WO2010016456A1 - Optical film, process for producing same, polarizer employing optical film, and display device - Google Patents

Optical film, process for producing same, polarizer employing optical film, and display device Download PDF

Info

Publication number
WO2010016456A1
WO2010016456A1 PCT/JP2009/063735 JP2009063735W WO2010016456A1 WO 2010016456 A1 WO2010016456 A1 WO 2010016456A1 JP 2009063735 W JP2009063735 W JP 2009063735W WO 2010016456 A1 WO2010016456 A1 WO 2010016456A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal support
optical film
producing
cooling roll
Prior art date
Application number
PCT/JP2009/063735
Other languages
French (fr)
Japanese (ja)
Inventor
忠浩 金子
森田 亮
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010523846A priority Critical patent/JPWO2010016456A1/en
Publication of WO2010016456A1 publication Critical patent/WO2010016456A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets

Definitions

  • the present invention provides an optical film that can be used for various functional films such as a protective film for a polarizing plate used in a liquid crystal display (LCD), a retardation film, a viewing angle widening film, and an antireflection film used in a plasma display.
  • the present invention relates to a method, an optical film, a polarizing plate, and a display device.
  • liquid crystal display devices have come to be used in televisions and large monitors due to improvements in image quality and high definition technology.
  • these liquid crystal display devices are costly due to their large size and efficient production.
  • the demand for down and the like has become stronger in materials for liquid crystal display devices, and a wider optical film is required.
  • Optical film production methods are roughly classified into a melt casting film forming method and a solution casting film forming method.
  • the former is a method in which a polymer is heated and melted, the melt is cast on a support and cooled and solidified, then peeled off from the support, and further stretched as necessary to produce a film.
  • the polymer is dissolved in a solvent, the solution (dope) is cast on a support, the solvent is evaporated with hot air, hot water, etc., then peeled off from the support, and further stretched as necessary.
  • This is a method for producing a film.
  • the solution casting film forming method uses a large amount of solvent, whereas the melt casting film forming method does not use a solvent, so it can take a production rate that does not depend on the drying rate and can be expected to improve productivity. .
  • additives such as plasticizers, ultraviolet absorbers, retardation control agents, peelability improvers, antioxidants, thermal decomposition inhibitors Etc. are added in large quantities, and these evaporate from the surface of the hot film coming out of the casting die.
  • the film temperature is lowered before the cast film reaches the cooling support, and thus the evaporation of the additive is also suppressed.
  • Patent Document 1 discloses a method and apparatus for producing resin-coated (laminated) paper, and particularly cleaning a cooling roll that removes low-molecular components adhering to the cooling roll in a laminator apparatus including a step of coating a molten resin.
  • a method is disclosed, and a method of applying energy to the surface of the cooling roll using a high-power laser light source or a flame of a flame burner is described as a cleaning method.
  • Patent Document 2 discloses a method of removing deposits on the roll surface by irradiating the roll surface used for film production with ultraviolet rays.
  • Patent Document 3 plasma is applied to a cooling roll that is in contact with a traveling film in order to reduce film surface scratches generated in the process of forming a thermoplastic resin film and to clean dirt adhered to the cooling roll.
  • a method for removing organic substances adhering to a cooling roll by irradiation is disclosed.
  • Patent Documents 1 to 3 all of the methods described in Patent Documents 1 to 3 are for cleaning a roll, and even in a roll whose surface has been cleaned by such a conventional cleaning method, If a web whose surface is contaminated by the bleed-out of the additive is conveyed, the additive adheres to the roll, and an increase in the peeling force occurs at the part where the additive adheres, and the film deforms at the time of peeling. There is a high risk of making.
  • the optical / mechanical properties of the film also differed from the part where the peel stress did not increase, resulting in a difference in retardation value and a corresponding increase in transmittance in the crossed Nicols state (CNT)
  • CNT crossed Nicols state
  • repelling failure may occur due to different wettability from the surroundings, or the coating layer may become uneven. There was a problem that it was easy to do.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and in the method for producing an optical film by the melt casting film forming method, when the film forming speed is increased, the additive vapor is condensed on the cooling support. It is to improve the productivity by eliminating the deterioration of the peelability of the cast film that occurs in the above.
  • An object of the present invention is to provide an optical film, a method for producing the same, a polarizing plate using the optical film, and a display device that can meet demands for increasing the width, width, and quality.
  • the present invention has the following features.
  • a method for producing an optical film by a melt casting film forming method comprising: casting a resin melt containing a thermoplastic resin and an additive on a surface of a metal support to form a casting film; and After the film is cooled and solidified, it is peeled off from the metal support, and is carried out in the presence of the additive vapor and a gas used for normal pressure plasma irradiation or excimer ultraviolet irradiation. And a step of forming a surface treatment film on the surface of the metal support over substantially the entire width of the metal support by irradiation treatment.
  • the step of forming a surface treatment film on the surface of the metal support is performed before casting the resin melt on the surface of the metal support, and after forming the surface treatment film on the surface of the metal support in advance.
  • the step of forming a surface treatment film on the surface of the metal support includes the step of casting the resin melt on the surface of the metal support in a non-passing section of the casting film on the surface of the metal support. 2. The method for producing an optical film as described in 1 above, which is carried out simultaneously.
  • the position where the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment is performed is near the position where the vapor of the additive is present and the resin solution is cast on the surface of the metal support.
  • the power supplied between the electrodes is 1 W / cm 2 or more and 50 W / cm 2 or less (area in which discharge occurs) as treatment conditions.
  • thermoplastic resin is a cellulose ester resin.
  • the minimum amount of increase in peeling force necessary to peel the cast film after cooling from the surface of the metal support is 0.1 to 2 at the start of film formation and after 24 hours from film formation. It is in the range of 2.0 (N / m), The manufacturing method of the optical film of any one of said 1-10 characterized by the above-mentioned.
  • a polarizing plate having the optical film according to 12 or 13 on at least one surface.
  • a decomposition product of an additive such as a plasticizer is a constituent component on the surface of the metal support by performing atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment.
  • a very dense surface-treated film is formed, and the presence of the surface-treated film significantly improves the mold releasability (peelability) of the film from the surface of the metal support, resulting in extremely smooth peelability.
  • the releasability (peelability) of the film from the metal support is improved, very smooth peelability is obtained, and fluctuation in the width direction of the peel position is reduced. Therefore, the optical film has the effect that the variation in retardation (Re) value in the width direction and the longitudinal direction of the optical film is greatly reduced, and the transparency and flatness are excellent.
  • the polarizing plate of claim 14 variation in retardation (Re) value is greatly reduced, and the optical film according to claim 12 or 13 excellent in transparency and flatness is provided on at least one surface. Therefore, the polarizing plate also has the effect that the variation in retardation (Re) value is reduced and the transparency and flatness are excellent.
  • the polarizing plate according to claim 14 is excellent in transparency and flatness, There is an effect that the contrast is excellent and the visibility is excellent without causing a decrease in contrast and density unevenness.
  • a method for producing an optical film that can meet the demands for thinning, widening, and improving the quality of an optical film as a protective film for a polarizing plate and the like, and the method Can provide a high-quality optical film, a polarizing plate using the optical film, and a display device.
  • FIG. 1 is a flow sheet showing an embodiment of an apparatus for carrying out the method for producing an optical film of the present invention by a melt casting film forming method.
  • the present invention relates to a method for producing an optical film by a melt casting film forming method, wherein a resin melt containing a thermoplastic resin and an additive is fed from a casting die (4) to a metal support comprising a first cooling roll ( 5) Casting process for casting on the surface to form a casting film (web) (10), and a process for separating the casting film (10) from the metal support (5) after cooling and solidifying.
  • the surface of the metal support over substantially the entire width of the metal support by the atmospheric pressure plasma irradiation process or the excimer ultraviolet irradiation process performed in the presence of the additive vapor and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation. And a step of forming a surface treatment film.
  • the casting film on the surface of the metal support (5) made of the first cooling roll is formed during film formation (the casting process and the process for forming the surface treatment film are simultaneously performed).
  • the non-passing section in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation, atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment is performed over substantially the entire width of the metal support (5).
  • a surface treatment film is formed on the surface of the metal support (5) by performing high-energy irradiation treatment with an atmospheric pressure plasma irradiation treatment apparatus (21) or an excimer ultraviolet irradiation apparatus (22), and then the metal support (5 ) The resin melt is cast on the surface.
  • the surface of the metal support (5) made of the first cooling roll is formed on the surface of the metal support (5) made of the first cooling roll on the surface of the metal support (5) made of the first cooling roll.
  • the surface of the metal support (5) made of the first cooling roll is modified by applying a high energy irradiation treatment, and the resin melt is cast on the surface of the metal support (5) after the modification. is there.
  • a resin melt containing a thermoplastic resin and an additive is flowed in the method for producing an optical film by the melt casting method.
  • the atmospheric pressure plasma irradiation treatment device (21) or the excimer ultraviolet ray is formed over substantially the entire width of the metal support (5) in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation.
  • an irradiation device (22) By applying high energy irradiation treatment with an irradiation device (22), a surface treatment film is formed on the surface of the metal support (5), and then a resin melt is cast on the surface of the metal support (5). is there.
  • the surface of the metal support (5) made of the first cooling roll is so-called off-line before casting the resin melt from the first cooling roll.
  • the surface of the metal support (5) made of the first cooling roll is modified by applying the high energy irradiation treatment, and the resin melt is cast on the surface of the modified metal support (5). Is.
  • the additive vapor mainly means the vapor of the plasticizer or ultraviolet absorber contained in the resin melt.
  • the atmospheric pressure plasma irradiation process or the excimer ultraviolet irradiation process is performed in the presence of an additive vapor.
  • the surface of the metal support (5) is subjected to high-energy irradiation treatment by an atmospheric pressure plasma irradiation treatment device (21) or an excimer ultraviolet irradiation device (22) in a so-called off-line manner.
  • an atmospheric pressure plasma irradiation treatment device (21) or an excimer ultraviolet irradiation device (22) in a so-called off-line manner.
  • a plasticizer or an ultraviolet absorber is put into a hot air generator, and hot air is blown from the hot air generator to heat and volatilize the plasticizer or the ultraviolet absorber vapor.
  • the gas used for the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment means a reactive gas used for the atmospheric pressure plasma irradiation apparatus (21), and in the case of the excimer ultraviolet irradiation apparatus (22). Means a purge gas such as nitrogen gas used for this.
  • atmospheric pressure plasma irradiation or excimer ultraviolet irradiation is performed in the presence of both an additive vapor and a gas used for atmospheric pressure plasma irradiation processing or excimer ultraviolet irradiation treatment.
  • the position where the atmospheric pressure plasma irradiation process or the excimer ultraviolet irradiation process is performed is a lot of the additive vapor, the resin solution is It is preferable that it is the vicinity of the position cast on the surface of a metal support body.
  • FIG. 2 is an explanatory diagram for explaining the structure of an atmospheric pressure plasma irradiation apparatus used for carrying out the method for producing an optical film of the present invention.
  • the atmospheric pressure plasma irradiation device (21) discharges the reactive gas by applying a high-frequency voltage between the opposing electrodes, thereby bringing the reactive gas into a plasma state. And the web surface is modified.
  • the atmospheric pressure plasma method is roughly divided into two types.
  • One is called a direct method or a planar method.
  • a high-frequency power is applied between electrodes arranged opposite to each other so as to sandwich an object to be processed. Is converted into plasma.
  • Another method is called a remote method or a downstream method, in which a reactive gas is introduced through an electrode to which a high-frequency voltage is applied and is turned into plasma. Any of the above schemes can be used in the present invention.
  • FIG. 2 shows an atmospheric pressure plasma apparatus of the type called the above-described remote system or downstream system.
  • (a) and (b) are counter electrodes of the atmospheric pressure plasma irradiation device (21), (g) is a reactive gas, (d) is a metal support comprising a first cooling roll from the plasma injection slit ( 5) A gap to the surface.
  • a reactive gas (g: also referred to as source gas) is introduced and passed between the counter electrodes (a) and (b) to which a high frequency voltage is applied. It is turned into plasma and sprayed onto the surface of the metal support (5) made of the first cooling roll to form a surface treatment film.
  • Such an electrode is preferably a metal base material coated with a dielectric. It is preferable to coat a dielectric on at least one side of the opposed application electrode and the ground electrode, and more preferably coat both of the opposed application electrode and the ground electrode with a dielectric.
  • the dielectric is preferably an inorganic substance having a relative dielectric constant of 6 to 45. Examples of such a dielectric include ceramics such as alumina and silicon nitride, silicate glass, borate glass, and the like. Glass lining material and the like.
  • the transparent film base material has a roll electrode specification that can be transported in contact with one electrode.
  • the dielectric surface is polished and the electrode surface roughness Rmax (specified in JIS B 0601) is set to 10 ⁇ m or less to keep the dielectric thickness and the gap between the electrodes constant. It is possible to stabilize the discharge state, eliminate distortion and cracking due to thermal shrinkage difference and residual stress, and greatly improve durability by covering with non-porous high precision inorganic dielectric. preferable.
  • the gap (d) between the blow slit for supplying plasma and the surface of the metal support (5) made of the first cooling roll is too close, it will contact the atmospheric pressure plasma irradiation device (21) due to web curl or the like. The web is scratched, and on the other hand, if it is too far away, the radicals of the plasma cannot reach sufficiently, and the volatile vapor decomposition of the additive and the modification of the web surface cannot be sufficiently performed. 2 to 20 mm is more preferable.
  • the source gas (g) various materials such as nitrogen, oxygen, argon, and helium can be used, but nitrogen is preferable from the viewpoints of environment, exhaust after-treatment, and running cost. Furthermore, it is more preferable to mix a small amount of oxygen with nitrogen.
  • the mixing ratio of oxygen is preferably 5% by volume or less with respect to the volume of the source gas.
  • the source gas flow rate of atmospheric pressure plasma is desirably 20 to 5000 L / min per 1 m of plasma width. Further, 40 to 2500 L / min is more preferable.
  • the position where the atmospheric pressure plasma irradiation treatment is performed is a position where a large amount of the additive vapor exists and the resin solution is cast on the surface of the metal support. It is preferable that it is near.
  • An angle ⁇ formed by a line L1 when connected to P3, a position P2 where the resin solution is cast onto the surface of the metal support, and a line L2 when connected to the center point P3 of the first cooling roll 5 is 120 °. The following is preferred. When the angle is 120 ° or less, a large amount of the additive vapor is present, and a uniform surface treatment film can be formed on the surface of the metal support.
  • the power supplied between the electrodes is 1 W / cm 2 or more and 50 W / cm 2 or less (area in which discharge occurs).
  • the treatment conditions it is preferable in that sufficient surface treatment can be performed without causing abnormal discharge such as arc discharge.
  • FIG. 3 is an explanatory diagram for explaining the principle of the excimer ultraviolet irradiation device (22) used in the method for producing an optical film of the present invention.
  • (u) is an excimer ultraviolet lamp
  • (r) is a reflector
  • (p) is a purge gas
  • (d) is an excimer ultraviolet lamp (u) to a metal support (5) comprising a first cooling roll. It is a gap.
  • the wavelength is particularly preferably 250 nm or less.
  • the oxygen contained in the purge gas (p) generates active oxygen and ozone, and decomposes the volatile vapor of the additive into carbon dioxide, water, etc. together with the ultraviolet rays, and also comprises the first cooling roll.
  • the surface of the metal support (5) is modified.
  • the web may be curled or the like to contact the ultraviolet lamp device and scratch the web. If it is too far away, the ultraviolet light is absorbed by oxygen and the volatile vapor of the additive cannot be decomposed and the surface of the web cannot be sufficiently modified, so that it is preferably about 1 to 20 mm, and more preferably 2 to 15 mm. It is desirable to provide an exhaust device near the ultraviolet irradiation device (22) to exhaust the decomposition gas.
  • the position where the excimer ultraviolet irradiation treatment is performed is preferably in the vicinity of the position where a large amount of the additive vapor exists and where the resin solution is cast onto the surface of the metal support.
  • a position P ⁇ b> 1 a central position irradiated with an ultraviolet lamp
  • the angle ⁇ formed by L2 is preferably 120 ° or less. When the angle is 120 ° or less, a large amount of the additive vapor is present, and a uniform surface treatment film can be formed on the surface of the metal support.
  • the processing conditions of the excimer ultraviolet treatment it is preferable to irradiate ultraviolet rays having a dominant wavelength of 172 nm with a light amount of 1 to 3,000 mJ / cm 2 .
  • the treatment conditions it is preferable in that a sufficient surface treatment effect can be obtained in a short time.
  • the method for producing an optical film according to the present invention includes a step of casting a resin melt containing a thermoplastic resin and an additive on the surface of a metal support (5) made of a first cooling roll to form a cast film, After the casting film is cooled and solidified, it comprises the first cooling roll in the presence of the step of peeling from the metal support (5), the vapor of the additive, and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation.
  • the step of forming the surface treatment film on the surface of the metal support (5) made of the first cooling roll may be performed online or offline.
  • the first cooling roll by performing atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation, the first cooling roll
  • the surface of the metal support (5) is formed with a very dense surface treatment film comprising a decomposition product of an additive such as a plasticizer as a constituent component.
  • the releasability (peelability) of the film from the film is remarkably improved, a very smooth peelability is obtained, the fluctuation in the width direction of the peel position is reduced, and the film width direction and longitudinal direction retardation (Re ) Value variation can be greatly reduced, and an optical film having optical properties with excellent transparency and flatness can be produced, and the production speed can be increased. It is possible to improve the productivity, and thus the recent thin protective film such as a polarizing plate, in which it is possible to meet demand for broadening, and higher quality.
  • the surface of the metal support (5) made of the first cooling roll has a decomposition product of an additive such as a plasticizer as a constituent component.
  • a dense surface-treated film is formed, and the presence of the surface-treated film significantly improves the releasability (peelability) of the film from the surface of the metal support (5), and from the surface of the metal support (5).
  • the releasability (peelability) of the film is less likely to deteriorate even during long-term film formation, and the effect is further sustained. Moreover, even if the component of the surface treatment film is slightly transferred from the surface of the metal support (5) to the film, it is an additive that has been originally added to the film, so that it hardly affects the film characteristics.
  • the surface treatment film formed on the surface of the metal support (5) has a contact angle of 5 to 40 degrees between the treatment film and water. ,preferable.
  • the metal support (5) is composed of a cooling roll, but the metal support (5) used in the method for producing an optical film of the present invention is also an endless film-forming device. It may be a belt or a drum.
  • the minimum amount of increase in peeling force required to peel the cast film after cooling from the surface of the metal support is the same as that at the start of film formation. It is preferably within the range of 0.1 to 2.0 (N / m) after 24 hours from the film formation.
  • the release property (peelability) of the film from the metal support (5) is improved, and a very smooth peelability is obtained. Since the variation in the width direction of the position is reduced, the optical film is excellent in transparency and flatness because the variation in retardation (Re) value in the width direction and the longitudinal direction is greatly reduced.
  • the dispersion of the transmittance at a wavelength of 600 nm at the time of crossed Nicol of the optical film manufactured by the method for manufacturing an optical film of the present invention is in the range of 2 ⁇ 10 ⁇ 5 to 60 ⁇ 10 ⁇ 5 (%). Is preferred. Thereby, when incorporated in a liquid crystal panel, the entire screen can be uniformly high in contrast.
  • an optical film of the present invention it is possible to meet demands for thinning, widening, and high quality of an optical film as a protective film for a polarizing plate, etc., and high quality optical with high productivity.
  • a method for producing a film can be provided.
  • a cellulose ester resin dried under hot air, vacuum or reduced pressure is melted at an extrusion temperature of about 200 to 300 ° C. using an extruder (1), and a leaf disk type filter (2) Filter through to remove foreign matter.
  • a leaf disk type filter (2) Filter through to remove foreign matter.
  • transduces into an extruder (1) from a supply hopper it is preferable to prevent oxidative decomposition etc. by making it under vacuum or pressure reduction, or inert gas atmosphere.
  • additives such as plasticizer are not mixed in advance, they may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer (3).
  • a resin such as a cellulose resin and other additives such as a stabilizer added as necessary are mixed before melting.
  • Mixing may be performed by a mixer or the like, or as described above, mixing may be performed in a resin preparation process such as a cellulose resin.
  • a general mixer such as a V-type mixer, a conical screw type mixer, a horizontal cylindrical type mixer, or the like can be used.
  • the mixture may be directly melted and formed into a film using an extruder (1).
  • the pellets May be melted with an extruder (1) to form a film.
  • a so-called braided semi-melt is once produced at a temperature at which only a material having a low melting point is melted, and the semi-melt is extruded (1).
  • the film component contains a material that is easily pyrolyzed, in order to reduce the number of times of melting, a method of directly forming a film without producing pellets, or after making a paste-like semi-molten material as described above A method of forming a film is preferred.
  • the extruder (1) various commercially available extruders can be used, but a melt-kneading extruder is preferable, and a single-screw extruder or a twin-screw extruder may be used.
  • a twin-screw extruder When forming a film directly without producing pellets from film constituent materials, it is preferable to use a twin-screw extruder because an appropriate degree of kneading is required.
  • the screw shape is a Maddock type. By changing to a kneading type screw such as a unimelt type or a dull mage, moderate kneading can be obtained, so that it can be used.
  • a pellet or braided semi-melt When a pellet or braided semi-melt is once used as a film constituent material, it can be used in either a single screw extruder or a twin screw extruder.
  • the cooling step is preferably performed by substituting with an inert gas such as nitrogen gas or reducing the pressure to reduce the oxygen concentration.
  • the preferable conditions for the melting temperature of the film constituent material in the extruder (1) vary depending on the viscosity and discharge amount of the film constituent material, the thickness of the sheet to be produced, etc., in general, the glass transition of the film (resin mixture) It is Tg or more and Tg + 100 ° C. or less, preferably Tg + 10 ° C. or more and Tg + 90 ° C. or less with respect to the temperature Tg.
  • the melt viscosity at the time of extrusion is 10 to 100,000 poise, preferably 100 to 10,000 poise.
  • the residence time of the film constituting material in the extruder (1) is preferably short, and is within 5 minutes, preferably within 3 minutes, more preferably within 2 minutes.
  • the residence time depends on the type of the extruder (1) and the extrusion conditions, but it can be shortened by adjusting the material supply amount, L / D, screw rotation speed, screw groove depth, and the like. Is possible.
  • the shape and rotation speed of the screw of the extruder (1) are appropriately selected depending on the viscosity and the discharge amount of the film constituting material.
  • the shear rate in the extruder (1) is 1 / second to 10,000 / second, preferably 5 / second to 1000 / second, more preferably 10 / second to 100 / second.
  • an extruder generally marketed as a plastic molding machine can be used as the extruder (1).
  • the film constituting material extruded from the extruder (1) is sent to the casting die (4) and extruded from the casting die (4) into a film shape.
  • the melt discharged from the extruder (1) is supplied to the casting die (4).
  • the casting die (4) is not particularly limited as long as it is used for producing a sheet or a film.
  • hard chromium, chromium carbide, chromium nitride, titanium carbide, titanium carbonitride, titanium nitride, super steel, ceramic (tungsten carbide, aluminum oxide, chromium oxide), etc. are sprayed or plated. Buffing as surface processing, lapping using a # 1000 or higher grinding wheel, plane cutting using a diamond grinding wheel of # 1000 or higher (cutting direction is perpendicular to the resin flow direction), electrolytic polishing, electrolytic composite polishing, etc. And the like.
  • the preferred material of the lip portion of the casting die (4) is the same as that of the casting die (4).
  • the surface accuracy of the lip is preferably 0.5S or less, and more preferably 0.2S or less.
  • the method for producing an optical film of the present invention allows the surface of the metal support (5) made of the first cooling roll to be formed on the surface of the metal support (5) before casting the resin melt.
  • the surface of the metal support (5) is modified by applying a high energy surface treatment with an atmospheric pressure plasma irradiation apparatus (21) or an excimer ultraviolet irradiation apparatus (22).
  • the resin melt is cast on the surface of the modified metal support (5).
  • the surface of the metal support (5) on which the resin melt is cast is so-called off-line before casting the resin melt, and the surface of the metal support (5) is predetermined.
  • the high-energy surface treatment is performed by the atmospheric pressure plasma irradiation apparatus (21) or the excimer ultraviolet irradiation apparatus (22) in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation.
  • the surface of the metal support (5) is modified by the above-mentioned method, or the non-passage section of the web on the surface of the metal support (5) [metal support (5) during film formation] In the section where the surface is exposed], in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation, the atmospheric pressure plasma irradiation apparatus (21)
  • the surface of the metal support (5) is modified by applying a high energy surface treatment with an excimer ultraviolet irradiation device (22), and the resin melt is cast on the surface of the modified metal support (5). To do.
  • the first cooling roll (metal support) is formed from the casting die (4) using the extruder (1).
  • Body) (5) is melt-extruded and brought into contact with the first cooling roll (5), and the film-like melt is pressed against the surface of the first cooling roll (5) with a predetermined pressure by the touch roll (6).
  • the total of three cooling rolls of the second cooling roll (7) and the third cooling roll (8) are sequentially circumscribed and solidified by cooling, and are peeled off by the peeling roll (9).
  • the peeled web (10) is one in which both ends of the web (10) are gripped by the tenter (11) and stretched in the width direction, and then the stretched film is wound up by the winder (12).
  • the temperature of the first cooling roll (5) is set to be equal to or lower than the glass transition temperature (Tg) of the resin mixture and equal to or higher than the melting point of the additive.
  • ratio (S2 / S1) of the circumferential speed (S1) of the 1st cooling roll (5) and the circumferential speed (S2) of the 2nd cooling roll (7) It is preferable to set to 1.001 to 1.05.
  • the touch roll (6) is a rotating body intended to sandwich the film in the direction of the first cooling roll (5) from the opposite side of the first cooling roll (5) to the film.
  • the surface of the touch roll (6) is preferably a metal, and the thickness is 1 mm to 10 mm. It is preferably 2 mm to 6 mm.
  • the surface of the touch roll (6) is subjected to a treatment such as chrome plating, and the surface roughness is preferably 0.2S or less. The smoother the roll surface, the smoother the surface of the resulting film.
  • the metal material on the surface of the touch roll (6) is required to be smooth, moderately elastic and durable. Carbon steel, stainless steel, titanium, nickel produced by electroforming, etc. can be preferably used. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to carry out a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying. It is preferable that the surface processed is further polished to have the above-described surface roughness.
  • the touch roll (6) has a double structure of a metal outer cylinder and an inner cylinder, and has a structure of a double cylinder having a space so that a cooling fluid can flow between them.
  • the inner cylinder is preferably a lightweight and rigid metallic inner cylinder such as carbon steel, stainless steel, aluminum, titanium or the like. By giving rigidity to the inner cylinder, it is possible to suppress the rotational shake of the roll. A sufficient rigidity can be obtained by setting the thickness of the inner cylinder to 2 to 10 times that of the outer cylinder.
  • the inner cylinder may be further coated with a resin elastic material such as silicone or fluororubber.
  • the structure of the space through which the cooling fluid flows can be any structure as long as the temperature of the roll surface can be uniformly controlled.
  • the roll can be made to flow in a spiral direction by flowing alternately and back in the width direction. Temperature control with a small surface temperature distribution is possible.
  • the cooling fluid is not particularly limited, and water or oil can be used according to the temperature range to be used.
  • the touch roll (6) as the second rotating body is set to a drum shape in which the outer diameter of the central part is larger than the outer diameters of both end parts.
  • the touch roll generally presses both ends of the touch roll against the film with a pressurizing unit, but in this case, the touch roll is bent, so that there is a phenomenon that the touch roll is pressed more strongly toward the end. Highly uniform pressing is possible by making the roll into a drum shape.
  • the diameter of the touch roll (6) as the second rotating body is preferably in the range of 200 mm to 500 mm.
  • the effective width of the touch roll (6) needs to be wider than the film width to be pressed. Due to the difference between the radius of the center portion and the radius of the end portion of the touch roll (6) (hereinafter referred to as the crowning amount), unevenness such as streaks generated in the center portion of the film can be prevented.
  • the amount of crowning is preferably in the range of 50 to 300 ⁇ m.
  • the first cooling roll (5) and the touch roll (6) are installed at positions opposite to the plane of the film so as to sandwich the film.
  • the first cooling roll (5) and the touch roll (6) may be in contact with the film by a surface or by a line.
  • the conditions for melt extrusion can be performed in the same manner as the conditions used for other thermoplastic resins such as polyester.
  • the material is preferably dried beforehand. It is desirable to dry the moisture to 1000 ppm or less, preferably 200 ppm or less, using a vacuum or reduced pressure dryer or a dehumidifying hot air dryer.
  • the molten resin mixture is extruded from a casting die (4) attached to an extruder to a film-like resin, and the extruded film-like resin is brought into close contact with at least two rotating bodies to be molded and taken out. Process.
  • the linear pressure with which the touch roll (6) presses the film at this time can be adjusted by a hydraulic piston or the like, and is preferably 0.1 to 100 N / mm, more preferably 1 to 50 N / mm.
  • first cooling roll (5) or the touch roll (6) can have a diameter reduced at both ends of the roll or can have a flexible roll surface in order to improve the uniformity of adhesion with the film.
  • the reduced pressure is preferably 50 kPa or more and 70 kPa or less.
  • the suction device is preferably subjected to a treatment such as heating with a heater so that the device itself does not become a place where the sublimate is attached. If the suction pressure is too small, the sublimate cannot be sucked effectively, so it is necessary to set the suction pressure appropriately.
  • a film-like cellulose ester resin in a molten state from the T die (4) is in close contact with the first cooling roll (5), the second cooling roll (7), and the third cooling roll (8).
  • the mixture is cooled and solidified while being conveyed to obtain a cellulose ester resin web (10).
  • the cooled and solidified web (10) peeled from the third cooling roll (8) by the peeling roll 9 is stretched by the tenter (11). By this stretching, the molecules in the film are oriented.
  • the apparatus for cooling the film (resin mixture) extruded from the casting die (4) is not limited to a roll, and may be a drum or a belt.
  • the film (10) peeled off from the cooling roll (5) described above is a tenter (11) and is stretched in one or more stages in the longitudinal direction through one or a plurality of roll groups and / or a heating device such as an infrared heater. It is preferable to do.
  • the glass transition temperature of the film is Tg, it is preferably heated in the range of Tg ⁇ 50 ° C. to Tg + 80 ° C. and stretched in the transport direction.
  • the film stretched in the conveying direction is preferably stretched in the temperature range of Tg-50 ° C. to Tg + 80 ° C. and then heat-set.
  • the tenter (11) may be laterally stretched. In that case, when the lateral stretch is performed while sequentially raising the temperature difference in the range of 1 to 50 ° C. in the stretched region divided into two or more, the thickness in the width direction and the optical This is preferable because the distribution can be reduced.
  • Tg differs depending on the film constituent material
  • Tg can be controlled by varying the material type constituting the film and the ratio of the constituent materials.
  • Tg is preferably 120 ° C. or higher, preferably 135 ° C. or higher.
  • the temperature environment of the film changes due to the temperature rise of the device itself, for example, the temperature rise derived from the light source.
  • the retardation value derived from the orientation state of the molecules fixed inside the film by stretching and the dimensional shape as the film are greatly changed.
  • Tg is preferably 250 ° C. or less.
  • known heat setting treatment, cooling, and relaxation treatment may be performed, and the stretching may be appropriately adjusted so as to have characteristics required for the target optical film.
  • the above stretching step and heat setting treatment are appropriately selected and performed in order to provide functions and physical properties necessary for widening the viewing angle of the liquid crystal display device. That is, when producing a retardation film as an optical film and further combining the functions of a polarizing plate protective film, it is necessary to control the refractive index, but the refractive index can be controlled by a stretching operation.
  • a stretching operation is a preferred method. Hereinafter, the stretching method will be described.
  • the required retardation is obtained by stretching the cellulose resin by 1.0 to 3.0 times in one direction and by 1.01 to 3.5 times in the direction perpendicular to the film plane.
  • Ro and Rt can be controlled.
  • Ro represents in-plane retardation, and is obtained by multiplying the difference between the refractive index in the longitudinal direction (MD) and the refractive index in the width direction (TD) by the thickness, and Rt is the thickness direction retardation. The difference between the in-plane refractive index (average in the longitudinal direction (MD) and the width direction (TD)) and the refractive index in the thickness direction is multiplied by the thickness.
  • Stretching can be performed sequentially or simultaneously, for example, in the longitudinal direction of the film (casting / conveying direction) and in the direction orthogonal to the film plane, that is, in the width direction. At this time, if the stretching ratio in at least one direction is too small, a sufficient phase difference cannot be obtained, and if it is too large, stretching becomes difficult and film breakage may occur.
  • nx is the refractive index in the longitudinal (MD) direction
  • ny is the refractive index in the width (TD) direction
  • nz is the refractive index in the thickness direction.
  • the film when the film is stretched in the melt casting direction, if the shrinkage in the width direction is too large, the value of nz becomes too large. In this case, it can be improved by suppressing the width shrinkage of the film or stretching in the width direction.
  • the refractive index When stretching in the width direction, the refractive index may be distributed in the width direction. This distribution may appear when the tenter method is used.
  • a shrinkage force is generated at the center of the film, and the phenomenon is caused by the end being fixed. It is thought to be called the Boeing phenomenon. Even in this case, by stretching in the casting direction, the bowing phenomenon can be suppressed and the distribution of the phase difference in the width direction can be reduced.
  • the film thickness variation of the obtained film can be reduced by stretching in the biaxial directions perpendicular to each other.
  • the film thickness variation of the retardation film is too large, the retardation becomes uneven, and unevenness such as coloring may be a problem when used in a liquid crystal display.
  • the film thickness variation of the cellulose resin film is preferably in the range of ⁇ 3%, more preferably ⁇ 1%.
  • a method of stretching in the biaxial directions perpendicular to each other is effective, and the stretching ratio in the biaxial directions perpendicular to each other is finally 1.0 to 3.0 times in the casting direction.
  • the width is preferably in the range of 1.01 to 3.5 times, in the range of 1.01 to 2.5 times in the casting direction and 1.05 to 3.0 times in the width direction. It is more preferable to obtain the required retardation value.
  • the end portion of the obtained web (film) is slit into a product width by a slitter and cut off, and then a knurling device comprising an embossing ring and a back roll
  • a knurling process embossing process
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • the grip part of the clip of the both ends of a film is deform
  • thermoplastic resin used in the method for producing an optical film of the present invention is not particularly limited as long as it can be formed by a melt casting method.
  • cellulose ester, polycarbonate, alicyclic structure-containing polymer, polyvinyl alcohol, polyamide, polyimide, polyester and the like can be mentioned.
  • cellulose esters and alicyclic structure-containing polymers are preferable because of their small photoelastic coefficient, and alicyclic structure-containing polymers are particularly preferable because of their low water absorption.
  • the degree of substitution of the acetyl group of the cellulose ester is preferably at least 1.5 or more because the resulting film has excellent dimensional stability.
  • the method for measuring the substitution degree of the acyl group of the cellulose ester can be carried out according to ASTM D-817-91.
  • the molecular weight of the cellulose ester is preferably 50,000 to 300,000, particularly 60,000 to 200,000 as the number average molecular weight because the mechanical strength of the resulting film can be increased.
  • the alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit, and the alicyclic structure may be in either the main chain or the side chain.
  • Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, but a cycloalkane structure is preferable because of excellent thermal stability.
  • the alicyclic structure-containing polymer is a monomer containing a norbornene ring structure, a monocyclic olefin, a cyclic conjugated diene, a vinyl aromatic compound, a vinyl alicyclic hydrocarbon compound, or the like, such as metathesis ring-opening polymerization or addition polymerization. It can be obtained by polymerizing by a known polymerization method and, if necessary, hydrogenating a carbon-carbon unsaturated bond.
  • the alicyclic structure-containing polymer used in the present invention has a polyisoprene or polystyrene equivalent weight average molecular weight (Mw) of 25 measured by gel permeation chromatography of a cyclohexane solution (or a toluene solution when the polymer is not dissolved). 5,000 to 50,000, more preferably 30,000 to 45,000.
  • the molecular weight distribution (Mw / Mn) is preferably 1.2 to 3.5, more preferably 1.5 to 3.0.
  • the glass transition temperature (Tg) is preferably 80 to 170 ° C.
  • the polyester is not particularly limited, but it is preferable to use a dicarboxylic acid component and a diol component as main constituent components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters comprising these as main components, terephthalic acid and / or 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component and ethylene glycol as a diol component from the viewpoints of transparency, mechanical strength, dimensional stability, etc. And / or a polyester having 1,4-cyclohexanedimethanol as a main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate or polyethylene-2,6-naphthalenedicarboxylate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two of these polyesters.
  • Polyesters containing a mixture of two or more species as main constituents are preferred.
  • polyethylene-2,6-naphthalenedicarboxylate is contained in an amount of 70% by weight or more based on the polyester, a polyester film having excellent transparency, mechanical strength, dimensional stability and the like can be obtained.
  • the polyester constituting the polyester film of the present invention may be copolymerized with other copolymer components or may be mixed with other polyesters as long as the effects of the present invention are not impaired.
  • examples of these include the dicarboxylic acid components and diol components mentioned above, or polyesters composed thereof.
  • a bisphenol compound, a compound having a naphthalene ring or a cyclohexane ring can be copolymerized.
  • the copolymerization ratio of these is preferably 1 to 20 mol% based on the difunctional dicarboxylic acid constituting the polyester.
  • two or more compatible polymers may be blended and subjected to melt kneading described later.
  • cellulose sester When a cellulose ester is formed into a film by the melt casting method, usually, cellulose sester remains in the cellulose ester in the course of its production, so that an acid such as alkyl carboxylic acid and sulfuric acid remains in the cellulose ester.
  • an acid such as alkyl carboxylic acid and sulfuric acid
  • the film is formed by the method, coloration and viscosity decrease occur, so that optical properties and mechanical properties such as haze, transmittance, and retardation are deteriorated. Therefore, it is desirable to remove the acid to 50 ppm or less in advance.
  • the melt casting in the present invention is defined as melt casting in which a cellulose ester is heated and melted to a temperature exhibiting fluidity without using a solvent, and then the fluid cellulose ester is cast.
  • the molding method for heating and melting can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion method is excellent.
  • the film constituent material is heated to express its fluidity, it is cast from a casting die onto a rotationally driven metal endless belt or a rotationally driven metal drum (metal support) to form a film.
  • the cellulose ester used in the present invention is the above-mentioned single or mixed acid ester of cellulose containing at least one structure among a fatty acyl group and a substituted or unsubstituted aromatic acyl group.
  • aromatic acyl group when the aromatic ring is a benzene ring, examples of the substituent of the benzene ring include halogen atom, cyano, alkyl group, alkoxy group, aryl group, aryloxy group, acyl group, carbonamido group, sulfone.
  • R is an aliphatic group, an aromatic group or a heterocyclic group.
  • the number of substituents is preferably 1 to 5, more preferably 1 to 4, further preferably 1 to 3, and preferably 1 or 2. Most preferred.
  • a halogen atom, cyano, alkyl group, alkoxy group, aryl group, aryloxy group, acyl group, carbonamido group, sulfonamido group and ureido group are preferable, halogen atom, cyano, alkyl group, alkoxy group, An aryloxy group, an acyl group and a carbonamido group are more preferred, a halogen atom, cyano, an alkyl group, an alkoxy group and an aryloxy group are more preferred, and a halogen atom, an alkyl group and an alkoxy group are most preferred.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group may have a cyclic structure or a branch.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and most preferably 1 to 4. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, hexyl, cyclohexyl, octyl and 2-ethylhexyl.
  • the alkoxy group may have a cyclic structure or a branch.
  • the number of carbon atoms of the alkoxy group is preferably 1-20, more preferably 1-12, still more preferably 1-6, and most preferably 1-4.
  • the alkoxy group may be further substituted with another alkoxy group. Examples of the alkoxy group include methoxy, ethoxy, 2-methoxyethoxy, 2-methoxy-2-ethoxyethoxy, butyloxy, hexyloxy and octyloxy.
  • the number of carbon atoms of the aryl group is preferably 6-20, and more preferably 6-12.
  • the aryl group include phenyl and naphthyl.
  • the number of carbon atoms in the aryloxy group is preferably 6-20, and more preferably 6-12.
  • the aryloxy group include phenoxy and naphthoxy.
  • the acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the acyl group include formyl, acetyl and benzoyl.
  • the carbonamide group has preferably 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the carbonamido group include acetamide and benzamide.
  • the number of carbon atoms of the sulfonamide group is preferably 1-20, and more preferably 1-12.
  • the sulfonamide group include methanesulfonamide, benzenesulfonamide and p-toluenesulfonamide.
  • the ureido group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of ureido groups include (unsubstituted) ureido.
  • the number of carbon atoms in the aralkyl group is preferably 7-20, and more preferably 7-12.
  • the aralkyl group include benzyl, phenethyl and naphthylmethyl.
  • the number of carbon atoms in the alkoxycarbonyl group is preferably 1-20, and more preferably 2-12.
  • Examples of the alkoxycarbonyl group include methoxycarbonyl.
  • the aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aryloxycarbonyl group include phenoxycarbonyl.
  • the number of carbon atoms of the aralkyloxycarbonyl group is preferably 8-20, and more preferably 8-12.
  • Examples of the aralkyloxycarbonyl group include benzyloxycarbonyl.
  • the carbamoyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • Examples of the carbamoyl group include (unsubstituted) carbamoyl and N-methylcarbamoyl.
  • the number of carbon atoms in the sulfamoyl group is preferably 20 or less, and more preferably 12 or less.
  • Examples of the sulfamoyl group include (unsubstituted) sulfamoyl and N-methylsulfamoyl.
  • the acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the acyloxy group include acetoxy and benzoyloxy.
  • the number of carbon atoms of the alkenyl group is preferably 2-20, and more preferably 2-12.
  • alkenyl groups include vinyl, allyl and isopropenyl.
  • the alkynyl group has preferably 2 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms.
  • alkynyl groups include thienyl.
  • the number of carbon atoms of the alkylsulfonyl group is preferably 1-20, and more preferably 1-12.
  • the number of carbon atoms of the arylsulfonyl group is preferably 6-20, and more preferably 6-12.
  • the alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • the number of carbon atoms in the aryloxysulfonyl group is preferably 6-20, and more preferably 6-12.
  • the alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • the number of carbon atoms in the aryloxysulfonyl group is preferably 6-20, and more preferably 6-12.
  • the aliphatic acyl group when the hydrogen atom of the hydroxyl group of cellulose is a fatty acid ester with an aliphatic acyl group, the aliphatic acyl group has 2 to 20 carbon atoms, specifically acetyl, propionyl, Examples include butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, octanoyl, lauroyl, stearoyl and the like.
  • the aliphatic acyl group is meant to include those having a substituent, and the substituent is a substitution of a benzene ring when the aromatic ring is a benzene ring in the above-mentioned aromatic acyl group. What was illustrated as a group is mentioned.
  • the esterified substituent of the cellulose ester is an aromatic ring
  • the number of substituents X substituted on the aromatic ring is 0 or 1 to 5, preferably 1 to 3, particularly preferably. Is one or two.
  • the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
  • the cellulose ester has a structure having a structure selected from at least one of a substituted or unsubstituted aliphatic acyl group and a substituted or unsubstituted aromatic acyl group. These may be used alone or as a mixed acid ester of cellulose, or a mixture of two or more cellulose esters.
  • the cellulose ester according to the present invention is preferably at least one selected from cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate and cellulose phthalate.
  • substitution degree of the mixed fatty acid ester more preferable cellulose acetate propionate and lower fatty acid ester of cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, and the substitution degree of the acetyl group is X,
  • substitution degree of propionyl group or butyryl group is Y, it is a cellulose resin containing a cellulose ester that simultaneously satisfies the following formulas (I) and (II).
  • the degree of substitution of the acetyl group and the degree of substitution of other acyl groups are determined by ASTM-D817-96.
  • cellulose acetate propionate is particularly preferably used.
  • 1.0 ⁇ X ⁇ 2.5 and 0.5 ⁇ Y ⁇ 2.5 are preferable.
  • Cellulose esters having different degrees of substitution of acyl groups may be blended so that the entire optical film falls within the above range. The portion not substituted with the acyl group is usually present as a hydroxyl group. These can be synthesized by known methods. The method for measuring the degree of substitution of the acetyl group can be measured according to ASTM-D817-96.
  • the number average molecular weight of the cellulose ester used in the optical film of the present invention is preferably in the range of 60,000 to 300,000, and the resulting film has high mechanical strength and is preferred. Furthermore, 70,000 to 200,000 are preferable.
  • the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0,
  • the cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
  • the measuring method of a weight average molecular weight can be based on the following method.
  • the molecular weight is measured using high performance liquid chromatography [gel permeation chromatograph (GPC)].
  • the measurement conditions are as follows.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • the intrinsic viscosity of the cellulose resin is preferably 1.5 to 1.75 g / cm 3 , and more preferably 1.53 to 1.63.
  • the cellulose ester used in the present invention preferably has few bright spot foreign matters when formed into a film.
  • a bright spot foreign material is an arrangement in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, light from the light source is applied from one side, and the cellulose ester film is applied from the other side. This is the point where the light from the light source appears to leak when observed.
  • the polarizing plate used for the evaluation is desirably composed of a protective film having no bright spot foreign matter, and a polarizing plate using a glass plate for protecting the polarizer is preferably used.
  • the bright spot foreign matter is considered to be one of the causes due to the unacetylated or low acetylated cellulose contained in the cellulose ester, and use a cellulose ester with a little bright spot foreign matter (use a cellulose ester with a small dispersion of substitution degree). And filtering the melted cellulose ester, or removing the bright spot foreign matters through the filtration process in the same way once in the solution state in at least one of the process of synthesizing the cellulose ester and the process of obtaining the precipitate You can also. Since the molten resin has a high viscosity, the latter method is more efficient.
  • 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, more preferably 50 pieces / cm 2 or less, and 30 pieces / cm 2 or less.
  • the number is preferably 10 pieces / cm 2 or less, but most preferably none.
  • the number of bright spots of 0.005 to 0.01 mm or less is also preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, and 50 / cm 2 or less.
  • the number is preferably 30 pieces / cm 2 or less, more preferably 10 pieces / cm 2 or less, and most preferably none.
  • the composition mixed with a plasticizer, deterioration inhibitor, antioxidant, etc. it is more effective to filter the composition mixed with a plasticizer, deterioration inhibitor, antioxidant, etc. than to filter the melted cellulose ester alone.
  • the cellulose ester may be dissolved in a solvent during the synthesis and reduced by filtration. What mixed the ultraviolet absorber and other additives suitably can be filtered. Filtration is preferably performed with a melt containing cellulose ester having a viscosity of 10,000 P or less, more preferably 5000 P or less, even more preferably 1000 P or less, and even more preferably 500 P or less.
  • the filter medium conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluorine resins such as tetrafluoroethylene resin are preferably used, and ceramics and metals are particularly preferably used.
  • the absolute filtration accuracy is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. These can be used in combination as appropriate.
  • the filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.
  • the optical film of the present invention includes, as additives, an ester plasticizer having a structure in which an organic acid and a trihydric or higher alcohol are condensed, an ester plasticizer comprising a polyhydric alcohol and a monovalent carboxylic acid, and a polycarboxylic acid.
  • At least one stabilizer selected from at least one plasticizer of an ester plasticizer comprising an acid and a monohydric alcohol, a phenolic antioxidant, a hindered amine light stabilizer, a phosphorus stabilizer, and a sulfur stabilizer.
  • a peroxide decomposing agent a radical scavenger, a metal deactivator, an ultraviolet absorber, a matting agent, a dye, a pigment, a plasticizer other than the above, and a hindered phenol
  • An antioxidant other than the antioxidant may be included.
  • additives are used in order to suppress the generation of volatile components due to deterioration or material decomposition, and to impart functions such as moisture permeability and slipperiness.
  • the presence of the above-mentioned additives is excellent in terms of suppressing the deterioration of the strength based on the deterioration and decomposition of the material, or maintaining the inherent strength of the material. It is necessary that the above-mentioned additives are present from the viewpoint of producing the optical film.
  • the presence of the above-described additives suppresses the formation of colored substances in the visible light region at the time of heating and melting, or unfavorable performance as an optical film such as transmittance and haze value generated by mixing volatile components in the film. It is excellent in that it can suppress or eliminate.
  • the display image of the liquid crystal display image is affected when the optical film is used in the configuration of the present invention exceeding 1%, and therefore the haze value is preferably less than 1%, more preferably less than 0.5%. .
  • deterioration reactions due to oxygen in the air may occur at the same time.
  • the optical film of the present invention is used as a polarizing plate protective film
  • the above-mentioned additives are contained in the film composition from the viewpoint of improving the storage stability with time for the polarizing plate of the present invention and the polarizer constituting the polarizing plate. Preferably it is present.
  • the above-mentioned additives are present in the optical film of the present invention, so that the above-mentioned alteration and deterioration can be suppressed and the aging storage property of the optical film can be improved.
  • the optical compensation design given to the lens is stabilized over a long period of time, and the display quality of the liquid crystal display device is improved.
  • the antioxidant can be used without limitation as long as it is a compound that inactivates radicals generated in the resin or suppresses deterioration of the resin due to addition of oxygen to the radical generated in the resin.
  • useful antioxidants include phenolic compounds, hindered amine compounds, phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc.
  • useful antioxidants include phenolic compounds, hindered amine compounds, phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc.
  • phosphorus compounds and phosphorus compounds are preferred. By blending these compounds, it is possible to prevent coloring and strength reduction of the molded product due to heat during heat molding or thermal oxidative degradation without lowering transparency and heat resistance.
  • These antioxidants can be used alone or in combination of two or more.
  • Phenolic compounds are known compounds and are described, for example, in columns 12 to 14 of US Pat. No. 4,839,405, and include 2,6-dialkylphenol derivative compounds.
  • phenolic compounds include n-octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl 3- (3,5-di-t-butyl-4 -Hydroxyphenyl) -acetate, n-octadecyl 3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl 3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl 3,5 -Di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, dodecyl ⁇ (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate, ethyl ⁇ - (4-hydroxy-3,5
  • hindered amine compounds include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and bis (2,2,6,6-tetramethyl-4-piperidyl) succinate.
  • Mn molecular weight of 2,000 to 5,000 is preferred.
  • Hindered phenol compounds of the above type are commercially available, for example, from Ciba Specialty Chemicals under the trade names “Tinuvin 144” and “Tinvin 770” and from Asahi Denka Kogyo Co., Ltd. under the name “ADK STAB LA-52”.
  • phosphorus compound examples include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2, 4-Di-tert-butylphenyl) phosphite, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide , 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenz [d, f] [1.3.2] Monophosphite compounds such as dioxaphosphepine; 4,4′-butylidene
  • Phosphorus compounds of the above type are commercially available, for example, from Sumitomo Chemical Co., Ltd. under the trade names “Sumizer GP”, from Asahi Denka Kogyo Co., Ltd. under the trade names “ADK STAB PEP-24G” and “ADK STAB PEP-36”. Yes.
  • sulfur compound examples include dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3. -Thiodipropionate, pentaerythritol-tetrakis ( ⁇ -lauryl-thio-propionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • the above-mentioned types of sulfur compounds are commercially available, for example, from Sumitomo Chemical Co., Ltd. under the trade names “Sumilezer®TPL-R” and “Sumilezer®TP-D”.
  • the addition amount of the antioxidant is usually 0.01 to 25 parts by mass, preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the antioxidant is preferably removed from impurities such as residual acids, inorganic salts, organic low molecules, etc. that are carried over from production or generated during storage, and more preferably has a purity of 99% or more. It is. Residual acid and water are preferably from 0.01 to 100 ppm, and heat degradation can be suppressed when the resin is melt cast, improving film formation stability, optical properties of the film, and mechanical properties.
  • the plasticizer preferably contains 1 to 25% by mass of an ester compound having a structure in which an organic acid and a trivalent or higher alcohol are condensed. If the amount is less than 1% by mass, the effect of adding a plasticizer is not recognized. If the amount is more than 25% by mass, bleeding out is likely to occur, and the aging stability of the film is lowered. An optical film containing 3 to 20% by mass of the plasticizer is more preferred, and an optical film containing 5 to 15% by mass is more preferred.
  • a plasticizer is an additive having an effect of improving brittleness or imparting flexibility by being added to a polymer, but in the present invention, a cellulose ester alone is used.
  • a plasticizer is added to lower the melt temperature than the melt temperature, and to lower the melt viscosity of the film composition containing the plasticizer than the cellulose resin alone at the same heating temperature.
  • it since it adds also in order to improve the hydrophilic property of a cellulose ester and to improve the water vapor transmission rate of an optical film, it has a function as a moisture permeation preventive agent.
  • the melting temperature of the film composition means a temperature at which the material is heated and fluidity is developed.
  • the cellulose ester In order to melt and flow the cellulose ester, it is necessary to heat at least a temperature higher than the glass transition temperature. Above the glass transition temperature, the elastic modulus or viscosity decreases due to heat absorption, and fluidity is exhibited.
  • the molecular weight of the cellulose ester may decrease due to thermal decomposition at the same time as melting at high temperatures, which may adversely affect the mechanical properties of the resulting film. Therefore, it is necessary to melt the cellulose ester at the lowest possible temperature. is there.
  • a plasticizer having a melting point or glass transition temperature lower than the glass transition temperature of the cellulose ester In order to lower the melting temperature of the film composition, it can be achieved by adding a plasticizer having a melting point or glass transition temperature lower than the glass transition temperature of the cellulose ester.
  • a polyhydric alcohol ester plasticizer having a structure in which an organic acid and a polyhydric alcohol are condensed lowers the melting temperature of the cellulose ester, has low volatility after the melt film-forming process and after production, and has good process suitability.
  • the obtained optical film is excellent in terms of optical properties, dimensional stability and flatness.
  • the organic acid for substituting the hydroxyl group of the trivalent or higher valent alcohol may be a single type or a plurality of types.
  • the trihydric or higher alcohol compound that reacts with an organic acid to form a polyhydric alcohol ester compound is preferably a trihydric to polyhydric aliphatic polyhydric alcohol.
  • Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
  • An ester of an organic acid and a trihydric or higher polyhydric alcohol can be synthesized by a known method.
  • a method of condensing an organic acid and a polyhydric alcohol in the presence of an acid to esterify a method of previously reacting an organic acid with an acid chloride or acid anhydride and reacting with the polyhydric alcohol, a phenyl ester of an organic acid, and
  • the molecular weight of the polyhydric alcohol ester thus obtained is not particularly limited, but is preferably 300 to 1500, and more preferably 400 to 1000. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.
  • optical film of the present invention may be used in combination with other plasticizers.
  • An ester compound comprising an organic acid and a trihydric or higher polyhydric alcohol which is a preferred plasticizer for the present invention, is highly compatible with cellulose esters and can be added at a high addition rate. Even if an additive is used in combination, bleed-out does not occur, and other types of plasticizers and additives can be easily used as needed.
  • a plasticizer composed of an ester compound composed of an organic acid and a trihydric or higher polyhydric alcohol is contained at least 50% by mass or more of the entire plasticizer. More preferably 70% or more, still more preferably 80% or more. If it uses in such a range, even if it uses together with another plasticizer, the fixed effect that the planarity of the cellulose ester film at the time of melt casting can be improved can be acquired.
  • Preferred other plasticizers include the following plasticizers.
  • An ester plasticizer comprising a polyhydric alcohol and a monovalent carboxylic acid, and an ester plasticizer comprising a polyvalent carboxylic acid and a monohydric alcohol are preferred because of their high affinity with the cellulose ester.
  • An ethylene glycol ester plasticizer that is one of polyhydric alcohol esters: specifically, ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate, ethylene glycol dicyclopropylcarboxylate And ethylene glycol cycloalkyl ester plasticizers such as ethylene glycol dicyclohexylcarboxylate, and ethylene glycol aryl ester plasticizers such as ethylene glycol dibenzoate and ethylene glycol di4-methylbenzoate.
  • ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate
  • ethylene glycol dicyclopropylcarboxylate ethylene glycol cycloalkyl ester plasticizers
  • ethylene glycol dicyclohexylcarboxylate ethylene glycol dicyclohexylcarboxylate
  • ethylene glycol aryl ester plasticizers such as ethylene glycol dibenz
  • the mix of an alkylate group, a cycloalkylate group, and an arylate group may be sufficient, and these substituents may couple
  • the ethylene glycol part may be substituted, the ethylene glycol ester partial structure may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber, etc. It may be introduced into a part of the molecular structure of the additive.
  • Glycerin ester plasticizer that is one of polyhydric alcohol esters: Specifically, glycerol alkyl esters such as triacetin, tributyrin, glycerol diacetate caprylate, glycerol oleate propionate, glycerol tricyclopropylcarboxylate, glycerol Glycerol cycloalkyl esters such as tricyclohexylcarboxylate, glycerol aryl esters such as glycerol tribenzoate and glycerol 4-methylbenzoate, diglycerol tetraacetylate, diglycerol tetrapropionate, diglycerol acetate tricaprylate, diglycerol tetralaur Diglycerin alkyl ester such as rate, diglycerin tetracyclobutylcarboxylate, diglycerin tetracycle Diglycerol cycloalkyl esters such as penty
  • alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Moreover, the mix of alkylate group, a cycloalkyl carboxylate group, and an arylate group may be sufficient, and these substituents may couple
  • polyhydric alcohol ester plasticizers include polyhydric alcohol ester plasticizers described in paragraph numbers [0030] to [0033] of JP-A-2003-12823.
  • alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Moreover, the mix of alkylate group, a cycloalkyl carboxylate group, and an arylate group may be sufficient, and these substituents may couple
  • alkyl polyhydric alcohol aryl esters are preferred.
  • the above-mentioned ethylene glycol dibenzoate, glycerin tribenzoate, diglycerin tetrabenzoate, Exemplified compound 16 described in paragraph No. [0032] of Kaikai 2003-12823 can be mentioned.
  • Dicarboxylic acid ester plasticizer that is one of polyvalent carboxylic acid esters: Specifically, alkyl dicarboxylic acid alkyl such as didodecyl malonate (C1), dioctyl adipate (C4), dibutyl sebacate (C8), etc.
  • Ester plasticizers alkyl dicarboxylic acid cycloalkyl ester plasticizers such as dicyclopentyl succinate and dicyclohexyl adipate, alkyl dicarboxylic acid aryl ester plasticizers such as diphenyl succinate and di4-methylphenyl glutarate, Cycloalkyl dicarboxylic acid alkyl ester plasticizers such as dihexyl-1,4-cyclohexanedicarboxylate and didecylbicyclo [2.2.1] heptane-2,3-dicarboxylate, dicyclohexyl-1,2-cyclobutane Zikal Cycloalkyldicarboxylic acid cycloalkyl ester plasticizers such as xylate, dicyclopropyl-1,2-cyclohexyldicarboxylate, diphenyl-1,1-cyclopropyldicarboxylate, di2-naphthyl-1,4-cycl
  • alkoxy groups and cycloalkoxy groups may be the same or different, may be mono-substituted, and these substituents may be further substituted.
  • the alkyl group and cycloalkyl group may be mixed, or these substituents may be bonded together by a covalent bond.
  • the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used.
  • the partial structure of phthalate ester may be part of the polymer or regularly pendant to the polymer, and may be part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. It may be introduced.
  • polycarboxylic acid ester plasticizers include alkyl polycarboxylic acid alkyl esters such as tridodecyl tricarbarate and tributyl-meso-butane-1,2,3,4-tetracarboxylate.
  • Plasticizers alkylpolycarboxylic acid cycloalkylester plasticizers such as tricyclohexyl tricarbarate, tricyclopropyl-2-hydroxy-1,2,3-propanetricarboxylate, triphenyl 2-hydroxy- Alkyl polyvalent carboxylic acid aryl ester plasticizers such as 1,2,3-propanetricarboxylate, tetra-3-methylphenyltetrahydrofuran-2,3,4,5-tetracarboxylate, tetrahexyl-1,2, 3,4-cyclobutanetetracarboxylate, tetra Cycloalkyl polycarboxylic acid alkyl ester plasticizers such as til-1,2,3,4-cyclopentanetetracarboxylate, tetracyclopropyl-1,2,3,4-cyclobutanetetracarboxylate, tricyclohexyl- Cycloalkyl polycarboxylic acid cycloalkyl este
  • Plasticizers such as triphenylbenzene-1,3,5-tetracartoxylate, hexa4-methylphenylbenzene-1,2,3,4,5,6-hexacarboxylate and the like of aryl polyvalent carboxylic acid aryl ester series A plasticizer is mentioned.
  • These alkoxy groups and cycloalkoxy groups may be the same or different, and may be monosubstituted, and these substituents may be further substituted.
  • the alkyl group and cycloalkyl group may be mixed, or these substituents may be bonded together by a covalent bond.
  • the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used.
  • partial structure of phthalate ester may be part of the polymer or may be regularly pendant to the polymer, and introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
  • ester plasticizers composed of the polyvalent carboxylic acid and the monohydric alcohol
  • dialkyl carboxylic acid alkyl esters are preferable, and specific examples include the dioctyl adipate and tridecyl tricarbalate.
  • other plasticizers used in the present invention further include phosphate ester plasticizers and polymer plasticizers.
  • Phosphate ester plasticizers specifically, phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate, phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and cyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate And phosphoric acid aryl esters such as cresylphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, trinaphthyl phosphate, trixylyl phosphate, tris ortho-biphenyl phosphate.
  • phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate
  • phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and
  • substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple
  • alkylene bis (dialkyl phosphate) such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaphthyl phosphate), phenylene bis (dibutyl phosphate) ), Arylene bis (dialkyl phosphate) such as biphenylene bis (dioctyl phosphate), phosphate esters such as arylene bis (diaryl phosphate) such as phenylene bis (diphenyl phosphate) and naphthylene bis (ditoluyl phosphate).
  • dialkyl phosphate such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaph
  • substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple
  • the phosphate ester partial structure may be part of the polymer, or may be regularly pendant, and may be introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. May be.
  • additives such as antioxidants, acid scavengers, and UV absorbers. May be.
  • phosphoric acid aryl ester and arylene bis (diaryl phosphate) are preferable, and specifically, triphenyl phosphate and phenylene bis (diphenyl phosphate) are preferable.
  • Polymer plasticizer Specifically, aliphatic hydrocarbon polymer, alicyclic hydrocarbon polymer, acrylic polymer such as polyethyl acrylate and polymethyl methacrylate, polyvinyl isobutyl ether, poly N-vinyl pyrrolidone, etc.
  • vinyl polymers styrene polymers such as polystyrene and poly-4-hydroxystyrene, polybutylene succinates, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethers such as polyethylene oxide and polypropylene oxide, polyamides, polyurethanes, and polyureas. It is done.
  • the number average molecular weight is preferably about 1,000 to 500,000, particularly preferably 5000 to 200,000. If it is 1000 or less, a problem arises in volatility, and if it exceeds 500000, the plasticizing ability is lowered, and the mechanical properties of the cellulose ester film are adversely affected.
  • These polymer plasticizers may be a homopolymer composed of one type of repeating unit or a copolymer having a plurality of repeating structures. Two or more of the above polymers may be used in combination.
  • the yellowness is preferably 3.0 or less, more preferably 1.0 or less. Yellowness can be measured based on JIS-K7103.
  • the plasticizer removes impurities such as residual acids, inorganic salts, organic low molecules, etc. that are carried over from production or generated during storage, and more preferably has a purity of 99% or more, like the cellulose ester described above. is there.
  • Residual acid and water are preferably 0.01 to 100 ppm, and when melt-forming cellulose resin, thermal deterioration can be suppressed, and film-forming stability, optical physical properties and mechanical properties of the film are improved. .
  • UV absorber As an ultraviolet absorber, from the viewpoint of preventing deterioration of a polarizer or a display device with respect to ultraviolet rays, the ultraviolet absorber has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, absorption of visible light having a wavelength of 400 nm or more is absorbed. Less is preferred. Examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, etc., but benzophenone compounds and less colored benzotriazole compounds preferable.
  • the structure of the ultraviolet absorber may be a multimer such as a dimer, trimer or tetramer in which a plurality of sites having an ultraviolet absorbing ability exist in one molecule, and JP-A-10-182621.
  • an ultraviolet absorber described in JP-A-8-337574 and a polymer ultraviolet absorber described in JP-A-6-148430 may be used.
  • benzotriazole ultraviolet absorbers include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) ) Benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis ( 4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2′-hydride) Xy-3'-tert-butyl-5'-methylphenyl) -5-chlor
  • TINUVIN 109 TINUVIN 171
  • TINUVIN 360 all manufactured by Ciba Specialty Chemicals
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • the ultraviolet absorber is preferably added in an amount of 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 5% by mass. Two or more of these may be used in combination.
  • the boiling point of the plasticizer or the ultraviolet absorber is 300 ° C. or lower.
  • the boiling point temperature is 300 ° C. or lower, it is sufficient to obtain a reaction rate for forming a dense surface film in a short time when atmospheric pressure plasma irradiation or excimer ultraviolet irradiation is performed over substantially the entire width of the metal support.
  • an evaporating gas concentration of a high concentration can be obtained because a surface treatment film can be more stably formed on the surface of the metal support.
  • plasticizers examples include ester plasticizers, phosphate ester plasticizers, polymer plasticizers, and ultraviolet absorbers. Preferred examples include benzophenone compounds and benzotriazole compounds. It is preferred to include at least one compound in the additive.
  • Cellulose ester is preferably decomposed not only by heat but also by oxygen in a high temperature environment where melt film formation is performed. Therefore, the optical film of the present invention preferably contains an antioxidant as a stabilizer. .
  • the antioxidant useful in the present invention can be used without limitation as long as it is a compound that suppresses deterioration of the melt molding material due to oxygen, but among the useful antioxidants, phenolic compounds, hindered amine compounds, Examples thereof include phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc. Among these, phenol compounds, hindered amine compounds, and phosphorus compounds are particularly preferable. These compounds are synonymous with the compounds described in (Antioxidant used for washing cellulose ester). By blending these compounds, it is possible to prevent coloring and strength reduction of the molded product due to heat during heat molding or thermal oxidative degradation without lowering transparency and heat resistance. These antioxidants can be used alone or in combination of two or more.
  • the addition amount of the antioxidant is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the acid scavenger is an agent that plays a role of trapping an acid (protonic acid) remaining in the cellulose ester brought in from the production. When the cellulose ester is melted, side chain hydrolysis is promoted by moisture and heat in the polymer, and acetic acid and propionic acid are generated in the case of CAP.
  • a compound having an epoxy structure, a tertiary amine, an ether structure, or the like may be used as long as it can be chemically bonded to an acid, but is not limited thereto.
  • epoxy compound as an acid scavenger described in US Pat. No. 4,137,201.
  • Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8 to 40 moles of ethylene oxide per mole of polyglycol.
  • Metal glycol compounds such as polyglycols, diglycidyl ethers of glycerol (eg, those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, bisphenol A Diglycidyl ethers (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid esters (especially esters of alkyls of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms (eg Butyl epoxy stearate ), And various epoxidized long chain fatty acid triglycerides and the like (e.g., epoxidized vegetable oils and other unsaturated natural oils, which may be represented and exemplified by compositions such as epoxidized soybean oil, sometimes epoxidized natural) These are referred to as glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms)). Particularly
  • acid scavengers that can be used include those described in paragraphs [0087] to [0105] of JP-A-5-194788.
  • the acid scavenger removes impurities such as residual acid, inorganic salt, and low molecular weight organic matter that are carried over from the production or generated during storage, and more preferably has a purity of 99%. That's it.
  • Residual acid and water are preferably 0.01 to 100 ppm, and when melt-forming cellulose resin, thermal deterioration can be suppressed, and film-forming stability, optical physical properties and mechanical properties of the film are improved. .
  • the acid scavenger may be referred to as an acid scavenger, an acid scavenger, an acid catcher, etc., but can be used in the present invention without any difference due to their names.
  • a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity.
  • the hydrogen bonding solvent is J.I. N.
  • the glass transition temperature of the cellulose resin used alone is higher than that.
  • the melting temperature of the cellulose resin composition can be lowered by the addition of a hydrogen bonding solvent, or the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered at the same melting temperature as the cellulose resin. .
  • Examples of the hydrogen bonding solvent include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, t-butanol, 2-ethylhexanol, heptanol, octanol, nonanol, dodecanol, ethylene glycol, Propylene glycol, hexylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, hexyl cellosolve, glycerin, etc., ketones: acetone, methyl ethyl ketone, etc., carboxylic acids: eg formic acid, acetic acid, propionic acid, Butyric acid, etc., ethers: eg, diethyl ether, tetrahydrofuran, dioxane,
  • These hydrogen bonding solvents can be used alone or in admixture of two or more.
  • alcohol, ketone, and ether are preferable, and methanol, ethanol, propanol, isopropanol, octanol, dodecanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable.
  • water-soluble solvents such as methanol, ethanol, propanol, isopropanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable.
  • water-soluble means that the solubility in 100 g of water is 10 g or more.
  • an alignment film may be formed to provide a liquid crystal layer, and polarizing plate processing may be performed in which an optical film and retardation derived from the liquid crystal layer are combined to provide optical compensation ability.
  • an aromatic compound having two or more aromatic rings as described in EP 911,656A2 can be used as a retardation control agent.
  • Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring.
  • An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring.
  • fine particles such as a matting agent can be added to impart slipperiness, and examples of the fine particles include inorganic compound fine particles and organic compound fine particles.
  • the matting agent is preferably as fine as possible.
  • the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include inorganic fine particles such as magnesium silicate and calcium phosphate, and crosslinked polymer fine particles.
  • silicon dioxide is preferable because it can reduce the haze of the film.
  • fine particles such as silicon dioxide are surface-treated with an organic material, but such a material is preferable because it can reduce the haze of the film.
  • Preferred organic substances for the surface treatment include halosilanes, alkoxysilanes, silazane, siloxane and the like.
  • the average particle size of the secondary particles of the fine particles is in the range of 0.05 to 1.0 ⁇ m.
  • the average particle size of secondary particles of the fine particles is preferably 5 to 50 nm, more preferably 7 to 14 nm.
  • These fine particles are preferably used in an optical film in order to generate irregularities of 0.01 to 1.0 ⁇ m on the surface of the optical film.
  • the addition amount of the matting agent is preferably 0.01 to 10 g per 1 m 2 of the cellulose ester film.
  • Examples of the fine particles of silicon dioxide include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, TT600 manufactured by Nippon Aerosil Co., Ltd., preferably Aerosil 200V, R972, R972V, R974, R202, and R812. Two or more kinds of these fine particles may be used in combination. When using 2 or more types together, it can mix and use in arbitrary ratios. In this case, fine particles having different average particle sizes and materials, for example, Aerosil 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
  • talc and glass fiber are added to increase the mechanical strength of the film and to prevent dimensional changes
  • inorganic particles such as aluminum hydroxide and magnesium hydroxide are added to increase flame retardancy. May be.
  • the shape of these additives may be any shape such as a spherical shape, a plate shape, a needle shape, a rod shape, a thread shape, and the like.
  • the presence of fine particles in the film used as the above addition can also be used for improving the strength of the film as another object.
  • the presence of the fine particles in the film can also improve the orientation of the cellulose ester itself constituting the optical film of the present invention.
  • Polymer material In the optical film of the present invention, polymer materials and oligomers other than cellulose ester may be appropriately selected and mixed.
  • the polymer materials and oligomers described above are preferably those having excellent compatibility with the cellulose ester, and the transmittance when formed into a film is preferably 80% or more, more preferably 90% or more, and further preferably 92% or more.
  • the purpose of mixing at least one of polymer materials and oligomers other than cellulose ester includes meanings for controlling viscosity at the time of heating and melting and improving film physical properties after film processing. In this case, it can contain as an above-mentioned other additive.
  • the optical film according to the present invention is manufactured by the above-described optical film manufacturing method, and the thickness of the film is preferably 30 to 200 ⁇ m.
  • the polarizing plate having the optical film of the present invention on at least one surface can sufficiently fulfill the important role of visualizing the change in the alignment of the liquid crystal due to the electric field.
  • the polarizing plate can be produced by a general method.
  • the cellulose ester film of the present invention that has been subjected to alkali saponification treatment is bonded to at least one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. Is preferred.
  • the cellulose ester film of the present invention may be used on the other side, or another polarizing plate protective film may be used. With respect to the cellulose ester film of the present invention, a commercially available cellulose ester film can be used as the polarizing plate protective film used on the other side.
  • KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA manufactured by Konica Minolta Opto, Inc.
  • films such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate, as a polarizing plate protective film of the other surface.
  • the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate of the present invention is obtained by using the cellulose ester film of the present invention on at least one side of a polarizer as a polarizing plate protective film. At that time, the cellulose ester film is preferably disposed so that the slow axis thereof is substantially parallel or perpendicular to the absorption axis of the polarizer.
  • the cellulose ester film of the present invention is disposed on the liquid crystal display cell side. It is preferred that
  • Examples of the polarizer preferably used in the polarizing plate of the present invention include a polyvinyl alcohol polarizing film, which includes a polyvinyl alcohol film dyed with iodine and a dichroic dye dyed.
  • a polyvinyl alcohol film a modified polyvinyl alcohol film modified with ethylene is preferably used.
  • a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound.
  • the film thickness of the polarizer is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • One side of the cellulose ester film of the present invention is bonded to the surface of the polarizer to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like. Moreover, in the case of resin films other than a cellulose ester film, it can be bonded to the polarizing plate via an appropriate adhesive layer.
  • the stretching direction (usually the longitudinal direction) shrinks, and the direction orthogonal to the stretching (usually normal) Extends in the width direction.
  • the stretching direction of the polarizer is bonded to the casting direction (MD direction) of the polarizing plate protective film. Therefore, when the polarizing plate protective film is thinned, it is particularly important to suppress the stretching rate in the casting direction. .
  • the cellulose ester film of the present invention is excellent in dimensional stability, it is preferably used as such a polarizing plate protective film.
  • the polarizing plate can be constituted by further bonding a protective film on one surface of the polarizing plate and a separate film on the opposite surface.
  • the protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection.
  • Liquid crystal display device By incorporating the polarizing plate using the optical film of the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced.
  • the optical film of the present invention is preferably a reflective, transmissive, transflective LCD, or TN, STN, OCB, HAN, VA (PVA, MVA), or IPS LCD. Used.
  • the display device having the polarizing plate of the present invention on at least one surface of the liquid crystal cell is very excellent in display quality.
  • Example 1 Cellulose acetate propionate 89% by weight (Acetyl group substitution degree 1.4, propionyl group substitution degree 1.35, Number average molecular weight 60000) 9% by weight of trimethylolpropane tribenzoate (Plasticizer, melting point 85 ° C) Antioxidant 0.25% by weight (Product name-IRGANOX XP 420 / FD, Ciba Specialty Chemicals) UV absorber 1.6% by weight (Product name-TINUVIN 928, manufactured by Ciba Specialty Chemicals, melting point 115 ° C) Matting agent (silica fine particles) 0.15% by weight (Product name-Sea Hoster KEP-30: Nippon Shokubai Co., Ltd., (Average particle size 0.3 ⁇ m) The degree of substitution of acyl groups such as acetyl group, propionyl group and
  • the DSC measurement was made by punching out about 10 mg of the sample with a punch, putting it in an aluminum pan, capping and crimping. This was heated at a rate of 10 ° C./min in nitrogen to a temperature condition of 30 to 250 ° C., cooled at 20 ° C./min, and again raised to 250 ° C. under the same conditions as the glass transition temperature ( Tg).
  • the above pellets were dried at a temperature of 100 ° C. for 5 hours to obtain a water content of 100 ppm.
  • pellets were supplied to the single screw extruder (1) shown in FIG. 1, and film formation was performed by a casting die (4) made of a T die.
  • the extruder (1) and the casting die (4) were each set to a temperature of 240 ° C.
  • the casting die (4) is a coat hanger type, has a width of 1900 mm, has an inner wall plated with hard chrome, and is finished to a mirror surface with a surface roughness of 0.1S.
  • the lip gap of the casting die (4) was set to 2 mm.
  • the film was pressed with a touch roll (6) having a surface length of 2400 mm.
  • the surface of the metal support (5) made of the first cooling roll is formed on the surface of the metal support (5) made of the first cooling roll by the method of the present invention.
  • the atmospheric pressure plasma irradiation device (21) called remote or downstream system shown in FIG. 2 was used.
  • the atmospheric pressure plasma irradiation device (21) is installed on the upper side of the first cooling roll (metal support) (5) at an angle ⁇ of 80 °.
  • the distance (d) between the plasma gas outlet of the atmospheric pressure plasma device (21) and the first cooling roll (metal support) (5) is 5 mm, the reaction gas is only nitrogen, and the amount used is irradiation. It was set to 0.5 m 3 / min per 1 m width. The atmospheric pressure at this time was 1.0 atmospheric pressure.
  • the surface of the first cooling roll (metal support) (5) was subjected to atmospheric pressure plasma irradiation over substantially the entire width. Thereby, the surface treatment film was formed on the surface of the first cooling roll (5), and then the resin melt was cast on the surface of the first cooling roll (5).
  • the plasma blowing gas was continuously irradiated during film formation so that the irradiation time of the plasma gas on the surface of the first cooling roll (metal support) (5) was 0.1 sec.
  • the plasma irradiation time referred to here is the first cooling because it is difficult to measure the exact contact time between the radicals contained in the plasma blowing gas and the surface of the first cooling roll (metal support) (5).
  • the irradiation time was defined as the time during which a certain point on the surface of the roll (metal support) (5) moved under the plasma blowing slit gap (h) by the gap. For example, when the blowing slit gap (h) is 2 mm and the peripheral speed of the first cooling roll (metal support) (5) is 2 mm / sec, the plasma irradiation time is 1 sec.
  • the first cooling roll metal support
  • a very dense surface treatment film having a decomposition product of an additive such as a plasticizer as a constituent component was formed on the surface.
  • the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 14 degrees between the treatment film and water.
  • the web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
  • the releasability (peelability) of the film from the surface of the first cooling roll (metal support) (5) is remarkably improved, and a very smooth peelability is obtained, The variation in the width direction of the peeling position decreased.
  • the film peeled off from the first cooling roll (5) is then successively circumscribed on the second cooling roll (7) and the third cooling roll (8) to be cooled and solidified, and peeled off by the peeling roll (9). To do.
  • the ratio (S2 / S1) of the peripheral speed (S1) of the first cooling roll (5) and the peripheral speed (S2) of the second cooling roll (7) was set to 1.002.
  • both ends of the web (10) were held with a tenter and stretched in the width direction.
  • the tenter atmosphere temperature was set to 150 ° C.
  • the edge of the stretched cellulose acetate propionate film is slit with a slitter (not shown), and finally the cellulose acetate having a film thickness of 40 ⁇ m and a width of 2000 mm is obtained with a winder (13) having an ambient temperature of 25 ° C.
  • the propionate film was wound up. Under these conditions, the film was formed continuously for 3 days.
  • Tg glass transition temperature
  • the minimum amount of increase in peeling force necessary to peel the cast film after cooling from the surface of the first cooling roll (metal support) (5) is 24 at the start of film formation and 24 after film formation.
  • the elapsed time was 0.3 (N / m).
  • permeability was measured as follows.
  • VAP-7070 polarizing film measuring device manufactured by JASCO Corporation
  • crossed Nicols transmittance (CNT) at intervals of 50 mm in the width direction of the film and at intervals of 50 mm in the lengthwise direction of 300 mm.
  • the difference between the average value of all data and the most deviated value was defined as the variation width ( ⁇ 10 ⁇ 5 %) of the crossed Nicols transmittance (CNT).
  • the variation in transmittance at a wavelength of 600 nm at the time of crossed Nicol of the obtained cellulose acetate propionate film was 20 ⁇ 10 ⁇ 5 (%).
  • the variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
  • Example 2 According to the method of the present invention, a cellulose acetate propionate film is produced in the same manner as in Example 1, except that the metal support (5) comprising the first cooling roll is different from that in Example 1 above.
  • high-energy surface treatment is performed off-line at a predetermined position on the surface of the metal support (5) made of the first cooling roll by a normal pressure plasma irradiation device (21).
  • the surface treatment film is formed on the surface of the metal support (5) made of the first cooling roll, and then the resin melt is cast on the surface of the metal support (5). is there.
  • Example 2 100 g of a plasticizer, trimethylolpropane tribenzoate (melting point: 85 ° C.), was added to the hot air outlet of a hot air generator (trade name TSK-40, manufactured by Takezuna Seisakusho Co., Ltd.) with stainless steel. It is put into a fixed petri dish, and this is heated and volatilized by blowing hot air of 160 ° C. from a hot air generator, and the steam is passed through a 10 m duct wrapped with a heat insulating material through the atmospheric pressure plasma irradiation device. The atmospheric pressure plasma irradiation treatment was carried out in the presence of the additive vapor.
  • a plasticizer trimethylolpropane tribenzoate
  • the atmospheric pressure plasma irradiation treatment was carried out in the presence of the vapor of the additive and the gas used for the atmospheric pressure plasma irradiation treatment.
  • the first cooling roll (metal support) (5) It was confirmed that a very dense surface treatment film having a decomposition product of an additive such as a plasticizer as a constituent component was formed on the surface.
  • Example 2 the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 12 degrees between the treatment film and water.
  • the web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
  • the film peeled from the first cooling roll (5) is then continuously circumscribed on the second cooling roll (7) and the third cooling roll (8) in the same manner as in Example 1, and then cooled and solidified. Then, the film was peeled off by a peeling roll (9), subsequently subjected to film forming treatment, and finally a cellulose acetate propionate film having a film thickness of 40 ⁇ m and a width of 2000 mm was wound up by a winder (13). Under these conditions, the film was formed continuously for 3 days.
  • Example 2 the minimum amount of increase in peeling force required to peel the cast film after cooling from the surface of the first cooling roll (metal support) (5) is as follows: It was 0.6 (N / m) at 24 hours after film formation.
  • Example 2 the variation in transmittance at a wavelength of 600 nm at the time of crossed Nicol of the obtained cellulose acetate propionate film was 10 ⁇ 10 ⁇ 5 (%).
  • the variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
  • Example 3 According to the method of the present invention, a cellulose acetate propionate film is produced in the same manner as in Example 1 described above. The difference from Example 1 is that the excimer ultraviolet ray shown in FIG. The point is that the surface of the metal support (5) made of the first cooling roll is modified by the irradiation device (22).
  • the ultraviolet irradiation device (22) is arranged on the upper side of the first cooling roll (metal support) (5), and the ultraviolet irradiation device (22) has an irradiance of 40 mW / cm 2 .
  • An excimer ultraviolet irradiation device (22) containing Xe 2 and an excimer ultraviolet (EUV) lamp having a wavelength of 172 nm was used.
  • the gap (d) from the surface of the quartz glass (q) of the excimer ultraviolet lamp to the first cooling roll (metal support) (5) was set to 5 mm, and the angle ⁇ in FIG.
  • a purge gas composed of nitrogen is continuously blown out, and a surface treatment film is formed on the surface of the first cooling roll (metal support) (5) by continuously irradiating with ultraviolet rays, A resin melt was cast on the surface of the metal support (5).
  • the excimer ultraviolet ray irradiation treatment was performed in the presence of the vapor of the additive and the purge gas used for the excimer ultraviolet ray irradiation treatment.
  • the first cooling roll (metal support) 5
  • a very dense surface-treated film having a decomposition product of an additive such as a plasticizer as a constituent component was formed on the surface.
  • the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 7 degrees between the treatment film and water.
  • the web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
  • the releasability (peelability) of the film from the surface of the first cooling roll (metal support) (5) is remarkably improved, and a very smooth peelability is obtained, The variation in the width direction of the peeling position decreased.
  • the film peeled from the first cooling roll (5) is then continuously circumscribed on the second cooling roll (7) and the third cooling roll (8) in the same manner as in Example 1, and then cooled and solidified. Then, the film was peeled off by a peeling roll (9), subsequently subjected to film forming treatment, and finally a cellulose acetate propionate film having a film thickness of 40 ⁇ m and a width of 2000 mm was wound up by a winder (13). Under these conditions, the film was formed continuously for 3 days.
  • the minimum amount of increase in peeling force necessary to peel off the cast film after cooling from the surface of the first cooling roll (metal support) (5) is as follows: It was 0.2 (N / m) when 24 hours passed after film formation.
  • Example 3 the variation in transmittance at a wavelength of 600 nm when the obtained cellulose acetate propionate film was crossed Nicol was 50 ⁇ 10 ⁇ 5 (%).
  • the variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
  • Example 4 According to the method of the present invention, a cellulose acetate propionate film is produced in the same manner as in Example 3, except that the metal support (5) comprising the first cooling roll is different from that in Example 3.
  • the surface of the metal is subjected to high energy surface treatment by an excimer ultraviolet irradiation device (22) at a predetermined position on the surface of the metal support (5) made of the first cooling roll.
  • an excimer ultraviolet irradiation device (22) at a predetermined position on the surface of the metal support (5) made of the first cooling roll.
  • Example 2 100 g of the plasticizer trimethylolpropane tribenzoate (melting point: 85 ° C.) was added to a hot air generator (trade name TSK-40, Takezuna Manufacturing Co., Ltd.). Made of stainless steel in a hot air outlet, and heated and volatilized by blowing hot air of 160 ° C. from a hot air generator. Excimer ultraviolet irradiation was performed in the presence of the additive vapor in the presence of the additive vapor through the duct.
  • a hot air generator trade name TSK-40, Takezuna Manufacturing Co., Ltd.
  • the plasticizer or the like was added to the surface of the first cooling roll (metal support) (5). It was confirmed that a very dense surface treatment film having a decomposition product of the agent as a constituent component was formed.
  • Example 4 the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 15 degrees between the treatment film and water.
  • the web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
  • the dispersion of the transmittance at a wavelength of 600 nm at the time of crossed Nicol of the obtained cellulose acetate propionate film was 30 ⁇ 10 ⁇ 5 (%).
  • the variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
  • the releasability (peelability) of the film from the surface of the first cooling roll (metal support) (5) is remarkably improved, and a very smooth peelability is obtained, The variation in the width direction of the peeling position decreased.
  • the film peeled from the first cooling roll (5) is then continuously circumscribed on the second cooling roll (7) and the third cooling roll (8) in the same manner as in Example 1, and then cooled and solidified. Then, the film was peeled off by a peeling roll (9), subsequently subjected to film forming treatment, and finally a cellulose acetate propionate film having a film thickness of 40 ⁇ m and a width of 2000 mm was wound up by a winder (13). Under these conditions, the film was formed continuously for 3 days.
  • Example 4 the minimum amount of increase in peeling force necessary to peel off the cast film after cooling from the surface of the first cooling roll (metal support) (5) is as follows: It was 0.5 (N / m) when 24 hours passed after film formation. Comparative Example 1 In the melt casting film forming apparatus, cellulose acetate propionate is not provided on the surface of the first cooling roll (metal support) (5) without installing a high energy irradiation processing apparatus comprising an atmospheric pressure plasma apparatus or an ultraviolet irradiation apparatus. Film formation was performed using the same materials as in Example 1.
  • the obtained cellulose acetate propionate film had a transmittance variation of 130 ⁇ 10 ⁇ 5 (%) at a wavelength of 600 nm when crossed Nicol, and retardation in the width direction and the longitudinal direction of the film.
  • the variation in (Re) value was also large.
  • the minimum increase in peel force necessary for peeling the cast film (10) after cooling from the surface of the metal support (5) is the same as that at the start of film formation. It was 14.5 (N / m) when 24 hours passed after the film formation.
  • Step 1 The long cellulose acetate propionate film prepared in Examples 1 to 4 and Comparative Example 1 was immersed in a 2 mol / L sodium hydroxide solution at a temperature of 50 ° C. for 90 seconds, then washed with water and dried. I let you.
  • a commercially available long cellulose ester film was immersed in a 2 mol / L sodium hydroxide solution at a temperature of 50 ° C. for 90 seconds, then washed with water and dried.
  • Step 2 The long polarizing film was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizing film in Step 2 was lightly removed, and the long cellulose acetate propionate films of Examples 1 to 4 and Comparative Example 1 which were alkali-treated in Step 1 were commercially available. It was sandwiched with a long cellulose ester film and laminated.
  • Step 4 These films were laminated together at a speed of about 2 m / min at a pressure of 20-30 N / cm 2 with two rotating rollers. At this time, care was taken to prevent bubbles from entering.
  • Step 5 The film sample produced in Step 4 was dried for 2 minutes in a dryer at 80 ° C. to produce a polarizing plate.
  • the polarizing plate on the outermost surface of a commercially available liquid crystal display panel (NEC color liquid crystal display, MultiSync, LCD1525J, model name LA-1529HM) was carefully peeled off, and the polarizing plates of Examples 1 to 4 and Comparative Example 1 described above were polarized.
  • a liquid crystal display panel was produced by pasting in the same direction.
  • Visual evaluation of polarizing plate The evaluation described above was performed by the method shown below. Moreover, the unevenness
  • Each liquid crystal display panel produced using the cellulose acetate propionate films according to Examples 1 to 4 and Comparative Example 1 as described above looks whitish when viewed from the front and obliquely by a plurality of evaluators. Color unevenness was observed and evaluated as a polarizing plate.
  • None of the evaluators can see the color unevenness at all. ⁇ : The evaluator may slightly see the color unevenness. Level that can be used as a product ⁇ : Level at which many evaluators can confirm color unevenness and cannot be used as a product In addition to the evaluation of color unevenness, polarizing plate manufacturing process 1 after preparing 20 polarizing plates The degree of soiling of the alkali saponification solution was also observed.
  • high energy irradiation comprising an atmospheric pressure plasma irradiation device (21) or an ultraviolet irradiation device (22) is provided near the surface of the first cooling roll (metal support) (5).
  • a processing device is installed, and a surface treatment film is formed on the surface of the metal support (5) by performing high energy irradiation treatment on the surface of the first cooling roll (5), and then the surface of the metal support (5).
  • the release property (peelability) of the film from the metal support (5) is improved, and very smooth peeling is achieved.
  • the cellulose acetate propionate film greatly reduces the variation in transmittance at a wavelength of 600 nm at the time of crossed nicols because the fluctuation in the width direction of the peeling position is reduced. To, and variations in retardation (Re) value is greatly reduced, the transparency was achieved, and excellent flatness. Furthermore, even when the cellulose acetate propionate film produced by the method of the present invention was used as a polarizing plate protective film, and even after processing into a polarizing plate, color unevenness that looked whitish was not confirmed, It became possible, and productivity could be greatly increased.
  • the release property (peelability) of the film from the metal support (5) is improved, a very smooth peelability is obtained, and the variation in the width direction of the peel position is reduced. Therefore, the cellulose acetate propionate film had a large variation in transmittance at a wavelength of 600 nm during crossed Nicol, a large variation in retardation (Re) value, and was inferior in transparency and flatness.
  • the cellulose acetate propionate film produced by the method of Comparative Example 1 was used as a polarizing plate protective film, and even after processing into a polarizing plate, white streaks were clearly seen in the crossed Nicol state with the polarizing film, and quality degradation was observed. Since it was remarkable, production had to be stopped and cleaning work for about one day had to be carried out, and the productivity was considerably low.
  • the manufacturing method of the optical film according to the present invention, the optical film, the polarizing plate, and the detailed configuration and the detailed operation of each component constituting the display device can be appropriately changed without departing from the spirit of the present invention. is there.
  • Extruder 2 Filter 3: Static mixer 4: Casting die 5: First cooling roll 6: Touch roll 7: Second cooling roll 8: Third cooling roll 9: Peeling roll 10: Web (film) 11: Tenter 12: Winder 21: Atmospheric plasma irradiation device 22: Excimer ultraviolet irradiation device a, b: Electrode g: Reaction gas d: Gap between surface treatment device and film h: Plasma gas blowing slit gap p: Purge gas r: reflector u: ultraviolet lamp q: quartz glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

An optical film formed by the melt casting method is provided which eliminates the cast-film deterioration in releasability caused by an increase in film formation rate and which has improved releasability (strippability), has optical properties including excellent transparency and excellent flatness, and can meet demands for thickness reduction, width increase, and quality improvement in protective films for polarizers, etc.  Also provided are: a process for producing the optical film; a polarizer employing the optical film; and a display device.  The process is for producing an optical film by the melt casting method and comprises: a step in which a resin melt comprising a thermoplastic resin and an additive is cast on the surface of a metallic support to form a cast film; a step in which the cast film is cooled and solidified and then is stripped from the metallic support; and a step in which a surface treatment film is formed on the surface of the metallic support almost over the whole width of the metallic support by conducting a treatment with ordinary-pressure plasma application or with excimer ultraviolet irradiation in the presence of the vapor of the additive and the gas for use in the ordinary-pressure plasma application or excimer ultraviolet irradiation.

Description

光学フィルム、その製造方法、光学フィルムを用いた偏光板、及び表示装置Optical film, manufacturing method thereof, polarizing plate using optical film, and display device
 本発明は、液晶表示装置(LCD)に用いられる偏光板用保護フィルム、位相差フィルム、視野角拡大フィルム、プラズマディスプレイに用いられる反射防止フィルムなどの各種機能フィルム等に利用可能な光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置に関するものである。 The present invention provides an optical film that can be used for various functional films such as a protective film for a polarizing plate used in a liquid crystal display (LCD), a retardation film, a viewing angle widening film, and an antireflection film used in a plasma display. The present invention relates to a method, an optical film, a polarizing plate, and a display device.
 近年、液晶表示装置は、その画質の向上や高精細化技術の向上により、テレビや大型モニターに使用されるようになってきており、特に、これら液晶表示装置の大型化や、効率生産によるコストダウンなどの要望が液晶表示装置の材料にも強くなり、光学フィルムの広幅化が求められている。 In recent years, liquid crystal display devices have come to be used in televisions and large monitors due to improvements in image quality and high definition technology. In particular, these liquid crystal display devices are costly due to their large size and efficient production. The demand for down and the like has become stronger in materials for liquid crystal display devices, and a wider optical film is required.
 また、近年では、液晶TVの急激な伸びに対応すべく、光学フィルムの需要も急激に伸びており、生産性向上が強く求められている。 In recent years, the demand for optical films has been increasing rapidly in response to the rapid growth of liquid crystal TVs, and there is a strong demand for improved productivity.
 光学フィルムの製造方法には、大別して溶融流延製膜法と溶液流延製膜法とがある。前者は、ポリマーを加熱溶融して、溶融物を支持体上に流延して冷却固化し、その後、支持体から剥離して、さらに必要に応じて延伸してフィルムを作製する方法である。後者は、ポリマーを溶媒に溶かして、その溶液(ドープ)を支持体上に流延し、温風、温水などで溶媒を蒸発させた後、支持体から剥離し、さらに必要に応じて延伸して、フィルムを作製する方法である。 Optical film production methods are roughly classified into a melt casting film forming method and a solution casting film forming method. The former is a method in which a polymer is heated and melted, the melt is cast on a support and cooled and solidified, then peeled off from the support, and further stretched as necessary to produce a film. In the latter, the polymer is dissolved in a solvent, the solution (dope) is cast on a support, the solvent is evaporated with hot air, hot water, etc., then peeled off from the support, and further stretched as necessary. This is a method for producing a film.
 溶液流延製膜法が大量の溶剤を使用するのに対し、溶融流延製膜法では溶媒を使用しないため、乾燥速度に依存しない生産速度を取ることができ、生産性の向上が期待できる。 The solution casting film forming method uses a large amount of solvent, whereas the melt casting film forming method does not use a solvent, so it can take a production rate that does not depend on the drying rate and can be expected to improve productivity. .
 ここで、樹脂自体の熱安定性が低いため、セルロースなどの天然高分子では、添加剤、例えば、可塑剤や紫外線吸収剤、リタデーション制御剤、剥離性向上剤、酸化防止剤、熱分解抑制剤などを多量に添加しており、これらが、流延ダイから出た高温な膜の表面から蒸発する。 Here, because the thermal stability of the resin itself is low, in natural polymers such as cellulose, additives such as plasticizers, ultraviolet absorbers, retardation control agents, peelability improvers, antioxidants, thermal decomposition inhibitors Etc. are added in large quantities, and these evaporate from the surface of the hot film coming out of the casting die.
 ここで、製膜速度が低いときには、冷却支持体に流延膜が到達する前に膜温が低下するため、添加剤の蒸発もおさまる。 Here, when the film forming speed is low, the film temperature is lowered before the cast film reaches the cooling support, and thus the evaporation of the additive is also suppressed.
 一方、製膜速度が速くなると、流延ダイから出た高温の流延膜が、その温度が下がる前に冷却支持体に到達するようになり、膜から蒸発した添加剤が冷却支持体表面に凝縮する。その部分では、冷却支持体からの流延膜の剥離力が増大して剥離が悪化するという問題があった。 On the other hand, when the film forming speed is increased, the high-temperature cast film coming out of the casting die reaches the cooling support before the temperature is lowered, and the additive evaporated from the film is applied to the cooling support surface. Condensate. In that portion, there was a problem that the peeling force of the cast film from the cooling support increased and the peeling deteriorated.
 その結果、剥がすときに力を要し、流延膜に剥離応力が加わるため、微小な横段状の変形を生じてしまう。 As a result, a force is required for peeling, and a peeling stress is applied to the cast film, resulting in a minute horizontal step deformation.
 このように、従来では、冷却支持体の剥離性悪化の問題で、低い生産速度で製膜せざるを得ないという問題があった。 As described above, conventionally, there has been a problem that the film has to be formed at a low production rate due to the deterioration of the peelability of the cooling support.
 特許文献1には、樹脂被覆(ラミネート)紙の製造方法及び装置であって、特に、溶融樹脂を被覆する工程を含むラミネータ装置において、冷却ロールに付着する低分子成分を除去する冷却ロールの清掃方法が開示されており、清掃方法として、高出力のレーザー光源、あるいは、フレームバーナーの火炎を使用して、冷却ロールの表面にエネルギーを印加する方法が記載されている。 Patent Document 1 discloses a method and apparatus for producing resin-coated (laminated) paper, and particularly cleaning a cooling roll that removes low-molecular components adhering to the cooling roll in a laminator apparatus including a step of coating a molten resin. A method is disclosed, and a method of applying energy to the surface of the cooling roll using a high-power laser light source or a flame of a flame burner is described as a cleaning method.
 また、特許文献2には、フィルムの製造に用いられるロール表面に紫外線を照射してロール表面の付着物を除去する方法が開示されている。 Further, Patent Document 2 discloses a method of removing deposits on the roll surface by irradiating the roll surface used for film production with ultraviolet rays.
 さらに、特許文献3には、熱可塑性樹脂フィルムの製膜工程で発生するフィルム表面傷を低減するとともに、冷却ロールに付着した汚れの清掃のために、走行するフィルムが接触する冷却ロールにプラズマを照射することにより、冷却ロールに付着した有機物を除去する方法が開示されている。 Further, in Patent Document 3, plasma is applied to a cooling roll that is in contact with a traveling film in order to reduce film surface scratches generated in the process of forming a thermoplastic resin film and to clean dirt adhered to the cooling roll. A method for removing organic substances adhering to a cooling roll by irradiation is disclosed.
特開2002-240125号公報JP 2002-240125 A 特開2003-89142号公報JP 2003-89142 A 特開2001-62911号公報JP 2001-62911 A
 しかしながら、上記特許文献1~3に記載の方法は、いずれもロールを清掃するものであり、このような従来の清掃方法によりその表面が清浄な状態となされたロールであっても、つぎに、添加剤のブリードアウトにより表面が汚染されたウェブが搬送されてくれば、添加剤がロールに付着するとともに、その添加剤の付着部分には剥離力の増加が発生して、剥離時にフィルムの変形をつくる危険性が高い。 However, all of the methods described in Patent Documents 1 to 3 are for cleaning a roll, and even in a roll whose surface has been cleaned by such a conventional cleaning method, If a web whose surface is contaminated by the bleed-out of the additive is conveyed, the additive adheres to the roll, and an increase in the peeling force occurs at the part where the additive adheres, and the film deforms at the time of peeling. There is a high risk of making.
 このような剥離応力が加わってフィルム表面に微小な変形を生じると、変形自体もフィルムの平滑性の劣化を生じさせるため、近年の高精彩・高画質な液晶画面に適応できないという問題があった。 When such a peeling stress is applied to cause a minute deformation on the film surface, the deformation itself also causes a deterioration of the smoothness of the film, so that there has been a problem that it cannot be adapted to the recent high-definition and high-quality liquid crystal screens. .
 また、剥離応力が増加した部分では、フィルムの光学・機械物性も、剥離応力が増加していない部分と差を生じ、リタデーション値の差、それに伴うクロスニコル状態での透過率の上昇(CNT)、それによって液晶パネルにしたときのコントラストのバラツキによる黒模様の濃淡ムラ、ヘイズの上昇を招くという問題があった。 Also, in the part where the peel stress increased, the optical / mechanical properties of the film also differed from the part where the peel stress did not increase, resulting in a difference in retardation value and a corresponding increase in transmittance in the crossed Nicols state (CNT) As a result, there is a problem that unevenness of black pattern due to variation in contrast when the liquid crystal panel is formed, and haze increase.
 さらに、光学フィルムの表面に、反射防止層、低減層、表面硬化層などを塗布するときに、濡れ性が周辺と異なることにより、ハジキ故障が発生したり、あるいは、塗布層がムラになったりしやすいという問題があった。 Furthermore, when applying an antireflection layer, a reduction layer, a hardened surface layer, etc. to the surface of the optical film, repelling failure may occur due to different wettability from the surroundings, or the coating layer may become uneven. There was a problem that it was easy to do.
 本発明の目的は、上記の従来技術の問題を解決し、溶融流延製膜法による光学フィルムの製造方法において、製膜速度を上げたときに、冷却支持体に添加剤蒸気が凝縮することで発生する、流延膜の剥離性悪化を解消することによって、生産性を向上させることにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, and in the method for producing an optical film by the melt casting film forming method, when the film forming speed is increased, the additive vapor is condensed on the cooling support. It is to improve the productivity by eliminating the deterioration of the peelability of the cast film that occurs in the above.
 さらに、冷却支持体からのフィルムの離型性(剥離性)を向上させることにより、透明性、平面性に優れた光学特性を有する光学フィルムを製造することで、偏光板用保護フィルム等の薄膜化、広幅化、及び高品質化の要求に応えることができる、光学フィルム、その製造方法、光学フィルムを用いた偏光板、及び表示装置を提供することにある。 Furthermore, by improving the releasability (peelability) of the film from the cooling support, by manufacturing an optical film having optical properties excellent in transparency and flatness, a thin film such as a protective film for polarizing plates An object of the present invention is to provide an optical film, a method for producing the same, a polarizing plate using the optical film, and a display device that can meet demands for increasing the width, width, and quality.
 上記の課題を解決するために、本発明は以下の特徴を有するものである。 In order to solve the above problems, the present invention has the following features.
 1. 溶融流延製膜法による光学フィルムの製造方法であって、熱可塑性樹脂及び添加剤を含む樹脂溶融液を金属支持体の表面に流延して流延膜を形成する工程と、前記流延膜を冷却固化させた後に、金属支持体から剥離する工程と、前記添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で実施する、常圧プラズマ照射処理またはエキシマ紫外線照射処理により、前記金属支持体の略全幅にわたり、前記金属支持体の表面に表面処理膜を形成する工程と、を有することを特徴とする、光学フィルムの製造方法。 1. A method for producing an optical film by a melt casting film forming method, comprising: casting a resin melt containing a thermoplastic resin and an additive on a surface of a metal support to form a casting film; and After the film is cooled and solidified, it is peeled off from the metal support, and is carried out in the presence of the additive vapor and a gas used for normal pressure plasma irradiation or excimer ultraviolet irradiation. And a step of forming a surface treatment film on the surface of the metal support over substantially the entire width of the metal support by irradiation treatment.
 2. 前記金属支持体の表面に表面処理膜を形成する工程は、前記樹脂溶融液を前記金属支持体の表面に流延する前に行い、予め前記金属支持体の表面に表面処理膜を形成した後、前記流延膜を形成することを特徴とする、前記1に記載の光学フィルムの製造方法。 2. The step of forming a surface treatment film on the surface of the metal support is performed before casting the resin melt on the surface of the metal support, and after forming the surface treatment film on the surface of the metal support in advance. The method for producing an optical film as described in 1 above, wherein the cast film is formed.
 3. 前記金属支持体の表面に表面処理膜を形成する工程は、前記金属支持体の表面の前記流延膜の非通過区間において、前記樹脂溶融液を前記金属支持体の表面に流延する工程と同時に行うことを特徴とする、前記1に記載の光学フィルムの製造方法。 3. The step of forming a surface treatment film on the surface of the metal support includes the step of casting the resin melt on the surface of the metal support in a non-passing section of the casting film on the surface of the metal support. 2. The method for producing an optical film as described in 1 above, which is carried out simultaneously.
 4. 前記常圧プラズマ照射処理または前記エキシマ紫外線照射処理を行う位置は、前記添加剤の蒸気が多く存在する、前記樹脂溶液が前記金属支持体の表面に流延する位置の近傍であることを特徴とする、前記2に記載の光学フィルムの製造方法。 4. The position where the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment is performed is near the position where the vapor of the additive is present and the resin solution is cast on the surface of the metal support. The method for producing an optical film as described in 2 above.
 5. 前記蒸気が、可塑剤または紫外線吸収剤の蒸気であることを特徴とする、前記1から4の何れか1項に記載の光学フィルムの製造方法。 5. 5. The method for producing an optical film as described in any one of 1 to 4, wherein the vapor is a vapor of a plasticizer or an ultraviolet absorber.
 6. 前記常温プラズマ照射処理は、処理条件として、電極間に供給する電力が、1W/cm以上、50W/cm以下(放電が起こる範囲の面積)であることを特徴とする、前記1から5の何れか1項に記載の光学フィルムの製造方法。 6). In the normal temperature plasma irradiation treatment, the power supplied between the electrodes is 1 W / cm 2 or more and 50 W / cm 2 or less (area in which discharge occurs) as treatment conditions. The manufacturing method of the optical film of any one of these.
 7. 前記エキシマ紫外線照射処理は、処理条件として、主波長が172nmの紫外線を1~3,000mJ/cmの光量で照射することを特徴とする、前記1から5の何れか1項に記載の光学フィルムの製造方法。 7). 6. The optical system according to any one of 1 to 5, wherein the excimer ultraviolet irradiation treatment is performed by irradiating ultraviolet light having a dominant wavelength of 172 nm with a light amount of 1 to 3,000 mJ / cm 2 as a processing condition. A method for producing a film.
 8. 前記表面処理膜が、該表面処理膜と水との接触角5~40度を有するものであることを特徴とする、前記1から7の何れか1項に記載の光学フィルムの製造方法。 8. 8. The method for producing an optical film according to any one of 1 to 7, wherein the surface treatment film has a contact angle of 5 to 40 degrees between the surface treatment film and water.
 9. 前記熱可塑性樹脂が、セルロースエステル系樹脂であることを特徴とする、前記1から8の何れか1項に記載の光学フィルムの製造方法。 9. 9. The method for producing an optical film according to any one of 1 to 8, wherein the thermoplastic resin is a cellulose ester resin.
 10. 前記金属支持体が、製膜用のエンドレスベルト、ドラム、またはロールの何れかであることを特徴とする、前記1から9の何れか1項に記載の光学フィルムの製造方法。 10. 10. The method for producing an optical film as described in any one of 1 to 9 above, wherein the metal support is any one of an endless belt, a drum, and a roll for film formation.
 11. 前記金属支持体の表面上から冷却後の流延膜を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、0.1~2.0(N/m)の範囲内にあることを特徴とする、前記1から10の何れか1項に記載の光学フィルムの製造方法。 11. The minimum amount of increase in peeling force necessary to peel the cast film after cooling from the surface of the metal support is 0.1 to 2 at the start of film formation and after 24 hours from film formation. It is in the range of 2.0 (N / m), The manufacturing method of the optical film of any one of said 1-10 characterized by the above-mentioned.
 12. 前記1から11の何れか1項に記載の光学フィルムの製造方法で製造されたことを特徴とする、光学フィルム。 12. An optical film manufactured by the method for manufacturing an optical film according to any one of 1 to 11 above.
 13. 前記光学フィルムのクロスニコル時の波長600nmでの透過率のバラツキが、2×10-5~60×10-5(%)の範囲内にあることを特徴とする、前記12に記載の光学フィルム。 13. 13. The optical film as described in 12 above, wherein variation in transmittance at a wavelength of 600 nm at the time of crossed Nicol is in a range of 2 × 10 −5 to 60 × 10 −5 (%). .
 14. 前記12または13に記載の光学フィルムを、少なくとも一方の面に有することを特徴とする、偏光板。 14. A polarizing plate having the optical film according to 12 or 13 on at least one surface.
 15. 前記14に記載の偏光板を用いることを特徴とする、表示装置。 15. A display device using the polarizing plate described in 14 above.
 請求項1の光学フィルムの製造方法の発明によれば、常圧プラズマ照射処理またはエキシマ紫外線照射処理を施すことにより、金属支持体表面に、可塑剤等の添加剤の分解物を構成成分とする非常に緻密な表面処理膜が形成せられ、該表面処理膜の存在によって金属支持体表面からのフィルムの離型性(剥離性)が著しく向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少するとともに、リタデーション(Re)値のバラツキが大幅に低減して、透明性、平面性に優れた光学特性を有する光学フィルムを製造することができるとともに、生産速度を上げることができて、フィルムの生産性を向上することができ、ひいては近年の偏光板用保護フィルム等の薄膜化、広幅化、及び高品質化の要求に応えることができるという効果を奏する。 According to the optical film manufacturing method of the first aspect of the present invention, a decomposition product of an additive such as a plasticizer is a constituent component on the surface of the metal support by performing atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment. A very dense surface-treated film is formed, and the presence of the surface-treated film significantly improves the mold releasability (peelability) of the film from the surface of the metal support, resulting in extremely smooth peelability. While the variation in the width direction of the position is reduced, the variation of the retardation (Re) value is greatly reduced, and an optical film having optical characteristics with excellent transparency and flatness can be manufactured, and the production speed The film productivity can be improved, and as a result, it is possible to meet the recent demands for thinning, widening, and high quality of protective films for polarizing plates. The effect say.
 請求項12の光学フィルムの発明によれば、金属支持体からのフィルムの離型性(剥離性)が向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少することから、光学フィルムは、フィルム幅手方向および長手方向のリタデーション(Re)値のバラツキが大幅に低減して、透明性、平面性に優れているという効果を奏する。 According to the invention of the optical film of claim 12, the releasability (peelability) of the film from the metal support is improved, very smooth peelability is obtained, and fluctuation in the width direction of the peel position is reduced. Therefore, the optical film has the effect that the variation in retardation (Re) value in the width direction and the longitudinal direction of the optical film is greatly reduced, and the transparency and flatness are excellent.
 請求項14の偏光板の発明によれば、リタデーション(Re)値のバラツキが大幅に低減し、透明性、平面性に優れた請求項12又は13に記載の光学フィルムを、少なくとも一方の面に有するものであるから、偏光板も、リタデーション(Re)値のバラツキが低減し、透明性、平面性に優れているという効果を奏する。 According to the invention of the polarizing plate of claim 14, variation in retardation (Re) value is greatly reduced, and the optical film according to claim 12 or 13 excellent in transparency and flatness is provided on at least one surface. Therefore, the polarizing plate also has the effect that the variation in retardation (Re) value is reduced and the transparency and flatness are excellent.
 請求項15の表示装置の発明によれば、リタデーション(Re)値のバラツキが低減し、透明性、平面性に優れている請求項14に記載の偏光板を用いるものであるから、液晶パネルのコントラスト低下や濃淡ムラを生じることがなく、視認性に優れているという効果を奏する。 According to the invention of the display device of claim 15, since the variation in retardation (Re) value is reduced, and the polarizing plate according to claim 14 is excellent in transparency and flatness, There is an effect that the contrast is excellent and the visibility is excellent without causing a decrease in contrast and density unevenness.
 本発明の以上の効果によって、偏光板用保護フィルム等としての光学フィルムの薄膜化、広幅化、及び高品質化の要求に応えることができ、かつ生産性の高い光学フィルムの製造方法、該方法によって製造された高品質の光学フィルム、この光学フィルムを用いた偏光板、及び表示装置を提供することができる。 By the above effects of the present invention, a method for producing an optical film that can meet the demands for thinning, widening, and improving the quality of an optical film as a protective film for a polarizing plate and the like, and the method Can provide a high-quality optical film, a polarizing plate using the optical film, and a display device.
本発明における溶融流延製膜法による光学フィルムの製造方法を実施する装置の実施形態を示すフローシートである。It is a flow sheet which shows embodiment of the apparatus which enforces the manufacturing method of the optical film by the melt casting film forming method in this invention. 本発明の光学フィルムの製造方法において使用する常圧プラズマ照射装置の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of the atmospheric pressure plasma irradiation apparatus used in the manufacturing method of the optical film of this invention. 本発明の光学フィルムの製造方法において使用するエキシマ紫外線照射装置の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of the excimer ultraviolet irradiation apparatus used in the manufacturing method of the optical film of this invention.
 つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。 Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
 図1は、溶融流延製膜法による本発明の光学フィルムの製造方法を実施する装置の実施形態を示すフローシートである。 FIG. 1 is a flow sheet showing an embodiment of an apparatus for carrying out the method for producing an optical film of the present invention by a melt casting film forming method.
 本発明は、溶融流延製膜法による光学フィルムの製造方法であって、熱可塑性樹脂及び添加剤を含む樹脂溶融液を、流延ダイ(4)から第1冷却ロールよりなる金属支持体(5)表面に流延して、流延膜(ウェブ)(10)を形成する流延工程と、流延膜(10)を冷却固化させた後に、金属支持体(5)から剥離する工程と、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で実施する、常圧プラズマ照射処理またはエキシマ紫外線照射処理により、金属支持体の略全幅にわたり、金属支持体の表面に表面処理膜を形成する工程と、を有することを特徴としている。 The present invention relates to a method for producing an optical film by a melt casting film forming method, wherein a resin melt containing a thermoplastic resin and an additive is fed from a casting die (4) to a metal support comprising a first cooling roll ( 5) Casting process for casting on the surface to form a casting film (web) (10), and a process for separating the casting film (10) from the metal support (5) after cooling and solidifying. The surface of the metal support over substantially the entire width of the metal support by the atmospheric pressure plasma irradiation process or the excimer ultraviolet irradiation process performed in the presence of the additive vapor and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation. And a step of forming a surface treatment film.
 図1においては、製膜中(流延工程と、表面処理膜を形成する工程とが同時に行われている。)に第1冷却ロールよりなる金属支持体(5)の表面の流延膜の非通過区間において、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、常圧プラズマ照射処理またはエキシマ紫外線照射処理を、金属支持体(5)の略全幅にわたり、常圧プラズマ照射処理装置(21)またはエキシマ紫外線照射装置(22)により、高エネルギー照射処理を施すことにより、金属支持体(5)表面に表面処理膜を形成し、その後、金属支持体(5)の表面に樹脂溶融液を流延するものである。 In FIG. 1, the casting film on the surface of the metal support (5) made of the first cooling roll is formed during film formation (the casting process and the process for forming the surface treatment film are simultaneously performed). In the non-passing section, in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation, atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment is performed over substantially the entire width of the metal support (5). A surface treatment film is formed on the surface of the metal support (5) by performing high-energy irradiation treatment with an atmospheric pressure plasma irradiation treatment apparatus (21) or an excimer ultraviolet irradiation apparatus (22), and then the metal support (5 ) The resin melt is cast on the surface.
 すなわち、本発明の方法によれば、第1冷却ロールよりなる金属支持体(5)の表面を、製膜中にいわゆるオンラインで、第1冷却ロールよりなる金属支持体(5)表面のウェブの非通過区間〔製膜中に金属支持体(5)の表面がむき出しとなる区間〕において、添加剤の蒸気の存在下で、常圧プラズマ照射処理装置(21)またはエキシマ紫外線照射装置(22)により高エネルギー照射処理を施すことにより、第1冷却ロールよりなる金属支持体(5)の表面を改質し、改質後の金属支持体(5)表面に樹脂溶融物を流延するものである。 That is, according to the method of the present invention, the surface of the metal support (5) made of the first cooling roll is formed on the surface of the metal support (5) made of the first cooling roll on the surface of the metal support (5) made of the first cooling roll. In the non-passing section [section in which the surface of the metal support (5) is exposed during film formation], in the presence of the additive vapor, the atmospheric pressure plasma irradiation processing apparatus (21) or the excimer ultraviolet irradiation apparatus (22). The surface of the metal support (5) made of the first cooling roll is modified by applying a high energy irradiation treatment, and the resin melt is cast on the surface of the metal support (5) after the modification. is there.
 なお、図示は省略したが、本発明の光学フィルムの製造方法の他の実施形態では、溶融流延製膜法による光学フィルムの製造方法において、熱可塑性樹脂及び添加剤を含む樹脂溶融液を流延する前に、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、金属支持体(5)の略全幅にわたり、常圧プラズマ照射処理装置(21)またはエキシマ紫外線照射装置(22)により高エネルギー照射処理を施すことにより、金属支持体(5)表面に表面処理膜を形成し、その後、金属支持体(5)の表面に樹脂溶融液を流延するものである。 Although not shown, in another embodiment of the method for producing an optical film of the present invention, a resin melt containing a thermoplastic resin and an additive is flowed in the method for producing an optical film by the melt casting method. Before extending, the atmospheric pressure plasma irradiation treatment device (21) or the excimer ultraviolet ray is formed over substantially the entire width of the metal support (5) in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation. By applying high energy irradiation treatment with an irradiation device (22), a surface treatment film is formed on the surface of the metal support (5), and then a resin melt is cast on the surface of the metal support (5). is there.
 すなわち、本発明の他の実施形態の方法によれば、第1冷却ロールよりなる金属支持体(5)の表面を、樹脂溶融物を流延する前に、いわゆるオフラインで、第1冷却ロールよりなる金属支持体(5)表面の略全幅にわたり、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、常圧プラズマ照射処理装置(21)またはエキシマ紫外線照射装置(22)により高エネルギー照射処理を施すことにより、第1冷却ロールよりなる金属支持体(5)の表面を改質し、改質後の金属支持体(5)表面に樹脂溶融物を流延するものである。 That is, according to the method of another embodiment of the present invention, the surface of the metal support (5) made of the first cooling roll is so-called off-line before casting the resin melt from the first cooling roll. An atmospheric pressure plasma irradiation treatment device (21) or an excimer ultraviolet irradiation device (21) or an excimer ultraviolet irradiation device (5) in the presence of vapor of the additive and a gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation over substantially the entire surface of the metal support (5). 22), the surface of the metal support (5) made of the first cooling roll is modified by applying the high energy irradiation treatment, and the resin melt is cast on the surface of the modified metal support (5). Is.
 この場合、添加剤の蒸気とは、主に、樹脂溶融液に含まれる可塑剤または紫外線吸収剤の蒸気を意味する。常圧プラズマ照射処理またはエキシマ紫外線照射処理を、添加剤の蒸気の存在下で行なうものである。 In this case, the additive vapor mainly means the vapor of the plasticizer or ultraviolet absorber contained in the resin melt. The atmospheric pressure plasma irradiation process or the excimer ultraviolet irradiation process is performed in the presence of an additive vapor.
 なお、金属支持体(5)の表面を、樹脂溶融物を流延する前に、いわゆるオフラインで、常圧プラズマ照射処理装置(21)またはエキシマ紫外線照射装置(22)により高エネルギー照射処理を施す場合には、例えば、可塑剤または紫外線吸収剤を、熱風発生機の中に投入し、これを熱風発生機から温風を吹き出して加温、揮発させ、可塑剤または紫外線吸収剤の蒸気を、保温材を巻いたダクトを通して、常圧プラズマ照射装置もしくはエキシマ紫外線照射装置の方に送風し、添加剤の蒸気の存在下で、常圧プラズマ照射処理またはエキシマ紫外線照射処理を実施することが、考えられる。 In addition, before casting the resin melt, the surface of the metal support (5) is subjected to high-energy irradiation treatment by an atmospheric pressure plasma irradiation treatment device (21) or an excimer ultraviolet irradiation device (22) in a so-called off-line manner. In this case, for example, a plasticizer or an ultraviolet absorber is put into a hot air generator, and hot air is blown from the hot air generator to heat and volatilize the plasticizer or the ultraviolet absorber vapor. It may be possible to blow normal pressure plasma irradiation equipment or excimer ultraviolet irradiation equipment through a duct wrapped with a heat insulating material, and perform atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment in the presence of additive vapor. It is done.
 また、常圧プラズマ照射処理またはエキシマ紫外線照射処理に用いるガスとは、常圧プラズマ照射装置(21)の場合は、これに使用する反応性ガスを意味し、エキシマ紫外線照射装置(22)の場合は、これに使用する窒素ガス等のパージ用ガスを意味する。 Further, the gas used for the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment means a reactive gas used for the atmospheric pressure plasma irradiation apparatus (21), and in the case of the excimer ultraviolet irradiation apparatus (22). Means a purge gas such as nitrogen gas used for this.
 本発明においては、常圧プラズマ照射またはエキシマ紫外線照射を、添加剤の蒸気、および常圧プラズマ照射処理またはエキシマ紫外線照射処理に用いるガスの両方の存在下で実施するものである。 In the present invention, atmospheric pressure plasma irradiation or excimer ultraviolet irradiation is performed in the presence of both an additive vapor and a gas used for atmospheric pressure plasma irradiation processing or excimer ultraviolet irradiation treatment.
 よって、オンラインで常圧プラズマ照射処理またはエキシマ紫外線照射処理を行う場合は、常圧プラズマ照射処理または前記エキシマ紫外線照射処理を行う位置は、前記添加剤の蒸気が多く存在する、前記樹脂溶液が前記金属支持体の表面に流延する位置の近傍であることが好ましい。 Therefore, when performing the atmospheric pressure plasma irradiation process or the excimer ultraviolet irradiation process online, the position where the atmospheric pressure plasma irradiation process or the excimer ultraviolet irradiation process is performed is a lot of the additive vapor, the resin solution is It is preferable that it is the vicinity of the position cast on the surface of a metal support body.
 図2は、本発明の光学フィルムの製造方法の実施に使用する常圧プラズマ照射装置の構造を説明するための説明図である。 FIG. 2 is an explanatory diagram for explaining the structure of an atmospheric pressure plasma irradiation apparatus used for carrying out the method for producing an optical film of the present invention.
 常圧プラズマ照射装置(21)は、対向する電極間に、高周波電圧を印加して放電させることにより、反応性ガスをプラズマ状態とし、これによって、ウェブの添加剤揮発蒸気を二酸化炭素や水などに分解するとともに、ウェブ表面を改質するものである。 The atmospheric pressure plasma irradiation device (21) discharges the reactive gas by applying a high-frequency voltage between the opposing electrodes, thereby bringing the reactive gas into a plasma state. And the web surface is modified.
 常圧プラズマの方式は、大きくは2つに分けられ、1つはダイレクト方式やプラナー方式と呼ばれるもので、被処理体をはさむように対向配置された電極間に高周波電力を加えて、供給ガスをプラズマ化するものである。もう1つの方式は、リモート方式やダウンストリーム方式と呼ばれるもので、反応性ガスを高周波電圧が加えられた電極の間を通して導入しプラズマ化するものである。前記のいずれの方式も、本発明に使うことができる。 The atmospheric pressure plasma method is roughly divided into two types. One is called a direct method or a planar method. A high-frequency power is applied between electrodes arranged opposite to each other so as to sandwich an object to be processed. Is converted into plasma. Another method is called a remote method or a downstream method, in which a reactive gas is introduced through an electrode to which a high-frequency voltage is applied and is turned into plasma. Any of the above schemes can be used in the present invention.
 図2は、上記のリモート方式やダウンストリーム方式と呼ばれるタイプの常圧プラズマ装置を示すものである。 FIG. 2 shows an atmospheric pressure plasma apparatus of the type called the above-described remote system or downstream system.
 同図において、(a)、(b)は常圧プラズマ照射装置(21)の対向電極、(g)は反応性ガス、(d)はプラズマ噴射スリットから第1冷却ロールよりなる金属支持体(5)表面までの間隙である。 In the same figure, (a) and (b) are counter electrodes of the atmospheric pressure plasma irradiation device (21), (g) is a reactive gas, (d) is a metal support comprising a first cooling roll from the plasma injection slit ( 5) A gap to the surface.
 常圧プラズマ照射装置(21)の簡単な構造として、高周波電圧が加えられた対向電極(a)、(b)間に、反応性ガス(g:原料ガスとも呼ぶ。)を導入、通過させてプラズマ化し、第1冷却ロールよりなる金属支持体(5)表面に噴射供給し、表面処理膜を形成する。 As a simple structure of the atmospheric pressure plasma irradiation device (21), a reactive gas (g: also referred to as source gas) is introduced and passed between the counter electrodes (a) and (b) to which a high frequency voltage is applied. It is turned into plasma and sprayed onto the surface of the metal support (5) made of the first cooling roll to form a surface treatment film.
 本実施の形態においては、このようなハイパワーの電圧を印加して、均一なグロー放電状態を保つことができる電極を常圧プラズマ照射装置(21)に採用する必要がある。 In the present embodiment, it is necessary to employ an electrode capable of maintaining a uniform glow discharge state by applying such a high power voltage in the atmospheric pressure plasma irradiation apparatus (21).
 このような電極としては、金属母材上に誘電体を被覆したものであることが好ましい。少なくとも対向する印加電極とアース電極の片側に誘電体を被覆すること、さらに好ましくは、対向する印加電極とアース電極の両方に誘電体を被覆することである。誘電体としては、比誘電率が6~45の無機物であることが好ましく、このような誘電体としては、アルミナ、窒化珪素等のセラミックス、あるいは、ケイ酸塩系ガラス、ホウ酸塩系ガラス等のガラスライニング材等が挙げられる。 Such an electrode is preferably a metal base material coated with a dielectric. It is preferable to coat a dielectric on at least one side of the opposed application electrode and the ground electrode, and more preferably coat both of the opposed application electrode and the ground electrode with a dielectric. The dielectric is preferably an inorganic substance having a relative dielectric constant of 6 to 45. Examples of such a dielectric include ceramics such as alumina and silicon nitride, silicate glass, borate glass, and the like. Glass lining material and the like.
 また、透明フィルム基材であるセルロースエステルフィルムを、電極間に載置あるいは電極間を搬送してプラズマに晒す場合には、透明フィルム基材を片方の電極に接して搬送できるロール電極仕様にするだけでなく、さらに、誘電体表面を研磨仕上げし、電極の表面粗さRmax(JIS B 0601に規定)を10μm以下にすることで、誘電体の厚み、及び電極間のギャップを一定に保つことができ、放電状態を安定化できること、さらに熱収縮差や残留応力による歪やひび割れを無くし、かつポーラスで無い高精度の無機誘電体を被覆することで、大きく耐久性を向上させることができるため好ましい。 In addition, when a cellulose ester film, which is a transparent film base material, is placed between electrodes or transported between electrodes and exposed to plasma, the transparent film base material has a roll electrode specification that can be transported in contact with one electrode. In addition, the dielectric surface is polished and the electrode surface roughness Rmax (specified in JIS B 0601) is set to 10 μm or less to keep the dielectric thickness and the gap between the electrodes constant. It is possible to stabilize the discharge state, eliminate distortion and cracking due to thermal shrinkage difference and residual stress, and greatly improve durability by covering with non-porous high precision inorganic dielectric. preferable.
 また、プラズマの噴射供給を行う吹出しスリットと第1冷却ロールよりなる金属支持体(5)表面との間隙(d)は、近すぎるとウェブのカールなどで常圧プラズマ照射装置(21)と接触してウェブに擦り傷をつくってしまい、反対に、離しすぎるとプラズマのラジカルが十分届かず、添加剤の揮発蒸気分解やウェブ表面の改質が十分できないため、1~30mmが好ましく、さらには、2~20mmがより好ましい。 If the gap (d) between the blow slit for supplying plasma and the surface of the metal support (5) made of the first cooling roll is too close, it will contact the atmospheric pressure plasma irradiation device (21) due to web curl or the like. The web is scratched, and on the other hand, if it is too far away, the radicals of the plasma cannot reach sufficiently, and the volatile vapor decomposition of the additive and the modification of the web surface cannot be sufficiently performed. 2 to 20 mm is more preferable.
 また、原料ガス(g)には、窒素や酸素、アルゴン、ヘリウムなど種々のものが利用可能であるが、環境面、排気の後処理、ランニングコストの観点から、窒素が好ましい。さらには、窒素に微量の酸素を混合するとより好ましい。酸素の混合比率は、原料ガスの体積に対して5体積%以下が望ましい。 In addition, as the source gas (g), various materials such as nitrogen, oxygen, argon, and helium can be used, but nitrogen is preferable from the viewpoints of environment, exhaust after-treatment, and running cost. Furthermore, it is more preferable to mix a small amount of oxygen with nitrogen. The mixing ratio of oxygen is preferably 5% by volume or less with respect to the volume of the source gas.
 また、常圧プラズマの原料ガス風量は、プラズマ幅1m当たり、20~5000L/minが望ましい。さらには、40~2500L/minがより好ましい。また、常圧プラズマ照射装置(21)の近くに排気装置を設けて、分解ガスの排気を行なうのが望ましい。 Also, the source gas flow rate of atmospheric pressure plasma is desirably 20 to 5000 L / min per 1 m of plasma width. Further, 40 to 2500 L / min is more preferable. In addition, it is desirable to exhaust the cracked gas by providing an exhaust device near the atmospheric pressure plasma irradiation device (21).
 また、常圧プラズマ照射処理を行う位置(反応性ガスgを金属支持体に噴射供給する位置)は、添加剤の蒸気が多く存在する、樹脂溶液が金属支持体の表面に流延する位置の近傍であることが好ましい。具体的には、図2を参照して、金属支持体が第1冷却ロール5のようにロール状である場合には、常圧プラズマ照射処理を行う位置P1と第1冷却ロール5の中心点P3と結んだときの線L1と、樹脂溶液が金属支持体の表面に流延する位置P2と第1冷却ロール5の中心点P3と結んだときの線L2とがなす角度θは、120°以下が好ましい。120°以下であると、添加剤の蒸気が多く存在し、金属支持体の表面に均一な表面処理膜を形成することができる。 In addition, the position where the atmospheric pressure plasma irradiation treatment is performed (the position where the reactive gas g is supplied to the metal support) is a position where a large amount of the additive vapor exists and the resin solution is cast on the surface of the metal support. It is preferable that it is near. Specifically, referring to FIG. 2, when the metal support is in the form of a roll like the first cooling roll 5, the position P <b> 1 where the atmospheric pressure plasma irradiation treatment is performed and the center point of the first cooling roll 5. An angle θ formed by a line L1 when connected to P3, a position P2 where the resin solution is cast onto the surface of the metal support, and a line L2 when connected to the center point P3 of the first cooling roll 5 is 120 °. The following is preferred. When the angle is 120 ° or less, a large amount of the additive vapor is present, and a uniform surface treatment film can be formed on the surface of the metal support.
 また、常温プラズマ処理の処理条件としては電極間に供給する電力が、1W/cm以上、50W/cm以下(放電が起こる範囲の面積)であることが好ましい。処理条件を、この範囲とすることで、アーク放電などの異常放電を起こすことなく、十分な表面処理が行える点で好ましい。 As processing conditions for the room temperature plasma treatment, it is preferable that the power supplied between the electrodes is 1 W / cm 2 or more and 50 W / cm 2 or less (area in which discharge occurs). By setting the treatment conditions within this range, it is preferable in that sufficient surface treatment can be performed without causing abnormal discharge such as arc discharge.
 図3は、本発明の光学フィルムの製造方法において使用するエキシマ紫外線照射装置(22)の原理を説明するための説明図である。 FIG. 3 is an explanatory diagram for explaining the principle of the excimer ultraviolet irradiation device (22) used in the method for producing an optical film of the present invention.
 同図において、(u)はエキシマ紫外線ランプ、(r)は反射板、(p)はパージガス、(d)はエキシマ紫外線ランプ(u)から第1冷却ロールよりなる金属支持体(5)までの間隙である。 In the figure, (u) is an excimer ultraviolet lamp, (r) is a reflector, (p) is a purge gas, (d) is an excimer ultraviolet lamp (u) to a metal support (5) comprising a first cooling roll. It is a gap.
 本実施の形態においては、種々の紫外線照射装置を用いることができるが、特に、波長が250nm以下が好ましい。このような紫外線照射下では、パージガス(p)に含まれる酸素は活性酸素やオゾンを生成し、紫外線とともに、添加剤の揮発蒸気を二酸化炭素や水などに分解するとともに、第1冷却ロールよりなる金属支持体(5)表面を改質するものである。 In the present embodiment, various ultraviolet irradiation devices can be used, and the wavelength is particularly preferably 250 nm or less. Under such ultraviolet irradiation, the oxygen contained in the purge gas (p) generates active oxygen and ozone, and decomposes the volatile vapor of the additive into carbon dioxide, water, etc. together with the ultraviolet rays, and also comprises the first cooling roll. The surface of the metal support (5) is modified.
 また、紫外線ランプ(u)と第1冷却ロールよりなる金属支持体(5)との間隙(d)は、近すぎると、ウェブのカールなどで紫外線ランプ装置と接触してウェブに擦り傷をつくってしまい、離しすぎると、紫外線光が酸素に吸収されて添加剤の揮発蒸気の分解やウェブ表面の改質が十分できなくなるため、1~20mm程度が好ましく、さらには、2~15mmがより好ましい。また、紫外線照射装置(22)の近くに排気装置を設け、分解ガスの排気を行なうのが望ましい。 Further, if the gap (d) between the ultraviolet lamp (u) and the metal support (5) made of the first cooling roll is too close, the web may be curled or the like to contact the ultraviolet lamp device and scratch the web. If it is too far away, the ultraviolet light is absorbed by oxygen and the volatile vapor of the additive cannot be decomposed and the surface of the web cannot be sufficiently modified, so that it is preferably about 1 to 20 mm, and more preferably 2 to 15 mm. It is desirable to provide an exhaust device near the ultraviolet irradiation device (22) to exhaust the decomposition gas.
 また、エキシマ紫外線照射処理を行う位置は、添加剤の蒸気が多く存在する、樹脂溶液が金属支持体の表面に流延する位置の近傍であることが好ましい。具体的には、図3を参照して、金属支持体が第1冷却ロール5のようにロール状である場合には、エキシマ紫外線照射処理を行う位置P1(紫外線ランプで照射する中心位置)と第1冷却ロール5の中心点P3とを結んだときの線L1と、樹脂溶液が金属支持体の表面に流延する位置P2と第1冷却ロール5の中心点P3とを結んだときの線L2とがなす角度θは、120°以下が好ましい。120°以下であると、添加剤の蒸気が多く存在し、金属支持体の表面に均一な表面処理膜を形成することができる。 Further, the position where the excimer ultraviolet irradiation treatment is performed is preferably in the vicinity of the position where a large amount of the additive vapor exists and where the resin solution is cast onto the surface of the metal support. Specifically, referring to FIG. 3, when the metal support is in a roll shape like the first cooling roll 5, a position P <b> 1 (a central position irradiated with an ultraviolet lamp) for performing excimer ultraviolet irradiation treatment and Line L1 when connecting the center point P3 of the first cooling roll 5, and line when connecting the position P2 where the resin solution is cast onto the surface of the metal support and the center point P3 of the first cooling roll 5 The angle θ formed by L2 is preferably 120 ° or less. When the angle is 120 ° or less, a large amount of the additive vapor is present, and a uniform surface treatment film can be formed on the surface of the metal support.
 また、エキシマ紫外線処理の処理条件としては、主波長が172nmの紫外線を1~3,000mJ/cmの光量で照射するのが好ましい。処理条件を、この範囲とすることで、短時間に十分な表面処理効果を得られる点で好ましい。 Further, as the processing conditions of the excimer ultraviolet treatment, it is preferable to irradiate ultraviolet rays having a dominant wavelength of 172 nm with a light amount of 1 to 3,000 mJ / cm 2 . By setting the treatment conditions within this range, it is preferable in that a sufficient surface treatment effect can be obtained in a short time.
 本発明による光学フィルムの製造方法は、熱可塑性樹脂及び添加剤を含む樹脂溶融液を第1冷却ロールよりなる金属支持体(5)の表面に流延して流延膜を形成する工程と、流延膜を冷却固化させた後に、金属支持体(5)から剥離する工程と、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、第1冷却ロールよりなる金属支持体(5)の略全幅にわたり常圧プラズマ照射処理またはエキシマ紫外線照射処理を施すことにより、第1冷却ロールよりなる金属支持体(5)表面に表面処理膜を形成する工程とを有するものである。また、第1冷却ロールよりなる金属支持体(5)表面に表面処理膜を形成する工程は、オンラインで行っても良いし、オフラインで行っても良い。本発明の方法によれば、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、常圧プラズマ照射処理またはエキシマ紫外線照射処理を施すことにより、第1冷却ロールよりなる金属支持体(5)表面に、可塑剤等の添加剤の分解物を構成成分とする非常に緻密な表面処理膜が形成せられ、該表面処理膜の存在によって金属支持体(5)表面からのフィルムの離型性(剥離性)が著しく向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少するとともに、フィルム幅手方向および長手方向のリタデーション(Re)値のバラツキが大幅に低減して、透明性、平面性に優れた光学特性を有する光学フィルムを製造することができるとともに、生産速度を上げることができて、フィルムの生産性を向上することができ、ひいては近年の偏光板用保護フィルム等の薄膜化、広幅化、及び高品質化の要求に応えることができるものである。 The method for producing an optical film according to the present invention includes a step of casting a resin melt containing a thermoplastic resin and an additive on the surface of a metal support (5) made of a first cooling roll to form a cast film, After the casting film is cooled and solidified, it comprises the first cooling roll in the presence of the step of peeling from the metal support (5), the vapor of the additive, and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation. A step of forming a surface treatment film on the surface of the metal support (5) made of the first cooling roll by performing atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment over substantially the entire width of the metal support (5). It is. Further, the step of forming the surface treatment film on the surface of the metal support (5) made of the first cooling roll may be performed online or offline. According to the method of the present invention, by performing atmospheric pressure plasma irradiation treatment or excimer ultraviolet irradiation treatment in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation, the first cooling roll The surface of the metal support (5) is formed with a very dense surface treatment film comprising a decomposition product of an additive such as a plasticizer as a constituent component. The releasability (peelability) of the film from the film is remarkably improved, a very smooth peelability is obtained, the fluctuation in the width direction of the peel position is reduced, and the film width direction and longitudinal direction retardation (Re ) Value variation can be greatly reduced, and an optical film having optical properties with excellent transparency and flatness can be produced, and the production speed can be increased. It is possible to improve the productivity, and thus the recent thin protective film such as a polarizing plate, in which it is possible to meet demand for broadening, and higher quality.
 本発明による光学フィルムの製造方法では、このように、プラズマ照射または紫外線照射を、添加剤の蒸気、および常圧プラズマ照射処理またはエキシマ紫外線照射処理に用いるガスの存在下で実施し、表面処理膜を形成する処理であるものであるから、本発明の方法によれば、第1冷却ロールよりなる金属支持体(5)表面に、可塑剤等の添加剤の分解物を構成成分とする非常に緻密な表面処理膜が形成せられ、該表面処理膜の存在によって金属支持体(5)表面からのフィルムの離型性(剥離性)が著しく向上するとともに、金属支持体(5)表面からのフィルムの離型性(剥離性)が、長期製膜でも劣化しにくく、より効果が持続する。また、金属支持体(5)表面から、表面処理膜の構成成分が、わずかにフィルムに転移したとしても、もともとフィルムに添加されている添加剤であるので、フィルム特性に与える影響がほとんど無い。 In the optical film manufacturing method according to the present invention, as described above, plasma irradiation or ultraviolet irradiation is performed in the presence of an additive vapor and a gas used for atmospheric pressure plasma irradiation processing or excimer ultraviolet irradiation processing. According to the method of the present invention, the surface of the metal support (5) made of the first cooling roll has a decomposition product of an additive such as a plasticizer as a constituent component. A dense surface-treated film is formed, and the presence of the surface-treated film significantly improves the releasability (peelability) of the film from the surface of the metal support (5), and from the surface of the metal support (5). The releasability (peelability) of the film is less likely to deteriorate even during long-term film formation, and the effect is further sustained. Moreover, even if the component of the surface treatment film is slightly transferred from the surface of the metal support (5) to the film, it is an additive that has been originally added to the film, so that it hardly affects the film characteristics.
 また、本発明による光学フィルムの製造方法によれば、金属支持体(5)表面に形成された表面処理膜が、該処理膜と水との接触角5~40度を有するものであるのが、好ましい。 According to the method for producing an optical film of the present invention, the surface treatment film formed on the surface of the metal support (5) has a contact angle of 5 to 40 degrees between the treatment film and water. ,preferable.
 なお、図示の実施形態では、金属支持体(5)は、冷却ロールよりなるものであるが、本発明の光学フィルムの製造方法に用いる金属支持体(5)は、その他、製膜用のエンドレスベルト、またはドラムであってもよい。 In the illustrated embodiment, the metal support (5) is composed of a cooling roll, but the metal support (5) used in the method for producing an optical film of the present invention is also an endless film-forming device. It may be a belt or a drum.
 また、本発明による光学フィルムの製造方法によれば、金属支持体の表面上から冷却後の流延膜を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、0.1~2.0(N/m)の範囲内にあるのが、好ましい。 Further, according to the method for producing an optical film according to the present invention, the minimum amount of increase in peeling force required to peel the cast film after cooling from the surface of the metal support is the same as that at the start of film formation. It is preferably within the range of 0.1 to 2.0 (N / m) after 24 hours from the film formation.
 本発明の光学フィルムの製造方法で製造された光学フィルムによれば、金属支持体(5)からのフィルムの離型性(剥離性)が向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少することから、光学フィルムは、フィルム幅手方向および長手方向のリタデーション(Re)値のバラツキが大幅に低減して、透明性、平面性に優れている。 According to the optical film produced by the method for producing an optical film of the present invention, the release property (peelability) of the film from the metal support (5) is improved, and a very smooth peelability is obtained. Since the variation in the width direction of the position is reduced, the optical film is excellent in transparency and flatness because the variation in retardation (Re) value in the width direction and the longitudinal direction is greatly reduced.
 また、本発明の光学フィルムの製造方法で製造された光学フィルムのクロスニコル時の波長600nmでの透過率のバラツキが、2×10-5~60×10-5(%)の範囲内にあるのが、好ましい。これにより、液晶パネルに組み込んだときに、画面全体、均一に高いコントラストが得られる。 Further, the dispersion of the transmittance at a wavelength of 600 nm at the time of crossed Nicol of the optical film manufactured by the method for manufacturing an optical film of the present invention is in the range of 2 × 10 −5 to 60 × 10 −5 (%). Is preferred. Thereby, when incorporated in a liquid crystal panel, the entire screen can be uniformly high in contrast.
 本発明の光学フィルムの製造方法によれば、偏光板用保護フィルム等としての光学フィルムの薄膜化、広幅化、及び高品質化の要求に応えることができ、かつ生産性の高い高品質の光学フィルムの製造方法を提供することができる。 According to the method for producing an optical film of the present invention, it is possible to meet demands for thinning, widening, and high quality of an optical film as a protective film for a polarizing plate, etc., and high quality optical with high productivity. A method for producing a film can be provided.
 つぎに、本発明の溶融流延製膜法による光学フィルムの製造方法について、詳しく説明する。 Next, the method for producing an optical film by the melt casting method of the present invention will be described in detail.
 図1に示すように、例えば熱風や真空または減圧下で乾燥したセルロースエステル系樹脂を押出し機(1)を用いて、押し出し温度200~300℃程度で溶融し、リーフディスクタイプのフィルター(2)などで濾過し、異物を除去する。なお、供給ホッパー(図示略)から押出し機(1)へ導入する際は、真空下または減圧下や不活性ガス雰囲気下にして、酸化分解等を防止することが好ましい。 As shown in FIG. 1, for example, a cellulose ester resin dried under hot air, vacuum or reduced pressure is melted at an extrusion temperature of about 200 to 300 ° C. using an extruder (1), and a leaf disk type filter (2) Filter through to remove foreign matter. In addition, when it introduce | transduces into an extruder (1) from a supply hopper (not shown), it is preferable to prevent oxidative decomposition etc. by making it under vacuum or pressure reduction, or inert gas atmosphere.
 可塑剤などの添加剤を予め混合しない場合は、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー(3)などの混合装置を用いることが好ましい。 When additives such as plasticizer are not mixed in advance, they may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer (3).
 セルロース樹脂等の樹脂と、その他必要により添加される安定化剤等の添加剤は、溶融する前に混合しておくことが好ましい。混合は、混合機等により行なってもよく、また、前記したようにセルロース樹脂等の樹脂調製過程において混合してもよい。混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、一般的な混合機を用いることができる。 It is preferable that a resin such as a cellulose resin and other additives such as a stabilizer added as necessary are mixed before melting. Mixing may be performed by a mixer or the like, or as described above, mixing may be performed in a resin preparation process such as a cellulose resin. When a mixer is used, a general mixer such as a V-type mixer, a conical screw type mixer, a horizontal cylindrical type mixer, or the like can be used.
 上記のようにフィルム構成材料を混合した後に、その混合物を押出し機(1)を用いて直接溶融して製膜するようにしてもよいが、一旦、フィルム構成材料をペレット化した後、該ペレットを押出し機(1)で溶融して製膜するようにしてもよい。また、フィルム構成材料が、融点の異なる複数の材料を含む場合には、融点の低い材料のみが溶融する温度で一旦、いわゆるおこし状の半溶融物を作製し、半溶融物を押出し機(1)に投入して製膜することも可能である。フィルム構成材料に熱分解しやすい材料が含まれる場合には、溶融回数を減らす目的で、ペレットを作製せずに直接製膜する方法や、上記のようなおこし状の半溶融物を作ってから製膜する方法が好ましい。 After the film constituent materials are mixed as described above, the mixture may be directly melted and formed into a film using an extruder (1). Once the film constituent materials are pelletized, the pellets May be melted with an extruder (1) to form a film. Further, when the film constituent material includes a plurality of materials having different melting points, a so-called braided semi-melt is once produced at a temperature at which only a material having a low melting point is melted, and the semi-melt is extruded (1). ) To form a film. If the film component contains a material that is easily pyrolyzed, in order to reduce the number of times of melting, a method of directly forming a film without producing pellets, or after making a paste-like semi-molten material as described above A method of forming a film is preferred.
 押出し機(1)は、市場で入手可能な種々の押出し機を使用可能であるが、溶融混練押出し機が好ましく、単軸押出し機でも2軸押出し機でも良い。フィルム構成材料からペレットを作製せずに、直接製膜を行なう場合、適当な混練度が必要であるため2軸押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック型、ユニメルト型、ダルメージ等の混練型のスクリューに変更することにより、適度の混練が得られるので、使用可能である。フィルム構成材料として、一旦、ペレットやおこし状の半溶融物を使用する場合は、単軸押出し機でも2軸押出し機でも使用可能である。 As the extruder (1), various commercially available extruders can be used, but a melt-kneading extruder is preferable, and a single-screw extruder or a twin-screw extruder may be used. When forming a film directly without producing pellets from film constituent materials, it is preferable to use a twin-screw extruder because an appropriate degree of kneading is required. However, even with a single-screw extruder, the screw shape is a Maddock type. By changing to a kneading type screw such as a unimelt type or a dull mage, moderate kneading can be obtained, so that it can be used. When a pellet or braided semi-melt is once used as a film constituent material, it can be used in either a single screw extruder or a twin screw extruder.
 押出し機(1)内および押し出した後の冷却工程は、窒素ガス等の不活性ガスで置換するか、あるいは減圧することにより、酸素の濃度を下げることが好ましい。 In the extruder (1) and after the extrusion, the cooling step is preferably performed by substituting with an inert gas such as nitrogen gas or reducing the pressure to reduce the oxygen concentration.
 押出し機(1)内のフィルム構成材料の溶融温度は、フィルム構成材料の粘度や吐出量、製造するシートの厚み等によって好ましい条件が異なるが、一般的には、フィルム(樹脂混合物)のガラス転移温度Tgに対して、Tg以上、Tg+100℃以下、好ましくはTg+10℃以上、Tg+90℃以下である。 Although the preferable conditions for the melting temperature of the film constituent material in the extruder (1) vary depending on the viscosity and discharge amount of the film constituent material, the thickness of the sheet to be produced, etc., in general, the glass transition of the film (resin mixture) It is Tg or more and Tg + 100 ° C. or less, preferably Tg + 10 ° C. or more and Tg + 90 ° C. or less with respect to the temperature Tg.
 押出し時の溶融粘度は、10~100000ポイズ、好ましくは100~10000ポイズである。また、押出し機(1)内でのフィルム構成材料の滞留時間は短い方が好ましく、5分以内、好ましくは3分以内、より好ましくは2分以内である。滞留時間は、押出し機(1)の種類、押し出す条件にも左右されるが、材料の供給量やL/D、スクリュー回転数、スクリューの溝の深さ等を調整することにより短縮することが可能である。 The melt viscosity at the time of extrusion is 10 to 100,000 poise, preferably 100 to 10,000 poise. Further, the residence time of the film constituting material in the extruder (1) is preferably short, and is within 5 minutes, preferably within 3 minutes, more preferably within 2 minutes. The residence time depends on the type of the extruder (1) and the extrusion conditions, but it can be shortened by adjusting the material supply amount, L / D, screw rotation speed, screw groove depth, and the like. Is possible.
 押出し機(1)のスクリューの形状や回転数等は、フィルム構成材料の粘度や吐出量等により適宜選択される。本実施形態において押出し機(1)でのせん断速度は、1/秒~10000/秒、好ましくは5/秒~1000/秒、より好ましくは10/秒~100/秒である。押出し機(1)としては、一般的にプラスチック成形機として市販されている押出し機を使用することができる。 The shape and rotation speed of the screw of the extruder (1) are appropriately selected depending on the viscosity and the discharge amount of the film constituting material. In this embodiment, the shear rate in the extruder (1) is 1 / second to 10,000 / second, preferably 5 / second to 1000 / second, more preferably 10 / second to 100 / second. As the extruder (1), an extruder generally marketed as a plastic molding machine can be used.
 押出し機(1)から押し出されたフィルム構成材料は、流延ダイ(4)に送られ、流延ダイ(4)からフィルム状に押し出される。 The film constituting material extruded from the extruder (1) is sent to the casting die (4) and extruded from the casting die (4) into a film shape.
 押出し機(1)から吐出される溶融物は、流延ダイ(4)に供給される。流延ダイ(4)はシートやフィルムを製造するために用いられるものであれば特に限定はされない。流延ダイ(4)の材質としては、ハードクロム、炭化クロム、窒化クロム、炭化チタン、炭窒化チタン、窒化チタン、超鋼、セラミック(タングステンカーバイド、酸化アルミ、酸化クロム)などを溶射もしくはメッキし、表面加工としてバフ、#1000番手以降の砥石を用いるラッピング、#1000番手以上のダイヤモンド砥石を用いる平面切削(切削方向は樹脂の流れ方向に垂直な方向)、電解研磨、電解複合研磨などの加工を施したものなどがあげられる。 The melt discharged from the extruder (1) is supplied to the casting die (4). The casting die (4) is not particularly limited as long as it is used for producing a sheet or a film. As the material of the casting die (4), hard chromium, chromium carbide, chromium nitride, titanium carbide, titanium carbonitride, titanium nitride, super steel, ceramic (tungsten carbide, aluminum oxide, chromium oxide), etc. are sprayed or plated. Buffing as surface processing, lapping using a # 1000 or higher grinding wheel, plane cutting using a diamond grinding wheel of # 1000 or higher (cutting direction is perpendicular to the resin flow direction), electrolytic polishing, electrolytic composite polishing, etc. And the like.
 流延ダイ(4)のリップ部の好ましい材質は、流延ダイ(4)と同様である。またリップ部の表面精度は0.5S以下が好ましく、0.2S以下がより好ましい。 The preferred material of the lip portion of the casting die (4) is the same as that of the casting die (4). The surface accuracy of the lip is preferably 0.5S or less, and more preferably 0.2S or less.
 本発明の光学フィルムの製造方法は、上記のように、第1冷却ロールよりなる金属支持体(5)の表面を、樹脂溶融物を流延する前に金属支持体(5)表面の所定の位置において、あるいは製膜中に金属支持体(5)表面のウェブの非通過区間〔製膜中に金属支持体(5)の表面がむき出しとなる区間〕において、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、常圧プラズマ照射装置(21)またはエキシマ紫外線照射装置(22)により高エネルギー表面処理を施すことにより、金属支持体(5)の表面を改質し、改質後の金属支持体(5)表面に樹脂溶融物を流延するものである。 As described above, the method for producing an optical film of the present invention allows the surface of the metal support (5) made of the first cooling roll to be formed on the surface of the metal support (5) before casting the resin melt. In the position or in the non-passage section of the web on the surface of the metal support (5) during film formation (section where the surface of the metal support (5) is exposed during film formation), In the presence of a gas used for plasma irradiation or excimer ultraviolet irradiation, the surface of the metal support (5) is modified by applying a high energy surface treatment with an atmospheric pressure plasma irradiation apparatus (21) or an excimer ultraviolet irradiation apparatus (22). The resin melt is cast on the surface of the modified metal support (5).
 すなわち、本発明による光学フィルムの製造方法は、樹脂溶融物を流延する金属支持体(5)表面を、樹脂溶融物を流延する前にいわゆるオフラインで、金属支持体(5)表面の所定の位置において、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、常圧プラズマ照射装置(21)またはエキシマ紫外線照射装置(22)により高エネルギー表面処理を施すことにより、金属支持体(5)の表面を改質し、あるいはまた、製膜中にいわゆるオンラインで、金属支持体(5)表面のウェブの非通過区間〔製膜中に金属支持体(5)の表面がむき出しとなる区間〕において、添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で、常圧プラズマ照射装置(21)またはエキシマ紫外線照射装置(22)により高エネルギー表面処理を施すことにより、金属支持体(5)の表面を改質し、改質後の金属支持体(5)表面に樹脂溶融物を流延するものである。 That is, in the method for producing an optical film according to the present invention, the surface of the metal support (5) on which the resin melt is cast is so-called off-line before casting the resin melt, and the surface of the metal support (5) is predetermined. The high-energy surface treatment is performed by the atmospheric pressure plasma irradiation apparatus (21) or the excimer ultraviolet irradiation apparatus (22) in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation. The surface of the metal support (5) is modified by the above-mentioned method, or the non-passage section of the web on the surface of the metal support (5) [metal support (5) during film formation] In the section where the surface is exposed], in the presence of the vapor of the additive and the gas used for atmospheric pressure plasma irradiation or excimer ultraviolet irradiation, the atmospheric pressure plasma irradiation apparatus (21) Alternatively, the surface of the metal support (5) is modified by applying a high energy surface treatment with an excimer ultraviolet irradiation device (22), and the resin melt is cast on the surface of the modified metal support (5). To do.
 本実施形態においては、セルロースエステル樹脂等の樹脂を含むフィルム材料を混合して樹脂混合物を得た後、押出し機(1)を用いて、流延ダイ(4)から第1冷却ロール(金属支持体)(5)上に溶融押し出し、第1冷却ロール(5)に外接させるとともに、タッチロール(6)によりフィルム状溶融物を第1冷却ロール(5)表面に所定の圧力で押圧する。さらに、第2冷却ロール(7)、及び第3冷却ロール(8)の合計3本の冷却ロールに順に外接させて冷却固化し、剥離ロール(9)によって剥離する。剥離されたウェブ(10)は、テンター(11)によりウェブ(10)の両端部を把持して幅手方向に延伸し、その後、延伸フィルムを巻取り機(12)により巻き取るものである。 In the present embodiment, after a film material containing a resin such as cellulose ester resin is mixed to obtain a resin mixture, the first cooling roll (metal support) is formed from the casting die (4) using the extruder (1). Body) (5) is melt-extruded and brought into contact with the first cooling roll (5), and the film-like melt is pressed against the surface of the first cooling roll (5) with a predetermined pressure by the touch roll (6). Furthermore, the total of three cooling rolls of the second cooling roll (7) and the third cooling roll (8) are sequentially circumscribed and solidified by cooling, and are peeled off by the peeling roll (9). The peeled web (10) is one in which both ends of the web (10) are gripped by the tenter (11) and stretched in the width direction, and then the stretched film is wound up by the winder (12).
 本実施形態においては、第1冷却ロール(5)の温度を、樹脂混合物のガラス転移温度(Tg)以下、添加剤の融点以上に設定する。 In the present embodiment, the temperature of the first cooling roll (5) is set to be equal to or lower than the glass transition temperature (Tg) of the resin mixture and equal to or higher than the melting point of the additive.
 また、本実施形態の光学フィルムの製造方法においては、第1冷却ロール(5)の周速度(S1)と第2冷却ロール(7)の周速度(S2)の比(S2/S1)を、1.001~1.05に設定するのが、好ましい。 Moreover, in the manufacturing method of the optical film of this embodiment, ratio (S2 / S1) of the circumferential speed (S1) of the 1st cooling roll (5) and the circumferential speed (S2) of the 2nd cooling roll (7), It is preferable to set to 1.001 to 1.05.
 タッチロール(6)は、フィルムに対して第1冷却ロール(5)の反対側より第1冷却ロール(5)の方向にフィルムを挟圧する目的の回転体である。 The touch roll (6) is a rotating body intended to sandwich the film in the direction of the first cooling roll (5) from the opposite side of the first cooling roll (5) to the film.
 タッチロール(6)の表面は金属であることが好ましく、厚みは1mmから10mmである。好ましくは2mm~6mmである。タッチロール(6)の表面は、クロムメッキなどの処理が施されており、面粗さとしては0.2S以下が好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできる。 The surface of the touch roll (6) is preferably a metal, and the thickness is 1 mm to 10 mm. It is preferably 2 mm to 6 mm. The surface of the touch roll (6) is subjected to a treatment such as chrome plating, and the surface roughness is preferably 0.2S or less. The smoother the roll surface, the smoother the surface of the resulting film.
 タッチロール(6)の表面の金属の材質は、平滑で、適度な弾性があり、耐久性があることが求められる。炭素鋼、ステンレス、チタン、電鋳法で製造されたニッケルなどが好ましく用いることができる。さらにその表面の硬度をあげたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。表面加工した表面はさらに研磨し、上述した表面粗さとすることが好ましい。 The metal material on the surface of the touch roll (6) is required to be smooth, moderately elastic and durable. Carbon steel, stainless steel, titanium, nickel produced by electroforming, etc. can be preferably used. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to carry out a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying. It is preferable that the surface processed is further polished to have the above-described surface roughness.
 タッチロール(6)は、金属製外筒と内筒との2重構造になっており、その間に冷却流体を流せるように空間を有する二重筒の構成である。 The touch roll (6) has a double structure of a metal outer cylinder and an inner cylinder, and has a structure of a double cylinder having a space so that a cooling fluid can flow between them.
 内筒は、炭素鋼、ステンレス、アルミニウム、チタンなどの軽量で剛性のある金属製内筒であることが好ましい。内筒に剛性をもたせることで、ロールの回転ぶれを抑えることができる。内筒の肉厚は、外筒の2~10倍とすることで十分な剛性が得られる。内筒にはさらにシリコーン、フッ素ゴムなどの樹脂製弾性材料が被覆されていてもよい。 The inner cylinder is preferably a lightweight and rigid metallic inner cylinder such as carbon steel, stainless steel, aluminum, titanium or the like. By giving rigidity to the inner cylinder, it is possible to suppress the rotational shake of the roll. A sufficient rigidity can be obtained by setting the thickness of the inner cylinder to 2 to 10 times that of the outer cylinder. The inner cylinder may be further coated with a resin elastic material such as silicone or fluororubber.
 冷却流体を流す空間の構造は、ロール表面の温度を均一に制御できるものであればよく、例えば幅手方向に行きと戻りが交互に流れるようにしたり、スパイラル状に流れるようにすることでロール表面の温度分布の小さい温度制御ができる。冷却流体は、特に制限はなく、使用する温度域に合わせて、水やオイルを使用できる。 The structure of the space through which the cooling fluid flows can be any structure as long as the temperature of the roll surface can be uniformly controlled. For example, the roll can be made to flow in a spiral direction by flowing alternately and back in the width direction. Temperature control with a small surface temperature distribution is possible. The cooling fluid is not particularly limited, and water or oil can be used according to the temperature range to be used.
 本実施形態において、第2回転体であるタッチロール(6)は、中央部の外径が両端部の外径よりも大きい太鼓型に設定される。タッチロールは、その両端部を加圧手段でフィルムに押圧するのが一般的であるが、この場合、タッチロールが撓むため、端部にいくほど強く押圧されてしまう現象がある。ロールを太鼓型にすることで高度に均一な押圧が可能となる。 In the present embodiment, the touch roll (6) as the second rotating body is set to a drum shape in which the outer diameter of the central part is larger than the outer diameters of both end parts. The touch roll generally presses both ends of the touch roll against the film with a pressurizing unit, but in this case, the touch roll is bent, so that there is a phenomenon that the touch roll is pressed more strongly toward the end. Highly uniform pressing is possible by making the roll into a drum shape.
 第2回転体であるタッチロール(6)の直径は、200mmから500mmの範囲であることが好ましい。タッチロール(6)の有効幅は、挟圧するフィルム幅よりも広い必要がある。タッチロール(6)の中央部の半径と端部の半径との差(以下、クラウニング量と呼ぶ)により、フィルムの中央部に発生するスジなどのむらを防止することができる。クラウニング量は、50~300μmの範囲が好ましい。 The diameter of the touch roll (6) as the second rotating body is preferably in the range of 200 mm to 500 mm. The effective width of the touch roll (6) needs to be wider than the film width to be pressed. Due to the difference between the radius of the center portion and the radius of the end portion of the touch roll (6) (hereinafter referred to as the crowning amount), unevenness such as streaks generated in the center portion of the film can be prevented. The amount of crowning is preferably in the range of 50 to 300 μm.
 第1冷却ロール(5)とタッチロール(6)とは、フィルムを挟圧するように、フィルムの平面に対して反対側の位置に設置する。第1冷却ロール(5)とタッチロール(6)とは、フィルムと面で接触しても、線で接触してもかまわない。 The first cooling roll (5) and the touch roll (6) are installed at positions opposite to the plane of the film so as to sandwich the film. The first cooling roll (5) and the touch roll (6) may be in contact with the film by a surface or by a line.
 本実施形態による光学フィルムの製造方法において、溶融押し出しの条件は、他のポリエステルなどの熱可塑性樹脂に用いられる条件と同様にして行なうことができる。材料は予め乾燥させておくことが好ましい。真空または減圧乾燥機や除湿熱風乾燥機などで水分を1000ppm以下、好ましくは200ppm以下に乾燥させることが望ましい。 In the method for producing an optical film according to the present embodiment, the conditions for melt extrusion can be performed in the same manner as the conditions used for other thermoplastic resins such as polyester. The material is preferably dried beforehand. It is desirable to dry the moisture to 1000 ppm or less, preferably 200 ppm or less, using a vacuum or reduced pressure dryer or a dehumidifying hot air dryer.
 本実施形態においては、溶融させた樹脂混合物を押出し機にとりつけた流延ダイ(4)からフィルム状樹脂に押し出し、押し出されたフィルム状樹脂を少なくとも2つの回転体に密着させて成形して引き取る工程を有する。 In this embodiment, the molten resin mixture is extruded from a casting die (4) attached to an extruder to a film-like resin, and the extruded film-like resin is brought into close contact with at least two rotating bodies to be molded and taken out. Process.
 このとき、タッチロール(6)よりなる押圧手段により、フィルムを第1冷却ロール(5)に押し付けることが好ましい。このときのタッチロール(6)がフィルムを押し付ける線圧は、油圧ピストン等によって調整でき、好ましくは0.1~100N/mm、より好ましくは1~50N/mmである。 At this time, it is preferable to press the film against the first cooling roll (5) by pressing means comprising the touch roll (6). The linear pressure with which the touch roll (6) presses the film at this time can be adjusted by a hydraulic piston or the like, and is preferably 0.1 to 100 N / mm, more preferably 1 to 50 N / mm.
 また第1冷却ロール(5)、もしくはタッチロール(6)はフィルムとの接着の均一性を高めるためにロールの両端の直径を細くしたり、フレキシブルなロール面を持たせることもできる。 Further, the first cooling roll (5) or the touch roll (6) can have a diameter reduced at both ends of the roll or can have a flexible roll surface in order to improve the uniformity of adhesion with the film.
 流延ダイ(4)の開口部(リップ)から第1冷却ロール(5)までの部分を70kPa以下に減圧させると、上記のダイラインの矯正効果がより大きく発現する。好ましくは減圧は50kPa以上70kPa以下である。流延ダイ(4)のリップから第1冷却ロール(5)までの部分の圧力を70kPa以下に保つ方法としては、特に制限はないが、流延ダイ(4)からロール周辺を耐圧部材で覆い、減圧するなどの方法がある。このとき、吸引装置は、装置自体が昇華物の付着場所にならないようヒーターで加熱するなどの処置を施すことが好ましい。吸引圧が小さすぎると昇華物を効果的に吸引できないため、適当な吸引圧とする必要がある。 When the portion from the opening (lip) of the casting die (4) to the first cooling roll (5) is depressurized to 70 kPa or less, the above-described die line correction effect is more greatly manifested. The reduced pressure is preferably 50 kPa or more and 70 kPa or less. There is no particular limitation on the method for maintaining the pressure in the portion from the lip of the casting die (4) to the first cooling roll (5) to 70 kPa or less, but the roll periphery from the casting die (4) is covered with a pressure-resistant member. There is a method of reducing the pressure. At this time, the suction device is preferably subjected to a treatment such as heating with a heater so that the device itself does not become a place where the sublimate is attached. If the suction pressure is too small, the sublimate cannot be sucked effectively, so it is necessary to set the suction pressure appropriately.
 本実施形態において、Tダイ(4)から溶融状態のフィルム状のセルロースエステル系樹脂を、第1冷却ロール(5)、第2冷却ロール(7)、及び第3冷却ロール(8)に順次密着させて搬送しながら冷却固化させ、セルロースエステル系樹脂のウェブ(10)を得る。 In the present embodiment, a film-like cellulose ester resin in a molten state from the T die (4) is in close contact with the first cooling roll (5), the second cooling roll (7), and the third cooling roll (8). The mixture is cooled and solidified while being conveyed to obtain a cellulose ester resin web (10).
 図1に示す本発明の実施形態では、第3冷却ロール(8)から剥離ロール9によって剥離した冷却固化されたウェブ(10)は、テンター(11)で延伸する。この延伸により、フィルム中の分子が配向される。 In the embodiment of the present invention shown in FIG. 1, the cooled and solidified web (10) peeled from the third cooling roll (8) by the peeling roll 9 is stretched by the tenter (11). By this stretching, the molecules in the film are oriented.
 流延ダイ(4)から押し出されたフィルム(樹脂混合物)を冷却する装置は、ロールに限定されるものではなく、ドラムやベルトなどでもよい。 The apparatus for cooling the film (resin mixture) extruded from the casting die (4) is not limited to a roll, and may be a drum or a belt.
 前述の冷却ロール(5)から剥離されたフィルム(10)は、テンター(11)で、1つまたは複数のロール群及び/又は赤外線ヒーター等の加熱装置を介して長手方向に一段または多段縦延伸することが好ましい。このとき、フィルムのガラス転移温度をTgとすると、Tg-50℃からTg+80℃の範囲で加熱して搬送方向に延伸することが好ましい。 The film (10) peeled off from the cooling roll (5) described above is a tenter (11) and is stretched in one or more stages in the longitudinal direction through one or a plurality of roll groups and / or a heating device such as an infrared heater. It is preferable to do. At this time, when the glass transition temperature of the film is Tg, it is preferably heated in the range of Tg−50 ° C. to Tg + 80 ° C. and stretched in the transport direction.
 つぎに、搬送方向に延伸されたフィルムを、Tg-50℃からTg+80℃の温度範囲内で横延伸し、次いで熱固定することが好ましい。 Next, the film stretched in the conveying direction is preferably stretched in the temperature range of Tg-50 ° C. to Tg + 80 ° C. and then heat-set.
 テンター(11)は横延伸でもよく、その場合、2つ以上に分割された延伸領域で温度差を1~50℃の範囲で順次昇温しながら横延伸すると幅方向の厚さ及び光学的な分布が低減でき好ましい。 The tenter (11) may be laterally stretched. In that case, when the lateral stretch is performed while sequentially raising the temperature difference in the range of 1 to 50 ° C. in the stretched region divided into two or more, the thickness in the width direction and the optical This is preferable because the distribution can be reduced.
 フィルム構成材料によってTgが異なるが、Tgはフィルムを構成する材料種及び構成する材料の比率を異ならしめることにより制御できる。光学フィルムとして位相差フィルムを作製する場合、Tgは120℃以上、好ましくは135℃以上とすることが好ましい。液晶表示装置においては、画像の表示状態において、装置自身の温度上昇、例えば光源由来の温度上昇によって該フィルムの温度環境が変化する。このとき該フィルムの使用環境温度よりも該フィルムのTgが低いと、延伸によってフィルム内部に固定された分子の配向状態に由来するリタデーション値及びフィルムとしての寸法形状に大きな変化を与えることとなる。該フィルムのTgが高過ぎると、フィルム構成材料をフィルム化するとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化するときの材料自身の分解、それによる着色が生じることがあり、従って、Tgは250℃以下が好ましい。 Although Tg differs depending on the film constituent material, Tg can be controlled by varying the material type constituting the film and the ratio of the constituent materials. When a retardation film is produced as an optical film, Tg is preferably 120 ° C. or higher, preferably 135 ° C. or higher. In the liquid crystal display device, in the image display state, the temperature environment of the film changes due to the temperature rise of the device itself, for example, the temperature rise derived from the light source. At this time, when the Tg of the film is lower than the use environment temperature of the film, the retardation value derived from the orientation state of the molecules fixed inside the film by stretching and the dimensional shape as the film are greatly changed. If the Tg of the film is too high, the temperature of the film constituting material will increase when the film is made into a film, so that the energy consumption for heating will increase, and the material itself may be decomposed and colored due to film formation. Therefore, Tg is preferably 250 ° C. or less.
 また延伸工程には公知の熱固定処理、冷却、緩和処理を行なってもよく、目的とする光学フィルムに要求される特性を有するように適宜調整すればよい。 In the stretching process, known heat setting treatment, cooling, and relaxation treatment may be performed, and the stretching may be appropriately adjusted so as to have characteristics required for the target optical film.
 位相差フィルムを製造する場合には、液晶表示装置の視野角拡大のために必要な機能と物性を付与するために、上記延伸工程、熱固定処理は適宜選択して行なわれる。すなわち、光学フィルムとして位相差フィルムを製造し、さらに偏光板保護フィルムの機能を複合させる場合、屈折率制御をおこなう必要が生じるが、その屈折率制御は延伸操作により行なうことが可能であり、また延伸操作が好ましい方法である。以下、その延伸方法について説明する。 When producing a retardation film, the above stretching step and heat setting treatment are appropriately selected and performed in order to provide functions and physical properties necessary for widening the viewing angle of the liquid crystal display device. That is, when producing a retardation film as an optical film and further combining the functions of a polarizing plate protective film, it is necessary to control the refractive index, but the refractive index can be controlled by a stretching operation. A stretching operation is a preferred method. Hereinafter, the stretching method will be described.
 位相差フィルムの延伸工程において、セルロース樹脂の1方向に1.0~3.0倍及びフィルム面内にそれと直交する方向に1.01~3.5倍延伸することで、必要とされるリタデーションRo及びRtを制御することができる。ここで、Roとは、面内リタデーションを示し、面内の長手方向(MD)の屈折率と幅方向(TD)の屈折率との差に厚みを乗じたもの、Rtとは、厚み方向リタデーションを示し、面内の屈折率〔長手方向(MD)と幅方向(TD)の平均〕と厚み方向の屈折率との差に厚みを乗じたものである。 In the retardation film stretching process, the required retardation is obtained by stretching the cellulose resin by 1.0 to 3.0 times in one direction and by 1.01 to 3.5 times in the direction perpendicular to the film plane. Ro and Rt can be controlled. Here, Ro represents in-plane retardation, and is obtained by multiplying the difference between the refractive index in the longitudinal direction (MD) and the refractive index in the width direction (TD) by the thickness, and Rt is the thickness direction retardation. The difference between the in-plane refractive index (average in the longitudinal direction (MD) and the width direction (TD)) and the refractive index in the thickness direction is multiplied by the thickness.
 延伸は、例えばフィルムの長手方向(流延・搬送する方向)及びそれとフィルム面内で直交する方向、すなわち、幅手方向に対して、逐次または同時に行なうことができる。このとき少なくとも1方向に対しての延伸倍率が小さ過ぎると十分な位相差が得られず、大き過ぎると延伸が困難となりフィルム破断が発生してしまう場合がある。 Stretching can be performed sequentially or simultaneously, for example, in the longitudinal direction of the film (casting / conveying direction) and in the direction orthogonal to the film plane, that is, in the width direction. At this time, if the stretching ratio in at least one direction is too small, a sufficient phase difference cannot be obtained, and if it is too large, stretching becomes difficult and film breakage may occur.
 互いに直交する2軸方向に延伸することは、フィルムの屈折率nx、ny、nzを所定の範囲に入れるために有効な方法である。ここで、nxとは長手(MD)方向の屈折率、nyとは幅手(TD)方向の屈折率、nzとは厚み方向の屈折率である。 Stretching in biaxial directions perpendicular to each other is an effective method for putting the refractive indexes nx, ny, and nz of the film within a predetermined range. Here, nx is the refractive index in the longitudinal (MD) direction, ny is the refractive index in the width (TD) direction, and nz is the refractive index in the thickness direction.
 例えば溶融流延方向に延伸した場合、幅方向の収縮が大き過ぎると、nzの値が大きくなり過ぎてしまう。この場合、フィルムの幅収縮を抑制、あるいは幅方向にも延伸することで改善できる。幅方向に延伸する場合、幅方向で屈折率に分布が生じることがある。この分布は、テンター法を用いた場合に現れることがあり、フィルムを幅方向に延伸したことで、フィルム中央部に収縮力が発生し、端部は固定されていることにより生じる現象で、いわゆるボーイング現象と呼ばれるものと考えられる。この場合でも、流延方向に延伸することで、ボーイング現象を抑制でき、幅方向の位相差の分布を少なくできる。 For example, when the film is stretched in the melt casting direction, if the shrinkage in the width direction is too large, the value of nz becomes too large. In this case, it can be improved by suppressing the width shrinkage of the film or stretching in the width direction. When stretching in the width direction, the refractive index may be distributed in the width direction. This distribution may appear when the tenter method is used. By stretching the film in the width direction, a shrinkage force is generated at the center of the film, and the phenomenon is caused by the end being fixed. It is thought to be called the Boeing phenomenon. Even in this case, by stretching in the casting direction, the bowing phenomenon can be suppressed and the distribution of the phase difference in the width direction can be reduced.
 互いに直行する2軸方向に延伸することにより、得られるフィルムの膜厚変動が減少できる。位相差フィルムの膜厚変動が大き過ぎると位相差のムラとなり、液晶ディスプレイに用いたとき着色等のムラが問題となることがある。 The film thickness variation of the obtained film can be reduced by stretching in the biaxial directions perpendicular to each other. When the film thickness variation of the retardation film is too large, the retardation becomes uneven, and unevenness such as coloring may be a problem when used in a liquid crystal display.
 セルロース樹脂フィルムの膜厚変動は、±3%、さらに±1%の範囲とすることが好ましい。以上のような目的において、互いに直交する2軸方向に延伸する方法は有効であり、互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に1.0~3.0倍、幅方向に1.01~3.5倍の範囲とすることが好ましく、流延方向に1.01~2.5倍、幅方向に1.05~3.0倍に範囲で行なうことが必要とされるリタデーション値を得るために、より好ましい。 The film thickness variation of the cellulose resin film is preferably in the range of ± 3%, more preferably ± 1%. For the purposes as described above, a method of stretching in the biaxial directions perpendicular to each other is effective, and the stretching ratio in the biaxial directions perpendicular to each other is finally 1.0 to 3.0 times in the casting direction. The width is preferably in the range of 1.01 to 3.5 times, in the range of 1.01 to 2.5 times in the casting direction and 1.05 to 3.0 times in the width direction. It is more preferable to obtain the required retardation value.
 上記のようなテンターによるウェブ(10)の延伸後、得られたウェブ(フィルム)の端部をスリッターにより製品となる幅にスリットして裁ち落とした後、エンボスリング及びバックロールよりなるナール加工装置によりナール加工(エンボッシング加工)をフィルム両端部に施し、巻取り機(13)において巻き取ることにより、光学フィルム(元巻き)中の貼り付きや、すり傷の発生を防止する。ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、変形しており、フィルム製品として使用できないので、切除されて、原料として再利用される。 After the web (10) is stretched by the tenter as described above, the end portion of the obtained web (film) is slit into a product width by a slitter and cut off, and then a knurling device comprising an embossing ring and a back roll By applying a knurling process (embossing process) to both ends of the film and winding it with a winder (13), sticking in the optical film (original winding) and scratching are prevented. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the grip part of the clip of the both ends of a film is deform | transforming normally and cannot be used as a film product, it is cut out and reused as a raw material.
 本発明の光学フィルムの製造方法に用いる熱可塑性樹脂は、溶融流延製膜法により製膜可能であれば特に限定されない。例えば、セルロースエステル、ポリカーボネート、脂環式構造含有ポリマー、ポリビニルアルコール、ポリアミド、ポリイミド、ポリエステルなどが挙げられる。中でも光弾性係数が小さいことから、セルロースエステルや脂環式構造含有ポリマーが好ましく、特に吸水率の小さいことから脂環式構造含有ポリマーが好ましい。 The thermoplastic resin used in the method for producing an optical film of the present invention is not particularly limited as long as it can be formed by a melt casting method. For example, cellulose ester, polycarbonate, alicyclic structure-containing polymer, polyvinyl alcohol, polyamide, polyimide, polyester and the like can be mentioned. Among them, cellulose esters and alicyclic structure-containing polymers are preferable because of their small photoelastic coefficient, and alicyclic structure-containing polymers are particularly preferable because of their low water absorption.
 セルロースエステルとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート及びセルロースアセテートプロピオネートブチレートが好ましい。上記セルロースエステルのアセチル基の置換度は、少なくとも1.5以上であることが、得られるフィルムの寸法安定性に優れるので好ましい。セルロースエステルのアシル基の置換度の測定方法としては、ASTMのD-817-91に準じて実施することができる。セルロースエステルの分子量は、数平均分子量として50,000~300,000、とくに60,000~200,000であることが、得られるフィルムの機械的強度が強くできるので好ましい。 As the cellulose ester, cellulose acetate propionate, cellulose acetate butyrate and cellulose acetate propionate butyrate are preferable. The degree of substitution of the acetyl group of the cellulose ester is preferably at least 1.5 or more because the resulting film has excellent dimensional stability. The method for measuring the substitution degree of the acyl group of the cellulose ester can be carried out according to ASTM D-817-91. The molecular weight of the cellulose ester is preferably 50,000 to 300,000, particularly 60,000 to 200,000 as the number average molecular weight because the mechanical strength of the resulting film can be increased.
 脂環式構造含有ポリマーとは、繰り返し単位中に、脂環式構造を有するポリマーであり、脂環式構造は主鎖、側鎖のいずれにあってもよい。脂環式構造としては、シクロアルカン構造、シクロアルケン構造などが挙げられるが、熱安定性に優れることからシクロアルカン構造が好ましい。 The alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit, and the alicyclic structure may be in either the main chain or the side chain. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, but a cycloalkane structure is preferable because of excellent thermal stability.
 脂環式構造含有ポリマーは、ノルボルネン環構造を有するモノマー、モノ環状オレフィン、環状共役ジエン、ビニル芳香族化合物及びビニル脂環式炭化水素化合物等を含むモノマーを、メタセシス開環重合や付加重合などの公知の重合方法で重合し、必要に応じて炭素-炭素不飽和結合を水素添加することにより得ることができる。 The alicyclic structure-containing polymer is a monomer containing a norbornene ring structure, a monocyclic olefin, a cyclic conjugated diene, a vinyl aromatic compound, a vinyl alicyclic hydrocarbon compound, or the like, such as metathesis ring-opening polymerization or addition polymerization. It can be obtained by polymerizing by a known polymerization method and, if necessary, hydrogenating a carbon-carbon unsaturated bond.
 本発明に用いる脂環式構造含有ポリマーは、シクロヘキサン溶液(ポリマーが溶解しない場合はトルエン溶液)のゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレンまたはポリスチレン換算の重量平均分子量(Mw)が、25,000~50,000であることが好ましく、30,000~45,000であることがさらに好ましい。分子量分布(Mw/Mn)は、1.2~3.5であることが好ましく、さらに1.5~3.0であることが好ましい。また、ガラス転移温度(Tg)は、80~170℃であることが好ましい。脂環式構造含有ポリマーの特性を上記の範囲にすることで、良好な耐熱性と成形加工性とを得ることができる。 The alicyclic structure-containing polymer used in the present invention has a polyisoprene or polystyrene equivalent weight average molecular weight (Mw) of 25 measured by gel permeation chromatography of a cyclohexane solution (or a toluene solution when the polymer is not dissolved). 5,000 to 50,000, more preferably 30,000 to 45,000. The molecular weight distribution (Mw / Mn) is preferably 1.2 to 3.5, more preferably 1.5 to 3.0. The glass transition temperature (Tg) is preferably 80 to 170 ° C. By setting the characteristics of the alicyclic structure-containing polymer within the above range, good heat resistance and moldability can be obtained.
 ポリエステルは、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とすることが好ましい。 The polyester is not particularly limited, but it is preferable to use a dicarboxylic acid component and a diol component as main constituent components.
 主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。 The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
 これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸及び/または2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコール及び/または1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートまたはポリエチレン-2,6-ナフタレンジカルボキシレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。ポリエステルに対してポリエチレン-2,6-ナフタレンジカルボキシレートが70重量%以上含有していると、透明性、機械的強度、寸法安定性などに高度に優れたポリエステルフィルムが得られる。 Among the polyesters comprising these as main components, terephthalic acid and / or 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component and ethylene glycol as a diol component from the viewpoints of transparency, mechanical strength, dimensional stability, etc. And / or a polyester having 1,4-cyclohexanedimethanol as a main constituent is preferred. Among them, polyesters mainly composed of polyethylene terephthalate or polyethylene-2,6-naphthalenedicarboxylate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two of these polyesters. Polyesters containing a mixture of two or more species as main constituents are preferred. When polyethylene-2,6-naphthalenedicarboxylate is contained in an amount of 70% by weight or more based on the polyester, a polyester film having excellent transparency, mechanical strength, dimensional stability and the like can be obtained.
 本発明のポリエステルフィルムを構成するポリエステルは、本発明の効果を阻害しない範囲であれば、さらに他の共重合成分が共重合されていても良いし、他のポリエステルが混合されていても良い。これらの例としては、先に挙げたジカルボン酸成分やジオール成分、またはそれらから成るポリエステルを挙げることができる。 The polyester constituting the polyester film of the present invention may be copolymerized with other copolymer components or may be mixed with other polyesters as long as the effects of the present invention are not impaired. Examples of these include the dicarboxylic acid components and diol components mentioned above, or polyesters composed thereof.
 また、本発明のポリエステルフィルムの耐熱性を向上する目的では、ビスフェノール系化合物、ナフタレン環またはシクロヘキサン環を有する化合物を共重合することができる。これらの共重合割合としては、ポリエステルを構成する二官能性ジカルボン酸を基準として、1~20モル%が好ましい。
また、相溶性のあるポリマーを2種類以上ブレンドして、それらを、後で述べる溶融混錬を行っても良い。
For the purpose of improving the heat resistance of the polyester film of the present invention, a bisphenol compound, a compound having a naphthalene ring or a cyclohexane ring can be copolymerized. The copolymerization ratio of these is preferably 1 to 20 mol% based on the difunctional dicarboxylic acid constituting the polyester.
Also, two or more compatible polymers may be blended and subjected to melt kneading described later.
 以下、特に、セルロースエステルを例に詳細に説明するが、本発明はこれにより限定されるものではない。 Hereinafter, in particular, cellulose ester will be described in detail, but the present invention is not limited thereto.
 セルロースエステルを溶融流延法により製膜する場合、通常、セルロースセステルはその製造の過程でアルキルカルボン酸、硫酸等の酸がセルロースエステル中に残留しているため、高温条件となる溶融流延法で製膜すると着色や粘度低下を生ずるため、ヘイズ、透過率、リタデーション等の光学物性や機械特性が劣化するため、事前に酸を50ppm以下に除去することが望ましい。 When a cellulose ester is formed into a film by the melt casting method, usually, cellulose sester remains in the cellulose ester in the course of its production, so that an acid such as alkyl carboxylic acid and sulfuric acid remains in the cellulose ester. When the film is formed by the method, coloration and viscosity decrease occur, so that optical properties and mechanical properties such as haze, transmittance, and retardation are deteriorated. Therefore, it is desirable to remove the acid to 50 ppm or less in advance.
 本発明における溶融流延とは、溶媒を用いずセルロースエステルを流動性を示す温度まで加熱溶融し、その後、流動性のセルロースエステルを流延することを溶融流延として定義する。加熱溶融する成形法はさらに詳細には溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れる光学フィルムを得るためには、溶融押出し法が優れている。ここでフィルム構成材料が加熱されて、その流動性を発現させた後、流延ダイから回転駆動金属製エンドレスベルトまたは回転駆動金属製ドラム(金属支持体)上に流延し製膜することが、溶融流延製膜法として本発明のセルロースエステルフィルムの製造方法に含まれる。
(セルロースエステル)
 本発明において使用するセルロースエステルは、脂肪酸アシル基、置換もしくは無置換の芳香族アシル基の中から少なくともいずれかの構造を含む、セルロースの前記単独または混合酸エステルである。
The melt casting in the present invention is defined as melt casting in which a cellulose ester is heated and melted to a temperature exhibiting fluidity without using a solvent, and then the fluid cellulose ester is cast. The molding method for heating and melting can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these, in order to obtain an optical film excellent in mechanical strength and surface accuracy, the melt extrusion method is excellent. Here, after the film constituent material is heated to express its fluidity, it is cast from a casting die onto a rotationally driven metal endless belt or a rotationally driven metal drum (metal support) to form a film. It is included in the method for producing a cellulose ester film of the present invention as a melt casting film forming method.
(Cellulose ester)
The cellulose ester used in the present invention is the above-mentioned single or mixed acid ester of cellulose containing at least one structure among a fatty acyl group and a substituted or unsubstituted aromatic acyl group.
 芳香族アシル基において、芳香族環がベンゼン環であるとき、ベンゼン環の置換基の例としてハロゲン原子、シアノ、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基、ウレイド基、アラルキル基、ニトロ、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、カルバモイル基、スルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基及びアリールオキシスルホニル基、-S-R、-NH-CO-OR、-PH-R、-P(-R)、-PH-O-R、-P(-R)(-O-R)、-P(-O-R) 、-PH(=O)-R-P(=O)(-R) 、-PH(=O)-O-R、-P(=O)(-R)(-O-R)、-P(=O)(-O-R)、-O-PH(=O)-R、-O-P(=O)(-R) -O-PH(=O)-O-R、-O-P(=O)(-R)(-O-R)、-O-P(=O)(-O-R)、-NH-PH(=O)-R、-NH-P(=O)(-R)(-O-R)、-NH-P(=O)(-O-R) 、-SiH-R、-SiH(-R) 、-Si(-R) 、-O-SiH -R、-O-SiH(-R)、及び-O-Si(-R) が含まれる。上記Rは脂肪族基、芳香族基またはヘテロ環基である。置換基の数は、1個~五個であることが好ましく、1個~4個であることがより好ましく、1個~3個であることがさらに好ましく、1個または2個であることが最も好ましい。置換基としては、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基及びウレイド基が好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリールオキシ基、アシル基及びカルボンアミド基がより好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基及びアリールオキシ基がさらに好ましく、ハロゲン原子、アルキル基及びアルコキシ基が最も好ましい。 In the aromatic acyl group, when the aromatic ring is a benzene ring, examples of the substituent of the benzene ring include halogen atom, cyano, alkyl group, alkoxy group, aryl group, aryloxy group, acyl group, carbonamido group, sulfone. Amido group, ureido group, aralkyl group, nitro, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, carbamoyl group, sulfamoyl group, acyloxy group, alkenyl group, alkynyl group, alkylsulfonyl group, arylsulfonyl group, alkyloxy A sulfonyl group, an aryloxysulfonyl group, an alkylsulfonyloxy group and an aryloxysulfonyl group, —S—R, —NH—CO—OR, —PH—R, —P (—R) 2 , —PH—O—R, -P (-R) (-O-R), -P -O-R) 2, -PH ( = O) -R-P (= O) (- R) 2, -PH (= O) -O-R, -P (= O) (- R) (- O—R), —P (═O) (— O—R) 2 , —O—PH (═O) —R, —O—P (═O) (— R) 2 —O—PH (═O ) —O—R, —O—P (═O) (— R) (— O—R), —O—P (═O) (— O—R) 2 , —NH—PH (═O) — R, —NH—P (═O) (— R) (— O—R), —NH—P (═O) (— O—R) 2 , —SiH 2 —R, —SiH (—R) 2 , —Si (—R) 3 , —O—SiH 2 —R, —O—SiH (—R) 2 , and —O—Si (—R) 3 . R is an aliphatic group, an aromatic group or a heterocyclic group. The number of substituents is preferably 1 to 5, more preferably 1 to 4, further preferably 1 to 3, and preferably 1 or 2. Most preferred. As the substituent, a halogen atom, cyano, alkyl group, alkoxy group, aryl group, aryloxy group, acyl group, carbonamido group, sulfonamido group and ureido group are preferable, halogen atom, cyano, alkyl group, alkoxy group, An aryloxy group, an acyl group and a carbonamido group are more preferred, a halogen atom, cyano, an alkyl group, an alkoxy group and an aryloxy group are more preferred, and a halogen atom, an alkyl group and an alkoxy group are most preferred.
 上記ハロゲン原子には、フッ素原子、塩素原子、臭素原子及びヨウ素原子が含まれる。上記アルキル基は、環状構造あるいは分岐を有していてもよい。アルキル基の炭素原子数は、1~20であることが好ましく、1~12であることがより好ましく、1~6であることがさらに好ましく、1~4であることが最も好ましい。アルキル基の例には、メチル、エチル、プロピル、イソプロピル、ブチル、t-ブチル、ヘキシル、シクロヘキシル、オクチル及び2-エチルヘキシルが含まれる。上記アルコキシ基は、環状構造あるいは分岐を有していてもよい。アルコキシ基の炭素原子数は、1~20であることが好ましく、1~12であることがより好ましく、1~6であることがさらに好ましく、1~4であることが最も好ましい。アルコキシ基は、さらに別のアルコキシ基で置換されていてもよい。アルコキシ基の例には、メトキシ、エトキシ、2-メトキシエトキシ、2-メトキシ-2-エトキシエトキシ、ブチルオキシ、ヘキシルオキシ及びオクチルオキシが含まれる。 The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The alkyl group may have a cyclic structure or a branch. The alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and most preferably 1 to 4. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, hexyl, cyclohexyl, octyl and 2-ethylhexyl. The alkoxy group may have a cyclic structure or a branch. The number of carbon atoms of the alkoxy group is preferably 1-20, more preferably 1-12, still more preferably 1-6, and most preferably 1-4. The alkoxy group may be further substituted with another alkoxy group. Examples of the alkoxy group include methoxy, ethoxy, 2-methoxyethoxy, 2-methoxy-2-ethoxyethoxy, butyloxy, hexyloxy and octyloxy.
 上記アリール基の炭素原子数は、6~20であることが好ましく、6~12であることがさらに好ましい。アリール基の例には、フェニル及びナフチルが含まれる。上記アリールオキシ基の炭素原子数は、6~20であることが好ましく、6~12であることがさらに好ましい。アリールオキシ基の例には、フェノキシ及びナフトキシが含まれる。上記アシル基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。アシル基の例には、ホルミル、アセチル及びベンゾイルが含まれる。上記カルボンアミド基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。カルボンアミド基の例には、アセトアミド及びベンズアミドが含まれる。上記スルホンアミド基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。スルホンアミド基の例には、メタンスルホンアミド、ベンゼンスルホンアミド及びp-トルエンスルホンアミドが含まれる。上記ウレイド基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。ウレイド基の例には、(無置換)ウレイドが含まれる。 The number of carbon atoms of the aryl group is preferably 6-20, and more preferably 6-12. Examples of the aryl group include phenyl and naphthyl. The number of carbon atoms in the aryloxy group is preferably 6-20, and more preferably 6-12. Examples of the aryloxy group include phenoxy and naphthoxy. The acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the acyl group include formyl, acetyl and benzoyl. The carbonamide group has preferably 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the carbonamido group include acetamide and benzamide. The number of carbon atoms of the sulfonamide group is preferably 1-20, and more preferably 1-12. Examples of the sulfonamide group include methanesulfonamide, benzenesulfonamide and p-toluenesulfonamide. The ureido group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of ureido groups include (unsubstituted) ureido.
 上記アラルキル基の炭素原子数は、7~20であることが好ましく、7~12であることがさらに好ましい。アラルキル基の例には、ベンジル、フェネチル及びナフチルメチルが含まれる。上記アルコキシカルボニル基の炭素原子数は、1~20であることが好ましく、2~12であることがさらに好ましい。アルコキシカルボニル基の例には、メトキシカルボニルが含まれる。上記アリールオキシカルボニル基の炭素原子数は、7~20であることが好ましく、7~12であることがさらに好ましい。アリールオキシカルボニル基の例には、フェノキシカルボニルが含まれる。上記アラルキルオキシカルボニル基の炭素原子数は、8~20であることが好ましく、8~12であることがさらに好ましい。アラルキルオキシカルボニル基の例には、ベンジルオキシカルボニルが含まれる。上記カルバモイル基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。カルバモイル基の例には、(無置換)カルバモイル及びN-メチルカルバモイルが含まれる。上記スルファモイル基の炭素原子数は、20以下であることが好ましく、12以下であることがさらに好ましい。スルファモイル基の例には、(無置換)スルファモイル及びN-メチルスルファモイルが含まれる。上記アシルオキシ基の炭素原子数は、1~20であることが好ましく、2~12であることがさらに好ましい。アシルオキシ基の例には、アセトキシ及びベンゾイルオキシが含まれる。 The number of carbon atoms in the aralkyl group is preferably 7-20, and more preferably 7-12. Examples of the aralkyl group include benzyl, phenethyl and naphthylmethyl. The number of carbon atoms in the alkoxycarbonyl group is preferably 1-20, and more preferably 2-12. Examples of the alkoxycarbonyl group include methoxycarbonyl. The aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aryloxycarbonyl group include phenoxycarbonyl. The number of carbon atoms of the aralkyloxycarbonyl group is preferably 8-20, and more preferably 8-12. Examples of the aralkyloxycarbonyl group include benzyloxycarbonyl. The carbamoyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the carbamoyl group include (unsubstituted) carbamoyl and N-methylcarbamoyl. The number of carbon atoms in the sulfamoyl group is preferably 20 or less, and more preferably 12 or less. Examples of the sulfamoyl group include (unsubstituted) sulfamoyl and N-methylsulfamoyl. The acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the acyloxy group include acetoxy and benzoyloxy.
 上記アルケニル基の炭素原子数は、2~20であることが好ましく、2~12であることがさらに好ましい。アルケニル基の例には、ビニル、アリル及びイソプロペニルが含まれる。上記アルキニル基の炭素原子数は、2~20であることが好ましく、2~12であることがさらに好ましい。アルキニル基の例には、チエニルが含まれる。上記アルキルスルホニル基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。上記アリールスルホニル基の炭素原子数は、6~20であることが好ましく、6~12であることがさらに好ましい。上記アルキルオキシスルホニル基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6~20であることが好ましく、6~12であることがさらに好ましい。上記アルキルスルホニルオキシ基の炭素原子数は、1~20であることが好ましく、1~12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6~20であることが好ましく、6~12であることがさらに好ましい。 The number of carbon atoms of the alkenyl group is preferably 2-20, and more preferably 2-12. Examples of alkenyl groups include vinyl, allyl and isopropenyl. The alkynyl group has preferably 2 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms. Examples of alkynyl groups include thienyl. The number of carbon atoms of the alkylsulfonyl group is preferably 1-20, and more preferably 1-12. The number of carbon atoms of the arylsulfonyl group is preferably 6-20, and more preferably 6-12. The alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. The number of carbon atoms in the aryloxysulfonyl group is preferably 6-20, and more preferably 6-12. The alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. The number of carbon atoms in the aryloxysulfonyl group is preferably 6-20, and more preferably 6-12.
 本発明に係るセルロースエステルにおいて、セルロースの水酸基部分の水素原子が脂肪族アシル基との脂肪酸エステルであるとき、脂肪族アシル基は炭素原子数が2~20で、具体的にはアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイル、ステアロイル等が挙げられる。 In the cellulose ester according to the present invention, when the hydrogen atom of the hydroxyl group of cellulose is a fatty acid ester with an aliphatic acyl group, the aliphatic acyl group has 2 to 20 carbon atoms, specifically acetyl, propionyl, Examples include butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, octanoyl, lauroyl, stearoyl and the like.
 本発明において前記脂肪族アシル基とは、さらに置換基を有するものも包含する意味であり、置換基としては上述の芳香族アシル基において、芳香族環がベンゼン環であるとき、ベンゼン環の置換基として例示したものが挙げられる。 In the present invention, the aliphatic acyl group is meant to include those having a substituent, and the substituent is a substitution of a benzene ring when the aromatic ring is a benzene ring in the above-mentioned aromatic acyl group. What was illustrated as a group is mentioned.
 また、上記セルロースエステルのエステル化された置換基が芳香環であるとき、芳香族環に置換する置換基Xの数は0または1~5個であり、好ましくは1~3個で、特に好ましいのは1または2個である。さらに芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えば、ナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。 Further, when the esterified substituent of the cellulose ester is an aromatic ring, the number of substituents X substituted on the aromatic ring is 0 or 1 to 5, preferably 1 to 3, particularly preferably. Is one or two. Further, when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
 上記セルロースエステルにおいて置換もしくは無置換の脂肪族アシル基、置換もしくは無置換の芳香族アシル基の少なくともいずれか1種選択された構造を有する構造を有することが本発明に係るセルロースエステルに用いる構造として用いられ、これらは、セルロースの単独または混合酸エステルでもよく、2種以上のセルロースエステルを混合して用いてもよい。 As the structure used in the cellulose ester according to the present invention, the cellulose ester has a structure having a structure selected from at least one of a substituted or unsubstituted aliphatic acyl group and a substituted or unsubstituted aromatic acyl group. These may be used alone or as a mixed acid ester of cellulose, or a mixture of two or more cellulose esters.
 本発明に係るセルロースエステルとしては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート及びセルロースフタレートから選ばれる少なくとも1種であることが好ましい。 The cellulose ester according to the present invention is preferably at least one selected from cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate and cellulose phthalate.
 混合脂肪酸エステルの置換度として、さらに好ましいセルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルは炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基またはブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロース樹脂である。尚、アセチル基の置換度と他のアシル基の置換度は、ASTM-D817-96により求めたものである。 As the substitution degree of the mixed fatty acid ester, more preferable cellulose acetate propionate and lower fatty acid ester of cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, and the substitution degree of the acetyl group is X, When the substitution degree of propionyl group or butyryl group is Y, it is a cellulose resin containing a cellulose ester that simultaneously satisfies the following formulas (I) and (II). The degree of substitution of the acetyl group and the degree of substitution of other acyl groups are determined by ASTM-D817-96.
 式(I)  2.5≦X+Y≦2.9
 式(II)  0.1≦X≦2.0
 この内特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.0≦X≦2.5であり、0.5≦Y≦2.5であることが好ましい。アシル基の置換度の異なるセルロ-スエステルをブレンドして、光学フィルム全体として上記範囲に入っていてもよい。上記アシル基で置換されていない部分は通常水酸基として存在しているのものである。これらは公知の方法で合成することができる。アセチル基の置換度の測定方法はASTM-D817-96に準じて測定することができる。
Formula (I) 2.5 ≦ X + Y ≦ 2.9
Formula (II) 0.1 ≦ X ≦ 2.0
Of these, cellulose acetate propionate is particularly preferably used. Among them, 1.0 ≦ X ≦ 2.5 and 0.5 ≦ Y ≦ 2.5 are preferable. Cellulose esters having different degrees of substitution of acyl groups may be blended so that the entire optical film falls within the above range. The portion not substituted with the acyl group is usually present as a hydroxyl group. These can be synthesized by known methods. The method for measuring the degree of substitution of the acetyl group can be measured according to ASTM-D817-96.
 本発明の光学フィルムに使用するセルロースエステルの数平均分子量は、60000~300000の範囲が、得られるフィルムの機械的強度が強く好ましい。さらに70000~200000が好ましい。 The number average molecular weight of the cellulose ester used in the optical film of the present invention is preferably in the range of 60,000 to 300,000, and the resulting film has high mechanical strength and is preferred. Furthermore, 70,000 to 200,000 are preferable.
 さらに、本発明で用いられるセルロースエステルは、重量平均分子量Mw/数平均分子量Mn比が1.5~5.5のものが好ましく用いられ、特に好ましくは2.0~5.0であり、さらに好ましくは2.5~5.0であり、さらに好ましくは3.0~5.0のセルロースエステルが好ましく用いられる。 Further, the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0, The cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
 重量平均分子量の測定方法は下記方法によることができる。
(分子量測定方法)
 分子量の測定は、高速液体クロマトグラフィー〔ゲル浸透クロマトグラフ(GPC)〕を用いて測定する。
The measuring method of a weight average molecular weight can be based on the following method.
(Molecular weight measurement method)
The molecular weight is measured using high performance liquid chromatography [gel permeation chromatograph (GPC)].
 測定条件は以下の通りである。 The measurement conditions are as follows.
 装 置:HLC-8220 GPC(東ソー製)
 カラム:TSK-SUPER HM-M(φ6.0mm×150mm)
     TSK-GuardcolumnH-H(φ4.6mm×35mm)
 溶 媒:テトラヒドロフラン
 流 速:0.6ml/min
 温 度:40℃
 試料濃度:0.1質量%
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー株式会社製)Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Equipment: HLC-8220 GPC (Tosoh)
Column: TSK-SUPER HM-M (φ6.0mm × 150mm)
TSK-GuardcolumnH-H (φ4.6mm × 35mm)
Solvent: Tetrahydrofuran Flow rate: 0.6 ml / min
Temperature: 40 ° C
Sample concentration: 0.1% by mass
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 1000000 to 500 was used. Thirteen samples are used at approximately equal intervals.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、あるいは単独で使用することができる。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 また、セルロース樹脂の極限粘度は、1.5~1.75g/cmが好ましく、さらに1.53~1.63の範囲が好ましい。 The intrinsic viscosity of the cellulose resin is preferably 1.5 to 1.75 g / cm 3 , and more preferably 1.53 to 1.63.
 また、本発明で用いられるセルロースエステルはフィルムにした時の輝点異物が少ないものであることが好ましい。輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光が漏れて見える点のことである。このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物はセルロースエステルに含まれる未酢化若しくは低酢化度のセルロースがその原因の1つと考えられ、輝点異物の少ないセルロースエステルを用いる(置換度の分散の小さいセルロースエステルを用いる)ことと、溶融したセルロースエステルを濾過すること、あるいはセルロースエステルの合成後期の過程や沈殿物を得る過程の少なくともいずれかにおいて、一度溶液状態として同様に濾過工程を経由して輝点異物を除去することもできる。溶融樹脂は粘度が高いため、後者の方法のほうが効率がよい。 In addition, the cellulose ester used in the present invention preferably has few bright spot foreign matters when formed into a film. A bright spot foreign material is an arrangement in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, light from the light source is applied from one side, and the cellulose ester film is applied from the other side. This is the point where the light from the light source appears to leak when observed. At this time, the polarizing plate used for the evaluation is desirably composed of a protective film having no bright spot foreign matter, and a polarizing plate using a glass plate for protecting the polarizer is preferably used. The bright spot foreign matter is considered to be one of the causes due to the unacetylated or low acetylated cellulose contained in the cellulose ester, and use a cellulose ester with a little bright spot foreign matter (use a cellulose ester with a small dispersion of substitution degree). And filtering the melted cellulose ester, or removing the bright spot foreign matters through the filtration process in the same way once in the solution state in at least one of the process of synthesizing the cellulose ester and the process of obtaining the precipitate You can also. Since the molten resin has a high viscosity, the latter method is more efficient.
 フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向があるが、輝点異物は、輝点の直径0.01mm以上が200個/cm以下であることが好ましく、さらに100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。また、0.005~0.01mm以下の輝点についても200個/cm以下であることが好ましく、さらに100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。 As the film thickness decreases, the number of bright spot foreign matter per unit area decreases, and as the cellulose ester content in the film decreases, the bright spot foreign matter tends to decrease. 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, more preferably 50 pieces / cm 2 or less, and 30 pieces / cm 2 or less. The number is preferably 10 pieces / cm 2 or less, but most preferably none. The number of bright spots of 0.005 to 0.01 mm or less is also preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, and 50 / cm 2 or less. The number is preferably 30 pieces / cm 2 or less, more preferably 10 pieces / cm 2 or less, and most preferably none.
 輝点異物を溶融濾過によって除去する場合、セルロースエステルを単独で溶融させたものを濾過するよりも可塑剤、劣化防止剤、酸化防止剤等を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。もちろん、セルロースエステルの合成の際に溶媒に溶解させて濾過により低減させてもよい。紫外線吸収剤、その他の添加物も適宜混合したものを濾過することができる。濾過はセルロースエステルを含む溶融物の粘度が10000P以下で濾過されるこが好ましく、さらに好ましくは5000P以下が好ましく、1000P以下であることがさらに好ましく、500P以下であることがさらに好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などの弗素樹脂等の従来公知のものが好ましく用いられるが、特にセラミックス、金属等が好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく用いられ、30μm以下のものがさらに好ましく、10μm以下のものがさらに好ましく、5μm以下のものがさらに好ましく用いられる。これらは適宜組み合わせて使用することもできる。濾材はサーフェースタイプでもデプスタイプでも用いることができるが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。
(添加剤)
 本発明の光学フィルムは、添加剤としては、有機酸と3価以上のアルコールが縮合した構造を有するエステル系可塑剤、多価アルコールと1価のカルボン酸からなるエステル系可塑剤、多価カルボン酸と1価のアルコールからなるエステル系可塑剤の少なくとも1種の可塑剤、フェノール系酸化防止剤、ヒンダードアミン光安定剤、リン系安定剤、イオウ系安定剤から選択される少なくとも1種の安定剤を含んでいることが好ましく、さらにこの他に過酸化物分解剤、ラジカル捕捉剤、金属不活性化剤、紫外線吸収剤、マット剤、染料、顔料、さらには前記以外の可塑剤、ヒンダードフェノール酸化防止剤以外の酸化防止剤などを含んでも構わない。
When removing bright spot foreign matter by melt filtration, it is more effective to filter the composition mixed with a plasticizer, deterioration inhibitor, antioxidant, etc. than to filter the melted cellulose ester alone. This is preferable because of its high removal efficiency. Of course, the cellulose ester may be dissolved in a solvent during the synthesis and reduced by filtration. What mixed the ultraviolet absorber and other additives suitably can be filtered. Filtration is preferably performed with a melt containing cellulose ester having a viscosity of 10,000 P or less, more preferably 5000 P or less, even more preferably 1000 P or less, and even more preferably 500 P or less. As the filter medium, conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluorine resins such as tetrafluoroethylene resin are preferably used, and ceramics and metals are particularly preferably used. The absolute filtration accuracy is preferably 50 μm or less, more preferably 30 μm or less, still more preferably 10 μm or less, and even more preferably 5 μm or less. These can be used in combination as appropriate. The filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.
(Additive)
The optical film of the present invention includes, as additives, an ester plasticizer having a structure in which an organic acid and a trihydric or higher alcohol are condensed, an ester plasticizer comprising a polyhydric alcohol and a monovalent carboxylic acid, and a polycarboxylic acid. At least one stabilizer selected from at least one plasticizer of an ester plasticizer comprising an acid and a monohydric alcohol, a phenolic antioxidant, a hindered amine light stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. In addition to these, a peroxide decomposing agent, a radical scavenger, a metal deactivator, an ultraviolet absorber, a matting agent, a dye, a pigment, a plasticizer other than the above, and a hindered phenol An antioxidant other than the antioxidant may be included.
 フィルム組成物の酸化防止、分解して発生した酸の捕捉、光または熱によるラジカル種起因の分解反応を抑制または禁止する等、解明できていない分解反応を含めて、着色や分子量低下に代表される変質や材料の分解による揮発成分の生成を抑制するために、また透湿性、易滑性といった機能を付与するために添加剤を用いる。 It is represented by coloring and molecular weight reduction, including decomposition reactions that have not been elucidated, such as preventing oxidation of film compositions, capturing acid generated by decomposition, and suppressing or prohibiting decomposition reactions caused by radical species due to light or heat. Additives are used in order to suppress the generation of volatile components due to deterioration or material decomposition, and to impart functions such as moisture permeability and slipperiness.
 一方、フィルム組成物を加熱溶融すると分解反応が著しくなり、この分解反応によって着色や分子量低下に由来した該構成材料の強度劣化を伴うことがある。またフィルム組成物の分解反応によって、好ましくない揮発成分の発生も併発することもある。 On the other hand, when the film composition is heated and melted, the decomposition reaction becomes remarkable, and this decomposition reaction may be accompanied by strength deterioration of the constituent material derived from coloring or molecular weight reduction. Moreover, generation | occurrence | production of an unfavorable volatile component may be accompanied by the decomposition reaction of a film composition.
 フィルム組成物を加熱溶融するとき、上述の添加剤が存在することは、材料の劣化や分解に基づく強度の劣化を抑制すること、または材料固有の強度を維持できる観点で優れており、本発明の光学フィルムを製造できる観点から上述の添加剤が存在することが必要である。 When the film composition is heated and melted, the presence of the above-mentioned additives is excellent in terms of suppressing the deterioration of the strength based on the deterioration and decomposition of the material, or maintaining the inherent strength of the material. It is necessary that the above-mentioned additives are present from the viewpoint of producing the optical film.
 また、上述の添加剤の存在は加熱溶融時において可視光領域の着色物の生成を抑制すること、または揮発成分がフィルム中に混入することによって生じる透過率やヘイズ値といった光学フィルムとして好ましくない性能を抑制または消滅できる点で優れている。 In addition, the presence of the above-described additives suppresses the formation of colored substances in the visible light region at the time of heating and melting, or unfavorable performance as an optical film such as transmittance and haze value generated by mixing volatile components in the film. It is excellent in that it can suppress or eliminate.
 本発明において液晶表示画像の表示画像は、本発明の構成で光学フィルムを用いるとき1%を超えると影響を与えるため、好ましくはヘイズ値は1%未満、より好ましくは0.5%未満である。 In the present invention, the display image of the liquid crystal display image is affected when the optical film is used in the configuration of the present invention exceeding 1%, and therefore the haze value is preferably less than 1%, more preferably less than 0.5%. .
 フィルム製造時、リタデーションを付与する工程において、該フィルム組成物の強度の劣化を抑制すること、または材料固有の強度を維持できることにある。フィルム組成物が著しい劣化によって脆くなると、該延伸工程において破断が生じやすくなり、リタデーション値の制御ができなくなることがあるためである。 In the process of imparting retardation during film production, it is possible to suppress deterioration of the strength of the film composition or to maintain the strength inherent to the material. This is because if the film composition becomes brittle due to remarkable deterioration, breakage tends to occur in the stretching step, and the retardation value may not be controlled.
 上述のフィルム組成物の保存あるいは製膜工程において、空気中の酸素による劣化反応が併発することがある。この場合、上記添加剤の安定化作用とともに、空気中の酸素濃度を低減させる効果を用いることも本発明を具現化する上で好ましい。これは、公知の技術として不活性ガスとして窒素やアルゴンの使用、減圧~真空による脱気操作、及び密閉環境下による操作が挙げられ、これら3者の内少なくとも1つの方法を上記添加剤と併用することが好ましい。フィルム組成物が空気中の酸素と接触する確率を低減することにより、該材料の劣化が抑制でき、本発明の目的のためには好ましい。 In the storage or film forming process of the above film composition, deterioration reactions due to oxygen in the air may occur at the same time. In this case, it is also preferable to embody the present invention to use the effect of reducing the oxygen concentration in the air together with the stabilizing action of the additive. This includes the use of nitrogen or argon as an inert gas as a known technique, a degassing operation under reduced pressure to vacuum, and an operation under a sealed environment, and at least one of these three methods is used in combination with the above additives. It is preferable to do. By reducing the probability that the film composition comes into contact with oxygen in the air, deterioration of the material can be suppressed, which is preferable for the purpose of the present invention.
 本発明の光学フィルムは偏光板保護フィルムとして活用するため、本発明の偏光板及び偏光板を構成する偏光子に対して経時保存性を向上させる観点から、フィルム組成物中に上述の添加剤が存在することが好ましい。 Since the optical film of the present invention is used as a polarizing plate protective film, the above-mentioned additives are contained in the film composition from the viewpoint of improving the storage stability with time for the polarizing plate of the present invention and the polarizer constituting the polarizing plate. Preferably it is present.
 本発明の偏光板を用いた液晶表示装置は、本発明の光学フィルムに上述の添加剤が存在することにより、上記変質や劣化が抑制されて光学フィルムの経時保存性が向上できるとともに、光学フィルムに付与された光学的な補償設計が長期に亘って安定化し液晶表示装置の表示品質が向上する。
(酸化防止剤)
 本発明において、酸化防止剤は、樹脂に発生したラジカルを不活性化する、あるいは樹脂に発生したラジカルに酸素が付加したことが起因の樹脂の劣化を抑制する化合物であれば制限なく用いることができるが、中でも有用な酸化防止剤としては、フェノール系化合物、ヒンダードアミン系化合物、リン系化合物、イオウ系化合物、耐熱加工安定剤、酸素スカベンジャー等が挙げられ、これらの中でも、特にフェノール系化合物、ヒンダードアミン系化合物、リン系化合物が好ましい。これらの化合物を配合することにより、透明性、耐熱性等を低下させることなく、溶融成型時の熱や熱酸化劣化等による成形体の着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
In the liquid crystal display device using the polarizing plate of the present invention, the above-mentioned additives are present in the optical film of the present invention, so that the above-mentioned alteration and deterioration can be suppressed and the aging storage property of the optical film can be improved. The optical compensation design given to the lens is stabilized over a long period of time, and the display quality of the liquid crystal display device is improved.
(Antioxidant)
In the present invention, the antioxidant can be used without limitation as long as it is a compound that inactivates radicals generated in the resin or suppresses deterioration of the resin due to addition of oxygen to the radical generated in the resin. Among them, useful antioxidants include phenolic compounds, hindered amine compounds, phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc. Among them, particularly phenolic compounds, hindered amines. Of these, phosphorus compounds and phosphorus compounds are preferred. By blending these compounds, it is possible to prevent coloring and strength reduction of the molded product due to heat during heat molding or thermal oxidative degradation without lowering transparency and heat resistance. These antioxidants can be used alone or in combination of two or more.
 フェノール系化合物は既知の化合物であり、例えば、米国特許第4,839,405号明細書の第12~14欄に記載されており、2,6-ジアルキルフェノール誘導体化合物が含まれる。 Phenolic compounds are known compounds and are described, for example, in columns 12 to 14 of US Pat. No. 4,839,405, and include 2,6-dialkylphenol derivative compounds.
 フェノール系化合物の具体例としては、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-アセテート、n-オクタデシル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、n-ヘキシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、n-ドデシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、ネオ-ドデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ドデシルβ(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、エチルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-(n-オクチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(n-オクチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-フェニルアセテート、2-(n-オクタデシルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート、2-(n-オクタデシルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(2-ヒドロキシエチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ジエチルグリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-フェニル)プロピオネート、2-(n-オクタデシルチオ)エチル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ステアルアミドN,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-ブチルイミノN,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-(2-ステアロイルオキシエチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2-ステアロイルオキシエチルチオ)エチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,2-プロピレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、グリセリン-l-n-オクタデカノエート-2,3-ビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、ペンタエリトリトール-テトラキス-[3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]、1,1,1-トリメチロールエタン-トリス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-ヒドロキシエチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-ステアロイルオキシエチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,6-n-ヘキサンジオール-ビス[(3′,5′-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリトリトール-テトラキス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)が含まれる。上記タイプのフェノール化合物は、例えば、Ciba Specialty Chemicalsから、“Irganox1076”及び“Irganox1010”という商品名で市販されている。 Specific examples of phenolic compounds include n-octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl 3- (3,5-di-t-butyl-4 -Hydroxyphenyl) -acetate, n-octadecyl 3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl 3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl 3,5 -Di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, dodecyl β (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate, ethyl α- (4-hydroxy-3,5-di-t-butylphenyl) isobutyrate, octadecyl Α- (4-hydroxy-3,5-di-t-butylphenyl) isobutyrate, octadecyl α- (4-hydroxy-3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2- (n -Octylthio) ethyl 3,5-di-t-butyl-4-hydroxy-benzoate, 2- (n-octylthio) ethyl 3,5-di-t-butyl-4-hydroxy-phenylacetate, 2- (n- Octadecylthio) ethyl 3,5-di-t-butyl-4-hydroxyphenyl acetate, 2- (n-octadecylthio) ethyl 3,5-di-t-butyl-4-hydroxy-benzoate, 2- (2- Hydroxyethylthio) ethyl 3,5-di-t-butyl-4-hydroxybenzoate, diethyl glycol bis- (3,5-di-t-butyl-4- Hydroxy-phenyl) propionate, 2- (n-octadecylthio) ethyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, stearamide N, N-bis- [ethylene 3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], n-butylimino N, N-bis- [ethylene 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2- ( 2-stearoyloxyethylthio) ethyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2- (2-stearoyloxyethylthio) ethyl 7- (3-methyl-5-tert-butyl-4-hydroxy Phenyl) heptanoate, 1,2-propylene glycol bis- [3- (3,5-di-t-butyl-4-hydroxyphene) ) Propionate], ethylene glycol bis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], neopentyl glycol bis- [3- (3,5-di-t-butyl-) 4-hydroxyphenyl) propionate], ethylene glycol bis- (3,5-di-t-butyl-4-hydroxyphenyl acetate), glycerin-ln-octadecanoate-2,3-bis- (3 5-di-t-butyl-4-hydroxyphenyl acetate), pentaerythritol-tetrakis- [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate], 1,1,1 -Trimethylolethane-tris- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], sorbito Hexa- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2-hydroxyethyl 7- (3-methyl-5-tert-butyl-4-hydroxyphenyl) propionate, 2- Stearoyloxyethyl 7- (3-methyl-5-t-butyl-4-hydroxyphenyl) heptanoate, 1,6-n-hexanediol-bis [(3 ', 5'-di-t-butyl-4-hydroxy Phenyl) propionate], pentaerythritol-tetrakis (3,5-di-t-butyl-4-hydroxyhydrocinnamate). Phenol compounds of the above type are commercially available from Ciba Specialty Chemicals under the trade names “Irganox 1076” and “Irganox 1010”, for example.
 本発明において、ヒンダードアミン系化合物の具体例としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。また、高分子タイプの化合物でも良く、具体例としては、N,N',N'',N'''-テトラキス-[4,6-ビス-〔ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ〕-トリアジン-2-イル]-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミンと1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ジブチルアミンと1,3,5-トリアジンとN,N'-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、1,6-ヘキサンジアミン-N,N'-ビス(2,2,6,6-テトラメチル-4-ピペリジル)とモルフォリン-2,4,6-トリクロロ-1,3,5-トリアジンとの重縮合物、ポリ[(6-モルフォリノ-s-トリアジン-2,4-ジイル)〔(2,2,6,6,-テトラメチル-4-ピペリジル)イミノ〕-ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕]などの、ピペリジン環がトリアジン骨格を介して複数結合した高分子量HALS;コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールと3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンとの混合エステル化物などの、ピペリジン環がエステル結合を介して結合した化合物などが挙げられるが、これらに限定されるものではない。これらの中でも、ジブチルアミンと1,3,5-トリアジンとN,N'-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物などで、数平均分子量(Mn)が2,000~5,000のものが好ましい。 In the present invention, specific examples of hindered amine compounds include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and bis (2,2,6,6-tetramethyl-4-piperidyl) succinate. Bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy) -2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2, 6,6-pentamethyl-4-piperidyl) 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acroyl) 2,2,6,6-tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1,2,2 , 6,6-pentamethyl-4-piperidyl) decanedioate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4- [3- (3,5-di-tert-butyl-4-hydroxy Phenyl) propionyloxy] -1- [2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2,2,6,6-tetramethylpiperidine, 2- Methyl-2- (2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6 , 6-Tetramethi -4-piperidyl) 1,2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate Can be mentioned. Further, it may be a polymer type compound. Specific examples include N, N ′, N ″, N ′ ″-tetrakis- [4,6-bis- [butyl- (N-methyl-2,2, 6,6-tetramethylpiperidin-4-yl) amino] -triazin-2-yl] -4,7-diazadecane-1,10-diamine, dibutylamine and 1,3,5-triazine N, N'- Polycondensate of bis (2,2,6,6-tetramethyl-4-piperidyl) -1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine , Polycondensates of dibutylamine, 1,3,5-triazine and N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [{(1,1,3 , 3-Tetramethylbutyl) amino-1,3,5-triazine -2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], 1 , 6-hexanediamine-N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl) and morpholine-2,4,6-trichloro-1,3,5-triazine Condensate, poly [(6-morpholino-s-triazine-2,4-diyl) [(2,2,6,6, -tetramethyl-4-piperidyl) imino] -hexamethylene [(2,2,6 , 6-tetramethyl-4-piperidyl) imino]], etc., high molecular weight HALS in which a plurality of piperidine rings are bonded via a triazine skeleton; dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl- 1-piperidine etano 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1- (Dimethylethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane and the like, and the like include compounds in which piperidine rings are bonded via an ester bond. It is not something. Among these, polycondensates of dibutylamine, 1,3,5-triazine and N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [{(1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2 , 2,6,6-tetramethyl-4-piperidyl) imino}], a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, etc. A molecular weight (Mn) of 2,000 to 5,000 is preferred.
 上記タイプのヒンダードフェノール化合物は、例えば、Ciba Specialty Chemicalsから、“Tinuvin144”及び“Tinuvin770”、旭電化工業株式会社から“ADK STAB LA-52”という商品名で市販されている。 Hindered phenol compounds of the above type are commercially available, for example, from Ciba Specialty Chemicals under the trade names “Tinuvin 144” and “Tinvin 770” and from Asahi Denka Kogyo Co., Ltd. under the name “ADK STAB LA-52”.
 本発明において、リン系化合物の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピンなどのモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′-イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。上記タイプのリン系化合物は、例えば、住友化学工業株式会社から、“SumilizerGP”、旭電化工業株式会社から、“ADK STAB PEP-24G”及び“ADK STAB PEP-36”という商品名で市販されている。 In the present invention, specific examples of the phosphorus compound include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2, 4-Di-tert-butylphenyl) phosphite, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide , 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenz [d, f] [1.3.2] Monophosphite compounds such as dioxaphosphepine; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenol) Sulfonyl - di - tridecyl phosphite), 4,4'-isopropylidene - bis (phenyl - di - alkyl (C12 ~ C15) phosphite), and the like diphosphite compounds such as. Phosphorus compounds of the above type are commercially available, for example, from Sumitomo Chemical Co., Ltd. under the trade names “Sumizer GP”, from Asahi Denka Kogyo Co., Ltd. under the trade names “ADK STAB PEP-24G” and “ADK STAB PEP-36”. Yes.
 本発明において、イオウ系化合物の具体例としては、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3′-チオジプロピピオネート、ジステアリル3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス(β-ラウリル-チオ-プロピオネート)、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。上記タイプのイオウ系化合物は、例えば、住友化学工業株式会社から、“Sumilezer TPL-R”、及び“Sumilezer TP-D”という商品名で市販されている。 In the present invention, specific examples of the sulfur compound include dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3. -Thiodipropionate, pentaerythritol-tetrakis (β-lauryl-thio-propionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc. The above-mentioned types of sulfur compounds are commercially available, for example, from Sumitomo Chemical Co., Ltd. under the trade names “Sumilezer®TPL-R” and “Sumilezer®TP-D”.
 酸化防止剤の添加量は、セルロースエステル100質量部に対して、通常0.01~25質量部、好ましくは0.05~10質量部、さらに好ましくは0.1~3質量部である。 The addition amount of the antioxidant is usually 0.01 to 25 parts by mass, preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cellulose ester.
 酸化防止剤は、前述のセルロース樹脂同様に、製造時から持ち越される、あるいは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去する事が好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01~100ppmであることが好ましく、樹脂を溶融流延製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。
(可塑剤)
 本発明においては、可塑剤として、有機酸と3価以上のアルコールが縮合した構造を有するエステル化合物を、可塑剤として1~25質量%含有することが好ましい。1質量%よりも少ないと可塑剤を添加する効果が認められず、25質量%よりも多いとブリードアウトが発生しやすくなり、フィルムの経時安定性が低下するために好ましくない。より好ましくは上記可塑剤を3~20質量%含有する光学フィルムであり、さらに好ましくは5~15質量%含有する光学フィルムである。
The antioxidant is preferably removed from impurities such as residual acids, inorganic salts, organic low molecules, etc. that are carried over from production or generated during storage, and more preferably has a purity of 99% or more. It is. Residual acid and water are preferably from 0.01 to 100 ppm, and heat degradation can be suppressed when the resin is melt cast, improving film formation stability, optical properties of the film, and mechanical properties. To do.
(Plasticizer)
In the present invention, the plasticizer preferably contains 1 to 25% by mass of an ester compound having a structure in which an organic acid and a trivalent or higher alcohol are condensed. If the amount is less than 1% by mass, the effect of adding a plasticizer is not recognized. If the amount is more than 25% by mass, bleeding out is likely to occur, and the aging stability of the film is lowered. An optical film containing 3 to 20% by mass of the plasticizer is more preferred, and an optical film containing 5 to 15% by mass is more preferred.
 可塑剤とは、一般的には高分子中に添加することによって脆弱性を改良したり、柔軟性を付与したりする効果のある添加剤であるが、本発明においては、セルロースエステル単独での溶融温度よりも溶融温度を低下させるため、また同じ加熱温度においてセルロース樹脂単独よりも可塑剤を含むフィルム組成物の溶融粘度を低下させるために、可塑剤を添加する。また、セルロースエステルの親水性を改善し、光学フィルムの透湿度改善するためにも添加されるため透湿防止剤としての機能を有する。 Generally, a plasticizer is an additive having an effect of improving brittleness or imparting flexibility by being added to a polymer, but in the present invention, a cellulose ester alone is used. A plasticizer is added to lower the melt temperature than the melt temperature, and to lower the melt viscosity of the film composition containing the plasticizer than the cellulose resin alone at the same heating temperature. Moreover, since it adds also in order to improve the hydrophilic property of a cellulose ester and to improve the water vapor transmission rate of an optical film, it has a function as a moisture permeation preventive agent.
 ここで、フィルム組成物の溶融温度とは、該材料が加熱され流動性が発現された状態の温度を意味する。セルロースエステルを溶融流動させるためには、少なくともガラス転移温度よりも高い温度に加熱する必要がある。ガラス転移温度以上においては、熱量の吸収により弾性率あるいは粘度が低下し、流動性が発現される。しかしセルロースエステルでは高温下では溶融と同時に熱分解によってセルロースエステルの分子量の低下が発生し、得られるフィルムの力学特性等に悪影響を及ぼすことがあるため、なるべく低い温度でセルロースエステルを溶融させる必要がある。フィルム組成物の溶融温度を低下させるためには、セルロースエステルのガラス転移温度よりも低い融点またはガラス転移温度をもつ可塑剤を添加することで達成することができる。特に、有機酸と多価アルコールが縮合した構造を有する多価アルコールエステル系可塑剤は、セルロースエステルの溶融温度を低下させ、溶融製膜プロセスや製造後にも揮発性が小さく、工程適性が良好であり、かつ得られる光学フィルムの光学特性・寸法安定性・平面性が良好となる点で優れている。 Here, the melting temperature of the film composition means a temperature at which the material is heated and fluidity is developed. In order to melt and flow the cellulose ester, it is necessary to heat at least a temperature higher than the glass transition temperature. Above the glass transition temperature, the elastic modulus or viscosity decreases due to heat absorption, and fluidity is exhibited. However, in cellulose esters, the molecular weight of the cellulose ester may decrease due to thermal decomposition at the same time as melting at high temperatures, which may adversely affect the mechanical properties of the resulting film. Therefore, it is necessary to melt the cellulose ester at the lowest possible temperature. is there. In order to lower the melting temperature of the film composition, it can be achieved by adding a plasticizer having a melting point or glass transition temperature lower than the glass transition temperature of the cellulose ester. In particular, a polyhydric alcohol ester plasticizer having a structure in which an organic acid and a polyhydric alcohol are condensed lowers the melting temperature of the cellulose ester, has low volatility after the melt film-forming process and after production, and has good process suitability. In addition, the obtained optical film is excellent in terms of optical properties, dimensional stability and flatness.
 なお、本発明においては3価以上のアルコールの水酸基を置換する有機酸は単一種であっても複数種であってもよい。 In the present invention, the organic acid for substituting the hydroxyl group of the trivalent or higher valent alcohol may be a single type or a plurality of types.
 本発明において、有機酸と反応して多価アルコールエステル化合物を形成する3価以上のアルコール化合物としては、好ましくは3~20価の脂肪族多価アルコールである。 In the present invention, the trihydric or higher alcohol compound that reacts with an organic acid to form a polyhydric alcohol ester compound is preferably a trihydric to polyhydric aliphatic polyhydric alcohol.
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
 アドニトール、アラビトール、1,2,4-ブタントリオール、1,2,3-ヘキサントリオール、1,2,6-ヘキサントリオール、グリセリン、ジグリセリン、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ガラクチトール、グルコース、セロビオース、イノシトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールが好ましい。 Adonitol, arabitol, 1,2,4-butanetriol, 1,2,3-hexanetriol, 1,2,6-hexanetriol, glycerin, diglycerin, erythritol, pentaerythritol, dipentaerythritol, tripentaerythritol, ga Examples include lactitol, glucose, cellobiose, inositol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, xylitol and the like. In particular, glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol are preferable.
 有機酸と3価以上の多価アルコールのエステルは、公知の方法により合成できる。有機酸と多価アルコールを、例えば、酸の存在下縮合させエステル化する方法、また、有機酸を予め酸クロライドあるいは酸無水物としておき、多価アルコールと反応させる方法、有機酸のフェニルエステルと多価アルコールを反応させる方法等があり、目的とするエステル化合物により、適宜、収率のよい方法を選択することが好ましい。 An ester of an organic acid and a trihydric or higher polyhydric alcohol can be synthesized by a known method. For example, a method of condensing an organic acid and a polyhydric alcohol in the presence of an acid to esterify, a method of previously reacting an organic acid with an acid chloride or acid anhydride and reacting with the polyhydric alcohol, a phenyl ester of an organic acid, and There are methods of reacting polyhydric alcohols, and it is preferable to select a method with good yield appropriately depending on the target ester compound.
 この様にして得られる多価アルコールエステルの分子量には特に制限はないが、300~1500であることが好ましく、400~1000であることがさらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。 The molecular weight of the polyhydric alcohol ester thus obtained is not particularly limited, but is preferably 300 to 1500, and more preferably 400 to 1000. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.
 本発明の光学フィルムは、他の可塑剤と併用してもよい。 The optical film of the present invention may be used in combination with other plasticizers.
 本発明に好ましい可塑剤である有機酸と3価以上の多価アルコールからなるエステル化合物は、セルロースエステルに対する相溶性が高く、高添加率で添加することができる特徴があるため、他の可塑剤や添加剤を併用してもブリードアウトを発生することがなく、必要に応じて他種の可塑剤や添加剤を容易に併用することができる。 An ester compound comprising an organic acid and a trihydric or higher polyhydric alcohol, which is a preferred plasticizer for the present invention, is highly compatible with cellulose esters and can be added at a high addition rate. Even if an additive is used in combination, bleed-out does not occur, and other types of plasticizers and additives can be easily used as needed.
 なお、他の可塑剤を併用する際には、有機酸と3価以上の多価アルコールからなるエステル化合物からなる可塑剤が、可塑剤全体の少なくとも50質量%以上含有されることが好ましい。より好ましくは70%以上、さらに好ましくは80%以上含有されることが好ましい。このような範囲で用いれば、他の可塑剤との併用によっても、溶融流延時のセルロールエステルフィルムの平面性を向上させることができるという、一定の効果を得ることができる。 When other plasticizers are used in combination, it is preferable that a plasticizer composed of an ester compound composed of an organic acid and a trihydric or higher polyhydric alcohol is contained at least 50% by mass or more of the entire plasticizer. More preferably 70% or more, still more preferably 80% or more. If it uses in such a range, even if it uses together with another plasticizer, the fixed effect that the planarity of the cellulose ester film at the time of melt casting can be improved can be acquired.
 好ましい他の可塑剤として下記の可塑剤が挙げられる。
(多価アルコールと1価のカルボン酸からなるエステル系可塑剤、多価カルボン酸と1価のアルコールからなるエステル系可塑剤)
 多価アルコールと1価のカルボン酸からなるエステル系可塑剤、多価カルボン酸と1価のアルコールからなるエステル系可塑剤はセルロースエステルと親和性が高く好ましい。
Preferred other plasticizers include the following plasticizers.
(Ester plasticizer consisting of polyhydric alcohol and monovalent carboxylic acid, ester plasticizer consisting of polyvalent carboxylic acid and monovalent alcohol)
An ester plasticizer comprising a polyhydric alcohol and a monovalent carboxylic acid, and an ester plasticizer comprising a polyvalent carboxylic acid and a monohydric alcohol are preferred because of their high affinity with the cellulose ester.
 多価アルコールエステル系の一つであるエチレングリコールエステル系の可塑剤:具体的には、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ4-メチルベンゾエート等のエチレングリコールアリールエステル系の可塑剤が挙げられる。これらアルキレート基、シクロアルキレート基、アリレート基は、同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキレート基、シクロアルキレート基、アリレート基のミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。さらにエチレングリコール部も置換されていてもよく、エチレングリコールエステルの部分構造が、ポリマーの一部、あるいは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 An ethylene glycol ester plasticizer that is one of polyhydric alcohol esters: specifically, ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate, ethylene glycol dicyclopropylcarboxylate And ethylene glycol cycloalkyl ester plasticizers such as ethylene glycol dicyclohexylcarboxylate, and ethylene glycol aryl ester plasticizers such as ethylene glycol dibenzoate and ethylene glycol di4-methylbenzoate. These alkylate groups, cycloalkylate groups, and arylate groups may be the same or different, and may be further substituted. Moreover, the mix of an alkylate group, a cycloalkylate group, and an arylate group may be sufficient, and these substituents may couple | bond together by the covalent bond. Further, the ethylene glycol part may be substituted, the ethylene glycol ester partial structure may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber, etc. It may be introduced into a part of the molecular structure of the additive.
 多価アルコールエステル系の一つであるグリセリンエステル系の可塑剤:具体的にはトリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、グリセリントリベンゾエート、グリセリン4-メチルベンゾエート等のグリセリンアリールエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート、等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル、ジグリセリンテトラベンゾエート、ジグリセリン3-メチルベンゾエート等のジグリセリンアリールエステル等が挙げられる。これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。さらにグリセリン、ジグリセリン部も置換されていてもよく、グリセリンエステル、ジグリセリンエステルの部分構造がポリマーの一部、あるいは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 Glycerin ester plasticizer that is one of polyhydric alcohol esters: Specifically, glycerol alkyl esters such as triacetin, tributyrin, glycerol diacetate caprylate, glycerol oleate propionate, glycerol tricyclopropylcarboxylate, glycerol Glycerol cycloalkyl esters such as tricyclohexylcarboxylate, glycerol aryl esters such as glycerol tribenzoate and glycerol 4-methylbenzoate, diglycerol tetraacetylate, diglycerol tetrapropionate, diglycerol acetate tricaprylate, diglycerol tetralaur Diglycerin alkyl ester such as rate, diglycerin tetracyclobutylcarboxylate, diglycerin tetracycle Diglycerol cycloalkyl esters such as pentyl carboxylate, diglycerin tetrabenzoate, diglycerin aryl ester such as diglycerin 3-methylbenzoate or the like. These alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Moreover, the mix of alkylate group, a cycloalkyl carboxylate group, and an arylate group may be sufficient, and these substituents may couple | bond together by the covalent bond. Furthermore, the glycerin and diglycerin part may be substituted, the partial structure of the glycerin ester and the diglycerin ester may be part of the polymer or regularly pendant, and the antioxidant, acid scavenger, You may introduce | transduce into a part of molecular structure of additives, such as a ultraviolet absorber.
 その他の多価アルコールエステル系の可塑剤としては、具体的には特開2003-12823号公報の段落番号[0030]~[0033]記載の多価アルコールエステル系可塑剤が挙げられる。 Specific examples of other polyhydric alcohol ester plasticizers include polyhydric alcohol ester plasticizers described in paragraph numbers [0030] to [0033] of JP-A-2003-12823.
 これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は、同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。さらに多価アルコール部も置換されていてもよく、多価アルコールの部分構造が、ポリマーの一部、あるいは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 These alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Moreover, the mix of alkylate group, a cycloalkyl carboxylate group, and an arylate group may be sufficient, and these substituents may couple | bond together by the covalent bond. Furthermore, the polyhydric alcohol part may be substituted, and the partial structure of the polyhydric alcohol may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber. May be introduced into a part of the molecular structure of the additive.
 上記多価アルコールと1価のカルボン酸からなるエステル系可塑剤の中では、アルキル多価アルコールアリールエステルが好ましく、具体的には上記のエチレングリコールジベンゾエート、グリセリントリベンゾエート、ジグリセリンテトラベンゾエート、特開2003-12823号公報の段落番号[0032]記載例示化合物16が挙げられる。 Among the ester plasticizers composed of the polyhydric alcohol and the monovalent carboxylic acid, alkyl polyhydric alcohol aryl esters are preferred. Specifically, the above-mentioned ethylene glycol dibenzoate, glycerin tribenzoate, diglycerin tetrabenzoate, Exemplified compound 16 described in paragraph No. [0032] of Kaikai 2003-12823 can be mentioned.
 多価カルボン酸エステル系の一つであるジカルボン酸エステル系の可塑剤:具体的には、ジドデシルマロネート(C1)、ジオクチルアジペート(C4)、ジブチルセバケート(C8)等のアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロペンチルサクシネート、ジシクロヘキシルアジーペート等のアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルサクシネート、ジ4-メチルフェニルグルタレート等のアルキルジカルボン酸アリールエステル系の可塑剤、ジヘキシル-1,4-シクロヘキサンジカルボキシレート、ジデシルビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等のシクロアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロヘキシル-1,2-シクロブタンジカルボキシレート、ジシクロプロピル-1,2-シクロヘキシルジカルボキシレート等のシクロアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニル-1,1-シクロプロピルジカルボキシレート、ジ2-ナフチル-1,4-シクロヘキサンジカルボキシレート等のシクロアルキルジカルボン酸アリールエステル系の可塑剤、ジエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート等のアリールジカルボン酸アルキルエステル系の可塑剤、ジシクロプロピルフタレート、ジシクロヘキシルフタレート等のアリールジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルフタレート、ジ4-メチルフェニルフタレート等のアリールジカルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基はさらに置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。さらにフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造が、ポリマーの一部、あるいは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 Dicarboxylic acid ester plasticizer that is one of polyvalent carboxylic acid esters: Specifically, alkyl dicarboxylic acid alkyl such as didodecyl malonate (C1), dioctyl adipate (C4), dibutyl sebacate (C8), etc. Ester plasticizers, alkyl dicarboxylic acid cycloalkyl ester plasticizers such as dicyclopentyl succinate and dicyclohexyl adipate, alkyl dicarboxylic acid aryl ester plasticizers such as diphenyl succinate and di4-methylphenyl glutarate, Cycloalkyl dicarboxylic acid alkyl ester plasticizers such as dihexyl-1,4-cyclohexanedicarboxylate and didecylbicyclo [2.2.1] heptane-2,3-dicarboxylate, dicyclohexyl-1,2-cyclobutane Zikal Cycloalkyldicarboxylic acid cycloalkyl ester plasticizers such as xylate, dicyclopropyl-1,2-cyclohexyldicarboxylate, diphenyl-1,1-cyclopropyldicarboxylate, di2-naphthyl-1,4-cyclohexane Cycloalkyl dicarboxylic acid aryl ester plasticizers such as dicarboxylate, aryl dicarboxylic acid alkyl ester plasticizers such as diethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate, dicyclopropyl phthalate , Aryl dicarboxylic acid cycloalkyl ester plasticizers such as dicyclohexyl phthalate, aryl dicarboxylic acid aryls such as diphenyl phthalate and di 4-methylphenyl phthalate Ester-based plasticizers. These alkoxy groups and cycloalkoxy groups may be the same or different, may be mono-substituted, and these substituents may be further substituted. The alkyl group and cycloalkyl group may be mixed, or these substituents may be bonded together by a covalent bond. Furthermore, the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used. In addition, the partial structure of phthalate ester may be part of the polymer or regularly pendant to the polymer, and may be part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. It may be introduced.
 その他の多価カルボン酸エステル系の可塑剤としては、具体的にはトリドデシルトリカルバレート、トリブチル-meso-ブタン-1,2,3,4-テトラカルボキシレート等のアルキル多価カルボン酸アルキルエステル系の可塑剤、トリシクロヘキシルトリカルバレート、トリシクロプロピル-2-ヒドロキシ-1,2,3-プロパントリカルボキシレート等のアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル2-ヒドロキシ-1,2,3-プロパントリカルボキシレート、テトラ3-メチルフェニルテトラヒドロフラン-2,3,4,5-テトラカルボキシレート等のアルキル多価カルボン酸アリールエステル系の可塑剤、テトラヘキシル-1,2,3,4-シクロブタンテトラカルボキシレート、テトラブチル-1,2,3,4-シクロペンタンテトラカルボキシレート等のシクロアルキル多価カルボン酸アルキルエステル系の可塑剤、テトラシクロプロピル-1,2,3,4-シクロブタンテトラカルボキシレート、トリシクロヘキシル-1,3,5-シクロヘキシルトリカルボキシレート等のシクロアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル-1,3,5-シクロヘキシルトリカルボキシレート、ヘキサ4-メチルフェニル-1,2,3,4,5,6-シクロヘキシルヘキサカルボキシレート等のシクロアルキル多価カルボン酸アリールエステル系の可塑剤、トリドデシルベンゼン-1,2,4-トリカルボキシレート、テトラオクチルベンゼン-1,2,4,5-テトラカルボキシレート等のアリール多価カルボン酸アルキルエステル系の可塑剤、トリシクロペンチルベンゼン-1,3,5-トリカルボキシレート、テトラシクロヘキシルベンゼン-1,2,3,5-テトラカルボキシレート等のアリール多価カルボン酸シクロアルキルエステル系の可塑剤トリフェニルベンゼン-1,3,5-テトラカルトキシレート、ヘキサ4-メチルフェニルベンゼン-1,2,3,4,5,6-ヘキサカルボキシレート等のアリール多価カルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また1置換でもよく、これらの置換基はさらに置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。さらにフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造がポリマーの一部、あるいは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 Other polycarboxylic acid ester plasticizers include alkyl polycarboxylic acid alkyl esters such as tridodecyl tricarbarate and tributyl-meso-butane-1,2,3,4-tetracarboxylate. Plasticizers, alkylpolycarboxylic acid cycloalkylester plasticizers such as tricyclohexyl tricarbarate, tricyclopropyl-2-hydroxy-1,2,3-propanetricarboxylate, triphenyl 2-hydroxy- Alkyl polyvalent carboxylic acid aryl ester plasticizers such as 1,2,3-propanetricarboxylate, tetra-3-methylphenyltetrahydrofuran-2,3,4,5-tetracarboxylate, tetrahexyl-1,2, 3,4-cyclobutanetetracarboxylate, tetra Cycloalkyl polycarboxylic acid alkyl ester plasticizers such as til-1,2,3,4-cyclopentanetetracarboxylate, tetracyclopropyl-1,2,3,4-cyclobutanetetracarboxylate, tricyclohexyl- Cycloalkyl polycarboxylic acid cycloalkyl ester plasticizers such as 1,3,5-cyclohexyl tricarboxylate, triphenyl-1,3,5-cyclohexyl tricarboxylate, hexa-4-methylphenyl-1,2, Cycloalkyl polycarboxylic acid aryl ester plasticizers such as 3,4,5,6-cyclohexylhexacarboxylate, tridodecylbenzene-1,2,4-tricarboxylate, tetraoctylbenzene-1,2,4 Aryl, such as 5-tetracarboxylate Carboxylic acid alkyl ester plasticizers, such as tricyclopentylbenzene-1,3,5-tricarboxylate, tetracyclohexylbenzene-1,2,3,5-tetracarboxylate, etc. Plasticizers such as triphenylbenzene-1,3,5-tetracartoxylate, hexa4-methylphenylbenzene-1,2,3,4,5,6-hexacarboxylate and the like of aryl polyvalent carboxylic acid aryl ester series A plasticizer is mentioned. These alkoxy groups and cycloalkoxy groups may be the same or different, and may be monosubstituted, and these substituents may be further substituted. The alkyl group and cycloalkyl group may be mixed, or these substituents may be bonded together by a covalent bond. Furthermore, the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used. In addition, the partial structure of phthalate ester may be part of the polymer or may be regularly pendant to the polymer, and introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
 上記多価カルボン酸と1価のアルコールからなるエステル系可塑剤の中では、ジアルキルカルボン酸アルキルエステルが好ましく、具体的には上記のジオクチルアジペート、トリデシルトリカルバレートが挙げられる。
(その他の可塑剤)
 本発明に用いられるその他の可塑剤としては、さらにリン酸エステル系可塑剤、ポリマー可塑剤等が挙げられる。
Among the ester plasticizers composed of the polyvalent carboxylic acid and the monohydric alcohol, dialkyl carboxylic acid alkyl esters are preferable, and specific examples include the dioctyl adipate and tridecyl tricarbalate.
(Other plasticizers)
Examples of other plasticizers used in the present invention further include phosphate ester plasticizers and polymer plasticizers.
 リン酸エステル系の可塑剤:具体的には、トリアセチルホスフェート、トリブチルホスフェート等のリン酸アルキルエステル、トリシクロベンチルホスフェート、シクロヘキシルホスフェート等のリン酸シクロアルキルエステル、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト-ビフェニルホスフェート等のリン酸アリールエステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同士が共有結合で結合していてもよい。 Phosphate ester plasticizers: specifically, phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate, phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and cyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate And phosphoric acid aryl esters such as cresylphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, trinaphthyl phosphate, trixylyl phosphate, tris ortho-biphenyl phosphate. These substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple | bond together by the covalent bond.
 またエチレンビス(ジメチルホスフェート)、ブチレンビス(ジエチルホスフェート)等のアルキレンビス(ジアルキルホスフェート)、エチレンビス(ジフェニルホスフェート)、プロピレンビス(ジナフチルホスフェート)等のアルキレンビス(ジアリールホスフェート)、フェニレンビス(ジブチルホスフェート)、ビフェニレンビス(ジオクチルホスフェート)等のアリーレンビス(ジアルキルホスフェート)、フェニレンビス(ジフェニルホスフェート)、ナフチレンビス(ジトルイルホスフェート)等のアリーレンビス(ジアリールホスフェート)等のリン酸エステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同士が共有結合で結合していてもよい。 Also, alkylene bis (dialkyl phosphate) such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaphthyl phosphate), phenylene bis (dibutyl phosphate) ), Arylene bis (dialkyl phosphate) such as biphenylene bis (dioctyl phosphate), phosphate esters such as arylene bis (diaryl phosphate) such as phenylene bis (diphenyl phosphate) and naphthylene bis (ditoluyl phosphate). These substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple | bond together by the covalent bond.
 さらにリン酸エステルの部分構造が、ポリマーの一部、あるいは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。上記化合物の中では、リン酸アリールエステル、アリーレンビス(ジアリールホスフェート)が好ましく、具体的にはトリフェニルホスフェート、フェニレンビス(ジフェニルホスフェート)が好ましい。 Furthermore, the phosphate ester partial structure may be part of the polymer, or may be regularly pendant, and may be introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. May be. Among the above-mentioned compounds, phosphoric acid aryl ester and arylene bis (diaryl phosphate) are preferable, and specifically, triphenyl phosphate and phenylene bis (diphenyl phosphate) are preferable.
 ポリマー可塑剤:具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エチル、ポリメタクリル酸メチル等のアクリル系ポリマー、ポリビニルイソブチルエーテル、ポリN-ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4-ヒドロキシスチレン等のスチレン系ポリマー、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。数平均分子量は1,000~500,000程度が好ましく、特に好ましくは、5000~200000である。1000以下では揮発性に問題が生じ、500000を超えると可塑化能力が低下し、セルロースエステルフィルムの機械的性質に悪影響を及ぼす。これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよい。 Polymer plasticizer: Specifically, aliphatic hydrocarbon polymer, alicyclic hydrocarbon polymer, acrylic polymer such as polyethyl acrylate and polymethyl methacrylate, polyvinyl isobutyl ether, poly N-vinyl pyrrolidone, etc. Examples include vinyl polymers, styrene polymers such as polystyrene and poly-4-hydroxystyrene, polybutylene succinates, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethers such as polyethylene oxide and polypropylene oxide, polyamides, polyurethanes, and polyureas. It is done. The number average molecular weight is preferably about 1,000 to 500,000, particularly preferably 5000 to 200,000. If it is 1000 or less, a problem arises in volatility, and if it exceeds 500000, the plasticizing ability is lowered, and the mechanical properties of the cellulose ester film are adversely affected. These polymer plasticizers may be a homopolymer composed of one type of repeating unit or a copolymer having a plurality of repeating structures. Two or more of the above polymers may be used in combination.
 なお本発明の光学フィルムは、着色すると光学用途として影響を与えるため、好ましくは黄色度(イエローインデックス、YI)が3.0以下、より好ましくは1.0以下である。黄色度はJIS-K7103に基づいて測定することができる。 In addition, since the optical film of the present invention has an influence as an optical application when colored, the yellowness (yellow index, YI) is preferably 3.0 or less, more preferably 1.0 or less. Yellowness can be measured based on JIS-K7103.
 可塑剤は、前述のセルロースエステル同様に、製造時から持ち越される、あるいは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去する事が好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01~100ppmであることが好ましく、セルロース樹脂を溶融製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。
(紫外線吸収剤)
 紫外線吸収剤としては、偏光子や表示装置の紫外線に対する劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、ベンゾフェノン系化合物や着色の少ないベンゾトリアゾール系化合物が好ましい。また、紫外線吸収剤の構造は、紫外線吸収能を有する部位が一分子中に複数存在している二量体、三量体、四量体等の多量体でも良く、特開平10-182621号公報、同8-337574号公報記載の紫外線吸収剤、特開平6-148430号公報記載の高分子紫外線吸収剤を用いてもよい。
It is preferable that the plasticizer removes impurities such as residual acids, inorganic salts, organic low molecules, etc. that are carried over from production or generated during storage, and more preferably has a purity of 99% or more, like the cellulose ester described above. is there. Residual acid and water are preferably 0.01 to 100 ppm, and when melt-forming cellulose resin, thermal deterioration can be suppressed, and film-forming stability, optical physical properties and mechanical properties of the film are improved. .
(UV absorber)
As an ultraviolet absorber, from the viewpoint of preventing deterioration of a polarizer or a display device with respect to ultraviolet rays, the ultraviolet absorber has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, absorption of visible light having a wavelength of 400 nm or more is absorbed. Less is preferred. Examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, etc., but benzophenone compounds and less colored benzotriazole compounds preferable. The structure of the ultraviolet absorber may be a multimer such as a dimer, trimer or tetramer in which a plurality of sites having an ultraviolet absorbing ability exist in one molecule, and JP-A-10-182621. In addition, an ultraviolet absorber described in JP-A-8-337574 and a polymer ultraviolet absorber described in JP-A-6-148430 may be used.
 有用なベンゾトリアゾール系紫外線吸収剤の具体例として、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。 Specific examples of useful benzotriazole ultraviolet absorbers include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) ) Benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis ( 4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2′-hydride) Xy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -6- (straight and side chain dodecyl) -4-methylphenol Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy Examples include, but are not limited to, a mixture of -5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate.
 また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)360(いずれもチバ-スペシャルティ-ケミカルズ社製)を用いることもできる。 Further, as a commercial product, TINUVIN 109, TINUVIN 171 and TINUVIN 360 (all manufactured by Ciba Specialty Chemicals) can be used.
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。 Specific examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
 本発明においては、紫外線吸収剤は0.1~20質量%添加することが好ましく、さらに0.5~10質量%添加することが好ましく、さらに1~5質量%添加することが好ましい。これらは2種以上を併用してもよい。 In the present invention, the ultraviolet absorber is preferably added in an amount of 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 5% by mass. Two or more of these may be used in combination.
 本発明の光学フィルムの製造方法においては、可塑剤または前記紫外線吸収剤の沸点温度が、300℃以下であることが好ましい。沸点温度が300℃以下であると、常圧プラズマ照射またはエキシマ紫外線照射を、金属支持体の略全幅にわたり施す時に、短時間で緻密な表面膜を形成させるための反応速度がえられるのに十分な濃度の蒸発ガス濃度が得られることで金属支持体の表面に表面処理膜をより安定して形成することができて好ましい。 In the method for producing an optical film of the present invention, it is preferable that the boiling point of the plasticizer or the ultraviolet absorber is 300 ° C. or lower. When the boiling point temperature is 300 ° C. or lower, it is sufficient to obtain a reaction rate for forming a dense surface film in a short time when atmospheric pressure plasma irradiation or excimer ultraviolet irradiation is performed over substantially the entire width of the metal support. It is preferable that an evaporating gas concentration of a high concentration can be obtained because a surface treatment film can be more stably formed on the surface of the metal support.
 このような可塑剤としては、エステル系可塑剤、リン酸エステル系可塑剤、ポリマー可塑剤、紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物を好ましい化合物として上げることができ、これらのうち少なくとも1つの化合物を添加剤に含むことが好ましい。
(溶融製膜時に使用する酸化防止剤)
 セルロースエステルは、溶融製膜が行われるような高温環境下では熱だけでなく酸素によっても分解が促進されるため、本発明の光学フィルムにおいては安定化剤として酸化防止剤を含有することが好ましい。
Examples of such plasticizers include ester plasticizers, phosphate ester plasticizers, polymer plasticizers, and ultraviolet absorbers. Preferred examples include benzophenone compounds and benzotriazole compounds. It is preferred to include at least one compound in the additive.
(Antioxidant used during melt film formation)
Cellulose ester is preferably decomposed not only by heat but also by oxygen in a high temperature environment where melt film formation is performed. Therefore, the optical film of the present invention preferably contains an antioxidant as a stabilizer. .
 本発明において有用な酸化防止剤としては、酸素による溶融成形材料の劣化を抑制する化合物であれば制限なく用いることができるが、中でも有用な酸化防止剤としては、フェノール系化合物、ヒンダードアミン系化合物、リン系化合物、イオウ系化合物、耐熱加工安定剤、酸素スカベンジャー等が挙げられ、これらの中でも、特にフェノール系化合物、ヒンダードアミン系化合物、リン系化合物が好ましい。これらの化合物は、(セルロースエステルの洗浄に使用する酸化防止剤)で説明した化合物と同義である。これらの化合物を配合することにより、透明性、耐熱性等を低下させることなく、溶融成型時の熱や熱酸化劣化等による成形体の着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 The antioxidant useful in the present invention can be used without limitation as long as it is a compound that suppresses deterioration of the melt molding material due to oxygen, but among the useful antioxidants, phenolic compounds, hindered amine compounds, Examples thereof include phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc. Among these, phenol compounds, hindered amine compounds, and phosphorus compounds are particularly preferable. These compounds are synonymous with the compounds described in (Antioxidant used for washing cellulose ester). By blending these compounds, it is possible to prevent coloring and strength reduction of the molded product due to heat during heat molding or thermal oxidative degradation without lowering transparency and heat resistance. These antioxidants can be used alone or in combination of two or more.
 酸化防止剤の添加量は、セルロースエステル100質量部に対して、通常0.01~10質量部、好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
(酸掃去剤)
 酸掃去剤とは製造時から持ち込まれるセルロースエステル中に残留する酸(プロトン酸)をトラップする役割を担う剤である。また、セルロースエステルを溶融するとポリマー中の水分と熱により側鎖の加水分解が促進し、CAPならば酢酸やプロピオン酸が生成する。酸と化学的に結合できればよく、エポキシ、3級アミン、エーテル構造等を有する化合物が挙げられるが、これに限定されるものでない。
The addition amount of the antioxidant is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cellulose ester.
(Acid scavenger)
The acid scavenger is an agent that plays a role of trapping an acid (protonic acid) remaining in the cellulose ester brought in from the production. When the cellulose ester is melted, side chain hydrolysis is promoted by moisture and heat in the polymer, and acetic acid and propionic acid are generated in the case of CAP. A compound having an epoxy structure, a tertiary amine, an ether structure, or the like may be used as long as it can be chemically bonded to an acid, but is not limited thereto.
 具体的には、米国特許第4,137,201号明細書に記載されている酸掃去剤としてのエポキシ化合物を含んでなるのが好ましい。このような酸掃去剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8~40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′-ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2~22この炭素原子の脂肪酸の4~2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油などの組成物によって代表され、例示され得る、エポキシ化植物油及び他の不飽和天然油(これらは時としてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12~22個の炭素原子を含有している))が含まれる。特に好ましいのは、市販のエポキシ基含有エポキシド樹脂化合物 EPON 815c、及び他のエポキシ化エーテルオリゴマー縮合生成物である。 Specifically, it preferably contains an epoxy compound as an acid scavenger described in US Pat. No. 4,137,201. Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8 to 40 moles of ethylene oxide per mole of polyglycol. Metal glycol compounds such as polyglycols, diglycidyl ethers of glycerol (eg, those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, bisphenol A Diglycidyl ethers (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid esters (especially esters of alkyls of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms (eg Butyl epoxy stearate ), And various epoxidized long chain fatty acid triglycerides and the like (e.g., epoxidized vegetable oils and other unsaturated natural oils, which may be represented and exemplified by compositions such as epoxidized soybean oil, sometimes epoxidized natural) These are referred to as glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms)). Particularly preferred are commercially available epoxy group-containing epoxide resin compounds, EPON 815c, and other epoxidized ether oligomer condensation products.
 用いることができるさらに可能な酸掃去剤としては、特開平5-194788号公報の段落番号[0087]~[0105]に記載されているものが含まれる。 Further possible acid scavengers that can be used include those described in paragraphs [0087] to [0105] of JP-A-5-194788.
 酸掃去剤は、前述のセルロース樹脂同様に、製造時から持ち越される、あるいは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去する事が好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01~100ppmであることが好ましく、セルロース樹脂を溶融製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。 It is preferable that the acid scavenger removes impurities such as residual acid, inorganic salt, and low molecular weight organic matter that are carried over from the production or generated during storage, and more preferably has a purity of 99%. That's it. Residual acid and water are preferably 0.01 to 100 ppm, and when melt-forming cellulose resin, thermal deterioration can be suppressed, and film-forming stability, optical physical properties and mechanical properties of the film are improved. .
 なお酸掃去剤は酸捕捉剤、酸捕獲剤、酸キャッチャー等と称されることもあるが、本発明においてはこれらの呼称による差異なく用いることができる。
(粘度低下剤)
 本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加する事ができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O-H(酸素水素結合)、N-H(窒素水素結合)、F-H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下する事ができる、または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下する事ができる。
The acid scavenger may be referred to as an acid scavenger, an acid scavenger, an acid catcher, etc., but can be used in the present invention without any difference due to their names.
(Viscosity reducing agent)
In the present invention, a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity. The hydrogen bonding solvent is J.I. N. As described in Israel Ativili, “Intermolecular Forces and Surface Forces” (Takeshi Kondo, Hiroyuki Oshima, Maglow Hill Publishing, 1991) and electrically negative atoms (oxygen, nitrogen, fluorine, chlorine) An organic solvent capable of producing a hydrogen atom-mediated “bond” that occurs between an electronegative atom and a covalently bonded hydrogen atom, that is, a bond having a large bonding moment and containing hydrogen, such as OH (Oxygen hydrogen bond), N—H (nitrogen hydrogen bond), FH (fluorine hydrogen bond), and an organic solvent that can arrange adjacent molecules. These have the ability to form stronger hydrogen bonds with cellulose than intermolecular hydrogen bonds of cellulose resin. In the melt casting method performed in the present invention, the glass transition temperature of the cellulose resin used alone is higher than that. The melting temperature of the cellulose resin composition can be lowered by the addition of a hydrogen bonding solvent, or the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered at the same melting temperature as the cellulose resin. .
 水素結合性溶媒としては、例えば、アルコール類:例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、t-ブタノール、2-エチルヘキサノール、ヘプタノール、オクタノール、ノナノール、ドデカノール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ヘキシルセロソルブ、グリセリン等、ケトン類:アセトン、メチルエチルケトン等、カルボン酸類:例えば蟻酸、酢酸、プロピオン酸、酪酸等、エーテル類:例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等、ピロリドン類:例えば、N-メチルピロリドン等、アミン類:例えば、トリメチルアミン、ピリジン等、等を例示することができる。これら水素結合性溶媒は、単独で、又は2種以上混合して用いることができる。これらのうちでも、アルコール、ケトン、エーテル類が好ましく、特にメタノール、エタノール、プロパノール、イソプロパノール、オクタノール、ドデカノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランが好ましい。さらに、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランのような水溶性溶媒が特に好ましい。ここで水溶性とは、水100gに対する溶解度が10g以上のものをいう。
(リタデーション制御剤)
 本発明の光学フィルムにおいて配向膜を形成して液晶層を設け、光学フィルムと液晶層由来のリタデーションを複合化して光学補償能を付与した偏光板加工を行ってもよい。リタデーションを制御するために添加する化合物は、欧州特許第911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物をリタデーション制御剤として使用することもできる。また2種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に不飽和ヘテロ環である。中でも1,3,5-トリアジン環を有する化合物が特に好ましい。
(マット剤)
 本発明の光学フィルムには、滑り性を付与するためにマット剤等の微粒子を添加することができ、微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。マット剤はできるだけ微粒子のものが好ましく、微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘイズを低くできるので好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。
Examples of the hydrogen bonding solvent include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, t-butanol, 2-ethylhexanol, heptanol, octanol, nonanol, dodecanol, ethylene glycol, Propylene glycol, hexylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, hexyl cellosolve, glycerin, etc., ketones: acetone, methyl ethyl ketone, etc., carboxylic acids: eg formic acid, acetic acid, propionic acid, Butyric acid, etc., ethers: eg, diethyl ether, tetrahydrofuran, dioxane, etc., Pyrrolidones: eg, N-methyl Pyrrolidone, etc., amines: for example, can be exemplified trimethylamine, pyridine, etc., and the like. These hydrogen bonding solvents can be used alone or in admixture of two or more. Among these, alcohol, ketone, and ether are preferable, and methanol, ethanol, propanol, isopropanol, octanol, dodecanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable. Furthermore, water-soluble solvents such as methanol, ethanol, propanol, isopropanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable. Here, water-soluble means that the solubility in 100 g of water is 10 g or more.
(Retardation control agent)
In the optical film of the present invention, an alignment film may be formed to provide a liquid crystal layer, and polarizing plate processing may be performed in which an optical film and retardation derived from the liquid crystal layer are combined to provide optical compensation ability. As the compound to be added for controlling the retardation, an aromatic compound having two or more aromatic rings as described in EP 911,656A2 can be used as a retardation control agent. . Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring. Of these, compounds having a 1,3,5-triazine ring are particularly preferred.
(Matting agent)
In the optical film of the present invention, fine particles such as a matting agent can be added to impart slipperiness, and examples of the fine particles include inorganic compound fine particles and organic compound fine particles. The matting agent is preferably as fine as possible. Examples of the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include inorganic fine particles such as magnesium silicate and calcium phosphate, and crosslinked polymer fine particles. Among these, silicon dioxide is preferable because it can reduce the haze of the film. In many cases, fine particles such as silicon dioxide are surface-treated with an organic material, but such a material is preferable because it can reduce the haze of the film.
 表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。また、微粒子の二次粒子の平均粒径は0.05~1.0μmの範囲である。好ましい微粒子の二次粒子の平均粒径は5~50nmが好ましく、さらに好ましくは7~14nmである。これらの微粒子は光学フィルム中では、光学フィルム表面に0.01~1.0μmの凹凸を生成させるために好ましく用いられる。本発明におけるマット剤の添加量は、セルロースエステルフィルム1m当たり0.01~10gが好ましい。 Preferred organic substances for the surface treatment include halosilanes, alkoxysilanes, silazane, siloxane and the like. The larger the average particle size of the fine particles, the greater the sliding effect, and the smaller the average particle size, the better the transparency. The average particle size of the secondary particles of the fine particles is in the range of 0.05 to 1.0 μm. The average particle size of secondary particles of the fine particles is preferably 5 to 50 nm, more preferably 7 to 14 nm. These fine particles are preferably used in an optical film in order to generate irregularities of 0.01 to 1.0 μm on the surface of the optical film. In the present invention, the addition amount of the matting agent is preferably 0.01 to 10 g per 1 m 2 of the cellulose ester film.
 二酸化ケイ素の微粒子としては、日本アエロジル株式会社製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812である。これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9~99.9:0.1の範囲で使用できる。 Examples of the fine particles of silicon dioxide include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, TT600 manufactured by Nippon Aerosil Co., Ltd., preferably Aerosil 200V, R972, R972V, R974, R202, and R812. Two or more kinds of these fine particles may be used in combination. When using 2 or more types together, it can mix and use in arbitrary ratios. In this case, fine particles having different average particle sizes and materials, for example, Aerosil 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
 この他、フィルムの機械強度を高めたり寸法変化を抑制するために、タルクやグラスファイバーを加えたり、難燃性を高めるために水酸化アルミニウムや水酸化マグネシウムなどの無機系などの粒子を添加しても良い。また、これら添加剤の形状は、球状、板状、針状、棒状等、糸状など、どのような形状のものでも良い。 In addition, talc and glass fiber are added to increase the mechanical strength of the film and to prevent dimensional changes, and inorganic particles such as aluminum hydroxide and magnesium hydroxide are added to increase flame retardancy. May be. The shape of these additives may be any shape such as a spherical shape, a plate shape, a needle shape, a rod shape, a thread shape, and the like.
 上記の添加として用いられるフィルム中の微粒子の存在は、別の目的として、フィルムの強度向上のために用いることもできる。また、フィルム中の上記微粒子の存在は、本発明の光学フィルムを構成するセルロースエステル自身の配向性を向上することも可能である。
(高分子材料)
 本発明の光学フィルムはセルロースエステル以外の高分子材料やオリゴマーを適宜選択して混合してもよい。前述の高分子材料やオリゴマーはセルロースエステルと相溶性に優れるものが好ましく、フィルムにしたときの透過率が80%以上、さらに好ましくは90%以上、さらに好ましくは92%以上であることが好ましい。セルロースエステル以外の高分子材料やオリゴマーの少なくとも1種以上を混合する目的は、加熱溶融時の粘度制御やフィルム加工後のフィルム物性を向上するために行う意味を含んでいる。この場合は、上述のその他添加剤として含むことができる。
The presence of fine particles in the film used as the above addition can also be used for improving the strength of the film as another object. The presence of the fine particles in the film can also improve the orientation of the cellulose ester itself constituting the optical film of the present invention.
(Polymer material)
In the optical film of the present invention, polymer materials and oligomers other than cellulose ester may be appropriately selected and mixed. The polymer materials and oligomers described above are preferably those having excellent compatibility with the cellulose ester, and the transmittance when formed into a film is preferably 80% or more, more preferably 90% or more, and further preferably 92% or more. The purpose of mixing at least one of polymer materials and oligomers other than cellulose ester includes meanings for controlling viscosity at the time of heating and melting and improving film physical properties after film processing. In this case, it can contain as an above-mentioned other additive.
 本発明による光学フィルムは、上記の光学フィルムの製造方法で製造されたものであり、フィルムの厚みは、30~200μmが好ましい。
(偏光板)
 本発明の光学フィルムを少なくとも一方の面に有する偏光板は、電界による液晶の配向の変化を可視化させる重要な役割を、充分に果たすことができる。
The optical film according to the present invention is manufactured by the above-described optical film manufacturing method, and the thickness of the film is preferably 30 to 200 μm.
(Polarizer)
The polarizing plate having the optical film of the present invention on at least one surface can sufficiently fulfill the important role of visualizing the change in the alignment of the liquid crystal due to the electric field.
 偏光板は一般的な方法で作製することができる。アルカリ鹸化処理した本発明のセルロ-スエステルフィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面にも本発明のセルロ-スエステルフィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明のセルロ-スエステルフィルムに対して、もう一方の面に用いられる偏光板保護フィルムは市販のセルロースエステルフィルムを用いることができる。例えば、市販のセルロースエステルフィルムとして、KC8UX2M、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UY-HA、KC8UX-RHA(以上、コニカミノルタオプト株式会社製)等が好ましく用いられる。あるいは、セルロースエステルフィルム以外の環状オレフィン樹脂、アクリル樹脂、ポリエステル、ポリカーボネート等のフィルムをもう一方の面の偏光板保護フィルムとして用いてもよい。この場合は、ケン化適性が低いため、適当な接着層を介して偏光板に接着加工することが好ましい。 The polarizing plate can be produced by a general method. The cellulose ester film of the present invention that has been subjected to alkali saponification treatment is bonded to at least one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. Is preferred. The cellulose ester film of the present invention may be used on the other side, or another polarizing plate protective film may be used. With respect to the cellulose ester film of the present invention, a commercially available cellulose ester film can be used as the polarizing plate protective film used on the other side. For example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (manufactured by Konica Minolta Opto, Inc.) and the like are preferably used. Or you may use films, such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate, as a polarizing plate protective film of the other surface. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
 本発明の偏光板は、本発明のセルロ-スエステルフィルムを偏光子の少なくとも片側に偏光板保護フィルムとして使用したものである。その際、該セルロ-スエステルフィルムの遅相軸が偏光子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。 The polarizing plate of the present invention is obtained by using the cellulose ester film of the present invention on at least one side of a polarizer as a polarizing plate protective film. At that time, the cellulose ester film is preferably disposed so that the slow axis thereof is substantially parallel or perpendicular to the absorption axis of the polarizer.
 この偏光板が、横電界スイッチングモード型である液晶セルを挟んで配置される一方の偏光板として、本発明のセルロースエステルフィルム(特に好ましくは前述のセルロースエステルフィルムA)が液晶表示セル側に配置されることが好ましい。 As one polarizing plate disposed across a liquid crystal cell that is a transverse electric field switching mode type, the cellulose ester film of the present invention (particularly preferably, the cellulose ester film A described above) is disposed on the liquid crystal display cell side. It is preferred that
 本発明の偏光板に好ましく用いられる偏光子としては、ポリビニルアルコール系偏光フィルムが挙げられ、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。 Examples of the polarizer preferably used in the polarizing plate of the present invention include a polyvinyl alcohol polarizing film, which includes a polyvinyl alcohol film dyed with iodine and a dichroic dye dyed. As the polyvinyl alcohol film, a modified polyvinyl alcohol film modified with ethylene is preferably used. For the polarizer, a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound.
 偏光子の膜厚は5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。該偏光子の面上に、本発明のセルロ-スエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。また、セルロースエステルフィルム以外の樹脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工することができる。 The film thickness of the polarizer is 5 to 40 μm, preferably 5 to 30 μm, and particularly preferably 5 to 20 μm. One side of the cellulose ester film of the present invention is bonded to the surface of the polarizer to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like. Moreover, in the case of resin films other than a cellulose ester film, it can be bonded to the polarizing plate via an appropriate adhesive layer.
 偏光子は一軸方向(通常は長手方向)に延伸されているため、偏光板を高温高湿の環境下に置くと延伸方向(通常は長手方向)は縮み、延伸に対して直交する方向(通常は幅手方向)には伸びる。偏光板保護フィルムの膜厚が薄くなるほど偏光板の伸縮率は大きくなり、特に偏光子の延伸方向の収縮量が大きい。通常、偏光子の延伸方向は偏光板保護フィルムの流延方向(MD方向)と貼り合わせるため、偏光板保護フィルムを薄膜化する場合は、特に流延方向の伸縮率を抑えることが重要である。本発明のセルロ-スエステルフィルムは寸法安定に優れるため、このような偏光板保護フィルムとして好適に使用される。 Since the polarizer is stretched in a uniaxial direction (usually the longitudinal direction), when the polarizing plate is placed in a high-temperature and high-humidity environment, the stretching direction (usually the longitudinal direction) shrinks, and the direction orthogonal to the stretching (usually normal) Extends in the width direction. As the thickness of the polarizing plate protective film decreases, the expansion / contraction ratio of the polarizing plate increases, and in particular, the amount of contraction in the stretching direction of the polarizer increases. Usually, the stretching direction of the polarizer is bonded to the casting direction (MD direction) of the polarizing plate protective film. Therefore, when the polarizing plate protective film is thinned, it is particularly important to suppress the stretching rate in the casting direction. . Since the cellulose ester film of the present invention is excellent in dimensional stability, it is preferably used as such a polarizing plate protective film.
 偏光板は、さらに該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
(液晶表示装置)
 本発明の光学フィルムが用いられた偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができる。本発明の光学フィルムは反射型、透過型、半透過型LCDあるいはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。特に画面が30型以上、特に30型~54型の大画面の表示装置では、画面周辺部での白抜けなどもなく、その効果が長期間維持され、MVA型液晶表示装置では顕著な効果が認められる。特に、色むら、ぎらつきや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。 このように、本発明の偏光板を、液晶セルの少なくとも一方の面に有する表示装置は、表示品質が非常に優れているものである。
The polarizing plate can be constituted by further bonding a protective film on one surface of the polarizing plate and a separate film on the opposite surface. The protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection.
(Liquid crystal display device)
By incorporating the polarizing plate using the optical film of the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced. The optical film of the present invention is preferably a reflective, transmissive, transflective LCD, or TN, STN, OCB, HAN, VA (PVA, MVA), or IPS LCD. Used. In particular, in a large-screen display device having a screen size of 30 or more, particularly 30 to 54, there is no white spot at the periphery of the screen, and the effect is maintained for a long period of time. In the MVA liquid crystal display device, a remarkable effect is obtained. Is recognized. In particular, there was little color unevenness, glare and wavy unevenness, and the eyes were not tired even during long viewing. As described above, the display device having the polarizing plate of the present invention on at least one surface of the liquid crystal cell is very excellent in display quality.
 以下、実施例により本実施の形態をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1
(樹脂混合物)
 セルロースアセテートプロピオネート           89重量%
 (アセチル基置換度1.4、プロピオニル基置換度1.35、
  数平均分子量60000)
 トリメチロールプロパントリベンゾエート          9重量%
 (可塑剤、融点85℃)
 酸化防止剤                     0.25重量%
 (商品名-IRGANOX XP 420/FD、
  チバスペシャルティケミカルズ社製)
 紫外線吸収剤                     1.6重量%
 (商品名-TINUVIN 928、チバスペシャルティ
  ケミカルズ社製、融点115℃)
 マット剤(シリカ微粒子)              0.15重量%
 (商品名-シーホスターKEP-30:日本触媒株式会社製、
  平均粒径0.3μm)
 なお、セルロースアセテートプロピオネートのアセチル基、プロピオニル基、ブチリル基等のアシル基の置換度の測定は、ASTM-D817-96に規定の方法に準じて測定した。
(セルロースエステルフィルムの作製)
 上記の材料をV型混合機で30分混合した後、ストランドダイを取り付けた2軸押出し機を用いて窒素雰囲気下で230℃で溶融させ、長さ4mm、直径3mmの円筒形のペレットを作製した(図示略)。得られたペレットの、示差走査熱量計(DSC)測定によるガラス転移温度(Tg)は、135℃であった。
Hereinafter, the present embodiment will be described more specifically by way of examples, but the present invention is not limited to these examples.
Example 1
(Resin mixture)
Cellulose acetate propionate 89% by weight
(Acetyl group substitution degree 1.4, propionyl group substitution degree 1.35,
Number average molecular weight 60000)
9% by weight of trimethylolpropane tribenzoate
(Plasticizer, melting point 85 ° C)
Antioxidant 0.25% by weight
(Product name-IRGANOX XP 420 / FD,
Ciba Specialty Chemicals)
UV absorber 1.6% by weight
(Product name-TINUVIN 928, manufactured by Ciba Specialty Chemicals, melting point 115 ° C)
Matting agent (silica fine particles) 0.15% by weight
(Product name-Sea Hoster KEP-30: Nippon Shokubai Co., Ltd.,
(Average particle size 0.3μm)
The degree of substitution of acyl groups such as acetyl group, propionyl group and butyryl group of cellulose acetate propionate was measured according to the method prescribed in ASTM-D817-96.
(Production of cellulose ester film)
After mixing the above materials with a V-type mixer for 30 minutes, a twin-screw extruder equipped with a strand die was melted at 230 ° C. in a nitrogen atmosphere to produce a cylindrical pellet having a length of 4 mm and a diameter of 3 mm. (Not shown). The obtained pellet had a glass transition temperature (Tg) of 135 ° C. as measured by a differential scanning calorimeter (DSC).
 なお、DSC測定は、サンプルは、試料約10mgをパンチで打ち抜き、アルミパンに入れてふたをしてクリンプして作製した。これを、温度条件30~250℃まで窒素中で、10℃/minで昇温し、20℃/minで冷却、再度同条件で250℃まで昇温したときの転移点を、ガラス転移温度(Tg)として記載した。 The DSC measurement was made by punching out about 10 mg of the sample with a punch, putting it in an aluminum pan, capping and crimping. This was heated at a rate of 10 ° C./min in nitrogen to a temperature condition of 30 to 250 ° C., cooled at 20 ° C./min, and again raised to 250 ° C. under the same conditions as the glass transition temperature ( Tg).
 上記ペレットを温度100℃で5時間乾燥させ、含水率100ppmとした。 The above pellets were dried at a temperature of 100 ° C. for 5 hours to obtain a water content of 100 ppm.
 つぎに、図1に示す単軸押出し機(1)に、上記ペレットを供給して、Tダイよりなる流延ダイ(4)により製膜を行なった。 Next, the pellets were supplied to the single screw extruder (1) shown in FIG. 1, and film formation was performed by a casting die (4) made of a T die.
 単軸押出し機(1)は、スクリュー径90mm、およびL/D=30であり、押出し量が140kg/hとなるようにスクリューの回転数を調整した。材料供給口付近より窒素ガスを封入して、押出し機(1)内を窒素雰囲気に保った。押出し機(1)および流延ダイ(4)は、それぞれ温度を240℃に設定した。流延ダイ(4)はコートハンガータイプで、幅が1900mm、内壁にハードクロムメッキを施しており、面粗度0.1Sの鏡面に仕上げられている。流延ダイ(4)のリップ間隙は2mmに設定した。 The single-screw extruder (1) had a screw diameter of 90 mm and L / D = 30, and the screw rotation speed was adjusted so that the amount of extrusion was 140 kg / h. Nitrogen gas was sealed from the vicinity of the material supply port, and the inside of the extruder (1) was kept in a nitrogen atmosphere. The extruder (1) and the casting die (4) were each set to a temperature of 240 ° C. The casting die (4) is a coat hanger type, has a width of 1900 mm, has an inner wall plated with hard chrome, and is finished to a mirror surface with a surface roughness of 0.1S. The lip gap of the casting die (4) was set to 2 mm.
 図1において、流延ダイ(4)から出たウェブ(10)を、ロール面長2400mmのハードクロムメッキ鏡面の第1冷却ロール(5)上に落下させ、同時に100℃に温度調整されたロール面長2400mmのタッチロール(6)によりフィルムを押圧した。 In FIG. 1, a roll having a web (10) coming out of a casting die (4) dropped onto a first cooling roll (5) having a roll surface length of 2400 mm and having a mirror surface of hard chrome plating, and simultaneously adjusted to 100 ° C. The film was pressed with a touch roll (6) having a surface length of 2400 mm.
 そして、この実施例では、本発明の方法により、第1冷却ロールよりなる金属支持体(5)の表面を、製膜中にいわゆるオンラインで、第1冷却ロールよりなる金属支持体(5)表面のウェブの非通過区間〔製膜中に金属支持体(5)の表面がむき出しとなる区間〕において、図2に示すリモートあるいはダウンストリーム方式と呼ばれる常圧プラズマ照射装置(21)を使用した。なお、常圧プラズマ照射装置(21)は、第1冷却ロール(金属支持体)(5)の上側、角度θが80°のところに設置されている。 In this embodiment, the surface of the metal support (5) made of the first cooling roll is formed on the surface of the metal support (5) made of the first cooling roll by the method of the present invention. In the non-passing section of the web (section in which the surface of the metal support (5) is exposed during film formation), the atmospheric pressure plasma irradiation device (21) called remote or downstream system shown in FIG. 2 was used. The atmospheric pressure plasma irradiation device (21) is installed on the upper side of the first cooling roll (metal support) (5) at an angle θ of 80 °.
 ここで、常圧プラズマ装置(21)のプラズマのガス吹き出し口と第1冷却ロール(金属支持体)(5)との間隔(d)を5mmとし、反応ガスは窒素のみで、使用量は照射幅1m当たり0.5m/minとした。このときの気圧は、1.0気圧とした。 Here, the distance (d) between the plasma gas outlet of the atmospheric pressure plasma device (21) and the first cooling roll (metal support) (5) is 5 mm, the reaction gas is only nitrogen, and the amount used is irradiation. It was set to 0.5 m 3 / min per 1 m width. The atmospheric pressure at this time was 1.0 atmospheric pressure.
 第1冷却ロール(金属支持体)(5)の表面を、略全幅にわたり、常圧プラズマ照射処理をした。これにより、第1冷却ロール(5)の表面に表面処理膜を形成し、その後、第1冷却ロール(5)表面に樹脂溶融物を流延した。 The surface of the first cooling roll (metal support) (5) was subjected to atmospheric pressure plasma irradiation over substantially the entire width. Thereby, the surface treatment film was formed on the surface of the first cooling roll (5), and then the resin melt was cast on the surface of the first cooling roll (5).
 なお、第1冷却ロール(金属支持体)(5)表面への、プラズマガスの照射時間を0.1secとなるように、かつ製膜中に、プラズマ吹き出しガスを連続で照射した。 In addition, the plasma blowing gas was continuously irradiated during film formation so that the irradiation time of the plasma gas on the surface of the first cooling roll (metal support) (5) was 0.1 sec.
 ここで言うプラズマ照射時間とは、プラズマ吹き出しガスに含まれるラジカルと、第1冷却ロール(金属支持体)(5)表面との厳密な接触時間が測定が困難なため、ここでは、第1冷却ロール(金属支持体)(5)の表面上のある点が、プラズマ吹き出しスリット間隙(h)の下を、その間隙分移動する時間を照射時間とした。例えば、吹き出しスリット間隙(h)が2mmで、第1冷却ロール(金属支持体)(5)の周速度が2mm/secの場合、プラズマ照射時間は1secとなる。 The plasma irradiation time referred to here is the first cooling because it is difficult to measure the exact contact time between the radicals contained in the plasma blowing gas and the surface of the first cooling roll (metal support) (5). The irradiation time was defined as the time during which a certain point on the surface of the roll (metal support) (5) moved under the plasma blowing slit gap (h) by the gap. For example, when the blowing slit gap (h) is 2 mm and the peripheral speed of the first cooling roll (metal support) (5) is 2 mm / sec, the plasma irradiation time is 1 sec.
 なお、第1冷却ロール(5)の表面温度を、樹脂のガラス転移温度(Tg=135℃)以下、添加剤の融点(可塑剤の融点85℃、及び紫外線吸収剤の融点115℃)以上である120℃に設定した。 The surface temperature of the first cooling roll (5) is not higher than the glass transition temperature (Tg = 135 ° C.) of the resin, not lower than the melting point of the additive (melting point of the plasticizer is 85 ° C., and melting point of the ultraviolet absorber is 115 ° C.). It was set to 120 ° C.
 このように、本発明の方法によれば、常圧プラズマ照射処理を、添加剤の蒸気、および常圧プラズマ照射処理に用いるガスの存在下で実施したところ、第1冷却ロール(金属支持体)(5)表面に、可塑剤等の添加剤の分解物を構成成分とする非常に緻密な表面処理膜が形成されていることが、確認された。 Thus, according to the method of the present invention, when the atmospheric pressure plasma irradiation treatment is performed in the presence of the additive vapor and the gas used for the atmospheric pressure plasma irradiation treatment, the first cooling roll (metal support) is obtained. (5) It was confirmed that a very dense surface treatment film having a decomposition product of an additive such as a plasticizer as a constituent component was formed on the surface.
 こうして、第1冷却ロール(金属支持体)(5)表面に形成された表面処理膜は、該処理膜と水との接触角14度を有するものであった。 Thus, the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 14 degrees between the treatment film and water.
 つぎに、第1冷却ロール(金属支持体)(5)上に樹脂溶融液を流延し、タッチロール(6)を用いて、5N/mmの線圧でフィルムを押圧した。 Next, a resin melt was cast on the first cooling roll (metal support) (5), and the film was pressed with a linear pressure of 5 N / mm using the touch roll (6).
 第1冷却ロール(金属支持体)(5)とタッチロール(6)に押圧されたウェブ(10)は、剥離され、第2冷却ロール(7)に搬送される。 The web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
 そして、このような表面処理膜の存在によって第1冷却ロール(金属支持体)(5)表面からのフィルムの離型性(剥離性)が著しく向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少した。 And by the presence of such a surface treatment film, the releasability (peelability) of the film from the surface of the first cooling roll (metal support) (5) is remarkably improved, and a very smooth peelability is obtained, The variation in the width direction of the peeling position decreased.
 第1冷却ロール(5)から剥離したフィルムは、引き続いて、次の第2冷却ロール(7)、第3冷却ロール(8)に順次、外接させて冷却固化し、剥離ロール(9)によって剥離する。 The film peeled off from the first cooling roll (5) is then successively circumscribed on the second cooling roll (7) and the third cooling roll (8) to be cooled and solidified, and peeled off by the peeling roll (9). To do.
 ここで、第1冷却ロール(5)の周速度(S1)と、第2冷却ロール(7)の周速度(S2)の比(S2/S1)を、1.002とした。 Here, the ratio (S2 / S1) of the peripheral speed (S1) of the first cooling roll (5) and the peripheral speed (S2) of the second cooling roll (7) was set to 1.002.
 続いて、テンターで、ウェブ(10)の両端部を把持して幅手方向に延伸した。テンターの雰囲気温度を150℃に設定して実施した。 Subsequently, both ends of the web (10) were held with a tenter and stretched in the width direction. The tenter atmosphere temperature was set to 150 ° C.
 つぎに、延伸後のセルロースアセテートプロピオネートフィルムのエッジをスリッター(図示略)でスリットして、雰囲気温度25℃の巻取り機(13)で、最終的に膜厚40μm、幅2000mmのセルロースアセテートプロピオネートフィルムを巻き取った。この条件にて、3日間連続して製膜を行った。 Next, the edge of the stretched cellulose acetate propionate film is slit with a slitter (not shown), and finally the cellulose acetate having a film thickness of 40 μm and a width of 2000 mm is obtained with a winder (13) having an ambient temperature of 25 ° C. The propionate film was wound up. Under these conditions, the film was formed continuously for 3 days.
 ここで、得られたセルロースアセテートプロピオネートフィルムのガラス転移温度(Tg)を、上記の原料ペレットの場合と同様に測定したところ、135℃であった。 Here, when the glass transition temperature (Tg) of the obtained cellulose acetate propionate film was measured in the same manner as in the case of the raw material pellets, it was 135 ° C.
 なお、第1冷却ロール(金属支持体)(5)の表面上から冷却後の流延膜を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、0.3(N/m)であった。 It should be noted that the minimum amount of increase in peeling force necessary to peel the cast film after cooling from the surface of the first cooling roll (metal support) (5) is 24 at the start of film formation and 24 after film formation. The elapsed time was 0.3 (N / m).
 上記の製膜で得られたセルロースアセテートプロピオネートフィルムについて、クロスニコル透過率のバラツキを、下記のように測定した。
[クロスニコル透過率(CNT)の測定]
 日本分光社製の偏光フィルム測定装置(VAP-7070)を用い、測定波長600nmにて、フィルムの幅手方向に50mm間隔で、また長手方向に300mm区間で50mm間隔でクロスニコル透過率(CNT)を測定し、全データの平均値と、最も乖離した値との差を、ここでは、クロスニコル透過率(CNT)のバラツキ幅(×10-5%)とした。
About the cellulose acetate propionate film obtained by said film forming, the variation in the cross Nicol transmittance | permeability was measured as follows.
[Measurement of Cross Nicol Transmittance (CNT)]
Using a polarizing film measuring device (VAP-7070) manufactured by JASCO Corporation, at a measurement wavelength of 600 nm, crossed Nicols transmittance (CNT) at intervals of 50 mm in the width direction of the film and at intervals of 50 mm in the lengthwise direction of 300 mm. The difference between the average value of all data and the most deviated value was defined as the variation width (× 10 −5 %) of the crossed Nicols transmittance (CNT).
 この実施例1によれば、得られたセルロースアセテートプロピオネートフィルムのクロスニコル時の波長600nmでの透過率のバラツキは、20×10-5(%)であった。このクロスニコル透過率(CNT)のバラツキ幅は、フィルムのリタデーション値の指標となり、バラツキ幅が小さいほど、フィルムのリタデーション値も低くなる。 According to this Example 1, the variation in transmittance at a wavelength of 600 nm at the time of crossed Nicol of the obtained cellulose acetate propionate film was 20 × 10 −5 (%). The variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
 このように、本発明の方法によれば、フィルムの幅手方向および長手方向のリタデーション(Re)値のバラツキ、およびフィルムの透過率のバラツキが大幅に低減して、透明性、平面性に優れた光学特性を有するセルロースアセテートプロピオネートフィルムを製造することができるとともに、生産速度を上げることができて、フィルムの生産性を向上することができ、ひいては近年の偏光板用保護フィルム等の薄膜化、広幅化、及び高品質化の要求に応えることができるものであった。
実施例2
 本発明の方法により、上記実施例1の場合と同様に、セルロースアセテートプロピオネートフィルムを製造するが、上記実施例1の場合と異なる点は、第1冷却ロールよりなる金属支持体(5)の表面を、樹脂溶融物を流延する前に、いわゆるオフラインで、第1冷却ロールよりなる金属支持体(5)表面の所定の位置において、常圧プラズマ照射装置(21)により高エネルギー表面処理を施すことにより、第1冷却ロールよりなる金属支持体(5)の表面に表面処理膜を形成し、その後、金属支持体(5)表面に樹脂溶融物を流延して、実施した点にある。
Thus, according to the method of the present invention, the variation in retardation (Re) value in the width direction and the longitudinal direction of the film and the variation in transmittance of the film are greatly reduced, and the transparency and flatness are excellent. Cellulose acetate propionate film having excellent optical properties can be produced, the production speed can be increased, the productivity of the film can be improved, and as a result, a thin film such as a protective film for a polarizing plate in recent years It was possible to meet the demands for widening, widening, and high quality.
Example 2
According to the method of the present invention, a cellulose acetate propionate film is produced in the same manner as in Example 1, except that the metal support (5) comprising the first cooling roll is different from that in Example 1 above. Before casting the resin melt, high-energy surface treatment is performed off-line at a predetermined position on the surface of the metal support (5) made of the first cooling roll by a normal pressure plasma irradiation device (21). The surface treatment film is formed on the surface of the metal support (5) made of the first cooling roll, and then the resin melt is cast on the surface of the metal support (5). is there.
 すなわち、この実施例2では、可塑剤であるトリメチロールプロパントリベンゾエート(融点85℃)の100gを、熱風発生機(商品名TSK-40、株式会社竹綱製作所製)の温風吹出し口にステンレス製シャーレを固定した中に投入し、これを熱風発生機から160℃の温風を吹出して加温、揮発させ、その蒸気を、保温材を巻いた10mのダクトを通して、常圧プラズマ照射装置の方に送風し、添加剤の蒸気の存在下で、常圧プラズマ照射処理を実施した。 That is, in Example 2, 100 g of a plasticizer, trimethylolpropane tribenzoate (melting point: 85 ° C.), was added to the hot air outlet of a hot air generator (trade name TSK-40, manufactured by Takezuna Seisakusho Co., Ltd.) with stainless steel. It is put into a fixed petri dish, and this is heated and volatilized by blowing hot air of 160 ° C. from a hot air generator, and the steam is passed through a 10 m duct wrapped with a heat insulating material through the atmospheric pressure plasma irradiation device. The atmospheric pressure plasma irradiation treatment was carried out in the presence of the additive vapor.
 こうして、実施例2の本発明の方法により、常圧プラズマ照射処理を、添加剤の蒸気、および常圧プラズマ照射処理に用いるガスの存在下で実施したところ、第1冷却ロール(金属支持体)(5)表面に、可塑剤等の添加剤の分解物を構成成分とする非常に緻密な表面処理膜が形成されていることが、確認された。 Thus, according to the method of the present invention of Example 2, the atmospheric pressure plasma irradiation treatment was carried out in the presence of the vapor of the additive and the gas used for the atmospheric pressure plasma irradiation treatment. The first cooling roll (metal support) (5) It was confirmed that a very dense surface treatment film having a decomposition product of an additive such as a plasticizer as a constituent component was formed on the surface.
 この実施例2では、第1冷却ロール(金属支持体)(5)表面に形成された表面処理膜は、該処理膜と水との接触角12度を有するものであった。 In Example 2, the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 12 degrees between the treatment film and water.
 つぎに、第1冷却ロール(金属支持体)(5)上に樹脂溶融液を流延し、タッチロール(6)を用いて、5N/mmの線圧でフィルムを押圧した。 Next, a resin melt was cast on the first cooling roll (metal support) (5), and the film was pressed with a linear pressure of 5 N / mm using the touch roll (6).
 第1冷却ロール(金属支持体)(5)とタッチロール(6)に押圧されたウェブ(10)は、剥離され、第2冷却ロール(7)に搬送される。 The web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
 このような表面処理膜の存在によって第1冷却ロール(金属支持体)(5)表面からのフィルムの離型性(剥離性)が著しく向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少した。 Due to the presence of such a surface treatment film, the releasability (peelability) of the film from the surface of the first cooling roll (metal support) (5) is remarkably improved, and a very smooth peelability is obtained. The change in the width direction of was reduced.
 第1冷却ロール(5)から剥離したフィルムは、引き続いて、実施例1の場合と同様に、次の第2冷却ロール(7)、第3冷却ロール(8)に順次、外接させて冷却固化し、剥離ロール(9)によって剥離し、引き続き製膜処理して、巻取り機(13)で、最終的に膜厚40μm、幅2000mmのセルロースアセテートプロピオネートフィルムを巻き取った。この条件にて、3日間連続して製膜を行った。 The film peeled from the first cooling roll (5) is then continuously circumscribed on the second cooling roll (7) and the third cooling roll (8) in the same manner as in Example 1, and then cooled and solidified. Then, the film was peeled off by a peeling roll (9), subsequently subjected to film forming treatment, and finally a cellulose acetate propionate film having a film thickness of 40 μm and a width of 2000 mm was wound up by a winder (13). Under these conditions, the film was formed continuously for 3 days.
 この実施例2では、第1冷却ロール(金属支持体)(5)の表面上から冷却後の流延膜を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、0.6(N/m)であった。 In Example 2, the minimum amount of increase in peeling force required to peel the cast film after cooling from the surface of the first cooling roll (metal support) (5) is as follows: It was 0.6 (N / m) at 24 hours after film formation.
 この実施例2によれば、得られたセルロースアセテートプロピオネートフィルムのクロスニコル時の波長600nmでの透過率のバラツキは、10×10-5(%)であった。このクロスニコル透過率(CNT)のバラツキ幅は、フィルムのリタデーション値の指標となり、バラツキ幅が小さいほど、フィルムのリタデーション値も低くなる。
実施例3
 本発明の方法により、上記実施例1の場合と同様に、セルロースアセテートプロピオネートフィルムを製造するが、上記実施例1の場合と異なる点は、高エネルギー照射装置として、図3に示すエキシマ紫外線照射装置(22)により、第1冷却ロールよりなる金属支持体(5)の表面を改質した点にある。
According to this Example 2, the variation in transmittance at a wavelength of 600 nm at the time of crossed Nicol of the obtained cellulose acetate propionate film was 10 × 10 −5 (%). The variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
Example 3
According to the method of the present invention, a cellulose acetate propionate film is produced in the same manner as in Example 1 described above. The difference from Example 1 is that the excimer ultraviolet ray shown in FIG. The point is that the surface of the metal support (5) made of the first cooling roll is modified by the irradiation device (22).
 同図に示すように、紫外線照射装置(22)は、第1冷却ロール(金属支持体)(5)の上側に配置されており、紫外線照射装置(22)として、放射照度40mW/cmの、Xeで波長172nmのエキシマ紫外線(EUV)ランプが入ったエキシマ紫外線照射装置(22)を使用した。そして、エキシマ紫外線ランプの石英ガラス(q)の表面から第1冷却ロール(金属支持体)(5)までの間隙(d)を5mmに設定し、図3における角度θを80°とした。また、製膜中、窒素よりなるパージガスを連続で吹き出させ、紫外線を連続して照射することにより、第1冷却ロール(金属支持体)(5)の表面に表面処理膜を形成し、その後、金属支持体(5)表面に樹脂溶融物を流延した。 As shown in the figure, the ultraviolet irradiation device (22) is arranged on the upper side of the first cooling roll (metal support) (5), and the ultraviolet irradiation device (22) has an irradiance of 40 mW / cm 2 . An excimer ultraviolet irradiation device (22) containing Xe 2 and an excimer ultraviolet (EUV) lamp having a wavelength of 172 nm was used. The gap (d) from the surface of the quartz glass (q) of the excimer ultraviolet lamp to the first cooling roll (metal support) (5) was set to 5 mm, and the angle θ in FIG. Further, during the film formation, a purge gas composed of nitrogen is continuously blown out, and a surface treatment film is formed on the surface of the first cooling roll (metal support) (5) by continuously irradiating with ultraviolet rays, A resin melt was cast on the surface of the metal support (5).
 なお、第1冷却ロール(5)の表面温度は、上記実施例1の場合と同様に、樹脂のガラス転移温度(Tg=135℃)以下、添加剤の融点(可塑剤の融点85℃、及び紫外線吸収剤の融点115℃)以上である120℃に設定した。 The surface temperature of the first cooling roll (5) is the same as in the case of Example 1 above, the glass transition temperature of the resin (Tg = 135 ° C.) or less, the melting point of the additive (the melting point of the plasticizer is 85 ° C., and It was set to 120 ° C., which is at least 115 ° C., the melting point of the ultraviolet absorber.
 このように、本発明の方法によれば、エキシマ紫外線照射処理を、添加剤の蒸気、およびエキシマ紫外線照射処理に用いるパージガスの存在下で実施したところ、第1冷却ロール(金属支持体)(5)表面に、可塑剤等の添加剤の分解物を構成成分とする非常に緻密な表面処理膜が形成されていることが、確認された。 Thus, according to the method of the present invention, the excimer ultraviolet ray irradiation treatment was performed in the presence of the vapor of the additive and the purge gas used for the excimer ultraviolet ray irradiation treatment. As a result, the first cooling roll (metal support) (5 ) It was confirmed that a very dense surface-treated film having a decomposition product of an additive such as a plasticizer as a constituent component was formed on the surface.
 こうして、第1冷却ロール(金属支持体)(5)表面に形成された表面処理膜は、該処理膜と水との接触角7度を有するものであった。 Thus, the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 7 degrees between the treatment film and water.
 つぎに、第1冷却ロール(金属支持体)(5)上に樹脂溶融液を流延し、タッチロール(6)を用いて、5N/mmの線圧でフィルムを押圧した。 Next, a resin melt was cast on the first cooling roll (metal support) (5), and the film was pressed with a linear pressure of 5 N / mm using the touch roll (6).
 第1冷却ロール(金属支持体)(5)とタッチロール(6)に押圧されたウェブ(10)は、剥離され、第2冷却ロール(7)に搬送される。 The web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
 そして、このような表面処理膜の存在によって第1冷却ロール(金属支持体)(5)表面からのフィルムの離型性(剥離性)が著しく向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少した。 And by the presence of such a surface treatment film, the releasability (peelability) of the film from the surface of the first cooling roll (metal support) (5) is remarkably improved, and a very smooth peelability is obtained, The variation in the width direction of the peeling position decreased.
 第1冷却ロール(5)から剥離したフィルムは、引き続いて、実施例1の場合と同様に、次の第2冷却ロール(7)、第3冷却ロール(8)に順次、外接させて冷却固化し、剥離ロール(9)によって剥離し、引き続き製膜処理して、巻取り機(13)で、最終的に膜厚40μm、幅2000mmのセルロースアセテートプロピオネートフィルムを巻き取った。この条件にて、3日間連続して製膜を行った。 The film peeled from the first cooling roll (5) is then continuously circumscribed on the second cooling roll (7) and the third cooling roll (8) in the same manner as in Example 1, and then cooled and solidified. Then, the film was peeled off by a peeling roll (9), subsequently subjected to film forming treatment, and finally a cellulose acetate propionate film having a film thickness of 40 μm and a width of 2000 mm was wound up by a winder (13). Under these conditions, the film was formed continuously for 3 days.
 この実施例3では、第1冷却ロール(金属支持体)(5)の表面上から冷却後の流延膜を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、0.2(N/m)であった。 In this Example 3, the minimum amount of increase in peeling force necessary to peel off the cast film after cooling from the surface of the first cooling roll (metal support) (5) is as follows: It was 0.2 (N / m) when 24 hours passed after film formation.
 この実施例3によれば、得られたセルロースアセテートプロピオネートフィルムのクロスニコル時の波長600nmでの透過率のバラツキは、50×10-5(%)であった。このクロスニコル透過率(CNT)のバラツキ幅は、フィルムのリタデーション値の指標となり、バラツキ幅が小さいほど、フィルムのリタデーション値も低くなる。
実施例4
 本発明の方法により、上記実施例3の場合と同様に、セルロースアセテートプロピオネートフィルムを製造するが、上記実施例3の場合と異なる点は、第1冷却ロールよりなる金属支持体(5)の表面を、樹脂溶融物を流延する前にいわゆるオフラインで、第1冷却ロールよりなる金属支持体(5)表面の所定の位置において、エキシマ紫外線照射装置(22)により高エネルギー表面処理を施すことにより、第1冷却ロールよりなる金属支持体(5)の表面に表面処理膜を形成し、その後、金属支持体(5)表面に樹脂溶融物を流延して、実施した点にある。
According to this Example 3, the variation in transmittance at a wavelength of 600 nm when the obtained cellulose acetate propionate film was crossed Nicol was 50 × 10 −5 (%). The variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
Example 4
According to the method of the present invention, a cellulose acetate propionate film is produced in the same manner as in Example 3, except that the metal support (5) comprising the first cooling roll is different from that in Example 3. Before the resin melt is cast, the surface of the metal is subjected to high energy surface treatment by an excimer ultraviolet irradiation device (22) at a predetermined position on the surface of the metal support (5) made of the first cooling roll. Thus, the surface treatment film was formed on the surface of the metal support (5) made of the first cooling roll, and then the resin melt was cast on the surface of the metal support (5).
 なお、この実施例では、上記実施例2の場合と同様に、可塑剤であるトリメチロールプロパントリベンゾエート(融点85℃)の100gを、熱風発生機(商品名TSK-40、株式会社竹綱製作所製)の温風吹出し口にステンレス製シャーレを固定した中に投入し、これを熱風発生機から160℃の温風を吹出して加温、揮発させ、その蒸気を、保温材を巻いた10mのダクトを通して、エキシマ紫外線照射装置の方に送風し、添加剤の蒸気の存在下で、エキシマ紫外線照射処理を実施した。 In this example, as in Example 2 above, 100 g of the plasticizer trimethylolpropane tribenzoate (melting point: 85 ° C.) was added to a hot air generator (trade name TSK-40, Takezuna Manufacturing Co., Ltd.). Made of stainless steel in a hot air outlet, and heated and volatilized by blowing hot air of 160 ° C. from a hot air generator. Excimer ultraviolet irradiation was performed in the presence of the additive vapor in the presence of the additive vapor through the duct.
 こうして、エキシマ紫外線照射処理を、添加剤の蒸気、および常圧プラズマ照射処理に用いるガスの存在下で実施したところ、第1冷却ロール(金属支持体)(5)表面に、可塑剤等の添加剤の分解物を構成成分とする非常に緻密な表面処理膜が形成されていることが、確認された。 Thus, when the excimer ultraviolet irradiation treatment was performed in the presence of the vapor of the additive and the gas used for the atmospheric pressure plasma irradiation treatment, the plasticizer or the like was added to the surface of the first cooling roll (metal support) (5). It was confirmed that a very dense surface treatment film having a decomposition product of the agent as a constituent component was formed.
 この実施例4では、第1冷却ロール(金属支持体)(5)表面に形成された表面処理膜は、該処理膜と水との接触角15度を有するものであった。 In Example 4, the surface treatment film formed on the surface of the first cooling roll (metal support) (5) had a contact angle of 15 degrees between the treatment film and water.
 つぎに、第1冷却ロール(金属支持体)(5)上に樹脂溶融液を流延し、タッチロール(6)を用いて、5N/mmの線圧でフィルムを押圧した。 Next, a resin melt was cast on the first cooling roll (metal support) (5), and the film was pressed with a linear pressure of 5 N / mm using the touch roll (6).
 第1冷却ロール(金属支持体)(5)とタッチロール(6)に押圧されたウェブ(10)は、剥離され、第2冷却ロール(7)に搬送される。 The web (10) pressed by the first cooling roll (metal support) (5) and the touch roll (6) is peeled off and conveyed to the second cooling roll (7).
 この実施例4によれば、得られたセルロースアセテートプロピオネートフィルムのクロスニコル時の波長600nmでの透過率のバラツキは、30×10-5(%)であった。このクロスニコル透過率(CNT)のバラツキ幅は、フィルムのリタデーション値の指標となり、バラツキ幅が小さいほど、フィルムのリタデーション値も低くなる。 According to this Example 4, the dispersion of the transmittance at a wavelength of 600 nm at the time of crossed Nicol of the obtained cellulose acetate propionate film was 30 × 10 −5 (%). The variation width of the crossed Nicols transmittance (CNT) serves as an index of the retardation value of the film. The smaller the variation width, the lower the retardation value of the film.
 そして、このような表面処理膜の存在によって第1冷却ロール(金属支持体)(5)表面からのフィルムの離型性(剥離性)が著しく向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少した。 And by the presence of such a surface treatment film, the releasability (peelability) of the film from the surface of the first cooling roll (metal support) (5) is remarkably improved, and a very smooth peelability is obtained, The variation in the width direction of the peeling position decreased.
 第1冷却ロール(5)から剥離したフィルムは、引き続いて、実施例1の場合と同様に、次の第2冷却ロール(7)、第3冷却ロール(8)に順次、外接させて冷却固化し、剥離ロール(9)によって剥離し、引き続き製膜処理して、巻取り機(13)で、最終的に膜厚40μm、幅2000mmのセルロースアセテートプロピオネートフィルムを巻き取った。この条件にて、3日間連続して製膜を行った。 The film peeled from the first cooling roll (5) is then continuously circumscribed on the second cooling roll (7) and the third cooling roll (8) in the same manner as in Example 1, and then cooled and solidified. Then, the film was peeled off by a peeling roll (9), subsequently subjected to film forming treatment, and finally a cellulose acetate propionate film having a film thickness of 40 μm and a width of 2000 mm was wound up by a winder (13). Under these conditions, the film was formed continuously for 3 days.
 この実施例4では、第1冷却ロール(金属支持体)(5)の表面上から冷却後の流延膜を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、0.5(N/m)であった。
比較例1
 溶融流延製膜装置において、第1冷却ロール(金属支持体)(5)の表面に、常圧プラズマ装置あるいは紫外線照射装置よりなる高エネルギー照射処理装置を設置せずに、セルロースアセテートプロピオネートフィルムの製膜を、実施例1の場合と同じ材料を用いて行った。
In this Example 4, the minimum amount of increase in peeling force necessary to peel off the cast film after cooling from the surface of the first cooling roll (metal support) (5) is as follows: It was 0.5 (N / m) when 24 hours passed after film formation.
Comparative Example 1
In the melt casting film forming apparatus, cellulose acetate propionate is not provided on the surface of the first cooling roll (metal support) (5) without installing a high energy irradiation processing apparatus comprising an atmospheric pressure plasma apparatus or an ultraviolet irradiation apparatus. Film formation was performed using the same materials as in Example 1.
 この比較例1においては、第1冷却ロール(金属支持体)(5)表面と水との接触角は、98度であった。 In Comparative Example 1, the contact angle between the surface of the first cooling roll (metal support) (5) and water was 98 degrees.
 この比較例1では、得られたセルロースアセテートプロピオネートフィルムのクロスニコル時の波長600nmでの透過率のバラツキは、130×10-5(%)であり、フィルム幅手方向および長手方向のリタデーション(Re)値のバラツキも大きいものであった。 In Comparative Example 1, the obtained cellulose acetate propionate film had a transmittance variation of 130 × 10 −5 (%) at a wavelength of 600 nm when crossed Nicol, and retardation in the width direction and the longitudinal direction of the film. The variation in (Re) value was also large.
 さらに、この比較例1では、金属支持体(5)の表面上から冷却後の流延膜(10)を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、14.5(N/m)であった。 Furthermore, in this comparative example 1, the minimum increase in peel force necessary for peeling the cast film (10) after cooling from the surface of the metal support (5) is the same as that at the start of film formation. It was 14.5 (N / m) when 24 hours passed after the film formation.
 このように、比較例1によれば、製膜開始数時間後から、第1冷却ロール(5)からフィルムが剥がれる剥離位置が、上下に大きく変動し始め、約24時間後には、剥離位置が変動した際にフィルムに出来たと見られる幅手方向に伸びる筋状の変形が発生、これは目視でも確認することができ、品質劣化が著しいため、生産を停止して、1日程度の清掃作業を入れざるを得ず、生産性はかなり低いものとなった。
(偏光板の作製)
 つぎに、本発明の実施例1~4、および比較例1で作製したセルロースアセテートプロピオネートフィルムとを用いて、偏光板を作製した。
(偏光膜)
 まず、厚さ120μmの長尺のポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
(偏光板)
 ついで、上記偏光膜と、実施例1~4および比較例1で作製したセルロースアセテートプロピオネートフィルムとを、下記工程1~5に従って貼り合わせて偏光板を作製した。
Thus, according to Comparative Example 1, the peeling position where the film peels off from the first cooling roll (5) starts to fluctuate up and down after several hours from the start of film formation, and after about 24 hours, the peeling position becomes When it fluctuates, a line-like deformation extending in the width direction, which appears to have been produced, can be confirmed by visual inspection, and since quality deterioration is significant, production is stopped and cleaning work takes about a day. Productivity was considerably low.
(Preparation of polarizing plate)
Next, polarizing plates were produced using the cellulose acetate propionate films produced in Examples 1 to 4 of the present invention and Comparative Example 1.
(Polarizing film)
First, a long polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds, and then immersed in an aqueous solution at 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. . This was washed with water and dried to obtain a long polarizing film.
(Polarizer)
Next, the polarizing film and the cellulose acetate propionate film prepared in Examples 1 to 4 and Comparative Example 1 were bonded together according to the following steps 1 to 5 to prepare a polarizing plate.
 工程1:実施例1~4および比較例1で作製した長尺のセルロースアセテートプロピオネートフィルムを、2mol/Lの水酸化ナトリウム溶液に、温度50℃で、90秒間浸漬し、ついで水洗、乾燥させた。 Step 1: The long cellulose acetate propionate film prepared in Examples 1 to 4 and Comparative Example 1 was immersed in a 2 mol / L sodium hydroxide solution at a temperature of 50 ° C. for 90 seconds, then washed with water and dried. I let you.
 一方、市販の長尺のセルロースエステルフィルムを2mol/Lの水酸化ナトリウム溶液に、温度50℃で、90秒間浸漬し、ついで水洗、乾燥させた。 Meanwhile, a commercially available long cellulose ester film was immersed in a 2 mol / L sodium hydroxide solution at a temperature of 50 ° C. for 90 seconds, then washed with water and dried.
 工程2:上記の長尺の偏光膜を、固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒間浸漬した。 Step 2: The long polarizing film was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
 工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理した実施例1~4および比較例1の長尺のセルロースアセテートプロピオネートフィルムと、市販の長尺のセルロースエステルフィルムとで挟み込んで、積層配置した。 Step 3: Excess adhesive adhered to the polarizing film in Step 2 was lightly removed, and the long cellulose acetate propionate films of Examples 1 to 4 and Comparative Example 1 which were alkali-treated in Step 1 were commercially available. It was sandwiched with a long cellulose ester film and laminated.
 工程4:2つの回転するローラにて20~30N/cmの圧力で約、2m/minの速度で、これらのフィルムを張り合わせた。このとき気泡が入らないように注意して実施した。 Step 4: These films were laminated together at a speed of about 2 m / min at a pressure of 20-30 N / cm 2 with two rotating rollers. At this time, care was taken to prevent bubbles from entering.
 工程5:80℃の乾燥機中にて、工程4で作製したフィルム試料を2分間乾燥処理し、偏光板を作製した。
(液晶表示パネルの作製)
 市販の液晶表示パネル(NEC製カラー液晶ディスプレイ、MultiSync、LCD1525J、型名LA-1529HM)の最表面の偏光板を注意深く剥離し、上述した実施例1~4および比較例1の偏光板を、偏光方向を合わせて張り付けて、液晶表示パネルを作製した。
(偏光板の目視評価)
 上述したの評価を、下に示す方法で行った。
またこれらの光学フィルムを保護フィルムとして用いた偏光板の目視によるムラの観察を下記のように行ない、得られた結果を下記の表1に示した。
Step 5: The film sample produced in Step 4 was dried for 2 minutes in a dryer at 80 ° C. to produce a polarizing plate.
(Production of liquid crystal display panel)
The polarizing plate on the outermost surface of a commercially available liquid crystal display panel (NEC color liquid crystal display, MultiSync, LCD1525J, model name LA-1529HM) was carefully peeled off, and the polarizing plates of Examples 1 to 4 and Comparative Example 1 described above were polarized. A liquid crystal display panel was produced by pasting in the same direction.
(Visual evaluation of polarizing plate)
The evaluation described above was performed by the method shown below.
Moreover, the unevenness | visual_observation by visual observation of the polarizing plate which used these optical films as a protective film was performed as follows, and the obtained result was shown in following Table 1.
 上記のように実施例1~4および比較例1によるセルロースアセテートプロピオネートフィルムを用いた作製した各液晶表示パネルについて、複数の評価者で目視にて、正面および斜めから見たときの白っぽく見える色ムラを観察して、偏光板の評価とした。 Each liquid crystal display panel produced using the cellulose acetate propionate films according to Examples 1 to 4 and Comparative Example 1 as described above looks whitish when viewed from the front and obliquely by a plurality of evaluators. Color unevenness was observed and evaluated as a polarizing plate.
 ○:どの評価者も、色ムラが全く見えず
 △:評価者によってかすかに色ムラが見える場合があるが、
   製品としては使えるレベル
 ×:多くの評価者で、色ムラが確認でき、製品としては使用できないレベル
 なお、色ムラの評価と併せて、偏光板を20枚作製した後の、偏光板作製工程1のアルカリ鹸化処理液の汚れ具合も観察した。
○: None of the evaluators can see the color unevenness at all. △: The evaluator may slightly see the color unevenness.
Level that can be used as a product ×: Level at which many evaluators can confirm color unevenness and cannot be used as a product In addition to the evaluation of color unevenness, polarizing plate manufacturing process 1 after preparing 20 polarizing plates The degree of soiling of the alkali saponification solution was also observed.
 その結果、本発明の実施例1~4では、第1冷却ロール(金属支持体)(5)の表面近くに、常圧プラズマ照射装置(21)または紫外線照射装置(22)よりなる高エネルギー照射処理装置を設置して、該第1冷却ロール(5)表面に高エネルギー照射処理を施すことにより、金属支持体(5)表面に表面処理膜を形成し、その後、金属支持体(5)の表面に樹脂溶融液を流延することにより製造されたセルロースアセテートプロピオネートフィルムによれば、金属支持体(5)からのフィルムの離型性(剥離性)が向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少することから、セルロースアセテートプロピオネートフィルムは、クロスニコル時の波長600nmでの透過率のバラツキが大幅に低減するとともに、リタデーション(Re)値のバラツキが大幅に低減して、透明性、平面性に優れているものであった。さらに、本発明の方法で製造されたセルロースアセテートプロピオネートフィルムを偏光板保護フィルムとして用い、偏光板に加工した後でも、白っぽく見える色ムラが確認されなかったことから、フィルムの連続製膜が可能となり、生産性を大幅に上げることができた。 As a result, in Examples 1 to 4 of the present invention, high energy irradiation comprising an atmospheric pressure plasma irradiation device (21) or an ultraviolet irradiation device (22) is provided near the surface of the first cooling roll (metal support) (5). A processing device is installed, and a surface treatment film is formed on the surface of the metal support (5) by performing high energy irradiation treatment on the surface of the first cooling roll (5), and then the surface of the metal support (5). According to the cellulose acetate propionate film produced by casting a resin melt on the surface, the release property (peelability) of the film from the metal support (5) is improved, and very smooth peeling is achieved. The cellulose acetate propionate film greatly reduces the variation in transmittance at a wavelength of 600 nm at the time of crossed nicols because the fluctuation in the width direction of the peeling position is reduced. To, and variations in retardation (Re) value is greatly reduced, the transparency was achieved, and excellent flatness. Furthermore, even when the cellulose acetate propionate film produced by the method of the present invention was used as a polarizing plate protective film, and even after processing into a polarizing plate, color unevenness that looked whitish was not confirmed, It became possible, and productivity could be greatly increased.
 これに対し、比較例1では、金属支持体(5)からのフィルムの離型性(剥離性)が向上し、非常に滑らかな剥離性が得られ、剥離位置の幅手方向の変動が減少することから、セルロースアセテートプロピオネートフィルムは、クロスニコル時の波長600nmでの透過率のバラツキが大きく、リタデーション(Re)値のバラツキも大きくて、透明性、平面性に劣るものであった。 On the other hand, in Comparative Example 1, the release property (peelability) of the film from the metal support (5) is improved, a very smooth peelability is obtained, and the variation in the width direction of the peel position is reduced. Therefore, the cellulose acetate propionate film had a large variation in transmittance at a wavelength of 600 nm during crossed Nicol, a large variation in retardation (Re) value, and was inferior in transparency and flatness.
 しかも、比較例1の方法で製造されたセルロースアセテートプロピオネートフィルムを偏光板保護フィルムとして用い、偏光板に加工した後でも、偏光フィルムによるクロスニコルの状態では白い筋がはっきり見え、品質劣化が著しいため、生産を停止して、1日程度の清掃作業を入れざるを得ず、生産性はかなり低いものとなった。 In addition, the cellulose acetate propionate film produced by the method of Comparative Example 1 was used as a polarizing plate protective film, and even after processing into a polarizing plate, white streaks were clearly seen in the crossed Nicol state with the polarizing film, and quality degradation was observed. Since it was remarkable, production had to be stopped and cleaning work for about one day had to be carried out, and the productivity was considerably low.
 なお、本発明による光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置を構成する各構成の細部構成および細部動作に関しては、本発明の趣旨を逸脱することのない範囲で適宜変更可能である。 In addition, the manufacturing method of the optical film according to the present invention, the optical film, the polarizing plate, and the detailed configuration and the detailed operation of each component constituting the display device can be appropriately changed without departing from the spirit of the present invention. is there.
 1:押出し機
 2:フィルター
 3:スタチックミキサー
 4:流延ダイ
 5:第1冷却ロール
 6:タッチロール
 7:第2冷却ロール
 8:第3冷却ロール
 9:剥離ロール
 10:ウェブ(フィルム)
 11:テンター
 12:巻取り機
 21:常圧プラズマ照射装置
 22:エキシマ紫外線照射装置
 a,b:電極
 g:反応ガス
 d:表面処理装置とフィルムとの間隙
 h:プラズマガス吹き出しスリット間隙
 p:パージガス
 r:反射板
 u:紫外線ランプ
 q:石英ガラス
1: Extruder 2: Filter 3: Static mixer 4: Casting die 5: First cooling roll 6: Touch roll 7: Second cooling roll 8: Third cooling roll 9: Peeling roll 10: Web (film)
11: Tenter 12: Winder 21: Atmospheric plasma irradiation device 22: Excimer ultraviolet irradiation device a, b: Electrode g: Reaction gas d: Gap between surface treatment device and film h: Plasma gas blowing slit gap p: Purge gas r: reflector u: ultraviolet lamp q: quartz glass

Claims (15)

  1. 溶融流延製膜法による光学フィルムの製造方法であって、熱可塑性樹脂及び添加剤を含む樹脂溶融液を金属支持体の表面に流延して流延膜を形成する工程と、前記流延膜を冷却固化させた後に、金属支持体から剥離する工程と、前記添加剤の蒸気、および常圧プラズマ照射またはエキシマ紫外線照射に用いるガスの存在下で実施する、常圧プラズマ照射処理またはエキシマ紫外線照射処理により、前記金属支持体の略全幅にわたり、前記金属支持体の表面に表面処理膜を形成する工程と、を有することを特徴とする、光学フィルムの製造方法。 A method for producing an optical film by a melt casting film forming method, comprising: casting a resin melt containing a thermoplastic resin and an additive on a surface of a metal support to form a casting film; and After the film is cooled and solidified, it is peeled off from the metal support, and is carried out in the presence of the additive vapor and a gas used for normal pressure plasma irradiation or excimer ultraviolet irradiation. And a step of forming a surface treatment film on the surface of the metal support over substantially the entire width of the metal support by irradiation treatment.
  2. 前記金属支持体の表面に表面処理膜を形成する工程は、前記樹脂溶融液を前記金属支持体の表面に流延する前に行い、予め前記金属支持体の表面に表面処理膜を形成した後、前記流延膜を形成することを特徴とする、請求項1に記載の光学フィルムの製造方法。 The step of forming a surface treatment film on the surface of the metal support is performed before casting the resin melt on the surface of the metal support, and after forming the surface treatment film on the surface of the metal support in advance. The method for producing an optical film according to claim 1, wherein the cast film is formed.
  3. 前記金属支持体の表面に表面処理膜を形成する工程は、前記金属支持体の表面の前記流延膜の非通過区間において、前記樹脂溶融液を前記金属支持体の表面に流延する工程と同時に行うことを特徴とする、請求項1に記載の光学フィルムの製造方法。 The step of forming a surface treatment film on the surface of the metal support includes the step of casting the resin melt on the surface of the metal support in a non-passing section of the casting film on the surface of the metal support. The method for producing an optical film according to claim 1, which is performed simultaneously.
  4. 前記常圧プラズマ照射処理または前記エキシマ紫外線照射処理を行う位置は、前記添加剤の蒸気が多く存在する、前記樹脂溶液が前記金属支持体の表面に流延する位置の近傍であることを特徴とする、請求項2に記載の光学フィルムの製造方法。 The position where the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment is performed is near the position where the vapor of the additive is present and the resin solution is cast on the surface of the metal support. The method for producing an optical film according to claim 2.
  5. 前記蒸気が、可塑剤または紫外線吸収剤の蒸気であることを特徴とする、請求項1から4の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 4, wherein the vapor is a vapor of a plasticizer or an ultraviolet absorber.
  6. 前記常温プラズマ照射処理は、処理条件として、電極間に供給する電力が、1W/cm以上、50W/cm以下(放電が起こる範囲の面積)であることを特徴とする、請求項1から5の何れか1項に記載の光学フィルムの製造方法。 The room temperature plasma irradiation treatment is characterized in that, as a treatment condition, the power supplied between the electrodes is 1 W / cm 2 or more and 50 W / cm 2 or less (area in which discharge occurs). 6. The method for producing an optical film according to any one of 5 above.
  7. 前記エキシマ紫外線照射処理は、処理条件として、主波長が172nmの紫外線を1~3,000mJ/cmの光量で照射することを特徴とする、請求項1から5の何れか1項に記載の光学フィルムの製造方法。 6. The excimer ultraviolet irradiation treatment according to claim 1, wherein, as a processing condition, ultraviolet light having a dominant wavelength of 172 nm is irradiated with a light amount of 1 to 3,000 mJ / cm 2 . Manufacturing method of optical film.
  8. 前記表面処理膜が、該表面処理膜と水との接触角5~40度を有するものであることを特徴とする、請求項1から7の何れか1項に記載の光学フィルムの製造方法。 8. The method for producing an optical film according to claim 1, wherein the surface treatment film has a contact angle of 5 to 40 degrees between the surface treatment film and water.
  9. 前記熱可塑性樹脂が、セルロースエステル系樹脂であることを特徴とする、請求項1から8の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 8, wherein the thermoplastic resin is a cellulose ester resin.
  10. 前記金属支持体が、製膜用のエンドレスベルト、ドラム、またはロールの何れかであることを特徴とする、請求項1から9の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 9, wherein the metal support is any one of an endless belt, a drum, and a roll for film formation.
  11. 前記金属支持体の表面上から冷却後の流延膜を剥離するのに必要な最低の剥離力の増加量が、製膜開始時と、製膜後24時間経過時とで、0.1~2.0(N/m)の範囲内にあることを特徴とする、請求項1から10の何れか1項に記載の光学フィルムの製造方法。 The minimum amount of increase in peeling force necessary to peel the cast film after cooling from the surface of the metal support is 0.1 to 2 at the start of film formation and after 24 hours from film formation. It exists in the range of 2.0 (N / m), The manufacturing method of the optical film of any one of Claim 1 to 10 characterized by the above-mentioned.
  12. 請求項1から11の何れか1項に記載の光学フィルムの製造方法で製造されたことを特徴とする、光学フィルム。 An optical film manufactured by the method for manufacturing an optical film according to any one of claims 1 to 11.
  13. 前記光学フィルムのクロスニコル時の波長600nmでの透過率のバラツキが、2×10-5~60×10-5(%)の範囲内にあることを特徴とする、請求項12に記載の光学フィルム。 13. The optical system according to claim 12, wherein the optical film has a variation in transmittance at a wavelength of 600 nm in a crossed Nicol range of 2 × 10 −5 to 60 × 10 −5 (%). the film.
  14. 請求項12または13に記載の光学フィルムを、少なくとも一方の面に有することを特徴とする、偏光板。 A polarizing plate comprising the optical film according to claim 12 or 13 on at least one surface.
  15. 請求項14に記載の偏光板を用いることを特徴とする、表示装置。 A display device comprising the polarizing plate according to claim 14.
PCT/JP2009/063735 2008-08-07 2009-08-03 Optical film, process for producing same, polarizer employing optical film, and display device WO2010016456A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523846A JPWO2010016456A1 (en) 2008-08-07 2009-08-03 Optical film, manufacturing method thereof, polarizing plate using optical film, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008203864 2008-08-07
JP2008-203864 2008-08-07

Publications (1)

Publication Number Publication Date
WO2010016456A1 true WO2010016456A1 (en) 2010-02-11

Family

ID=41663673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063735 WO2010016456A1 (en) 2008-08-07 2009-08-03 Optical film, process for producing same, polarizer employing optical film, and display device

Country Status (3)

Country Link
JP (1) JPWO2010016456A1 (en)
KR (1) KR20110039549A (en)
WO (1) WO2010016456A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160796A (en) * 2007-12-29 2009-07-23 Konica Minolta Opto Inc Optical film, its manufacturing method, and polarizing plate and display using the film
CN102331592A (en) * 2010-07-14 2012-01-25 鸿富锦精密工业(深圳)有限公司 Optical film manufacturing device and manufacturing method
WO2012056664A1 (en) * 2010-10-27 2012-05-03 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizing plate using optical film, and display device
WO2012077317A1 (en) * 2010-12-10 2012-06-14 コニカミノルタオプト株式会社 Optical film production method, optical film, polarizing plate, and liquid crystal display device
WO2012176375A1 (en) * 2011-06-20 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Method for producing optical film
WO2024083725A1 (en) * 2022-10-18 2024-04-25 Reifenhäuser GmbH & Co. KG Maschinenfabrik Film processing line for producing a plastic film web and method for cleaning components of film processing lines for producing a film web
WO2024083548A1 (en) * 2022-10-18 2024-04-25 Reifenhäuser GmbH & Co. KG Maschinenfabrik Film processing line for producing a plastic film web and method for cleaning components of film processing lines for producing a film web

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315305A (en) * 1997-05-20 1998-12-02 Mitsubishi Heavy Ind Ltd Organic deposit removing apparatus for roll surface
JP2007253476A (en) * 2006-03-23 2007-10-04 Konica Minolta Opto Inc Roll cleaning method and roll cleaning apparatus in manufacturing process of optical film
JP2008254223A (en) * 2007-03-31 2008-10-23 Konica Minolta Opto Inc Optical film, its manufacturing method, polarization plate using optical film and display device
JP2008307821A (en) * 2007-06-15 2008-12-25 Konica Minolta Opto Inc Optical film, manufacturing method and manufacturing apparatus for the same, polarizing plate using optical film, and display unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315305A (en) * 1997-05-20 1998-12-02 Mitsubishi Heavy Ind Ltd Organic deposit removing apparatus for roll surface
JP2007253476A (en) * 2006-03-23 2007-10-04 Konica Minolta Opto Inc Roll cleaning method and roll cleaning apparatus in manufacturing process of optical film
JP2008254223A (en) * 2007-03-31 2008-10-23 Konica Minolta Opto Inc Optical film, its manufacturing method, polarization plate using optical film and display device
JP2008307821A (en) * 2007-06-15 2008-12-25 Konica Minolta Opto Inc Optical film, manufacturing method and manufacturing apparatus for the same, polarizing plate using optical film, and display unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160796A (en) * 2007-12-29 2009-07-23 Konica Minolta Opto Inc Optical film, its manufacturing method, and polarizing plate and display using the film
CN102331592A (en) * 2010-07-14 2012-01-25 鸿富锦精密工业(深圳)有限公司 Optical film manufacturing device and manufacturing method
WO2012056664A1 (en) * 2010-10-27 2012-05-03 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizing plate using optical film, and display device
WO2012077317A1 (en) * 2010-12-10 2012-06-14 コニカミノルタオプト株式会社 Optical film production method, optical film, polarizing plate, and liquid crystal display device
WO2012176375A1 (en) * 2011-06-20 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Method for producing optical film
WO2024083725A1 (en) * 2022-10-18 2024-04-25 Reifenhäuser GmbH & Co. KG Maschinenfabrik Film processing line for producing a plastic film web and method for cleaning components of film processing lines for producing a film web
WO2024083548A1 (en) * 2022-10-18 2024-04-25 Reifenhäuser GmbH & Co. KG Maschinenfabrik Film processing line for producing a plastic film web and method for cleaning components of film processing lines for producing a film web

Also Published As

Publication number Publication date
JPWO2010016456A1 (en) 2012-01-26
KR20110039549A (en) 2011-04-19

Similar Documents

Publication Publication Date Title
JP5023837B2 (en) Cellulose ester film, method for producing cellulose ester film, polarizing plate using the same, and liquid crystal display device
WO2010016456A1 (en) Optical film, process for producing same, polarizer employing optical film, and display device
JPWO2007138910A1 (en) Polarizing plate protective film and manufacturing method thereof, polarizing plate and manufacturing method thereof, liquid crystal display device
JPWO2007145090A1 (en) Cellulose ester film, method for producing cellulose ester film, polarizing plate, and liquid crystal display device
JP5194790B2 (en) Cellulose ester film and manufacturing method thereof, optical film, polarizing plate and liquid crystal display device
JP4957727B2 (en) Manufacturing method of optical film
JP5093227B2 (en) Optical film, optical film manufacturing method, polarizing plate, and liquid crystal display device
JP4747985B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP5182098B2 (en) Optical film, and polarizing plate and liquid crystal display device using the same
WO2010001677A1 (en) Optical film, manufacturing method for optical film, polarizing plate, and liquid crystal display device using same
WO2012176375A1 (en) Method for producing optical film
JP2007216601A (en) Optical film, its manufacturing method, polarizing plate and liquid crystal display device
JP2007223056A (en) Optical film, its manufacturing method, polarizing plate using it, and liquid crystal display
WO2012077317A1 (en) Optical film production method, optical film, polarizing plate, and liquid crystal display device
JP4857862B2 (en) Method for producing optical cellulose ester film for display, optical cellulose ester film for display, polarizing plate and liquid crystal display device
JP2010185914A (en) Optical film, method for manufacturing optical film, polarizing plate, and liquid crystal display device
JP4844199B2 (en) Optical film manufacturing equipment
JP2007056093A (en) Optical cellulose ester film for display, method for manufacturing the same, polarizing plate and liquid crystal display
JP4770620B2 (en) Optical film, polarizing plate and liquid crystal display device using the same, and method for producing optical film
JP2008087241A (en) Optical film, its manufacturing method, protective film for polarization plate using it and liquid crystal display device
JP2007144932A (en) Manufacturing process of cellulose easter film, cellulose easter film, optical film, polarizing plate and display
WO2013031540A1 (en) Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
JP2009234060A (en) Optical film, manufacturing method for it, polarizer using optical film and display device
JP2009179732A (en) Method for producing cellulose ester film, cellulose ester film, polarizing plate, and liquid crystal display
JP2008224720A (en) Optical film, its manufacturing method, polarizing plate, its manufacturing method, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523846

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117002673

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804939

Country of ref document: EP

Kind code of ref document: A1