WO2010016420A1 - Power distribution system - Google Patents

Power distribution system Download PDF

Info

Publication number
WO2010016420A1
WO2010016420A1 PCT/JP2009/063553 JP2009063553W WO2010016420A1 WO 2010016420 A1 WO2010016420 A1 WO 2010016420A1 JP 2009063553 W JP2009063553 W JP 2009063553W WO 2010016420 A1 WO2010016420 A1 WO 2010016420A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
distribution path
output
solar cell
Prior art date
Application number
PCT/JP2009/063553
Other languages
French (fr)
Japanese (ja)
Inventor
小新 博昭
卓也 香川
清隆 竹原
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2010016420A1 publication Critical patent/WO2010016420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/44Synchronising a generator for connection to a network or to another generator with means for ensuring correct phase sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power distribution system that distributes AC power and DC power.
  • a conventional power distribution system that distributes AC power and DC power to a load installed in a building (see Japanese Utility Model Publication No. 4-128024).
  • a conventional power distribution system includes a distribution board and an AC power outlet.
  • the AC power outlet is provided with a DC output power terminal.
  • a transformer and a rectifier are disposed in the distribution board.
  • the transformer converts an AC voltage of 100V or 200V into three types of AC voltages of 6V, 3V, and 1.5V.
  • the rectifier rectifies the AC voltage obtained from the transformer and generates three types of DC voltages of 6V, 3V, and 1.5V.
  • Three types of DC voltages generated in the distribution board are applied to the DC output power supply terminal.
  • This in-house power generation system is a distributed power source that converts DC power output from a DC power generation facility into a DC power source using a power regulator.
  • a distributed power transmission system and a commercial power supply (AC power system) transmission system are interconnected to perform grid interconnection.
  • the DC load priority is set to 1 and the AC load priority is set to 2, and the DC power from the solar cells and fuel cells is distributed according to this priority.
  • the priority of the AC power system is set to No. 3. Furthermore, even when the power used by the DC load or the AC load fluctuates, it is necessary to increase or decrease the supply amount of the DC power to each in the above priority order.
  • An object of the present invention is to provide a power distribution system capable of efficiently distributing AC power and DC power and improving power efficiency.
  • a power distribution system includes a solar cell, a power regulator connected to an AC power distribution path for supplying first AC power from an AC power system to an AC load driven by AC power, and DC power.
  • a DC / DC converter connected to a DC distribution path for supplying power to a driven DC load; and a distribution path for distributing the output power of the solar cell to the power regulator and the DC / DC converter.
  • the power regulator includes an inverter and a reverse power flow circuit. The inverter generates a second AC voltage having a phase synchronized with a phase of the first AC voltage of the AC power system using the DC power obtained from the solar cell through the distribution path, and the second AC voltage.
  • the reverse power flow circuit is configured to adjust the magnitude of the second AC power so that surplus power of the solar cell is reversely flowed to the AC power system.
  • the DC / DC converter generates a supply voltage composed of a DC voltage of a predetermined value using DC power obtained from the solar cell through the distribution path, and supplies the supply voltage to the DC distribution path to thereby generate the DC voltage. It is configured to supply DC power to the distribution path.
  • the DC power can be supplied to the DC load by the DC / DC converter without converting the AC power from the power regulator to DC power. Therefore, DC power can be distributed efficiently.
  • the DC power from the solar cell is distributed to the power regulator and the DC / DC converter. Therefore, power from the solar cell is preferentially supplied to the DC load.
  • power from the solar cell is supplied to the AC load.
  • power from the solar cell is supplied to the AC power system. Furthermore, even if the DC load or the AC load fluctuates, the DC power from the solar cell is automatically distributed to the DC load, the AC load, and the AC power system. Therefore, power efficiency is improved.
  • the power regulator includes an output control circuit that adjusts the magnitude of the second AC power so that the DC power output from the solar cell is maximized.
  • the DC / DC converter includes a constant voltage control circuit that maintains the supply voltage constant.
  • the DC power from the solar cell can be maximized.
  • Another power distribution system of the present invention includes a fuel cell, a power regulator connected to an AC power distribution path for supplying first AC power from an AC power system to an AC load driven by AC power, and DC power.
  • a DC / DC converter connected to a DC distribution path for supplying power to a DC load driven by the power supply, and a distribution path for distributing the output power of the fuel cell to the power regulator and the DC / DC converter.
  • the power regulator uses the DC power obtained from the fuel cell through the distribution path to generate a second AC voltage having a phase synchronized with the phase of the first AC voltage of the AC power system. It is comprised so that 2nd alternating current power may be supplied to the said AC power distribution path by giving an AC voltage to the said AC power distribution path.
  • the DC / DC converter generates a supply voltage composed of a DC voltage of a predetermined value using DC power obtained from the fuel cell through the distribution path, and supplies the supply voltage to the DC distribution path. It is configured to supply DC power to the distribution path.
  • the DC power can be supplied to the DC load by the DC / DC converter without converting the AC power from the power regulator to DC power. Therefore, DC power can be distributed efficiently. Moreover, the DC power from the fuel cell is distributed to the power regulator and the DC / DC converter. Therefore, even if a load change occurs, the electric power from the fuel cell is automatically distributed to the DC load and the AC load. Therefore, power efficiency is improved.
  • the DC / DC converter includes a constant voltage control circuit for maintaining the supply voltage constant.
  • DC power output from the fuel cell is preferentially supplied to the DC load via the DC / DC converter. Further, when the demand power of the DC load and the AC load exceeds the power from the fuel cell, the power supplied from the AC power system to the AC load by the power regulator increases. As a result, the stability of power supply against load fluctuation is improved.
  • Still another power distribution system includes a solar cell, a fuel cell, and a first AC connected to an AC power distribution path for supplying first AC power from an AC power system to an AC load driven by AC power.
  • a first distribution path for distributing to the DC / DC converter and a second distribution path for distributing the output power of the fuel cell to the second power regulator and the DC / DC converter.
  • the first power regulator includes an inverter and a reverse power flow circuit.
  • the inverter generates a second AC voltage having a phase synchronized with a phase of the first AC voltage of the AC power system using the DC power obtained from the solar cell through the first distribution path, and the second AC voltage. It is comprised so that 2nd alternating current power may be supplied to the said AC power distribution path by giving an AC voltage to the said AC power distribution path.
  • the reverse power flow circuit is configured to adjust the magnitude of the second AC power so that surplus power of the solar cell is reversely flowed to the AC power system.
  • the second power regulator generates a third AC voltage having a phase synchronized with a phase of the first AC voltage using DC power obtained from the fuel cell through the second distribution path, and It is comprised so that 3rd alternating current power may be supplied to the said AC distribution path by giving an AC voltage to the said AC distribution path.
  • the DC / DC converter uses a DC power obtained from the solar cell through the first distribution path and a DC power obtained from the fuel cell through the second distribution path to supply a supply voltage composed of a predetermined DC voltage. It is configured to generate and supply DC power to the DC distribution path by applying the supply voltage to the DC distribution path.
  • the DC power can be supplied to the DC load by the DC / DC converter without converting the AC power from the power regulators to DC power. Therefore, DC power can be distributed efficiently.
  • the DC power from the solar cell is distributed to the power regulator and the DC / DC converter. Therefore, power from the solar cell is preferentially supplied to the DC load.
  • power from the solar cell is supplied to the AC load.
  • power from the solar cell is supplied to the AC power system. Furthermore, even if the DC load or the AC load fluctuates, the DC power from the solar cell is automatically distributed to the DC load, the AC load, and the AC power system.
  • the DC power from the fuel cell is distributed to the power regulator and the DC / DC converter.
  • the first power regulator includes an output control circuit that adjusts the magnitude of the second AC power so that the DC power output from the solar cell is maximized.
  • the DC / DC converter includes a constant voltage control circuit that maintains the supply voltage constant.
  • the DC power from the solar cell can be maximized.
  • FIG. 1 is a schematic diagram of a power distribution system according to a first embodiment.
  • (A), (b) is operation
  • FIG. It is explanatory drawing of the output characteristic of a fuel cell. It is the schematic of the power distribution system of Embodiment 3. It is operation
  • the power distribution system according to the present invention can be applied not only to a detached house but also to a building such as each dwelling unit of an apartment house or an office.
  • the power distribution system of the present embodiment includes a solar cell 10, a relay terminal box (also referred to as “connection box”) 20, a power conditioner (power conditioner) 30, and a DC / DC converter ( Converter) 40, a distribution board (AC distribution board) 50, and a distribution path 60 that distributes the DC power output from the solar cell 10 to the power regulator 30 and the converter 40.
  • the power conditioner 30 is connected through the distribution board 50 to an AC distribution path 70 for supplying AC power (first AC power) from an AC power system (commercial power) AC to an AC load 80 driven by AC power. Is done.
  • the converter 40 is connected to a DC distribution path 71 for supplying power to a DC load 81 driven by DC power.
  • the solar cell 10 includes a plurality (three in the illustrated example) of solar cell modules 101.
  • Each solar cell module 101 has a plurality (8 in the illustrated example) of solar cells 102.
  • the solar battery cell 102 is enclosed in an envelope (not shown).
  • Such a solar cell 10 is installed on the roof of a house, for example.
  • Each solar cell module 101 is connected to the relay terminal box 20 by an output cable 103.
  • the relay terminal box 20 is a sealed box in which a plurality of string output sides and load sides are relayed with terminals, and a backflow prevention element, a DC switch, etc. are accommodated as required (see JIS C8960).
  • the relay terminal box 20 combines the DC outputs from the solar cell modules 101 into one.
  • the power regulator 30 includes a boost chopper circuit 301, an inverter 302, an inverter control circuit (control circuit) 303, and a protection device (system interconnection protection device) 304.
  • the step-up chopper circuit 301 generates a DC voltage of a predetermined value using the DC output obtained from the solar cell 10 via the distribution path 60.
  • the inverter 302 converts the DC voltage obtained from the boost chopper circuit 301 into an AC voltage (second AC voltage) having a phase synchronized with the phase of the AC voltage (first AC voltage) of the AC power system AC.
  • the inverter 302 supplies the second AC voltage to the output line 305.
  • the output line 305 is drawn into the box of the distribution board 50.
  • the output line 305 is electrically connected to the AC power system AC within the box of the distribution board 50. Thereby, the solar cell 10 is paralleled in AC power system AC.
  • the inverter 302 generates the second AC voltage having a phase synchronized with the phase of the first AC voltage of the AC power system AC using the DC power obtained from the solar cell 10 through the distribution path 60.
  • the inverter 302 supplies AC power (second AC power) to the AC distribution path 71 by applying the second AC voltage to the AC distribution path 71.
  • the control circuit 303 adjusts the magnitude of the second AC power by controlling the inverter 302.
  • the control circuit 303 causes the operating point of the solar cell 10 to follow the maximum output point of the solar cell 10 that changes due to changes in the output voltage and output current of the solar cell 10 due to changes in temperature of the solar cell 10 and changes in solar radiation intensity.
  • Maximum output tracking control MPPT control
  • the control circuit 303 functions as an output control circuit that adjusts the magnitude of the second AC power from the inverter 302 so that the DC power output from the solar cell 10 is maximized.
  • control circuit 303 functions as a reverse power flow circuit that adjusts the magnitude of the second AC power from the inverter 302 so that the surplus of the DC power from the solar cell 10 flows back to the AC power system AC.
  • the protection device 304 monitors the system voltage and gives a command to the control circuit 303 to stop the maximum output follow-up control when it rises above an appropriate value. As a result, the output of the inverter 302 is reduced, and as a result, an increase in the system voltage is suppressed.
  • a curve F11 in FIG. 2A shows the output characteristics of the solar cell 10 under certain solar radiation conditions.
  • the electric power P11 is electric power (demand electric power of the DC load 81) supplied from the converter 40 to the DC load 81 via the DC distribution path 71.
  • the operating point X11 of the solar cell 10 when the control circuit 303 is in the initial state is determined by the power P1.
  • the magnitude of the second AC power is adjusted so that the operating point of the solar cell 10 coincides with the maximum output point X12.
  • the operating point of the solar cell 10 coincides with the maximum output point X12 of the output characteristics (curve F11), and the power of the solar cell 10 becomes maximum (maximum power P12).
  • the difference (P12 ⁇ P11) between the maximum power P12 and the DC power P11 is supplied to the AC load 80 via the AC distribution path 70.
  • the second AC power (P12-P11) that is the power supplied to the power regulator 30 is lower than the power consumption of the AC load 80, the first AC power from the AC power system AC passes through the AC distribution path 70. To the AC load 80.
  • the second AC power (P12-P11) exceeds the power consumption of the AC load 80, the surplus of the second AC power (P12-P11) flows backward to the AC power system AC.
  • the solar radiation becomes weak and the output characteristics of the solar cell 10 change from the curve F11 to the curve F12 as shown in FIG. 2 (b).
  • the maximum power (maximum output power) P13 of the solar cell 10 exceeds the power (DC demand power) P11.
  • the control circuit 302 shifts the operating point from X12 to X13 and decreases the output of the solar cell 10. Thereafter, the control circuit 302 performs maximum output follow-up control again, thereby matching the operating point of the solar cell 10 with the operating point (maximum output point) X14 that matches the peak of the output characteristics (curve B). Therefore, the power of the solar cell 10 becomes the maximum (maximum power P13). Even when the electric power P11 fluctuates, the output of the solar cell 1 is maximized when the control circuit 302 performs the maximum output follow-up control again in the same manner as when the amount of solar radiation is changed.
  • the DC load 81 may be supplied with power from an auxiliary power source (storage battery or the like) provided separately.
  • the power regulator 30 converts the DC power output from the solar cell 10 into AC power (second AC power) synchronized with the phase of the AC power system AC, and converts the second AC power into the AC power system. Supply to AC.
  • the distribution board 50 includes a main breaker (not shown) and a plurality of branch breakers (not shown) in a box (not shown) with a door, similar to a so-called residential distribution board (housing board).
  • the power supply terminal of the main breaker is connected to the AC power system AC.
  • the power supply terminal of each branch breaker is connected to the load terminal of the main breaker via a conductive bar (not shown).
  • An AC distribution path 70 is connected to the load terminal of the branch breaker.
  • the first AC power from the AC power system AC and the second AC power from the power regulator 30 are supplied to the AC load 80 in the home via the AC distribution path 70.
  • the distribution board 50 branches the 2nd alternating current power output from the power regulator 30, and distributes it to the alternating current load 81 in a house via a some branch breaker.
  • the AC distribution path 70 is provided with an outlet (not shown) for connecting the AC load 80.
  • the converter 40 converts the voltage level of the DC power output from the solar cell 10 into a desired voltage level. That is, the converter 40 uses the direct current power obtained from the solar cell 10 through the distribution path 60 to generate a supply voltage including a predetermined direct current voltage.
  • the converter 40 supplies DC power to the DC distribution path 71 by applying a supply voltage to the DC distribution path 71.
  • the converter 40 is a switching regulator, for example.
  • the converter 40 also includes a constant voltage control circuit 401 that keeps the supply voltage constant.
  • the constant voltage control circuit 401 performs control (feedback control) to detect the output voltage (that is, supply voltage) of the converter 40 and to increase or decrease the output voltage so that the detected output voltage matches the target voltage.
  • the converter 40 converts the voltage level of the DC power output from the solar cell 10 into a desired voltage level by the constant voltage control method.
  • the DC power from the converter 40 is supplied to the DC load 81 via the DC distribution path 71.
  • the DC distribution path 71 is provided with an outlet (not shown) for connecting the DC load 81.
  • the AC load 80 is supplied to the AC load 80 from the AC power system AC (first AC power) or the power regulator 30 via the distribution board 50 as in the conventional case.
  • Distribute AC power (second AC power) second AC power
  • the DC load 81 is supplied with DC power from the solar cell 10 that has been converted to a constant voltage by the converter 40. Therefore, it is not necessary to convert AC power from the power regulator 30 into DC power, and DC power can be distributed efficiently.
  • the power regulator 30 and the converter 40 are connected in parallel to the solar cell 10. For this reason, when the amount of solar radiation or the demand power of the DC load 81 varies, the distribution of the power from the solar cell 10 to the DC load 81 and the AC load 80 is automatically adjusted. As a result, power from the solar cell 10 is preferentially supplied to the DC load 81. Next, power from the solar cell 10 is supplied to the AC load 80. Finally, the power from the solar cell 10 is supplied to the AC power system AC. Even when the DC load 81 or the AC load 80 fluctuates, the power from the solar cell 10 is automatically distributed to the DC load 81, the AC load 80, and the AC power system AC. As a result, power efficiency is improved.
  • the solar cell 10 can be used with maximum efficiency even if the amount of solar radiation and the demand power of the DC load 81 fluctuate.
  • the power distribution system of the present embodiment converts the output power of the fuel cell 11, the power regulator 31, the converter 40, the distribution board 50 ⁇ / b> A, and the fuel cell 11 with the power regulator 31. And a distribution path 61 that distributes to the container 40.
  • the power regulator 31 is connected to the AC distribution path 70 through the distribution board 50A.
  • the converter 40 is connected to the DC distribution path 71.
  • symbol is attached
  • the power distribution system of the present embodiment includes a supply amount adjusting device 90 that adjusts the amount of fuel supplied to the fuel cell 11, and an output control device 91 that controls the supply amount adjusting device 90 and the power adjuster 31.
  • the fuel cell 11 is, for example, a solid polymer type.
  • the fuel cell 11 continuously generates power by an electrochemical reaction between fuel (hydrogen) obtained by reforming city gas or natural gas and oxidant (oxygen).
  • Curves F21, F22, and F23 in FIG. 4 indicate output characteristics (voltage-power characteristics) of the fuel cell 11. As the amount of fuel supplied increases, the output characteristics change from the curve F21 to the curve F22 and from the curve F22 to the curve F23, and the output (generated power) increases. Therefore, the power generation amount (output characteristic) of the fuel cell 11 can be increased or decreased by adjusting the amount of fuel supplied to the fuel cell 11 from the supply amount adjusting device 90.
  • the distribution board 50A is different from the distribution board 50 of the first embodiment in that it includes a current sensor 501.
  • the current sensor 501 is configured to detect a system current (a current amount supplied from the AC power system AC).
  • the power regulator 31 includes a step-up chopper circuit 311, an inverter 312, an inverter control circuit (control circuit) 313, and a protection device (system interconnection protection device) 314.
  • the step-up chopper circuit 311 generates a DC voltage having a predetermined value by using the DC output obtained from the fuel cell 11 through the distribution path 61.
  • the inverter 312 converts the DC voltage obtained from the step-up chopper circuit 311 into an AC voltage (second AC voltage) having a phase synchronized with the phase of the first AC voltage of the AC power system AC.
  • the inverter 312 supplies the second AC voltage to the output line 315.
  • the output line 315 is drawn into the box of the distribution board 50A.
  • the output line 315 is electrically connected to the AC power system AC within the box of the distribution board 50A. Thereby, the fuel cell 11 is arranged in parallel with the AC power system AC.
  • the inverter 312 generates a second AC voltage having a phase synchronized with the phase of the first AC voltage of the AC power system AC using the DC power obtained from the fuel cell 11 through the distribution path 61.
  • the inverter 312 supplies the second AC power to the AC distribution path 70 by applying the second AC voltage to the AC distribution path 70.
  • the control circuit 313 controls the inverter 312 to adjust the magnitude of the second AC power.
  • the control circuit 313 is configured to adjust the magnitude of the second AC power based on the instruction value from the output control device 91.
  • the protection device 314 monitors the system voltage and gives a command to the control circuit 313 when the system voltage rises above an appropriate value, and reduces the output of the inverter 312 so that the system voltage does not rise above the appropriate value.
  • the output control device 91 monitors the system current with the current sensor 501.
  • the output control device 91 controls the power adjuster 31 and the supply amount adjusting device 91 so that the system current is always zero.
  • the output control device 91 gives an instruction value to the power regulator 31 so that the system current becomes zero when the output of the fuel cell 11 reaches the maximum output power.
  • the output power of the fuel cell 11 is the power demand of the AC load 80 by the output control by the power regulator 31 and the output control of the fuel cell 11 by the output control device 91 (control for adjusting the fuel supply amount).
  • the demand power of the DC load 81 is made equal to the sum.
  • the output characteristic of the fuel cell 11 at a certain time is a curve F21.
  • the power adjuster 31 performs output control according to an instruction from the output control device 91. If the output of the current sensor 501 becomes zero (that is, the system current is zero) when the output of the fuel cell 11 reaches the maximum output power P21, the power regulator 31 has the operating point at that time (the peak of the curve F21). Operates at point X21).
  • the output control device 91 controls the supply amount adjusting device 90 to increase the fuel supply amount to the fuel cell 11. Thereby, for example, the output characteristics of the fuel cell 11 shift from the curve F21 to the curve F22. If the output of the current sensor 501 becomes zero when the output of the fuel cell 11 reaches the maximum output power P22, the power adjuster 31 performs output control in accordance with an instruction from the output control device 91, and then At the operating point (peak point X22 of the curve F22).
  • the output control device 91 controls the supply amount adjusting device 90 to increase the fuel supply amount to the fuel cell 11. Thereby, for example, the output characteristics of the fuel cell 11 shift from the curve F22 to the curve F23.
  • the power regulator 31 performs output control in accordance with an instruction from the output control device 91, and if the output of the current sensor 501 becomes zero when the output of the fuel cell 11 reaches the maximum output power P23, then At the operating point (for example, the peak point X23 of the curve F23).
  • the output control device 91 detects whether or not a reverse power flow has occurred based on the output of the current sensor 501. When the output control device 91 detects that the reverse power flow has occurred, the output control device 91 immediately controls the supply amount adjusting device 90 to reduce the fuel supply amount to the fuel cell 11. The output control device 91 reduces the fuel supply amount until the reverse power flow is eliminated. Thereby, for example, the output characteristics of the fuel cell 11 shift from the curve F23 to the curve F22.
  • the power adjuster 31 performs output control according to an instruction from the output control device 91, and the output of the current sensor 501 becomes zero when the output of the fuel cell 11 reaches the maximum output power (for example, P22). For example, it operates at the operating point at that time (for example, the peak point X22 of the curve F22).
  • the output control device 91 reduces the output of the power regulator 31. As a result, power (DC power) is preferentially supplied from the fuel cell 11 to the DC load 81. In this case, power to the AC load 80 is insufficient. A portion that is less than the power demand of the AC load 80 (shortage) is supplied from the AC power system AC.
  • the converter 40 stops. Therefore, when constructing a power distribution system, it is necessary to prevent the demand power of the DC load 81 from exceeding the maximum supply power of the fuel cell 11. However, unexpectedly, the demand power of the DC load 81 may exceed the maximum supply power of the fuel cell 11. Therefore, it is desirable to provide some auxiliary power (such as a storage battery) separately so that the DC load 81 can be fed even when the converter 40 is stopped.
  • some auxiliary power such as a storage battery
  • the AC load 80 is supplied to the AC load 80 from the AC power system AC (first AC power) or the power regulator 31 via the distribution board 50A as in the conventional case.
  • Distribute AC power second AC power
  • the DC load 81 is supplied with DC power from the fuel cell 11 that has been made constant voltage by the converter 40. Therefore, it is not necessary to convert AC power from the power regulator 31 into DC power, and DC power can be distributed efficiently.
  • the power regulator 31 and the converter 40 are connected in parallel to the fuel cell 11. Therefore, the DC power of the fuel cell 11 is automatically distributed to the DC load 81 and the AC load 80 even when the load fluctuates. As a result, power efficiency is improved.
  • the DC power output from the fuel cell 11 is preferentially supplied to the DC load 81 via the converter 40.
  • the power regulator 31 performing the grid connection operation supplies the AC load 80 to the AC load 80. Power to be increased. Therefore, there is an advantage that the stability of power supply with respect to load fluctuation is improved.
  • the power distribution system of the present embodiment includes a solar cell 10, a fuel cell 11, a power regulator (hereinafter referred to as “first power regulator”) 30, and a power regulator (hereinafter referred to as “ (Referred to as “second power regulator”) 31, a converter 40, a distribution board 50B, and a distribution path (hereinafter referred to as “second power regulator”) that distributes the output power of the solar cell 11 to the first power regulator 30 and the converter 40.
  • 60A a distribution path (hereinafter referred to as “second distribution path”) 61A for distributing the output power of the fuel cell 11 to the second power regulator 31 and the converter 40, and a supply amount adjusting device 90 and an output control device 91A.
  • the power distribution system of the present embodiment includes the solar cell 10 and the fuel cell 11 as DC power generation equipment.
  • symbol is attached
  • 60 A of 1st distribution paths are the 1st path
  • a rectifying element (diode) D1 is inserted such that the anode is electrically connected to the output terminal of the relay terminal box 20 and the cathode is electrically connected to the input terminal of the converter 40.
  • the second distribution path 61A converts a first path 611 that connects an output terminal (not shown) of the fuel cell 11 to an input terminal (not shown) of the second power regulator 31, and an output terminal of the fuel cell 11. And a second path 612 connected to the input terminal of the device 40.
  • a rectifying element (diode) D2 is inserted such that the anode is electrically connected to the output terminal of the fuel cell 11 and the cathode is electrically connected to the input terminal of the converter 40.
  • the two diodes D1 and D2 prevent the operating point of the solar cell 10 and the operating point of the fuel cell 11 from interfering with each other.
  • the first power regulator 30 is a solar battery power regulator, and includes the step-up chopper circuit 301, the inverter 302, the control circuit 303, the protection device 304, and the output line 305 as described in the first embodiment.
  • the inverter 302 of the first power regulator 30 uses the DC power obtained from the solar cell 10 through the first distribution path 60A to use an AC voltage (second voltage) having a phase synchronized with the phase of the first AC voltage of the AC power system. AC voltage).
  • the inverter 302 supplies AC power (second AC power) to the AC distribution path 70 by applying the second AC voltage to the AC distribution path 70.
  • the second power regulator 31 is a power regulator for a fuel cell, and includes the step-up chopper circuit 311, the inverter 312, the control circuit 313, the protection device 314, and the output line 315 as described in the second embodiment.
  • the inverter 312 of the second power regulator 31 uses the DC power obtained from the fuel cell 11 through the second distribution path 61A to generate an AC voltage (third AC voltage) having a phase synchronized with the phase of the first AC voltage.
  • AC power (third AC power) is supplied to the AC distribution path 70 by generating and applying the third AC voltage to the AC distribution path 70.
  • the distribution board 50B detects a current sensor (second current) that detects an alternating current (hereinafter referred to as “solar cell current”) output from the first power regulator 30. Sensor) 502.
  • the first current sensor 501 detects the current (total value of the system current and the solar cell current) supplied to the AC load 80. The outputs of the current sensors 501 and 502 are taken into the output control device 91A.
  • the output control device 91A controls the second power regulator 31 and the supply amount adjustment device 91A so that the system current is always zero. To do.
  • FIG. 7 is a flowchart for explaining a control operation by the output control device 91A.
  • the output control device 91A monitors whether or not DC power is normally supplied from the converter 40 (step S2). If DC power is not normally supplied from the converter 40, the output control device 91A increases the output of the fuel cell 11 by increasing the amount of fuel supplied from the supply amount adjusting device 90 to the fuel cell 11 (step S3). . Therefore, the output control device 91A continues to increase the fuel supply amount from the supply amount adjusting device 90 to the fuel cell 11 until the DC power is normally supplied from the converter 40.
  • the output control device 91A compares the output V1 of the first current sensor 501 with the output V2 of the second current sensor 502 (step S4). If the output V1 of the first current sensor 501 is equal to or higher than the output V2 of the second current sensor 502 (V2 ⁇ V1), the output control device 91A determines that power is supplied from the AC power system AC. In this case, the output control device 91A increases the output of the fuel cell 11 by increasing the amount of fuel supplied from the supply amount adjusting device 90 to the fuel cell 11 (step S5).
  • the output control device 91A determines that a surplus has occurred in the power of the solar cell 10. In this case, the output control device 91A decreases the output of the fuel cell 11 by reducing the fuel supply amount from the supply amount adjusting device 90 to the fuel cell 11 (step S6).
  • FIG. 6 represents the output power (PV power) of the solar cell 10.
  • a broken line B represents the output power (FC power) of the fuel cell 11.
  • Line C represents the total value of PV power and FC power.
  • FIG. 6 shows four bar graphs T1 to T4.
  • G1 indicates power consumption (DC load power) in the DC load 81.
  • G2 indicates the power consumption (AC load power) at the AC load 80.
  • G3 indicates the power (reverse power flow) that flows backward from the first power regulator 30 to the AC power system AC.
  • the power supplied from the AC power system AC increases.
  • the output V1 becomes larger than the output V2. That is, the shortage of the AC load power G2 is compensated by the power from the AC power system AC.
  • the output control device 91A starts supplying fuel from the supply amount adjusting device 90 to the fuel cell 11 when the output V2 falls below the output V1, and operates the second power regulator 31.
  • the output control device 91A performs output control of the second power regulator 31 so that the grid current becomes zero when the output of the fuel cell 11 reaches the maximum output power. Therefore, the shortage of the AC load power G2 is compensated by the output power (FC power) of the fuel cell 11 (see bar graph T3).
  • the output V2 of the second current sensor 502 further decreases and the output V1 of the first current sensor 501 further increases.
  • the output control device 91A further increases the fuel supply amount from the supply amount adjusting device 90 to the fuel cell 11. Thereby, the shortage of the AC load power G2 and the shortage of the DC load power G1 are compensated with the FC power (see the bar graph T4).
  • the power distribution system of the present embodiment when the PV power alone cannot supply sufficient power to the AC load 80 or the DC load 81, the shortage of the AC load power 80 or the DC load power 81 is reduced by the FC power. To compensate. Therefore, it is not necessary to receive power from the AC power system AC. Moreover, according to the power distribution system of this embodiment, the effect similar to the power distribution system of Embodiment 1, 2 is acquired.

Abstract

A power distribution system comprises a solar cell (10), a power regulator (30) connected to an AC power distribution channel (70) for feeding first AC power from an AC power system (AC) to an AC load (80), a D/D converter (40), and a distribution channel (60) for distributing the power outputted from the solar cell (10) to the power regulator (30) and the D/D converter (40).  The power regulator (30) has an inverter (302) and a control circuit (303).  The inverter (302) generates a second AC voltage having a phase in synchronization with the phase of a first AC voltage of the AC power system (AC) by using the DC power supplied from the solar cell (10) to give the second AC voltage to the AC power distribution channel (70), whereby second AC power is supplied.  The control circuit (303) controls the magnitude of the second AC power so that the dump power of the solar cell (10) may reversely flow to the AC power system (AC).  The D/D converter (40) generates a supply voltage which is a DC voltage having a predetermined value by using the DC power supplied from the solar cell (10) to give the supply voltage to a DC power distribution channel (71), whereby the DC power is supplied.

Description

配電システムPower distribution system
 本発明は、交流電力および直流電力を配給する配電システムに関する。 The present invention relates to a power distribution system that distributes AC power and DC power.
 従来から、建物に設置された負荷に交流電力および直流電力を配給する配電システムがある(日本国公開実用新案公報4-128024参照)。従来の配電システムは、分電盤と、交流電源用コンセントとを有する。交流電源用コンセントには、直流出力電源端子が設けられている。分電盤内には、変圧器と整流器とが配設されている。変圧器は、100Vまたは200Vの交流電圧を6V、3V、1.5Vの3種類の交流電圧に変換する。整流器は、変圧器より得た交流電圧を整流して、6V、3V、1.5Vの3種類の直流電圧を生成する。分電盤内で生成された3種類の直流電圧は、直流出力電源端子に与えられる。 Conventionally, there is a power distribution system that distributes AC power and DC power to a load installed in a building (see Japanese Utility Model Publication No. 4-128024). A conventional power distribution system includes a distribution board and an AC power outlet. The AC power outlet is provided with a DC output power terminal. A transformer and a rectifier are disposed in the distribution board. The transformer converts an AC voltage of 100V or 200V into three types of AC voltages of 6V, 3V, and 1.5V. The rectifier rectifies the AC voltage obtained from the transformer and generates three types of DC voltages of 6V, 3V, and 1.5V. Three types of DC voltages generated in the distribution board are applied to the DC output power supply terminal.
 一方、地球環境保護の観点から、住宅に自家発電システム(太陽光発電システムや燃料電池発電システム)を設置することが普及しつつある。この自家発電システムは、住宅に設置される自家発電用の太陽電池や燃料電池などの直流発電設備と、直流発電設備より出力される直流電力を交流電力に電力調整器を用いて変換する分散電源とを備える。このシステムは、分散電源の送電系統と商用電源(交流の電力系統)の送電系統とを相互に連絡して系統連系を行う。 On the other hand, from the viewpoint of protecting the global environment, it is becoming popular to install private power generation systems (solar power generation systems and fuel cell power generation systems) in houses. This in-house power generation system is a distributed power source that converts DC power output from a DC power generation facility into a DC power source using a power regulator. With. In this system, a distributed power transmission system and a commercial power supply (AC power system) transmission system are interconnected to perform grid interconnection.
 ここで、太陽光発電システム(系統連系形太陽光発電システム)においては、住宅内の負荷で消費される電力を超える電力が太陽電池から供給されている場合、電力の余剰分が電力系統に逆潮流される。これにより電力会社に電力を売ること(いわゆる、売電)が可能となっている。 Here, in a solar power generation system (system-connected solar power generation system), when power exceeding the power consumed by the load in the house is supplied from the solar cell, the surplus power is transferred to the power system. Reverse tide. This makes it possible to sell power to the power company (so-called power sale).
 ところで、上記日本国公開実用新案公報に記載された配電システムを太陽光発電システムや燃料電池発電システムに組み合わせた場合、直流電力を得るためには、太陽電池や燃料電池から出力される直流電力を電力調整器において交流電力に変換した後、再度交流電力から直流電力に変換しなくてはならない。そのため、電力変換による損失が増えてしまうという問題がある。 By the way, when the power distribution system described in the above Japanese utility model publication is combined with a solar power generation system or a fuel cell power generation system, in order to obtain direct current power, the direct current power output from the solar cell or fuel cell is After converting to AC power in the power regulator, the AC power must be converted again to DC power. Therefore, there is a problem that loss due to power conversion increases.
 また、電力効率を向上させるためには、太陽電池や燃料電池からの直流電力を、直流負荷に優先的に供給する必要がある。つまり、直流負荷の優先順位を1番、交流負荷の優先順位を2番とし、この優先順位で太陽電池や燃料電池からの直流電力を振り分ける。なお、太陽光発電システムの場合は、売電が可能であるから、交流電力系統の優先順位を3番とする。さらに、直流負荷や交流負荷で使用される電力が変動した際でも、上記の優先順位でそれぞれへの直流電力の供給量を増減させる必要がある。 Also, in order to improve power efficiency, it is necessary to preferentially supply DC power from solar cells or fuel cells to the DC load. In other words, the DC load priority is set to 1 and the AC load priority is set to 2, and the DC power from the solar cells and fuel cells is distributed according to this priority. In the case of a solar power generation system, since power can be sold, the priority of the AC power system is set to No. 3. Furthermore, even when the power used by the DC load or the AC load fluctuates, it is necessary to increase or decrease the supply amount of the DC power to each in the above priority order.
 本発明は上記事情に鑑みて為された。本発明の目的は、交流電力と直流電力とを効率よく配給するとともに電力効率を向上できる配電システムを提供することにある。 The present invention has been made in view of the above circumstances. An object of the present invention is to provide a power distribution system capable of efficiently distributing AC power and DC power and improving power efficiency.
 本発明に係る配電システムは、太陽電池と、交流電力により駆動される交流負荷に交流電力系統からの第1交流電力を供給するための交流配電路に接続される電力調整器と、直流電力により駆動される直流負荷に給電するための直流配電路に接続される直流直流変換器と、上記太陽電池の出力電力を上記電力調整器と上記直流直流変換器とに分配する分配路と、を備える。上記電力調整器は、インバータと、逆潮流回路とを有する。上記インバータは、上記分配路を通じて上記太陽電池から得た直流電力を利用して上記交流電力系統の第1交流電圧の位相に同期した位相を有する第2交流電圧を生成し、上記第2交流電圧を上記交流配電路に与えることで上記交流配電路に第2交流電力を供給するように構成される。上記逆潮流回路は、上記太陽電池の余剰電力が上記交流電力系統に逆潮流されるように上記第2交流電力の大きさを調整するように構成される。上記直流直流変換器は、上記分配路を通じて上記太陽電池から得た直流電力を利用して所定値の直流電圧よりなる供給電圧を生成し、上記供給電圧を上記直流配電路に与えることで上記直流配電路に直流電力を供給するように構成される。 A power distribution system according to the present invention includes a solar cell, a power regulator connected to an AC power distribution path for supplying first AC power from an AC power system to an AC load driven by AC power, and DC power. A DC / DC converter connected to a DC distribution path for supplying power to a driven DC load; and a distribution path for distributing the output power of the solar cell to the power regulator and the DC / DC converter. . The power regulator includes an inverter and a reverse power flow circuit. The inverter generates a second AC voltage having a phase synchronized with a phase of the first AC voltage of the AC power system using the DC power obtained from the solar cell through the distribution path, and the second AC voltage. Is supplied to the AC power distribution path so that the second AC power is supplied to the AC power distribution path. The reverse power flow circuit is configured to adjust the magnitude of the second AC power so that surplus power of the solar cell is reversely flowed to the AC power system. The DC / DC converter generates a supply voltage composed of a DC voltage of a predetermined value using DC power obtained from the solar cell through the distribution path, and supplies the supply voltage to the DC distribution path to thereby generate the DC voltage. It is configured to supply DC power to the distribution path.
 この発明によれば、上記電力調整器からの交流電力を直流電力に変換しなくても、上記直流直流変換器により直流負荷に直流電力を供給できる。そのため、直流電力を効率よく配給できる。しかも、上記太陽電池からの直流電力を上記電力調整器と上記直流直流変換器とに分配している。そのため、上記太陽電池からの電力が上記直流負荷に優先的に供給される。上記直流負荷の次に、上記太陽電池からの電力が上記交流負荷に供給される。上記交流負荷の次に、上記太陽電池からの電力が上記交流電力系統に供給される。さらに、直流負荷や交流負荷が変動しても、上記太陽電池からの直流電力が、上記直流負荷、上記交流負荷、上記交流電力系統に自動的に振り分けられる。したがって、電力効率が向上する。 According to the present invention, the DC power can be supplied to the DC load by the DC / DC converter without converting the AC power from the power regulator to DC power. Therefore, DC power can be distributed efficiently. In addition, the DC power from the solar cell is distributed to the power regulator and the DC / DC converter. Therefore, power from the solar cell is preferentially supplied to the DC load. Next to the DC load, power from the solar cell is supplied to the AC load. Next to the AC load, power from the solar cell is supplied to the AC power system. Furthermore, even if the DC load or the AC load fluctuates, the DC power from the solar cell is automatically distributed to the DC load, the AC load, and the AC power system. Therefore, power efficiency is improved.
 好ましくは、上記電力調整器は、上記太陽電池から出力される直流電力が最大になるように上記第2交流電力の大きさを調整する出力制御回路を備える。上記直流直流変換器は、上記供給電圧を一定に維持する定電圧制御回路を備える。 Preferably, the power regulator includes an output control circuit that adjusts the magnitude of the second AC power so that the DC power output from the solar cell is maximized. The DC / DC converter includes a constant voltage control circuit that maintains the supply voltage constant.
 この場合、上記太陽電池からの直流電力を最大にできる。 In this case, the DC power from the solar cell can be maximized.
 本発明の別の配電システムは、燃料電池と、交流電力により駆動される交流負荷に交流電力系統からの第1交流電力を供給するための交流配電路に接続される電力調整器と、直流電力により駆動される直流負荷に給電するための直流配電路に接続される直流直流変換器と、上記燃料電池の出力電力を上記電力調整器と上記直流直流変換器とに分配する分配路と、を備える。上記電力調整器は、上記分配路を通じて上記燃料電池から得た直流電力を利用して上記交流電力系統の第1交流電圧の位相に同期した位相を有する第2交流電圧を生成し、上記第2交流電圧を上記交流配電路に与えることで上記交流配電路に第2交流電力を供給するように構成される。上記直流直流変換器は、上記分配路を通じて上記燃料電池から得た直流電力を利用して所定値の直流電圧よりなる供給電圧を生成し、上記供給電圧を上記直流配電路に与えることで上記直流配電路に直流電力を供給するように構成される。 Another power distribution system of the present invention includes a fuel cell, a power regulator connected to an AC power distribution path for supplying first AC power from an AC power system to an AC load driven by AC power, and DC power. A DC / DC converter connected to a DC distribution path for supplying power to a DC load driven by the power supply, and a distribution path for distributing the output power of the fuel cell to the power regulator and the DC / DC converter. Prepare. The power regulator uses the DC power obtained from the fuel cell through the distribution path to generate a second AC voltage having a phase synchronized with the phase of the first AC voltage of the AC power system. It is comprised so that 2nd alternating current power may be supplied to the said AC power distribution path by giving an AC voltage to the said AC power distribution path. The DC / DC converter generates a supply voltage composed of a DC voltage of a predetermined value using DC power obtained from the fuel cell through the distribution path, and supplies the supply voltage to the DC distribution path. It is configured to supply DC power to the distribution path.
 この発明によれば、上記電力調整器からの交流電力を直流電力に変換しなくても、上記直流直流変換器により上記直流負荷に直流電力を供給できる。そのため、直流電力を効率よく配給できる。しかも、上記燃料電池からの直流電力を上記電力調整器と上記直流直流変換器とに分配している。そのため、負荷変動が生じても、上記燃料電池からの電力が直流負荷と交流負荷とに自動的に振り分けられる。したがって、電力効率が向上する。 According to the present invention, the DC power can be supplied to the DC load by the DC / DC converter without converting the AC power from the power regulator to DC power. Therefore, DC power can be distributed efficiently. Moreover, the DC power from the fuel cell is distributed to the power regulator and the DC / DC converter. Therefore, even if a load change occurs, the electric power from the fuel cell is automatically distributed to the DC load and the AC load. Therefore, power efficiency is improved.
 好ましくは、上記直流直流変換器は、上記供給電圧を一定に維持する定電圧制御回路を備える。 Preferably, the DC / DC converter includes a constant voltage control circuit for maintaining the supply voltage constant.
 この場合、上記燃料電池から出力される直流電力が上記直流直流変換器を介して直流負荷に優先的に供給される。また、直流負荷と交流負荷の需要電力が上記燃料電池からの電力を超えた場合に、上記電力調整器によって上記交流電力系統から交流負荷に供給される電力が増加する。そのため、負荷変動に対する電力供給の安定性が向上する。 In this case, DC power output from the fuel cell is preferentially supplied to the DC load via the DC / DC converter. Further, when the demand power of the DC load and the AC load exceeds the power from the fuel cell, the power supplied from the AC power system to the AC load by the power regulator increases. As a result, the stability of power supply against load fluctuation is improved.
 本発明のさらに別の配電システムは、太陽電池と、燃料電池と、交流電力により駆動される交流負荷に交流電力系統からの第1交流電力を供給するための交流配電路に接続される第1電力調整器および第2電力調整器と、直流電力により駆動される直流負荷に給電するための直流配電路に接続される直流直流変換器と、上記太陽電池の出力電力を上記第1電力調整器と上記直流直流変換器とに分配する第1分配路と、上記燃料電池の出力電力を上記第2電力調整器と上記直流直流変換器とに分配する第2分配路と、を備える。上記第1電力調整器は、インバータと、逆潮流回路とを有する。上記インバータは、上記第1分配路を通じて上記太陽電池から得た直流電力を利用して上記交流電力系統の第1交流電圧の位相に同期した位相を有する第2交流電圧を生成し、上記第2交流電圧を上記交流配電路に与えることで上記交流配電路に第2交流電力を供給するように構成される。上記逆潮流回路は、上記太陽電池の余剰電力が上記交流電力系統に逆潮流されるように上記第2交流電力の大きさを調整するように構成される。上記第2電力調整器は、上記第2分配路を通じて上記燃料電池から得た直流電力を利用して上記第1交流電圧の位相に同期した位相を有する第3交流電圧を生成し、上記第3交流電圧を上記交流配電路に与えることで上記交流配電路に第3交流電力を供給するように構成される。上記直流直流変換器は、上記第1分配路を通じて上記太陽電池から得た直流電力および上記第2分配路を通じて上記燃料電池から得た直流電力を利用して所定値の直流電圧よりなる供給電圧を生成し、上記供給電圧を上記直流配電路に与えることで上記直流配電路に直流電力を供給するように構成される。 Still another power distribution system according to the present invention includes a solar cell, a fuel cell, and a first AC connected to an AC power distribution path for supplying first AC power from an AC power system to an AC load driven by AC power. A power regulator and a second power regulator, a DC / DC converter connected to a DC distribution path for supplying power to a DC load driven by DC power, and the output power of the solar cell to the first power regulator And a first distribution path for distributing to the DC / DC converter, and a second distribution path for distributing the output power of the fuel cell to the second power regulator and the DC / DC converter. The first power regulator includes an inverter and a reverse power flow circuit. The inverter generates a second AC voltage having a phase synchronized with a phase of the first AC voltage of the AC power system using the DC power obtained from the solar cell through the first distribution path, and the second AC voltage. It is comprised so that 2nd alternating current power may be supplied to the said AC power distribution path by giving an AC voltage to the said AC power distribution path. The reverse power flow circuit is configured to adjust the magnitude of the second AC power so that surplus power of the solar cell is reversely flowed to the AC power system. The second power regulator generates a third AC voltage having a phase synchronized with a phase of the first AC voltage using DC power obtained from the fuel cell through the second distribution path, and It is comprised so that 3rd alternating current power may be supplied to the said AC distribution path by giving an AC voltage to the said AC distribution path. The DC / DC converter uses a DC power obtained from the solar cell through the first distribution path and a DC power obtained from the fuel cell through the second distribution path to supply a supply voltage composed of a predetermined DC voltage. It is configured to generate and supply DC power to the DC distribution path by applying the supply voltage to the DC distribution path.
 この発明によれば、上記各電力調整器からの交流電力を直流電力に変換しなくても、上記直流直流変換器により直流負荷に直流電力を供給できる。そのため、直流電力を効率よく配給できる。しかも、上記太陽電池からの直流電力を上記電力調整器と上記直流直流変換器とに分配している。そのため、上記太陽電池からの電力が上記直流負荷に優先的に供給される。上記直流負荷の次に、上記太陽電池からの電力が上記交流負荷に供給される。上記交流負荷の次に、上記太陽電池からの電力が上記交流電力系統に供給される。さらに、直流負荷や交流負荷が変動しても、上記太陽電池からの直流電力が、上記直流負荷、上記交流負荷、上記交流電力系統に自動的に振り分けられる。加えて、上記燃料電池からの直流電力を上記電力調整器と上記直流直流変換器とに分配している。そのため、負荷変動が生じても、上記燃料電池からの電力が直流負荷と交流負荷とに自動的に振り分けられる。したがって、電力効率が向上する。また、上記太陽電池だけでなく上記燃料電池からも直流電力が供給されるから、負荷変動に対する電力供給の安定性がさらに向上する。 According to the present invention, the DC power can be supplied to the DC load by the DC / DC converter without converting the AC power from the power regulators to DC power. Therefore, DC power can be distributed efficiently. In addition, the DC power from the solar cell is distributed to the power regulator and the DC / DC converter. Therefore, power from the solar cell is preferentially supplied to the DC load. Next to the DC load, power from the solar cell is supplied to the AC load. Next to the AC load, power from the solar cell is supplied to the AC power system. Furthermore, even if the DC load or the AC load fluctuates, the DC power from the solar cell is automatically distributed to the DC load, the AC load, and the AC power system. In addition, the DC power from the fuel cell is distributed to the power regulator and the DC / DC converter. Therefore, even if a load change occurs, the electric power from the fuel cell is automatically distributed to the DC load and the AC load. Therefore, power efficiency is improved. In addition, since direct-current power is supplied not only from the solar cell but also from the fuel cell, the stability of power supply against load fluctuation is further improved.
 好ましくは、上記第1電力調整器は、上記太陽電池から出力される直流電力が最大になるように上記第2交流電力の大きさを調整する出力制御回路を備える。上記直流直流変換器は、上記供給電圧を一定に維持する定電圧制御回路を備える。 Preferably, the first power regulator includes an output control circuit that adjusts the magnitude of the second AC power so that the DC power output from the solar cell is maximized. The DC / DC converter includes a constant voltage control circuit that maintains the supply voltage constant.
 この場合、上記太陽電池からの直流電力を最大にできる。 In this case, the DC power from the solar cell can be maximized.
実施形態1の配電システムの概略図である。1 is a schematic diagram of a power distribution system according to a first embodiment. (a),(b)は同上の動作説明図である。(A), (b) is operation | movement explanatory drawing same as the above. 実施形態2の配電システムの概略図である。It is the schematic of the power distribution system of Embodiment 2. FIG. 燃料電池の出力特性の説明図である。It is explanatory drawing of the output characteristic of a fuel cell. 実施形態3の配電システムの概略図である。It is the schematic of the power distribution system of Embodiment 3. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上における出力制御装置の動作説明用のフローチャートである。It is a flowchart for operation | movement description of the output control apparatus same as the above.
 以下、本発明に係る配電システムを戸建て住宅に適用した実施形態について図面を参照しながら詳細に説明する。但し、本発明に係る配電システムは、戸建て住宅だけではなく、集合住宅の各住戸や事務所等の建物にも適用できる。 Hereinafter, an embodiment in which a power distribution system according to the present invention is applied to a detached house will be described in detail with reference to the drawings. However, the power distribution system according to the present invention can be applied not only to a detached house but also to a building such as each dwelling unit of an apartment house or an office.
 (実施形態1)
 本実施形態の配電システムは、図1に示すように、太陽電池10と、中継端子箱(「接続箱」とも呼ばれる)20と、電力調整器(パワーコンディショナ)30と、直流直流変換器(変換器)40と、分電盤(交流用分電盤)50と、太陽電池10から出力される直流電力を電力調整器30と変換器40とに分配する分配路60とを備える。電力調整器30は、交流電力により駆動される交流負荷80に交流電力系統(商用電源)ACからの交流電力(第1交流電力)を供給するための交流配電路70に分電盤50を通じて接続される。変換器40は、直流電力により駆動される直流負荷81に給電するための直流配電路71に接続される。
(Embodiment 1)
As shown in FIG. 1, the power distribution system of the present embodiment includes a solar cell 10, a relay terminal box (also referred to as “connection box”) 20, a power conditioner (power conditioner) 30, and a DC / DC converter ( Converter) 40, a distribution board (AC distribution board) 50, and a distribution path 60 that distributes the DC power output from the solar cell 10 to the power regulator 30 and the converter 40. The power conditioner 30 is connected through the distribution board 50 to an AC distribution path 70 for supplying AC power (first AC power) from an AC power system (commercial power) AC to an AC load 80 driven by AC power. Is done. The converter 40 is connected to a DC distribution path 71 for supplying power to a DC load 81 driven by DC power.
 太陽電池10は、複数(図示例では3つ)の太陽電池モジュール101を備える。各太陽電池モジュール101は、複数(図示例では8)の太陽電池セル102を有する。太陽電池セル102は、図示しない外囲器に封入される。このような太陽電池10は、例えば、住宅の屋根に設置される。各太陽電池モジュール101は、出力ケーブル103により中継端子箱20に接続される。 The solar cell 10 includes a plurality (three in the illustrated example) of solar cell modules 101. Each solar cell module 101 has a plurality (8 in the illustrated example) of solar cells 102. The solar battery cell 102 is enclosed in an envelope (not shown). Such a solar cell 10 is installed on the roof of a house, for example. Each solar cell module 101 is connected to the relay terminal box 20 by an output cable 103.
 中継端子箱20は、複数のストリング出力側と負荷側とを端子にて中継し、必要に応じて逆流防止素子・直流開閉器などが収納された密閉箱である(JIS C8960参照)。この中継端子箱20によって、各太陽電池モジュール101からの直流出力が1つにまとめられる。 The relay terminal box 20 is a sealed box in which a plurality of string output sides and load sides are relayed with terminals, and a backflow prevention element, a DC switch, etc. are accommodated as required (see JIS C8960). The relay terminal box 20 combines the DC outputs from the solar cell modules 101 into one.
 電力調整器30は、昇圧チョッパ回路301と、インバータ302と、インバータ制御回路(制御回路)303と、保護装置(系統連系保護装置)304とを有する。 The power regulator 30 includes a boost chopper circuit 301, an inverter 302, an inverter control circuit (control circuit) 303, and a protection device (system interconnection protection device) 304.
 昇圧チョッパ回路301は、分配路60を介して太陽電池10より得た直流出力を利用して所定値の直流電圧を生成する。 The step-up chopper circuit 301 generates a DC voltage of a predetermined value using the DC output obtained from the solar cell 10 via the distribution path 60.
 インバータ302は、昇圧チョッパ回路301より得た直流電圧を、交流電力系統ACの交流電圧(第1交流電圧)の位相に同期した位相を有する交流電圧(第2交流電圧)に変換する。 The inverter 302 converts the DC voltage obtained from the boost chopper circuit 301 into an AC voltage (second AC voltage) having a phase synchronized with the phase of the AC voltage (first AC voltage) of the AC power system AC.
 インバータ302は、第2交流電圧を出力線305に与える。出力線305は、分電盤50のボックス内に引き込まれる。出力線305は、分電盤50のボックス内で、交流電力系統ACに電気的に接続される。これにより、交流電力系統ACに太陽電池10が並列される。 The inverter 302 supplies the second AC voltage to the output line 305. The output line 305 is drawn into the box of the distribution board 50. The output line 305 is electrically connected to the AC power system AC within the box of the distribution board 50. Thereby, the solar cell 10 is paralleled in AC power system AC.
 したがって、インバータ302は、分配路60を通じて太陽電池10から得た直流電力を利用して交流電力系統ACの第1交流電圧の位相に同期した位相を有する第2交流電圧を生成する。インバータ302は、第2交流電圧を交流配電路71に与えることで交流配電路71に交流電力(第2交流電力)を供給する。 Therefore, the inverter 302 generates the second AC voltage having a phase synchronized with the phase of the first AC voltage of the AC power system AC using the DC power obtained from the solar cell 10 through the distribution path 60. The inverter 302 supplies AC power (second AC power) to the AC distribution path 71 by applying the second AC voltage to the AC distribution path 71.
 制御回路303は、インバータ302を制御することで第2交流電力の大きさを調整する。制御回路303は、太陽電池10の温度変化や日射強度の変化に伴う太陽電池10の出力電圧や出力電流の変動によって変化する太陽電池10の最大出力点に、太陽電池10の動作点を追従させる最大出力追従制御(MPPT制御)を行う。つまり、制御回路303は、太陽電池10から出力される直流電力が最大となるように、インバータ302からの第2交流電力の大きさを調整する出力制御回路として機能する。 The control circuit 303 adjusts the magnitude of the second AC power by controlling the inverter 302. The control circuit 303 causes the operating point of the solar cell 10 to follow the maximum output point of the solar cell 10 that changes due to changes in the output voltage and output current of the solar cell 10 due to changes in temperature of the solar cell 10 and changes in solar radiation intensity. Maximum output tracking control (MPPT control) is performed. That is, the control circuit 303 functions as an output control circuit that adjusts the magnitude of the second AC power from the inverter 302 so that the DC power output from the solar cell 10 is maximized.
 また、制御回路303は、太陽電池10からの直流電力の余剰分が交流電力系統ACに逆潮流されるようにインバータ302からの第2交流電力の大きさを調整する逆潮流回路として機能する。 Further, the control circuit 303 functions as a reverse power flow circuit that adjusts the magnitude of the second AC power from the inverter 302 so that the surplus of the DC power from the solar cell 10 flows back to the AC power system AC.
 なお、最大出力追従制御は従来周知であるから、詳細な説明は省略する。 Since maximum output tracking control is well known in the art, detailed description is omitted.
 保護装置304は、系統電圧を監視して適正値よりも上昇した場合に制御回路303に指令を与えて最大出力追従制御を停止させる。これによって、インバータ302の出力が低下し、その結果、系統電圧の上昇が抑制される。 The protection device 304 monitors the system voltage and gives a command to the control circuit 303 to stop the maximum output follow-up control when it rises above an appropriate value. As a result, the output of the inverter 302 is reduced, and as a result, an increase in the system voltage is suppressed.
 次に、図2を参照して電力調整器30の動作を説明する。図2(a)の曲線F11は、ある日射条件における太陽電池10の出力特性を示している。電力P11は変換器40から直流配電路71を介して直流負荷81に供給される電力(直流負荷81の需要電力)である。電力P1によって、制御回路303が初期状態であるときの太陽電池10の動作点X11が決定される。 Next, the operation of the power regulator 30 will be described with reference to FIG. A curve F11 in FIG. 2A shows the output characteristics of the solar cell 10 under certain solar radiation conditions. The electric power P11 is electric power (demand electric power of the DC load 81) supplied from the converter 40 to the DC load 81 via the DC distribution path 71. The operating point X11 of the solar cell 10 when the control circuit 303 is in the initial state is determined by the power P1.
 制御回路303によって最大出力追従制御が開始されると、太陽電池10の動作点が、最大出力点X12に一致するように、第2交流電力の大きさが調整される。その結果、太陽電池10の動作点が、出力特性(曲線F11)の最大出力点X12と一致し、太陽電池10の電力が最大(最大電力P12)になる。 When the maximum output tracking control is started by the control circuit 303, the magnitude of the second AC power is adjusted so that the operating point of the solar cell 10 coincides with the maximum output point X12. As a result, the operating point of the solar cell 10 coincides with the maximum output point X12 of the output characteristics (curve F11), and the power of the solar cell 10 becomes maximum (maximum power P12).
 このとき、最大電力P12と直流電力P11の差分(P12-P11)が交流配電路70を介して交流負荷80に供給される。ここで、電力調整器30の供給電力である第2交流電力(P12-P11)が交流負荷80の消費電力を下回っているとき、交流電力系統ACからの第1交流電力が交流配電路70を介して交流負荷80に供給される。一方、第2交流電力(P12-P11)が交流負荷80の消費電力を上回っているとき、第2交流電力(P12-P11)の余剰分が交流電力系統ACに逆潮流される。 At this time, the difference (P12−P11) between the maximum power P12 and the DC power P11 is supplied to the AC load 80 via the AC distribution path 70. Here, when the second AC power (P12-P11) that is the power supplied to the power regulator 30 is lower than the power consumption of the AC load 80, the first AC power from the AC power system AC passes through the AC distribution path 70. To the AC load 80. On the other hand, when the second AC power (P12-P11) exceeds the power consumption of the AC load 80, the surplus of the second AC power (P12-P11) flows backward to the AC power system AC.
 次に、日射が弱くなって、図2(b)に示すように、太陽電池10の出力特性が曲線F11から曲線F12に変化したとする。図2(b)に示す曲線F12では、太陽電池10の最大電力(最大出力電力)P13が電力(直流需要電力)P11を上回っている。 Next, it is assumed that the solar radiation becomes weak and the output characteristics of the solar cell 10 change from the curve F11 to the curve F12 as shown in FIG. 2 (b). In the curve F12 shown in FIG. 2B, the maximum power (maximum output power) P13 of the solar cell 10 exceeds the power (DC demand power) P11.
 このとき、制御回路302は、動作点をX12からX13へ移行させて太陽電池10の出力を減少させる。その後、制御回路302は、再度、最大出力追従制御を行い、これによって、太陽電池10の動作点を、出力特性(曲線ロ)のピークと一致する動作点(最大出力点)X14に一致させる。そのため、太陽電池10の電力が最大(最大電力P13)になる。電力P11が変動した場合にも、上述した日射量の変動時と同様にして、制御回路302が最大出力追従制御を再度行うことによって、太陽電池1の出力が最大になる。 At this time, the control circuit 302 shifts the operating point from X12 to X13 and decreases the output of the solar cell 10. Thereafter, the control circuit 302 performs maximum output follow-up control again, thereby matching the operating point of the solar cell 10 with the operating point (maximum output point) X14 that matches the peak of the output characteristics (curve B). Therefore, the power of the solar cell 10 becomes the maximum (maximum power P13). Even when the electric power P11 fluctuates, the output of the solar cell 1 is maximized when the control circuit 302 performs the maximum output follow-up control again in the same manner as when the amount of solar radiation is changed.
 なお、日射が弱くなって、太陽電池10の最大電力が需用電力P1を下回ると、制御回路302は動作を停止する。このとき、直流負荷81の動作も停止する。なお、直流負荷81には、別途設けられた補助電源(蓄電池など)から給電してもよい。 Note that when the solar radiation becomes weak and the maximum power of the solar cell 10 falls below the power demand P1, the control circuit 302 stops operating. At this time, the operation of the DC load 81 is also stopped. The DC load 81 may be supplied with power from an auxiliary power source (storage battery or the like) provided separately.
 このように、電力調整器30は、太陽電池10から出力される直流電力を交流電力系統ACの位相に同期した交流電力(第2交流電力)に変換して、第2交流電力を交流電力系統ACに供給する。 As described above, the power regulator 30 converts the DC power output from the solar cell 10 into AC power (second AC power) synchronized with the phase of the AC power system AC, and converts the second AC power into the AC power system. Supply to AC.
 分電盤50は、いわゆる住宅用分電盤(住宅盤)と同様に扉付のボックス(図示せず)に主幹ブレーカ(図示せず)と複数の分岐ブレーカ(図示せず)とが内蔵される。主幹ブレーカの電源端子は交流電力系統ACに接続される。各分岐ブレーカの電源端子は、導電バー(図示せず)を介して主幹ブレーカの負荷端子に接続される。分岐ブレーカの負荷端子には、交流配電路70が接続される。交流電力系統ACからの第1交流電力および電力調整器30からの第2交流電力は、交流配電路70を介して宅内の交流負荷80に供給される。このように、分電盤50は、電力調整器30から出力される第2交流電力を分岐して、複数の分岐ブレーカを介して宅内の交流負荷81に配給する。なお、交流配電路70には交流負荷80を接続するためのコンセント(図示せず)が設けられる。 The distribution board 50 includes a main breaker (not shown) and a plurality of branch breakers (not shown) in a box (not shown) with a door, similar to a so-called residential distribution board (housing board). The The power supply terminal of the main breaker is connected to the AC power system AC. The power supply terminal of each branch breaker is connected to the load terminal of the main breaker via a conductive bar (not shown). An AC distribution path 70 is connected to the load terminal of the branch breaker. The first AC power from the AC power system AC and the second AC power from the power regulator 30 are supplied to the AC load 80 in the home via the AC distribution path 70. Thus, the distribution board 50 branches the 2nd alternating current power output from the power regulator 30, and distributes it to the alternating current load 81 in a house via a some branch breaker. The AC distribution path 70 is provided with an outlet (not shown) for connecting the AC load 80.
 変換器40は、太陽電池10から出力される直流電力の電圧レベルを所望の電圧レベルに変換する。つまり、変換器40は、分配路60を通じて太陽電池10から得た直流電力を利用して所定値の直流電圧よりなる供給電圧を生成する。そして、変換器40は、供給電圧を直流配電路71に与えることで直流配電路71に直流電力を供給する。変換器40は、例えば、スイッチングレギュレータである。また、変換器40は、供給電圧を一定に維持する定電圧制御回路401を備える。例えば、定電圧制御回路401は、変換器40の出力電圧(すなわち供給電圧)を検出するとともに検出した出力電圧が目標電圧と一致するように上記出力電圧を増減する制御(フィードバック制御)を行う。このように、変換器40は、定電圧制御方式によって太陽電池10から出力される直流電力の電圧レベルを所望の電圧レベルに変換する。そして、変換器40からの直流電力が直流配電路71を介して直流負荷81に供給される。なお、直流配電路71には直流負荷81を接続するためのコンセント(図示せず)が設けられる。 The converter 40 converts the voltage level of the DC power output from the solar cell 10 into a desired voltage level. That is, the converter 40 uses the direct current power obtained from the solar cell 10 through the distribution path 60 to generate a supply voltage including a predetermined direct current voltage. The converter 40 supplies DC power to the DC distribution path 71 by applying a supply voltage to the DC distribution path 71. The converter 40 is a switching regulator, for example. The converter 40 also includes a constant voltage control circuit 401 that keeps the supply voltage constant. For example, the constant voltage control circuit 401 performs control (feedback control) to detect the output voltage (that is, supply voltage) of the converter 40 and to increase or decrease the output voltage so that the detected output voltage matches the target voltage. Thus, the converter 40 converts the voltage level of the DC power output from the solar cell 10 into a desired voltage level by the constant voltage control method. The DC power from the converter 40 is supplied to the DC load 81 via the DC distribution path 71. The DC distribution path 71 is provided with an outlet (not shown) for connecting the DC load 81.
 上述のように本実施形態の配電システムでは、交流負荷80には従来と同様に分電盤50を経由して交流電力系統ACからの交流電力(第1交流電力)または電力調整器30からの交流電力(第2交流電力)を配給する。一方、直流負荷81には変換器40で定電圧化された太陽電池10からの直流電力を配給する。そのため、電力調整器30からの交流電力を直流電力に変換しなくて済み、直流電力を効率よく配給できる。 As described above, in the power distribution system according to the present embodiment, the AC load 80 is supplied to the AC load 80 from the AC power system AC (first AC power) or the power regulator 30 via the distribution board 50 as in the conventional case. Distribute AC power (second AC power). On the other hand, the DC load 81 is supplied with DC power from the solar cell 10 that has been converted to a constant voltage by the converter 40. Therefore, it is not necessary to convert AC power from the power regulator 30 into DC power, and DC power can be distributed efficiently.
 しかも、電力調整器30と変換器40とが太陽電池10に対して並列接続されている。そのため、日射量や直流負荷81の需要電力の変動がすると、直流負荷81および交流負荷80への太陽電池10からの電力の振り分けが自動的に調節される。その結果、太陽電池10からの電力は、直流負荷81に優先的に供給される。その次に、太陽電池10からの電力は、交流負荷80に供給される。最後に、太陽電池10からの電力は、交流電力系統ACに供給される。直流負荷81や交流負荷80が変動した際でも太陽電池10からの電力は、自動的に直流負荷81、交流負荷80、交流電力系統ACに振り分けられる。その結果、電力効率が向上する。 In addition, the power regulator 30 and the converter 40 are connected in parallel to the solar cell 10. For this reason, when the amount of solar radiation or the demand power of the DC load 81 varies, the distribution of the power from the solar cell 10 to the DC load 81 and the AC load 80 is automatically adjusted. As a result, power from the solar cell 10 is preferentially supplied to the DC load 81. Next, power from the solar cell 10 is supplied to the AC load 80. Finally, the power from the solar cell 10 is supplied to the AC power system AC. Even when the DC load 81 or the AC load 80 fluctuates, the power from the solar cell 10 is automatically distributed to the DC load 81, the AC load 80, and the AC power system AC. As a result, power efficiency is improved.
 また、電力調整器30は、最大出力追従制御を行うから、日射量や直流負荷81の需要電力が変動しても、太陽電池10を最大の効率で使用できる。 Moreover, since the power regulator 30 performs maximum output follow-up control, the solar cell 10 can be used with maximum efficiency even if the amount of solar radiation and the demand power of the DC load 81 fluctuate.
 (実施形態2)
 本実施形態の配電システムは、図3に示すように、燃料電池11と、電力調整器31と、変換器40と、分電盤50Aと、燃料電池11の出力電力を電力調整器31と変換器40とに分配する分配路61とを備える。電力調整器31は、交流配電路70に分電盤50Aを通じて接続される。変換器40は、直流配電路71に接続される。なお、本実施形態の配電システムと実施形態1の配電システムとで共通する構成については、同一の符号を付し、その説明を省略する。
(Embodiment 2)
As shown in FIG. 3, the power distribution system of the present embodiment converts the output power of the fuel cell 11, the power regulator 31, the converter 40, the distribution board 50 </ b> A, and the fuel cell 11 with the power regulator 31. And a distribution path 61 that distributes to the container 40. The power regulator 31 is connected to the AC distribution path 70 through the distribution board 50A. The converter 40 is connected to the DC distribution path 71. In addition, about the structure which is common in the power distribution system of this embodiment, and the power distribution system of Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 さらに、本実施形態の配電システムは、燃料電池11に供給する燃料の量を調節する供給量調節装置90と、供給量調節装置90および電力調整器31を制御する出力制御装置91とを備える。 Furthermore, the power distribution system of the present embodiment includes a supply amount adjusting device 90 that adjusts the amount of fuel supplied to the fuel cell 11, and an output control device 91 that controls the supply amount adjusting device 90 and the power adjuster 31.
 燃料電池11は、例えば、固体高分子形である。燃料電池11は、都市ガスや天然ガスを改質して得られる燃料(水素)と酸化剤(酸素)との電気化学反応によって連続的に発電する。図4における曲線F21,F22,F23は、燃料電池11の出力特性(電圧-電力特性)を示す。燃料の供給量が多いほど、曲線F21から曲線F22、さらに曲線F22から曲線F23へと出力特性が変化し、出力(発電電力)が増大する。そのため、燃料電池11の発電量(出力特性)は、供給量調節装置90より燃料電池11に供給する燃料の量を調節することで増減可能である。 The fuel cell 11 is, for example, a solid polymer type. The fuel cell 11 continuously generates power by an electrochemical reaction between fuel (hydrogen) obtained by reforming city gas or natural gas and oxidant (oxygen). Curves F21, F22, and F23 in FIG. 4 indicate output characteristics (voltage-power characteristics) of the fuel cell 11. As the amount of fuel supplied increases, the output characteristics change from the curve F21 to the curve F22 and from the curve F22 to the curve F23, and the output (generated power) increases. Therefore, the power generation amount (output characteristic) of the fuel cell 11 can be increased or decreased by adjusting the amount of fuel supplied to the fuel cell 11 from the supply amount adjusting device 90.
 分電盤50Aは、電流センサ501を有している点で、実施形態1の分電盤50と異なる。電流センサ501は、系統電流(交流電力系統ACから供給される電流量)を検出するように構成される。 The distribution board 50A is different from the distribution board 50 of the first embodiment in that it includes a current sensor 501. The current sensor 501 is configured to detect a system current (a current amount supplied from the AC power system AC).
 電力調整器31は、昇圧チョッパ回路311と、インバータ312と、インバータ制御回路(制御回路)313と、保護装置(系統連系保護装置)314とを有する。 The power regulator 31 includes a step-up chopper circuit 311, an inverter 312, an inverter control circuit (control circuit) 313, and a protection device (system interconnection protection device) 314.
 昇圧チョッパ回路311は、分配路61を介して燃料電池11より得た直流出力を利用して所定値の直流電圧を生成する。 The step-up chopper circuit 311 generates a DC voltage having a predetermined value by using the DC output obtained from the fuel cell 11 through the distribution path 61.
 インバータ312は、昇圧チョッパ回路311より得た直流電圧を、交流電力系統ACの第1交流電圧の位相に同期した位相を有する交流電圧(第2交流電圧)に変換する。 The inverter 312 converts the DC voltage obtained from the step-up chopper circuit 311 into an AC voltage (second AC voltage) having a phase synchronized with the phase of the first AC voltage of the AC power system AC.
 インバータ312は、第2交流電圧を出力線315に与える。出力線315は、分電盤50Aのボックス内に引き込まれる。出力線315は、分電盤50Aのボックス内で、交流電力系統ACに電気的に接続される。これにより、交流電力系統ACに燃料電池11が並列される。 The inverter 312 supplies the second AC voltage to the output line 315. The output line 315 is drawn into the box of the distribution board 50A. The output line 315 is electrically connected to the AC power system AC within the box of the distribution board 50A. Thereby, the fuel cell 11 is arranged in parallel with the AC power system AC.
 このように、インバータ312は、分配路61を通じて燃料電池11から得た直流電力を利用して交流電力系統ACの第1交流電圧の位相に同期した位相を有する第2交流電圧を生成する。インバータ312は、第2交流電圧を交流配電路70に与えることで交流配電路70に第2交流電力を供給する。 Thus, the inverter 312 generates a second AC voltage having a phase synchronized with the phase of the first AC voltage of the AC power system AC using the DC power obtained from the fuel cell 11 through the distribution path 61. The inverter 312 supplies the second AC power to the AC distribution path 70 by applying the second AC voltage to the AC distribution path 70.
 制御回路313は、インバータ312を制御することで第2交流電力の大きさを調整する。特に、制御回路313は、出力制御装置91からの指示値に基づいて、第2交流電力の大きさを調整するように構成される。 The control circuit 313 controls the inverter 312 to adjust the magnitude of the second AC power. In particular, the control circuit 313 is configured to adjust the magnitude of the second AC power based on the instruction value from the output control device 91.
 保護装置314は、系統電圧を監視して適正値よりも上昇した場合に制御回路313に指令を与えて、系統電圧が適正値よりも上昇ないようにインバータ312の出力を低下させる。 The protection device 314 monitors the system voltage and gives a command to the control circuit 313 when the system voltage rises above an appropriate value, and reduces the output of the inverter 312 so that the system voltage does not rise above the appropriate value.
 出力制御装置91は、電流センサ501によって系統電流を監視する。出力制御装置91は、系統電流が常にゼロとなるように電力調整器31と供給量調節装置91を制御する。特に、本実施形態では、出力制御装置91は、燃料電池11の出力が最大出力電力となるときに系統電流がゼロとなるように、電力調整器31に、指示値を与える。 The output control device 91 monitors the system current with the current sensor 501. The output control device 91 controls the power adjuster 31 and the supply amount adjusting device 91 so that the system current is always zero. In particular, in the present embodiment, the output control device 91 gives an instruction value to the power regulator 31 so that the system current becomes zero when the output of the fuel cell 11 reaches the maximum output power.
 ここで、燃料電池発電システムでは、太陽光発電システムのような交流電力系統ACへの逆潮流が許可されていない。そのため、本実施形態では、電力調整器31による出力制御と出力制御装置91による燃料電池11の出力制御(燃料供給量の調整制御)とによって、燃料電池11の出力電力が交流負荷80の需要電力と直流負荷81の需要電力との和と等しくなるようにしている。 Here, in the fuel cell power generation system, reverse power flow to the AC power system AC like the solar power generation system is not permitted. Therefore, in this embodiment, the output power of the fuel cell 11 is the power demand of the AC load 80 by the output control by the power regulator 31 and the output control of the fuel cell 11 by the output control device 91 (control for adjusting the fuel supply amount). And the demand power of the DC load 81 is made equal to the sum.
 例えば、ある時刻における燃料電池11の出力特性が曲線F21であるとする。電力調整器31は、出力制御装置91からの指示に応じて出力制御を行う。燃料電池11の出力が最大出力電力P21となるときに電流センサ501の出力がゼロ(つまり系統電流がゼロ)になるのであれば、電力調整器31は、そのときの動作点(曲線F21のピーク点X21)で動作する。 For example, assume that the output characteristic of the fuel cell 11 at a certain time is a curve F21. The power adjuster 31 performs output control according to an instruction from the output control device 91. If the output of the current sensor 501 becomes zero (that is, the system current is zero) when the output of the fuel cell 11 reaches the maximum output power P21, the power regulator 31 has the operating point at that time (the peak of the curve F21). Operates at point X21).
 交流負荷80および直流負荷81の需要電力が多くなると、燃料電池11の出力が最大出力電力P21に達しても電流センサ501の出力がゼロにならないときがある。この場合、出力制御装置91は、供給量調節装置90を制御して燃料電池11への燃料供給量を増大させる。これにより、例えば、燃料電池11の出力特性が曲線F21から曲線F22に移行する。電力調整器31は、出力制御装置91からの指示に応じて出力制御を行い、燃料電池11の出力が最大出力電力P22となるときに電流センサ501の出力がゼロになるのであれば、そのときの動作点(曲線F22のピーク点X22)で動作する。 When the demand power of the AC load 80 and the DC load 81 increases, the output of the current sensor 501 may not become zero even when the output of the fuel cell 11 reaches the maximum output power P21. In this case, the output control device 91 controls the supply amount adjusting device 90 to increase the fuel supply amount to the fuel cell 11. Thereby, for example, the output characteristics of the fuel cell 11 shift from the curve F21 to the curve F22. If the output of the current sensor 501 becomes zero when the output of the fuel cell 11 reaches the maximum output power P22, the power adjuster 31 performs output control in accordance with an instruction from the output control device 91, and then At the operating point (peak point X22 of the curve F22).
 交流負荷80および直流負荷81の需要電力が更に増大すると、燃料電池11の出力が最大出力電力P22に達しても電流センサ501の出力がゼロにならないときがある。この場合、出力制御装置91は、供給量調節装置90を制御して燃料電池11への燃料供給量を増大させる。これにより、例えば、燃料電池11の出力特性が曲線F22から曲線F23へ移行する。電力調整器31は、出力制御装置91からの指示に応じて出力制御を行い、燃料電池11の出力が最大出力電力P23となるときに電流センサ501の出力がゼロになるのであれば、そのときの動作点(例えば、曲線F23のピーク点X23)で動作する。 When the demand power of the AC load 80 and the DC load 81 further increases, the output of the current sensor 501 may not become zero even when the output of the fuel cell 11 reaches the maximum output power P22. In this case, the output control device 91 controls the supply amount adjusting device 90 to increase the fuel supply amount to the fuel cell 11. Thereby, for example, the output characteristics of the fuel cell 11 shift from the curve F22 to the curve F23. The power regulator 31 performs output control in accordance with an instruction from the output control device 91, and if the output of the current sensor 501 becomes zero when the output of the fuel cell 11 reaches the maximum output power P23, then At the operating point (for example, the peak point X23 of the curve F23).
 交流負荷80および直流負荷81の需要電力が減少すると、燃料電池11の出力の余剰分が交流電力系統ACへ逆潮流しようとする。出力制御装置91は、電流センサ501の出力に基づいて逆潮流が生じているか否かを検知する。出力制御装置91は、逆潮流が生じたことを検知すると、直ちに供給量調節装置90を制御して燃料電池11への燃料供給量を減少させる。出力制御装置91は、逆潮流が解消するまで、燃料供給量を減少させる。これにより、例えば、燃料電池11の出力特性が曲線F23から曲線F22へ移行する。電力調整器31は、出力制御装置91からの指示に応じて出力制御を行い、燃料電池11の出力が最大出力電力(例えば、P22)となるときに電流センサ501の出力がゼロになるのであれば、そのときの動作点(例えば、曲線F22のピーク点X22)で動作する。 When the demand power of the AC load 80 and the DC load 81 decreases, the excess output of the fuel cell 11 tends to flow backward to the AC power system AC. The output control device 91 detects whether or not a reverse power flow has occurred based on the output of the current sensor 501. When the output control device 91 detects that the reverse power flow has occurred, the output control device 91 immediately controls the supply amount adjusting device 90 to reduce the fuel supply amount to the fuel cell 11. The output control device 91 reduces the fuel supply amount until the reverse power flow is eliminated. Thereby, for example, the output characteristics of the fuel cell 11 shift from the curve F23 to the curve F22. The power adjuster 31 performs output control according to an instruction from the output control device 91, and the output of the current sensor 501 becomes zero when the output of the fuel cell 11 reaches the maximum output power (for example, P22). For example, it operates at the operating point at that time (for example, the peak point X22 of the curve F22).
 交流負荷80および直流負荷81の需要電力が燃料電池11の最大供給電力を超えた場合、出力制御装置91は、電力調整器31の出力を低下させる。これによって、直流負荷81に優先的に燃料電池11から電力(直流電力)を供給する。この場合、交流負荷80への電力が不足する。交流負荷80の需要電力に満たない分(不足分)については交流電力系統ACから供給される。 When the demand power of the AC load 80 and the DC load 81 exceeds the maximum supply power of the fuel cell 11, the output control device 91 reduces the output of the power regulator 31. As a result, power (DC power) is preferentially supplied from the fuel cell 11 to the DC load 81. In this case, power to the AC load 80 is insufficient. A portion that is less than the power demand of the AC load 80 (shortage) is supplied from the AC power system AC.
 ところで、直流負荷81の需要電力が燃料電池11の最大供給電力を超えると、変換器40が停止してしまう。そのため、配電システムを構築する際には、直流負荷81の需要電力が燃料電池11の最大供給電力を超えないようにする必要がある。しかし、予期せずに、直流負荷81の需要電力が燃料電池11の最大供給電力を超えることがある。そのため、変換器40が停止しても直流負荷81に給電できるように、何らかの補助電源(蓄電池など)を別途設けておくことが望ましい。 Incidentally, when the power demand of the DC load 81 exceeds the maximum power supply of the fuel cell 11, the converter 40 stops. Therefore, when constructing a power distribution system, it is necessary to prevent the demand power of the DC load 81 from exceeding the maximum supply power of the fuel cell 11. However, unexpectedly, the demand power of the DC load 81 may exceed the maximum supply power of the fuel cell 11. Therefore, it is desirable to provide some auxiliary power (such as a storage battery) separately so that the DC load 81 can be fed even when the converter 40 is stopped.
 上述のように本実施形態の配電システムでは、交流負荷80には従来と同様に分電盤50Aを経由して交流電力系統ACからの交流電力(第1交流電力)または電力調整器31からの交流電力(第2交流電力)を配給する。一方、直流負荷81には変換器40で定電圧化された燃料電池11からの直流電力を配給する。そのため、電力調整器31からの交流電力を直流電力に変換しなくて済み、直流電力を効率よく配給できる。 As described above, in the power distribution system according to the present embodiment, the AC load 80 is supplied to the AC load 80 from the AC power system AC (first AC power) or the power regulator 31 via the distribution board 50A as in the conventional case. Distribute AC power (second AC power). On the other hand, the DC load 81 is supplied with DC power from the fuel cell 11 that has been made constant voltage by the converter 40. Therefore, it is not necessary to convert AC power from the power regulator 31 into DC power, and DC power can be distributed efficiently.
 しかも、電力調整器31と変換器40とが燃料電池11に対して並列接続されている。そのため、負荷が変動した際にも燃料電池11の直流電力が直流負荷81と交流負荷80に自動的に振り分けられる。その結果、電力効率が向上する。 In addition, the power regulator 31 and the converter 40 are connected in parallel to the fuel cell 11. Therefore, the DC power of the fuel cell 11 is automatically distributed to the DC load 81 and the AC load 80 even when the load fluctuates. As a result, power efficiency is improved.
 さらに、本実施形態の配電システムでは、燃料電池11から出力される直流電力を変換器40を介して直流負荷81に優先的に供給する。その上、直流負荷81と交流負荷80の需要電力が燃料電池11からの供給電力を超えた場合に、系統連系運転を行っている電力調整器31によって交流電力系統ACから交流負荷80へ供給される電力が増加する。そのため、負荷変動に対する電力供給の安定性が向上するという利点がある。 Furthermore, in the power distribution system of the present embodiment, the DC power output from the fuel cell 11 is preferentially supplied to the DC load 81 via the converter 40. In addition, when the demand power of the DC load 81 and the AC load 80 exceeds the supply power from the fuel cell 11, the power regulator 31 performing the grid connection operation supplies the AC load 80 to the AC load 80. Power to be increased. Therefore, there is an advantage that the stability of power supply with respect to load fluctuation is improved.
 (実施形態3)
 本実施形態の配電システムは、図5に示すように、太陽電池10と、燃料電池11と、電力調整器(以下、「第1電力調整器」という)30と、電力調整器(以下、「第2電力調整器」という)31と、変換器40と、分電盤50Bと、太陽電池11の出力電力を第1電力調整器30と変換器40とに分配する分配路(以下、「第1分配路」という)60Aと、燃料電池11の出力電力を第2電力調整器31と変換器40とに分配する分配路(以下、「第2分配路」という)61Aと、供給量調節装置90と、出力制御装置91Aとを備える。このように、本実施形態の配電システムは、直流発電設備として、太陽電池10と、燃料電池11とを備える。本実施形態の配電システムと実施形態1,2の配電システムとで共通する構成については、同一の符号を付して、その説明を省略する。
(Embodiment 3)
As shown in FIG. 5, the power distribution system of the present embodiment includes a solar cell 10, a fuel cell 11, a power regulator (hereinafter referred to as “first power regulator”) 30, and a power regulator (hereinafter referred to as “ (Referred to as “second power regulator”) 31, a converter 40, a distribution board 50B, and a distribution path (hereinafter referred to as “second power regulator”) that distributes the output power of the solar cell 11 to the first power regulator 30 and the converter 40. 60A, a distribution path (hereinafter referred to as “second distribution path”) 61A for distributing the output power of the fuel cell 11 to the second power regulator 31 and the converter 40, and a supply amount adjusting device 90 and an output control device 91A. As described above, the power distribution system of the present embodiment includes the solar cell 10 and the fuel cell 11 as DC power generation equipment. About the structure which is common in the power distribution system of this embodiment, and the power distribution system of Embodiment 1, 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 第1分配路60Aは、中継端子箱20の出力端子(図示せず)を第1電力調整器30の入力端子(図示せず)に接続する第1経路601と、中継端子箱20の出力端子を変換器40の入力端子(図示せず)に接続する第2経路602とで構成される。第2経路602には、整流素子(ダイオード)D1が、アノードが中継端子箱20の出力端子に、カソードが変換器40の入力端子にそれぞれ電気的に接続されるように、挿入されている。 60 A of 1st distribution paths are the 1st path | routes 601 which connect the output terminal (not shown) of the relay terminal box 20 to the input terminal (not shown) of the 1st power regulator 30, and the output terminal of the relay terminal box 20 Is connected to an input terminal (not shown) of the converter 40. In the second path 602, a rectifying element (diode) D1 is inserted such that the anode is electrically connected to the output terminal of the relay terminal box 20 and the cathode is electrically connected to the input terminal of the converter 40.
 第2分配路61Aは、燃料電池11の出力端子(図示せず)を第2電力調整器31の入力端子(図示せず)に接続する第1経路611と、燃料電池11の出力端子を変換器40の入力端子に接続する第2経路612とで構成される。第2経路612には、整流素子(ダイオード)D2が、アノードが燃料電池11の出力端子に、カソードが変換器40の入力端子にそれぞれ電気的に接続されるように、挿入されている。2つのダイオードD1,D2によって、太陽電池10の動作点と燃料電池11の動作点とが互いに干渉することが防止される。 The second distribution path 61A converts a first path 611 that connects an output terminal (not shown) of the fuel cell 11 to an input terminal (not shown) of the second power regulator 31, and an output terminal of the fuel cell 11. And a second path 612 connected to the input terminal of the device 40. In the second path 612, a rectifying element (diode) D2 is inserted such that the anode is electrically connected to the output terminal of the fuel cell 11 and the cathode is electrically connected to the input terminal of the converter 40. The two diodes D1 and D2 prevent the operating point of the solar cell 10 and the operating point of the fuel cell 11 from interfering with each other.
 第1電力調整器30は、太陽電池用の電力調整器であり、実施形態1で述べたように昇圧チョッパ回路301・インバータ302・制御回路303・保護装置304・出力線305を有する。第1電力調整器30のインバータ302は、第1分配路60Aを通じて太陽電池10から得た直流電力を利用して交流電力系統の第1交流電圧の位相に同期した位相を有する交流電圧(第2交流電圧)を生成する。インバータ302は、第2交流電圧を交流配電路70に与えることで交流配電路70に交流電力(第2交流電力)を供給する。 The first power regulator 30 is a solar battery power regulator, and includes the step-up chopper circuit 301, the inverter 302, the control circuit 303, the protection device 304, and the output line 305 as described in the first embodiment. The inverter 302 of the first power regulator 30 uses the DC power obtained from the solar cell 10 through the first distribution path 60A to use an AC voltage (second voltage) having a phase synchronized with the phase of the first AC voltage of the AC power system. AC voltage). The inverter 302 supplies AC power (second AC power) to the AC distribution path 70 by applying the second AC voltage to the AC distribution path 70.
 第2電力調整器31は、燃料電池用の電力調整器であり、実施形態2で述べたように昇圧チョッパ回路311・インバータ312・制御回路313・保護装置314・出力線315を有する。第2電力調整器31のインバータ312は、第2分配路61Aを通じて燃料電池11から得た直流電力を利用して第1交流電圧の位相に同期した位相を有する交流電圧(第3交流電圧)を生成し、第3交流電圧を交流配電路70に与えることで交流配電路70に交流電力(第3交流電力)を供給する。 The second power regulator 31 is a power regulator for a fuel cell, and includes the step-up chopper circuit 311, the inverter 312, the control circuit 313, the protection device 314, and the output line 315 as described in the second embodiment. The inverter 312 of the second power regulator 31 uses the DC power obtained from the fuel cell 11 through the second distribution path 61A to generate an AC voltage (third AC voltage) having a phase synchronized with the phase of the first AC voltage. AC power (third AC power) is supplied to the AC distribution path 70 by generating and applying the third AC voltage to the AC distribution path 70.
 分電盤50Bは、電流センサ(第1電流センサ)501に加えて、第1電力調整器30から出力される交流電流(以下、「太陽電池電流」という)を検出する電流センサ(第2電流センサ)502を備える。本実施形態では、第1電流センサ501は、交流負荷80に供給される電流(系統電流と太陽電池電流との合計値)を検出する。各電流センサ501,502の出力は、出力制御装置91Aに取り込まれる。 In addition to the current sensor (first current sensor) 501, the distribution board 50B detects a current sensor (second current) that detects an alternating current (hereinafter referred to as “solar cell current”) output from the first power regulator 30. Sensor) 502. In the present embodiment, the first current sensor 501 detects the current (total value of the system current and the solar cell current) supplied to the AC load 80. The outputs of the current sensors 501 and 502 are taken into the output control device 91A.
 出力制御装置91Aは、第1電流センサ501の出力と第2電流センサ502の出力とに基づいて、系統電流が常にゼロとなるように第2電力調整器31と供給量調節装置91Aとを制御する。 Based on the output of the first current sensor 501 and the output of the second current sensor 502, the output control device 91A controls the second power regulator 31 and the supply amount adjustment device 91A so that the system current is always zero. To do.
 図7は、出力制御装置91Aによる制御動作を説明するためのフローチャートである。 FIG. 7 is a flowchart for explaining a control operation by the output control device 91A.
 出力制御装置91Aは、燃料電池11の動作を開始させると(ステップS1)、変換器40から正常に直流電力が供給されているか否かを監視する(ステップS2)。変換器40から正常に直流電力が供給されていなければ、出力制御装置91Aは、供給量調節装置90から燃料電池11への燃料供給量を増やして燃料電池11の出力を増大させる(ステップS3)。そのため、出力制御装置91Aは、変換器40から正常に直流電力が供給されるまで、供給量調節装置90から燃料電池11への燃料供給量を増やし続ける。 When the output control device 91A starts the operation of the fuel cell 11 (step S1), the output control device 91A monitors whether or not DC power is normally supplied from the converter 40 (step S2). If DC power is not normally supplied from the converter 40, the output control device 91A increases the output of the fuel cell 11 by increasing the amount of fuel supplied from the supply amount adjusting device 90 to the fuel cell 11 (step S3). . Therefore, the output control device 91A continues to increase the fuel supply amount from the supply amount adjusting device 90 to the fuel cell 11 until the DC power is normally supplied from the converter 40.
 変換器40から正常に直流電力が供給されている状態では、出力制御装置91Aは、第1電流センサ501の出力V1と第2電流センサ502の出力V2とを比較する(ステップS4)。出力制御装置91Aは、第1電流センサ501の出力V1が第2電流センサ502の出力V2以上であれば(V2≦V1)、交流電力系統ACから電力供給を受けていると判断する。この場合、出力制御装置91Aは、供給量調節装置90から燃料電池11への燃料供給量を増やして燃料電池11の出力を増大させる(ステップS5)。一方、出力V1が出力V2未満であれば(V2>V1)、出力制御装置91Aは、太陽電池10の電力に余剰分が生じていると判断する。この場合、出力制御装置91Aは、供給量調節装置90から燃料電池11への燃料供給量を減らして燃料電池11の出力を減少させる(ステップS6)。 In a state where DC power is normally supplied from the converter 40, the output control device 91A compares the output V1 of the first current sensor 501 with the output V2 of the second current sensor 502 (step S4). If the output V1 of the first current sensor 501 is equal to or higher than the output V2 of the second current sensor 502 (V2 ≦ V1), the output control device 91A determines that power is supplied from the AC power system AC. In this case, the output control device 91A increases the output of the fuel cell 11 by increasing the amount of fuel supplied from the supply amount adjusting device 90 to the fuel cell 11 (step S5). On the other hand, if the output V1 is less than the output V2 (V2> V1), the output control device 91A determines that a surplus has occurred in the power of the solar cell 10. In this case, the output control device 91A decreases the output of the fuel cell 11 by reducing the fuel supply amount from the supply amount adjusting device 90 to the fuel cell 11 (step S6).
 次に、図6を参照して本実施形態における出力制御装置91Aの動作を説明する。 Next, the operation of the output control device 91A in this embodiment will be described with reference to FIG.
 図6の折れ線Aは、太陽電池10の出力電力(PV電力)を表す。折れ線Bは、燃料電池11の出力電力(FC電力)を表す。線Cは、PV電力とFC電力との合計値を表す。また、図6は、4つの棒グラフT1~T4を示す。G1は、直流負荷81での消費電力(直流負荷電力)を示す。G2は、交流負荷80での消費電力(交流負荷電力)を示す。G3は、第1電力調整器30から交流電力系統ACへ逆潮流される電力(逆潮流電力)を示す。 6 represents the output power (PV power) of the solar cell 10. A broken line B represents the output power (FC power) of the fuel cell 11. Line C represents the total value of PV power and FC power. FIG. 6 shows four bar graphs T1 to T4. G1 indicates power consumption (DC load power) in the DC load 81. G2 indicates the power consumption (AC load power) at the AC load 80. G3 indicates the power (reverse power flow) that flows backward from the first power regulator 30 to the AC power system AC.
 PV電力が直流負荷電力G1および交流負荷電力G2を充分に賄うことができている場合、PV電力の余剰分が、交流電力系統ACに逆潮流される(棒グラフT1参照)。 When the PV power can sufficiently cover the DC load power G1 and the AC load power G2, the surplus PV power is reversely flowed to the AC power system AC (see bar graph T1).
 この状態から、例えば、日射量が減少してPV電力が低下すると、逆潮流電力G3が小さくなる。やがて、余剰分はゼロ(逆潮流電力G3がゼロ)になる(棒グラフT2参照)。 From this state, for example, when the amount of solar radiation decreases and the PV power decreases, the reverse power flow G3 decreases. Eventually, the surplus will be zero (reverse power flow G3 is zero) (see bar graph T2).
 更にPV電力が減少して直流負荷電力G1と交流負荷電力G2との和を下回ると、交流電力系統ACから供給される電力が増大する。その結果、出力V2よりも出力V1が大きくなる。つまり、交流負荷電力G2の不足分が交流電力系統ACからの電力によって補填される。 If the PV power further decreases and falls below the sum of the DC load power G1 and the AC load power G2, the power supplied from the AC power system AC increases. As a result, the output V1 becomes larger than the output V2. That is, the shortage of the AC load power G2 is compensated by the power from the AC power system AC.
 出力制御装置91Aは、出力V2が出力V1を下回った時点で供給量調節装置90から燃料電池11への燃料供給を開始し、第2電力調整器31を動作させる。出力制御装置91Aは、燃料電池11の出力が最大出力電力となるときに系統電流がゼロとなるように、第2電力調整器31の出力制御を行う。そのため、交流負荷電力G2の不足分が燃料電池11の出力電力(FC電力)で補填される(棒グラフT3参照)。 The output control device 91A starts supplying fuel from the supply amount adjusting device 90 to the fuel cell 11 when the output V2 falls below the output V1, and operates the second power regulator 31. The output control device 91A performs output control of the second power regulator 31 so that the grid current becomes zero when the output of the fuel cell 11 reaches the maximum output power. Therefore, the shortage of the AC load power G2 is compensated by the output power (FC power) of the fuel cell 11 (see bar graph T3).
 更にPV電力が減少して直流負荷電力G1を下回ると、第2電流センサ502の出力V2が更に減少して第1電流センサ501の出力V1が更に増大する。出力制御装置91Aは、供給量調節装置90から燃料電池11への燃料供給量をさらに増やす。これによって、交流負荷電力G2の不足分と直流負荷電力G1の不足分とがFC電力で補填される(棒グラフT4参照)。 When the PV power further decreases and falls below the DC load power G1, the output V2 of the second current sensor 502 further decreases and the output V1 of the first current sensor 501 further increases. The output control device 91A further increases the fuel supply amount from the supply amount adjusting device 90 to the fuel cell 11. Thereby, the shortage of the AC load power G2 and the shortage of the DC load power G1 are compensated with the FC power (see the bar graph T4).
 このように、本実施形態の配電システムでは、PV電力だけでは、交流負荷80や直流負荷81に十分な電力を供給できない場合、FC電力によって、交流負荷電力80や直流負荷電力81の不足分を補填する。そのため、交流電力系統ACから給電を受けなくて済む。また、本実施形態の配電システムによれば、実施形態1,2の配電システムと同様の効果が得られる。 As described above, in the power distribution system of the present embodiment, when the PV power alone cannot supply sufficient power to the AC load 80 or the DC load 81, the shortage of the AC load power 80 or the DC load power 81 is reduced by the FC power. To compensate. Therefore, it is not necessary to receive power from the AC power system AC. Moreover, according to the power distribution system of this embodiment, the effect similar to the power distribution system of Embodiment 1, 2 is acquired.

Claims (6)

  1.  太陽電池と、
     交流電力により駆動される交流負荷に交流電力系統からの第1交流電力を供給するための交流配電路に接続される電力調整器と、
     直流電力により駆動される直流負荷に給電するための直流配電路に接続される直流直流変換器と、
     上記太陽電池の出力電力を上記電力調整器と上記直流直流変換器とに分配する分配路と、を備え、
     上記電力調整器は、インバータと、逆潮流回路とを有し、
     上記インバータは、上記分配路を通じて上記太陽電池から得た直流電力を利用して上記交流電力系統の第1交流電圧の位相に同期した位相を有する第2交流電圧を生成し、上記第2交流電圧を上記交流配電路に与えることで上記交流配電路に第2交流電力を供給するように構成され、
     上記逆潮流回路は、上記太陽電池の余剰電力が上記交流電力系統に逆潮流されるように上記第2交流電力の大きさを調整するように構成され、
     上記直流直流変換器は、上記分配路を通じて上記太陽電池から得た直流電力を利用して所定値の直流電圧よりなる供給電圧を生成し、上記供給電圧を上記直流配電路に与えることで上記直流配電路に直流電力を供給するように構成されることを特徴とする配電システム。
    Solar cells,
    A power regulator connected to an AC distribution path for supplying first AC power from the AC power system to an AC load driven by AC power;
    A DC / DC converter connected to a DC distribution path for supplying power to a DC load driven by DC power;
    A distribution path for distributing the output power of the solar cell to the power regulator and the DC / DC converter,
    The power regulator includes an inverter and a reverse power flow circuit,
    The inverter generates a second AC voltage having a phase synchronized with a phase of the first AC voltage of the AC power system using the DC power obtained from the solar cell through the distribution path, and the second AC voltage. Is configured to supply the second AC power to the AC distribution path by providing the AC distribution path with
    The reverse power flow circuit is configured to adjust the magnitude of the second AC power so that surplus power of the solar cell is reversely flowed to the AC power system,
    The DC / DC converter generates a supply voltage composed of a DC voltage of a predetermined value using DC power obtained from the solar cell through the distribution path, and supplies the supply voltage to the DC distribution path to thereby generate the DC voltage. A power distribution system configured to supply DC power to a power distribution path.
  2.  上記電力調整器は、上記太陽電池から出力される直流電力が最大になるように上記第2交流電力の大きさを調整する出力制御回路を備え、
     上記直流直流変換器は、上記供給電圧を一定に維持する定電圧制御回路を備えることを特徴とする請求項1記載の配電システム。
    The power regulator includes an output control circuit that adjusts the magnitude of the second AC power so that the DC power output from the solar cell is maximized,
    The power distribution system according to claim 1, wherein the DC / DC converter includes a constant voltage control circuit that maintains the supply voltage constant.
  3.  燃料電池と、
     交流電力により駆動される交流負荷に交流電力系統からの第1交流電力を供給するための交流配電路に接続される電力調整器と、
     直流電力により駆動される直流負荷に給電するための直流配電路に接続される直流直流変換器と、
     上記燃料電池の出力電力を上記電力調整器と上記直流直流変換器とに分配する分配路と、を備え、
     上記電力調整器は、上記分配路を通じて上記燃料電池から得た直流電力を利用して上記交流電力系統の第1交流電圧の位相に同期した位相を有する第2交流電圧を生成し、上記第2交流電圧を上記交流配電路に与えることで上記交流配電路に第2交流電力を供給するように構成され、
     上記直流直流変換器は、上記分配路を通じて上記燃料電池から得た直流電力を利用して所定値の直流電圧よりなる供給電圧を生成し、上記供給電圧を上記直流配電路に与えることで上記直流配電路に直流電力を供給するように構成されることを特徴とする配電システム。
    A fuel cell;
    A power regulator connected to an AC distribution path for supplying first AC power from the AC power system to an AC load driven by AC power;
    A DC / DC converter connected to a DC distribution path for supplying power to a DC load driven by DC power;
    A distribution path for distributing the output power of the fuel cell to the power regulator and the DC / DC converter,
    The power regulator uses the DC power obtained from the fuel cell through the distribution path to generate a second AC voltage having a phase synchronized with the phase of the first AC voltage of the AC power system. It is configured to supply the second AC power to the AC distribution path by applying an AC voltage to the AC distribution path,
    The DC / DC converter generates a supply voltage composed of a DC voltage of a predetermined value using DC power obtained from the fuel cell through the distribution path, and supplies the supply voltage to the DC distribution path. A power distribution system configured to supply DC power to a power distribution path.
  4.  上記直流直流変換器は、上記供給電圧を一定に維持する定電圧制御回路を備えることを特徴とする請求項3記載の配電システム。 4. The power distribution system according to claim 3, wherein the DC / DC converter includes a constant voltage control circuit for maintaining the supply voltage constant.
  5.  太陽電池と、
     燃料電池と、
     交流電力により駆動される交流負荷に交流電力系統からの第1交流電力を供給するための交流配電路に接続される第1電力調整器および第2電力調整器と、
     直流電力により駆動される直流負荷に給電するための直流配電路に接続される直流直流変換器と、
     上記太陽電池の出力電力を上記第1電力調整器と上記直流直流変換器とに分配する第1分配路と、
     上記燃料電池の出力電力を上記第2電力調整器と上記直流直流変換器とに分配する第2分配路と、を備え、
     上記第1電力調整器は、インバータと、逆潮流回路とを有し、
     上記インバータは、上記第1分配路を通じて上記太陽電池から得た直流電力を利用して上記交流電力系統の第1交流電圧の位相に同期した位相を有する第2交流電圧を生成し、上記第2交流電圧を上記交流配電路に与えることで上記交流配電路に第2交流電力を供給するように構成され、
     上記逆潮流回路は、上記太陽電池の余剰電力が上記交流電力系統に逆潮流されるように上記第2交流電力の大きさを調整するように構成され、
     上記第2電力調整器は、上記第2分配路を通じて上記燃料電池から得た直流電力を利用して上記第1交流電圧の位相に同期した位相を有する第3交流電圧を生成し、上記第3交流電圧を上記交流配電路に与えることで上記交流配電路に第3交流電力を供給するように構成され、
     上記直流直流変換器は、上記第1分配路を通じて上記太陽電池から得た直流電力および上記第2分配路を通じて上記燃料電池から得た直流電力を利用して所定値の直流電圧よりなる供給電圧を生成し、上記供給電圧を上記直流配電路に与えることで上記直流配電路に直流電力を供給するように構成されることを特徴とする配電システム。
    Solar cells,
    A fuel cell;
    A first power regulator and a second power regulator connected to an AC distribution path for supplying first AC power from an AC power system to an AC load driven by AC power;
    A DC / DC converter connected to a DC distribution path for supplying power to a DC load driven by DC power;
    A first distribution path for distributing the output power of the solar cell to the first power regulator and the DC / DC converter;
    A second distribution path for distributing the output power of the fuel cell to the second power regulator and the DC / DC converter;
    The first power regulator includes an inverter and a reverse power flow circuit,
    The inverter generates a second AC voltage having a phase synchronized with a phase of the first AC voltage of the AC power system using the DC power obtained from the solar cell through the first distribution path, and the second AC voltage. It is configured to supply the second AC power to the AC distribution path by applying an AC voltage to the AC distribution path,
    The reverse power flow circuit is configured to adjust the magnitude of the second AC power so that surplus power of the solar cell is reversely flowed to the AC power system,
    The second power regulator generates a third AC voltage having a phase synchronized with a phase of the first AC voltage using DC power obtained from the fuel cell through the second distribution path, and It is configured to supply third AC power to the AC distribution path by applying an AC voltage to the AC distribution path,
    The DC / DC converter uses a DC power obtained from the solar cell through the first distribution path and a DC power obtained from the fuel cell through the second distribution path to supply a supply voltage composed of a predetermined DC voltage. A distribution system configured to generate and supply DC power to the DC distribution path by applying the supply voltage to the DC distribution path.
  6.  上記第1電力調整器は、上記太陽電池から出力される直流電力が最大になるように上記第2交流電力の大きさを調整する出力制御回路を備え、
     上記直流直流変換器は、上記供給電圧を一定に維持する定電圧制御回路を備えることを特徴とする請求項5記載の配電システム。
    The first power regulator includes an output control circuit that adjusts the magnitude of the second AC power so that the DC power output from the solar cell is maximized,
    6. The power distribution system according to claim 5, wherein the DC / DC converter includes a constant voltage control circuit for maintaining the supply voltage constant.
PCT/JP2009/063553 2008-08-07 2009-07-30 Power distribution system WO2010016420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-204668 2008-08-07
JP2008204668A JP4683091B2 (en) 2008-08-07 2008-08-07 Power distribution system

Publications (1)

Publication Number Publication Date
WO2010016420A1 true WO2010016420A1 (en) 2010-02-11

Family

ID=41663640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063553 WO2010016420A1 (en) 2008-08-07 2009-07-30 Power distribution system

Country Status (2)

Country Link
JP (1) JP4683091B2 (en)
WO (1) WO2010016420A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048504A (en) * 2011-08-29 2013-03-07 Tokyo Electric Power Co Inc:The Photovoltaic power generation facility
WO2013035224A1 (en) * 2011-09-09 2013-03-14 パナソニック株式会社 Distributed power generation system and method for operating same
WO2013076936A1 (en) * 2011-11-22 2013-05-30 パナソニック株式会社 Electricity-generation system and wireless power-transmission system
GB2508651A (en) * 2012-12-07 2014-06-11 Torch Solar Technologies Ltd System for synchronising a renewable power source with mains supply

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344759B2 (en) * 2009-09-30 2013-11-20 パナソニック株式会社 Power distribution system
JP5543827B2 (en) * 2010-03-31 2014-07-09 Jx日鉱日石エネルギー株式会社 Power system
JP2013258788A (en) * 2010-10-04 2013-12-26 Panasonic Corp Cogeneration system
JP5716350B2 (en) * 2010-10-29 2015-05-13 株式会社ノーリツ Current sensor erroneous installation determination method and combined power generation system
JP5652749B2 (en) * 2010-12-24 2015-01-14 株式会社ノーリツ Power generation system
WO2012132258A1 (en) 2011-03-30 2012-10-04 パナソニック株式会社 Distributed power generation system and method for operating same
EP2725676A4 (en) * 2011-06-22 2015-03-18 Kyocera Corp Power conditioner, control method and power generation system
KR20130002504A (en) * 2011-06-29 2013-01-08 한국전력공사 Distributing board and method for processing electric power using the same
SG2014009500A (en) * 2011-09-20 2014-06-27 Mitsubishi Heavy Ind Parking Mechanical parking apparatus and power supplying method for mechanical parking apparatus
JP5818602B2 (en) * 2011-09-20 2015-11-18 三菱重工メカトロシステムズ株式会社 Mechanical parking apparatus and power supply method for mechanical parking apparatus
JP5865225B2 (en) * 2012-09-28 2016-02-17 京セラ株式会社 Control system, control device, and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274233A (en) * 1993-03-24 1994-09-30 Sanyo Electric Co Ltd Power system
JPH08251827A (en) * 1995-03-10 1996-09-27 Toshiba Eng & Constr Co Ltd Combined cycle power generation system
JPH09308103A (en) * 1996-05-17 1997-11-28 Canon Inc Solar battery application apparatus
JP2003204682A (en) * 2002-01-08 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> Dc distribution system
JP2004319946A (en) * 2003-02-26 2004-11-11 Kyocera Corp Solar energy power generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238256A (en) * 2001-02-08 2002-08-23 Yoshihiro Sekino Dc-dc converter
JP2004183415A (en) * 2002-12-06 2004-07-02 Sanyo Electric Co Ltd Sunshade and residence with sunshade
JP4201750B2 (en) * 2004-08-30 2008-12-24 三洋電機株式会社 Power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274233A (en) * 1993-03-24 1994-09-30 Sanyo Electric Co Ltd Power system
JPH08251827A (en) * 1995-03-10 1996-09-27 Toshiba Eng & Constr Co Ltd Combined cycle power generation system
JPH09308103A (en) * 1996-05-17 1997-11-28 Canon Inc Solar battery application apparatus
JP2003204682A (en) * 2002-01-08 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> Dc distribution system
JP2004319946A (en) * 2003-02-26 2004-11-11 Kyocera Corp Solar energy power generation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048504A (en) * 2011-08-29 2013-03-07 Tokyo Electric Power Co Inc:The Photovoltaic power generation facility
WO2013035224A1 (en) * 2011-09-09 2013-03-14 パナソニック株式会社 Distributed power generation system and method for operating same
WO2013076936A1 (en) * 2011-11-22 2013-05-30 パナソニック株式会社 Electricity-generation system and wireless power-transmission system
CN103229381A (en) * 2011-11-22 2013-07-31 松下电器产业株式会社 Electricity-generation system and wireless power-transmission system
GB2508651A (en) * 2012-12-07 2014-06-11 Torch Solar Technologies Ltd System for synchronising a renewable power source with mains supply
GB2508651B (en) * 2012-12-07 2016-01-27 Torch Solar Technologies Ltd A power management system

Also Published As

Publication number Publication date
JP4683091B2 (en) 2011-05-11
JP2010041886A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2010016420A1 (en) Power distribution system
EP2485375B1 (en) Power distribution system
US6949843B2 (en) Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
US6602627B2 (en) Uninterruptible power supplies using fuel cells
JP5799254B2 (en) Power distribution system
US20060078773A1 (en) Method and system for controlling and recovering short duration bridge power to maximize backup power
JP2008154334A (en) Power conditioner
KR101926010B1 (en) A power converter system using new-renewable energy
KR101816839B1 (en) Complex power circuit for renewable energy directly connected hydrogen generating device and control method thereof
US20120235492A1 (en) Power supply system
US10236525B2 (en) Control apparatus, fuel cell unit and control method
KR20160027499A (en) Control method of photovoltaic power generating system having day/night mode function
KR101020789B1 (en) Grid-connected hybrid solar photovoltaic generation system having uninterruptible power supply
JP5373528B2 (en) Power distribution equipment
KR101764651B1 (en) Power applying apparatus and method for controlling connecting photovoltaic power generating apparatus
JP4046700B2 (en) Grid-connected inverter device
EP2879221B1 (en) Control device, fuel cell system and control method
EP2882022B1 (en) Management system, management method, control device, and power generator
CN113767537A (en) Power control device, control method for power control device, and distributed power generation system
CN112994076A (en) SOFC combined heat and power microgrid
JP2003116224A (en) Photovoltaic generation system, power converter thereof, and control method therefor
WO2021019814A1 (en) Power conversion device and power generation system
JP2007300728A (en) Power generating device
JP5305578B2 (en) Fuel cell system
CN114080742A (en) Device and method for improving power generation efficiency of distributed power generation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804904

Country of ref document: EP

Kind code of ref document: A1