WO2010018627A1 - Patient's condition notification system - Google Patents

Patient's condition notification system Download PDF

Info

Publication number
WO2010018627A1
WO2010018627A1 PCT/JP2008/064528 JP2008064528W WO2010018627A1 WO 2010018627 A1 WO2010018627 A1 WO 2010018627A1 JP 2008064528 W JP2008064528 W JP 2008064528W WO 2010018627 A1 WO2010018627 A1 WO 2010018627A1
Authority
WO
WIPO (PCT)
Prior art keywords
condition
patient
lamp
mers
load
Prior art date
Application number
PCT/JP2008/064528
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 志賀
忠幸 北原
諭 神子
直人 小島
志郎 福田
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to JP2009548515A priority Critical patent/JP4441586B1/en
Priority to PCT/JP2008/064528 priority patent/WO2010018627A1/en
Publication of WO2010018627A1 publication Critical patent/WO2010018627A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]

Definitions

  • the present invention relates to a patient condition notification system.
  • condition detection means such as a sphygmomanometer and an electrocardiograph
  • a nurse resident near the hospitalized patient is constantly monitored by a nurse resident near the hospitalized patient.
  • the anomaly alarm lamp placed near the patient's bed flashes, A sudden change in condition is immediately notified to the nurse by the abnormal signal output (see Patent Document 1).
  • Japanese Patent Laid-Open No. 9-38050 Japanese Patent Laid-Open No. 9-38050
  • the present invention has been made in view of the above circumstances, and provides a patient condition notification system capable of notifying a change in the condition of a patient at low cost and with high visibility by using existing lighting equipment. Is an exemplary problem.
  • a patient condition notification system as an exemplary aspect of the present invention includes a condition detection unit that detects a condition of a patient, a load power adjustment switch connected between a power source and an illumination lamp, Control means connected to the condition detection means and the load power adjustment switch, and for adjusting the brightness of the illumination lamp by changing the magnitude of the output voltage and the phase of the current of the load power adjustment switch based on the output signal from the condition detection means; It is characterized by having.
  • the load power adjustment switch has at least two reverse conducting semiconductor switches and a capacitor for accumulating the magnetic energy of the current at the time of current interruption and regenerating it to the illuminating lamp, and the gates of these reverse conducting semiconductor switches
  • the load power supplied to the illuminating lamp may be adjusted by controlling the phase.
  • the load power adjustment switch Since the brightness of the illuminating lamp is adjusted using the load power adjustment switch, there is no need to use an inverter circuit. Since the load power adjustment switch can be switched at zero voltage and zero current, the generation of harmonic noise is suppressed, and there is almost no adverse effect on precision equipment used in hospitals.
  • the condition detection means may be at least one of a sphygmomanometer, a pulse meter, an electrocardiograph, an electromyograph, an electroencephalograph, a respiratory detector, and an excretion detector.
  • condition detection means changes in the patient condition (blood pressure, pulse, electrocardiogram, myoelectricity, electroencephalogram, breathing, urine leakage and filth leakage) can be easily detected. And since the brightness
  • the patient condition notification system may further include condition determination means for determining an abnormal condition of the patient according to an output signal from the condition detection means, and outputting a condition abnormality signal indicating the condition abnormality when the condition is abnormal.
  • control means can be configured to adjust the brightness of the illuminating lamp according to the determination result (that is, abnormal / normal) by the condition deciding means, the condition of the patient for the nurse who visually recognizes the light / dark state of the illuminating lamp. It is easy to judge whether is normal or abnormal. For example, when it is normal (when the judgment result does not indicate an abnormality), the illumination lamp lights up at a normal brightness, and when it is abnormal (when the judgment result indicates an abnormality, the illumination lamp changes light and dark). By repeating, it can be judged at a glance whether the patient's condition is normal or abnormal.
  • the patient condition notification system may further include an abnormality notification means for notifying abnormality based on a condition abnormality signal.
  • notification by a separate abnormality notification means for example, voice notification at the nurse station, warning lamp notification, etc.
  • a separate abnormality notification means for example, voice notification at the nurse station, warning lamp notification, etc.
  • the present invention it is possible to notify a change in the condition of a patient at low cost and with high visibility by adjusting the brightness of an illumination lamp using existing lighting equipment. Since the brightness of the illuminating lamp is adjusted without using an inverter circuit, the generation of harmonic noise is suppressed, and there is almost no adverse effect on precision equipment used in hospitals.
  • FIG. 2A and FIG. 2B are diagrams for explaining MERS switching control by the control unit.
  • FIG. 3A and FIG. 3B are diagrams for explaining MERS switching control by the control unit.
  • FIG. 4A and FIG. 4B are diagrams for explaining MERS switching control by the control unit.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are diagrams for explaining operation results of the MERS embedded system. It is a graph which shows load voltage / rated voltage when changing gate phase angle (alpha). It is a figure which shows the other aspect of MERS. It is a figure which shows the other aspect of MERS. It is a block block diagram which shows schematic structure of the patient condition alerting
  • Ra Patient room Rb: Nurse station M: Patient 10: MERS embedded system 20: AC power supply 30: Magnetic energy regenerative switch (MERS) 32, 33, 34, 35, 36: Capacitor 40: Control unit (control means) 50: Inductive load 60: Lighting 70: Light control unit 72: Condition judging means 73: Receiver 74: Reference value 80: Pulse meter (condition detection means) 90: Abnormal alarm buzzer (abnormal alarm means) 100: Patient condition notification system SW1, SW2, SW3, SW4: Reverse conducting semiconductor switches D1, D2: Diodes
  • a patient condition notification system is connected between a power source and an illuminating lamp, and is output from the power source to the illuminating lamp.
  • the load power adjusting switch for adjusting the load power for lighting the illuminating lamp, and the load
  • a control unit that controls the power adjustment switch; and a condition detection unit that is connected to the control unit and detects the condition of the patient.
  • the load power adjustment switch is, for example, a magnetic energy regenerative switch (Magnetic Energy Recovery Switch: MERS) (hereinafter referred to as MERS).
  • MERS Magnetic Energy Recovery Switch
  • MERS for example, has four reverse-conduction-type elements that do not have reverse blocking capability, and can turn ON / OFF the current in both forward and reverse directions only by gate control, and the magnetic energy of the current when the current is cut off
  • a full bridge type MERS is disclosed.
  • an element capable of forward control such as a transistor having a power MOSFET or a diode connected in antiparallel.
  • the MERS is configured by connecting a bridge circuit composed of four semiconductor elements and a capacitor that absorbs and releases magnetic energy to the positive electrode and the negative electrode of the bridge circuit. And MERS can flow an electric current in either direction by controlling the gate phase of these four semiconductor elements.
  • MERS multi semiconductor elements located on a diagonal line among four semiconductor elements connected in a bridge form a pair, and the ON / OFF switching operation of the two pairs is performed in synchronization with the frequency of the power source. When one pair is on, the other pair is turned off. In addition, the capacitor repeatedly charges and discharges magnetic energy in accordance with the ON / OFF switching timing.
  • MERS controls the magnitude of the output voltage and the current phase of MERS by controlling the gate phase of two pairs of two semiconductor elements located on the diagonal line among the four semiconductor elements. It is possible to control arbitrarily.
  • the control unit also has a function of controlling the gate phase of the MERS in accordance with the detection result (output signal) from the condition detection means and adjusting the luminance of the illumination lamp. That is, a change in the condition of the patient can be notified to the outside by changing the luminance by changing the load power supplied to the illuminating lamp according to the condition of the patient.
  • MERS as a load power adjustment switch
  • a MERS embedded system in which MERS is connected in series between an AC power source and a dielectric load will be described as an example.
  • MERS can comprise an alternating current power supply device by incorporating it into an alternating current power source, and can constitute a MERS built-in load by incorporating it into an inductive load.
  • FIG. 1 is a diagram showing a basic configuration of the MERS embedded system 10.
  • the MERS embedded system 10 includes an AC power supply 20 and an inductive load 50 having inductance. As the inductive load 50, two 40 W fluorescent lamps are connected in parallel. MERS 30 is inserted between AC power supply 20 and inductive load 50.
  • the MERS embedded system 10 includes a control unit 40 that controls switching of the MERS 30.
  • the MERS 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss.
  • the MERS 30 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and an energy storage capacitor 32 that absorbs magnetic energy of a current flowing through the circuit when the bridge circuit is switched off. Prepare.
  • a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
  • the capacitor 32 is at a connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW3, and between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N). Further, there is an alternating current between the AC terminal at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW3.
  • the power supply 20 and the inductive load 50 are connected in series.
  • a first pair of reverse conducting semiconductor switches SW1 and SW2 located on the diagonal line disposed in the MERS 30 and a second pair of reverse conducting semiconductor switches SW3 and SW4 also located on the diagonal line are connected to the power source. It is turned ON / OFF alternately in synchronization with the frequency. That is, when one pair is ON, the other pair is OFF. Then, for example, when an OFF gate is given to the first pair and an ON gate is given to the second pair, the current conducted in the forward direction becomes the second pair of reverse conduction type semiconductor switches SW3-capacitors 32.
  • the reverse conduction type semiconductor switch SW4 flows through the path, whereby the capacitor 32 is charged. That is, the magnetic energy of the circuit is stored in the capacitor 32.
  • the magnetic energy of the circuit at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor 32 rises and the current becomes zero, and the current interruption is completed when the voltage of the capacitor 32 rises until the capacitor current becomes zero.
  • the ON gate is already given to the second pair, the charge of the capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 which are turned on and accumulated in the capacitor 32. Magnetic energy is regenerated to the inductive load 50.
  • a pulse voltage is applied to the inductive load 50.
  • the magnitude of the voltage depends on the capacitance of the capacitor 32 and the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load 50 are resistant to each other. It can be within the allowable voltage range. Further, unlike the conventional series power factor correction capacitor, a direct current capacitor can be used for MERS30.
  • the reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
  • a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4.
  • the reverse conducting semiconductor switches SW1 to SW4 for example, an element such as an IGBT or a transistor having a diode connected in antiparallel can be used.
  • the control unit 40 controls switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30. Specifically, a pair ON / OFF operation composed of reverse conducting semiconductor switches SW1, SW2 located on a diagonal line in the bridge circuit of MERS 30 and a pair ON / OFF operation composed of reverse conducting semiconductor switches SW3, SW4 are provided.
  • the control signal is transmitted to the gates G1 to G4 so that each of them is simultaneously performed every half cycle so that when one is ON, the other is OFF.
  • 2A, 2 ⁇ / b> B, 3 ⁇ / b> A, 3 ⁇ / b> B, 4 ⁇ / b> A, and 4 ⁇ / b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
  • the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the capacitor 32 has no charging voltage, as shown in FIG. 2A, the current is reverse conducting semiconductor switches SW3 and SW1. And a path passing through the reverse conduction type semiconductor switches SW2 and SW4, and enters a parallel conduction state.
  • the control unit 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC power supply 20 is reversed, for example, about 2 ms. (This corresponds to a gate phase angle ⁇ for controlling the reverse conducting semiconductor switch of about 36 deg when the AC frequency is 50 Hz.)
  • FIG. It flows through a path passing through the type semiconductor switch SW3-capacitor 32-reverse conducting type semiconductor switch SW4.
  • the magnetic energy is absorbed (charged) in the capacitor 32.
  • the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
  • the current is cut off.
  • the reverse conducting semiconductor switches SW3 and SW4 are already ON, and the capacitor 32 has a charging voltage. Therefore, as shown in FIG. It flows through a path passing through the semiconductor switch SW4-capacitor 32-reverse conducting semiconductor switch SW3. Then, the magnetic energy accumulated in the capacitor 32 is released (discharged).
  • the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW1-capacitor 32-reverse conducting semiconductor switch SW2.
  • the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
  • the MERS 30 can flow a current in both directions by alternately bringing two pairs of opposing conductive semiconductor switches facing each other into a conductive state.
  • FIGS. 5A, 5B, 5C, and 5D show the MERS embedded system 10 in the case where the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz. It is a figure for demonstrating the operation result of. 5A shows the waveforms of the power supply voltage and current when the MERS 30 is not incorporated, and FIG. 5B shows the waveforms of the power supply voltage, current, and load voltage when the MERS 30 is incorporated. Yes.
  • FIG. 5C shows the waveform of the capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1, and FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
  • the phase of the current is delayed from the phase of the power supply voltage due to the influence of the inductive load 50. Therefore, the power factor of the AC power supply 20 is smaller than 1.
  • the MERS 30 is inserted in series between the AC power supply 20 and the inductive load 50, the phase of the current can be advanced as shown in FIG. Can be 1.
  • the MERS 30 stores the magnetic energy of the inductive load 50 in the capacitor 32 by adjusting the gate phase of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4, and advances the phase of the current.
  • the power factor of the AC power supply 20 can be set to 1.
  • the MERS 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, whereby the power factor can be arbitrarily adjusted.
  • the load voltage can be increased or decreased steplessly.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are obtained when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz.
  • the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch of the MERS 30 can be continuously controlled from 0 deg to 180 deg.
  • FIG. 6 shows measured values of load voltage / rated voltage when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is changed when two 40 W fluorescent lamps are used as loads.
  • the rated voltage is a voltage corresponding to 100% of the power supply voltage.
  • the charging / discharging cycle of the capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32.
  • the MERS 30 has a gate phase angle ⁇ . Regardless of the case, zero voltage zero current switching, that is, soft switching is always possible.
  • the capacitor 32 used in the MERS 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter.
  • the capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the MERS 30. Therefore, adverse effects caused by harmonic noise on precision instruments and measuring instruments hardly occur in MERS 30, and MERS 30 can be used with peace of mind in hospitals and the like. Moreover, since it is soft switching, there is little power loss and there is also little heat_generation
  • each MERS 30 can be given a unique ID number, and this can be used to control each MERS 30 by receiving an external control signal.
  • the MERS 30 can be wirelessly controlled by sending a control signal wirelessly using a communication line such as the Internet.
  • the MERS 30 has a configuration including a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 32 connected between the DC terminals of the bridge circuit. May have the following configuration.
  • FIG. 7 and 8 are diagrams showing other modes of the MERS 30.
  • FIG. The MERS 30 shown in FIG. 7 has two reverse-conducting semiconductor switches, two diodes and two full-conducting MERS 30 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and one capacitor 32 described above. It is a vertical half-bridge type composed of two capacitors.
  • the vertical half-bridge structure MERS 30 is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series, and the two reverse conducting semiconductor switches SW5 and SW6. It includes two capacitors 33 and 34 connected in series, and two diodes D1 and D2 connected in parallel with the two capacitors 33 and 34, respectively.
  • the MERS 30 shown in FIG. 8 is a horizontal half-bridge type.
  • the horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two capacitors.
  • the horizontal half-bridge structure MERS 30 includes a reverse conducting semiconductor switch SW7 and a capacitor 35 provided in series on the first path, and a series on a second path parallel to the first path. Includes a reverse conducting semiconductor switch SW8 and a capacitor 36, and wirings connected in parallel to the first and second paths.
  • FIG. 9 is a schematic diagram showing the configuration of the patient condition notification system 100 according to the embodiment of the present invention.
  • the patient condition notification system 100 is mainly used in a hospital room Ra for an inpatient M in a hospital.
  • the patient condition notification system 100 may be configured using existing lighting equipment in the hospital room Ra.
  • a patient condition notification system 100 includes a pulse meter (condition detection means) 80 that measures a patient's pulse, MERS 30, a dimming control unit 70, and an abnormality notification buzzer (abnormality notification means). ) 90, and an illuminating lamp (lighting fixture) 60 for a hospital room, an AC power source 20 and a MERS 30 are connected in series. Further, the dimming control unit 70 is configured to be connected to the pulse meter 80, the MERS 30, and the abnormality notification buzzer 90.
  • the illuminating lamp 60 is, for example, an illuminating lamp having an inductive load, an illuminating lamp connected to the inductive load, or an illuminating lamp having a resistive load.
  • Examples of the illumination lamp having an inductive load include a discharge lamp.
  • the discharge lamp is, for example, a fluorescent lamp, a mercury lamp, or a sodium lamp.
  • examples of the illuminating lamp connected to the inductive load include an incandescent lamp that does not have an inductive load, a light source such as an LED, and a reactor connected thereto.
  • an incandescent lamp, LED, etc. are mentioned as an illumination lamp which has a resistive load.
  • the illuminating lamp 60 an indoor lamp already installed in the hospital room Ra can be used. In this embodiment, a case where a discharge lamp is used as the illumination lamp 60 will be described as an example.
  • the pulse meter 80 is a precision measuring instrument for continuously measuring the pulse of the patient M and continuously outputting the measured value as an output signal.
  • the pulse is one of the vital reaction values indicating the condition of the patient M. That is, it can be determined whether the condition of the patient M is good or bad according to the value of the pulse.
  • the pulsometer 80 is used as the condition detecting means, but of course, a pulsometer that measures the pulse of the patient M, an electrocardiograph that measures the electrocardiogram, or the like may be used.
  • An output signal from the pulse meter 80 is output to the dimming control unit 70.
  • the dimming control unit 70 transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4, and controls the magnitude of the output voltage of the MERS 30 and the phase of the current ( Control means) 40.
  • the brightness of the illuminating lamp 60 is adjusted by controlling the magnitude of the output voltage and the phase of the current.
  • the control unit 40 is connected to the MERS 30 and is connected to the pulse meter 80 via the condition determination means 72. Therefore, it is possible to adjust the brightness of the illuminating lamp 60 by adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current in accordance with the output signal from the pulse meter 80.
  • the control unit 40 causes the MERS 30 to turn on the illumination lamp 60 with a luminance sufficient to ensure the necessary illuminance during normal times (that is, when there is no abnormality in the condition of the patient M).
  • the output voltage and current phase are adjusted.
  • an abnormality signal (condition abnormality signal) is received from the condition determination means 72.
  • the control part 40 is the magnitude
  • the phase of the current are adjusted periodically.
  • the illuminating lamp 60 periodically changes in brightness, but the illuminating lamp 60 is not turned off even in the dark. Therefore, it is possible to increase the periodic response speed of the change in brightness and to improve the durability of the lighting equipment.
  • the dimming control unit 70 further includes condition determination means 72.
  • This condition determination means 72 determines the condition abnormality of the patient M according to the output signal from the pulse meter 80, and outputs a condition abnormality signal indicating the condition abnormality when the condition is abnormal.
  • the condition determination means 72 has a receiving unit 73 inside, and the receiving unit 73 receives an output signal (pulse rate) from the pulse meter 80.
  • the output signal (pulse rate) is, for example, a pulse value converted per minute, and is obtained as a numerical value such as 70 pulses / minute or 100 pulses / minute.
  • the abnormality notification buzzer 90 is used to notify an abnormality when a sound is generated, and is installed in the nurse station Rb. Of course, it may be installed in the hospital room Ra of the patient M or in the hallway of the hospital. When the abnormality signal from the condition determining means 72 is received, the abnormality notification buzzer 90 generates a notification sound for notifying the abnormality.
  • step S1 When the patient condition notification system 100 is activated (step S1), the dimming control unit 70 increases the output voltage of the MERS 30 so that the load power to the illumination lamp 60 is lit with a luminance sufficient to ensure the necessary illuminance. And the phase of the current are adjusted (step S2). At this time, the illuminating lamp 60 is lit with a luminance sufficient to ensure the necessary illuminance.
  • the pulse meter 80 is set on the patient M and connected to the dimming control unit 70 (step S3). Thereby, the pulse of the patient M is continuously measured and output to the receiving unit 73 (step S4). At the same time, the received pulse rate is compared with the reference value 74 (step S5). If the pulse rate is greater than or equal to the reference value 74 (step S6), the condition determination means 72 does not output an abnormal signal (step S7).
  • the condition determination means 72 outputs an abnormal signal to the control unit 40 and the abnormality notification buzzer 90 (step S8).
  • the control unit 40 periodically adjusts the magnitude of the output voltage of the MERS 30 and the phase of the current (step S9).
  • the illumination lamp 60 periodically changes in brightness (step S10). Since the illumination lamp 60 of the hospital room Ra periodically changes in brightness, for example, a nurse in the nurse station Rb or a nurse walking in the hallway outside the hospital room Ra is likely to notice the abnormal condition of the patient M.
  • the illumination lamp 60 In normal times (when the condition of the patient M is normal), the illumination lamp 60 is lit at normal brightness at the rated load power, and the illumination lamp 60 periodically changes in brightness when the condition is abnormal. It is easy to make an alternative decision. Furthermore, since the abnormality notification buzzer 90 that has received the abnormality signal notifies the abnormality with the notification sound (step S11), the condition abnormality of the patient M can be grasped more quickly and reliably.
  • the pulsometer 80 is used as the condition detecting means, and the condition determining means 72 has the reference value 74.
  • the condition detecting means includes a sphygmomanometer, an electrocardiograph, and the like. It is possible to apply other measuring instruments.
  • the reference value 74 may have a plurality of values (upper limit value and lower limit value) as well as a single value, or may have a predetermined reference range. In the case of an electrocardiograph or electromyograph, the reference value 74 may be a predetermined pattern or profile instead of a numerical value.
  • the pulsometer 80 is connected to the condition determination means 72, the condition determination means 72 is connected to the control unit 40, and the control unit 40 is based on the abnormal signal from the condition determination means 72.
  • the pulse meter 80 may be directly connected to the control unit 40, and the control unit 40 may be configured to adjust the magnitude of the output voltage of the MERS 30 and the phase of the current according to the pulse rate.
  • the brightness of the illuminating lamp 60 may be adjusted so as to be proportional to the pulse rate. If comprised in this way, according to the brightness of the illumination light 60, the patient's M pulse rate can be estimated roughly.
  • the inverter circuit As an apparatus capable of dimming the illumination lamp, for example, there is an inverter fluorescent lamp generally used in homes and offices.
  • the inverter circuit since the inverter circuit generates a large amount of electromagnetic noise, it can be used in precision hospitals and computer rooms. Use is restricted in environments where various electronic devices are used.
  • THD harmonic distortion
  • the THD of the bulb-type fluorescent lamp 17. 128.2%
  • THD of a stand-type fluorescent lamp 15 W
  • 82.6% In the incandescent lamp (60 W) for comparison, THD is 3.1%.
  • the THD of a circuit using MERS was similarly measured with a digital oscilloscope with harmonic analysis function, and the capacitor value was completely resonant.
  • the load voltage THD is 4.5%
  • the load current THD is 2.1%
  • the capacitor value is about 10% less than the complete resonance state (7.9 ⁇ F).
  • THD of load voltage 14.1%
  • THD of load current 3.7% (all values are only MERS circuit parts excluding inductive load itself), and generation of harmonics is very small.
  • the patient condition notification system since the patient condition notification system according to the present invention does not generate harmonics, it can generally be used in hospitals. Of course, it can be used not only as a hospital but also as a notification system using various indoor lighting facilities.

Abstract

A patient's condition notification system (100) comprises a pulse monitor (80) for detecting a condition of a patient (M), a MERS (30) connected to an AC power supply (20) and an illumination lamp (60), and a controller (40) connected to the pulse monitor (80) and the MERS (30) and adjusting the brightness of the illumination lamp (60) by changing the magnitude of the output voltage and the phase of the current of the MERS (30) according to the output signal from the pulse monitor (80).

Description

患者容態報知システムPatient condition notification system
 本発明は、患者容態報知システムに関するものである。 The present invention relates to a patient condition notification system.
 近年、病院内での患者に対するケアは益々重要となってきている。入院患者の生体的な状態(容態)は、血圧計や心電計等の各種の容態検出手段によって検出され、入院患者の近くに常駐する看護師によって常時監視される。そして、患者の容態が急変した場合、例えば血圧や心電図に大きな変化が現れたような場合には、患者のベッドの近くに配置された異常報知ランプの点滅や、異常報知システムによるナースステーションへの異常信号出力により、容態急変が看護師にすぐに報知されるようになっている(特許文献1参照)。
特開平9-38050号公報
In recent years, care for patients in hospitals has become increasingly important. The biological state (condition) of the hospitalized patient is detected by various condition detection means such as a sphygmomanometer and an electrocardiograph, and is constantly monitored by a nurse resident near the hospitalized patient. And when the patient's condition changes suddenly, for example, when there is a big change in blood pressure or electrocardiogram, the anomaly alarm lamp placed near the patient's bed flashes, A sudden change in condition is immediately notified to the nurse by the abnormal signal output (see Patent Document 1).
Japanese Patent Laid-Open No. 9-38050
 しかしながら、患者の異常報知のために、別途わざわざ異常報知ランプや異常報知システム等の設備を設置すると、コスト高となって望ましくない。異常報知ランプを設置する場合には、ナースステーションから視認しやすい位置に設置する必要があり、設置の自由度が制限されるという問題や、異常報知ランプがランプ切れとなっている場合に、適正に異常報知ができないという問題もある。 However, it is not desirable to separately install equipment such as an abnormality notification lamp or an abnormality notification system for patient abnormality notification. When installing an abnormality notification lamp, it is necessary to install it at a position where it can be easily seen from the nurse station, and the problem is that the degree of freedom of installation is limited. There is also a problem that it is impossible to report abnormality.
 本発明は、上記の事情に鑑みて為されたもので、既存の照明設備を利用して、低コストにかつ視認性高く患者の容態変化を報知することのできる患者容態報知システムを提供することを例示的課題とする。 The present invention has been made in view of the above circumstances, and provides a patient condition notification system capable of notifying a change in the condition of a patient at low cost and with high visibility by using existing lighting equipment. Is an exemplary problem.
 上記課題を解決するために、本発明の例示的側面としての患者容態報知システムは、患者の容態を検出する容態検出手段と、電源及び照明灯との間に接続された負荷電力調整スイッチと、容態検出手段及び負荷電力調整スイッチに接続され、容態検出手段からの出力信号に基づき負荷電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、照明灯の輝度を調整する制御手段と、を有することを特徴とする。 In order to solve the above problems, a patient condition notification system as an exemplary aspect of the present invention includes a condition detection unit that detects a condition of a patient, a load power adjustment switch connected between a power source and an illumination lamp, Control means connected to the condition detection means and the load power adjustment switch, and for adjusting the brightness of the illumination lamp by changing the magnitude of the output voltage and the phase of the current of the load power adjustment switch based on the output signal from the condition detection means; It is characterized by having.
 負荷電力調整スイッチと制御手段とを用いることにより、既存の照明灯を利用して患者容態報知システムを構築することができる。したがって、低コストでシステム構築を行うことができる。患者の入院部屋の照明灯、例えば照明用蛍光灯等を利用して本システムを構築することにより、報知用の別途のランプ等を準備する必要がなく、蛍光灯の明暗の変化を患者の居場所から離れたナースステーションでも視認容易となる。したがって、報知用ランプの視認性の問題やランプ切れの問題等を考慮する必要がなくなる。 By using the load power adjustment switch and the control means, it is possible to construct a patient condition notification system using an existing illumination light. Therefore, system construction can be performed at low cost. By constructing this system using a lighting lamp in the patient's hospital room, for example, a fluorescent lamp for lighting, it is not necessary to prepare a separate lamp for notification, and the change in the brightness of the fluorescent lamp can be detected. Easy to see even at a nurse station away from the station. Therefore, it is not necessary to consider the problem of visibility of the notification lamp, the problem of lamp burnout, and the like.
 負荷電力調整スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時の電流の磁気エネルギーを蓄積して照明灯に回生するためのコンデンサとを有し、これらの逆導通型半導体スイッチのゲート位相を制御することで、照明灯に供給する負荷電力を調整するものであってよい。 The load power adjustment switch has at least two reverse conducting semiconductor switches and a capacitor for accumulating the magnetic energy of the current at the time of current interruption and regenerating it to the illuminating lamp, and the gates of these reverse conducting semiconductor switches The load power supplied to the illuminating lamp may be adjusted by controlling the phase.
 負荷電力調整スイッチを用いて照明灯の輝度を調整しているので、インバータ回路を用いる必要がない。負荷電力調整スイッチは0電圧、0電流でスイッチングできるため、高調波ノイズの発生が抑えられ、病院内で使用される精密機器への悪影響が殆ど発生しない。 Since the brightness of the illuminating lamp is adjusted using the load power adjustment switch, there is no need to use an inverter circuit. Since the load power adjustment switch can be switched at zero voltage and zero current, the generation of harmonic noise is suppressed, and there is almost no adverse effect on precision equipment used in hospitals.
 容態検出手段が、血圧計、脈拍計、心電計、筋電計、脳波計、呼吸検出器、排泄物検出器のうち少なくともいずれか1つであってもよい。 The condition detection means may be at least one of a sphygmomanometer, a pulse meter, an electrocardiograph, an electromyograph, an electroencephalograph, a respiratory detector, and an excretion detector.
 これらの容態検出手段を用いることにより、患者の容態(血圧、脈拍、心電、筋電、脳波、呼吸、尿漏れや汚物漏れ)の変化を容易に検知することができる。そして、その容態変化に応じて照明灯の輝度の調整を行うことができるので、ナースステーションにいながらにして看護師による充分な患者監視を実現することができる。 By using these condition detection means, changes in the patient condition (blood pressure, pulse, electrocardiogram, myoelectricity, electroencephalogram, breathing, urine leakage and filth leakage) can be easily detected. And since the brightness | luminance of an illumination lamp can be adjusted according to the condition change, sufficient patient monitoring by a nurse is realizable, staying at a nurse station.
 患者容態報知システムが、容態検出手段からの出力信号に応じて患者の容態異常を判断し、容態異常時に、容態異常を指標する容態異常信号を出力する容態判定手段を更に有してもよい。 The patient condition notification system may further include condition determination means for determining an abnormal condition of the patient according to an output signal from the condition detection means, and outputting a condition abnormality signal indicating the condition abnormality when the condition is abnormal.
 容態判定手段による判定結果(すなわち、異常/正常)に応じて制御手段が照明灯の輝度調整を行うように構成することができるので、照明灯の明暗状態を視認した看護師にとって、患者の容態が正常であるか異常であるかの判断がし易い。例えば、正常である場合(判断結果が異常を指標しない場合)は、照明灯が通常の明るさで点灯し、異常である場合(判断結果が異常を指標する場合は、照明灯が明暗変化を繰り返すことにより、患者の容態が正常であるか異常であるかを一見して判断することができる。 Since the control means can be configured to adjust the brightness of the illuminating lamp according to the determination result (that is, abnormal / normal) by the condition deciding means, the condition of the patient for the nurse who visually recognizes the light / dark state of the illuminating lamp. It is easy to judge whether is normal or abnormal. For example, when it is normal (when the judgment result does not indicate an abnormality), the illumination lamp lights up at a normal brightness, and when it is abnormal (when the judgment result indicates an abnormality, the illumination lamp changes light and dark). By repeating, it can be judged at a glance whether the patient's condition is normal or abnormal.
 患者容態報知システムが、容態異常信号に基づき異常報知する異常報知手段を更に有してもよい。 The patient condition notification system may further include an abnormality notification means for notifying abnormality based on a condition abnormality signal.
 照明灯の輝度調整による報知に加え、別途の異常報知手段(例えば、ナースステーションにおける音声報知、警告灯報知等)による報知を行うことで、より一層確実な患者の監視を行うことができる。 In addition to the notification by adjusting the brightness of the illuminating lamp, notification by a separate abnormality notification means (for example, voice notification at the nurse station, warning lamp notification, etc.) can be performed to further reliably monitor the patient.
 本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。 Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
 本発明によれば、既存の照明設備を利用して、照明灯の輝度調整により低コストにかつ視認性高く患者の容態変化を報知することができる。インバータ回路を用いることなく照明灯の輝度調整を行うので、高調波ノイズの発生が抑えられ、病院内で使用する精密機器への悪影響の発生が殆どない。 According to the present invention, it is possible to notify a change in the condition of a patient at low cost and with high visibility by adjusting the brightness of an illumination lamp using existing lighting equipment. Since the brightness of the illuminating lamp is adjusted without using an inverter circuit, the generation of harmonic noise is suppressed, and there is almost no adverse effect on precision equipment used in hospitals.
MERS組み込みシステムの基本構成を示す図である。It is a figure which shows the basic composition of a MERS embedded system. 図2(a)及び図2(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIG. 2A and FIG. 2B are diagrams for explaining MERS switching control by the control unit. 図3(a)及び図3(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIG. 3A and FIG. 3B are diagrams for explaining MERS switching control by the control unit. 図4(a)及び図4(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIG. 4A and FIG. 4B are diagrams for explaining MERS switching control by the control unit. 図5(a)、(b)、(c)、(d)は、MERS組み込みシステムの動作結果を説明するための図である。FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are diagrams for explaining operation results of the MERS embedded system. ゲート位相角αを変化させたときの負荷電圧/定格電圧を示すグラフである。It is a graph which shows load voltage / rated voltage when changing gate phase angle (alpha). MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. 本発明の実施の形態に係る患者容態報知システムの概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the patient condition alerting | reporting system which concerns on embodiment of this invention. 本発明の実施の形態に係る患者容態報知システムの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the patient condition alerting | reporting system which concerns on embodiment of this invention.
符号の説明Explanation of symbols
Ra:病室
Rb:ナースステーション
M:患者
10:MERS組み込みシステム 
20:交流電源 
30:磁気エネルギー回生スイッチ(MERS) 
32、33、34、35、36:コンデンサ 
40:制御部(制御手段) 
50:誘導性負荷 
60:照明灯 
70:調光制御部 
72:容態判定手段 
73:受信部
74:基準値 
80:脈拍計(容態検出手段) 
90:異常報知ブザー(異常報知手段) 
100:患者容態報知システム 
SW1、SW2、SW3、SW4:逆導通型半導体スイッチ
D1、D2:ダイオード
Ra: Patient room Rb: Nurse station M: Patient 10: MERS embedded system
20: AC power supply
30: Magnetic energy regenerative switch (MERS)
32, 33, 34, 35, 36: Capacitor
40: Control unit (control means)
50: Inductive load
60: Lighting
70: Light control unit
72: Condition judging means
73: Receiver 74: Reference value
80: Pulse meter (condition detection means)
90: Abnormal alarm buzzer (abnormal alarm means)
100: Patient condition notification system
SW1, SW2, SW3, SW4: Reverse conducting semiconductor switches D1, D2: Diodes
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明に係る好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Further, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本実施形態に係る患者容態報知システムは、電源と照明灯との間に接続され、電源から照明灯に出力される、照明灯を点灯するための負荷電力を調整する負荷電力調整スイッチと、負荷電力調整スイッチを制御する制御部と、制御部に接続され、患者の容態を検出する容態検出手段と、を備える。負荷電力調整スイッチは、例えば磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS)(以下、MERSと称する)である。 A patient condition notification system according to the present embodiment is connected between a power source and an illuminating lamp, and is output from the power source to the illuminating lamp. The load power adjusting switch for adjusting the load power for lighting the illuminating lamp, and the load A control unit that controls the power adjustment switch; and a condition detection unit that is connected to the control unit and detects the condition of the patient. The load power adjustment switch is, for example, a magnetic energy regenerative switch (Magnetic Energy Recovery Switch: MERS) (hereinafter referred to as MERS).
 MERSは、例えば、逆阻止能力を持たない、逆導通型の4つの素子を用いて順逆両方向の電流をゲート制御のみでON/OFF可能であり、かつ電流を遮断した際の電流の持つ磁気エネルギーをコンデンサに蓄積し、ONゲートが与えられた素子を通して負荷側に放出することで磁気エネルギーをロスなく回生できるスイッチであり、このスイッチは、電流順逆両方向制御が可能なロスの少ない磁気エネルギー回生スイッチである。(例えば、特許第3634982号公報を参照。本特許公報では、フルブリッジ型のMERSを開示している。)。 MERS, for example, has four reverse-conduction-type elements that do not have reverse blocking capability, and can turn ON / OFF the current in both forward and reverse directions only by gate control, and the magnetic energy of the current when the current is cut off Is a switch that can regenerate magnetic energy without loss by discharging it to the load side through an element provided with an ON gate, and this switch is a magnetic energy regenerative switch with low loss that can be controlled in both forward and reverse directions. It is. (For example, refer to Japanese Patent No. 3634882. In this patent publication, a full bridge type MERS is disclosed.)
 MERSには、逆阻止能力を持たない素子として、例えば、パワーMOSFETやダイオードを逆並列接続したトランジスタ等の順方向制御が可能な素子が用いられている。MERSは、この半導体素子4つで構成されるブリッジ回路と、ブリッジ回路の正極、負極に磁気エネルギーを吸収、放出するコンデンサを接続して構成される。そして、MERSは、これら4つの半導体素子のゲート位相を制御することで、電流をどちらの方向にも流すことが可能となっている。 In the MERS, as an element having no reverse blocking capability, an element capable of forward control, such as a transistor having a power MOSFET or a diode connected in antiparallel, is used. The MERS is configured by connecting a bridge circuit composed of four semiconductor elements and a capacitor that absorbs and releases magnetic energy to the positive electrode and the negative electrode of the bridge circuit. And MERS can flow an electric current in either direction by controlling the gate phase of these four semiconductor elements.
 また、MERSは、ブリッジ接続された4つの半導体素子のうち、対角線上に位置する2つの半導体素子がペアとなり、2つのペアのON/OFFの切換動作を電源の周波数に同期して行い、一方のペアがONの時は他方のペアがOFFとなるように動作する。また、このON/OFFの切換タイミングに合わせて、コンデンサは磁気エネルギーの充放電を繰り返す。 In MERS, two semiconductor elements located on a diagonal line among four semiconductor elements connected in a bridge form a pair, and the ON / OFF switching operation of the two pairs is performed in synchronization with the frequency of the power source. When one pair is on, the other pair is turned off. In addition, the capacitor repeatedly charges and discharges magnetic energy in accordance with the ON / OFF switching timing.
 そして、一方のペアにOFFゲートが与えられ、他方のペアにONゲートが与えられると、順方向に導通していた電流は他方のペアの第1のダイオード-コンデンサ-他方のペアの第2のダイオードという経路で流れ、これによりコンデンサに電荷を充電する。すなわち、回路の磁気エネルギーがコンデンサに蓄積される。電流遮断時の回路の磁気エネルギーは、コンデンサの電圧が上昇して電流がゼロになるまでコンデンサに蓄積される。コンデンサ電流がゼロになるまでコンデンサの電圧が上昇すると、電流の遮断が完了する。この時点で他方のペアには既にONゲートが与えられているため、ONしている半導体素子を通してコンデンサの電荷が負荷側に放電され、コンデンサに蓄積された磁気エネルギーが負荷側に回生される。 Then, when an OFF gate is given to one pair and an ON gate is given to the other pair, the current conducted in the forward direction becomes the second diode of the other pair, the second diode of the other pair. It flows through a path called a diode, which charges the capacitor. That is, the magnetic energy of the circuit is stored in the capacitor. The magnetic energy of the circuit at the time of current interruption is stored in the capacitor until the voltage of the capacitor rises and the current becomes zero. When the capacitor voltage increases until the capacitor current reaches zero, the current interruption is complete. At this time, since the ON gate is already given to the other pair, the charge of the capacitor is discharged to the load side through the semiconductor element that is turned ON, and the magnetic energy accumulated in the capacitor is regenerated to the load side.
 このように、MERSは、4つの半導体素子のうち対角線上に位置する2つの半導体素子からなるペア2つのON/OFFのゲート位相を制御することで、MERSの出力電圧の大きさと電流の位相を任意に制御することが可能である。 Thus, MERS controls the magnitude of the output voltage and the current phase of MERS by controlling the gate phase of two pairs of two semiconductor elements located on the diagonal line among the four semiconductor elements. It is possible to control arbitrarily.
制御部は、容態検出手段からの検出結果(出力信号)に応じてMERSのゲート位相を制御し、照明灯の輝度を調整する機能をも有する。すなわち、患者の容態に応じて、照明灯に供給する負荷電力を変化させることで輝度を変化させたりすることにより、患者の容態変化を外部に報知することができる。 The control unit also has a function of controlling the gate phase of the MERS in accordance with the detection result (output signal) from the condition detection means and adjusting the luminance of the illumination lamp. That is, a change in the condition of the patient can be notified to the outside by changing the luminance by changing the load power supplied to the illuminating lamp according to the condition of the patient.
 まず、負荷電力調整スイッチとしてのMERSの構成及び動作を説明する。本実施形態では、MERSを交流電源と誘電性負荷との間に直列に接続したMERS組み込みシステムを例に説明する。なお、MERSは交流電源に組み込むことで交流電源装置を構成することができ、また誘導性負荷に組み込むことでMERS組み込み負荷を構成することができる。 First, the configuration and operation of MERS as a load power adjustment switch will be described. In this embodiment, a MERS embedded system in which MERS is connected in series between an AC power source and a dielectric load will be described as an example. In addition, MERS can comprise an alternating current power supply device by incorporating it into an alternating current power source, and can constitute a MERS built-in load by incorporating it into an inductive load.
 図1は、MERS組み込みシステム10の基本構成を示す図である。 FIG. 1 is a diagram showing a basic configuration of the MERS embedded system 10.
 図1において、MERS組み込みシステム10は、交流電源20と、インダクタンスのある誘導性負荷50を備える。なお、誘導性負荷50としては、40Wの蛍光灯2灯を並列に接続して用いている。交流電源20と誘導性負荷50との間には、MERS30が挿入されている。また、MERS組み込みシステム10は、MERS30のスイッチングを制御する制御部40を備える。 1, the MERS embedded system 10 includes an AC power supply 20 and an inductive load 50 having inductance. As the inductive load 50, two 40 W fluorescent lamps are connected in parallel. MERS 30 is inserted between AC power supply 20 and inductive load 50. The MERS embedded system 10 includes a control unit 40 that controls switching of the MERS 30.
 MERS30は、順逆両方向の電流を制御可能であり、磁気エネルギーをロスなく負荷側に回生できる磁気エネルギー回生スイッチである。MERS30は、4つの逆導通型半導体スイッチSW1、SW2、SW3、SW4にて構成されるブリッジ回路と、ブリッジ回路のスイッチ遮断時に回路に流れる電流の磁気エネルギーを吸収するエネルギー蓄積用のコンデンサ32とを備える。 The MERS 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss. The MERS 30 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and an energy storage capacitor 32 that absorbs magnetic energy of a current flowing through the circuit when the bridge circuit is switched off. Prepare.
 ブリッジ回路は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4とが直列に接続され、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3とが直列に接続され、それらが並列に接続されて形成されている。 In the bridge circuit, a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
 コンデンサ32は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW3との接続点にある直流端子DC(P)と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW4との接続点にある直流端子DC(N)とに接続されている。また、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4との接続点にある交流端子と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3との接続点にある交流端子とには交流電源20と誘導性負荷50とが直列接続されている。 The capacitor 32 is at a connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW3, and between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N). Further, there is an alternating current between the AC terminal at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW3. The power supply 20 and the inductive load 50 are connected in series.
 MERS30に配設された対角線上に位置する逆導通型半導体スイッチSW1、SW2からなる第1のペアと、同じく対角線上に位置する逆導通型半導体スイッチSW3、SW4からなる第2のペアが、電源周波数に同期して交互にON/OFFされる。すなわち、片方のペアがONのとき他方のペアはOFFとなる。そして、例えば、第1のペアにOFFゲートが与えられ、第2のペアにONゲートが与えられると、順方向に導通していた電流が第2のペアの逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4という経路で流れ、これによりコンデンサ32が充電される。すなわち、回路の磁気エネルギーがコンデンサ32に蓄積される。 A first pair of reverse conducting semiconductor switches SW1 and SW2 located on the diagonal line disposed in the MERS 30 and a second pair of reverse conducting semiconductor switches SW3 and SW4 also located on the diagonal line are connected to the power source. It is turned ON / OFF alternately in synchronization with the frequency. That is, when one pair is ON, the other pair is OFF. Then, for example, when an OFF gate is given to the first pair and an ON gate is given to the second pair, the current conducted in the forward direction becomes the second pair of reverse conduction type semiconductor switches SW3-capacitors 32. The reverse conduction type semiconductor switch SW4 flows through the path, whereby the capacitor 32 is charged. That is, the magnetic energy of the circuit is stored in the capacitor 32.
 電流遮断時の回路の磁気エネルギーは、コンデンサ32の電圧が上昇して電流がゼロになるまでコンデンサに蓄積され、コンデンサ電流がゼロになるまでコンデンサ32の電圧が上昇すると、電流の遮断が完了する。この時点で第2のペアには既にONゲートが与えられているため、ONしている逆導通型半導体スイッチSW3、SW4を通してコンデンサ32の電荷が誘導性負荷50に放電され、コンデンサ32に蓄積された磁気エネルギーが誘導性負荷50に回生される。 The magnetic energy of the circuit at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor 32 rises and the current becomes zero, and the current interruption is completed when the voltage of the capacitor 32 rises until the capacitor current becomes zero. . At this time, since the ON gate is already given to the second pair, the charge of the capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 which are turned on and accumulated in the capacitor 32. Magnetic energy is regenerated to the inductive load 50.
 電流のON/OFF時、誘導性負荷50にはパルス電圧が印加されるが、電圧の大きさはコンデンサ32の静電容量に応じて逆導通型半導体スイッチSW1~SW4と誘導性負荷50の耐電圧許容範囲内とすることができる。また、MERS30には、従来の直列力率改善コンデンサと異なり、直流のコンデンサを用いることができる。逆導通型半導体スイッチSW1~SW4は、例えば、パワーMOSFETからなり、それぞれゲートG1、G2、G3、G4を有する。逆導通型半導体スイッチSW1~SW4のチャネルには、それぞれボディダイオード(寄生ダイオード)が並列接続されている。 When the current is turned on / off, a pulse voltage is applied to the inductive load 50. The magnitude of the voltage depends on the capacitance of the capacitor 32 and the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load 50 are resistant to each other. It can be within the allowable voltage range. Further, unlike the conventional series power factor correction capacitor, a direct current capacitor can be used for MERS30. The reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
 MERS30には、ボディダイオードに加えて、逆導通型半導体スイッチSW1~SW4と逆並列にダイオードを加えてもよい。なお、逆導通型半導体スイッチSW1~SW4としては、例えば、IGBTやダイオードを逆並列接続したトランジスタ等の素子を用いることもできる。 In addition to the body diode, a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4. As the reverse conducting semiconductor switches SW1 to SW4, for example, an element such as an IGBT or a transistor having a diode connected in antiparallel can be used.
 制御部40は、MERS30の逆導通型半導体スイッチSW1~SW4のスイッチングを制御する。具体的には、MERS30のブリッジ回路における対角線上に位置する逆導通型半導体スイッチSW1、SW2からなるペアのON/OFF動作と、逆導通型半導体スイッチSW3、SW4からなるペアのON/OFF動作とを、一方がONのとき他方がOFFとなるように、半サイクル毎にそれぞれ同時に行うようゲートG1~G4に制御信号を送信する。 The control unit 40 controls switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30. Specifically, a pair ON / OFF operation composed of reverse conducting semiconductor switches SW1, SW2 located on a diagonal line in the bridge circuit of MERS 30 and a pair ON / OFF operation composed of reverse conducting semiconductor switches SW3, SW4 are provided. The control signal is transmitted to the gates G1 to G4 so that each of them is simultaneously performed every half cycle so that when one is ON, the other is OFF.
 続いて、制御部40によるMERS30のスイッチング制御について詳細に説明する。図2(a)、(b)、図3(a)、(b)、図4(a)、(b)は、制御部40によるMERS30のスイッチング制御を説明するための図である。 Subsequently, switching control of the MERS 30 by the control unit 40 will be described in detail. 2A, 2 </ b> B, 3 </ b> A, 3 </ b> B, 4 </ b> A, and 4 </ b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
 まず、コンデンサ32に充電電圧がない状態で、制御部40が逆導通型半導体スイッチSW1、SW2をONにした場合、図2(a)に示すように、電流は逆導通型半導体スイッチSW3、SW1を通る経路と、逆導通型半導体スイッチSW2、SW4を通る経路を流れ、並列導通状態となる。 First, when the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the capacitor 32 has no charging voltage, as shown in FIG. 2A, the current is reverse conducting semiconductor switches SW3 and SW1. And a path passing through the reverse conduction type semiconductor switches SW2 and SW4, and enters a parallel conduction state.
 次に、交流電源20の電圧が反転する前の所定のタイミング、例えば、約2ms前に、制御部40は逆導通型半導体スイッチSW1、SW2をOFFにする。(これは、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degに相当する。)これにより、図2(b)に示すように、電流は逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収(充電)される。本実施形態では、逆導通型半導体スイッチSW1、SW2をOFFにするタイミングで、逆導通型半導体スイッチSW3、SW4をONにしている。 Next, the control unit 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC power supply 20 is reversed, for example, about 2 ms. (This corresponds to a gate phase angle α for controlling the reverse conducting semiconductor switch of about 36 deg when the AC frequency is 50 Hz.) As a result, as shown in FIG. It flows through a path passing through the type semiconductor switch SW3-capacitor 32-reverse conducting type semiconductor switch SW4. As a result, the magnetic energy is absorbed (charged) in the capacitor 32. In this embodiment, the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
 コンデンサ32の充電が完了すると、すなわちコンデンサ32の電圧が所定値以上となると、電流は遮断される。そして、交流電源20の電圧が反転すると、逆導通型半導体スイッチSW3、SW4は既にONであり、またコンデンサ32に充電電圧があるため、図3(a)に示すように、電流は逆導通型半導体スイッチSW4-コンデンサ32-逆導通型半導体スイッチSW3を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放出(放電)される。 When the charging of the capacitor 32 is completed, that is, when the voltage of the capacitor 32 exceeds a predetermined value, the current is cut off. When the voltage of the AC power supply 20 is inverted, the reverse conducting semiconductor switches SW3 and SW4 are already ON, and the capacitor 32 has a charging voltage. Therefore, as shown in FIG. It flows through a path passing through the semiconductor switch SW4-capacitor 32-reverse conducting semiconductor switch SW3. Then, the magnetic energy accumulated in the capacitor 32 is released (discharged).
 次に、コンデンサ32からの放電が終了すると、図3(b)に示すように、電流は逆導通型半導体スイッチSW1、SW3を通る経路と、逆導通型半導体スイッチSW4、SW2を通る経路を流れ、並列導通状態となる。 Next, when the discharge from the capacitor 32 is completed, as shown in FIG. 3B, the current flows through a path passing through the reverse conducting semiconductor switches SW1 and SW3 and a path passing through the reverse conducting semiconductor switches SW4 and SW2. The parallel conduction state is established.
 次に、交流電源20の電圧が反転する前の所定のタイミングで、制御部40は逆導通型半導体スイッチSW3、SW4をOFFにする。これにより、図4(a)に示すように、電流は逆導通型半導体スイッチSW1-コンデンサ32-逆導通型半導体スイッチSW2を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収される。本実施形態では、逆導通型半導体スイッチSW3、SW4をOFFにするタイミングで、逆導通型半導体スイッチSW1、SW2をONにしている。 Next, at a predetermined timing before the voltage of the AC power supply 20 is inverted, the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4. As a result, as shown in FIG. 4A, the current flows through a path passing through the reverse conducting semiconductor switch SW1-capacitor 32-reverse conducting semiconductor switch SW2. As a result, the magnetic energy is absorbed by the capacitor 32. In this embodiment, the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
 コンデンサ32の充電が完了すると電流は遮断され、そして交流電源20の電圧が反転すると、逆導通型半導体スイッチSW1、SW2は既にONであり、またコンデンサ32に充電電圧があるため、図4(b)に示すように、電流は逆導通型半導体スイッチSW2-コンデンサ32-逆導通型半導体スイッチSW1を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放電される。コンデンサ32からの放電が終了すると、図2(a)に示す並列導通状態となり、以後これを繰り返す。このように、MERS30は対向するペア2組の逆導通型半導体スイッチを交互に導通状態にすることにより、双方向に電流を流すことができる。 When the charging of the capacitor 32 is completed, the current is cut off, and when the voltage of the AC power supply 20 is inverted, the reverse conducting semiconductor switches SW1 and SW2 are already ON, and the capacitor 32 has a charging voltage. ), The current flows through the path through the reverse conducting semiconductor switch SW2-capacitor 32-reverse conducting semiconductor switch SW1. Then, the magnetic energy accumulated in the capacitor 32 is discharged. When the discharge from the capacitor 32 is completed, the parallel conduction state shown in FIG. Thus, the MERS 30 can flow a current in both directions by alternately bringing two pairs of opposing conductive semiconductor switches facing each other into a conductive state.
 このようなMERS30のスイッチング制御により、次のような効果が得られる。図5(a)、(b)、(c)、(d)は、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degの場合におけるMERS組み込みシステム10の動作結果を説明するための図である。図5(a)は、MERS30が組み込まれていない場合の電源電圧と電流の波形を示し、図5(b)は、MERS30が組み込まれた場合の電源電圧、電流、負荷電圧の波形を示している。また、図5(c)はコンデンサ電圧と逆導通型半導体スイッチSW1を流れる電流の波形を示し、図5(d)は逆導通型半導体スイッチSW1がONになるタイミングを示している。 The following effects can be obtained by such switching control of the MERS 30. FIGS. 5A, 5B, 5C, and 5D show the MERS embedded system 10 in the case where the gate phase angle α for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz. It is a figure for demonstrating the operation result of. 5A shows the waveforms of the power supply voltage and current when the MERS 30 is not incorporated, and FIG. 5B shows the waveforms of the power supply voltage, current, and load voltage when the MERS 30 is incorporated. Yes. FIG. 5C shows the waveform of the capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1, and FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
 図5(a)に示すように、MERS30が組み込まれていない場合、誘導性負荷50の影響により、電流の位相が電源電圧の位相よりも遅れている。そのため交流電源20の力率は1より小さい。一方、交流電源20と誘導性負荷50との間にMERS30を直列に挿入した場合には、図5(b)に示すように電流の位相を進ませることができるため、交流電源20の力率を1とすることが可能である。 As shown in FIG. 5A, when the MERS 30 is not incorporated, the phase of the current is delayed from the phase of the power supply voltage due to the influence of the inductive load 50. Therefore, the power factor of the AC power supply 20 is smaller than 1. On the other hand, when the MERS 30 is inserted in series between the AC power supply 20 and the inductive load 50, the phase of the current can be advanced as shown in FIG. Can be 1.
 すなわち、MERS30は、逆導通型半導体スイッチSW1~SW4の対角線上のペア2組のゲート位相を調整することで、誘導性負荷50の磁気エネルギーをコンデンサ32に蓄えて、電流の位相を進ませ、これにより交流電源20の力率を1にすることが可能である。また、MERS30は、電流の位相を進ませるだけでなく、電流の位相を任意に制御することが可能であり、これにより任意に力率を調整することができる。更に、誘導性負荷50の磁気エネルギーをコンデンサ32に貯え、蓄えた磁気エネルギーを誘導性負荷50に回生することにより、負荷電圧を無段階に増減させることが可能である。 That is, the MERS 30 stores the magnetic energy of the inductive load 50 in the capacitor 32 by adjusting the gate phase of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4, and advances the phase of the current. As a result, the power factor of the AC power supply 20 can be set to 1. In addition, the MERS 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, whereby the power factor can be arbitrarily adjusted. Furthermore, by storing the magnetic energy of the inductive load 50 in the capacitor 32 and regenerating the stored magnetic energy in the inductive load 50, the load voltage can be increased or decreased steplessly.
 また、図5(c)及び図5(d)に示すように、逆導通型半導体スイッチSW1がONになるタイミングでは、コンデンサ電圧は0であり、逆導通型半導体スイッチSW1を流れる電流は、並列導通時に逆導通型半導体スイッチSW1のダイオードを流れる電流である。逆導通型半導体スイッチSW1がOFFになるタイミングにおいてもコンデンサ電圧は0である。すなわち、0電圧、0電流でスイッチングされており、そのためスイッチングによる損失を無くすことができる。他の3つの逆導通型半導体スイッチSW2~SW4については、逆導通型半導体スイッチSW1と同期してスイッチングしているため、同様の結果となる。 Further, as shown in FIGS. 5C and 5D, when the reverse conducting semiconductor switch SW1 is turned on, the capacitor voltage is 0, and the current flowing through the reverse conducting semiconductor switch SW1 is parallel. This is a current that flows through the diode of the reverse conducting semiconductor switch SW1 when conducting. The capacitor voltage is 0 even when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
 上記の通り、図5(a)、(b)、(c)、(d)は、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degの場合におけるMERS組み込みシステム10の動作結果を示しているが、MERS30の逆導通型半導体スイッチを制御するゲート位相角αは、0degから180degまで連続的に制御することができる。図6は、負荷として40Wの蛍光灯2灯を用いた場合、逆導通型半導体スイッチを制御するゲート位相角αを変化させたときの負荷電圧/定格電圧の実測値を示す。定格電圧とは、電源電圧の100%に相当する電圧である。負荷電圧/定格電圧は、ゲート位相角αが0degからの増加に伴い増加し、ゲート位相角α=約90degで約140%の極大値となり、ゲート位相角αが更に増加すると減少し、ゲート位相角α=180degでは約50%にまで減少する。途中のゲート位相角α=約135degで、負荷電圧/定格電圧=1になっている。従って、MERS30のゲート位相角αを135degを基準に約±30deg制御することにより、負荷電圧を電源電圧の約60%から130%まで連続的に制御することができる。 As described above, FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are obtained when the gate phase angle α for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz. Although the operation result of the MERS embedded system 10 is shown, the gate phase angle α for controlling the reverse conducting semiconductor switch of the MERS 30 can be continuously controlled from 0 deg to 180 deg. FIG. 6 shows measured values of load voltage / rated voltage when the gate phase angle α for controlling the reverse conducting semiconductor switch is changed when two 40 W fluorescent lamps are used as loads. The rated voltage is a voltage corresponding to 100% of the power supply voltage. The load voltage / rated voltage increases as the gate phase angle α increases from 0 deg, reaches a maximum value of about 140% at the gate phase angle α = about 90 deg, decreases as the gate phase angle α further increases, and decreases to the gate phase. At the angle α = 180 deg, it decreases to about 50%. On the way, the gate phase angle α = about 135 deg and the load voltage / rated voltage = 1. Therefore, the load voltage can be continuously controlled from about 60% to 130% of the power supply voltage by controlling the gate phase angle α of the MERS 30 by about ± 30 deg with respect to 135 deg.
 コンデンサ32の充放電周期は、誘導性負荷50とコンデンサ32との共振周期の半周期分であり、スイッチング周期が誘導性負荷50とコンデンサ32との共振周期より長い時には、MERS30はゲート位相角αに関係なく常に0電圧0電流スイッチング、すなわちソフトスイッチングが可能である。 The charging / discharging cycle of the capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32. When the switching cycle is longer than the resonance cycle of the inductive load 50 and the capacitor 32, the MERS 30 has a gate phase angle α. Regardless of the case, zero voltage zero current switching, that is, soft switching is always possible.
 MERS30に用いられるコンデンサ32は、従来の電圧型インバータと異なり、回路にあるインダクタンスの磁気エネルギーを蓄積するためだけのものである。そのため、コンデンサ容量を従来の電圧型インバータの電圧源コンデンサに比べて著しく小さくできる。コンデンサ容量は、負荷との共振周期がスイッチング周波数より短くなるように選定する。そのため、従来の電圧型インバータで問題となりやすい高調波ノイズは、MERS30におけるスイッチングでは殆ど発生しない。したがって、精密機器や計測機器等に対する高調波ノイズによる悪影響が、MERS30においては殆ど発生せず、MERS30を病院等においても安心して使用することができる。また、ソフトスイッチングであることから、電力損失が少なく、発熱も少ない。 Unlike the conventional voltage type inverter, the capacitor 32 used in the MERS 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter. The capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the MERS 30. Therefore, adverse effects caused by harmonic noise on precision instruments and measuring instruments hardly occur in MERS 30, and MERS 30 can be used with peace of mind in hospitals and the like. Moreover, since it is soft switching, there is little power loss and there is also little heat_generation | fever.
 また、MERS30をゲートパルス発生装置として用いた場合、各MERS30に固有のIDナンバーを付与することができ、これを用いて外部からの制御信号を受信して各MERS30を制御することができる。例えば、インターネット等の通信回線を利用して無線で制御信号を送り、MERS30を無線制御できる。 Also, when the MERS 30 is used as a gate pulse generator, each MERS 30 can be given a unique ID number, and this can be used to control each MERS 30 by receiving an external control signal. For example, the MERS 30 can be wirelessly controlled by sending a control signal wirelessly using a communication line such as the Internet.
 上述のMERS組み込みシステム10では、MERS30は4つの逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子間に接続されたコンデンサ32とからなる構成であったが、MERS30は次のような構成であってもよい。 In the MERS embedded system 10 described above, the MERS 30 has a configuration including a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 32 connected between the DC terminals of the bridge circuit. May have the following configuration.
 図7及び図8は、MERS30の他の態様を示す図である。図7に示すMERS30は、上述の4つの逆導通型半導体スイッチSW1~SW4と1つのコンデンサ32とからなるフルブリッジ型のMERS30に対して、2つの逆導通型半導体スイッチと2つのダイオード、及び2つのコンデンサで構成される縦型のハーフブリッジ型となっている。 7 and 8 are diagrams showing other modes of the MERS 30. FIG. The MERS 30 shown in FIG. 7 has two reverse-conducting semiconductor switches, two diodes and two full-conducting MERS 30 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and one capacitor 32 described above. It is a vertical half-bridge type composed of two capacitors.
 より詳細には、この縦型ハーフブリッジ構造のMERS30は、直列に接続された2つの逆導通型半導体スイッチSW5、SW6と、この2つの逆導通型半導体スイッチSW5、SW6と並列に設けられた、直列に接続された2つのコンデンサ33、34と、この2つのコンデンサ33、34それぞれと並列に接続された2つのダイオードD1、D2と、を含んでいる。 More specifically, the vertical half-bridge structure MERS 30 is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series, and the two reverse conducting semiconductor switches SW5 and SW6. It includes two capacitors 33 and 34 connected in series, and two diodes D1 and D2 connected in parallel with the two capacitors 33 and 34, respectively.
 図8に示すMERS30は、横型のハーフブリッジ型である。横型のハーフブリッジ型MERSは、2つの逆導通型半導体スイッチと2つのコンデンサで構成されている。 The MERS 30 shown in FIG. 8 is a horizontal half-bridge type. The horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two capacitors.
 より詳細には、この横型のハーフブリッジ構造MERS30は、第1の経路上に直列に設けられた逆導通型半導体スイッチSW7及びコンデンサ35と、第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチSW8及びコンデンサ36と、第1、第2の経路に対して並列に結線された配線と、を含んでいる。 More specifically, the horizontal half-bridge structure MERS 30 includes a reverse conducting semiconductor switch SW7 and a capacitor 35 provided in series on the first path, and a series on a second path parallel to the first path. Includes a reverse conducting semiconductor switch SW8 and a capacitor 36, and wirings connected in parallel to the first and second paths.
 続いて、本実施形態に係る患者容態報知システムについて説明する。図9は、本発明の実施の形態に係る患者容態報知システム100の構成を示す概略図である。この患者容態報知システム100は、主として病院内の入院患者M用の病室Raにおいて使用される。患者容態報知システム100は、病室Ra内の既存の照明設備を利用して構成されてもよい。 Subsequently, the patient condition notification system according to the present embodiment will be described. FIG. 9 is a schematic diagram showing the configuration of the patient condition notification system 100 according to the embodiment of the present invention. The patient condition notification system 100 is mainly used in a hospital room Ra for an inpatient M in a hospital. The patient condition notification system 100 may be configured using existing lighting equipment in the hospital room Ra.
 図9に示すように、本実施の形態に係る患者容態報知システム100は、患者の脈拍を計測する脈拍計(容態検出手段)80、MERS30、調光制御部70及び異常報知ブザー(異常報知手段)90を有して構成され、病室用の照明灯(照明器具)60と交流電源20とMERS30とが直列に接続されている。更に調光制御部70が、脈拍計80、MERS30及び異常報知ブザー90に接続されて構成されている。ここで、照明灯60は、例えば、誘導性負荷を有する照明灯、誘導性負荷に接続された照明灯、又は抵抗性負荷を有する照明灯である。誘導性負荷を有する照明灯としては、例えば、放電灯等が挙げられる。放電灯は、例えば、蛍光灯、水銀灯、又はナトリウム灯である。また、誘導性負荷に接続された照明灯としては、誘導性負荷を持たない白熱灯、LED等の光源に、リアクトルを接続したものが挙げられる。また、抵抗性負荷を有する照明灯としては、白熱灯又はLED等が挙げられる。照明灯60として、病室Raに既設された室内灯を流用することができる。本実施形態では、照明灯60に放電灯を用いた場合を例に説明する。 As shown in FIG. 9, a patient condition notification system 100 according to the present embodiment includes a pulse meter (condition detection means) 80 that measures a patient's pulse, MERS 30, a dimming control unit 70, and an abnormality notification buzzer (abnormality notification means). ) 90, and an illuminating lamp (lighting fixture) 60 for a hospital room, an AC power source 20 and a MERS 30 are connected in series. Further, the dimming control unit 70 is configured to be connected to the pulse meter 80, the MERS 30, and the abnormality notification buzzer 90. Here, the illuminating lamp 60 is, for example, an illuminating lamp having an inductive load, an illuminating lamp connected to the inductive load, or an illuminating lamp having a resistive load. Examples of the illumination lamp having an inductive load include a discharge lamp. The discharge lamp is, for example, a fluorescent lamp, a mercury lamp, or a sodium lamp. Further, examples of the illuminating lamp connected to the inductive load include an incandescent lamp that does not have an inductive load, a light source such as an LED, and a reactor connected thereto. Moreover, an incandescent lamp, LED, etc. are mentioned as an illumination lamp which has a resistive load. As the illuminating lamp 60, an indoor lamp already installed in the hospital room Ra can be used. In this embodiment, a case where a discharge lamp is used as the illumination lamp 60 will be described as an example.
 脈拍計80は、患者Mの脈拍を継続的に計測し、その計測値を出力信号として継続的に出力するための精密計測機器である。脈拍は、患者Mの容態を指標する生体反応値の1つである。すなわち、脈拍の値に応じて、患者Mの容態が良好であるか不良であるかを判断することができる。本実施の形態においては、容態検出手段として脈拍計80を用いているが、もちろん、患者Mの脈拍を計測する脈拍計、心電を計測する心電計等であっても構わない。脈拍計80からの出力信号は、調光制御部70へと出力されるようになっている。 The pulse meter 80 is a precision measuring instrument for continuously measuring the pulse of the patient M and continuously outputting the measured value as an output signal. The pulse is one of the vital reaction values indicating the condition of the patient M. That is, it can be determined whether the condition of the patient M is good or bad according to the value of the pulse. In the present embodiment, the pulsometer 80 is used as the condition detecting means, but of course, a pulsometer that measures the pulse of the patient M, an electrocardiograph that measures the electrocardiogram, or the like may be used. An output signal from the pulse meter 80 is output to the dimming control unit 70.
 図9に示すように、調光制御部70は、逆導通型半導体スイッチSW1~SW4のゲートG1~G4に制御信号を送信し、MERS30の出力電圧の大きさと電流の位相を制御する制御部(制御手段)40を備える。この出力電圧の大きさと電流の位相の制御により、照明灯60の輝度調整が行われる。制御部40は、MERS30に接続されると共に、容態判定手段72を介して脈拍計80に接続されている。したがって、脈拍計80からの出力信号に応じてMERS30の出力電圧の大きさと電流の位相を調整し、照明灯60の輝度調整を実現することが可能となっている。 As shown in FIG. 9, the dimming control unit 70 transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4, and controls the magnitude of the output voltage of the MERS 30 and the phase of the current ( Control means) 40. The brightness of the illuminating lamp 60 is adjusted by controlling the magnitude of the output voltage and the phase of the current. The control unit 40 is connected to the MERS 30 and is connected to the pulse meter 80 via the condition determination means 72. Therefore, it is possible to adjust the brightness of the illuminating lamp 60 by adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current in accordance with the output signal from the pulse meter 80.
 本実施の形態においては、制御部40は、平常時(すなわち、患者Mの容態に異常がない場合)には、照明灯60が必要照度が確保されるだけの輝度で点灯するように、MERS30の出力電圧の大きさと電流の位相を調整するようになっている。しかしながら、患者Mの脈拍に異常があった場合には、容態判定手段72から異常信号(容態異常信号)を受信する。そして、照明灯60が必要照度が確保されるだけの輝度とその数分の一(例えば、1/10)の明るさとで周期的に明暗変化するように、制御部40はMERS30出力電圧の大きさと電流の位相を周期的に調整するようになっている。 In the present embodiment, the control unit 40 causes the MERS 30 to turn on the illumination lamp 60 with a luminance sufficient to ensure the necessary illuminance during normal times (that is, when there is no abnormality in the condition of the patient M). The output voltage and current phase are adjusted. However, when there is an abnormality in the pulse of the patient M, an abnormality signal (condition abnormality signal) is received from the condition determination means 72. And the control part 40 is the magnitude | size of MERS30 output voltage so that the brightness and darkness may change periodically with the brightness | luminance which can ensure the required illumination intensity, and the brightness of a fraction (for example, 1/10). And the phase of the current are adjusted periodically.
 なお、MERS30の出力電圧の大きさと電流の位相を周期的に調整することにより、照明灯60が周期的な明暗変化を行うが、暗い場合でも照明灯60を消灯させないようになっている。したがって、明暗変化の周期応答速度を高めたり、照明設備の耐久性向上を図ったりすることができるようになっている。 Note that, by periodically adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current, the illuminating lamp 60 periodically changes in brightness, but the illuminating lamp 60 is not turned off even in the dark. Therefore, it is possible to increase the periodic response speed of the change in brightness and to improve the durability of the lighting equipment.
 調光制御部70は、更に容態判定手段72をも備えている。この容態判定手段72は、脈拍計80からの出力信号に応じて患者Mの容態異常を判断し、容態異常時に、容態異常を指標する容態異常信号を出力するものである。具体的には、容態判定手段72は、内部に受信部73を有しており、この受信部73が脈拍計80からの出力信号(脈拍数)を受信するようになっている。ここで、出力信号(脈拍数)は、例えば1分間当たりに換算した脈拍値であり、70パルス/分や100パルス/分等の数値として得られる。 The dimming control unit 70 further includes condition determination means 72. This condition determination means 72 determines the condition abnormality of the patient M according to the output signal from the pulse meter 80, and outputs a condition abnormality signal indicating the condition abnormality when the condition is abnormal. Specifically, the condition determination means 72 has a receiving unit 73 inside, and the receiving unit 73 receives an output signal (pulse rate) from the pulse meter 80. Here, the output signal (pulse rate) is, for example, a pulse value converted per minute, and is obtained as a numerical value such as 70 pulses / minute or 100 pulses / minute.
 容態判定手段72は、内部に基準値74を有しており、脈拍計80から受信した脈拍数とこの基準値74とを常に比較している。例えば、基準値74は、20パルス/分である。そして、受信した脈拍数が基準値74未満となったときに、容態異常を指標する異常信号(容態異常信号)を制御部40及び異常報知ブザー90に向けて出力するようになっている。 The condition determining means 72 has a reference value 74 inside, and constantly compares the pulse rate received from the pulse meter 80 with the reference value 74. For example, the reference value 74 is 20 pulses / minute. When the received pulse rate becomes less than the reference value 74, an abnormal signal indicating an abnormal condition (condition abnormal signal) is output to the control unit 40 and the abnormality notification buzzer 90.
 異常報知ブザー90は、音声発生により異常を報知するためのもので、ナースステーションRbに設置されている。もちろん、患者Mの病室Ra内や病院内の廊下に設置されていてもよい。容態判定手段72からの異常信号を受信すると、異常報知ブザー90は異常を報知するための報知音を発生させる。 The abnormality notification buzzer 90 is used to notify an abnormality when a sound is generated, and is installed in the nurse station Rb. Of course, it may be installed in the hospital room Ra of the patient M or in the hallway of the hospital. When the abnormality signal from the condition determining means 72 is received, the abnormality notification buzzer 90 generates a notification sound for notifying the abnormality.
 続いて、患者容態報知システム100の動作について、図10のフローチャートに基づき説明する。 Next, the operation of the patient condition notification system 100 will be described based on the flowchart of FIG.
 この患者容態報知システム100が起動する(ステップS1)と、照明灯60への負荷電力が必要照度が確保されるだけの輝度で点灯するように、調光制御部70がMERS30の出力電圧の大きさと電流の位相を調整する(ステップS2)。このとき、照明灯60は、必要照度が確保されるだけの輝度で点灯している。 When the patient condition notification system 100 is activated (step S1), the dimming control unit 70 increases the output voltage of the MERS 30 so that the load power to the illumination lamp 60 is lit with a luminance sufficient to ensure the necessary illuminance. And the phase of the current are adjusted (step S2). At this time, the illuminating lamp 60 is lit with a luminance sufficient to ensure the necessary illuminance.
 脈拍計80を患者Mにセットし、調光制御部70へと接続する(ステップS3)。それにより、患者Mの脈拍が継続的に計測されて、受信部73へと出力される(ステップS4)。それと共に、受信した脈拍数と基準値74とが比較される(ステップS5)。脈拍数が基準値74以上であれば(ステップS6)、容態判定手段72は異常信号を出力しない(ステップS7)。 The pulse meter 80 is set on the patient M and connected to the dimming control unit 70 (step S3). Thereby, the pulse of the patient M is continuously measured and output to the receiving unit 73 (step S4). At the same time, the received pulse rate is compared with the reference value 74 (step S5). If the pulse rate is greater than or equal to the reference value 74 (step S6), the condition determination means 72 does not output an abnormal signal (step S7).
 しかしながら、患者Mの脈拍数が基準値74未満になると(ステップS6)、容態判定手段72が異常信号を制御部40及び異常報知ブザー90に向けて出力する(ステップS8)。容態判定手段72から異常信号を受信すると、制御部40はMERS30の出力電圧の大きさと電流の位相を周期的に調整する(ステップS9)。それにより、照明灯60が周期的に明暗変化する(ステップS10)。病室Raの照明灯60が周期的に明暗変化するので、例えばナースステーションRbにいる看護師や病室Ra外の廊下を歩いている看護師にとっても患者Mの容態異常に気付き易い。また、平常時(患者Mの容態正常時)は、照明灯60が定格負荷電力において通常の明るさで点灯し、容態異常時に照明灯60が周期的な明暗変化を行うので、正常か異常かの二者択一的な判断が容易である。更に、異常信号を受信した異常報知ブザー90が報知音により異常報知を行う(ステップS11)ので、より一層迅速かつ確実に患者Mの容態異常を把握することができる。 However, when the pulse rate of the patient M becomes less than the reference value 74 (step S6), the condition determination means 72 outputs an abnormal signal to the control unit 40 and the abnormality notification buzzer 90 (step S8). When the abnormal signal is received from the condition determining means 72, the control unit 40 periodically adjusts the magnitude of the output voltage of the MERS 30 and the phase of the current (step S9). Thereby, the illumination lamp 60 periodically changes in brightness (step S10). Since the illumination lamp 60 of the hospital room Ra periodically changes in brightness, for example, a nurse in the nurse station Rb or a nurse walking in the hallway outside the hospital room Ra is likely to notice the abnormal condition of the patient M. In normal times (when the condition of the patient M is normal), the illumination lamp 60 is lit at normal brightness at the rated load power, and the illumination lamp 60 periodically changes in brightness when the condition is abnormal. It is easy to make an alternative decision. Furthermore, since the abnormality notification buzzer 90 that has received the abnormality signal notifies the abnormality with the notification sound (step S11), the condition abnormality of the patient M can be grasped more quickly and reliably.
 なお、本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.
 例えば、本実施の形態においては、容態検出手段として脈拍計80を用い、容態判定手段72がその基準値74を有する構成としているが、もちろん、容態検出手段としては、血圧計や心電計等の他の計測機器を適用することが可能である。また、計測機器の種類に応じて、基準値74が1つの値だけでなく、複数の値(上限値及び下限値)を有したり、所定の基準範囲を有したりする場合がある。また、心電計や筋電計の場合において、基準値74は数値でなく所定のパターンやプロファイルであってもよい。 For example, in the present embodiment, the pulsometer 80 is used as the condition detecting means, and the condition determining means 72 has the reference value 74. Of course, the condition detecting means includes a sphygmomanometer, an electrocardiograph, and the like. It is possible to apply other measuring instruments. Further, depending on the type of measuring instrument, the reference value 74 may have a plurality of values (upper limit value and lower limit value) as well as a single value, or may have a predetermined reference range. In the case of an electrocardiograph or electromyograph, the reference value 74 may be a predetermined pattern or profile instead of a numerical value.
 また、本実施の形態においては、脈拍計80が容態判定手段72に接続され、容態判定手段72が制御部40に接続されており、容態判定手段72からの異常信号に基づき制御部40がMERS30の出力電圧の大きさと電流の位相を調整するように構成されている。しかしながら、脈拍計80が直接制御部40に接続されており、脈拍数に応じて制御部40がMERS30の出力電圧の大きさと電流の位相を調整するように構成されていてもよい。この場合において、脈拍数に比例するように、照明灯60の明るさが調整されるようになっていてもよい。このように構成すれば、照明灯60の明るさに応じて、患者Mの脈拍数を概略推測することができる。 In the present embodiment, the pulsometer 80 is connected to the condition determination means 72, the condition determination means 72 is connected to the control unit 40, and the control unit 40 is based on the abnormal signal from the condition determination means 72. Are configured to adjust the magnitude of the output voltage and the phase of the current. However, the pulse meter 80 may be directly connected to the control unit 40, and the control unit 40 may be configured to adjust the magnitude of the output voltage of the MERS 30 and the phase of the current according to the pulse rate. In this case, the brightness of the illuminating lamp 60 may be adjusted so as to be proportional to the pulse rate. If comprised in this way, according to the brightness of the illumination light 60, the patient's M pulse rate can be estimated roughly.
 なお、照明灯を調光できる装置としては、例えば、家庭やオフィスで一般的に用いられているインバータ蛍光灯があるが、インバータ回路は発生する電磁ノイズが大きいことから、病院やコンピュータルーム等精密な電子機器を使用する環境では、使用が制限されている。例えば、インバータ蛍光灯を定格電圧(100V)で動作させたときの高調波歪率(THD)を高調波解析機能付ディジタルオシロスコープにより測定した結果によれば、電球型蛍光灯(17W)のTHD:128.2%、スタンド型蛍光灯(15W)のTHD:82.6%である。比較のための白熱電球(60W)では、THD:3.1%である。 In addition, as an apparatus capable of dimming the illumination lamp, for example, there is an inverter fluorescent lamp generally used in homes and offices. However, since the inverter circuit generates a large amount of electromagnetic noise, it can be used in precision hospitals and computer rooms. Use is restricted in environments where various electronic devices are used. For example, according to the result of measuring the harmonic distortion (THD) when the inverter fluorescent lamp is operated at the rated voltage (100 V) with a digital oscilloscope with a harmonic analysis function, the THD of the bulb-type fluorescent lamp (17 W): 128.2%, THD of a stand-type fluorescent lamp (15 W): 82.6%. In the incandescent lamp (60 W) for comparison, THD is 3.1%.
 これに対して、MERSを用いた回路(負荷として40Wの蛍光灯を2灯を並列に接続)のTHDを同様に高調波解析機能付ディジタルオシロスコープにより測定した結果では、コンデンサの値が完全な共振状態になる場合(8.8μF)、負荷電圧のTHD:4.5%、負荷電流のTHD:2.1%になり、コンデンサの値が完全共振状態から10%程度少ない場合でも(7.9μF)、負荷電圧のTHD:14.1%、負荷電流のTHD:3.7%(いずれの値も誘導性負荷そのものを除いたMERSの回路部分のみ)と非常に高調波の発生が少ない。 On the other hand, the THD of a circuit using MERS (two 40W fluorescent lamps connected in parallel as a load) was similarly measured with a digital oscilloscope with harmonic analysis function, and the capacitor value was completely resonant. When the state becomes 8.8 μF, the load voltage THD is 4.5%, the load current THD is 2.1%, and the capacitor value is about 10% less than the complete resonance state (7.9 μF). ), THD of load voltage: 14.1%, THD of load current: 3.7% (all values are only MERS circuit parts excluding inductive load itself), and generation of harmonics is very small.
 本発明に係る患者容態報知システムは、高調波を発生させないため、一般に病院内での利用が可能である。もちろん、病院のみならず、種々の屋内照明設備を利用した報知システムとして利用可能である。 Since the patient condition notification system according to the present invention does not generate harmonics, it can generally be used in hospitals. Of course, it can be used not only as a hospital but also as a notification system using various indoor lighting facilities.

Claims (10)

  1.  患者の容態を検出する容態検出手段と、
     電源と照明灯との間に接続された負荷電力調整スイッチと、
     前記容態検出手段及び前記負荷電力調整スイッチに接続され、前記容態検出手段からの出力信号に基づき前記負荷電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、前記照明灯の輝度を調整する制御手段と、を有する患者容態報知システム。
    Condition detecting means for detecting the condition of the patient;
    A load power adjustment switch connected between the power source and the lamp, and
    The brightness of the illuminating lamp is controlled by changing the magnitude of the output voltage and the current phase of the load power adjustment switch based on the output signal from the condition detection means, connected to the condition detection means and the load power adjustment switch. A patient condition notification system having control means for adjusting.
  2.  前記負荷電力調整スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時の電流の磁気エネルギーを蓄積して前記照明灯に回生するためのコンデンサと、を有し、前記逆導通型半導体スイッチのゲート位相を制御することで、前記照明灯に供給する負荷電力を調整することを特徴とする請求項1に記載の患者容態報知システム。 The load power adjustment switch includes at least two reverse conducting semiconductor switches and a capacitor for accumulating magnetic energy of current at the time of current interruption and regenerating the lighting lamp, and the reverse conducting semiconductor switch The patient condition notification system according to claim 1, wherein a load power supplied to the illuminating lamp is adjusted by controlling a gate phase of the patient.
  3.  前記容態検出手段が、血圧計、脈拍計、心電計、筋電計、脳波計、呼吸検出器、排泄物検出器のうち少なくともいずれか1つである請求項1に記載の患者容態報知システム。 The patient condition notification system according to claim 1, wherein the condition detection means is at least one of a sphygmomanometer, a pulse meter, an electrocardiograph, an electromyograph, an electroencephalograph, a respiratory detector, and an excretion detector. .
  4.  前記容態検出手段からの出力信号に応じて前記患者の容態異常を判断すると共に、
     該容態異常時に、容態異常を指標する容態異常信号を出力する容態判定手段を更に有する請求項1乃至請求項3に記載の患者容態報知システム。
    While determining an abnormal condition of the patient according to an output signal from the condition detection means,
    The patient condition notifying system according to any one of claims 1 to 3, further comprising condition determining means for outputting a condition abnormality signal for indicating a condition abnormality when the condition is abnormal.
  5.  前記容態異常信号に基づき異常報知する異常報知手段を更に有する請求項4に記載の患者容態報知システム。 The patient condition notifying system according to claim 4, further comprising an abnormality notifying means for notifying an abnormality based on the condition abnormal signal.
  6. 前記照明灯は、誘導性負荷を有する照明灯、誘導性負荷に接続された照明灯、又は抵抗性負荷を有する照明灯であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の患者容態報知システム。 6. The illumination lamp according to claim 1, wherein the illumination lamp is an illumination lamp having an inductive load, an illumination lamp connected to the inductive load, or an illumination lamp having a resistive load. The patient condition notification system described in 1.
  7. 前記誘導性負荷を有する照明灯は、放電灯であることを特徴とする請求項6に記載の患者容態報知システム。 The patient condition notification system according to claim 6, wherein the illuminating lamp having the inductive load is a discharge lamp.
  8. 前記放電灯は、蛍光灯、水銀灯、又はナトリウム灯であることを特徴とする請求項7に記載の患者容態報知システム。 The patient condition notification system according to claim 7, wherein the discharge lamp is a fluorescent lamp, a mercury lamp, or a sodium lamp.
  9.  前記誘導性負荷に接続された照明灯は、白熱灯又はLEDにリアクトルを接続したものであることを特徴とする請求項6に記載の患者容態報知システム。 The patient condition notification system according to claim 6, wherein the illuminating lamp connected to the inductive load is an incandescent lamp or an LED connected to a reactor.
  10. 前記抵抗性負荷を有する照明灯は、白熱灯、又はLED等であることを特徴とする請求項6に記載の患者容態報知システム。 The patient condition notification system according to claim 6, wherein the illuminating lamp having the resistive load is an incandescent lamp or an LED.
PCT/JP2008/064528 2008-08-13 2008-08-13 Patient's condition notification system WO2010018627A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009548515A JP4441586B1 (en) 2008-08-13 2008-08-13 Patient condition notification system
PCT/JP2008/064528 WO2010018627A1 (en) 2008-08-13 2008-08-13 Patient's condition notification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064528 WO2010018627A1 (en) 2008-08-13 2008-08-13 Patient's condition notification system

Publications (1)

Publication Number Publication Date
WO2010018627A1 true WO2010018627A1 (en) 2010-02-18

Family

ID=41668781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064528 WO2010018627A1 (en) 2008-08-13 2008-08-13 Patient's condition notification system

Country Status (2)

Country Link
JP (1) JP4441586B1 (en)
WO (1) WO2010018627A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020185365A (en) * 2019-05-10 2020-11-19 フクダ電子株式会社 Biological information monitoring device, alarm control method of biological information monitoring device, and alarm control program of biological information monitoring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570501U (en) * 1992-03-06 1993-09-24 譲二 大島 Medical equipment
JPH07110894A (en) * 1993-10-13 1995-04-25 Hitachi Building Syst Eng & Service Co Ltd Alarming device for building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570501U (en) * 1992-03-06 1993-09-24 譲二 大島 Medical equipment
JPH07110894A (en) * 1993-10-13 1995-04-25 Hitachi Building Syst Eng & Service Co Ltd Alarming device for building

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOTA INOUE ET AL.: "Jiki Energy Kaisei Switch o Mochiita Keikoto no Shoene · Shoshigen Riyo", DENKI GAKKAI ZENKOKU TAIKAI RONBUNSHU, vol. 2006, no. 4, 15 March 2006 (2006-03-15), pages 23 - 24 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020185365A (en) * 2019-05-10 2020-11-19 フクダ電子株式会社 Biological information monitoring device, alarm control method of biological information monitoring device, and alarm control program of biological information monitoring device
JP7323387B2 (en) 2019-05-10 2023-08-08 フクダ電子株式会社 Vital information monitor, alarm control method for vital information monitor, and alarm control program for vital information monitor

Also Published As

Publication number Publication date
JPWO2010018627A1 (en) 2012-01-26
JP4441586B1 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4528886B2 (en) Power control device
KR101273996B1 (en) Led drive circuit, led illumination component, led illumination device, and led illumination system
JP2013239711A (en) Device and method for driving led lamp
CN103458568B (en) Lighting apparatus for discharge lamp, car-mounted head device and vehicle
MX2010006904A (en) Ballast with end-of-life protection for one or more lamps.
JP6296386B2 (en) Light control device and lighting system using the same
JP4481366B2 (en) Lighting control device
JP3591703B2 (en) Switching power supply
CN100488333C (en) Electronic ballast with an overvoltage monitoring device
JP4441586B1 (en) Patient condition notification system
JP2005019137A (en) Discharge lamp lighting device
JP2017521844A (en) Circuit for driving the load
JP2010251115A (en) Lighting system
CN103229600A (en) End-of-life circuit for fluorescent lamp ballast
CN102792572B (en) PFC with reduced pin number requirements for a control IC
JP4569112B2 (en) lighting equipment
JP2007172933A (en) Discharge lamp lighting device and luminaire
JP2018055789A (en) Lighting system and power supply unit
KR20130085843A (en) Ditect connection type led apparatus for even life by switching linearly and led lighting apparatus using the same
WO2010001441A1 (en) Adapter with dimming function, illumination lamp with dimming function, socket with dimming function, and illumination control device
WO2010001436A1 (en) Information providing device
JP3692873B2 (en) Discharge lamp lighting device
KR0148698B1 (en) Control system of lighting lamps
JP4314046B2 (en) Discharge lamp lighting device
JP2004335109A (en) High-frequency lighting device and illumination device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009548515

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08808958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08808958

Country of ref document: EP

Kind code of ref document: A1