WO2010016377A1 - Optical element and optical pickup device - Google Patents

Optical element and optical pickup device Download PDF

Info

Publication number
WO2010016377A1
WO2010016377A1 PCT/JP2009/062965 JP2009062965W WO2010016377A1 WO 2010016377 A1 WO2010016377 A1 WO 2010016377A1 JP 2009062965 W JP2009062965 W JP 2009062965W WO 2010016377 A1 WO2010016377 A1 WO 2010016377A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
mass
parts
resin material
Prior art date
Application number
PCT/JP2009/062965
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 渡邉
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010523825A priority Critical patent/JPWO2010016377A1/en
Publication of WO2010016377A1 publication Critical patent/WO2010016377A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses

Definitions

  • the present invention relates to an optical element and an optical pickup device.
  • a resin material having an alicyclic structure has a low water absorption and is preferably used as a material for an optical element. Further, such an optical element is subjected to antireflection treatment from the viewpoint of increasing the transmittance.
  • an antireflection effect is obtained by attaching a vapor deposition film of an inorganic material or by fluorinating the fluorine gas by substituting CH bonds in the resin with CF bonds.
  • a method (for example, refer to Patent Document 1) is known.
  • the method of applying a vapor deposition film made of an inorganic material requires a large-scale apparatus, and the film thickness tends to be non-uniform when the surface angle becomes tight.
  • the adhesion between the inorganic layer (deposited film) and the resin layer (base material) is poor, and film peeling occurs when short-wavelength light such as blue laser is irradiated.
  • Patent Document 1 does not disclose the structure of the resin, the antireflection effect cannot be reliably improved by the fluorinated film.
  • An object of the present invention is to provide an optical element and an optical pickup device that can surely improve the antireflection effect by the fluorination treatment.
  • the optical element of the present invention is an optical element having a molded part molded from a resin material
  • the resin material is A resin having an alicyclic hydrocarbon structure, wherein the number of tertiary carbons in the unit structure is 4 or more, and the density is 1.01 g / cm 3 or more;
  • the molded part is on the surface, It has a layer containing a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine.
  • an antireflection coating made of an inorganic material is provided on the fluorinated film.
  • optical element of the present invention is provided as an objective lens.
  • the carbon bonded with CH in the substrate is a tertiary carbon, that is, in an unstable state. It is considered that carbon is preferable.
  • the number of tertiary carbons in the substrate increases, the number of C—F bonds increases after the fluorination treatment, and the difference in refractive index from the resin material can be increased. Thought.
  • the reaction rate of the fluorination treatment increases, resulting in an interface between the resin portion layer that has not been fluorinated and the resin portion layer that has been fluorinated. It turned out that the anti-reflection efficiency deteriorates.
  • the density of the resin material is increased to 1.01 g / cm 3 or more in order to suppress the penetration rate of the fluorine gas, the penetration rate is lowered and the reactivity of the penetrated portion is increased. It has been found that a high fluorinated film can be formed. Furthermore, it has been found that the tertiary carbon number per unit structure is preferably 4 or more in order to increase the difference in refractive index between the substrate and the fluorinated film.
  • the surface of the molded part is fluorinated to form a fluorinated film, that is, contains a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine.
  • the resin material of the molding part has an alicyclic hydrocarbon structure, the number of tertiary carbons in the unit structure is 4 or more, and the density is 1.01 g / cm 3 or more. Since the resin is contained, the antireflection effect by the fluorination treatment can be reliably improved.
  • the optical pickup device 30 includes a semiconductor laser oscillator 32 as a light source.
  • the semiconductor laser oscillator 32 emits blue light (blue-violet light) having a specific wavelength (for example, 405 nm) having a wavelength of 380 to 420 nm for BD (Blu-ray Disc).
  • a collimator 33, a beam splitter 34, a 1 ⁇ 4 wavelength plate 35, an aperture 36, and an objective lens 37 are arranged in a direction away from the semiconductor laser oscillator 32. Are sequentially arranged.
  • a sensor lens group 38 and a sensor 39 each including two sets of lenses are sequentially arranged at a position close to the beam splitter 34 and in a direction orthogonal to the optical axis of the blue-violet light described above.
  • Objective lens 37 The objective lens 37 is disposed at a position facing the high-density optical disc D (BD optical disc), and collects blue-violet light emitted from the semiconductor laser oscillator 32 on one surface of the optical disc D. Yes.
  • the objective lens 37 has an image-side numerical aperture NA of 0.7 or more.
  • the objective lens 37 is provided with a two-dimensional actuator 40, and the objective lens 37 is movable on the optical axis by the operation of the two-dimensional actuator 40.
  • the objective lens 37 is mainly composed of a molding part 50, and a fluorinated film 55 and an antireflection film 60 are formed on the surface 37a.
  • Molding unit 50 Among these, the shaping
  • the molded part 50 is molded from a resin material.
  • the resin material has an alicyclic hydrocarbon structure, the number of tertiary carbons in the unit structure is 4 or more, and the density is 1.01 g / A resin of cm 3 or more is contained as a base material resin.
  • the unit structure in the present invention refers to a unit structure in a monomer. If the resin is a copolymer, it refers to a unit structure in a monomer having the largest number of tertiary carbons.
  • Resin material of molded part 50 The alicyclic hydrocarbon resin having a tertiary carbon of 4 or more and a density greater than 1.01 g / cm 3 used in the present invention is not particularly limited. Examples thereof include resins represented by the following general formula.
  • the resin composition a resin composition having a copolymer resin composed of an ⁇ -olefin and a cyclic olefin and a light-resistant stabilizer base material is preferably used.
  • the cyclic olefin in the copolymer constituting the resin composition is preferably a cyclic olefin represented by the following formula (I) or (II).
  • n is 0 or 1
  • m is 0 or a positive integer
  • k is 0 or 1.
  • the ring represented by k is a 6-membered ring, and when k is 0, this ring is a 5-membered ring.
  • R 1 to R 18 and R a and R b are each independently a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the hydrocarbon group usually includes an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 15 carbon atoms, or an aromatic hydrocarbon group.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an amyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, and an octadecyl group.
  • These alkyl groups may be substituted with a halogen atom.
  • Examples of the cycloalkyl group include a cyclohexyl group, and examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group.
  • R 15 and R 16 are R 17 and R 18
  • R 15 and R 17 are R 16 and R 18
  • R 15 and R 18 are R 16 and R 17
  • R 15 and R 18 may be bonded to each other (in cooperation with each other) to form a monocyclic or polycyclic group, and the monocyclic or polycyclic ring thus formed is a double bond You may have.
  • Specific examples of the monocyclic or polycyclic ring formed here include the following.
  • the carbon atom numbered 1 or 2 represents a carbon atom bonded to R 15 (R 16 ) or R 17 (R 18 ) in the general formula (I).
  • R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • alkylidene groups are usually alkylidene groups having 2 to 20 carbon atoms, and specific examples of such alkylidene groups include ethylidene, propylidene and isopropylidene groups.
  • R 21 to R 39 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group or an alkoxy group.
  • the halogen atom is the same as the halogen atom in the general formula (I).
  • the hydrocarbon group generally include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 15 carbon atoms, and an aromatic hydrocarbon group. More specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an amyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, and an octadecyl group. These alkyl groups may be substituted with a halogen atom.
  • Examples of the cycloalkyl group include a cyclohexyl group.
  • Examples of the aromatic hydrocarbon group include an aryl group and an aralkyl group. Specifically, the phenyl group, the tolyl group, the naphthyl group, the benzyl group, and the phenylethyl group. Etc.
  • alkoxy group examples include a methoxy group, an ethoxy group, and a propoxy group.
  • the carbon atom to which R 29 and R 30 are bonded and the carbon atom to which R 33 is bonded or the carbon atom to which R 31 is bonded are directly or an alkylene group having 1 to 3 carbon atoms. It may be connected via. That is, when the two carbon atoms are bonded via an alkylene group, R 29 and R 33 or R 30 and 31 are combined with each other to form a methylene group (—CH 2 — ), An ethylene group (—CH 2 CH 2 —) or a propylene group (—CH 2 CH 2 CH 2 —).
  • R 35 and R 32 or R 35 and R 39 may be bonded to each other to form a monocyclic or polycyclic aromatic ring.
  • R 35 and R 32 or R 35 and R 39 may be bonded to each other to form a monocyclic or polycyclic aromatic ring.
  • the following aromatic rings formed by R 35 and R 32 are exemplified.
  • cyclic olefin represented by the above general formula (I) or (III) include bicyclo-2-heptene derivatives (bicyclohept-2-ene derivatives), tricyclo-3-decene derivatives, tricyclo- 3-undecene derivative, tetracyclo-3-dodecene derivative, pentacyclo-4-pentadecene derivative, pentacyclopentadecadiene derivative, pentacyclo-3-pentadecene derivative, pentacyclo-3-hexadecene derivative, pentacyclo-4-hexadecene derivative, hexacyclo-4 -Heptadecene derivatives, heptacyclo-5-eicosene derivatives, heptacyclo-4-eicosene derivatives, heptacyclo-5-heneicosene derivatives, o
  • Examples of the ⁇ -olefin constituting the copolymer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, -Linear ⁇ -olefins such as octadecene and 1-eicosene; branched ⁇ -olefins such as 4-methyl-1-pentene, 3-methyl-1-pentene and 3-methyl-1-butene.
  • An ⁇ -olefin having 2 to 20 carbon atoms is preferable.
  • Such a linear or branched ⁇ -olefin may be substituted with a substituent, and may be used alone or in combination of two or more.
  • substituents include various substituents, but typical examples include alkyl, aryl, anilino, acylamino, sulfonamido, alkylthio, arylthio, alkenyl, cycloalkyl, cycloalkenyl, alkynyl, heterocycle, Alkoxy, aryloxy, heterocyclic oxy, siloxy, amino, alkylamino, imide, ureido, sulfamoylamino, alkoxycarbonylamino, aryloxycarbonylamino, alkoxycarbonyl, aryloxycarbonyl, heterocyclic thio, thioureido, hydroxyl and mercapto As well as spiro compound residues, bridged hydrocarbon compound residues, sulfonyl, sulfinyl, sulfonyloxy, sulfamoyl, phosphoryl, carbamoyl, acyl,
  • the alkyl group preferably has 1 to 32 carbon atoms and may be linear or branched.
  • the aryl group is preferably a phenyl group.
  • acylamino group alkylcarbonylamino group, arylcarbonylamino group; as sulfonamide group, alkylsulfonylamino group, arylsulfonylamino group; alkylthio group, alkyl component in arylthio group, aryl component is the above alkyl group, aryl group Is mentioned.
  • the alkenyl group preferably has 2 to 23 carbon atoms, and the cycloalkyl group preferably has 3 to 12 carbon atoms, particularly 5 to 7 carbon atoms.
  • the alkenyl group may be linear or branched.
  • the cycloalkenyl group preferably has 3 to 12 carbon atoms, particularly 5 to 7 carbon atoms.
  • the ureido group is preferably an alkylureido group or arylureido group; the sulfamoylamino group is preferably an alkylsulfamoylamino group or an arylsulfamoylamino group; Is 2-furyl, 2-thienyl, 2-pyrimidinyl, 2-benzothiazolyl, etc .; the saturated heterocyclic ring is preferably a 5- to 7-membered member, specifically tetrahydropyranyl, tetrahydrothiopyranyl, etc .; heterocyclic oxy group Are preferably those having a 5- to 7-membered heterocyclic ring, such as 3,4,5,6-tetrahydropyranyl-2-oxy, 1-phenyltetrazol-5-oxy, etc .; 7-membered heterocyclic thio groups are preferred, such as 2-pyridylthio, 2-benzothiazolylthio, 2,4-
  • sulfonyl group an alkylsulfonyl group, an arylsulfonyl group, a halogen-substituted alkylsulfonyl group, a halogen-substituted arylsulfonyl group, etc .
  • a sulfinyl group an alkylsulfinyl group, an arylsulfinyl group, etc .
  • sulfonyloxy group an alkylsulfonyloxy group , Arylsulfonyloxy groups, etc .
  • sulfamoyl groups N, N-dialkylsulfamoyl groups, N, N-diarylsulfamoyl groups, N-alkyl-N-arylsulfamoyl groups, etc .
  • phosphoryl groups alkoxy A phosphoryl group, an aryloxyphosphoryl group
  • substituents such as trifluoromethyl, heptafluoro-i-propyl, nonylfluoro-t-butyl, tetrafluoroaryl groups, pentafluoroaryl groups and the like are also preferably used. Furthermore, these substituents may be substituted with other substituents.
  • the acyclic monomer content in the copolymer of the present invention is preferably 20% by weight or more from the viewpoint of moldability, more preferably 25% or more and 90% or less, and 30% or more and 85% or less. More preferably it is.
  • the glass transition temperature (Tg) of the polymer or copolymer of the present invention is preferably 80 to 250 ° C., more preferably 90 to 220 ° C., and most preferably 100 to 200 ° C.
  • the number average molecular weight (Mn) is a polystyrene conversion value measured by gel permeation chromatography (GPC), preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, most preferably Is in the range of 50,000 to 300,000.
  • the molecular weight distribution is preferably 2.0 or less when expressed as a ratio (Mw / Mn) between the above Mn and a polystyrene-equivalent weight average molecular weight (Mw) similarly measured by GPC.
  • Mw / Mn is more preferably 1.8 or less, and particularly preferably 1.6 or less.
  • the temperature at the time of polymerization is selected from the range of 0 to 200 ° C., preferably 50 to 150 ° C., and the pressure is selected from the range of atmospheric pressure to 100 atm. Moreover, the molecular weight of the produced
  • the olefin resin of the present invention may be a polymer synthesized from a one-component cyclic monomer, but preferably a copolymer synthesized from two or more cyclic monomers or a cyclic monomer and an acyclic monomer. To be elected.
  • This copolymer may be produced using monomers having 100 or more components, but the mixing of monomers is preferably 10 or less from the viewpoint of production efficiency polymerization stability. More preferred is 5 components or less.
  • the obtained copolymer may be a crystalline polymer or an amorphous polymer, but preferably an amorphous polymer.
  • a method of hydrogenating the carbon-carbon unsaturated bond (including aromatic ring) of the polymer and copolymer of the present invention a known method can be used. Among them, the hydrogenation rate is increased and hydrogen is added.
  • a catalyst containing at least one metal selected from nickel, cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium and rhenium is used in an organic solvent. It is preferable to perform a hydrogenation reaction.
  • the hydrogenation catalyst either a heterogeneous catalyst or a homogeneous catalyst can be used.
  • the heterogeneous catalyst can be used in the form of a metal or a metal compound or supported on a suitable carrier.
  • the support include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide, and the like.
  • the supported amount of the catalyst is a metal content with respect to the total weight of the catalyst, usually 0.01. It is in the range of ⁇ 80% by weight, preferably 0.05 to 60% by weight.
  • the homogeneous catalyst is a catalyst in which a nickel, cobalt, titanium or iron compound and an organometallic compound (for example, an organoaluminum compound or an organolithium compound) are combined, or an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium. Can be used.
  • organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium.
  • These hydrogenation catalysts can be used alone or in combination of two or more, and the amount used is usually 0.01 to 100 parts by weight, preferably 0, per 100 parts by weight of the polymer. 0.05 to 50 parts by weight, more preferably 0.1 to 30 parts by weight.
  • the hydrogenation reaction temperature is usually from 0 to 300 ° C., preferably from room temperature to 250 ° C., particularly preferably from 50 to 200 ° C.
  • the hydrogen pressure is usually 0.1 MPa to 30 MPa, preferably 1 MPa to 20 MPa, more preferably 2 MPa to 15 MPa.
  • the hydrogenation rate of the obtained hydrogenated product is usually 90% or more, preferably 95% or more of the carbon-carbon unsaturated bond of the main chain as measured by 1H-NMR. Preferably it is 97% or more.
  • the hydrogenation rate is low, optical properties such as transmittance, low birefringence, and thermal stability of the resulting polymer are lowered.
  • the solvent used in the hydrogenation reaction of the polymer and copolymer of the present invention may be any solvent as long as it dissolves the polymer and copolymer of the present invention and the solvent itself is not hydrogenated.
  • ethers such as tetrahydrofuran, diethyl ether, dibutyl ether and dimethoxyethane
  • aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene
  • aliphatic hydrocarbons such as pentane, hexane and heptane, cyclopentane, cyclohexane and methylcyclohexane
  • Aliphatic cyclic hydrocarbons such as dimethylcyclohexane and decalin
  • halogenated hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene, and trichlorobenzene.
  • the polymer or copolymer hydrogenated product of the present invention can be produced by isolating the polymer or copolymer hydrogenated product from the polymer solution and then dissolving it again in the solvent. It is also possible to employ a method of performing a hydrogenation reaction by adding a hydrogenation catalyst composed of the above organometallic complex and an organoaluminum compound.
  • the hydrogenation catalyst remaining in the polymer can be removed by a known method.
  • an adsorption method using an adsorbent a method in which an organic acid such as lactic acid, a poor solvent, and water are added to a solution using a good solvent, and the system is extracted and removed at room temperature or under heating.
  • a method of washing and removing an acidic compound such as hydrochloric acid after contact treatment.
  • the method for recovering the polymer hydride from the polymer or copolymer hydrogenated solution of the present invention is not particularly limited, and a known method can be used.
  • the reaction solution is discharged into a poor solvent under stirring to solidify the polymer hydride, and recovered by filtration, centrifugation, decantation, etc., and steam is blown into the reaction solution to remove the polymer hydride.
  • steam is blown into the reaction solution to remove the polymer hydride.
  • Examples thereof include a steam stripping method for precipitation and a method for directly removing the solvent from the reaction solution by heating.
  • the hydrogenation rate can be easily achieved at 90% or more, and can be 95% or more, particularly 99% or more.
  • the additive is not easily oxidized and becomes an excellent polymer or copolymer hydrogenation.
  • the resin composition in the present invention is preferably subjected to a specific processing treatment before the molding step (molding process), and a plasticizer, an antioxidant, and other additives that are usually added to the resin at the stage of the processing treatment. May be added.
  • Examples of the method for preparing a resin composition in the present invention include a kneading process or a process for obtaining a composition by dissolving a mixture in a solvent, removing the solvent, and drying, and the like.
  • a more preferable preparation method is a kneading process. It is.
  • blending of normal resin can be used as a kneading
  • a roll, a Banbury mixer, a twin-screw kneader, a kneader ruder or the like can be used, and a Banbury mixer, a twin-screw kneader, a kneader ruder or the like is preferable.
  • an apparatus capable of kneading in a closed system is preferably used, and more preferably, the kneading process is performed by inert gasification such as nitrogen or argon.
  • additives can be added as necessary during the preparation of the resin composition and the molding process of the resin composition in the present invention.
  • additives also referred to as compounding agents
  • stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, UV absorbers and near infrared absorbers
  • resin modifiers such as lubricants and plasticizers
  • Colorants such as dyes and pigments
  • antistatic agents flame retardants, fillers and the like.
  • Antioxidant The antioxidant used in the present invention will be described.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.
  • phenolic antioxidants particularly alkyl-substituted phenolic antioxidants are preferable.
  • the amount is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass with respect to parts.
  • phenolic antioxidant conventionally known ones can be used, for example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No.
  • the phosphorus antioxidant is not particularly limited as long as it is usually used in the general resin industry.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • sulfur-based antioxidant examples include dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thiodiprote.
  • Pionate pentaerythritol-tetrakis- ( ⁇ -lauryl-thio-propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane It is done.
  • ⁇ Light resistance stabilizer> The light-resistant stabilizer used in the present invention will be described.
  • the light-resistant stabilizer examples include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, etc., but in the present invention, from the viewpoint of lens transparency, color resistance, etc., hindered amine-based It is preferable to use a light-resistant stabilizer.
  • hindered amine light-resistant stabilizers those having a polystyrene-equivalent Mn measured by GPC using THF as a solvent are preferably 1000 to 10,000, more preferably 2000 to 5000, Those of 2800 to 3800 are particularly preferred.
  • Mn is too small, when HALS is blended by heat-melting and kneading into a block copolymer, a predetermined amount cannot be blended due to volatilization, foaming or silver streak occurs during heat-melt molding such as injection molding, etc. Processing stability decreases. Further, when the lens is used for a long time with the lamp turned on, a volatile component is generated as a gas from the lens. Conversely, if Mn is too large, the dispersibility in the block copolymer is lowered, the transparency of the lens is lowered, and the effect of improving light resistance is reduced. Therefore, in the present invention, a lens having excellent processing stability, low gas generation and transparency can be obtained by setting the HALS Mn within the above range.
  • HALS include N, N ′, N ′′, N ′ ′′-tetrakis- [4,6-bis- ⁇ butyl- (N-methyl-2,2,6,6-tetra Methylpiperidin-4-yl) amino ⁇ -triazin-2-yl] -4,7-diazadecane-1,10-diamine, dibutylamine and 1,3,5-triazine and N, N′-bis (2,2 , 6,6-Tetramethyl-4-piperidyl) butylamine, poly [ ⁇ (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ ], 1,6-hexanediamine- N, N'-bis (2,2,6,6-tetrakis-
  • a plurality of high molecular weight HALS bonded to each other; a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 1,2,3,4-butanetetracarboxylic acid and 1 2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5,5] un Of a mixed ester of cans, piperidine ring linked to a high molecular weight HALS, and the like via an ester bond.
  • the blending amount of the resin material in the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, and particularly preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the polymer. Part. If the amount added is too small, the effect of improving light resistance cannot be obtained sufficiently, and coloring occurs when used outdoors for a long time. On the other hand, when the blending amount of HALS is too large, a part of the HALS is generated as a gas, or the dispersibility in the resin is lowered, so that the transparency of the lens is lowered.
  • the resin composition in the present invention by blending the resin composition in the present invention with a compound having the lowest glass transition temperature of 30 ° C. or less, the properties such as transparency, heat resistance and mechanical strength are not deteriorated for a long time. Can prevent cloudiness in high temperature and high humidity environment.
  • a resin composition comprising at least one compounding agent selected from the group consisting of the resin composition of the present invention and (1) a soft polymer and (2) an alcoholic compound.
  • a soft polymer and (2) an alcoholic compound are excellent in the effect of preventing white turbidity in a high temperature and high humidity environment and the transparency of the resulting resin composition.
  • the soft polymer used in the present invention is usually a polymer having a Tg of 30 ° C. or lower. When a plurality of Tg are present, at least the lowest Tg is preferably 30 ° C. or lower. .
  • soft polymers include, for example, liquid polyethylene, polypropylene, poly-1-butene, ethylene / ⁇ -olefin copolymers, propylene / ⁇ -olefin copolymers, and ethylene / propylene / diene copolymers.
  • EPDM olefinic soft polymers such as ethylene / propylene / styrene copolymers, isobutylene soft polymers such as polyisobutylene, isobutylene / isoprene rubber, isobutylene / styrene copolymers; polybutadiene, polyisoprene, butadiene / styrene Random copolymer, isoprene / styrene random copolymer, acrylonitrile / butadiene copolymer, acrylonitrile / butadiene / styrene copolymer, butadiene / styrene / block copolymer, styrene / butadiene / styrene / block Copolymer, isoprene / styrene block copolymer, diene soft polymer such as styrene
  • Polymers such as polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, soft polymers composed of ⁇ , ⁇ -unsaturated acids such as butyl acrylate / styrene copolymer, polyvinyl alcohol, polyvinyl acetate, Soft polymers composed of unsaturated alcohols such as polyvinyl stearate and vinyl acetate / styrene copolymers and amines or acyl derivatives or acetals thereof, ethylene oxide, polypropylene oxide, Epoxy soft polymers such as lorhydrin rubber, fluorinated soft polymers such as vinylidene fluoride rubber, tetrafluoroethylene-propylene rubber, natural rubber, polypeptide, protein, polyester thermoplastic elastomer, vinyl chloride heat Other soft polymers such as a plastic elastomer and a polyamide-based thermoplastic elastomer can be
  • diene-based soft polymers are preferable, and hydrides obtained by hydrogenating carbon-carbon unsaturated bonds of the soft polymers are particularly excellent in terms of rubber elasticity, mechanical strength, flexibility, and dispersibility.
  • the alcoholic compound is a compound having at least one non-phenolic hydroxyl group in the molecule, and preferably has at least one hydroxyl group and at least one ether bond or ester bond.
  • Specific examples of such compounds include, for example, dihydric or higher polyhydric alcohols, more preferably trihydric or higher polyhydric alcohols, and even more preferably one of the hydroxyl groups of a polyhydric alcohol having 3 to 8 hydroxyl groups is an ether. Examples thereof include alcoholic ether compounds and alcoholic ester compounds that have been converted into or esterified.
  • dihydric or higher polyhydric alcohol examples include polyethylene glycol, glycerol, trimethylolpropane, pentaerythritol, diglycerol, triglycerol, dipentaerythritol, 1,6,7-trihydroxy-2,2-di (hydroxy).
  • Methyl) -4-oxoheptane, sorbitol, 2-methyl-1,6,7-trihydroxy-2-hydroxymethyl-4-oxoheptane, 1,5,6-trihydroxy-3-oxohexanepentaerythritol, tris (2-Hydroxyethyl) isocyanurate and the like can be mentioned, and in particular, a polyhydric alcohol having a valence of 3 or more, more preferably a polyhydric alcohol having 3 to 8 hydroxyl groups.
  • glycerol, diglycerol, triglycerol or the like capable of synthesizing an alcoholic ester compound containing ⁇ , ⁇ -diol is preferable.
  • alcoholic compounds examples include glycerol monostearate, glycerol monolaurate, glycerol monobehenate, diglycerol monostearate, glycerol distearate, glycerol dilaurate, pentaerythritol monostearate, and pentaerythritol monolaurate.
  • Organic or inorganic filler ordinary organic polymer particles or crosslinked organic polymer particles can be used.
  • polyolefins such as polyethylene and polypropylene; halogen-containing materials such as polyvinyl chloride and polyvinylidene chloride Vinyl polymers; polymers derived from ⁇ , ⁇ -unsaturated acids such as polyarylate and polymethacrylate; polymers derived from unsaturated alcohols such as polyvinyl alcohol and polyvinyl acetate; polyethylene oxide or bisglycidyl ether Polymers derived from: aromatic condensation polymers such as polyphenylene oxide, polycarbonate and polysulfone; polyurethanes; polyamides; polyesters; aldehyde / phenolic resins; natural polymer compound particles or crosslinked particles It can gel.
  • the inorganic filler examples include Group 1 element compounds such as lithium fluoride and borax (sodium borate hydrate); Group 2 element compounds such as magnesium carbonate, magnesium phosphate, calcium carbonate, strontium titanate, and barium carbonate; Titania), Group 4 element compounds such as titanium monoxide; Group 6 element compounds of molybdenum dioxide and molybdenum trioxide; Group 7 element compounds such as manganese chloride and manganese acetate; Group 8-10 elements compounds such as cobalt chloride and cobalt acetate Group 11 element compounds such as cuprous iodide; Group 12 element compounds such as zinc oxide and zinc acetate; Group 13 such as aluminum oxide (alumina), aluminum fluoride, aluminosilicate (alumina silicate, kaolin, kaolinite) Elemental compounds; silicon oxide (silica, silica gel), graphite Carbon, graphite, Group 14 element compound such as glass; kernal stones, kainite, mica (mica, Kin'unmo)
  • the compounding amount of the compounds (1) to (3) is determined by the combination of the alicyclic hydrocarbon copolymer and the compound to be compounded. In general, if the compounding amount is too large, the glass transition temperature of the composition and the transparency The properties are greatly reduced, making it unsuitable for use as an optical material. Moreover, if there are too few compounding quantities, the cloudiness of a molding may be produced under high temperature and high humidity.
  • the blending amount is usually 0.01 to 10 parts by weight, preferably 0.02 to 5 parts by weight, particularly preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the alicyclic hydrocarbon copolymer. It mixes in the ratio. When the blending amount is too small, the effect of preventing white turbidity in a high temperature and high humidity environment cannot be obtained, and when the blending amount is too large, the heat resistance and transparency of the molded product are lowered.
  • Fluorinated film 55 is a layer formed by performing a fluorination process on the molded part 50, and has a function of reducing the surface reflectance of the objective lens 37.
  • the refractive index of the fluorinated film 55 with respect to d-line is 1.35 to 1.45, and the value of the refractive index can be measured by the surface reflectance.
  • the layer thickness of the fluorinated film 55 is preferably 10 to 5000 nm. When the layer thickness exceeds 5000 nm, the influence of interference fringes greatly depends on the wavelength of light, and even if the antireflection film 60 is formed thereon, it becomes difficult to exert its function, and conversely, the layer thickness is less than 10 nm. This is because it is difficult to sufficiently exert the function of the fluorinated film 55.
  • Antireflection film 60 is made of an inorganic material and basically has a two-layer structure. A first layer 61 is formed directly on the fluorinated film 55, and a second layer 62 is formed thereon.
  • the first layer 61 is a layer made of a high refractive index material having a refractive index of 1.7 or more, preferably Ta 2 O 5 , a mixture of Ta 2 O 5 and TiO 2 , ZrO 2 , ZrO 2 and TiO 2. And is composed of any mixture.
  • the first layer 61 may be composed of TiO 2 , Nb 2 O 3 , and HfO 2 .
  • the second layer 62 is a layer made of a low refractive index material having a refractive index of less than 1.7, and is preferably made of SiO 2 and MgF 2 .
  • the first layer 61 and the second layer 62 may be alternately stacked on the first layer 61 and the second layer 62, and the antireflection film 60 may have a 2-7 layer structure as a whole.
  • the layer in direct contact with the fluorinated film 55 may be a layer of high refractive index material (first layer 61) or a layer of low refractive index material (second layer), depending on the type of the molded part 50.
  • Layer 62 the layer that is in direct contact with the fluorinated film 55 is a layer of a high refractive index material.
  • the fluorinated film 55 and the antireflection film 60 are also formed on the back surface 37b in the same manner as the fluorinated film 55 and the antireflection film 60 are formed on the front surface 37a.
  • the fluorinated film 55 and the antireflection film 60 are formed on both the front surface 37a and the back surface 37b.
  • the objective lens 37 may not have the antireflection film 60.
  • the above resin material is injection-molded on a mold under a certain condition to form a molded part 50 having a predetermined shape. Thereafter, a fluorination treatment is performed on the molding unit 50 to form a fluorinated film 55 on the molding unit 50.
  • the molded part 50 is exposed to a fluorine gas atmosphere, and a fluorinated film 55 is formed on the surface thereof.
  • the refractive index of the polymer material (resin) can be lowered, and the surface reflectance of the objective lens 37 can be lowered.
  • the fluorination rate and the film thickness of the fluorinated film 55 can be arbitrarily controlled, and the surface reflectance at a desired wavelength. Can be reduced.
  • the fluorine gas atmosphere means being covered with a gas containing fluorine gas, and includes being covered with a mixed gas of fluorine gas and an inert gas such as nitrogen or argon.
  • concentration of the fluorine gas in the fluorine gas atmosphere can be appropriately selected according to the desired refractive index and the thickness of the fluorinated film 55.
  • the molding part 50 is not particularly limited as long as it is a polymer composed of carbon and hydrogen as a constituent element of the resin and is a polymer composed of carbon and hydrogen in addition to the above example.
  • constituent element of the additive whose addition amount is 5% or less with respect to the total weight
  • such as an antioxidant, an ultraviolet absorber, and a plasticizer added to the molded part 50 may be other than carbon and hydrogen.
  • the molded part 50 is not particularly limited as long as the above conditions are satisfied.
  • the above-described resin can be used in consideration of high transparency, high heat resistance, low water absorption, high purity, and low birefringence. More preferred is a polymer of the material.
  • the penetration depth of fluorine from the material surface and the fluorine content in the material after fluorination treatment vary depending on the concentration of fluorine gas during the fluorination treatment, the fluorination treatment temperature, and the fluorination treatment time.
  • the low-refractive fluorinated film 55 having a desired thickness can be formed by appropriately selecting the fluorine concentration, processing temperature, and processing time. Is possible.
  • the normal fluorination treatment conditions are a fluorine concentration of 1 ppm to 25% and a treatment temperature of 0.
  • a treatment time of up to 100 ° C. and a treatment time of 0.1 seconds to 120 minutes is preferred.
  • the first layer 61 is formed using a vapor deposition source that constitutes the first layer 61.
  • a vapor deposition source that constitutes the first layer 61.
  • OA600 manufactured by OPTRAN can be used as the evaporation source and the evaporation source may be evaporated by electron gun heating.
  • OPTRAN a vapor deposition source
  • the molding portion 50 is reversed by the reversing mechanism inside the vapor deposition apparatus, and the first layer 61 is also formed on the opposite surface in the same manner as described above. (The same applies to the film formation on the back surface of the second layer 62.)
  • the second layer 62 is formed on the first layer 61 using the vapor deposition source constituting the second layer 62.
  • the vapor deposition source constituting the second layer 62.
  • O 2 gas is introduced up to a pressure of 1.0 ⁇ 10 ⁇ 2 Pa inside the vacuum vapor deposition apparatus, and the vapor deposition rate is controlled to 5 liters / sec. It is better to form the film while doing so.
  • the film forming temperature (temperature in the vapor deposition apparatus) is maintained within an appropriate temperature range.
  • the objective lens 37 is manufactured by the above process. [2] Operation of Optical Pickup Device 30 Next, the operation of the optical pickup device 30 will be described.
  • Blue-violet light is emitted from the semiconductor laser oscillator 32 during an operation of recording information on the optical disc D or an operation of reproducing information recorded on the optical disc D.
  • the emitted blue-violet light is transmitted through the collimator 33 and collimated into infinite parallel light, then transmitted through the beam splitter 34 and transmitted through the quarter wavelength plate 35.
  • Violet light that formed the concentrated light spot is modulated by the information recording surface D 2 of the optical disk D by the information bits, is reflected by the information recording surface D 2. Then, the reflected light is sequentially transmitted through the objective lens 37 and the diaphragm 36, the polarization direction is changed by the quarter wavelength plate 35, and the reflected light is reflected by the beam splitter 34. Thereafter, the reflected light passes through the sensor lens group 38 to be given astigmatism, is received by the sensor 39, and finally is photoelectrically converted by the sensor 39 to become an electrical signal.
  • the surface of the molded part 50 is fluorinated to form the fluorinated film 55
  • the resin material of the molded part 50 has an alicyclic hydrocarbon structure, and has a unit structure. Since the resin contains a resin having a tertiary carbon number of 4 or more and a density of 1.01 g / cm 3 or more, the antireflection effect by the fluorination treatment can be reliably improved.
  • the antireflection film 60 is formed on the fluorinated film 55, the antireflection effect can be further improved.
  • the optical element according to the present invention has been described as the objective lens 37, but other types and applications of optical elements may be used.
  • Example 1 100 parts by mass of a random copolymer of ethylene and bicyclo [2,2,1] hept-2-ene, 0.5 parts by mass of pentaerythritol distearate as a surfactant, and pentaerythritol tetrakis [ 0.3 parts by mass of 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was kneaded with a biaxial kneader to obtain “resin material 1”.
  • the number of tertiary carbons per unit structure of the base resin in “resin material 1” was 4, and the density of “resin material 1” was measured to be 1.04 g / cm 3 .
  • This “resin material 1” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
  • Example 2 Ethylene and tetracyclo [4,4,0,1 2,5, 1 7,10] dodeca-3 random copolymer 100 parts by weight of the ene, pentaerythritol distearate 0.5 part by weight of a surfactant And 0.3 parts by mass of pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as a stabilizer were kneaded in a biaxial kneader “resin material 2 " The number of tertiary carbons per unit structure of the base resin in this “resin material 2” was 8, and the density of “resin material 2” was measured to be 1.04
  • This “resin material 2” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
  • Example 2 Samples of Here, the film thickness of the obtained fluorinated film was 100 nm.
  • Comparative Example 1 The inside of the stainless steel reactor equipped with a stirrer was sufficiently dried and purged with nitrogen. Thereafter, 300 parts by mass of dehydrated cyclohexane, 60 parts by mass of styrene and 0.38 parts by mass of dibutyl ether were charged into the reactor, and the n-butyllithium solution (15% hexane solution) 0 was added while stirring them at 60 ° C. .36 parts by mass was added to initiate the polymerization reaction.
  • Polymerization reaction is performed for 1 hour, and then the reaction solution is mixed with 8 parts by mass of styrene, 12 parts by mass of isoprene, and 0.8 parts by mass of 1,2,2,6,6-pentamethyl-4-piperidylmethacrylate. A monomer was added and the polymerization reaction was further performed for 1 hour, and then 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
  • reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 3”.
  • resin material 3 the number of tertiary carbons per unit structure of the base resin was two, and the density of “resin material 3” was measured to be 0.94 g / cm 3 .
  • This “resin material 3” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
  • Polymerization reaction was performed for 1 hour, and then 8 parts by mass of 2,4-dimethylstyrene, 12 parts by mass of isoprene and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate 0.8 were added to the reaction solution. A mixed monomer consisting of parts by mass was added, and a polymerization reaction was further performed for 1 hour, and then 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
  • reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 4”.
  • the number of tertiary carbons per unit structure of the base resin in this “resin material 4” was 4, and the density of “resin material 4” was measured to be 0.95 g / cm 3 .
  • This “resin material 4” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
  • Resin material 5 is obtained by hydrogenating a polymer formed by ring-opening metathesis polymerization, and there are two tertiary carbons per unit structure.
  • This “resin material 5” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa, and the thickness was 3 mm. The plate was formed.
  • This “resin material 6” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
  • Example 3 100 parts by mass of 5,6-dimethyl-bicyclo [2,2,1] hept-2-ene and 7.6 parts by mass of 1-hexene are dissolved in 300 parts by mass of toluene, and 2 parts by mass of diethylaluminum chloride solution is dissolved therein. Then, 0.003 part by mass of tungsten hexachloride was added and stirred at 80 ° C. for 3 hours. After stirring, a large amount of methanol was put into the mixed solution to be solidified, and the solidified polymer was dried.
  • the 5- and 6-positions of bicyclo [2,2,1] hepta-2-, which is a unit monomer, are substituted, and the number of tertiary carbons is two more than that of the resin material 5, and four It is.
  • This “resin material 7” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
  • Example 4 Seven layers of TiO 2 layers and SiO 2 layers were alternately formed as antireflection films on the fluorinated film in the sample of Example 1, and the resulting plate was used as the sample of “Example 4”.
  • (2) Evaluation of sample (2.1) Evaluation of transmittance The reflectance and total light transmittance of each of the produced samples of Examples 1 to 3 and Comparative Examples 1 to 4 were measured, and the transmittance was measured according to the following criteria. Was evaluated, and the results were as shown in Table 1 above.
  • Total light transmittance Using a U-4100 manufactured by Hitachi High-Tech Co., Ltd., the case where the sample was not attached to the entrance of the integrating sphere was taken as 100%, and measurement was conducted after the sample was attached.
  • Total light transmittance is 96% or more ⁇ : Total light transmittance is less than 96% Further, when the light transmittance at 500 nm was measured for each sample of Examples 1 and 4, as shown in Table 2 above. became.

Abstract

Provided are an optical element and an optical pickup device which can surely improve the reflection prevention effect by a fluorination process.  The optical element has a molded portion molded by a resin material.  The resin material contains a resin having an alicyclic hydrocarbon structure, wherein each unit structure has four or more tertiary carbon atoms.  The density of the resin is 1.01 g/cm3 or above.  The molded portion has, on the surface thereof, a layer containing a resin having the alicyclic hydrocarbon structure in which at least one hydrogen atom is replaced by a fluorine atom.

Description

光学素子及び光ピックアップ装置Optical element and optical pickup device
 本発明は、光学素子及び光ピックアップ装置に関する。 The present invention relates to an optical element and an optical pickup device.
 従来、脂環式構造を持つ樹脂材料は吸水率が低く、光学素子の材料として好ましく用いられている。また、このような光学素子には、透過率を高める観点から反射防止の処理が施されている。 Conventionally, a resin material having an alicyclic structure has a low water absorption and is preferably used as a material for an optical element. Further, such an optical element is subjected to antireflection treatment from the viewpoint of increasing the transmittance.
 ここで、反射防止の手法としては、無機材料による蒸着膜を付ける方法や、フッ素ガスで樹脂中のC-H結合をC-F結合に置換させるフッ素化処理をすることで反射防止効果を得る方法(例えば、特許文献1参照)などが知られている。 Here, as an antireflection method, an antireflection effect is obtained by attaching a vapor deposition film of an inorganic material or by fluorinating the fluorine gas by substituting CH bonds in the resin with CF bonds. A method (for example, refer to Patent Document 1) is known.
 このうち、無機材料による蒸着膜を付ける方法では、大掛かりな装置が必要であり、面角度がきつくなると膜厚が不均一になり易い。また、無機層(蒸着膜)と樹脂層(基材)との密着性が悪く、ブルーレーザー等の短波長光を照射すると、膜剥がれが起こってしまう。 Of these, the method of applying a vapor deposition film made of an inorganic material requires a large-scale apparatus, and the film thickness tends to be non-uniform when the surface angle becomes tight. In addition, the adhesion between the inorganic layer (deposited film) and the resin layer (base material) is poor, and film peeling occurs when short-wavelength light such as blue laser is irradiated.
 一方、フッ素化処理を行う手法は気相中で行われるため、面角度に関係なく均一な膜を付けることができて好ましいと考えられる。 On the other hand, since the method of performing the fluorination treatment is performed in the gas phase, it is considered preferable because a uniform film can be formed regardless of the surface angle.
 しかしながら、特許文献1では、樹脂の構成が開示されていないため、フッ素化膜によって反射防止効果を確実に向上させることはできない。 However, since Patent Document 1 does not disclose the structure of the resin, the antireflection effect cannot be reliably improved by the fluorinated film.
特開2005-274748号公報JP 2005-274748 A
 本発明の課題は、フッ素化処理による反射防止効果を確実に向上させることのできる光学素子及び光ピックアップ装置を提供することである。 An object of the present invention is to provide an optical element and an optical pickup device that can surely improve the antireflection effect by the fluorination treatment.
 本発明の一態様によれば、本発明の光学素子は、樹脂材料から成形された成形部を有する光学素子であって、
 前記樹脂材料は、
 脂環式炭化水素構造を有し、単位構造中の三級炭素の数が4個以上で、かつ、密度が1.01g/cm以上の樹脂を含有し、
前記成形部が表面に、
 前記脂環式炭化水素構造を構成する少なくとも一部の水素がフッ素に置換された樹脂を含有する層を有していることを特徴とする。
According to one aspect of the present invention, the optical element of the present invention is an optical element having a molded part molded from a resin material,
The resin material is
A resin having an alicyclic hydrocarbon structure, wherein the number of tertiary carbons in the unit structure is 4 or more, and the density is 1.01 g / cm 3 or more;
The molded part is on the surface,
It has a layer containing a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine.
 この光学素子においては、
 前記フッ素化膜上に無機材料からなる反射防止コートが設けられていることが好ましい。
In this optical element,
It is preferable that an antireflection coating made of an inorganic material is provided on the fluorinated film.
 本発明の他の態様によれば、光ピックアップ装置において、
 本発明の光学素子を対物レンズとして備えることを特徴とする。
According to another aspect of the present invention, in an optical pickup device,
The optical element of the present invention is provided as an objective lens.
 フッ素化処理による反射防止効果を向上させるには基材(成形部)とフッ素化膜との屈折率差を大きくしてやることが好ましく、屈折率差を高めるには、基材中のC-H結合を、より多くC-F結合に置換することが望ましい。 In order to improve the antireflection effect by the fluorination treatment, it is preferable to increase the refractive index difference between the base material (molded part) and the fluorinated film. To increase the refractive index difference, C—H bonds in the base material It is desirable to substitute more C—F bonds.
 本発明者等は、鋭意研究の結果、このような置換反応を生じ易くさせるには、基材中でC-H結合している炭素が三級炭素であること、つまり不安定な状態にある炭素であることが好ましいと考え、更には、基材中の三級炭素の数が多いほどフッ素化処理後にC-F結合が多くなり、樹脂材料との屈折率差を高くすることができると考えた。しかしながら、基材中の三級炭素を単純に多くすると、フッ素化処理の反応速度が速くなる結果、フッ素化処理されていない樹脂部分の層と、フッ素化処理された樹脂部分の層との界面がぼやけてしまい、逆に反射防止効率が悪くなってしまうことが判明した。そこで、フッ素ガスの浸透速度を抑えるために樹脂材料の密度を1.01g/cm以上に高くしたところ、浸透速度が遅くなり、かつ浸透した部分の反応性が高くなる結果、屈折率差の高いフッ素化膜を形成できることを見出した。更に、基材とフッ素化膜との屈折率差を大きくするためには、単位構造あたりの三級炭素数が4以上であることが好ましいことを見出した。 As a result of diligent research, the present inventors have found that in order to easily cause such a substitution reaction, the carbon bonded with CH in the substrate is a tertiary carbon, that is, in an unstable state. It is considered that carbon is preferable. Further, as the number of tertiary carbons in the substrate increases, the number of C—F bonds increases after the fluorination treatment, and the difference in refractive index from the resin material can be increased. Thought. However, if the tertiary carbon in the substrate is simply increased, the reaction rate of the fluorination treatment increases, resulting in an interface between the resin portion layer that has not been fluorinated and the resin portion layer that has been fluorinated. It turned out that the anti-reflection efficiency deteriorates. Therefore, when the density of the resin material is increased to 1.01 g / cm 3 or more in order to suppress the penetration rate of the fluorine gas, the penetration rate is lowered and the reactivity of the penetrated portion is increased. It has been found that a high fluorinated film can be formed. Furthermore, it has been found that the tertiary carbon number per unit structure is preferably 4 or more in order to increase the difference in refractive index between the substrate and the fluorinated film.
 すなわち、本発明によれば、成形部の表面は、フッ素化処理されてフッ素化膜を形成、即ち、脂環式炭化水素構造を構成する少なくとも一部の水素がフッ素に置換された樹脂を含有する層を有しており、成形部の樹脂材料は脂環式炭化水素構造を有し、単位構造中の三級炭素の数が4個以上、かつ、密度が1.01g/cm以上の樹脂を含有するので、フッ素化処理による反射防止効果を確実に向上させることができる。 That is, according to the present invention, the surface of the molded part is fluorinated to form a fluorinated film, that is, contains a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine. The resin material of the molding part has an alicyclic hydrocarbon structure, the number of tertiary carbons in the unit structure is 4 or more, and the density is 1.01 g / cm 3 or more. Since the resin is contained, the antireflection effect by the fluorination treatment can be reliably improved.
本発明の好ましい実施形態で使用される光ピックアップ装置の概略構成を示す図面である。It is drawing which shows schematic structure of the optical pick-up apparatus used by preferable embodiment of this invention.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
[1]光ピックアップ装置30
 図1に示す通り、光ピックアップ装置30には、光源としての半導体レーザー発振器32が具備されている。半導体レーザー発振器32は、BD(Blu-ray Disc)用として波長380~420nmの特定波長(例えば405nm)のブルー光(青紫色光)を出射するようになっている。半導体レーザー発振器32から出射される青紫色光の光軸上には、半導体レーザー発振器32から離間する方向に向かって、コリメータ33、ビームスプリッタ34、1/4波長板35、絞り36、対物レンズ37が順次配設されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[1] Optical pickup device 30
As shown in FIG. 1, the optical pickup device 30 includes a semiconductor laser oscillator 32 as a light source. The semiconductor laser oscillator 32 emits blue light (blue-violet light) having a specific wavelength (for example, 405 nm) having a wavelength of 380 to 420 nm for BD (Blu-ray Disc). On the optical axis of the blue-violet light emitted from the semiconductor laser oscillator 32, a collimator 33, a beam splitter 34, a ¼ wavelength plate 35, an aperture 36, and an objective lens 37 are arranged in a direction away from the semiconductor laser oscillator 32. Are sequentially arranged.
 ビームスプリッタ34と近接した位置であって、上述した青紫色光の光軸と直交する方向には、2組のレンズからなるセンサーレンズ群38、センサー39が順次配設されている。
[1-2]対物レンズ37
 対物レンズ37は、高密度な光ディスクD(BD用光ディスク)に対向した位置に配置されており、半導体レーザー発振器32から出射された青紫色光を光ディスクDの一面上に集光するようになっている。対物レンズ37は像側開口数NAが0.7以上となっている。対物レンズ37には、2次元アクチュエータ40が具備されており、2次元アクチュエータ40の動作により、対物レンズ37は光軸上を移動自在となっている。
A sensor lens group 38 and a sensor 39 each including two sets of lenses are sequentially arranged at a position close to the beam splitter 34 and in a direction orthogonal to the optical axis of the blue-violet light described above.
[1-2] Objective lens 37
The objective lens 37 is disposed at a position facing the high-density optical disc D (BD optical disc), and collects blue-violet light emitted from the semiconductor laser oscillator 32 on one surface of the optical disc D. Yes. The objective lens 37 has an image-side numerical aperture NA of 0.7 or more. The objective lens 37 is provided with a two-dimensional actuator 40, and the objective lens 37 is movable on the optical axis by the operation of the two-dimensional actuator 40.
 図1中の拡大図に示す通り、対物レンズ37は主には成形部50で構成されており、その表面37a上にフッ素化膜55と反射防止膜60とが形成されている。
[1-2.1]成形部50
 このうち、成形部50はレンズ形状に成形されており、集光機能などの本質的な光学機能を発揮するようになっている。また、成形部50は樹脂材料から成形され、この樹脂材料は、脂環式炭化水素構造を有するとともに、単位構造中の三級炭素の数が4個以上で、かつ、密度が1.01g/cm以上の樹脂を母材樹脂として含有している。
As shown in the enlarged view of FIG. 1, the objective lens 37 is mainly composed of a molding part 50, and a fluorinated film 55 and an antireflection film 60 are formed on the surface 37a.
[1-2.1] Molding unit 50
Among these, the shaping | molding part 50 is shape | molded by the lens shape, and exhibits essential optical functions, such as a condensing function. The molded part 50 is molded from a resin material. The resin material has an alicyclic hydrocarbon structure, the number of tertiary carbons in the unit structure is 4 or more, and the density is 1.01 g / A resin of cm 3 or more is contained as a base material resin.
 ここで、本発明における単位構造とは、モノマーにおける単位構造をいい、樹脂がコポリマーであれば、最も三級炭素の数が多いモノマーにおける単位構造を指す。
[1-2.1A]成形部50の樹脂材料
 本発明で用いられる3級炭素が4以上であり、密度が1.01g/cmより大きい脂環式炭化水素樹脂としては、特に限定されないが、例えば下記の一般式で表される樹脂等を挙げることができる。樹脂組成物としては、αオレフィンと環状オレフィンからなる共重合体樹脂及び耐光安定剤基材を有する樹脂組成物が好ましく用いられる。
Here, the unit structure in the present invention refers to a unit structure in a monomer. If the resin is a copolymer, it refers to a unit structure in a monomer having the largest number of tertiary carbons.
[1-2.1A] Resin material of molded part 50 The alicyclic hydrocarbon resin having a tertiary carbon of 4 or more and a density greater than 1.01 g / cm 3 used in the present invention is not particularly limited. Examples thereof include resins represented by the following general formula. As the resin composition, a resin composition having a copolymer resin composed of an α-olefin and a cyclic olefin and a light-resistant stabilizer base material is preferably used.
 樹脂組成物を構成する共重合体における環状オレフィンとしては、下記式(I)または(II)で表される環状オレフィンが好ましく挙げられる。 The cyclic olefin in the copolymer constituting the resin composition is preferably a cyclic olefin represented by the following formula (I) or (II).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、nは0または1であり、mは0または正の整数であり、kは0または1である。なおkが1の場合には、kを用いて表される環は6員環となり、kが0の場合にはこの環は5員環となる。 In the formula, n is 0 or 1, m is 0 or a positive integer, and k is 0 or 1. When k is 1, the ring represented by k is a 6-membered ring, and when k is 0, this ring is a 5-membered ring.
 R~R18ならびにRおよびRは、それぞれ独立に、水素原子、ハロゲン原子または炭化水素基である。ここで、ハロゲン原子は、フッ素原子、塩素原子、臭素原子またはヨウ素原子である。 R 1 to R 18 and R a and R b are each independently a hydrogen atom, a halogen atom or a hydrocarbon group. Here, the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 また炭化水素基としては、通常、炭素原子数1~20のアルキル基、炭素原子数1~20のハロゲン化アルキル基、炭素原子数3~15のシクロアルキル基または芳香族炭化水素基が挙げられる。より具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、アミル基、ヘキシル基、オクチル基、デシル基、ドデシル基およびオクタデシル基などが挙げられる。これらアルキル基はハロゲン原子で置換されていてもよい。 The hydrocarbon group usually includes an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 15 carbon atoms, or an aromatic hydrocarbon group. . More specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an amyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, and an octadecyl group. These alkyl groups may be substituted with a halogen atom.
 シクロアルキル基としては、シクロヘキシル基が挙げられ、芳香族炭化水素基としてはフェニル基、ナフチル基などが挙げられる。さらに上記一般式(I)において、R15とR16とが、R17とR18とが、R15とR17とが、R16とR18とが、R15とR18とが、あるいはR16とR17とがそれぞれ結合して(互いに共同して)、単環または多環の基を形成していてもよく、しかもこのようにして形成された単環または多環が二重結合を有していてもよい。ここで形成される単環または多環としては、具体的に以下のようなものが挙げられる。 Examples of the cycloalkyl group include a cyclohexyl group, and examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group. Further, in the general formula (I), R 15 and R 16 are R 17 and R 18 , R 15 and R 17 are R 16 and R 18 , R 15 and R 18 are R 16 and R 17 may be bonded to each other (in cooperation with each other) to form a monocyclic or polycyclic group, and the monocyclic or polycyclic ring thus formed is a double bond You may have. Specific examples of the monocyclic or polycyclic ring formed here include the following.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 なお上記例示において、1または2の番号を付した炭素原子は、前記一般式(I)においてそれぞれR15(R16)またはR17(R18)結合している炭素原子を表す。 In the above examples, the carbon atom numbered 1 or 2 represents a carbon atom bonded to R 15 (R 16 ) or R 17 (R 18 ) in the general formula (I).
 また、R15とR16とで、またはR17とR18とでアルキリデン基を形成していてもよい。このようなアルキリデン基は、通常は炭素原子数2~20のアルキリデン基であり、このようなアルキリデン基の具体的な例としては、エチリデン基、プロピリデン基およびイソプロピリデン基が挙げられる。 R 15 and R 16 , or R 17 and R 18 may form an alkylidene group. Such alkylidene groups are usually alkylidene groups having 2 to 20 carbon atoms, and specific examples of such alkylidene groups include ethylidene, propylidene and isopropylidene groups.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、pおよびqはそれぞれ独立に、0または正の整数であり、rおよびsはそれぞれ独立に、0、1または2である。また、R21~R39はそれぞれ独立に、水素原子、ハロゲン原子、炭化水素基またはアルコキシ基である。 In the formula, p and q are each independently 0 or a positive integer, and r and s are each independently 0, 1 or 2. R 21 to R 39 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group or an alkoxy group.
 ここでハロゲン原子は、上記一般式(I)中のハロゲン原子と同じである。また炭化水素基としては、通常、炭素原子数1~20のアルキル基、炭素原子数3~15のシクロアルキル基または芳香族炭化水素基が挙げられる。より具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、アミル基、ヘキシル基、オクチル基、デシル基、ドデシル基およびオクタデシル基などが挙げられる。これらアルキル基はハロゲン原子で置換されていてもよい。 Here, the halogen atom is the same as the halogen atom in the general formula (I). Examples of the hydrocarbon group generally include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 15 carbon atoms, and an aromatic hydrocarbon group. More specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an amyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, and an octadecyl group. These alkyl groups may be substituted with a halogen atom.
 シクロアルキル基としては、シクロヘキシル基が挙げられ、芳香族炭化水素基としては、アリール基、アラルキル基などが挙げられ、具体的には、フェニル基、トリル基、ナフチル基、ベンジル基、フェニルエチル基などが挙げられる。 Examples of the cycloalkyl group include a cyclohexyl group. Examples of the aromatic hydrocarbon group include an aryl group and an aralkyl group. Specifically, the phenyl group, the tolyl group, the naphthyl group, the benzyl group, and the phenylethyl group. Etc.
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。ここで、R29およびR30が結合している炭素原子と、R33が結合している炭素原子またはR31が結合している炭素原子とは、直接あるいは炭素原子数1~3のアルキレン基を介して結合していてもよい。すなわち、上記二個の炭素原子がアルキレン基を介して結合している場合には、R29とR33とが、または、R3031とが互いに共同して、メチレン基(-CH-)、エチレン基(-CHCH-)またはプロピレン基(-CHCHCH-)の内のいずれかのアルキレン基を形成している。 Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Here, the carbon atom to which R 29 and R 30 are bonded and the carbon atom to which R 33 is bonded or the carbon atom to which R 31 is bonded are directly or an alkylene group having 1 to 3 carbon atoms. It may be connected via. That is, when the two carbon atoms are bonded via an alkylene group, R 29 and R 33 or R 30 and 31 are combined with each other to form a methylene group (—CH 2 — ), An ethylene group (—CH 2 CH 2 —) or a propylene group (—CH 2 CH 2 CH 2 —).
 さらに、r=s=0のとき、R35とR32またはR35とR39とは互いに結合して単環または多環の芳香族環を形成していてもよい。具体的には、r=s=0のとき、R35とR32とにより形成される以下のような芳香族環が挙げられる。 Further, when r = s = 0, R 35 and R 32 or R 35 and R 39 may be bonded to each other to form a monocyclic or polycyclic aromatic ring. Specifically, when r = s = 0, the following aromatic rings formed by R 35 and R 32 are exemplified.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ここで、qは一般式(II)におけるqと同じである。上記のような一般式(I)または(III)表される環状オレフィンとしては、具体的には、ビシクロ-2-ヘプテン誘導体(ビシクロヘプト-2-エン誘導体)、トリシクロ-3-デセン誘導体、トリシクロ-3-ウンデセン誘導体、テトラシクロ-3-ドデセン誘導体、ペンタシクロ-4-ペンタデセン誘導体、ペンタシクロペンタデカジエン誘導体、ペンタシクロ-3-ペンタデセン誘導体、ペンタシクロ-3-ヘキサデセン誘導体、ペンタシクロ-4-ヘキサデセン誘導体、ヘキサシクロ-4-ヘプタデセン誘導体、ヘプタシクロ-5-エイコセン誘導体、ヘプタシクロ-4-エイコセン誘導体、ヘプタシクロ-5-ヘンエイコセン誘導体、オクタシクロ-5-ドコセン誘導体、ノナシクロ-5-ペンタコセン誘導体、ノナシクロ-6-ヘキサコセン誘導体、シクロペンタジエン-アセナフチレン付加物、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン誘導体、1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセン誘導体などが挙げられる。 Here, q is the same as q in the general formula (II). Specific examples of the cyclic olefin represented by the above general formula (I) or (III) include bicyclo-2-heptene derivatives (bicyclohept-2-ene derivatives), tricyclo-3-decene derivatives, tricyclo- 3-undecene derivative, tetracyclo-3-dodecene derivative, pentacyclo-4-pentadecene derivative, pentacyclopentadecadiene derivative, pentacyclo-3-pentadecene derivative, pentacyclo-3-hexadecene derivative, pentacyclo-4-hexadecene derivative, hexacyclo-4 -Heptadecene derivatives, heptacyclo-5-eicosene derivatives, heptacyclo-4-eicosene derivatives, heptacyclo-5-heneicosene derivatives, octacyclo-5-docosene derivatives, nonacyclo-5-pentacocene derivatives, nonacyclo-6- Xacocene derivative, cyclopentadiene-acenaphthylene adduct, 1,4-methano-1,4,4a, 9a-tetrahydrofluorene derivative, 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene derivative Etc.
 以下に上記のような一般式(I)または(II)で表される環状オレフィンのより具体的な例を示す。 Hereinafter, more specific examples of the cyclic olefin represented by the above general formula (I) or (II) will be shown.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 共重合体を構成するα-オレフィンとしては、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの直鎖状α-オレフィン;4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-メチル-1-ブテンなどの分岐状α-オレフィンなどが挙げられる。好ましくは、炭素原子数が2~20のα-オレフィンが好ましい。このような直鎖状または分岐状のα-オレフィンは置換基で置換されていても良く、また1種単独或いは2種以上組み合わせて用いることができる。 Examples of the α-olefin constituting the copolymer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, -Linear α-olefins such as octadecene and 1-eicosene; branched α-olefins such as 4-methyl-1-pentene, 3-methyl-1-pentene and 3-methyl-1-butene. An α-olefin having 2 to 20 carbon atoms is preferable. Such a linear or branched α-olefin may be substituted with a substituent, and may be used alone or in combination of two or more.
 置換基としては、種々のものが挙げられ特に制限はないが、代表的なものとしてアルキル、アリール、アニリノ、アシルアミノ、スルホンアミド、アルキルチオ、アリールチオ、アルケニル、シクロアルキル、シクロアルケニル、アルキニル、複素環、アルコキシ、アリールオキシ、複素環オキシ、シロキシ、アミノ、アルキルアミノ、イミド、ウレイド、スルファモイルアミノ、アルコキシカルボニルアミノ、アリールオキシカルボニルアミノ、アルコキシカルボニル、アリールオキシカルボニル、複素環チオ、チオウレイド、ヒドロキシル及びメルカプトの各基、並びにスピロ化合物残基、有橋炭化水素化合物残基、スルホニル、スルフィニル、スルホニルオキシ、スルファモイル、ホスホリル、カルバモイル、アシル、アシルオキシ、オキシカルボニル、カルボキシル、シアノ、ニトロ、ハロゲン置換アルコキシ、ハロゲン置換アリールオキシ、ピロリル、テトラゾリル等の各基及びハロゲン原子等が挙げられる。 Examples of the substituent include various substituents, but typical examples include alkyl, aryl, anilino, acylamino, sulfonamido, alkylthio, arylthio, alkenyl, cycloalkyl, cycloalkenyl, alkynyl, heterocycle, Alkoxy, aryloxy, heterocyclic oxy, siloxy, amino, alkylamino, imide, ureido, sulfamoylamino, alkoxycarbonylamino, aryloxycarbonylamino, alkoxycarbonyl, aryloxycarbonyl, heterocyclic thio, thioureido, hydroxyl and mercapto As well as spiro compound residues, bridged hydrocarbon compound residues, sulfonyl, sulfinyl, sulfonyloxy, sulfamoyl, phosphoryl, carbamoyl, acyl, acyloxy Oxycarbonyl, carboxyl, cyano, nitro, halogen-substituted alkoxy, halogen-substituted aryloxy, pyrrolyl, and the like each group and a halogen atom tetrazolyl, and the like.
 上記アルキル基としては炭素数1~32のものが好ましく、直鎖でも分岐でもよい。アリール基としてはフェニル基が好ましい。 The alkyl group preferably has 1 to 32 carbon atoms and may be linear or branched. The aryl group is preferably a phenyl group.
 アシルアミノ基としては、アルキルカルボニルアミノ基、アリールカルボニルアミノ基;スルホンアミド基としては、アルキルスルホニルアミノ基、アリールスルホニルアミノ基;アルキルチオ基、アリールチオ基におけるアルキル成分、アリール成分は上記のアルキル基、アリール基が挙げられる。 As acylamino group, alkylcarbonylamino group, arylcarbonylamino group; as sulfonamide group, alkylsulfonylamino group, arylsulfonylamino group; alkylthio group, alkyl component in arylthio group, aryl component is the above alkyl group, aryl group Is mentioned.
 アルケニル基としては炭素数2~23のもの、シクロアルキル基としては炭素数3~12、特に5~7のものが好ましく、アルケニル基は直鎖でも分岐でもよい。シクロアルケニル基としては炭素数3~12、特に5~7のものが好ましい。 The alkenyl group preferably has 2 to 23 carbon atoms, and the cycloalkyl group preferably has 3 to 12 carbon atoms, particularly 5 to 7 carbon atoms. The alkenyl group may be linear or branched. The cycloalkenyl group preferably has 3 to 12 carbon atoms, particularly 5 to 7 carbon atoms.
 ウレイド基としてはアルキルウレイド基、アリールウレイド基;スルファモイルアミノ基としてはアルキルスルファモイルアミノ基、アリールスルファモイルアミノ基;複素環基としては5~7員のものが好ましく、具体的には2-フリル、2-チエニル、2-ピリミジニル、2-ベンゾチアゾリル等;飽和複素環としては5~7員のものが好ましく、具体的にはテトラヒドロピラニル、テトラヒドロチオピラニル等;複素環オキシ基としては5~7員の複素環を有するものが好ましく、例えば3,4,5,6-テトラヒドロピラニル-2-オキシ、1-フェニルテトラゾール-5-オキシ等;複素環チオ基としては5~7員の複素環チオ基が好ましく、例えば2-ピリジルチオ、2-ベンゾチアゾリルチオ、2,4-ジフェノキシ-1,3,5-トリアゾール-6-チオ等;シロキシ基としてはトリメチルシロキシ、トリエチルシロキシ、ジメチルブチルシロキシ等;イミド基としては琥珀酸イミド、3-ヘプタデシル琥珀酸イミド、フタルイミド、グルタルイミド等;スピロ化合物残基としてはスピロ[3.3]ヘプタン-1-イル等;有橋炭化水素化合物残基としてはビシクロ[2.2.1]ヘプタン-1-イル、トリシクロ[3.3.1.13.7]デカン-1-イル、7,7-ジメチル-ビシクロ[2.2.1]ヘプタン-1-イル等が挙げられる。 The ureido group is preferably an alkylureido group or arylureido group; the sulfamoylamino group is preferably an alkylsulfamoylamino group or an arylsulfamoylamino group; Is 2-furyl, 2-thienyl, 2-pyrimidinyl, 2-benzothiazolyl, etc .; the saturated heterocyclic ring is preferably a 5- to 7-membered member, specifically tetrahydropyranyl, tetrahydrothiopyranyl, etc .; heterocyclic oxy group Are preferably those having a 5- to 7-membered heterocyclic ring, such as 3,4,5,6-tetrahydropyranyl-2-oxy, 1-phenyltetrazol-5-oxy, etc .; 7-membered heterocyclic thio groups are preferred, such as 2-pyridylthio, 2-benzothiazolylthio, 2,4-diphenoxy-1, , 5-triazole-6-thio, etc .; as siloxy group, trimethylsiloxy, triethylsiloxy, dimethylbutylsiloxy, etc .; as imide group, succinimide, 3-heptadecylsuccinimide, phthalimide, glutarimide, etc .; spiro compound residue As spiro [3.3] heptan-1-yl and the like; as bridged hydrocarbon compound residues, bicyclo [2.2.1] heptan-1-yl, tricyclo [3.3.1.13.7] Examples include decan-1-yl, 7,7-dimethyl-bicyclo [2.2.1] heptan-1-yl, and the like.
 スルホニル基としては、アルキルスルホニル基、アリールスルホニル基、ハロゲン置換アルキルスルホニル基、ハロゲン置換アリールスルホニル基等;スルフィニル基としては、アルキルスルフィニル基、アリールスルフィニル基等;スルホニルオキシ基としては、アルキルスルホニルオキシ基、アリールスルホニルオキシ基等;スルファモイル基としては、N,N-ジアルキルスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル等;ホスホリル基としては、アルコキシホスホリル基、アリールオキシホスホリル基、アルキルホスホリル基、アリールホスホリル基等;カルバモイル基としては、N,N-ジアルキルカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基等;アシル基としては、アルキルカルボニル基、アリールカルボニル基等;アシルオキシ基としては、アルキルカルボニルオキシ基等;オキシカルボニル基としては、アルコキシカルボニル基、アリールオキシカルボニル基等;ハロゲン置換アルコキシ基としてはα-ハロゲン置換アルコキシ基等;ハロゲン置換アリールオキシ基としては、テトラフルオロアリールオキシ基、ペンタフルオロアリールオキシ基等;ピロリル基としては1-ピロリル等;テトラゾリル基としては1-テトラゾリル等の各基が挙げられる。 As the sulfonyl group, an alkylsulfonyl group, an arylsulfonyl group, a halogen-substituted alkylsulfonyl group, a halogen-substituted arylsulfonyl group, etc .; As a sulfinyl group, an alkylsulfinyl group, an arylsulfinyl group, etc .; As a sulfonyloxy group, an alkylsulfonyloxy group , Arylsulfonyloxy groups, etc .; as sulfamoyl groups, N, N-dialkylsulfamoyl groups, N, N-diarylsulfamoyl groups, N-alkyl-N-arylsulfamoyl groups, etc .; as phosphoryl groups, alkoxy A phosphoryl group, an aryloxyphosphoryl group, an alkylphosphoryl group, an arylphosphoryl group, etc .; examples of the carbamoyl group include an N, N-dialkylcarbamoyl group, an N, N-diarylcarbamoyl group, and an N-alkyl- group. An arylcarbamoyl group, etc .; an acyl group, an alkylcarbonyl group, an arylcarbonyl group, etc .; an acyloxy group, an alkylcarbonyloxy group, etc .; an oxycarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, etc .; a halogen-substituted alkoxy Α-halogen-substituted alkoxy group, etc .; halogen-substituted aryloxy groups, tetrafluoroaryloxy groups, pentafluoroaryloxy groups, etc .; pyrrolyl groups, 1-pyrrolyl, etc .; tetrazolyl groups, such as 1-tetrazolyl, etc. Each group is mentioned.
 上記置換基の他に、トリフルオロメチル、ヘプタフルオロ-i-プロピル、ノニルフルオロ-t-ブチル等の各基や、テトラフルオロアリール基、ペンタフルオロアリール基なども好ましく用いられる。更に、これらの置換基は、他の置換基で置換されてもよい。 In addition to the above substituents, groups such as trifluoromethyl, heptafluoro-i-propyl, nonylfluoro-t-butyl, tetrafluoroaryl groups, pentafluoroaryl groups and the like are also preferably used. Furthermore, these substituents may be substituted with other substituents.
 本発明共重合体中の非環状モノマー含有量は成形性の観点から20重量%以上であることが好ましく、25%以上で90%以下であることがより好ましく、30%以上で85%以下であることがさらに好ましい。 The acyclic monomer content in the copolymer of the present invention is preferably 20% by weight or more from the viewpoint of moldability, more preferably 25% or more and 90% or less, and 30% or more and 85% or less. More preferably it is.
 本発明の重合体又は共重合体のガラス転移温度(Tg)は、好ましくは80~250℃、より好ましくは90~220℃、最も好ましくは100~200℃の範囲である。数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算値で、好ましくは10,000~1,000,000、より好ましくは20,000~500,000、最も好ましくは50,000~300,000の範囲である。分子量分布は、上記Mnと、同様にGPCで測定されるポリスチレン換算の重量平均分子量(Mw)との比(Mw/Mn)で表したときに、好ましくは2.0以下である。 The glass transition temperature (Tg) of the polymer or copolymer of the present invention is preferably 80 to 250 ° C., more preferably 90 to 220 ° C., and most preferably 100 to 200 ° C. The number average molecular weight (Mn) is a polystyrene conversion value measured by gel permeation chromatography (GPC), preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, most preferably Is in the range of 50,000 to 300,000. The molecular weight distribution is preferably 2.0 or less when expressed as a ratio (Mw / Mn) between the above Mn and a polystyrene-equivalent weight average molecular weight (Mw) similarly measured by GPC.
 Mw/Mnが大きすぎると、成形体の機械的強度や耐熱性が低下する。特に機械的強度、耐熱性、成形加工性を向上させるには、Mw/Mnが1.8以下であることがより好ましく、1.6以下が特に好ましい。 When Mw / Mn is too large, the mechanical strength and heat resistance of the molded product are lowered. In particular, in order to improve mechanical strength, heat resistance, and moldability, Mw / Mn is more preferably 1.8 or less, and particularly preferably 1.6 or less.
 重合時の温度は、0~200℃、好ましくは50~150℃の範囲から選ばれ、圧力は大気圧~100気圧の範囲から選ばれる。また、重合体帯域に水素を存在させることによって、生成する重合体の分子量を容易に調整することができる。 The temperature at the time of polymerization is selected from the range of 0 to 200 ° C., preferably 50 to 150 ° C., and the pressure is selected from the range of atmospheric pressure to 100 atm. Moreover, the molecular weight of the produced | generated polymer can be easily adjusted by making hydrogen exist in a polymer zone | band.
 本発明のオレフィン系樹脂は、1成分の環状モノマーから合成された高分子でもよいが、好適には2成分以上の環状モノマー、或いは環状モノマーと非環状モノマーを用いて合成された共重合体が選ばれる。この共重合体については、100成分以上のモノマーを用いて製造しても良いが生産効率重合安定性からモノマーの混合は10成分以下が好ましい。更に好ましいのは、5成分以下である。 The olefin resin of the present invention may be a polymer synthesized from a one-component cyclic monomer, but preferably a copolymer synthesized from two or more cyclic monomers or a cyclic monomer and an acyclic monomer. To be elected. This copolymer may be produced using monomers having 100 or more components, but the mixing of monomers is preferably 10 or less from the viewpoint of production efficiency polymerization stability. More preferred is 5 components or less.
 また、得られた共重合体は、結晶性高分子でも非晶性高分子でもかまわないが、好ましくは非晶性高分子が良い。 The obtained copolymer may be a crystalline polymer or an amorphous polymer, but preferably an amorphous polymer.
 本発明の重合体及び共重合体の炭素-炭素不飽和結合(芳香環含む)を水素添加する方法には、公知の方法を用いることができるが、中でも、水素添加率を高くし、且つ水素添加反応と同時に起こる重合体鎖切断反応を少なくするためには、有機溶媒中、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム及びレニウムから選ばれる少なくとも1つの金属を含む触媒を用いて水素添加反応を行なうのが好ましい。水素化触媒は、不均一触媒、均一触媒のいずれも使用可能である。不均一系触媒は、金属または金属化合物のままで、又は適当な担体に担持して用いることができる。担体としては、例えば、活性炭、シリカ、アルミナ、炭化カルシウム、チタニア、マグネシア、ジルコニア、ケイソウ土、炭化珪素等が挙げられ、触媒の担持量は、触媒合計重量に対する金属含有量で、通常0.01~80重量%、好ましくは0.05~60重量%の範囲である。均一系触媒は、ニッケル、コバルト、チタンまたは鉄化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒、またはロジウム、パラジウム、白金、ルテニウム、レニウム等の有機金属錯体触媒を用いることができる。これらの水素添加触媒は、それぞれ単独で、或いは2種類以上組み合わせて使用することができ、その使用量は、重合体100重量部に対して、通常、0.01~100重量部、好ましくは0.05~50重量部、より好ましくは0.1~30重量部である。 As a method of hydrogenating the carbon-carbon unsaturated bond (including aromatic ring) of the polymer and copolymer of the present invention, a known method can be used. Among them, the hydrogenation rate is increased and hydrogen is added. In order to reduce the polymer chain scission reaction that occurs simultaneously with the addition reaction, a catalyst containing at least one metal selected from nickel, cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium and rhenium is used in an organic solvent. It is preferable to perform a hydrogenation reaction. As the hydrogenation catalyst, either a heterogeneous catalyst or a homogeneous catalyst can be used. The heterogeneous catalyst can be used in the form of a metal or a metal compound or supported on a suitable carrier. Examples of the support include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide, and the like. The supported amount of the catalyst is a metal content with respect to the total weight of the catalyst, usually 0.01. It is in the range of ˜80% by weight, preferably 0.05 to 60% by weight. The homogeneous catalyst is a catalyst in which a nickel, cobalt, titanium or iron compound and an organometallic compound (for example, an organoaluminum compound or an organolithium compound) are combined, or an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium. Can be used. These hydrogenation catalysts can be used alone or in combination of two or more, and the amount used is usually 0.01 to 100 parts by weight, preferably 0, per 100 parts by weight of the polymer. 0.05 to 50 parts by weight, more preferably 0.1 to 30 parts by weight.
 水素添加反応温度は、通常0~300℃の温度であり、好ましくは室温~250℃、特に好ましくは50~200℃の温度範囲である。 The hydrogenation reaction temperature is usually from 0 to 300 ° C., preferably from room temperature to 250 ° C., particularly preferably from 50 to 200 ° C.
 また、水素圧力は、通常0.1MPa~30MPa、好ましくは1MPa~20MPa、より好ましくは2MPa~15MPaである。得られた水素添加物の水素添加率は、耐熱性や耐候性の観点から、1H-NMRによる測定において、主鎖の炭素-炭素不飽和結合の通常90%以上、好ましくは95%以上、より好ましくは97%以上である。水素化率が低いと、得られる重合体の透過率、低複屈折性、熱安定性等の光学特性が低下する。 The hydrogen pressure is usually 0.1 MPa to 30 MPa, preferably 1 MPa to 20 MPa, more preferably 2 MPa to 15 MPa. From the viewpoint of heat resistance and weather resistance, the hydrogenation rate of the obtained hydrogenated product is usually 90% or more, preferably 95% or more of the carbon-carbon unsaturated bond of the main chain as measured by 1H-NMR. Preferably it is 97% or more. When the hydrogenation rate is low, optical properties such as transmittance, low birefringence, and thermal stability of the resulting polymer are lowered.
 本発明の重合体及び共重合体の水素添加反応に於いて用いられる溶媒としては本発明の重合体及び共重合体を溶解し溶媒自体が水素添加されないものであればどのようなものでもよく、例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタンなどのエーテル類、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリンなどの脂肪族環状炭化水素、メチレンジクロリド、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロルベンゼン、トリクロルベンゼンなどのハロゲン化炭化水素等が挙げられ、これらは2種以上混合して使用してもよい。 The solvent used in the hydrogenation reaction of the polymer and copolymer of the present invention may be any solvent as long as it dissolves the polymer and copolymer of the present invention and the solvent itself is not hydrogenated. For example, ethers such as tetrahydrofuran, diethyl ether, dibutyl ether and dimethoxyethane, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbons such as pentane, hexane and heptane, cyclopentane, cyclohexane and methylcyclohexane , Aliphatic cyclic hydrocarbons such as dimethylcyclohexane and decalin, and halogenated hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene, and trichlorobenzene. It may be.
 本発明の重合体又は共重合体水素添加物の製造は、重合体溶液から重合体又は共重合体水素添加物を単離した後、再度溶媒に溶解しても可能であるが、単離することなく、上記有機金属錯体と有機アルミニウム化合物からなる水素添加触媒を加えることにより水素添加反応を行う方法を採用することもできる。 The polymer or copolymer hydrogenated product of the present invention can be produced by isolating the polymer or copolymer hydrogenated product from the polymer solution and then dissolving it again in the solvent. It is also possible to employ a method of performing a hydrogenation reaction by adding a hydrogenation catalyst composed of the above organometallic complex and an organoaluminum compound.
 水素添加反応の終了後、公知の方法により重合体に残存する水素添加触媒を除去することができる。例えば、吸着剤による吸着法、良溶媒による溶液に乳酸等の有機酸と貧溶媒と水とを添加し、この系を常温下或いは加温下に於いて抽出除去する方法、更には良溶媒による溶液または重合体スラリーを窒素または水素ガスの雰囲気下でトリメチレンジアミン、アニリン、ピリジン、エタンジアミド、水酸化ナトリウム等の塩基性化合物で接触処理した後に、或いは接触処理と同時に酢酸、クエン酸、安息香酸、塩酸等の酸性化合物を接触処理した後、洗浄除去する方法等が挙げられる。 After completion of the hydrogenation reaction, the hydrogenation catalyst remaining in the polymer can be removed by a known method. For example, an adsorption method using an adsorbent, a method in which an organic acid such as lactic acid, a poor solvent, and water are added to a solution using a good solvent, and the system is extracted and removed at room temperature or under heating. Acetic acid, citric acid, benzoic acid after contact treatment of a solution or polymer slurry with a basic compound such as trimethylenediamine, aniline, pyridine, ethanediamide, sodium hydroxide, etc. in an atmosphere of nitrogen or hydrogen gas. And a method of washing and removing an acidic compound such as hydrochloric acid after contact treatment.
 本発明の重合体又は共重合体水素添加物溶液から重合体水素化物の回収法は特に限定されず、公知の方法を用いることができる。例えば、撹拌下の貧溶媒中に反応溶液を排出し重合体水素化物を凝固させ濾過法、遠心分離法、デカンテーション法等により回収する方法、反応溶液中にスチームを吹き込んで重合体水素化物を析出させるスチームストリッピング法、反応溶液から溶媒を加熱等により直接除去する方法等が挙げられる。 The method for recovering the polymer hydride from the polymer or copolymer hydrogenated solution of the present invention is not particularly limited, and a known method can be used. For example, the reaction solution is discharged into a poor solvent under stirring to solidify the polymer hydride, and recovered by filtration, centrifugation, decantation, etc., and steam is blown into the reaction solution to remove the polymer hydride. Examples thereof include a steam stripping method for precipitation and a method for directly removing the solvent from the reaction solution by heating.
 本発明の水素添加方法を用いると水素添加率は90%以上が容易に達成でき、95%以上、特に99%以上とすることが可能であり、そうして得られる重合体又は共重合体水素添加物は容易に酸化されることがなく、優れた重合体又は共重合体水素添加物となる。
(樹脂材料の調製方法)
 本発明における樹脂材料(以下、樹脂組成物ともいう)の調製方法について説明する。
When the hydrogenation method of the present invention is used, the hydrogenation rate can be easily achieved at 90% or more, and can be 95% or more, particularly 99% or more. The additive is not easily oxidized and becomes an excellent polymer or copolymer hydrogenation.
(Method for preparing resin material)
A method for preparing a resin material (hereinafter also referred to as a resin composition) in the present invention will be described.
 本発明における樹脂組成物は、成型する工程(成型プロセス)の前に特定の加工処理をすることが好ましく、加工処理の段階で通常樹脂に添加される可塑剤、酸化防止剤、その他の添加剤を加えても良い。 The resin composition in the present invention is preferably subjected to a specific processing treatment before the molding step (molding process), and a plasticizer, an antioxidant, and other additives that are usually added to the resin at the stage of the processing treatment. May be added.
 本発明における樹脂組成物の調製方法としては、混練プロセスまたは混合物を溶媒に溶解、溶媒除去、乾燥を経て組成物を得るプロセス等が好ましい調製方法として挙げられるが、更に好ましい調製方法は、混練プロセスである。また、混練プロセスとして、通常の樹脂の配合に用いるプロセスを用いることができる。例えば、ロール、バンバリーミキサ、二軸混練機、ニーダールーダなどを用いることができるが、好ましくは、バンバリーミキサ、二軸混練機、ニーダールーダ等が挙げられる。樹脂の酸化を防ぐ目的で、密閉系で混練り可能な装置が好適に使用され、さらに好ましくは、窒素やアルゴンなどの不活性ガス化で混練プロセスを行うことが望ましい。
[1-2.1B]樹脂材料に対する添加剤
 本発明における樹脂組成物の調製時や樹脂組成物の成型工程においては、必要に応じて各種添加剤(配合剤ともいう)を添加することができる。添加剤については、格別限定はないが、酸化防止剤、熱安定剤、耐光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料や顔料などの着色剤;帯電防止剤、難燃剤、フィラーなどが挙げられる。これらの配合剤は、単独で、あるいは2種以上を組み合せて用いることができ、その配合量は本発明に記載の効果を損なわない範囲で適宜選択される。
Examples of the method for preparing a resin composition in the present invention include a kneading process or a process for obtaining a composition by dissolving a mixture in a solvent, removing the solvent, and drying, and the like. A more preferable preparation method is a kneading process. It is. Moreover, the process used for the mixing | blending of normal resin can be used as a kneading | mixing process. For example, a roll, a Banbury mixer, a twin-screw kneader, a kneader ruder or the like can be used, and a Banbury mixer, a twin-screw kneader, a kneader ruder or the like is preferable. For the purpose of preventing oxidation of the resin, an apparatus capable of kneading in a closed system is preferably used, and more preferably, the kneading process is performed by inert gasification such as nitrogen or argon.
[1-2.1B] Additives to resin material Various additives (also referred to as compounding agents) can be added as necessary during the preparation of the resin composition and the molding process of the resin composition in the present invention. . There are no particular restrictions on the additives, but stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, UV absorbers and near infrared absorbers; resin modifiers such as lubricants and plasticizers Colorants such as dyes and pigments; antistatic agents, flame retardants, fillers and the like. These compounding agents can be used alone or in combination of two or more, and the compounding amount is appropriately selected within a range not impairing the effects described in the present invention.
 《酸化防止剤》
 本発明に用いられる酸化防止剤について説明する。
"Antioxidant"
The antioxidant used in the present invention will be described.
 酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、透明性、耐熱性等を低下させることなく、成型時の酸化劣化等によるレンズの着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明における重合体100質量部に対して好ましくは0.001~5質量部、より好ましくは0.01~1質量部である。 Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among these, phenolic antioxidants, particularly alkyl-substituted phenolic antioxidants are preferable. By blending these antioxidants, it is possible to prevent lens coloring and strength reduction due to oxidative degradation during molding without lowering transparency, heat resistance and the like. These antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. The amount is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass with respect to parts.
 フェノール系酸化防止剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニルプロピオネート)メタン[ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート)]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。 As the phenolic antioxidant, conventionally known ones can be used, for example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No. 1; octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) ), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 -Di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenylpropionate) methane [pentaerythrmethyl-tetrakis ( Alkyl such as 3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate)], triethylene glycol bis (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate) Substituted phenol compounds; 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4-bisoctylthio-1,3,5 -Triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5-triazine Azine group-containing phenolic compound; and the like.
 リン系酸化防止剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4’イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 The phosphorus antioxidant is not particularly limited as long as it is usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) Phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10 Monophosphite compounds such as -dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4'-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl phosphite ), 4,4′isopropylidene-bis (phenyl-di-alkyl (C12-C15) phosphite) Like diphosphite compounds such as. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 イオウ系酸化防止剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3’-チオジプロピピオネート、ジステアリル3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。
《耐光安定剤》
 本発明に用いられる耐光安定剤について説明する。
Examples of the sulfur-based antioxidant include dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thiodiprote. Pionate, pentaerythritol-tetrakis- (β-lauryl-thio-propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane It is done.
<Light resistance stabilizer>
The light-resistant stabilizer used in the present invention will be described.
 耐光安定剤としては、ベンゾフェノン系耐光安定剤、ベンゾトリアゾール系耐光安定剤、ヒンダードアミン系耐光安定剤などが挙げられるが、本発明においては、レンズの透明性、耐着色性等の観点から、ヒンダードアミン系耐光安定剤を用いるのが好ましい。ヒンダードアミン系耐光安定剤(以下、HALSと記す。)の中でも、THFを溶媒として用いたGPCにより測定したポリスチレン換算のMnが1000~10000であるものが好ましく、2000~5000であるものがより好ましく、2800~3800であるものが特に好ましい。Mnが小さすぎると、該HALSをブロック共重合体に加熱溶融混練して配合する際に、揮発のため所定量を配合できなかったり、射出成型等の加熱溶融成型時に発泡やシルバーストリークが生じるなど加工安定性が低下する。また、ランプを点灯させた状態でレンズを長時間使用する場合に、レンズから揮発性成分がガスとなって発生する。逆にMnが大き過ぎると、ブロック共重合体への分散性が低下して、レンズの透明性が低下し、耐光性改良の効果が低減する。したがって、本発明においては、HALSのMnを上記範囲とすることにより加工安定性、低ガス発生性、透明性に優れたレンズが得られる。 Examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, etc., but in the present invention, from the viewpoint of lens transparency, color resistance, etc., hindered amine-based It is preferable to use a light-resistant stabilizer. Among hindered amine light-resistant stabilizers (hereinafter referred to as HALS), those having a polystyrene-equivalent Mn measured by GPC using THF as a solvent are preferably 1000 to 10,000, more preferably 2000 to 5000, Those of 2800 to 3800 are particularly preferred. If Mn is too small, when HALS is blended by heat-melting and kneading into a block copolymer, a predetermined amount cannot be blended due to volatilization, foaming or silver streak occurs during heat-melt molding such as injection molding, etc. Processing stability decreases. Further, when the lens is used for a long time with the lamp turned on, a volatile component is generated as a gas from the lens. Conversely, if Mn is too large, the dispersibility in the block copolymer is lowered, the transparency of the lens is lowered, and the effect of improving light resistance is reduced. Therefore, in the present invention, a lens having excellent processing stability, low gas generation and transparency can be obtained by setting the HALS Mn within the above range.
 このようなHALSの具体例としては、N,N’,N’’,N’’’-テトラキス-〔4,6-ビス- {ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ}-トリアジン-2-イル〕-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミンと1,3,5-トリアジンとN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、1,6-ヘキサンジアミン-N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)とモルフォリン-2,4,6-トリクロロ-1,3,5-トリアジンとの重縮合物、ポリ〔(6-モルフォリノ-s-トリアジン-2,4-ジイル)(2,2,6,6,-テトラメチル-4-ピペリジル)イミノ〕-ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕などの、ピペリジン環がトリアジン骨格を介して複数結合した高分子量HALS;コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールと3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンとの混合エステル化物などの、ピペリジン環がエステル結合を介して結合した高分子量HALS等が挙げられる。 Specific examples of such HALS include N, N ′, N ″, N ′ ″-tetrakis- [4,6-bis- {butyl- (N-methyl-2,2,6,6-tetra Methylpiperidin-4-yl) amino} -triazin-2-yl] -4,7-diazadecane-1,10-diamine, dibutylamine and 1,3,5-triazine and N, N′-bis (2,2 , 6,6-Tetramethyl-4-piperidyl) butylamine, poly [{(1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl } {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], 1,6-hexanediamine- N, N'-bis (2,2,6,6-tetra Til-4-piperidyl) and morpholine-2,4,6-trichloro-1,3,5-triazine, poly [(6-morpholino-s-triazine-2,4-diyl) (2 , 2,6,6, -tetramethyl-4-piperidyl) imino] -hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]] and the like, the piperidine ring is interposed via the triazine skeleton. A plurality of high molecular weight HALS bonded to each other; a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 1,2,3,4-butanetetracarboxylic acid and 1 2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5,5] un Of a mixed ester of cans, piperidine ring linked to a high molecular weight HALS, and the like via an ester bond.
 これらの中でも、ジブチルアミンと1,3,5-トリアジンとN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物などのMnが2,000~5,000のものが好ましい。 Among these, polycondensates of dibutylamine, 1,3,5-triazine and N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [{(1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2 , 2,6,6-tetramethyl-4-piperidyl) imino}], a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and the like. 5,000 to 5,000 are preferred.
 本発明における樹脂材料に対する上記配合量は、重合体100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.02~15質量部、特に好ましくは0.05~10質量部である。添加量が少なすぎると耐光性の改良効果が十分に得られず、屋外で長時間使用する場合等に着色が生じる。一方、HALSの配合量が多すぎると、その一部がガスとなって発生したり、樹脂への分散性が低下して、レンズの透明性が低下する。 The blending amount of the resin material in the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, and particularly preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the polymer. Part. If the amount added is too small, the effect of improving light resistance cannot be obtained sufficiently, and coloring occurs when used outdoors for a long time. On the other hand, when the blending amount of HALS is too large, a part of the HALS is generated as a gas, or the dispersibility in the resin is lowered, so that the transparency of the lens is lowered.
 また、本発明における樹脂組成物に、さらに最も低いガラス転移温度が30℃以下である化合物を配合することにより、透明性、耐熱性、機械的強度などの諸特性を低下させることなく、長時間の高温高湿度環境下での白濁を防止できる。 In addition, by blending the resin composition in the present invention with a compound having the lowest glass transition temperature of 30 ° C. or less, the properties such as transparency, heat resistance and mechanical strength are not deteriorated for a long time. Can prevent cloudiness in high temperature and high humidity environment.
 すなわち本発明においては、本発明の樹脂組成物と、(1)軟質重合体、(2)アルコール性化合物、からなる群から選ばれる少なくとも1種類の配合剤を含んでなる樹脂組成物が提供される。これらの配合剤を配合することにより、透明性、低吸水性、機械的強度などの諸特性を低下させることなく、長時間の高温高湿度環境下での白濁を防止できる。 That is, in the present invention, there is provided a resin composition comprising at least one compounding agent selected from the group consisting of the resin composition of the present invention and (1) a soft polymer and (2) an alcoholic compound. The By blending these compounding agents, it is possible to prevent white turbidity in a high temperature and high humidity environment for a long time without degrading various properties such as transparency, low water absorption, and mechanical strength.
 これらの中でも、(1)軟質重合体、及び(2)アルコール性化合物が、高温高湿度環境下における白濁防止効果、得られる樹脂組成物の透明性に優れる。 Among these, (1) a soft polymer and (2) an alcoholic compound are excellent in the effect of preventing white turbidity in a high temperature and high humidity environment and the transparency of the resulting resin composition.
 (1)軟質重合体
 本発明に用いる軟質重合体は、通常30℃以下のTgを有する重合体であり、Tgが複数存在する場合には、少なくとも最も低いTgが30℃以下であることが好ましい。
(1) Soft polymer The soft polymer used in the present invention is usually a polymer having a Tg of 30 ° C. or lower. When a plurality of Tg are present, at least the lowest Tg is preferably 30 ° C. or lower. .
 これらの軟質重合体の具体例としては、例えば、液状ポリエチレン、ポリプロピレン、ポリ-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体、ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などのジエン系軟質重合体、ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサン、などのケイ素含有軟質重合体、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体などのα,β-不飽和酸からなる軟質重合体、ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などの不飽和アルコールおよびアミンまたはそのアシル誘導体またはアセタールからなる軟質重合体、エチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴム、などのエポキシ系軟質重合体、フッ化ビニリデン系ゴム、四フッ化エチレン-プロピレンゴム、などのフッ素系軟質重合体、天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体、等が挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性反応により官能基を導入したものでもよい。 Specific examples of these soft polymers include, for example, liquid polyethylene, polypropylene, poly-1-butene, ethylene / α-olefin copolymers, propylene / α-olefin copolymers, and ethylene / propylene / diene copolymers. (EPDM), olefinic soft polymers such as ethylene / propylene / styrene copolymers, isobutylene soft polymers such as polyisobutylene, isobutylene / isoprene rubber, isobutylene / styrene copolymers; polybutadiene, polyisoprene, butadiene / styrene Random copolymer, isoprene / styrene random copolymer, acrylonitrile / butadiene copolymer, acrylonitrile / butadiene / styrene copolymer, butadiene / styrene / block copolymer, styrene / butadiene / styrene / block Copolymer, isoprene / styrene block copolymer, diene soft polymer such as styrene / isoprene / styrene block copolymer, silicon-containing soft polymer such as dimethylpolysiloxane, diphenylpolysiloxane, dihydroxypolysiloxane, etc. Polymers such as polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, soft polymers composed of α, β-unsaturated acids such as butyl acrylate / styrene copolymer, polyvinyl alcohol, polyvinyl acetate, Soft polymers composed of unsaturated alcohols such as polyvinyl stearate and vinyl acetate / styrene copolymers and amines or acyl derivatives or acetals thereof, ethylene oxide, polypropylene oxide, Epoxy soft polymers such as lorhydrin rubber, fluorinated soft polymers such as vinylidene fluoride rubber, tetrafluoroethylene-propylene rubber, natural rubber, polypeptide, protein, polyester thermoplastic elastomer, vinyl chloride heat Other soft polymers such as a plastic elastomer and a polyamide-based thermoplastic elastomer can be used. These soft polymers may have a cross-linked structure or may have a functional group introduced by a modification reaction.
 上記軟質重合体の中でもジエン系軟質重合体が好ましく、特に該軟質重合体の炭素-炭素不飽和結合を水素化した水素化物が、ゴム弾性、機械強度、柔軟性、分散性の点で優れる。 Among the above-mentioned soft polymers, diene-based soft polymers are preferable, and hydrides obtained by hydrogenating carbon-carbon unsaturated bonds of the soft polymers are particularly excellent in terms of rubber elasticity, mechanical strength, flexibility, and dispersibility.
 (2)アルコール性化合物
 また、アルコール性化合物は、分子内に少なくとも1つの非フェノール性水酸基を有する化合物で、好適には、少なくても1つの水酸基と少なくとも1つのエーテル結合またはエステル結合を有する。このような化合物の具体例としては、例えば2価以上の多価アルコール、より好ましくは3価以上の多価アルコール、さらに好ましくは3~8個の水酸基を有する多価アルコールの水酸基の1つがエーテル化またはエステル化されたアルコール性エーテル化合物やアルコール性エステル化合物が挙げられる。
(2) Alcoholic Compound The alcoholic compound is a compound having at least one non-phenolic hydroxyl group in the molecule, and preferably has at least one hydroxyl group and at least one ether bond or ester bond. Specific examples of such compounds include, for example, dihydric or higher polyhydric alcohols, more preferably trihydric or higher polyhydric alcohols, and even more preferably one of the hydroxyl groups of a polyhydric alcohol having 3 to 8 hydroxyl groups is an ether. Examples thereof include alcoholic ether compounds and alcoholic ester compounds that have been converted into or esterified.
 2価以上の多価アルコールとしては、例えば、ポリエチレングリコール、グリセロール、トリメチロールプロパン、ペンタエリスリトール、ジグリセロール、トリグリセロール、ジペンタエリスリトール、1,6,7-トリヒドロキシ-2,2-ジ(ヒドロキシメチル)-4-オキソヘプタン、ソルビトール、2-メチル-1,6,7-トリヒドロキシ-2-ヒドロキシメチル-4-オキソヘプタン、1,5,6-トリヒドロキシ-3-オキソヘキサンペンタエリスリトール、トリス(2-ヒドロキシエチル)イソシアヌレートなどが挙げられるが、特に3価以上の多価アルコール、さらには3~8個の水酸基を有する多価アルコールが好ましい。またアルコール性エステル化合物を得る場合には、α、β-ジオールを含むアルコール性エステル化合物が合成可能なグリセロール、ジグリセロール、トリグリセロールなどが好ましい。 Examples of the dihydric or higher polyhydric alcohol include polyethylene glycol, glycerol, trimethylolpropane, pentaerythritol, diglycerol, triglycerol, dipentaerythritol, 1,6,7-trihydroxy-2,2-di (hydroxy). Methyl) -4-oxoheptane, sorbitol, 2-methyl-1,6,7-trihydroxy-2-hydroxymethyl-4-oxoheptane, 1,5,6-trihydroxy-3-oxohexanepentaerythritol, tris (2-Hydroxyethyl) isocyanurate and the like can be mentioned, and in particular, a polyhydric alcohol having a valence of 3 or more, more preferably a polyhydric alcohol having 3 to 8 hydroxyl groups. In the case of obtaining an alcoholic ester compound, glycerol, diglycerol, triglycerol or the like capable of synthesizing an alcoholic ester compound containing α, β-diol is preferable.
 このようなアルコール性化合物として、例えば、グリセリンモノステアレート、グリセリンモノラウレート、グリセリンモノベヘネート、ジグリセリンモノステアレート、グリセリンジステアレート、グリセリンジラウレート、ペンタエリスリトールモノステアレート、ペンタエリスリトールモノラウレート、ペンタエリスリトールモノベヘレート、ペンタエリスリトールジステアレート、ペンタエリスリトールジラウレート、ペンタエリスリトールトリステアレート、ジペンタエリスリトールジステアレートなどの多価アルコール性エステル化物;3-(オクチルオキシ)-1,2-プロパンジオール、3-(デシルオキシ)-1,2-プロパンジオール、3-(ラウリルオキシ)-1,2-プロパンジオール、3-(4-ノニルフェニルオキシ)-1,2-プロパンジオール、1,6-ジヒドロオキシ-2,2-ジ(ヒドロキシメチル)-7-(4-ノニルフェニルオキシ)-4-オキソヘプタン、p-ノニルフェニルエーテルとホルムアルデヒドの縮合体とグリシドールの反応により得られるアルコール性エーテル化合物、p-オクチルフェニルエーテルとホルムアルデヒドの縮合体とグリシドールの反応により得られるアルコール性エーテル化合物、p-オクチルフェニルエーテルとジシクロペンタジエンの縮合体とグリシドールの反応により得られるアルコール性エーテル化合物などが挙げられる。これらの多価アルコール性化合物は単独でまたは2種以上を組み合わせて使用される。これらの多価アルコール性化合物の分子量は特に限定されないが、通常500~2000、好ましくは800~1500のものが、透明性の低下も少ない。 Examples of such alcoholic compounds include glycerol monostearate, glycerol monolaurate, glycerol monobehenate, diglycerol monostearate, glycerol distearate, glycerol dilaurate, pentaerythritol monostearate, and pentaerythritol monolaurate. , Pentaerythritol monobeherate, pentaerythritol distearate, pentaerythritol dilaurate, pentaerythritol tristearate, dipentaerythritol distearate, and the like; 3- (octyloxy) -1,2-propane Diol, 3- (decyloxy) -1,2-propanediol, 3- (lauryloxy) -1,2-propanediol, 3- (4-nonylpheny Of oxy) -1,2-propanediol, 1,6-dihydrooxy-2,2-di (hydroxymethyl) -7- (4-nonylphenyloxy) -4-oxoheptane, p-nonylphenyl ether and formaldehyde Alcoholic ether compounds obtained by reaction of condensates with glycidol, alcoholic ether compounds obtained by reaction of condensates of p-octylphenyl ether and formaldehyde with glycidol, condensates of p-octylphenyl ether and dicyclopentadiene and glycidol And alcoholic ether compounds obtained by the above reaction. These polyhydric alcohol compounds are used alone or in combination of two or more. The molecular weight of these polyhydric alcoholic compounds is not particularly limited, but those having a molecular weight of usually 500 to 2000, preferably 800 to 1500, have little decrease in transparency.
 (3)有機または無機フィラー
 有機フィラーとしては、通常の有機重合体粒子または架橋有機重合体粒子を用いることができ、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含有ビニル重合体;ポリアリレート、ポリメタクリレートなどのα,β‐不飽和酸から誘導された重合体;ポリビニルアルコール、ポリ酢酸ビニルなどの不飽和アルコールから誘導された重合体;ポリエチレンオキシド、またはビスグリシジルエーテルからから誘導された重合体;ポリフェニレンオキシド、ポリカーボネート、ポリスルフォンなどの芳香族縮合系重合体;ポリウレタン;ポリアミド;ポリエステル;アルデヒド・フェノール系樹脂;天然高分子化合物などの粒子または架橋粒子を挙げることができる。
(3) Organic or inorganic filler As the organic filler, ordinary organic polymer particles or crosslinked organic polymer particles can be used. For example, polyolefins such as polyethylene and polypropylene; halogen-containing materials such as polyvinyl chloride and polyvinylidene chloride Vinyl polymers; polymers derived from α, β-unsaturated acids such as polyarylate and polymethacrylate; polymers derived from unsaturated alcohols such as polyvinyl alcohol and polyvinyl acetate; polyethylene oxide or bisglycidyl ether Polymers derived from: aromatic condensation polymers such as polyphenylene oxide, polycarbonate and polysulfone; polyurethanes; polyamides; polyesters; aldehyde / phenolic resins; natural polymer compound particles or crosslinked particles It can gel.
 無機フィラーとしては、例えば、フッ化リチウム、硼砂(硼酸ナトリウム含水塩)などの1族元素化合物;炭酸マグネシウム、燐酸マグネシウム、炭酸カルシウム、チタン酸ストロンチウム、炭酸バリウムなどの2族元素化合物;二酸化チタン(チタニア)、一酸化チタンなどの4族元素化合物;二酸化モリブデン、三酸化モリブデンの6族元素化合物;塩化マンガン、酢酸マンガンなどの7族元素化合物;塩化コバルト、酢酸コバルトなどの8~10族元素化合物;沃化第一銅などの11族元素化合物;酸化亜鉛、酢酸亜鉛などの12族元素化合物;酸化アルミニウム(アルミナ)、フッ化アルミニウム、アルミノシリケート(珪酸アルミナ、カオリン、カオリナイト)などの13族元素化合物;酸化珪素(シリカ、シリカゲル)、石墨、カーボン、グラファイト、ガラスなどの14族元素化合物;カーナル石、カイナイト、雲母(マイカ、キンウンモ)、バイロース鉱などの天然鉱物の粒子が挙げられる。 Examples of the inorganic filler include Group 1 element compounds such as lithium fluoride and borax (sodium borate hydrate); Group 2 element compounds such as magnesium carbonate, magnesium phosphate, calcium carbonate, strontium titanate, and barium carbonate; Titania), Group 4 element compounds such as titanium monoxide; Group 6 element compounds of molybdenum dioxide and molybdenum trioxide; Group 7 element compounds such as manganese chloride and manganese acetate; Group 8-10 elements compounds such as cobalt chloride and cobalt acetate Group 11 element compounds such as cuprous iodide; Group 12 element compounds such as zinc oxide and zinc acetate; Group 13 such as aluminum oxide (alumina), aluminum fluoride, aluminosilicate (alumina silicate, kaolin, kaolinite) Elemental compounds; silicon oxide (silica, silica gel), graphite Carbon, graphite, Group 14 element compound such as glass; kernal stones, kainite, mica (mica, Kin'unmo) include particles of natural minerals, such as Bairosu ore.
 (1)~(3)の化合物の配合量は脂環式炭化水素系共重合体と配合される化合物の組み合わせによって決まるが、一般に、配合量が多すぎれば、組成物のガラス転移温度や透明性が大きく低下し、光学材料として使用するのに不適である。また配合量が少なすぎれば、高温高湿下において成型物の白濁を生じる場合がある。配合量としては、脂環式炭化水素系共重合体100質量部に対して、通常0.01~10質量部、好ましくは0.02~5質量部、特に好ましくは0.05~2質量部の割合で配合する。配合量が少なすぎる場合には高温高湿度環境下における白濁防止効果が得られず、配合量が多すぎる場合は成型品の耐熱性、透明性が低下する。 The compounding amount of the compounds (1) to (3) is determined by the combination of the alicyclic hydrocarbon copolymer and the compound to be compounded. In general, if the compounding amount is too large, the glass transition temperature of the composition and the transparency The properties are greatly reduced, making it unsuitable for use as an optical material. Moreover, if there are too few compounding quantities, the cloudiness of a molding may be produced under high temperature and high humidity. The blending amount is usually 0.01 to 10 parts by weight, preferably 0.02 to 5 parts by weight, particularly preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the alicyclic hydrocarbon copolymer. It mixes in the ratio. When the blending amount is too small, the effect of preventing white turbidity in a high temperature and high humidity environment cannot be obtained, and when the blending amount is too large, the heat resistance and transparency of the molded product are lowered.
 《その他の配合剤》
 本発明における樹脂組成物には、必要に応じて、その他の配合剤として、紫外線吸収剤、光安定剤、近赤外線吸収剤、染料や顔料などの着色剤、滑剤、可塑剤、帯電防止剤、蛍光増白剤などを配合することができ、これらは単独で、あるいは2種以上混合して用いることができ、その配合量は本発明の目的を損ねない範囲で適宜選択される。
[1-2.2]フッ素化膜55
 フッ素化膜55は成形部50に対しフッ素化処理が実行されることで形成された層であり、対物レンズ37の表面反射率を低下させる機能を有している。フッ素化膜55はd線に対する屈折率が1.35~1.45となっており、当該屈折率の値は表面反射率により測定することができる。フッ素化膜55の層厚(成形部50の表面37aから内部への厚み)は好ましくは10~5000nmである。層厚が5000nmを超えると、干渉縞の影響が光の波長に大きく依存し、その上に反射防止膜60を形成してもその機能を発揮させるのが難しくなり、逆に層厚が10nm未満であると、フッ素化膜55の機能を十分に発揮させるのが難しくなるからである。
[1-2.3]反射防止膜60
 反射防止膜60は、無機材料から構成されており、基本的には2層構造を有している。フッ素化膜55に対し直に第1層61が形成されており、その上に第2層62が形成されている。
<Other ingredients>
In the resin composition in the present invention, if necessary, as other compounding agents, ultraviolet absorbers, light stabilizers, near infrared absorbers, coloring agents such as dyes and pigments, lubricants, plasticizers, antistatic agents, A fluorescent brightening agent or the like can be blended, and these can be used alone or in admixture of two or more.
[1-2.2] Fluorinated film 55
The fluorinated film 55 is a layer formed by performing a fluorination process on the molded part 50, and has a function of reducing the surface reflectance of the objective lens 37. The refractive index of the fluorinated film 55 with respect to d-line is 1.35 to 1.45, and the value of the refractive index can be measured by the surface reflectance. The layer thickness of the fluorinated film 55 (thickness from the surface 37a to the inside of the molded part 50) is preferably 10 to 5000 nm. When the layer thickness exceeds 5000 nm, the influence of interference fringes greatly depends on the wavelength of light, and even if the antireflection film 60 is formed thereon, it becomes difficult to exert its function, and conversely, the layer thickness is less than 10 nm. This is because it is difficult to sufficiently exert the function of the fluorinated film 55.
[1-2.3] Antireflection film 60
The antireflection film 60 is made of an inorganic material and basically has a two-layer structure. A first layer 61 is formed directly on the fluorinated film 55, and a second layer 62 is formed thereon.
 第1層61は屈折率1.7以上の高屈折率材料から構成された層であり、好ましくはTa,TaとTiOとの混合物,ZrO,ZrOとTiOとの混合物のいずれかで構成されている。第1層61はTiO,Nb,HfOで構成されてもよい。第2層62は屈折率1.7未満の低屈折率材料から構成された層であり、好ましくはSiO,MgFから構成されている。 The first layer 61 is a layer made of a high refractive index material having a refractive index of 1.7 or more, preferably Ta 2 O 5 , a mixture of Ta 2 O 5 and TiO 2 , ZrO 2 , ZrO 2 and TiO 2. And is composed of any mixture. The first layer 61 may be composed of TiO 2 , Nb 2 O 3 , and HfO 2 . The second layer 62 is a layer made of a low refractive index material having a refractive index of less than 1.7, and is preferably made of SiO 2 and MgF 2 .
 対物レンズ37では、第1層61,第2層62の上にさらに第1層61,第2層62を交互に積層し、反射防止膜60を全体で2~7層構造としてもよい。この場合、フッ素化膜55に直に接触する層は成形部50の種類に応じて、高屈折率材料の層(第1の層61)としてもよいし、低屈折率材料の層(第2の層62)としてもよい。本実施形態ではフッ素化膜55に直に接触する層が高屈折率材料の層となっている。 In the objective lens 37, the first layer 61 and the second layer 62 may be alternately stacked on the first layer 61 and the second layer 62, and the antireflection film 60 may have a 2-7 layer structure as a whole. In this case, the layer in direct contact with the fluorinated film 55 may be a layer of high refractive index material (first layer 61) or a layer of low refractive index material (second layer), depending on the type of the molded part 50. Layer 62). In the present embodiment, the layer that is in direct contact with the fluorinated film 55 is a layer of a high refractive index material.
 なお、対物レンズ37では、表面37aに対してフッ素化膜55と反射防止膜60とが形成されているのと同様に、裏面37bにもフッ素化膜55と反射防止膜60とが形成されており、表面37aと裏面37bとの両面に対しフッ素化膜55と反射防止膜60とが形成されている。但し、対物レンズ37は反射防止膜60を有していなくても良い。
[1-2.4]対物レンズ37の製造方法
 続いて、対物レンズ37の製造方法について説明する。
In the objective lens 37, the fluorinated film 55 and the antireflection film 60 are also formed on the back surface 37b in the same manner as the fluorinated film 55 and the antireflection film 60 are formed on the front surface 37a. The fluorinated film 55 and the antireflection film 60 are formed on both the front surface 37a and the back surface 37b. However, the objective lens 37 may not have the antireflection film 60.
[1-2.4] Method for Manufacturing Objective Lens 37 Next, a method for manufacturing the objective lens 37 will be described.
 始めに、上記の樹脂材料を一定条件下で金型に対し射出成形し、所定形状を有する成形部50を形成する。その後、成形部50に対してフッ素化処理を実行し、成形部50上にフッ素化膜55を形成する。 First, the above resin material is injection-molded on a mold under a certain condition to form a molded part 50 having a predetermined shape. Thereafter, a fluorination treatment is performed on the molding unit 50 to form a fluorinated film 55 on the molding unit 50.
 フッ素化処理では、成形部50をフッ素ガス雰囲気中に晒し、その表面にフッ素化膜55を形成する。これにより、高分子材料(樹脂)の屈折率を低下させ、対物レンズ37の表面反射率を低下させることができる。 In the fluorination treatment, the molded part 50 is exposed to a fluorine gas atmosphere, and a fluorinated film 55 is formed on the surface thereof. Thereby, the refractive index of the polymer material (resin) can be lowered, and the surface reflectance of the objective lens 37 can be lowered.
 フッ素ガス雰囲気中のフッ素ガス濃度、フッ素ガス雰囲気中に曝露する温度や時間を適宜選択することにより、フッ素化率及びフッ素化膜55の膜厚を任意に制御でき、所望の波長の表面反射率を低下させることが出来る。 By appropriately selecting the fluorine gas concentration in the fluorine gas atmosphere and the temperature and time of exposure to the fluorine gas atmosphere, the fluorination rate and the film thickness of the fluorinated film 55 can be arbitrarily controlled, and the surface reflectance at a desired wavelength. Can be reduced.
 ここで、フッ素ガス雰囲気とは、フッ素ガスを含む気体に覆われていることを意味し、フッ素ガスと窒素,アルゴン等の不活性ガスとの混合ガスに覆われていることも含まれる。 Here, the fluorine gas atmosphere means being covered with a gas containing fluorine gas, and includes being covered with a mixed gas of fluorine gas and an inert gas such as nitrogen or argon.
 また、フッ素ガス雰囲気中のフッ素ガスの濃度は、所望の屈折率およびフッ素化膜55の厚さに応じて適宜選択することができる。 Further, the concentration of the fluorine gas in the fluorine gas atmosphere can be appropriately selected according to the desired refractive index and the thickness of the fluorinated film 55.
 また、成形部50とは、樹脂の構成元素が炭素と水素から成る重合体で、上記の例のほかにも、炭素と水素からなる重合体であるならば、特に限定されるものではない。 Further, the molding part 50 is not particularly limited as long as it is a polymer composed of carbon and hydrogen as a constituent element of the resin and is a polymer composed of carbon and hydrogen in addition to the above example.
 なお、成形部50に添加される酸化防止剤や紫外線吸収剤、可塑剤のような、全重量に対して添加量が5%以下である添加剤の構成元素は、炭素と水素以外でも構わない。 In addition, the constituent element of the additive whose addition amount is 5% or less with respect to the total weight such as an antioxidant, an ultraviolet absorber, and a plasticizer added to the molded part 50 may be other than carbon and hydrogen. .
 また、成形部50を製造する際に使用される触媒や反応停止剤のような重合副資材が残留している場合でも、全重量に対して残留量が1%未満であれば、その構成元素が炭素と水素に限定されるものではない。 Further, even when a polymerization auxiliary material such as a catalyst or a reaction terminator used in manufacturing the molded part 50 remains, if the residual amount is less than 1% with respect to the total weight, its constituent elements Is not limited to carbon and hydrogen.
 本実施形態において、成形部50としては、特に上記条件が満たされていれば限定されないが、高透明性、高耐熱性、低吸水性、高純度、低複屈折性を加味すると、上述の樹脂材料の重合体であることがより好ましい。 In the present embodiment, the molded part 50 is not particularly limited as long as the above conditions are satisfied. However, the above-described resin can be used in consideration of high transparency, high heat resistance, low water absorption, high purity, and low birefringence. More preferred is a polymer of the material.
 この重合体を例えば窒素ガス等で希釈した種々の濃度のフッ素ガス中に、所定温度、所定時間曝すことにより、高分子材料の表面から内部に向かって徐々に分子内でのフッ素の導入が起こり、材料のフッ素含有率が増加してゆくことになる。 When this polymer is exposed to fluorine gas of various concentrations diluted with nitrogen gas, for example, at a predetermined temperature and for a predetermined time, fluorine is gradually introduced into the molecule from the surface to the inside of the polymer material. The fluorine content of the material will increase.
 材料表面からのフッ素の浸透深さ、フッ素化処理後の材料中のフッ素含有率は、フッ素化処理中のフッ素ガスの濃度、フッ素化処理温度、フッ素化処理時間に依存して変化する。 The penetration depth of fluorine from the material surface and the fluorine content in the material after fluorination treatment vary depending on the concentration of fluorine gas during the fluorination treatment, the fluorination treatment temperature, and the fluorination treatment time.
 これらの条件については特に制限はないが、フッ素濃度が高い場合、処理時間が長い場合、処理温度が高い場合に、フッ素の浸透深さが深くなり、またフッ素化処理後の高分子材料のフッ素含有率が高くなる。 There are no particular restrictions on these conditions, but when the fluorine concentration is high, the treatment time is long, the treatment temperature is high, the penetration depth of fluorine becomes deep, and the fluorine of the polymer material after fluorination treatment The content rate becomes high.
 フッ素含有率の増加に伴ってフッ素化された部分の屈折率が低減するので、フッ素濃度、処理温度、処理時間を適宜選択すれば、所望の厚さの低屈折フッ素化膜55を形成することが可能である。 Since the refractive index of the fluorinated portion decreases as the fluorine content increases, the low-refractive fluorinated film 55 having a desired thickness can be formed by appropriately selecting the fluorine concentration, processing temperature, and processing time. Is possible.
 ただし、極端にフッ素濃度を高くしたり、極端な高温長時間でのフッ素化処理を行うと分子が劣化するため、通常のフッ素化処理条件としてはフッ素濃度が1ppm~25%、処理温度が0~100℃、処理時間が0.1秒~120分が好適である。 However, if the fluorine concentration is extremely increased or the fluorination treatment is performed at an extremely high temperature for a long time, the molecule deteriorates. Therefore, the normal fluorination treatment conditions are a fluorine concentration of 1 ppm to 25% and a treatment temperature of 0. A treatment time of up to 100 ° C. and a treatment time of 0.1 seconds to 120 minutes is preferred.
 その後、フッ素化膜55上に反射防止膜60を形成する。詳しくは、第1層61を構成する蒸着源を用いて第1層61を形成する。例えば、第1層61として(Ta+5%TiO)膜を形成する場合には、蒸発源としてオプトラン社製OA600を用い、電子銃加熱により当該蒸着源を蒸発させればよい。蒸着中は、真空蒸着装置内部の圧力が1.0×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜するのがよい。そして成膜温度(蒸着装置内の温度)を適切な温度範囲内で保持する。 Thereafter, an antireflection film 60 is formed on the fluorinated film 55. Specifically, the first layer 61 is formed using a vapor deposition source that constitutes the first layer 61. For example, when a (Ta 2 O 5 + 5% TiO 2 ) film is formed as the first layer 61, OA600 manufactured by OPTRAN can be used as the evaporation source and the evaporation source may be evaporated by electron gun heating. During vapor deposition, it is preferable to form a film while introducing O 2 gas up to a pressure of 1.0 × 10 −2 Pa inside the vacuum vapor deposition apparatus and controlling the vapor deposition rate at 5 Å / sec. Then, the film forming temperature (temperature in the vapor deposition apparatus) is maintained within an appropriate temperature range.
 その後、成形部50の反対面にも第1層61を形成するため、蒸着装置内部の反転機構により成形部50を反転させ、上記と同様にしてその反対面にも第1層61を形成する(第2層62の裏面への成膜についても同様である。)。 Thereafter, in order to form the first layer 61 on the opposite surface of the molding portion 50, the molding portion 50 is reversed by the reversing mechanism inside the vapor deposition apparatus, and the first layer 61 is also formed on the opposite surface in the same manner as described above. (The same applies to the film formation on the back surface of the second layer 62.)
 その後、第1層61の上に続けて、第2層62を構成する蒸着源を用いて第2層62を形成する。例えば、第2層62としてSiO膜を形成する場合には、真空蒸着装置内部の圧力が1.0×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜するのがよい。そして成膜温度(蒸着装置内の温度)を適切な温度範囲内で保持する。 Thereafter, the second layer 62 is formed on the first layer 61 using the vapor deposition source constituting the second layer 62. For example, when a SiO 2 film is formed as the second layer 62, O 2 gas is introduced up to a pressure of 1.0 × 10 −2 Pa inside the vacuum vapor deposition apparatus, and the vapor deposition rate is controlled to 5 liters / sec. It is better to form the film while doing so. Then, the film forming temperature (temperature in the vapor deposition apparatus) is maintained within an appropriate temperature range.
 以上の工程により対物レンズ37が製造される。
[2]光ピックアップ装置30の動作
 続いて、光ピックアップ装置30の動作について説明する。
The objective lens 37 is manufactured by the above process.
[2] Operation of Optical Pickup Device 30 Next, the operation of the optical pickup device 30 will be described.
 光ディスクDへの情報の記録動作時や光ディスクDに記録された情報の再生動作時に、半導体レーザー発振器32から青紫色光が出射される。出射された青紫色光は、コリメータ33を透過して無限平行光にコリメートされた後、ビームスプリッタ34を透過して、1/4波長板35を透過する。さらに、当該青紫色光は絞り36及び対物レンズ37を透過した後、光ディスクDの保護基板Dを介して情報記録面Dに集光スポットを形成する。 Blue-violet light is emitted from the semiconductor laser oscillator 32 during an operation of recording information on the optical disc D or an operation of reproducing information recorded on the optical disc D. The emitted blue-violet light is transmitted through the collimator 33 and collimated into infinite parallel light, then transmitted through the beam splitter 34 and transmitted through the quarter wavelength plate 35. Furthermore, after passing through the blue-violet light aperture 36 and the objective lens 37, forms a converged spot on an information recording surface D 2 through the protective substrate D 1 of the optical disc D.
 集光スポットを形成した青紫色光は、光ディスクDの情報記録面Dで情報ビットによって変調され、情報記録面Dによって反射される。そして、この反射光は、対物レンズ37及び絞り36を順次透過した後、1/4波長板35によって偏光方向が変更され、ビームスプリッタ34で反射する。その後、当該反射光は、センサーレンズ群38を透過して非点収差が与えられ、センサー39で受光されて、最終的には、センサー39によって光電変換されることによって電気的な信号となる。 Violet light that formed the concentrated light spot is modulated by the information recording surface D 2 of the optical disk D by the information bits, is reflected by the information recording surface D 2. Then, the reflected light is sequentially transmitted through the objective lens 37 and the diaphragm 36, the polarization direction is changed by the quarter wavelength plate 35, and the reflected light is reflected by the beam splitter 34. Thereafter, the reflected light passes through the sensor lens group 38 to be given astigmatism, is received by the sensor 39, and finally is photoelectrically converted by the sensor 39 to become an electrical signal.
 以後、このような動作が繰り返し行われ、光ディスクDに対する情報の記録動作や、光ディスクDに記録された情報の再生動作が完了する。 Thereafter, such an operation is repeatedly performed, and the operation of recording information on the optical disc D and the operation of reproducing information recorded on the optical disc D are completed.
 以上の本実施形態によれば、成形部50の表面は、フッ素化処理されてフッ素化膜55を形成しており、成形部50の樹脂材料は脂環式炭化水素構造を有し、単位構造中の三級炭素の数が4個以上、かつ、密度が1.01g/cm以上の樹脂を含有するので、フッ素化処理による反射防止効果を確実に向上させることができる。 According to the above embodiment, the surface of the molded part 50 is fluorinated to form the fluorinated film 55, the resin material of the molded part 50 has an alicyclic hydrocarbon structure, and has a unit structure. Since the resin contains a resin having a tertiary carbon number of 4 or more and a density of 1.01 g / cm 3 or more, the antireflection effect by the fluorination treatment can be reliably improved.
 また、フッ素化膜55上には反射防止膜60が形成されているので、反射防止効果をいっそう向上させることができる。 Further, since the antireflection film 60 is formed on the fluorinated film 55, the antireflection effect can be further improved.
 なお、上記の実施形態においては、本発明に係る光学素子を対物レンズ37として説明したが、他の種類・用途の光学素子としても良い。 In the above embodiment, the optical element according to the present invention has been described as the objective lens 37, but other types and applications of optical elements may be used.
 以下、実施例および比較例を挙げることにより、本発明に係る光学素子をさらに具体的に説明する。但し、本発明は実施例に限定されるものではない。
(1)サンプルの作製
 本発明の実施例,比較例として、以下の表1,表2に示すようなサンプルを作製した。以下、各サンプルについて具体的に説明する。
Hereinafter, the optical element according to the present invention will be described more specifically by giving examples and comparative examples. However, the present invention is not limited to the examples.
(1) Production of Samples As examples and comparative examples of the present invention, samples as shown in Tables 1 and 2 below were produced. Hereinafter, each sample will be specifically described.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
(1.1)実施例1
 エチレン及びビシクロ[2,2,1]ヘプタ-2-エンのランダム共重合体100質量部と、界面活性剤としてのペンタエリスリトールジステアレート0.5質量部と、安定剤としてのペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.3質量部とを、二軸混練機にて混練し「樹脂材料1」を得た。なお、この「樹脂材料1」における母材樹脂の単位構造当りの三級炭素数は4個であり、「樹脂材料1」の密度を測定したところ1.04g/cmであった。
(1.1) Example 1
100 parts by mass of a random copolymer of ethylene and bicyclo [2,2,1] hept-2-ene, 0.5 parts by mass of pentaerythritol distearate as a surfactant, and pentaerythritol tetrakis [ 0.3 parts by mass of 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was kneaded with a biaxial kneader to obtain “resin material 1”. The number of tertiary carbons per unit structure of the base resin in “resin material 1” was 4, and the density of “resin material 1” was measured to be 1.04 g / cm 3 .
 この「樹脂材料1」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにて3mm厚のプレートを成形した。 This “resin material 1” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
 次に、上記プレートを1.1気圧,常温,Fガス濃度5%の雰囲気下に15分間曝すことにより、当該プレートに対してフッ素化処理を行い、得られたプレートを「実施例1」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.2)実施例2
 エチレン及びテトラシクロ[4,4,0,12,5,17,10]ドデカ-3-エンのランダム共重合体100質量部と、界面活性剤としてのペンタエリスリトールジステアレート0.5質量部と、安定剤としてのペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.3質量部とを、二軸混練機にて混練し「樹脂材料2」を得た。なお、この「樹脂材料2」における母材樹脂の単位構造当りの三級炭素数は8個であり、「樹脂材料2」の密度を測定したところ1.04g/cmであった。
Next, the plate is exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 15% for 15 minutes to subject the plate to fluorination treatment. Samples of Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.2) Example 2
Ethylene and tetracyclo [4,4,0,1 2,5, 1 7,10] dodeca-3 random copolymer 100 parts by weight of the ene, pentaerythritol distearate 0.5 part by weight of a surfactant And 0.3 parts by mass of pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as a stabilizer were kneaded in a biaxial kneader “resin material 2 " The number of tertiary carbons per unit structure of the base resin in this “resin material 2” was 8, and the density of “resin material 2” was measured to be 1.04 g / cm 3 .
 この「樹脂材料2」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにて3mm厚のプレートを成形した。 This “resin material 2” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
 次に、上記プレートを1.1気圧,常温,Fガス濃度5%の雰囲気下に16分間曝すことにより、当該プレートに対してフッ素化処理を行い、得られたプレートを「実施例2」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.3)比較例1
 攪拌装置を備えたステンレス製反応器内を十分に乾燥、窒素置換した。その後、この反応器に対し脱水シクロヘキサン300質量部、スチレン60質量部及びジブチルエーテル0.38質量部を仕込み、これらを60℃で攪拌しながら、n-ブチルリチウム溶液(15%含有ヘキサン溶液)0.36質量部を添加して重合反応を開始させた。
Next, the plates 1.1 atmospheres, room temperature, by exposing F 2 gas concentration 5% 16 minutes under an atmosphere of, performs a fluorination treatment with respect to the plate, the resulting plate "Example 2" Samples of Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.3) Comparative Example 1
The inside of the stainless steel reactor equipped with a stirrer was sufficiently dried and purged with nitrogen. Thereafter, 300 parts by mass of dehydrated cyclohexane, 60 parts by mass of styrene and 0.38 parts by mass of dibutyl ether were charged into the reactor, and the n-butyllithium solution (15% hexane solution) 0 was added while stirring them at 60 ° C. .36 parts by mass was added to initiate the polymerization reaction.
 1時間重合反応を行い、その後、反応溶液中に、スチレン8質量部、イソプレン12質量部及び1,2,2,6,6-ペンタメチル-4-ピペリジリメタクリレート0.8質量部からなる混合モノマーを添加し、さらに1時間重合反応を行い、その後、反応溶液にイソプロピルアルコール0.2質量部を添加して反応を停止させた。 Polymerization reaction is performed for 1 hour, and then the reaction solution is mixed with 8 parts by mass of styrene, 12 parts by mass of isoprene, and 0.8 parts by mass of 1,2,2,6,6-pentamethyl-4-piperidylmethacrylate. A monomer was added and the polymerization reaction was further performed for 1 hour, and then 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
 次に、上記重合反応溶液300質量部を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、シリカ-アルミナ担持型ニッケル触媒(日揮科学工業社製:E22U,ニッケル担持型量60%)10質量部を添加して混合した。反応器内部を水素ガスで置換して、さらに溶液を攪拌しながら水素を供給し、温度を160℃に設定し、その後圧力4.5MPaにて8時間水素化反応を行った。 Next, 300 parts by mass of the above polymerization reaction solution was transferred to a pressure-resistant reactor equipped with a stirrer, and as a hydrogenation catalyst, a silica-alumina supported nickel catalyst (manufactured by JGC Kagaku Kogyo Co., Ltd .: E22U, nickel supported amount 60). %) 10 parts by mass were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was further supplied while stirring the solution, the temperature was set to 160 ° C., and then a hydrogenation reaction was performed at a pressure of 4.5 MPa for 8 hours.
 反応終了後、反応溶液をろ過して水素化触媒を除去し、シクロヘキサン800質量部を加えて希釈し、その後当該反応溶液を3500質量部のイソプロパノール中に注いで共重合体を析出させた。その後、この共重合体をろ過し取り出し、80℃にて48時間減圧乾燥させて「樹脂材料3」を得た。この「樹脂材料3」における母材樹脂の単位構造当りの三級炭素数は2個であり、「樹脂材料3」の密度を測定したところ、0.94g/cmであった。 After completion of the reaction, the reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 3”. In this “resin material 3”, the number of tertiary carbons per unit structure of the base resin was two, and the density of “resin material 3” was measured to be 0.94 g / cm 3 .
 この「樹脂材料3」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにて3mm厚のプレートを成形した。 This “resin material 3” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
 上記プレートを1.1気圧,常温,Fガス濃度5%の雰囲気下に10分間曝すことにより、当該プレートに対してフッ素化処理を行い、得られたプレートを「比較例1」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.4)比較例2
 攪拌装置を備えたステンレス製反応器内を十分に乾燥、窒素置換した。その後、この反応器に対し脱水シクロヘキサン300質量部、2,4-ジメチルスチレン60質量部及びジブチルエーテル0.38質量部を仕込み、これらを60℃で攪拌しながら、n-ブチルリチウム溶液(15%含有ヘキサン溶液)0.36質量部を添加して重合反応を開始させた。
The plate is exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 5% for 10 minutes to subject the plate to fluorination treatment. did. Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.4) Comparative Example 2
The inside of the stainless steel reactor equipped with a stirrer was sufficiently dried and purged with nitrogen. Thereafter, 300 parts by mass of dehydrated cyclohexane, 60 parts by mass of 2,4-dimethylstyrene and 0.38 parts by mass of dibutyl ether were charged into the reactor. While stirring at 60 ° C., an n-butyllithium solution (15% Containing hexane solution) 0.36 parts by mass was added to initiate the polymerization reaction.
 1時間重合反応を行い、その後、反応溶液中に、2,4-ジメチルスチレン8質量部、イソプレン12質量部及び1,2,2,6,6-ペンタメチル-4-ピペリジリメタクリレート0.8質量部からなる混合モノマーを添加し、さらに1時間重合反応を行い、その後、反応溶液にイソプロピルアルコール0.2質量部を添加して反応を停止させた。 Polymerization reaction was performed for 1 hour, and then 8 parts by mass of 2,4-dimethylstyrene, 12 parts by mass of isoprene and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate 0.8 were added to the reaction solution. A mixed monomer consisting of parts by mass was added, and a polymerization reaction was further performed for 1 hour, and then 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
 次に、上記重合反応溶液300質量部を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、シリカ-アルミナ担持型ニッケル触媒(日揮科学工業社製:E22U,ニッケル担持型量60%)10質量部を添加して混合した。反応器内部を水素ガスで置換して、さらに溶液を攪拌しながら水素を供給し、温度を160℃に設定し、その後圧力4.5MPaにて8時間水素化反応を行った。 Next, 300 parts by mass of the above polymerization reaction solution was transferred to a pressure-resistant reactor equipped with a stirrer, and as a hydrogenation catalyst, a silica-alumina supported nickel catalyst (manufactured by JGC Kagaku Kogyo Co., Ltd .: E22U, nickel supported amount 60). %) 10 parts by mass were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was further supplied while stirring the solution, the temperature was set to 160 ° C., and then a hydrogenation reaction was performed at a pressure of 4.5 MPa for 8 hours.
 反応終了後、反応溶液をろ過して水素化触媒を除去し、シクロヘキサン800質量部を加えて希釈し、その後当該反応溶液を3500質量部のイソプロパノール中に注いで共重合体を析出させた。その後、この共重合体をろ過し取り出し、80℃にて48時間減圧乾燥させて「樹脂材料4」を得た。この「樹脂材料4」における母材樹脂の単位構造当りの三級炭素数は4個であり、「樹脂材料4」の密度を測定したところ、0.95g/cmであった。 After completion of the reaction, the reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 4”. The number of tertiary carbons per unit structure of the base resin in this “resin material 4” was 4, and the density of “resin material 4” was measured to be 0.95 g / cm 3 .
 この「樹脂材料4」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにて3mm厚のプレートを成形した。 This “resin material 4” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
 上記プレートを1.1気圧,常温,Fガス濃度5%の雰囲気下に10分間曝すことにより、当該プレートに対してフッ素化処理を行い、得られたプレートを「比較例2」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.5)比較例3
 ビシクロ[2,2,1]ヘプタ-2-エン100質量部及び1-ヘキセン7.6質量部をトルエン300質量部に溶解し、ここにジエチルアルミニウムクロライド溶液を2質量部、六塩化タングステンを0.003質量部加えて、80℃で3時間攪拌した。攪拌後、大量のメタノールを混合液中に投入し凝固させ、凝固したポリマーを乾燥させた。
The plates 1.1 atmospheres, room temperature, by exposure for 10 minutes in an atmosphere of F 2 gas concentration 5%, performed fluorination process on the plate, the resulting plate and samples of "Comparative Example 2" did. Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.5) Comparative Example 3
100 parts by mass of bicyclo [2,2,1] hept-2-ene and 7.6 parts by mass of 1-hexene are dissolved in 300 parts by mass of toluene. Here, 2 parts by mass of diethylaluminum chloride solution and 0% of tungsten hexachloride are dissolved. 0.003 part by mass was added, and the mixture was stirred at 80 ° C. for 3 hours. After stirring, a large amount of methanol was put into the mixed solution to be solidified, and the solidified polymer was dried.
 得られたポリマー100質量部をテトラヒドロフランに溶解させ、これに水素化触媒として10質量部のパラジウム/アルミナを添加し、170℃4MPaの圧力下で4時間加熱攪拌しつつ水素化反応を行った。その後、触媒を濾過して「樹脂材料5」を得た。なお、この「樹脂材料5」における母材樹脂の単位構造当りの三級炭素数は2個であり、「樹脂材料5」の密度を測定したところ1.01g/cmであった。 100 parts by mass of the obtained polymer was dissolved in tetrahydrofuran, 10 parts by mass of palladium / alumina was added thereto as a hydrogenation catalyst, and a hydrogenation reaction was carried out while heating and stirring at 170 ° C. under a pressure of 4 MPa for 4 hours. Thereafter, the catalyst was filtered to obtain “resin material 5”. In this “resin material 5”, the number of tertiary carbons per unit structure of the base resin was two, and the density of “resin material 5” was measured to be 1.01 g / cm 3 .
 樹脂材料5は、開環メタセシス重合によって形成した重合体を水素化することで得られており、単位構造あたりの3級炭素は2個である。 Resin material 5 is obtained by hydrogenating a polymer formed by ring-opening metathesis polymerization, and there are two tertiary carbons per unit structure.
 この「樹脂材料5」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにて3mm厚のプレートを成形した。 This “resin material 5” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa, and the thickness was 3 mm. The plate was formed.
 次に、上記プレートを1.1気圧,常温,Fガス濃度5%の雰囲気下に12分間曝すことにより、当該プレートに対してフッ素化処理を行い、得られたプレートを「比較例3」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.6)比較例4
 5-メチル-ビシクロ[2,2,1]ヘプタ-2-エン100質量部及び1-ヘキセン7.6質量部をトルエン300質量部に溶解し、ここにジエチルアルミニウムクロライド溶液を2質量部、六塩化タングステンを0.003質量部加えて、80℃で3時間攪拌した。攪拌後、大量のメタノールを混合液中に投入し凝固させ、凝固したポリマーを乾燥させた。
Next, the plates 1.1 atmospheres, room temperature, by exposure for 12 minutes under an atmosphere of F 2 gas concentration 5%, performed fluorination process on the plate, the resulting plate "Comparative Example 3" Samples of Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.6) Comparative Example 4
100 parts by mass of 5-methyl-bicyclo [2,2,1] hept-2-ene and 7.6 parts by mass of 1-hexene are dissolved in 300 parts by mass of toluene, and 2 parts by mass of diethylaluminum chloride solution, 0.003 parts by mass of tungsten chloride was added and stirred at 80 ° C. for 3 hours. After stirring, a large amount of methanol was put into the mixed solution to be solidified, and the solidified polymer was dried.
 得られたポリマー100質量部をテトラヒドロフランに溶解させ、これに水素化触媒として10質量部のパラジウム/アルミナを添加し、170℃4MPaの圧力下で4時間加熱攪拌しつつ水素化反応を行った。その後、触媒を濾過して「樹脂材料6」を得た。なお、この「樹脂材料6」における母材樹脂の単位構造当りの三級炭素数は3個であり、「樹脂材料6」の密度を測定したところ1.01g/cmであった。 100 parts by mass of the obtained polymer was dissolved in tetrahydrofuran, 10 parts by mass of palladium / alumina was added thereto as a hydrogenation catalyst, and a hydrogenation reaction was carried out while heating and stirring at 170 ° C. under a pressure of 4 MPa for 4 hours. Thereafter, the catalyst was filtered to obtain “resin material 6”. The number of tertiary carbons per unit structure of the base resin in this “resin material 6” was 3, and the density of “resin material 6” was measured to be 1.01 g / cm 3 .
 樹脂材料6においては、単位モノマーであるビシクロ[2,2,1]ヘプタ-2-の5位がMe置換されており、樹脂材料5よりも三級炭素の数が一つ多い。 In the resin material 6, the 5-position of bicyclo [2,2,1] hepta-2-, which is a unit monomer, is substituted with Me, and the number of tertiary carbons is one higher than that of the resin material 5.
 この「樹脂材料6」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにて3mm厚のプレートを成形した。 This “resin material 6” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
 次に、上記プレートを1.1気圧,常温,Fガス濃度5%の雰囲気下に12分間曝すことにより、当該プレートに対してフッ素化処理を行い、得られたプレートを「比較例4」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.7)実施例3
 5,6-ジメチル-ビシクロ[2,2,1]ヘプタ-2-エン100質量部及び1-ヘキセン7.6質量部をトルエン300質量部に溶解し、ここにジエチルアルミニウムクロライド溶液を2質量部、六塩化タングステンを0.003質量部加えて、80℃で3時間攪拌した。攪拌後、大量のメタノールを混合液中に投入し凝固させ、凝固したポリマーを乾燥させた。
Next, the plate was exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 12% for 12 minutes to subject the plate to fluorination treatment. Samples of Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.7) Example 3
100 parts by mass of 5,6-dimethyl-bicyclo [2,2,1] hept-2-ene and 7.6 parts by mass of 1-hexene are dissolved in 300 parts by mass of toluene, and 2 parts by mass of diethylaluminum chloride solution is dissolved therein. Then, 0.003 part by mass of tungsten hexachloride was added and stirred at 80 ° C. for 3 hours. After stirring, a large amount of methanol was put into the mixed solution to be solidified, and the solidified polymer was dried.
 得られたポリマー100質量部をテトラヒドロフランに溶解させ、これに水素化触媒として10質量部のパラジウム/アルミナを添加し、170℃4MPaの圧力下で4時間加熱攪拌しつつ水素化反応を行った。その後、触媒を濾過して「樹脂材料7」を得た。なお、この「樹脂材料7」における母材樹脂の単位構造当りの三級炭素数は4個であり、「樹脂材料7」の密度を測定したところ1.01g/cmであった。 100 parts by mass of the obtained polymer was dissolved in tetrahydrofuran, 10 parts by mass of palladium / alumina was added thereto as a hydrogenation catalyst, and a hydrogenation reaction was carried out while heating and stirring at 170 ° C. under a pressure of 4 MPa for 4 hours. Thereafter, the catalyst was filtered to obtain “resin material 7”. In addition, the number of tertiary carbons per unit structure of the base resin in this “resin material 7” was 4, and the density of “resin material 7” was measured to be 1.01 g / cm 3 .
 樹脂材料7においては、単位モノマーであるビシクロ[2,2,1]ヘプタ-2-の5、6位が置換されており、樹脂材料5よりも三級炭素の数が二つ多く、4個である。 In the resin material 7, the 5- and 6-positions of bicyclo [2,2,1] hepta-2-, which is a unit monomer, are substituted, and the number of tertiary carbons is two more than that of the resin material 5, and four It is.
 この「樹脂材料7」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにて3mm厚のプレートを成形した。 This “resin material 7” was dried at 70 ° C. for 6 hours to remove moisture, and then with an injection molding machine, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., the injection speed was 30 mm / sec, and the injection pressure was 80 MPa. The plate was formed.
 次に、上記プレートを1.1気圧,常温,Fガス濃度5%の雰囲気下に12分間曝すことにより、当該プレートに対してフッ素化処理を行い、得られたプレートを「実施例3」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.8)実施例4
 実施例1のサンプルにおけるフッ素化膜の上に、反射防止膜としてTiO層及びSiO層を交互に7層成膜し、得られたプレートを「実施例4」のサンプルとした。
(2)サンプルの評価
(2.1)透過率の評価
 作製した実施例1~3,比較例1~4の各サンプルについて、反射率及び全光透過率を測定し、以下の基準に従って透過率を評価したところ、上述の表1に示す通りとなった。
Next, the plate is exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 12% for 12 minutes to subject the plate to fluorination treatment. Samples of Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.8) Example 4
Seven layers of TiO 2 layers and SiO 2 layers were alternately formed as antireflection films on the fluorinated film in the sample of Example 1, and the resulting plate was used as the sample of “Example 4”.
(2) Evaluation of sample (2.1) Evaluation of transmittance The reflectance and total light transmittance of each of the produced samples of Examples 1 to 3 and Comparative Examples 1 to 4 were measured, and the transmittance was measured according to the following criteria. Was evaluated, and the results were as shown in Table 1 above.
 (反射率)
 オリンパス社製USPM-RUIIIを使用し、試料表面の反射率を直接測定し反射率とした。
(Reflectance)
Using Olympus USPM-RUIII, the reflectance of the sample surface was directly measured to obtain the reflectance.
 (全光透過率)
 日立ハイテク社製U-4100を使用し、積分球の入り口に試料を取り付けない場合を100%とし、サンプルを取り付けた後測定し、550nmの波長に対する透過率を全光透過率とした。
(Total light transmittance)
Using a U-4100 manufactured by Hitachi High-Tech Co., Ltd., the case where the sample was not attached to the entrance of the integrating sphere was taken as 100%, and measurement was conducted after the sample was attached.
 ○ :全光透過率が96%以上
 × :全光透過率が96%未満
 また、実施例1,4の各サンプルについて、500nmの光線透過率を測定したところ、上述の表2に示す通りとなった。
○: Total light transmittance is 96% or more ×: Total light transmittance is less than 96% Further, when the light transmittance at 500 nm was measured for each sample of Examples 1 and 4, as shown in Table 2 above. became.
 ◎ :透過率が98%以上
 ○ :透過率が98%未満
(3)まとめ
 表1の結果から、実施例1~3のサンプルでは、比較例1~4のサンプルと比較して反射防止効果が向上していることが分かる。このことから、脂環式炭化水素構造を有し、単位構造中の三級炭素の数が4個以上、かつ、密度が1.01g/cm以上の樹脂を含有する樹脂材料で成形された光学素子(成形部)の表面がフッ素化処理されている場合には、反射防止効果が向上することが分かる。
◎: Transmittance is 98% or more ○: Transmittance is less than 98% (3) Summary From the results shown in Table 1, the samples of Examples 1 to 3 have an antireflection effect compared to the samples of Comparative Examples 1 to 4. It can be seen that it has improved. From this, it was molded with a resin material having a resin having an alicyclic hydrocarbon structure, the number of tertiary carbons in the unit structure being 4 or more, and the density being 1.01 g / cm 3 or more. It can be seen that the antireflection effect is improved when the surface of the optical element (molded portion) is fluorinated.
 また、表2の結果から、フッ素化膜上にさらに無機材料の反射防止膜を付けることで、反射防止効果が更に上昇することが分かる。 Also, from the results in Table 2, it can be seen that the antireflection effect is further increased by adding an inorganic antireflection film on the fluorinated film.
 30 光ピックアップ装置
 32 半導体レーザー発振器
 33 コリメータ
 34 ビームスプリッタ
 35 1/4波長板
 36 絞り
 37 対物レンズ
 37a 表面
 37b 裏面
 38 センサーレンズ群
 39 センサー
 40 2次元アクチュエータ
 50 成形部
 55 フッ素化膜
 60 反射防止膜
 61 第1層
 62 第2層
 D 光ディスク
 D 保護基板
 D 情報記録面
DESCRIPTION OF SYMBOLS 30 Optical pick-up apparatus 32 Semiconductor laser oscillator 33 Collimator 34 Beam splitter 35 1/4 wavelength plate 36 Diaphragm 37 Objective lens 37a Front surface 37b Back surface 38 Sensor lens group 39 Sensor 40 Two-dimensional actuator 50 Molding part 55 Fluorinated film 60 Antireflection film 61 First layer 62 Second layer D Optical disc D 1 Protective substrate D 2 Information recording surface

Claims (3)

  1.  樹脂材料から成形された成形部を有する光学素子であって、
     前記樹脂材料は、
     脂環式炭化水素構造を有し、単位構造中の三級炭素の数が4個以上で、かつ、密度が1.01g/cm以上の樹脂を含有し、
     前記成形部が表面に、
     前記脂環式炭化水素構造を構成する少なくとも一部の水素がフッ素に置換された樹脂を含有する層を有していることを特徴とする光学素子。
    An optical element having a molded part molded from a resin material,
    The resin material is
    A resin having an alicyclic hydrocarbon structure, wherein the number of tertiary carbons in the unit structure is 4 or more, and the density is 1.01 g / cm 3 or more;
    The molded part is on the surface,
    An optical element comprising a layer containing a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine.
  2.  請求項1に記載の光学素子において、
     前記フッ素化膜上に無機材料からなる反射防止コートが設けられていることを特徴とする光学素子。
    The optical element according to claim 1,
    An optical element, wherein an antireflection coating made of an inorganic material is provided on the fluorinated film.
  3.  請求項1または2に記載の光学素子を対物レンズとして備えることを特徴とする光ピックアップ装置。 An optical pickup device comprising the optical element according to claim 1 as an objective lens.
PCT/JP2009/062965 2008-08-08 2009-07-17 Optical element and optical pickup device WO2010016377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523825A JPWO2010016377A1 (en) 2008-08-08 2009-07-17 Optical element and optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-205965 2008-08-08
JP2008205965 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016377A1 true WO2010016377A1 (en) 2010-02-11

Family

ID=41663600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062965 WO2010016377A1 (en) 2008-08-08 2009-07-17 Optical element and optical pickup device

Country Status (2)

Country Link
JP (1) JPWO2010016377A1 (en)
WO (1) WO2010016377A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277012A (en) * 2002-10-07 2004-10-07 Pactiv Corp Ultrasonic end stopper on zipper closure bag and method for manufacturing same
JP2005274748A (en) * 2004-03-23 2005-10-06 Tadahiro Omi Method for manufacturing transparent member having fluoride layer on surface, and plastic member
JP2007304271A (en) * 2006-05-10 2007-11-22 Konica Minolta Opto Inc Resin composition for optical element, optical element and optical pickup device
JP2007328124A (en) * 2006-06-07 2007-12-20 Fujifilm Corp Optically anisotropic material and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277012A (en) * 2002-10-07 2004-10-07 Pactiv Corp Ultrasonic end stopper on zipper closure bag and method for manufacturing same
JP2005274748A (en) * 2004-03-23 2005-10-06 Tadahiro Omi Method for manufacturing transparent member having fluoride layer on surface, and plastic member
JP2007304271A (en) * 2006-05-10 2007-11-22 Konica Minolta Opto Inc Resin composition for optical element, optical element and optical pickup device
JP2007328124A (en) * 2006-06-07 2007-12-20 Fujifilm Corp Optically anisotropic material and its manufacturing method

Also Published As

Publication number Publication date
JPWO2010016377A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP4285430B2 (en) Objective lens and optical pickup device
JP4881306B2 (en) Resin composition and optical component
JP3912549B2 (en) Optical element for optical device and optical pickup device
JP5145798B2 (en) Optical element for optical pickup device and manufacturing method thereof
JP2007041292A (en) Optical element
JP2005302088A (en) Objective lens and optical pickup device
JP5353243B2 (en) Plastic optical element, optical pickup lens and optical pickup device using the same
JP2007119567A (en) Method for producing plastic optical element
JP5440178B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP5530136B2 (en) POLYMER COMPOSITION AND MOLDED BODY OBTAINED FROM THE COMPOSITION
JP4362713B2 (en) Optical element and manufacturing method thereof
WO2010016377A1 (en) Optical element and optical pickup device
JP2005202056A (en) Optical resin lens
EP1717607A1 (en) Optical resin lens and method for producing optical resin material
JP5257046B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP2005310266A (en) Objective lens and optical pickup device
JP2010020877A (en) Objective lens for optical pickup apparatus, production method of objective lens for optical pickup apparatus and optical pickup apparatus
JP4600131B2 (en) Objective lens and optical pickup device
JP2006143931A (en) Optical element and optical pick-up device
JP2000212226A (en) Cyclic hydrocarbon polymer and its preparation
JP2005221988A (en) Optical element and optical pickup device
JP2007122799A (en) Optical disk drive apparatus, processing method of optical pickup apparatus, manufacturing method of optical disk apparatus, and processing method of optical disk drive apparatus
JP2005091419A (en) Optical resin lens and method for producing the same
JP2005221987A (en) Optical element and optical pickup device
JP2005234175A (en) Optical resin lens and method for manufacturing optical resin lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804864

Country of ref document: EP

Kind code of ref document: A1