成オプトロニクス社製、バリウム・マグネシウム・アルミニウム複合酸化物(BaMgAl1017)を母体として、EuおよびMnを賦活物質としてなる)を用いることができる。
 上記の励起波長および発光波長についての要件を満足する有機蛍光体としては、例えば、スチルベン系蛍光剤、ジスチルベン系蛍光剤、ベンゾオキサゾール系蛍光剤、スチリル・オキサゾール系蛍光剤、ピレン・オキサゾール系蛍光剤、クマリン系蛍光剤、イミダゾール系蛍光剤、ベンゾイミダゾール系蛍光剤、ピラゾリン系蛍光剤、アミノクマリン系蛍光剤、ジスチリル−ビフェニル系蛍光剤、ナフタルイミド系蛍光剤を用いることができる。これらの中でも、耐久性が高く、反射率を向上する効果が高いことから、ベンゾオキサゾール系蛍光剤、スチリル・オキサゾール系蛍光剤、ナフタルイミド系蛍光剤が好ましく、具体的には、イーストブライト OB−1(イーストマン社製 ベンゾオキサゾール系蛍光剤)、Uvitex−OB(チバガイギー社製 スチリル・オキサゾール系蛍光剤)、ルモゲングリーン850(BASF社製 ナフタルイミド系蛍光剤)を用いることが好ましい。
 光線反射率および色度
 本発明の照明装置用反射フィルムの光線反射率は、塗膜のバインダー組成物が蛍光体を含有する場合もしない場合も、波長550nmの光について、好ましくは96%以上である。反射率が96%以上であることによって高い輝度を得ることができる。
 本発明の照明装置用反射フィルムは、塗膜のバインダー組成物に蛍光体を含有する場合、C光源で測定したXYZ表色系における色度が、x=0.290~0.330、y=0.300~0.340であることが好ましい。この範囲の色度であることによって、蛍光体を含有しながらも色再現性に優れる、照明装置用反射板、特に液晶表示装置用反射板を得ることができる。
 紫外線吸収剤
 塗膜のバインダー組成物は、紫外線による劣化を防止するために、紫外線吸収剤を含有することが好ましい。本発明における紫外線吸収剤としては、紫外線吸収能を有する物質を用いる。これは有機化合物でも無機化合物でもよく、有機化合物である場合、例えばベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾエート系紫外線吸収剤、蓚酸アニリド系紫外線吸収剤を用いることができる。無機化合物である場合、例えば、アルコキシシリルまたはアルカノイルシリルのアルキルカルバミル付加物といったシリル化変性物や、2,4−ジヒドロキシベンゾフェノン等の芳香族系紫外線吸収剤の水酸基とエポキシ基含有シラン化合物のエポキシ基とを反応させたシリル化変性の紫外線吸収剤を用いることができる。
 塗膜のバインダー組成物が紫外線吸収剤を含有する場合、その含有量は、有機蛍光体の劣化を防止することができる量であればよく、このために必要な量の紫外線吸収剤を含有していればよい。この量は、紫外線吸収剤が低分子タイプのものである場合、バインダー組成物の重量を基準に、好ましくは1~15重量%、さらに好ましくは2~5重量%である。この範囲で含有することによって、有機蛍光体が紫外線によって劣化することを効果的に防止するとともに、着色のない塗膜を得ることができる。
 紫外線吸収剤としては、高分子タイプのものを用いてもよい。この場合、紫外線吸収能を有する置換基をもつモノマー成分を他のモノマー成分と共重合した共重合ポリマーを、例えば用いることができる。この共重合ポリマーとして、例えばベンゾトリアゾール系反応性モノマーとアクリル系モノマーの共重合によって得られる重合体を好ましく用いることができる。
 紫外線吸収剤が高分子タイプのものである場合、紫外線吸能を有する置換基をもつモノマーの共重合量は、共重合ポリマーを構成する全てのモノマーの合計量を基準として、好ましくは10重量%以上、さらに好ましくは20重量%以上、特に好ましくは35重量%以上である。もちろん、紫外線吸収能を有する置換基をもつモノマーの単独重合体であってもよい。10重量%未満であると、有機蛍光体の紫外線による劣化を防止することができない。強靭な塗膜を得る観点から、共重合ポリマーの分子量は、好ましくは5000以上、さらに好ましくは10000以上、特に好ましくは20000以上である。これらの共重合ポリマーは、有機溶媒あるいは水に溶解もしくは分散した状態で塗液として使用することができる。また、これら以外にも市販のハイブリッド系紫外線吸収ポリマー、例えば、ユーダブル(日本触媒社製)を紫外線吸収剤として用いることができる。
 光安定剤
 塗膜のバインダー組成物には、紫外線吸収剤の他に、さらに光安定剤を併用することが、優れた耐久性を得る観点から好ましい。この場合、光安定剤の配合量はバインダー組成物の重量を基準として、例えば0.1~5重量%、好ましくは0.5~3重量%である。
 光安定剤としては、ヒンダードアミン系光安定剤が好ましく、具体的には例えば、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、コハク酸ジメチル・1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物を用いるこいとができる。
Hereinafter, the present invention will be described in detail.
White film
The white film in the present invention is a film made of a thermoplastic resin and having a white colorant or a void-forming substance contained in the film so as to exhibit a white color.
Examples of the thermoplastic resin constituting the film include polyester, polyolefin, and polystyrene. Polyester is preferred from the viewpoint of achieving both mechanical properties and thermal stability.
When using polyester as a thermoplastic resin of a white film, polyester which consists of a dicarboxylic acid component and a diol component is used as polyester. Examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, and sebacic acid. Examples of the diol component include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol.
Among these polyesters, aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable. Polyethylene terephthalate may be a homopolymer, but a copolymer is preferred.
The white film may consist of a single layer or a plurality of layers. When a white film consists of a several layer, it is preferable that it is a laminated | multilayer film which consists of a white reflective layer which reflects light, and a support layer which supports this. In this laminated film, the white reflective layer is preferably a layer containing a relatively large amount of voids, and the support layer is preferably a layer containing relatively few voids or no voids. The polyester used for the white reflective layer is preferably a copolymer polyester, and the proportion of the copolymer component is, for example, 3 to 20 mol%, preferably 4 to 15 mol%, more preferably based on the total dicarboxylic acid component. 5 to 13 mol%. By setting the proportion of the copolymer component within this range, it is possible to obtain an excellent film forming property even for a white reflective layer containing a relatively large amount of voids, and a white film excellent in thermal dimensional stability can be obtained.
When the white film is composed of a plurality of layers, the white reflective layer preferably contains a phosphor. In this case, the phosphor content is preferably 0.1 to 7% by weight based on the weight of the white reflective layer. By containing in this range, the luminance can be improved without coloring the white reflective layer by the phosphor, and a reflective film capable of accurate color reproduction when used as a reflective film of an illumination device can be obtained.
As the phosphor, either an inorganic phosphor or an organic phosphor can be used. In order to maintain a stable fluorescence function over a long period of time, an inorganic phosphor is preferable. As the phosphor, for example, those described later can be used.
As the white colorant or void forming substance used for the white film, for example, inorganic particles and organic particles can be used.
As the white colorant, it is preferable to use white inorganic particles. When inorganic particles are used as the void-forming substance, it is preferable to use white inorganic particles. Examples of the white inorganic particles include barium sulfate, titanium dioxide, silicon dioxide, and calcium carbonate particles. The average particle size of the inorganic particles is, for example, 0.2 to 3.0 μm, preferably 0.3 to 2.5 μm, and more preferably 0.4 to 2.0 μm. By using inorganic particles having an average particle diameter in this range, it is possible to appropriately disperse in the polyester, and it is possible to obtain a film that does not easily aggregate particles and that does not have coarse protrusions. Glossiness can be controlled within an appropriate range without being too rough. The inorganic particles may have any particle shape, for example, a plate shape or a spherical shape. The inorganic particles may be subjected to a surface treatment for improving dispersibility.
When organic particles are used as the void-forming substance, resin particles that are incompatible with polyester are used as the organic particles. As the organic particles, silicone resin particles and polytetrafluoroethylene particles are preferable. The average particle diameter of the organic particles is, for example, 0.2 to 10 μm, preferably 0.3 to 8.0 μm, and more preferably 0.4 to 6.0 μm. By using the organic particles in this range, it is possible to obtain a film that can be appropriately dispersed in the polyester, is less likely to aggregate, and has no coarse protrusions.
From the viewpoint of obtaining high brightness, the light reflectance of the white film is preferably 95% or more, more preferably 96% or more, and particularly preferably 97% or more as the reflectance at a wavelength of 550 nm.
Transparent protrusion
The reflective film for lighting device of the present invention comprises a white film and a transparent protrusion having a height of 3 to 50 μm provided on the surface of the film. Transparent protrusions may be provided continuously or discontinuously.
In the present invention, the coverage by the transparent protrusions on the white film surface is 50 to 100%, preferably 60 to 100%, more preferably 70 to 100%, and particularly preferably 80 to 100%. If the coverage is less than 50%, the directivity of light that avoids the front light source is impaired, and improvement in luminance cannot be expected.
In the present invention, the coverage is measured with respect to a measurement area having a total length of 6 mm in a measurement area having a length of 3 mm in each of two orthogonal directions in the film plane, and the white film surface is covered with a transparent protrusion in the measurement area. Is defined as the percentage that is.
Specifically, using a microtome, a section is cut out so that the thickness direction of the film becomes a cut surface, and this section sample is made 3000 times using a Hitachi S-4700 field emission scanning electron microscope. And observe the measurement area with a total length of 6 mm in the measurement area with a length of 3 mm in each of the two orthogonal directions in the film plane, and add up the length of the part not covered with transparent protrusions in the measurement area And calculated by the following formula.
Coverage
= (6 mm- (integrated length of the portion not covered with the transparent protrusion (mm)))
/ 6mm x 100 (%)
In addition, when the largest diameter part of a transparent protrusion has come out outside the coating-film surface, it is considered that the part covered with the maximum diameter of a transparent particle is coat | covered with the transparent protrusion.
The transparent protrusion only needs to be formed of a transparent substance, and may be formed of any substance of an organic substance and an inorganic substance. Moreover, you may form with the mixture of organic substance and inorganic substance, and may form with the composite material of organic substance and inorganic substance. The light transmittance of the substance forming the transparent protrusions is, for example, 50% or more, preferably 60% or more, and more preferably 70% or more. The transparent protrusions are preferably those that do not absorb light in the visible region in order to prevent coloring.
The shape of the transparent protrusion is, for example, a dome shape or a pyramid shape, or a pyramid shape other than the pyramid shape, for example, a triangular pyramid shape, a hexagonal pyramid shape, an octagonal pyramid shape, and preferably a dome shape or a pyramid shape. Particularly preferred is a dome shape. The dome-shaped protrusion may be a protrusion having a smooth convex surface, and is preferably a hemispherical surface, a spherical surface or a part of a spheroid surface, and particularly preferably a hemispherical surface. The hemispherical surface does not necessarily have to be half of a sphere, and corresponds to a dome-shaped protrusion if a part of the spherical surface protrudes to the surface in a convex shape.
The pyramid shape means a square shape, but when the transparent protrusion is a pyramid shape, the length of one side of the bottom surface of each pyramid is preferably 5 to 50 μm. By setting the length of one side in this range, it is preferable to prevent the protrusions from dropping without impairing the effect of imparting directivity to the reflected light. The shape of the pyramid is preferably perfect quadrature, but may be a shape in which a part of the pyramid, for example, a vertex is cut off.
The height of the transparent protrusion in the present invention is 3 to 50 μm. If the height is less than 3 μm, the directivity of light cannot be obtained, and if it exceeds 50 μm, the projections may drop off or the effect of imparting directivity to reflected light may vary greatly depending on the backlight design, that is, the position of the light source. Will arise.
When the transparent protrusion has a dome shape, the average diameter of the bottom surface of each dome is preferably 5 to 50 μm. By setting the average diameter in this range, it is preferable that the protrusions can be prevented from dropping without impairing the effect of imparting directivity to the reflected light. In the case of a dome shape, the most preferable shape is a hemisphere.
Examples of organic substances that form transparent protrusions include UV curable resins, thermosetting resins, acrylic resins, silicone resins, styrene resins, and urethane resins. Acrylic resins and styrene resins are preferred because they hardly absorb light in the visible light region. As the inorganic substance forming the transparent protrusions, glass is preferable.
The transparent protrusions can be formed, for example, by placing a thermosetting resin or UV curable resin filled in a mold in accordance with the shape of the protrusions on the film, and thermosetting or UV curing, for example, It can be formed by supporting transparent particles on the surface of a white film with a binder. The former method is a preferable method when forming a pyramidal protrusion, and the latter method is a preferable method when forming a dome-shaped protrusion, which will be described in detail later.
When a UV curable resin is used as the curable resin, a radical capable of reacting a reactive group-containing compound such as a (meth) acryloyl group, a vinyl group, or an epoxy group with this reactive group-containing compound by UV irradiation, A mixture of a compound that generates an active species such as a cation can be used.
From the viewpoint of curing speed, a combination of a reactive group-containing compound (monomer) containing an unsaturated group such as a (meth) acryloyl group or a vinyl group and a radical photopolymerization initiator that generates a radical by UV light is preferable. Examples of the (meth) acryloyl group compound include phenoxyethyl (meth) acrylate, phenoxy-2-methylethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, 2-phenylphenoxyethyl (meth) acrylate, 4-phenylphenoxyethyl (meth) acrylate, 3- (2-phenylphenyl) -2-hydroxypropyl (meth) acrylate, and p-cumylphenol reacted with ethylene oxide ( (Meth) acrylate, ethylene oxide-added bisphenol A (meth) acrylate, propylene oxide-added bisphenol A (meth) acrylate, bisphenol A diglycidyl ether and (meth) acrylate Bisphenol A epoxy (meth) acrylate obtained by epoxy ring opening with acid, bisphenol F epoxy (meth) acrylate obtained by epoxy ring opening reaction of bisphenol F diglycidyl ether and (meth) acrylic acid can be mentioned. .
Protrusion by transparent particles
The transparent protrusions in the reflective film for an illuminating device of the present invention are preferably supported by the surface of the white film and are made of transparent particles covering the surface of the white film. That is, the reflective film for an illumination device of the present invention is preferably composed of a white film and transparent particles covering the surface of the white film.
The transparent particles are composed of a curved surface or a shape composed of a curved surface and a plane in order to collect light. As this shape, for example, a spherical shape, a rugby ball shape, or a convex lens shape can be used. In order to effectively improve the luminance, an aspect ratio of 3 or less is preferable, and an aspect ratio of 1.2 or less is more preferable. A particularly preferred shape is a spherical particle. The aspect ratio is major axis / minor axis. The particle diameter of the transparent particles is a value obtained by taking the average of the major axis and the minor axis when the transparent particles are not spherical.
The size of the transparent particles forming the transparent protrusions is, for example, 3 to 50 μm, preferably 5 to 50 μm, more preferably 7 to 45 μm, particularly preferably 8 to 40 μm, as an average particle diameter measured with an electron microscope. The thickness is preferably 10 to 30 μm. By using transparent particles with an average particle diameter in this range, it is possible to form transparent protrusions with a height of 3 to 50 μm, and it is easy to control the directivity of light, and it is difficult for particles to fall off. In this case, it is possible to obtain a reflective film in which streak-like coating defects hardly occur.
The transparent particles have a volume 50% particle diameter D50 of 3 to 50 μm as measured by a particle size distribution meter, and a ratio of the volume 10% particle diameter D10 to the volume 90% particle diameter D90 of D10 / D90 is 0.00. It is preferably 30 to 0.98, more preferably 0.30 to 0.70. When the ratio D10 / D90 is within this range, it is possible to obtain a contribution to increasing the luminance without burying particles having a small particle size in the binder, and to prevent the particles having a large particle size from falling off. Can do. The larger the ratio D10 / D90, the sharper the particle size distribution. However, since it is difficult to obtain particles having a single particle size, the upper limit of the ratio D10 / D90 is, for example, 0.98.
Regarding the relationship between the height of the protrusion and the particle size of the transparent particle when the transparent protrusion is formed of transparent particles, for example, when the transparent protrusion is formed using transparent particles having an average particle diameter of 20 μm, the transparent particle is used as the binder. If it is supported on a white film in a half-buried state, the height of the transparent protrusion is 10 μm. If it is supported on the white film without being buried in the binder, the height of the transparent protrusion is 20 μm.
When the transparent protrusions are formed of transparent particles, the transparent protrusions formed by the transparent particles are 50 to 100%, preferably 60 to 100%, more preferably 70 to 100%, and particularly preferably 80 to 100%. The surface of the white film is coated at a coverage rate. That is, the reflective film of the present invention is a reflective film composed of a white film and transparent particles covering the surface of the white film, and 50 to 100 transparent particles having an exposure rate of 5 to 100% on the surface of the reflective film. The white film surface is coated with a coverage of%. If the coverage by the transparent particles is less than 50%, the directivity of light is impaired and an increase in luminance cannot be expected.
In the present invention, the coverage of the white film with transparent particles is observed for a measurement area of 6 mm in total in a measurement area of 3 mm in length in each of two orthogonal directions in the film plane. Defined as the percentage covered by transparent particles.
Specifically, using a microtome, the section sample 1 is cut out so that one direction randomly selected in the film plane and the thickness direction of the film become the cutting plane, and one random direction selected in the section sample 1 is selected. The slice sample 2 is cut out so that the direction perpendicular to the thickness direction and the thickness direction are cut surfaces, the region of the coating film surface of the binder of the slice sample 1 is 3 mm in length, and the length of the coating film surface of the binder of the slice sample 2 is 3 mm. The measurement region having a total length of 6 mm with respect to the above region was observed at a magnification of 3000 times using a S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd. The lengths of the portions of the film surface that are not covered with are integrated to obtain the following formula (see FIG. 7).
Coverage with transparent particles
= (6 mm- (integrated length of the portion not covered with transparent particles (mm)))
/ 6mm x 100 (%)
In addition, when the maximum diameter portion of the transparent particle is outside the coating surface on the cut surface, it is considered that the portion covered with the maximum diameter of the transparent particle is covered with the transparent particle, and the maximum diameter of the transparent particle If the part is inside the coating surface, that is, if it is sinking in the coating film, the maximum diameter of the dome-shaped protrusion formed by the portion of the transparent particle that is outside the coating film is covered with the particle. It is assumed that
In the calculation of the coverage with transparent particles, the transparent particles treated as covering the surface of the white film are those in which part or all of the transparent particles are exposed on the surface of the reflective film. This exposure means exposure at an exposure rate of 5 to 100%, preferably 10 to 100%, more preferably 20 to 100% as defined in the present invention. As described above, if the exposure rate is less than 5%, it is not possible to obtain the light condensing effect by the exposed particles according to the present invention if the exposure rate is less than 5%. Because.
In a preferred embodiment, the transparent particles are supported on the surface of the white film by a coating film of a binder provided on the surface of the white film. For this reason, a part of transparent particle is in contact with the coating film of a binder, or is sinking. The exposure rate of 100% corresponds to the situation where the white film surface and the transparent particle surface are in contact with each other on the cut surface, and the surface of the white film is supported by the binder. The exposure rate of 0% is the white film surface on the cut surface. The transparent particles are completely submerged in the binder coating film provided on the surface, and the exposure rate of 50% is the transparent particles in the binder coating film provided on the white film surface at the cut surface. Is half filled and the other half protrudes out of the coating.
To define the exposure rate more precisely, the exposure rate is calculated by drawing a straight line passing through the center of the cross section of the transparent particle in the cut surface of the slice sample and perpendicular to the coating surface of the film. Of the two points that intersect the surface of the transparent particles in the plane, S is the point on the exposed surface, T is the point on the unexposed surface, and the straight line is the coating surface of the binder. When the intersecting point is B, it is expressed by (distance between S and B) / (distance between S and T).
That is, the exposure rate (%) is defined by the following formula.
Exposure rate
= (Distance between S and B) / (distance between S and T) × 100 (%)
The center of the cross section of the transparent particle in the cut surface is the center of the circle of the cross section when the particle is spherical, and the center of gravity of the cross section when the particle is non-spherical.
As the transparent particles, both inorganic transparent particles and organic transparent particles can be used. These may use a plurality of particles together. The transparent particles preferably have a light transmittance of 50% or more, preferably 60% or more, and more preferably 70% or more, and preferably have no light absorption in the visible region.
As the organic transparent particles, for example, acrylic particles, silicone particles, and styrene particles can be used. Acrylic particles and styrene particles are preferred because they hardly absorb light in the visible light region. As the inorganic transparent particles, for example, glass particles can be used.
The transparent particles that form the transparent protrusions may be supported on the white film so that the particles do not overlap in the normal direction of the film, and are supported so that many transparent particles overlap in the normal direction of the white film. May be. In the latter case, 2 to 30 transparent particles having a particle diameter of 5 to 100 μm may be included in a direction perpendicular to the film surface between the surface of the white film and the surface of the transparent particle layer. In this case, the transparent particle layer is supported on the white film by the transparent particles being bonded to each other by the binder.
In this case, the height of the transparent protrusion is determined by specifying the vertex of the transparent particle positioned on the outermost surface of the transparent particle layer and the reference surface of the binder supporting the transparent particle layer, and measuring the height of the vertex from the reference surface. Is required. In this case, the reference surface of the binder is a surface obtained by averaging the surface of the binder covering other transparent particles that support the transparent particles on the outermost surface from the lower side (that is, the side close to the white film).
binder
As the binder in the coating film of the binder that supports the transparent particles on the surface of the white film, an acrylic resin, a polyester resin, a polyurethane resin, a polyesteramide resin, a polyolefin resin, a copolymer or a blend thereof can be used. In addition to the binder described above, the binder may be crosslinked by blending an isocyanate, melamine, or epoxy crosslinking agent.
When the coating film of the binder does not contain a phosphor, the amount of the binder with respect to 100 parts by weight of the transparent particles is, for example, 5 to 200 parts by weight, preferably 10 to 100 parts by weight, and more preferably 10 to 70 parts by weight. By setting the ratio in this range, it is possible to obtain a light collecting effect by the transparent particles without dropping the particles. In addition, although a commercially available binder is sold in a mode in which a binder solid content such as an acrylic resin is dissolved in a solvent, the amount of the binder of the coating film in the present invention is the amount of the binder solid content in the coating film after drying. .
The coating film of the binder preferably contains a phosphor. That is, in the present invention, the transparent particles are preferably supported on the white film by a coating film of a binder composition containing a binder and a phosphor. When the phosphor composition is contained in the binder composition, the ratio of the transparent particles supported on the film surface and the binder composition of the coating film is used to obtain a film without dropping particles while effectively improving the luminance. The binder composition is preferably 70 to 30 parts by weight with respect to 30 to 70 parts by weight of the transparent particles. In addition, a binder composition is the weight of the solid part except a solvent.
When the binder composition contains a phosphor, the phosphor content is such that the reflection film chromaticity in the XYZ color system measured with a C light source is x = 0.290 to 0.330, y = 0.300 to A range of 0.340 is preferable. For this reason, the phosphor content in the binder composition is preferably 1 to 20%, 5 to 20% by weight, and more preferably 10 to 20% by weight, based on the weight of the binder composition. If it is less than 1% by weight, the effect of obtaining a high reflectance cannot be obtained. If it exceeds 20% by weight, the film is highly colored by the phosphor, and color shift occurs when used as a reflector of a liquid crystal display device.
Phosphor
When a coating film is formed with a binder composition containing a phosphor, a phosphor that is excited by light having a wavelength of 400 to 450 nm and emits light having a wavelength of 500 to 600 nm is used as the phosphor. This means that the excitation wavelength of the phosphor in the present invention is in the band of 400 to 450 nm and the emission wavelength is in the range of 500 to 600 nm, but the excitation wavelength is not in this range or the emission wavelength is in this range. Otherwise, it is not possible to obtain a reflective film that is not colored and has a high reflectance. When the excitation wavelength is not in the region of 400 to 450 nm, but only in the region of less than 400 nm, high reflectance cannot be obtained when used as a reflector, and coloring in the region exceeding 450 nm results from absorption of visible light. And a white reflective film cannot be obtained. When the emission wavelength is not in the region of 500 to 600 nm, but in the region of less than 500 nm or more than 600 nm, the effect of improving the reflectivity cannot be obtained when used as a reflector of a liquid crystal display device, and the luminance is improved by the phosphor. The effect cannot be obtained.
The phosphor in the present invention may be an inorganic phosphor made of an inorganic substance or an organic phosphor made of an organic substance. The phosphor in the present invention needs to emit stable fluorescence over a long period of time, and must not be altered or decomposed by ultraviolet rays. If the phosphor is altered or decomposed, the film will turn yellow, and accurate color reproduction will not be possible when used as a reflector of a liquid crystal display device. Further, when the phosphor is altered or decomposed, the phosphor does not emit light, and the luminance due to the phosphor decreases when used as a reflector of a liquid crystal display device. For this reason, as the phosphor in the present invention, an inorganic phosphor that is less susceptible to alteration and decomposition than an organic phosphor and is stable is preferable.
Examples of inorganic phosphors that satisfy the requirements for the excitation wavelength and emission wavelength include alkaline earth metal sulfides having a rock salt crystal structure, such as zinc sulfide (ZnS), strontium sulfide (SrS), and yttrium oxide (Y 2 O 2 ) As a base, and a phosphor containing europium (Eu) or copper (Cu) as an activator can be used. Barium-magnesium-aluminum composite oxide (Ba 3 MgAl 10 O 17 ) As a matrix and a phosphor containing europium (Eu) or manganese (Mn) as an activator can be used. In addition, lanthanum phosphate (LaPO 4 ) And a phosphor containing Ce and Tb as activators.
Commercially available inorganic phosphors include, for example, green light emitting inorganic phosphor 2210 (made by Kasei Optronics, using ZnS as a base material and Cu as an activator), red inorganic phosphor D1110 (manufactured by Nemoto Special Chemical Co., Ltd.), Y 2 O 3 As a matrix, Eu as an activator), blue inorganic phosphor D1230 (manufactured by Nemoto Special Chemical Co., Ltd., SrS as a matrix, Eu as an activator), green inorganic phosphor KX732A (made by Kasei Optronics, Barium / magnesium / aluminum composite oxide (Ba 3 MgAl 10 O 17 ) As a base material and Eu and Mn as activators).
Examples of organic phosphors that satisfy the requirements for the excitation wavelength and emission wavelength include stilbene fluorescent agents, distilbene fluorescent agents, benzoxazole fluorescent agents, styryl / oxazole fluorescent agents, and pyrene / oxazole fluorescent agents. , A coumarin fluorescent agent, an imidazole fluorescent agent, a benzimidazole fluorescent agent, a pyrazoline fluorescent agent, an aminocoumarin fluorescent agent, a distyryl-biphenyl fluorescent agent, and a naphthalimide fluorescent agent. Among these, benzoxazole-based fluorescent agents, styryl-oxazole-based fluorescent agents, and naphthalimide-based fluorescent agents are preferred because of their high durability and high effect of improving reflectance. Specifically, yeast bright OB- 1 (benzoxazole-based fluorescent agent manufactured by Eastman), Uvitex-OB (styryl-oxazole-based fluorescent agent manufactured by Ciba Geigy), and Lumogen Green 850 (naphthalimide-based fluorescent agent manufactured by BASF) are preferably used.
Light reflectance and chromaticity
The light reflectance of the reflective film for an illuminating device of the present invention is preferably 96% or more for light having a wavelength of 550 nm, whether or not the binder composition of the coating film contains a phosphor. A high luminance can be obtained when the reflectance is 96% or more.
When the reflective film for an illumination device of the present invention contains a phosphor in the binder composition of the coating film, the chromaticity in the XYZ color system measured with a C light source is x = 0.290 to 0.330, y = It is preferably 0.300 to 0.340. When the chromaticity is within this range, it is possible to obtain a reflector for an illuminating device, particularly a reflector for a liquid crystal display, which contains a phosphor and is excellent in color reproducibility.
UV absorber
The binder composition of the coating film preferably contains an ultraviolet absorber in order to prevent deterioration due to ultraviolet rays. As the ultraviolet absorber in the present invention, a substance having ultraviolet absorbing ability is used. This may be an organic compound or an inorganic compound. In the case of an organic compound, for example, a benzophenone UV absorber, a benzotriazole UV absorber, a triazine UV absorber, a cyanoacrylate UV absorber, a salicylic acid UV absorber, a benzoate UV absorbers and oxalic anilide UV absorbers can be used. In the case of an inorganic compound, for example, a silylated modified product such as an alkoxy carbamyl adduct of alkoxysilyl or alkanoylsilyl, an epoxy of a hydroxyl group and an epoxy group-containing silane compound of an aromatic ultraviolet absorber such as 2,4-dihydroxybenzophenone A silylation-modified ultraviolet absorber obtained by reacting with a group can be used.
In the case where the binder composition of the coating film contains an ultraviolet absorber, the content may be an amount that can prevent the deterioration of the organic phosphor, and an ultraviolet absorber contained in an amount necessary for this purpose. It only has to be. This amount is preferably 1 to 15% by weight, more preferably 2 to 5% by weight, based on the weight of the binder composition, when the ultraviolet absorber is of a low molecular type. By containing in this range, it is possible to effectively prevent the organic phosphor from being deteriorated by ultraviolet rays and to obtain a coating film without coloring.
As the ultraviolet absorber, a polymer type may be used. In this case, for example, a copolymer obtained by copolymerizing a monomer component having a substituent having ultraviolet absorbing ability with another monomer component can be used. As this copolymer, for example, a polymer obtained by copolymerization of a benzotriazole-based reactive monomer and an acrylic monomer can be preferably used.
When the ultraviolet absorber is of a high molecular type, the copolymerization amount of the monomer having a substituent having an ultraviolet absorptivity is preferably 10% by weight based on the total amount of all monomers constituting the copolymer. Above, more preferably 20% by weight or more, particularly preferably 35% by weight or more. Of course, it may be a homopolymer of a monomer having a substituent having ultraviolet absorbing ability. If it is less than 10% by weight, the organic phosphor cannot be prevented from being deteriorated by ultraviolet rays. From the viewpoint of obtaining a tough coating film, the molecular weight of the copolymer is preferably 5000 or more, more preferably 10,000 or more, and particularly preferably 20000 or more. These copolymerized polymers can be used as a coating solution in a state dissolved or dispersed in an organic solvent or water. In addition to these, commercially available hybrid ultraviolet absorbing polymers such as U-double (manufactured by Nippon Shokubai Co., Ltd.) can be used as the ultraviolet absorber.
Light stabilizer
In addition to the ultraviolet absorber, it is preferable to use a light stabilizer in combination with the binder composition of the coating film from the viewpoint of obtaining excellent durability. In this case, the blending amount of the light stabilizer is, for example, 0.1 to 5% by weight, preferably 0.5 to 3% by weight, based on the weight of the binder composition.
As the light stabilizer, a hindered amine light stabilizer is preferable. Specifically, for example, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate · 1- (2-hydroxyethyl) ) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate can be used.
 以下、実施例により本発明を詳述する。なお、測定および評価は以下の方法で行った。
(1)相対輝度
 液晶表示装置に反射板として用いたときの表示装置の輝度を評価した。ソニー(株)製32インチテレビ(ブラビアKDL−32V2500)のバックライトの反射フィルムを取り外し、かわり評価対象のフィルムを設置し、輝度計(大塚電子製Model MC−940)を用いて、バックライトの中心を真正面より測定距離500mmで輝度を測定した。相対輝度を下記の式で算出した。
 相対輝度
  =(評価対象のフィルムの輝度)/(基準フィルムの輝度)×100(%)
 基準フィルムとして用いたフィルムは、評価結果の記載されている表により異なる。基準フィルムとして以下のフィルムを用いた。
 表1:透明な突起を設けていない比較例1−1のフィルム。
 表2:透明粒子による突起を設けていない比較例2−1のフィルム。
 表3:透明粒子による突起を設けていない比較例3−1のフィルム。
 表4:塗膜のバインダーが蛍光体を含有しない参考例1−1のフィルム。
 表5:透明粒子による突起を設けていない比較例5−1のフィルム。
(2)透明な突起
 (2−1)透明な突起によるフィルムの被覆率
 ミクロトームを用いてフィルムの厚み方向が切断面となるように切片を切り出してサンプルとした。この切片サンプルを日立製作所製S−4700形電界放出形走査電子顕微鏡を用い倍率3000倍にて観察した。フィルム面内の直交する二方向のそれぞれ長さ3mmの測定領域の合計長さ6mmの測定領域について観察を行い、測定領域において透明な突起に被覆されていない部分の長さを積算して、下記式で求めた。
 被覆率
 =(6mm−(透明な突起に被覆されていない部分の積算長さ(mm)))
  /6mm × 100(%)
 (2−2)透明な突起の高さ
 フィルム表面を基準面として、任意の透明な突起の20個について頂点の高さを測定し、これらの平均値を透明な突起の高さとした。なお、透明な突起が透明粒子で形成され、かつ透明粒子がバインダーに埋もれている場合はバインダーの表面を基準面とした。高さの測定は、ミクロトームを用いて、フィルムから切片サンプルを切り出し、このサンプルについて光学顕微鏡を用いて300倍で観察および撮影することで行った。
(3)突起を形成する透明粒子
 (3−1)透明粒子の平均粒径
 日立製作所製S−4700形電界放出形走査電子顕微鏡を用い、倍率1000倍にて、樹脂に添加する前(原料)の粒子を100個任意に測定し平均粒径を求めた。粒子が球状でない場合は(長径+短径)/2を平均粒径とした。
 (3−2)透明粒子のアスペクト比
 日立製作所製S−4700形電界放出形走査電子顕微鏡を用い、倍率500倍にて、露出した粒子30個任意に観察し、長径、短径の値から下記式で求め平均値を算出した。
 アスペクト比=長径/短径
 (3−3)透明粒子のD50
 粒度分布計(堀場製作所製LA−950)にて、原料の透明粒子の粒度分布を求め、通過分積算パーセンテージが50重量%となる粒子径をD50とした。
 (3−4)透明粒子のD10/D90
 粒度分布計(堀場製作所製LA−950)にて、原料の透明粒子の粒度分布を求め、通過分積算パーセンテージが10重量%となる粒子径をD10とし、通過分積算パーセンテージが90重量%となる粒子径をD90とし、D10/D90を算出した。
(4)白色フィルムの無機粒子および有機粒子の平均粒径
 白色フィルムの無機粒子および有機粒子の平均粒径は、粒度分布計(堀場製作所製LA−950)にて、原料の粒子の粒度分布を求め、d50での粒子径を平均粒径とした。
(5)塗膜の厚み
 フィルムサンプルの断面をデジタルマイクロスコープ(HIROX Co.Ltd.,HI−SCOPE Advanced KH−3000)にて倍率5倍にて観察撮影し、写真からバインダーの厚みを判定し、任意に10点測定してそれらの平均値を求めた。
(6)フィルムの厚み
 (6−1)フィルムの厚み
 フィルムサンプルをエレクトリックマイクロメーター(アンリツ製 K−402B)にて、10点厚みを測定し、平均値をフィルムの厚みとした。
 (6−2)フィルムの各層の厚み
 サンプルを三角形に切り出し、包埋カプセルに固定後、エポキシ樹脂にて包埋した。そして、包埋されたサンプルをミクロトーム(ULTRACUT−S)で縦方向に平行な断面を薄膜切片にした後、光学顕微鏡を用いて観察、撮影し、写真から各層の厚み比を測定し、フィルム全体の厚みから計算して、各層の厚みを求めた。
(7)透明粒子の露出率
 ミクロトームを用いて、フィルムから切片サンプル1と切片サンプル2を切り出した。切片サンプル1は、フィルム面内に無作為に選んだ一方向とフィルムの厚み方向が切断面となるように切り出した切片サンプルであり、切片サンプル2は、切片サンプル1で選んだ無作為な一方向と直交する方向と厚み方向が切断面となるように切り出した切片サンプルである。
 切片サンプル1のバインダーの塗膜面の長さ3mmの領域と、切片サンプル2のバインダーの塗膜面の長さ3mmの領域との合計長さ6mmの測定領域について、日立製作所製S−4700形電界放出形走査電子顕微鏡を用い、倍率3000倍にて観察した。
 露出率は、切片サンプルの切断面内における透明粒子の断面の中心を通りフィルムの塗膜面に垂直な直線を引いたときに、この直線がフィルム切片の切断面内において透明粒子の表面と交わる2つの点のうち、露出した側の表面にある点をS、露出していない側の表面にある点をTとし、さきの直線がバインダーの塗膜面と交わる点をBとしたとき、(SとBとの間の距離)/(SとTとの間の距離)で表される。
 すなわち、露出率(%)は、下記式で定義される。
 露出率
 =(SとBとの間の距離)/(SとTとの間の距離)×100(%)
 なお、切断面内における透明粒子の断面の中心は、粒子が球状の場合はその断面の円の中心とし、粒子が非球状の場合は、その断面の重心とする。
(8)透明粒子によるフィルム表面の被覆率
 上記(7)で得た切片サンプル1および2について評価を行った。
 切片サンプル1のバインダーの塗膜面の長さ3mmの領域と、切片サンプル2のバインダーの塗膜面の長さ3mmの領域との合計長さ6mmの測定領域について、日立製作所製S−4700形電界放出形走査電子顕微鏡を用い、倍率3000倍にて観察した。
 被覆率は、切片サンプルの切断面内における測定領域において、透明粒子に被覆されていないフィルム表面の部分の長さを積算して、下記式で求めた(図1参照)。
 被覆率
 =(6mm−(透明粒子に被覆されていない部分の積算長さ(mm)))
  /6mm × 100(%)
(9)延伸性
 縦方向2.5~3.4倍、横方向3.5~3.7倍に延伸してフィルムに製膜したときに安定に製膜できるか否かを観察し、下記基準で評価した。
 ○: 1時間以上安定に製膜できる
 ×: 1時間以内に切断が発生し、安定な製膜ができない
(10)経時的な黄変
 フィルムのサンプルに、高圧水銀ランプ(ハリソン東芝ライティング製 「トスキュア401」:ガラスフィルタ付き)を照射してサンプルの色の変化を評価した。この評価での照射時間は50時間とし、照射前後での色変化を評価した。照射での放射照度は18mW/cmであった。なお、フィルムの構成が支持層の片側に反射層を設けたものである場合、反射層側から測定を行った。
 初期のフィルム色相(L 、a 、b )と、照射後のフィルム色相(L 、a 、b )とを、色差計(日本電色工業製SZS−Σ90 COLOR MEASURING SYSTEM)にてそれぞれ測定し、下記式で表される色相変化dE*を算出し、下記の基準で評価した。
 dE
={(L −L +(a −a +(b −b 1/2
 ◎:      dE ≦  5
 ○:  5 < dE ≦ 10
 △: 10 < dE ≦ 15
 ×: 15 < dE
(11)400~450nmの光による励起発光の有無と発光ピーク波長
 蛍光体を塗工した面に光を入射して蛍光スペクトルを測定した。測定は蛍光分光光度計F−4500(日立製)を用い、励起波長400~450nm、発光波長380~780nmの領域について行い、励起による蛍光発光の有無を観察し、蛍光発光がある場合には発光スペクトルから発光ピーク波長を求めた。
(12)粒子の脱落の有無
 厚さ2mm、幅20mmの直角な辺を持つアクリル板を、フィルムサンプルの反射面に荷重300gで垂直に押し付け、30mmの距離を10往復した。このときのアクリル板への粉体の付着状況を目視にて確認し、次の基準で評価した。
 ○:ほとんど粉体の発生が確認できない。
 ×:粉体の発生が確認できる。
(13)輝度向上率および輝度維持率
 (13−1)反射板としての輝度向上率
 バックライトにフィルムを組み込み測定および評価した。使用したバックライトは、評価用に用意した液晶テレビ(SHARP社製AQUOS−20V)に使用される直下型バックライト(対角線20インチ)ユニットであり、元々組み込まれていた光反射シートに替えて、測定対象とするフィルムを組み込んだ。測定はバックライト面を2×2の4区画に分け、点灯1時間後の正面輝度を求めることによって行った。
 輝度はトプコン社製のBM−7を用いて測定した。測定角は1°、輝度計とバックライトの距離は50cmである。バックライト面を、バックライト面の中心を通りバックライト面の幅方向に平行な直線と、バックライト面の中心を通りバックライト面の縦方向に平行な直線とで4分割し、分割されたそれぞれの領域の中心を測定点とした。
 測定点4箇所における輝度をそれぞれ測定し単純平均を求め、平均輝度とした。輝度向上率は、蛍光材料の塗工前後でのフィルムで求めた平均輝度を用いて、下記の式で算出した。
 輝度向上率
=(蛍光材料塗工後の平均輝度)/(蛍光材料塗工前の平均輝度)×100(%)
 (13−2)耐久性試験による輝度維持率
 評価対象のフィルムを組み込んだ状態で上記のバックライトを点灯したさせたまま3000時間経時させる耐久性試験を行った。輝度維持率を下記の式にて算出した。
 輝度維持率
 =(耐久性試験後の平均輝度)/(耐久性試験前の輝度)×100(%)
(14)色度
 (14−1)反射板としての色度差
 バックライトにフィルムを組み込み測定および評価した。使用したバックライトは、評価用に用意した液晶テレビ(SHARP社製AQUOS−20V)に使用される直下型バックライト(対角線20インチ)ユニットであり、元々組み込まれていた光反射シートに替えて、測定対象とするフィルムを組み込んだ。測定は、バックライト面を2×2の4区画に分け、点灯1時間後の正面輝度を求めることによって行った。
 色度はトプコン社製のBM−7を用いて測定した。測定角は1°、輝度計とバックライトの距離は50cmである。バックライト面を、バックライト面の中心を通りバックライト面の幅方向に平行な直線と、バックライト面の中心を通りバックライト面の縦方向に平行な直線とで4分割し、分割されたそれぞれの領域の中心を測定点とした。
 測定点4箇所における色度(x、y)をそれそれ測定し、単純平均を求め、平均色度(x、y)とした。平均色度(x、y)と基準色(x=0.300、y=0.310)との距離を算出して色度差Δxyを算出した。
 Δx=基準座標(x=0.300)−測定座標(x)
 Δy=基準座標(y=0.310)−測定座標(y)
 Δxy=(Δx+Δy1/2
 算出されたΔxyを、下記の基準で評価した。
 ◎:         Δxy < 0.005
 ○: 0.005 ≦ Δxy < 0.010
 ×: 0.010 ≦ Δxy
 (14−2)耐久性試験による色度差
 評価対象のフィルムを組み込んだ状態で上記のバックライトを点灯したさせたまま3000時間経時させる耐久性試験を行った。耐久性試験前の平均色度(x、y)と耐久性試験後の平均色度(x、y)との距離を下記式で算出し評価した。
 Δx=耐久性試験前座標(x)−耐久性試験後座標(x)
 Δy=耐久性試験前座標(y)−耐久性試験後座標(y)
 Δxy=(Δx+Δy1/2
 算出されたΔxyを、下記の基準で評価した。
 ◎:         Δxy < 0.005
 ○: 0.005 ≦ Δxy < 0.010
 ×: 0.010 ≦ Δxy
(14−3)C光源による色度
 色差計(日本電飾製SZS−Σ90 COLOR MEASURING SYSTEM)にて、C光源を用いて測定した。
(15)光線反射率
 分光光度計(島津製作所製UV−3101PC)に積分球を取り付け、BaSO白板を100%とした時の光線反射率を波長550nmで測定した。
(16)塗膜の成分と白色フィルム
 塗膜の成分は、以下のとおりである。表中、「重量%」を「wt%」と表記することがある。
 <透明粒子・突起形成物質>
MBX−50SS:
 積水化成品工業社製 平均粒径50μmの透明アクリル粒子
MBX−30SS:
 積水化成品工業社製 平均粒径30μmの透明アクリル粒子
MBX−20SS:
 積水化成品工業社製 平均粒径20μmの透明アクリル粒子
MBX−15SS:
 積水化成品工業社製 平均粒径15μmの透明アクリル粒子
MBX−12SS:
 積水化成品工業社製 平均粒径12μmの透明アクリル粒子
MBX−10SS:
 積水化成品工業社製 平均粒径10μmの透明アクリル粒子
MBX−50:
 積水化成品工業社製 平均粒径50μmの透明アクリル粒子
MBX−30:
 積水化成品工業社製 平均粒径30μmの透明アクリル粒子
MBX−20:
 積水化成品工業社製 平均粒径20μmの透明アクリル粒子
MBX−15:
 積水化成品工業社製 平均粒径15μmの透明アクリル粒子
MBX−12:
 積水化成品工業社製 平均粒径12μmの透明アクリル粒子
MBX−8:
 積水化成品工業社製 平均粒径8μmの透明アクリル粒子
MBX−5:
 積水化成品工業社製 平均粒径5μmの透明アクリル粒子
J−120:
 Potters−Ballotini社製 平均粒径105μmの透明ガラス粒子
MX−1000:
 綜研化学社製 平均粒径10μmの透明アクリル粒子
MX−150:
 綜研化学社製 平均粒径2μmの透明アクリル粒子
MR−20G:
 綜研化学社製 平均粒径20μmの透明架橋アクリル粒子
MR−10G:
 綜研化学社製 平均粒径10μmの透明架橋アクリル粒子
 <バインダー>
S2740:     日本触媒社製 ユーダブルS2740
 固形分のアクリル樹脂50重量%と揮発性の有機溶剤50重量%からなるアクリルバインダー
A807BA:    DIC社製 アクリディックA807BA
 固形分のアクリル樹脂50重量%と揮発性の有機溶剤50重量%からなるアクリルバインダー
 <架橋剤>
HL:        日本ポリウレタン工業社 コロネートHL
 固形分の架橋剤75重量%と揮発性の有機溶剤25重量%からなる架橋剤
 <蛍光体>
OB−1:      イーストマン社製 イーストブライトOB−1
グリーン850:   BASF社製 ルモゲングリーン850
Uvitex−OB: チバガイギー社製 Uvitex−OB
 <溶剤>
MEK:       メチルエチルケトン
 実施例および比較例に特に記載がない限り、白色フィルムとして、ボイド形成剤として硫酸バリウム粒子を含有するポリエステル組成物からなる反射層とポリエステルからなる支持層との合計2層から構成されたフィルム総厚み225μmの白色フィルム(帝人デュポンフィルム製 テイジンテトロンUX02−225 反射層の反射率98.5%)を用いた。
 実施例1−1
 白色フィルムの反射層のうえに、ダイコーティング装置にて、下記の調液レシピに示す組成からなる塗液を、wet厚み20g/mの塗布量で塗布した後、オーブン内にて乾燥して反射フィルムを得た。
調液レシピ1−1)
・突起形成物質:   積水化成品工業社 MBX−20SS (38重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (20重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 実施例1−2
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み10g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−2)
・突起形成物質:   積水化成品工業社 MBX−10SS (30重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (28重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸エチル             (40重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
  実施例1−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み25g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−3)
・突起形成物質:   積水化成品工業社 MBX−30SS (32重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     メチルエチルケトン         (40重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 実施例1−4
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み30g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−4)
・突起形成物質:   積水化成品工業社 MBX−50SS (25重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (38重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸エチル             (34重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 実施例1−5
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み15g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−5)
・突起形成物質:   積水化成品工業社 MBX−15SS (19重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (37重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(4重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 実施例1−6
 白色フィルムの反射層のうえ全面に隙間なく四角錐型の突起を形成した。すなわち、四角錐の形状になるようSUS製の金型に下記の調液レシピに示す組成からなる塗液を流し込み、そのうえに白色フィルムを密着させ、高圧水銀ランプ(ハリソン東芝ライティング製トスキュアー)にてUV光を照射して塗液を硬化させ、100℃のオーブンにて乾燥させて、白色フィルムの反射面の全面に四角錐を形成して反射フィルムを得た。反射フィルムの大きさは、相対輝度の評価に用いるソニー(株)製32インチテレビ(ブラビアKDL−32V2500)のバックライトの反射フィルムの大きさに合わせた。四角推型の突起の形成に用いた金型の四角推部分の模式図を図1に示す。
調液レシピ1−6) 紫外線硬化樹脂
・ダイセルUC社 EB3700
 (ビスフェノールAタイプエポキシアクリレート)     (25重量%)
・新中村化学社 BPE200
 (エチレンオキシド付加ビスフェノールAメタクリルエステル)(8重量%)
・第一製薬工業社 BR−31
 (トリブロモフェノキシエチルアクリレート)       (42重量%)
・東亜合成社 M−110
 (エチレンオキシドを反応させたp−クミルフェノールの(メタ)アクリレ
ート)                           (8重量%)
・BASF製LR8893(ラジカル発生剤)         (1重量%)
・メチルエチルケトン                   (16重量%)
 評価結果を表1−3に示す。
 実施例1−7
 白色フィルム上に、実施例1−6における調液レシピ6の組成の塗液を、ダイコーティング装置にてwet塗布量15g/mの塗布量で塗工後、フィルムの塗工面に、図2に示すプリズム状の凹凸を設けたニップローラーを用いて塗布層に凹凸を形成した状態で、高圧水銀ランプ(ハリソン東芝ライティング製トスキュアー)にてUV光を照射して硬化させ、100℃のオーブンにて乾燥してプリズム形状を作成した。
 なお、この実施例での相対輝度の測定においては、プリズムの流れ方向がバックライトの光源の冷陰極管と平行になるように反射フィルムを設置した。
 評価結果を表1−3に示す。
 実施例1−8
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み15g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−8)
・突起形成物質:   積水化成品工業社 MBX−20SS (38重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (20重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・蛍光体:   イーストマン社 イーストブライトOB−1(3.4重量%)
・有機溶剤:     酢酸ブチル           (36.6重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 実施例1−9
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み15g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−9)
・突起形成物質:   積水化成品工業社 MBX−20SS (38重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (20重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・蛍光体:      BASF社 ルモゲングリーン850(2.3重量%)
・有機溶剤:     酢酸ブチル           (37.7重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 実施例1−10
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み15g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−10)
・突起形成物質:   積水化成品工業社 MBX−20SS (38重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (20重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・蛍光体:      チバガイギー社 Uvitex−OB(2.3重量%)
・有機溶剤:     酢酸ブチル           (37.7重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 比較例1−1
 白色フィルム上に塗液を塗布せずにフィルムを評価した。評価結果を表1−3に示す。
 比較例1−2
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み40g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−7)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (57重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 比較例1−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み2g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−8)
・突起形成物質:   綜研化学社 MX−150      (30重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (27重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 比較例1−4
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み80g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−8)
・突起形成物質:   Potters−Ballotini社 J−120
                             (30重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (27重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル社            (40重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 比較例1−5
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み40g/mの塗布量で塗布する他は実施例1−1と同様にして反射フィルムを得た。
調液レシピ1−9)
・突起形成物質:   積水化成品工業社 MBX−50    (3重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(50重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (44重量%)
 得られた反射フィルム塗膜の組成を表1−2に、評価結果を表1−3に示す。
 比較例1−6
 白色フィルムの反射層のうえに設けるプリズムの形状を図3に示す形状に変更した他は、実施例1−6と同様して反射層にプリズムを設けた反射フィルムを得た。評価結果を表1−3に示す。
 比較例1−7
 白色フィルムの反射層のうえに設けるプリズムの形状を図4に示す形状に変更した他は、実施例1−7と同様に表面に加工しフィルムを得た。評価結果を表1−3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例2−1
 白色フィルムの反射層のうえに、ダイコーティング装置にて、下記の調液レシピに示す組成からなる塗液を、wet厚み25g/mの塗布量で塗布した後、オーブン内にて乾燥して反射フィルムを得た。
調液レシピ2−1)
・透明粒子:     積水化成品工業社 MBX−30SS (35重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (23重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 実施例2−2
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み12g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−2)
・透明粒子:     積水化成品工業社 MBX−15SS (35重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (23重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 実施例2−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み40g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−3)
・透明粒子:     積水化成品工業社 MBX−50SS (32重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 実施例2−4
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み10g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−4)
・透明粒子:     積水化成品工業社 MBX−12SS (38重量%)
・アクリルバインダー:日本触媒社  ユーダブルS2740 (25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸エチル             (34重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 実施例2−5
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み7g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−5)
・透明粒子:     積水化成品工業社 MBX−10SS (19重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (37重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(4重量%)
・有機溶剤:     酢酸エチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 実施例2−6
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み8g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−6)
・透明粒子:     綜研化学社 MX−1000     (40重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     メチルエチルケトン         (33重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 比較例2−1
 白色フィルム上に塗液を塗布せずにフィルムを評価した。評価結果を表2−3に示す。
 比較例2−2
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み40g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−7)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (57重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 比較例2−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み2g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−8)
・粒子:       綜研化学社 MX−150      (30重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (27重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 比較例2−4
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み80g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−9)
・粒子:       Potters−Ballotini社 J−120
                             (30重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (27重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 比較例2−5
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み40g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−10)
・粒子:       積水化成品工業社 MBX−50    (3重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(50重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (44重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
 比較例2−6
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、wet厚み8g/mの塗布量で塗布する他は実施例2−1と同様にして反射フィルムを得た。
調液レシピ2−11)
・粒子:       積水化成品工業社 MBX−8     (1重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(56重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表2−2に、評価結果を表2−3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例3−1
 テレフタル酸ジメチル132重量部、イソフタル酸ジメチル18重量部(ポリエステルの全ジカルボン酸成分を基準に12モル%)、エチレングリコール98重量部、ジエチレングリコール1.0重量部、酢酸マンガン0.05重量部、酢酸リチウム0.012重量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150~235℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03重量部、二酸化ゲルマニウム0.04重量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.5mmHgまで減圧するとともに290℃まで昇温し、重縮合反応を行ないポリエステルを得た。このポリエステルに平均粒径1.2μmの硫酸バリウム粒子を添加して、硫酸バリウム粒子を4重量%含有する支持層用のポリエステル組成物を得た。同じポリエステルに平均粒径1.2μmの硫酸バリウム粒子および蛍光体を添加して、硫酸バリウム粒子を47重量%および緑色発光無機蛍光体KX732A(化成オプトニクス社製)を5.5重量%含有する白色反射層用のポリエステル組成物を得た。
 これらのポリエステル組成物を用い、それぞれ270℃に加熱された2台の押出機に供給し、支持層用のポリエステル組成物と白色反射層用のポリエステル組成物とを、反射層/支持層の層構成となるような2層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを95℃に加熱された雰囲気中で長手方向(縦方向)に2.9倍に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き120℃に加熱された雰囲気中で長手方向に垂直な方向(横方向)に3.6倍に延伸した。その後テンター内で215℃の温度で熱固定を行い、その後、縦方向に0.5%、横方向に2.0%弛緩を行い、室温まで冷やして、二軸延伸積層フィルムである白色基材フィルムを得た。この白色基材フィルムの厚みは225μm、反射層の反射率は98.7%であった。
 この後、バーティング装置にて下記のレシピにて配合した塗液を白色反射層側にwet塗布量で25g/m塗布し、その後オーブン内にて乾燥して反射フィルムを得た。透明粒子の粒径とアスペクト比を表3−1にまとめて示す。
調液レシピ3−1)
・透明粒子:     積水化成品工業社 MBX−30   (35重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (23重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートH (2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。
 実施例3−2
 塗液を下記の調液レシピに示す組成からなる塗液に変更する他は実施例3−1と同様にして反射フィルムを得た。
調液レシピ3−2)
・透明粒子:     積水化成品工業社 MBX−15   (35重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (23重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。
 実施例3−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更する他は実施例3−1と同様にして反射フィルムを得た。
調液レシピ3−3)
・透明粒子:     積水化成品工業社 MBX−50   (32重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。
 実施例3−4
 塗液を下記の調液レシピに示す組成からなる塗液に変更する他は実施例3−1と同様にして反射フィルムを得た。
調液レシピ3−4)
・透明粒子:     積水化成品工業社 MBX−12   (38重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸エチル             (34重量%)
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。
 実施例3−5
 塗液を下記の調液レシピに示す組成からなる塗液に変更する他は実施例3−1と同様にして反射フィルムを得た。
調液レシピ3−5)
・透明粒子:     積水化成品工業社 MBX−5    (19重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (37重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(4重量%)
・有機溶剤:     酢酸エチル             (40重量%)
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。
 実施例3−6
 白色基材フィルムの白色反射層に添加する蛍光体を緑色発光無機蛍光体2210(化成オプトニクス社製)2.5重量%に変更した以外は、実施例3−2と同様にして反射フィルムを得た。
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。
 実施例3−7
 白色基材フィルムの白色反射層に添加する蛍光体を有機蛍光増白剤OB−1(イーストマン社製)0.1重量%に変更した以外は実施例3−2と同様にして反射フィルムを得た。
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。
 比較例3−1
 白色基材フィルムの白色反射層に蛍光体を添加しない以外は実施例3−1と同様にして白色基材フィルムを得て、白色基材フィルムに塗液を塗布せずに、白色基材フィルムを評価した。評価結果を表3−3に示す。
 比較例3−3
 白色基材フィルムの白色反射層に蛍光体を添加しないことおよび塗液を下記の調液レシピに示す組成からなる塗液に変更すること以外は実施例3−2と同様にして反射フィルムを得た。
調液レシピ3−6)
・透明粒子:     積水化成品工業社 MBX−15   (10重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (48重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。着色による色ズレは小さいものの、輝度の上昇が小さかった。
 比較例3−4
 白色基材フィルムの白色反射層に蛍光体を添加しないことおよび塗液を下記の調液レシピに示す組成からなる塗液に変更すること以外は実施例3−2と同様にして反射フィルムを得た。
・透明粒子:     積水化成品工業社 MBX−15    (2重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (56重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。着色による色ズレは小さいものの、輝度の上昇が小さかった。
 比較例3−5
 白色基材フィルムに塗液を塗布しない状態で実施例3−2の白色基材フィルムを評価した。評価結果を表3−3に示す。着色による色ズレは小さいものの、輝度の上昇が小さかった。
 比較例3−6
 白色基材フィルムに塗液を塗布しない状態で実施例3−6の白色基材フィルムを評価した。評価結果を表3−3に示す。着色による色ズレは小さいものの、輝度の上昇が小さかった。
 比較例3−7
 白色基材フィルムに塗液を塗布しない状態で実施例3−7の白色基材フィルムを評価した。評価結果を表3−3に示す。着色による色ズレは小さいものの、輝度の上昇が小さかった。
 比較例3−8
 白色基材フィルムの反射層に添加する緑色発光無機蛍光体KX732Aの添加量を17重量%に変更する以外は比較例3−5と同様にして反射フィルムを得た。得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。輝度上昇は大きいものの、着色による色ズレが大きく、実用上使用困難であった。
 比較例3−9
 白色基材フィルムの反射層に添加する緑色発光無機蛍光体2210の添加量を8重量%に変更する以外は比較例3−5と同様にして反射フィルムを得た。得られた反射フィルム塗膜の組成を表3−2に、評価結果を表3−3に示す。輝度上昇は大きいものの、着色による色ズレが大きく、実用上使用困難であった。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例4−1
 白色フィルムの反射層のうえに、ダイコーティング装置にて、下記の調液レシピに示す組成からなる塗液を、乾燥後のバインダー厚みが4μmとなるように塗布した後、オーブン内にて乾燥して反射フィルムを得た。
調液レシピ4−1)
・透明粒子:     積水化成品工業社 MBX−15SS (35重量%)
・蛍光体:      化成オプトニクス社 KX−732A (10重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (23重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (30重量%)
 得られた反射フィルム塗膜の組成を表4−2に、評価結果を表4−3に示す。
 実施例4−2
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、乾燥後のバインダー厚みが8μmとなるように塗布する他は実施例4−1と同様にして反射フィルムを得た。
調液レシピ4−2)
・透明粒子:     積水化成品工業社 MBX−50SS (32重量%)
・蛍光体:      化成オプトニクス社 KX−732A (10重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (30重量%)
 得られた反射フィルム塗膜の組成を表4−2に、評価結果を表4−3に示す。
 実施例4−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更して塗布する他は実施例4−1と同様にして反射フィルムを得た。
調液レシピ4−3)
・透明粒子:     綜研化学社 MX−1000     (40重量%)
・蛍光体:      化成オプトニクス社 2210     (5重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (25重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     メチルエチルケトン         (28重量%)
 得られた反射フィルム塗膜の組成を表4−2に、評価結果を表4−3に示す。
 参考例4−1
 塗液を下記の調液レシピに示す組成からなる塗液に変更して塗布する他は実施例4−1と同様にして反射フィルムを得た。
調液レシピ4−4)
・透明粒子:     積水化成品工業社 MBX−15SS( 35重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (23重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(2重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表4−2に、評価結果を表4−3に示す。
 比較例4−4
 塗液を下記の調液レシピに示す組成からなる塗液に変更して塗布する他は実施例4−1と同様にして反射フィルムを得た。
調液レシピ4−5)
・蛍光体:      化成オプトニクス社 KX−732A (10重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (57重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (30重量%)
 得られた反射フィルム塗膜の組成を表4−2に、評価結果を表4−3に示す。
 比較例4−5
 塗液を下記の調液レシピに示す組成からなる塗液に変更して塗布する他は実施例4−1と同様にして反射フィルムを得た。
調液レシピ4−6)
・透明粒子:     積水化成品工業社 MBX−15SS  (3重量%)
・蛍光体:      化成オプトニクス社 2210     (5重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(50重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(3重量%)
・有機溶剤:     酢酸ブチル             (39重量%)
 得られた反射フィルム塗膜の組成を表4−2に、評価結果を表4−3に示す。
 比較例4−6
 白色フィルム上に塗液を塗布せずにフィルムを評価した。評価結果を表4−3に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 実施例5−1
 白色フィルムの反射層のうえに、ダイコーティング装置にて、下記の調液レシピに示す組成からなる塗液を、乾燥後のバインダー厚みが8μmとなるように塗布した後、オーブン内にて乾燥して反射フィルムを得た。
調液レシピ5−1)
・透明粒子:     積水化成品工業社 MBX−12   (35重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (21重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(4重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表5−2に、評価結果を表5−3に示す。
 実施例5−2
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、乾燥後のバインダー厚みが10μmとなるように塗布する他は実施例5−1と同様にして反射フィルムを得た。
調液レシピ5−2)
・透明粒子:     積水化成品工業社 MBX−15   (35重量%)
・アクリルバインダー:DIC社 アクリディックA807BA(21重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(4重量%)
・有機溶剤:     メチルエチルケトン         (40重量%)
 得られた反射フィルム塗膜の組成を表5−2に、評価結果を表5−3に示す。
 実施例5−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、乾燥後のバインダー厚みが14μmとなるように塗布する他は実施例5−1と同様にして反射フィルムを得た。
調液レシピ5−3)
・透明粒子:     積水化成品工業社 MBX−20   (35重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (21重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(4重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表5−2に、評価結果を表5−3に示す。
 比較例5−1
 白色フィルム上に塗液を塗布せずにフィルムを評価した。評価結果を表5−3に示す。
 比較例5−3
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、乾燥後のバインダー厚みが6μmとなるように塗布する他は実施例5−1と同様にして反射フィルムを得た。
調液レシピ5−4)
・透明粒子:     綜研化学社 MR−10G      (15重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (37重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(8重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表5−2に、評価結果を表5−3に示す。
 比較例5−5
 塗液を下記の調液レシピに示す組成からなる塗液に変更し、乾燥後のバインダー厚みが14μmとなるように塗布する他は実施例5−1と同様にして反射フィルムを得た。
調液レシピ5−5)
・透明粒子:     綜研化学社 MR−20G      (15重量%)
・アクリルバインダー:日本触媒社 ユーダブルS2740  (37重量%)
・架橋剤:      日本ポリウレタン工業社 コロネートHL(8重量%)
・有機溶剤:     酢酸ブチル             (40重量%)
 得られた反射フィルム塗膜の組成を表5−2に、評価結果を表5−3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Hereinafter, the present invention will be described in detail by way of examples. Measurement and evaluation were performed by the following methods.
(1) Relative brightness
The brightness of the display device when used as a reflector in a liquid crystal display device was evaluated. Remove the reflective film of the backlight of the 32-inch television (BRAVIA KDL-32V2500) manufactured by Sony Corporation, install the film to be evaluated, and use a luminance meter (Model MC-940, manufactured by Otsuka Electronics) The luminance was measured at a measurement distance of 500 mm from the center in front. The relative luminance was calculated by the following formula.
Relative brightness
== (Brightness of film to be evaluated) / (Brightness of reference film) × 100 (%)
The film used as the reference film differs depending on the table on which the evaluation results are described. The following films were used as reference films.
Table 1: Film of Comparative Example 1-1 having no transparent protrusions.
Table 2: Film of Comparative Example 2-1 without projections made of transparent particles.
Table 3: Film of Comparative Example 3-1, which is not provided with protrusions made of transparent particles.
Table 4: Film of Reference Example 1-1 in which the binder of the coating film does not contain a phosphor.
Table 5: Film of Comparative Example 5-1, which is not provided with protrusions made of transparent particles.
(2) Transparent protrusion
(2-1) Film coverage by transparent protrusions
A sample was cut out using a microtome so that the thickness direction of the film was a cut surface. This slice sample was observed at a magnification of 3000 times using a Hitachi S-4700 field emission scanning electron microscope. The measurement area of the total length of 6 mm of the measurement area of 3 mm length in each of the two orthogonal directions in the film plane is observed, and the lengths of the portions not covered with the transparent protrusions in the measurement area are integrated. Obtained by the formula.
Coverage
== (6 mm- (integrated length of the portion not covered with the transparent protrusion (mm)))
/ 6mm x 100 (%)
(2-2) Transparent protrusion height
Using the film surface as a reference surface, the heights of the vertices of 20 arbitrary transparent protrusions were measured, and the average value of these was taken as the height of the transparent protrusions. In addition, when the transparent protrusion was formed with transparent particles and the transparent particles were buried in the binder, the surface of the binder was used as the reference surface. The height was measured by cutting a section sample from the film using a microtome, and observing and photographing the sample at 300 times using an optical microscope.
(3) Transparent particles that form protrusions
(3-1) Average particle size of transparent particles
Using an S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd., an average particle size was determined by arbitrarily measuring 100 particles (raw material) before being added to the resin at a magnification of 1000 times. When the particles were not spherical, (major axis + minor axis) / 2 was defined as the average particle size.
(3-2) Aspect ratio of transparent particles
Using an S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd., 30 exposed particles were arbitrarily observed at a magnification of 500 times, and the average value was calculated from the values of the major axis and minor axis according to the following formula.
Aspect ratio = major axis / minor axis
(3-3) D50 of transparent particles
Using a particle size distribution meter (LA-950, manufactured by Horiba, Ltd.), the particle size distribution of the transparent particles of the raw material was obtained, and the particle size at which the passing percentage was 50% by weight was defined as D50.
(3-4) D10 / D90 of transparent particles
Using a particle size distribution meter (LA-950, manufactured by HORIBA, Ltd.), the particle size distribution of the transparent particles of the raw material is obtained, and the particle diameter at which the passing percentage is 10 wt% is D10, and the passing percentage is 90 wt%. The particle diameter was set to D90, and D10 / D90 was calculated.
(4) Average particle size of inorganic and organic particles of white film
The average particle size of the inorganic and organic particles of the white film was determined by obtaining the particle size distribution of the raw material particles with a particle size distribution meter (LA-950, manufactured by HORIBA, Ltd.), and the particle size at d50 was defined as the average particle size.
(5) Coating thickness
The cross section of the film sample was observed and photographed with a digital microscope (HIROX Co. Ltd., HI-SCOPE Advanced KH-3000) at a magnification of 5 times, the thickness of the binder was judged from the photograph, and 10 points were arbitrarily measured. Their average value was determined.
(6) Film thickness
(6-1) Film thickness
The film sample was measured for 10-point thickness using an electric micrometer (K-402B, manufactured by Anritsu), and the average value was defined as the film thickness.
(6-2) Thickness of each layer of film
The sample was cut into a triangle, fixed in an embedding capsule, and then embedded in an epoxy resin. And after making the cross section parallel to a vertical direction into a thin film section with a microtome (ULTRACUT-S), the embedded sample was observed and photographed using an optical microscope, and the thickness ratio of each layer was measured from the photograph, and the entire film The thickness of each layer was determined by calculating from the thickness.
(7) Exposure rate of transparent particles
Section sample 1 and section sample 2 were cut out from the film using a microtome. The section sample 1 is a section sample cut so that one direction randomly selected in the film plane and the thickness direction of the film are cut surfaces, and the section sample 2 is a random sample selected in the section sample 1. It is the section | slice sample cut out so that the direction orthogonal to a direction and the thickness direction may become a cut surface.
S-4700 manufactured by Hitachi, Ltd., for a measurement area of 6 mm in total including an area of 3 mm in the length of the coating film surface of the binder of the section sample 1 and an area of 3 mm in length of the coating film surface of the binder of the section sample 2 Observation was performed at a magnification of 3000 times using a field emission scanning electron microscope.
As for the exposure rate, when a straight line passing through the center of the cross section of the transparent particle in the cut surface of the slice sample and perpendicular to the coating surface of the film is drawn, this straight line intersects the surface of the transparent particle in the cut surface of the film slice. Of the two points, S is the point on the exposed surface, T is the point on the unexposed surface, and B is the point where the straight line intersects the coating surface of the binder. (Distance between S and B) / (Distance between S and T)
That is, the exposure rate (%) is defined by the following formula.
Exposure rate
== (Distance between S and B) / (Distance between S and T) × 100 (%)
The center of the cross section of the transparent particle in the cut surface is the center of the circle of the cross section when the particle is spherical, and the center of gravity of the cross section when the particle is non-spherical.
(8) Film surface coverage with transparent particles
Evaluation was made on the section samples 1 and 2 obtained in (7) above.
S-4700 manufactured by Hitachi, Ltd., for a measurement area of 6 mm in total including an area of 3 mm in the length of the coating film surface of the binder of the section sample 1 and an area of 3 mm in length of the coating film surface of the binder of the section sample 2 Observation was performed at a magnification of 3000 times using a field emission scanning electron microscope.
The coverage was calculated by the following formula by integrating the lengths of the film surface portions not covered with the transparent particles in the measurement region within the cut surface of the section sample (see FIG. 1).
Coverage
= (6 mm- (integrated length of the portion not covered with transparent particles (mm)))
/ 6mm x 100 (%)
(9) Stretchability
Whether the film could be stably formed when stretched 2.5 to 3.4 times in the vertical direction and 3.5 to 3.7 times in the horizontal direction to form a film was evaluated and evaluated according to the following criteria.
○: Stable film formation for 1 hour or more
×: Cutting occurs within 1 hour, and stable film formation is not possible
(10) Yellowing over time
The film sample was irradiated with a high-pressure mercury lamp (“Toscure 401” manufactured by Harrison Toshiba Lighting, with a glass filter), and the color change of the sample was evaluated. The irradiation time in this evaluation was 50 hours, and the color change before and after the irradiation was evaluated. Irradiance by irradiation is 18mW / cm2Met. In addition, when the structure of the film provided the reflective layer on one side of the support layer, measurement was performed from the reflective layer side.
Initial film hue (L1 *, A1 *, B1 *) And film color after irradiation (L2 *, A2 *, B2 *) Were measured with a color difference meter (Nippon Denshoku Industries SZS-Σ90 COLOR MEASURING SYSTEM), and a hue change dE * represented by the following formula was calculated and evaluated according to the following criteria.
DE*
= {(L1 *-L2 *)2+ (A1 *-A2 *)2+ (B1 *-B2 *)2}1/2
◎: dE*≤ 5
○: 5 <dE*≦ 10
△: 10 <dE*≦ 15
X: 15 <dE*
(11) Existence of excitation light emission by light of 400 to 450 nm and emission peak wavelength
Fluorescence spectrum was measured by making light incident on the surface coated with the phosphor. Measurement is performed using a fluorescence spectrophotometer F-4500 (manufactured by Hitachi) in the region of excitation wavelength of 400 to 450 nm and emission wavelength of 380 to 780 nm, and the presence or absence of fluorescence emission due to excitation is observed. The emission peak wavelength was determined from the spectrum.
(12) Presence or absence of particles falling
An acrylic plate having a right side with a thickness of 2 mm and a width of 20 mm was pressed vertically against the reflective surface of the film sample with a load of 300 g, and the distance of 30 mm was reciprocated 10 times. The adhesion state of the powder to the acrylic board at this time was confirmed visually and evaluated according to the following criteria.
○: Almost no generation of powder can be confirmed.
X: Generation of powder can be confirmed.
(13) Luminance improvement rate and luminance maintenance rate
(13-1) Brightness improvement rate as a reflector
Measured and evaluated by incorporating a film into the backlight. The backlight used was a direct type backlight (diagonal 20 inches) unit used for a liquid crystal television set (AQUAS-20V manufactured by SHARP) prepared for evaluation. Instead of the light reflection sheet originally incorporated, A film to be measured was incorporated. The measurement was performed by dividing the backlight surface into 4 × 2 × 2 sections and determining the front luminance after 1 hour of lighting.
Luminance was measured using BM-7 manufactured by Topcon Corporation. The measurement angle is 1 °, and the distance between the luminance meter and the backlight is 50 cm. The backlight surface was divided into four parts, a straight line passing through the center of the backlight surface and parallel to the width direction of the backlight surface, and a straight line passing through the center of the backlight surface and parallel to the vertical direction of the backlight surface. The center of each region was taken as the measurement point.
The luminance at each of the four measurement points was measured, and a simple average was obtained to obtain the average luminance. The luminance improvement rate was calculated by the following formula using the average luminance obtained with the film before and after the application of the fluorescent material.
Brightness improvement rate
= (Average luminance after fluorescent material coating) / (Average luminance before fluorescent material coating) x 100 (%)
(13-2) Luminance maintenance rate by durability test
A durability test was performed for 3000 hours with the above backlight turned on with the film to be evaluated incorporated. The luminance maintenance rate was calculated by the following formula.
Luminance maintenance rate
= (Average brightness after durability test) / (Luminance before durability test) x 100 (%)
(14) Chromaticity
(14-1) Chromaticity difference as a reflector
Measured and evaluated by incorporating a film into the backlight. The backlight used was a direct type backlight (diagonal 20 inches) unit used for a liquid crystal television set (AQUAS-20V manufactured by SHARP) prepared for evaluation. Instead of the light reflection sheet originally incorporated, A film to be measured was incorporated. The measurement was performed by dividing the backlight surface into 4 × 2 × 2 sections and determining the front luminance after 1 hour of lighting.
The chromaticity was measured using Topcon BM-7. The measurement angle is 1 °, and the distance between the luminance meter and the backlight is 50 cm. The backlight surface was divided into four parts, a straight line passing through the center of the backlight surface and parallel to the width direction of the backlight surface, and a straight line passing through the center of the backlight surface and parallel to the vertical direction of the backlight surface. The center of each region was taken as the measurement point.
Measure chromaticity (x, y) at four measurement points, and calculate a simple average to obtain average chromaticity (x, y). The distance between the average chromaticity (x, y) and the reference color (x = 0.300, y = 0.310) was calculated to calculate the chromaticity difference Δxy.
Δx = reference coordinate (x = 0.300) −measurement coordinate (x)
Δy = reference coordinate (y = 0.310) −measurement coordinate (y)
Δxy = (Δx2+ Δy2)1/2
The calculated Δxy was evaluated according to the following criteria.
◎ :: Δxy <0.005
○: 0.005 ≦ Δxy <0.010
×: 0.010 ≦ Δxy
(14-2) Chromaticity difference by durability test
A durability test was performed for 3000 hours with the above backlight turned on with the film to be evaluated incorporated. The distance between the average chromaticity (x, y) before the durability test and the average chromaticity (x, y) after the durability test was calculated and evaluated by the following formula.
Δx = coordinates before durability test (x)-coordinates after durability test (x)
Δy = coordinates before durability test (y)-coordinates after durability test (y)
Δxy = (Δx2+ Δy2)1/2
The calculated Δxy was evaluated according to the following criteria.
◎ :: Δxy <0.005
○: 0.005 ≦ Δxy <0.010
×: 0.010 ≦ Δxy
(14-3) Chromaticity by C light source
Measured using a C light source with a color difference meter (SZS-Σ90 COLOR MEASURING SYSTEM manufactured by Nippon Denshoku).
(15) Light reflectance
An integrating sphere was attached to a spectrophotometer (Shimadzu UV-3101PC), and BaSO4The light reflectance when the white plate was 100% was measured at a wavelength of 550 nm.
(16) Coating film components and white film
The components of the coating film are as follows. In the table, “wt%” may be expressed as “wt%”.
<Transparent particles / protrusions>
MBX-50SS:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 50 μm
MBX-30SS:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 30 μm
MBX-20SS:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 20 μm
MBX-15SS:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 15 μm
MBX-12SS:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 12 μm
MBX-10SS:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 10 μm
MBX-50:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 50 μm
MBX-30:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 30 μm
MBX-20:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 20 μm
MBX-15:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 15 μm
MBX-12:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 12 μm
MBX-8:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 8 μm
MBX-5:
Made by Sekisui Plastics Co., Ltd. Transparent acrylic particles with an average particle size of 5 μm
J-120:
Transparent glass particles with an average particle size of 105 μm manufactured by Potters-Ballottini
MX-1000:
Made by Soken Chemical Co., Ltd. Transparent acrylic particles with an average particle size of 10 μm
MX-150:
Made by Soken Chemical Co., Ltd. Transparent acrylic particles with an average particle size of 2 μm
MR-20G:
Made by Soken Chemical Co., Ltd. Transparent cross-linked acrylic particles with an average particle size of 20 μm
MR-10G:
Made by Soken Chemical Co., Ltd. Transparent cross-linked acrylic particles with an average particle size of 10 μm
<Binder>
S2740: Nihon Shokubai Co., Ltd. U-Double S2740
Acrylic binder consisting of 50 wt% solid acrylic resin and 50 wt% volatile organic solvent
A807BA: DIC Corporation Acridic A807BA
Acrylic binder consisting of 50 wt% solid acrylic resin and 50 wt% volatile organic solvent
<Crosslinking agent>
HL: Nippon Polyurethane Industry Coronate HL
Crosslinking agent consisting of 75% by weight of solid content crosslinking agent and 25% by weight of volatile organic solvent
<Phosphor>
OB-1: East Bright OB-1 manufactured by Eastman
Green 850: BASF Rumogen Green 850
Uvitex-OB: Uvitex-OB manufactured by Ciba Geigy
<Solvent>
MEK: Methyl ethyl ketone
Unless otherwise specified in the Examples and Comparative Examples, the total film composed of a total of two layers, a white film, a reflective layer made of a polyester composition containing barium sulfate particles as a void forming agent, and a support layer made of polyester. A white film with a thickness of 225 μm (Teijin Tetron UX02-225, manufactured by Teijin DuPont Films, reflectivity of reflection layer: 98.5%) was used.
Example 1-1
On the reflective layer of the white film, a coating solution having the composition shown in the following preparation recipe is applied with a die coating apparatus to a wet thickness of 20 g / m.2After coating with the coating amount, a reflective film was obtained by drying in an oven.
Preparation recipe 1-1)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (20% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Example 1-2
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 10 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-2)
-Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-10SS (30% by weight)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (28% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
・ Organic solvent: ethyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Example 1-3
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 25 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-3)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-30SS (32% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
・ Organic solvent: methyl ethyl ketone (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Example 1-4
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 30 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-4)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-50SS (25% by weight)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (38% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: ethyl acetate (34% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Example 1-5
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-5)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-15SS (19% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (37% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (4% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Example 1-6
A quadrangular pyramid-shaped protrusion was formed on the entire surface of the white film with no gap. That is, a coating liquid having the composition shown in the following preparation recipe is poured into a SUS mold so as to form a quadrangular pyramid, and a white film is adhered to the SUS mold, and UV is applied with a high-pressure mercury lamp (Toscurer manufactured by Harrison Toshiba Lighting). The coating liquid was cured by irradiating light and dried in an oven at 100 ° C. to form a quadrangular pyramid on the entire reflective surface of the white film to obtain a reflective film. The size of the reflective film was adjusted to the size of the reflective film of the backlight of 32-inch television (BRAVIA KDL-32V2500) manufactured by Sony Corporation used for evaluation of relative luminance. FIG. 1 shows a schematic diagram of the square thrust portion of the mold used for forming the square thrust projection.
Preparation recipe 1-6) UV curable resin
・ Daicel UC EB3700
(Bisphenol A type epoxy acrylate) (25% by weight)
・ Shin Nakamura Chemical Co., Ltd. BPE200
(Ethylene oxide-added bisphenol A methacrylic ester) (8% by weight)
・ Daiichi Pharmaceutical Co., Ltd. BR-31
(Tribromophenoxyethyl acrylate) (42% by weight)
・ Toa Gosei Co., Ltd. M-110
((Meth) acrylate of p-cumylphenol reacted with ethylene oxide
E)) Service (8% by weight)
LR8883 (radical generator) manufactured by BASF (1% by weight)
-Methyl ethyl ketone (16% by weight)
Evaluation results are shown in Table 1-3.
Example 1-7
On a white film, a wet coating amount of 15 g / m is applied to the coating solution having the composition of the preparation recipe 6 in Example 1-6 using a die coating apparatus.2After coating at the coating amount, a high-pressure mercury lamp (Toscurer manufactured by Harrison Toshiba Lighting) with the coating layer formed with irregularities on the coated surface using the nip roller provided with prismatic irregularities as shown in FIG. Curing was performed by irradiating with UV light and drying in an oven at 100 ° C. to prepare a prism shape.
In the measurement of relative luminance in this example, a reflective film was installed so that the flow direction of the prism was parallel to the cold cathode tube of the light source of the backlight.
Evaluation results are shown in Table 1-3.
Example 1-8
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-8)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (20% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
-Phosphor: Eastman East Bright OB-1 (3.4% by weight)
・ Organic solvent: butyl acetate (36.6% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Example 1-9
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-9)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (20% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
-Phosphor: BASF Rumogen Green 850 (2.3% by weight)
・ Organic solvent: butyl acetate (37.7% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Example 1-10
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 15 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-10)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-20SS (38% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (20% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
-Phosphor: Ciba Geigy Uvitex-OB (2.3 wt%)
・ Organic solvent: butyl acetate (37.7% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Comparative Example 1-1
The film was evaluated without applying the coating solution on the white film. The evaluation results are shown in Table 1-3.
Comparative Example 1-2
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-7)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (57 wt%)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Comparative Example 1-3
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 2 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-8)
Protrusion forming material: Soken Chemical Co., Ltd. MX-150 (30% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Comparative Example 1-4
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, wet thickness 80g / m2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-8)
Protrusion forming material: Potters-Ballottini J-120
,,,,,,,,,,,,,, And,,,,,,,,,, 2015, 2015, 2015 will be: ······························· 50% (30% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
・ Organic solvent: Butyl acetate, Inc. (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Comparative Example 1-5
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m.2A reflective film was obtained in the same manner as in Example 1-1, except that the coating amount was as follows.
Preparation recipe 1-9)
Protrusion forming material: Sekisui Plastics Co., Ltd. MBX-50 (3% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (50% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (44% by weight)
The composition of the obtained reflective film coating film is shown in Table 1-2, and the evaluation results are shown in Table 1-3.
Comparative Example 1-6
A reflective film provided with a prism in the reflective layer was obtained in the same manner as in Example 1-6, except that the shape of the prism provided on the reflective layer of the white film was changed to the shape shown in FIG. The evaluation results are shown in Table 1-3.
Comparative Example 1-7
A film was obtained by processing the surface in the same manner as in Example 1-7 except that the shape of the prism provided on the reflective layer of the white film was changed to the shape shown in FIG. The evaluation results are shown in Table 1-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Example 2-1
On the reflective layer of the white film, a coating solution having the composition shown in the following preparation recipe is applied with a die coating apparatus to a wet thickness of 25 g / m.2After coating with the coating amount, a reflective film was obtained by drying in an oven.
Preparation recipe 2-1)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-30SS (35% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Example 2-2
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 12 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-2)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15SS (35% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Example 2-3
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-3)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-50SS (32% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Example 2-4
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 10 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-4)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-12SS (38% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: ethyl acetate (34% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Example 2-5
Change the coating liquid to a coating liquid with the composition shown in the following preparation recipe, wet thickness 7g / m2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-5)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-10SS (19% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (37% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (4% by weight)
・ Organic solvent: ethyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Example 2-6
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 8 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-6)
-Transparent particles: Soken Chemical Co., Ltd. MX-1000 (40% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
・ Organic solvent: methyl ethyl ketone (33% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Comparative Example 2-1
The film was evaluated without applying the coating solution on the white film. The evaluation results are shown in Table 2-3.
Comparative Example 2-2
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-7)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (57 wt%)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Comparative Example 2-3
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 2 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-8)
-Particles: Soken Chemical Co., Ltd. MX-150 (30% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Comparative Example 2-4
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, wet thickness 80g / m2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-9)
・ Particles: Potters-Ballottini J-120
,,,,,,,,,,,,,, And,,,,,,,,,, 2015, 2015, 2015 will be: ······························· 50% (30% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (27% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Comparative Example 2-5
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and wet thickness 40 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-10)
・ Particle: Sekisui Plastics Co., Ltd. MBX-50 (3% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (50% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (44% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Comparative Example 2-6
Change the coating liquid to a coating liquid having the composition shown in the following preparation recipe, and a wet thickness of 8 g / m.2A reflective film was obtained in the same manner as in Example 2-1, except that the coating amount was applied in the same manner as in Example 2-1.
Preparation recipe 2-11)
・ Particle: Sekisui Plastics Co., Ltd. MBX-8 (1% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (56% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Example 3-1
132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the total dicarboxylic acid component of the polyester), 98 parts by weight of ethylene glycol, 1.0 part by weight of diethylene glycol, 0.05 part by weight of manganese acetate, acetic acid 0.012 parts by weight of lithium was charged into a rectification column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction. After the methanol was distilled off, 0.03 part by weight of trimethyl phosphate and 0.04 part by weight of germanium dioxide were added, and the reaction product was transferred to the reactor. Next, while stirring, the pressure in the reactor was gradually reduced to 0.5 mmHg and the temperature was raised to 290 ° C. to carry out a polycondensation reaction to obtain polyester. Barium sulfate particles having an average particle diameter of 1.2 μm were added to this polyester to obtain a polyester composition for a support layer containing 4% by weight of barium sulfate particles. Barium sulfate particles having an average particle diameter of 1.2 μm and phosphors are added to the same polyester, and 47% by weight of barium sulfate particles and 5.5% by weight of green light emitting inorganic phosphor KX732A (made by Kasei Optonix) are contained. A polyester composition for a white reflective layer was obtained.
Using these polyester compositions, each was supplied to two extruders heated to 270 ° C., and the polyester composition for the support layer and the polyester composition for the white reflective layer were combined into the reflective layer / support layer layer. The two-layer feed block device was used to form the structure, and the sheet was formed into a sheet from a die while maintaining the laminated state. Furthermore, the unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 25 ° C. is stretched 2.9 times in the longitudinal direction (longitudinal direction) in an atmosphere heated to 95 ° C., and cooled by a roll group at 25 ° C. did. Subsequently, while holding both ends of the longitudinally stretched film with clips, the film was stretched 3.6 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 ° C. while being guided to a tenter. Thereafter, heat setting is carried out at a temperature of 215 ° C. in a tenter, and thereafter, 0.5% in the vertical direction and 2.0% in the horizontal direction are relaxed, cooled to room temperature, and a white base material that is a biaxially stretched laminated film A film was obtained. The white substrate film had a thickness of 225 μm, and the reflective layer had a reflectance of 98.7%.
After this, the coating liquid blended according to the following recipe in the barting apparatus is applied to the white reflective layer side at a wet coating amount of 25 g / m.2It was applied and then dried in an oven to obtain a reflective film. The particle size and aspect ratio of the transparent particles are summarized in Table 3-1.
Preparation recipe 3-1)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-30 (35% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate H (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
Example 3-2
A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe.
Preparation recipe 3-2)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15 (35% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
Example 3-3
A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe.
Preparation recipe 3-3)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-50 (32% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
Example 3-4
A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe.
Preparation recipe 3-4)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-12 (38% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: ethyl acetate (34% by weight)
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
Example 3-5
A reflective film was obtained in the same manner as in Example 3-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe.
Preparation recipe 3-5)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-5 (19% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (37% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (4% by weight)
・ Organic solvent: ethyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
Example 3-6
A reflective film was prepared in the same manner as in Example 3-2 except that the phosphor added to the white reflective layer of the white base film was changed to 2.5% by weight of the green light emitting inorganic phosphor 2210 (made by Kasei Optonix). Obtained.
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
Example 3-7
A reflective film was prepared in the same manner as in Example 3-2 except that the phosphor added to the white reflective layer of the white base film was changed to 0.1% by weight of organic fluorescent brightener OB-1 (Eastman). Obtained.
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3.
Comparative Example 3-1
A white base film was obtained in the same manner as in Example 3-1, except that no phosphor was added to the white reflective layer of the white base film, and the white base film was not coated with the coating liquid. Evaluated. The evaluation results are shown in Table 3-3.
Comparative Example 3-3
A reflective film is obtained in the same manner as in Example 3-2 except that no phosphor is added to the white reflective layer of the white base film and the coating liquid is changed to a coating liquid having the composition shown in the following preparation recipe. It was.
Preparation recipe 3-6)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15 (10% by weight)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (48% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3. Although the color shift due to coloring was small, the increase in luminance was small.
Comparative Example 3-4
A reflective film is obtained in the same manner as in Example 3-2 except that no phosphor is added to the white reflective layer of the white base film and the coating solution is changed to a coating solution having the composition shown in the following preparation recipe. It was.
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15 (2% by weight)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (56% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3. Although the color shift due to coloring was small, the increase in luminance was small.
Comparative Example 3-5
The white base film of Example 3-2 was evaluated without applying the coating liquid to the white base film. The evaluation results are shown in Table 3-3. Although the color shift due to coloring was small, the increase in luminance was small.
Comparative Example 3-6
The white base film of Example 3-6 was evaluated in a state where no coating liquid was applied to the white base film. The evaluation results are shown in Table 3-3. Although the color shift due to coloring was small, the increase in luminance was small.
Comparative Example 3-7
The white base film of Example 3-7 was evaluated without applying the coating liquid to the white base film. The evaluation results are shown in Table 3-3. Although the color shift due to coloring was small, the increase in luminance was small.
Comparative Example 3-8
A reflective film was obtained in the same manner as in Comparative Example 3-5 except that the amount of the green light emitting inorganic phosphor KX732A added to the reflective layer of the white base film was changed to 17% by weight. The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3. Although the increase in luminance was large, color misregistration due to coloring was large, making it difficult to use practically.
Comparative Example 3-9
A reflective film was obtained in the same manner as in Comparative Example 3-5 except that the amount of the green light emitting inorganic phosphor 2210 added to the reflective layer of the white base film was changed to 8% by weight. The composition of the obtained reflective film coating film is shown in Table 3-2 and the evaluation results are shown in Table 3-3. Although the increase in luminance was large, color misregistration due to coloring was large, making it difficult to use practically.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Example 4-1
On the reflective layer of the white film, with a die coating device, a coating solution having the composition shown in the following preparation recipe is applied so that the binder thickness after drying is 4 μm, and then dried in an oven. A reflective film was obtained.
Preparation recipe 4-1)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15SS (35% by weight)
・ Phosphor: Kasei Optonix KX-732A (10% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (30% by weight)
The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
Example 4-2
A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to the coating liquid having the composition shown in the following preparation recipe and the binder thickness after drying was 8 μm.
Preparation recipe 4-2)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-50SS (32% by weight)
・ Phosphor: Kasei Optonix KX-732A (10% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (30% by weight)
The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
Example 4-3
A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe and applied.
Preparation recipe 4-3)
-Transparent particles: Soken Chemical Co., Ltd. MX-1000 (40% by weight)
・ Phosphor: Kasei Optonics 2210 (5% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (25% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
・ Organic solvent: methyl ethyl ketone (28% by weight)
The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
Reference example 4-1
A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe and applied.
Preparation recipe 4-4)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15SS (35% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (23% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (2% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
Comparative Example 4-4
A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe and applied.
Preparation recipe 4-5)
・ Phosphor: Kasei Optonix KX-732A (10% by weight)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (57 wt%)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (30% by weight)
The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
Comparative Example 4-5
A reflective film was obtained in the same manner as in Example 4-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following preparation recipe and applied.
Preparation recipe 4-6)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15SS (3% by weight)
・ Phosphor: Kasei Optonics 2210 (5% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (50% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (3% by weight)
Organic solvent: butyl acetate (39% by weight)
The composition of the obtained reflective film coating film is shown in Table 4-2, and the evaluation results are shown in Table 4-3.
Comparative Example 4-6
The film was evaluated without applying the coating solution on the white film. The evaluation results are shown in Table 4-3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Example 5-1
On the reflective layer of the white film, a coating solution having the composition shown in the following preparation recipe is applied with a die coating apparatus so that the binder thickness after drying is 8 μm, and then dried in an oven. A reflective film was obtained.
Preparation recipe 5-1)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-12 (35% by weight)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (21% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (4% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 5-2, and the evaluation results are shown in Table 5-3.
Example 5-2
A reflective film was obtained in the same manner as in Example 5-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following liquid preparation recipe and the binder thickness after drying was 10 μm.
Preparation recipe 5-2)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-15 (35% by weight)
-Acrylic binder: DIC Corporation Acridic A807BA (21% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (4% by weight)
・ Organic solvent: methyl ethyl ketone (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 5-2, and the evaluation results are shown in Table 5-3.
Example 5-3
A reflective film was obtained in the same manner as in Example 5-1, except that the coating liquid was changed to the coating liquid having the composition shown in the following preparation recipe and the coating was dried so that the binder thickness after drying was 14 μm.
Preparation recipe 5-3)
・ Transparent particles: Sekisui Plastics Co., Ltd. MBX-20 (35% by weight)
-Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (21% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (4% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 5-2, and the evaluation results are shown in Table 5-3.
Comparative Example 5-1
The film was evaluated without applying the coating solution on the white film. The evaluation results are shown in Table 5-3.
Comparative Example 5-3
A reflective film was obtained in the same manner as in Example 5-1, except that the coating liquid was changed to a coating liquid having the composition shown in the following liquid preparation recipe and the binder thickness after drying was 6 μm.
Preparation recipe 5-4)
・ Transparent particles: Soken Chemical Co., Ltd. MR-10G (15% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (37% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (8% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 5-2, and the evaluation results are shown in Table 5-3.
Comparative Example 5-5
A reflective film was obtained in the same manner as in Example 5-1, except that the coating solution was changed to a coating solution having the composition shown in the following preparation recipe and the coating was applied so that the binder thickness after drying was 14 μm.
Preparation recipe 5-5)
-Transparent particles: Soken Chemical Co., Ltd. MR-20G (15% by weight)
Acrylic binder: Nippon Shokubai Co., Ltd. Udouble S2740 (37% by weight)
・ Crosslinking agent: Nippon Polyurethane Industry Co., Ltd. Coronate HL (8% by weight)
Organic solvent: butyl acetate (40% by weight)
The composition of the obtained reflective film coating film is shown in Table 5-2, and the evaluation results are shown in Table 5-3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 本発明の照明装置用反射フィルムは、照明装置の反射板として用いることができ、また、液晶表示装置のバックライトユニットの反射フィルムとして、特に、液晶テレビなどの表示装置の背面に光源を置くバックライト方式の液晶表示装置のバックライトユニットに用いる反射フィルムとして好適に用いることができる。 The reflective film for an illuminating device of the present invention can be used as a reflective plate for an illuminating device, and is also used as a reflective film for a backlight unit of a liquid crystal display device. It can be suitably used as a reflective film used in a backlight unit of a light-type liquid crystal display device.

Claims (8)

  1.  白色フィルムおよび該白色フィルムの表面に設けられた高さ3~50μmの透明な突起からなり、該白色フィルム表面の透明な突起による被覆率が50~100%であることを特徴とする照明装置用反射フィルム。 For a lighting device, comprising a white film and a transparent protrusion having a height of 3 to 50 μm provided on the surface of the white film, and the coverage by the transparent protrusion on the surface of the white film is 50 to 100% Reflective film.
  2.  透明な突起が透明粒子からなり、反射フィルムの表面において5~100%の露出率の透明粒子が50~100%の被覆率で白色フィルム表面を被覆している、クレーム1記載の反射フィルム。 The reflective film according to claim 1, wherein the transparent protrusions are made of transparent particles, and the transparent film having an exposure rate of 5 to 100% covers the surface of the white film with a coverage of 50 to 100% on the surface of the reflective film.
  3.  透明粒子がバインダーの塗膜によって白色フィルムの表面に支持されている、クレーム2記載の反射フィルム。 The reflective film according to claim 2, wherein the transparent particles are supported on the surface of the white film by a coating film of a binder.
  4.  透明粒子の平均粒径が3~50μmである、クレーム2記載の反射フィルム。 The reflective film according to claim 2, wherein the average particle diameter of the transparent particles is 3 to 50 μm.
  5.  透明粒子の体積50%粒径D50が3~50μm、かつ透明粒子の体積10%粒径D10と体積90%粒径D90との比D10/D90が0.30~0.98である、クレーム4記載の反射フィルム。 Claim 4 wherein the volume 50% particle diameter D50 of the transparent particles is 3 to 50 μm, and the ratio D10 / D90 of the volume 10% particle diameter D10 and the volume 90% particle diameter D90 of the transparent particles is 0.30 to 0.98. The reflective film as described.
  6.  バインダーの塗膜が蛍光体を含有するバインダー組成物からなり、該バインダー組成物における蛍光体の含有量が、バインダー組成物の合計重量を基準に1~20重量%である、クレーム3記載の反射フィルム。 The reflection according to claim 3, wherein the coating film of the binder comprises a binder composition containing a phosphor, and the phosphor content in the binder composition is 1 to 20% by weight based on the total weight of the binder composition. the film.
  7.  蛍光体が400~450nmの波長の光で励起し500~600nmの波長の光を発光する有機蛍光体である、クレーム7記載の反射フィルム。 The reflective film according to claim 7, wherein the phosphor is an organic phosphor that is excited by light having a wavelength of 400 to 450 nm and emits light having a wavelength of 500 to 600 nm.
  8.  照明装置が液晶表示装置のバックライトユニットである、クレーム1乃至7のいずれかに記載の反射フィルム。 The reflecting film according to any one of claims 1 to 7, wherein the lighting device is a backlight unit of a liquid crystal display device.
PCT/JP2009/064480 2008-08-13 2009-08-12 Reflective film for illuminating device WO2010018878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801314802A CN102124380A (en) 2008-08-13 2009-08-12 Reflective film for illuminating device
KR1020157036169A KR20160003894A (en) 2008-08-13 2009-08-12 Reflective film for illuminating device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-208530 2008-08-13
JP2008208530 2008-08-13
JP2008-208531 2008-08-13
JP2008208531A JP2010044238A (en) 2008-08-13 2008-08-13 Reflection film for liquid crystal display device
JP2008-208939 2008-08-14
JP2008208940 2008-08-14
JP2008208939 2008-08-14
JP2008-208940 2008-08-14
JP2008209794A JP5388505B2 (en) 2008-08-18 2008-08-18 Reflective film for liquid crystal display
JP2008-209794 2008-08-18

Publications (1)

Publication Number Publication Date
WO2010018878A1 true WO2010018878A1 (en) 2010-02-18

Family

ID=41669013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064480 WO2010018878A1 (en) 2008-08-13 2009-08-12 Reflective film for illuminating device

Country Status (4)

Country Link
KR (2) KR20160003894A (en)
CN (1) CN102124380A (en)
TW (1) TWI500883B (en)
WO (1) WO2010018878A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061586A1 (en) * 2015-10-08 2017-04-13 大日本印刷株式会社 Particles, optical sheet, screen, display device, particle inspection device, particle manufacturing device, particle inspection method, particle manufacturing method, screen inspection method, and screen manufacturing method
CN109814187B (en) * 2019-03-22 2020-11-10 宁波东旭成新材料科技有限公司 Optical reflection film
CN112013623A (en) * 2019-05-30 2020-12-01 青岛海尔电冰箱有限公司 Method and device for displaying state of food in refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239540A (en) * 1991-01-22 1992-08-27 Toray Ind Inc White polyester film
JP2002333510A (en) * 2001-05-08 2002-11-22 Keiwa Inc Reflection sheet and backlight unit using the same
WO2008053739A1 (en) * 2006-10-27 2008-05-08 Toray Industries, Inc. White polyester film for light reflective plate
JP2009020502A (en) * 2007-06-12 2009-01-29 Toray Ind Inc White reflection film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496323B2 (en) * 1991-01-22 2002-12-11 Toray Industries, Inc. Reflector for a surface light source
JPH1158574A (en) * 1997-08-28 1999-03-02 Sekisui Chem Co Ltd Method for forming fine particle layer
CN1475814A (en) * 2002-08-16 2004-02-18 惠和株式会社 Reflecting sheet and poor light assembly using sheet
JP2006120406A (en) * 2004-10-20 2006-05-11 Sumitomo Rubber Ind Ltd Lighting device
TWI274901B (en) * 2006-03-13 2007-03-01 Exploit Technology Co Ltd Oriented diffusion reflection sheet
KR101474890B1 (en) * 2006-06-23 2014-12-19 도레이 카부시키가이샤 White reflection film
CN101118291B (en) * 2006-08-04 2010-04-14 鸿富锦精密工业(深圳)有限公司 Pervasion piece
US7905650B2 (en) * 2006-08-25 2011-03-15 3M Innovative Properties Company Backlight suitable for display devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239540A (en) * 1991-01-22 1992-08-27 Toray Ind Inc White polyester film
JP2002333510A (en) * 2001-05-08 2002-11-22 Keiwa Inc Reflection sheet and backlight unit using the same
WO2008053739A1 (en) * 2006-10-27 2008-05-08 Toray Industries, Inc. White polyester film for light reflective plate
JP2009020502A (en) * 2007-06-12 2009-01-29 Toray Ind Inc White reflection film

Also Published As

Publication number Publication date
TWI500883B (en) 2015-09-21
KR20110044730A (en) 2011-04-29
KR20160003894A (en) 2016-01-11
CN102124380A (en) 2011-07-13
TW201015022A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
CN101529281B (en) White polyester film for light reflective plate
TWI354807B (en) Optical film
JP4618721B2 (en) Optical element, polarization plane light source using the same, and display device using the same
CN101542325B (en) White reflective film
KR100915242B1 (en) Reflector having high light diffusion
EP1487202A1 (en) Projection screen and projection system
US10670788B2 (en) Light diffusion film laminate for reflective display device and reflective display device including the same
KR20190053844A (en) LIGHT DIFFUSION FILM LAMINATE FOR REFLECTIVE DISPLAY DEVICE AND REFLECTIVE DISPLAY DEVICE
WO2003005072A1 (en) Light diffusing film
CN105409327A (en) Light extraction film, method for producing same, and surface light emitting body
JP6550992B2 (en) Quantum dot sheet, backlight and liquid crystal display
CN100492060C (en) Optical thin film with resin coating containing narrow particle size distributed organic particle
WO2010018878A1 (en) Reflective film for illuminating device
TWI449624B (en) Laminated film
KR20090080297A (en) Prism Complex Film
JP5098834B2 (en) White reflective film
JP5330072B2 (en) Reflective film for liquid crystal display
JP2008286907A (en) Laminate for reflection
JP2010108824A (en) Direct backlight
KR100980068B1 (en) Multi-functional optic film
JP2010044238A (en) Reflection film for liquid crystal display device
JP2006267892A (en) Optical element, polarization plane light source using the same, and display apparatus using the light source
JP2006243084A (en) Light diffusion plate
JP2010066760A (en) Reflective film for liquid crystal display device
JP2010043208A (en) Laminated film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131480.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107027576

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806766

Country of ref document: EP

Kind code of ref document: A1