WO2010016376A1 - Optical element and optical pickup device - Google Patents

Optical element and optical pickup device Download PDF

Info

Publication number
WO2010016376A1
WO2010016376A1 PCT/JP2009/062964 JP2009062964W WO2010016376A1 WO 2010016376 A1 WO2010016376 A1 WO 2010016376A1 JP 2009062964 W JP2009062964 W JP 2009062964W WO 2010016376 A1 WO2010016376 A1 WO 2010016376A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
group
copolymer
optical element
mass
Prior art date
Application number
PCT/JP2009/062964
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 渡邉
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010523824A priority Critical patent/JPWO2010016376A1/en
Publication of WO2010016376A1 publication Critical patent/WO2010016376A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses

Definitions

  • the present invention relates to an optical element and an optical pickup device.
  • a resin material having an alicyclic structure has a low water absorption and is preferably used as a material for an optical element. Further, such an optical element is subjected to antireflection treatment from the viewpoint of increasing the transmittance.
  • an antireflection effect is obtained by attaching a vapor deposition film of an inorganic material or by fluorinating the fluorine gas by substituting CH bonds in the resin with CF bonds.
  • a method (for example, refer to Patent Document 1) is known.
  • the method of applying a vapor deposition film made of an inorganic material requires a large-scale apparatus, and the film thickness tends to be non-uniform when the surface angle becomes tight.
  • the adhesion between the inorganic layer (deposited film) and the resin layer (base material) is poor, and film peeling occurs when short-wavelength light such as blue laser is irradiated.
  • An object of the present invention is to provide an optical element and an optical pickup device that can prevent a decrease in optical performance due to a fluorination treatment.
  • the optical element of the present invention is an optical element having a molded part molded from a resin material
  • the resin material is A resin having an alicyclic hydrocarbon structure, wherein the number of tertiary carbons in the unit structure is 3 or less
  • the molded part has a layer containing a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine on the surface.
  • the thickness of the fluorinated film is preferably 50 to 300 nm.
  • the density of the resin material is preferably less than 1 g / cm 3 .
  • an antireflection coating made of an inorganic material is provided on the fluorinated film.
  • the numerical aperture NA on the image side is 0.8 or more, An objective lens of the optical pickup device is preferable.
  • the optical element of the present invention is provided as an objective lens.
  • the present inventors have conducted intensive research on the deterioration of optical performance due to the fluorination treatment, and transmitted light of each wavelength of 405 nm, 650 nm, and 780 nm to an objective lens for an optical pickup device used at a single wavelength. As a result, it was found that no aberration occurred at 650 nm and 780 nm, and aberration occurred only at 405 nm. From this, it was considered that when the reflection was prevented by the fluorination treatment, the light beam path varied with respect to light having a short wavelength.
  • the surface of the molded part is fluorinated to form a fluorinated film, that is, contains a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine.
  • the resin material of the molding part has an alicyclic hydrocarbon structure and contains a resin having a tertiary carbon number of 3 or less in the unit structure.
  • the interface between the partial layer and the fluorinated resin portion layer can be flattened, and as a result, a decrease in optical performance due to the fluorination treatment can be prevented.
  • the optical pickup device 30 includes a semiconductor laser oscillator 32 as a light source.
  • the semiconductor laser oscillator 32 emits blue light (blue-violet light) having a specific wavelength (for example, 405 nm) having a wavelength of 380 to 420 nm for BD (Blu-ray Disc).
  • a collimator 33, a beam splitter 34, a 1 ⁇ 4 wavelength plate 35, an aperture 36, and an objective lens 37 are arranged in a direction away from the semiconductor laser oscillator 32. Are sequentially arranged.
  • a sensor lens group 38 and a sensor 39 each including two sets of lenses are sequentially arranged at a position close to the beam splitter 34 and in a direction orthogonal to the optical axis of the blue-violet light described above.
  • Objective lens 37 The objective lens 37 is disposed at a position facing a high-density optical disc D (BD (Blu-ray Disc) optical disc), and collects blue-violet light emitted from the semiconductor laser oscillator 32 on one surface of the optical disc D. It comes to shine.
  • the objective lens 37 has an image-side numerical aperture NA of 0.8 or more.
  • the objective lens 37 is provided with a two-dimensional actuator 40, and the objective lens 37 is movable on the optical axis by the operation of the two-dimensional actuator 40.
  • the objective lens 37 is mainly composed of a molding part 50, and a fluorinated film 55 and an antireflection film 60 are formed on the surface 37a.
  • Molding unit 50 Among these, the shaping
  • the molded part 50 is molded from a resin material.
  • the resin material has an alicyclic hydrocarbon structure, and contains a resin having three or less tertiary carbons in the unit structure as a base resin.
  • the density is less than 1 g / cm 3 .
  • the unit structure in the present invention refers to a unit structure in a monomer. If the resin is a copolymer, it refers to a unit structure in a monomer having the largest number of tertiary carbons.
  • Resin Material of Molded Part 50 The alicyclic hydrocarbon resin having 3 or less tertiary carbons used in the present invention is not particularly limited, but the following resins are preferably used.
  • the repeating unit (b) having a chain structure represented by the formula (3) is contained so that the total content is 90% by mass or more, and the content of the repeating unit (b) is 1% by mass or more and 10%.
  • An alicyclic hydrocarbon copolymer that is less than mass% is preferred.
  • X is an alicyclic hydrocarbon group
  • R1 to R13 are each independently a hydrogen atom or a chain hydrocarbon group.
  • Halogen atom, alkoxy group, hydroxy group, ether group, ester group, cyano group, amide group, imide group, silyl group, and polar group halogen atom, alkoxy group, hydroxy group, ether group, ester group, cyano group
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
  • examples of the chain hydrocarbon group substituted with a polar group include 1 to 20 carbon atoms, preferably Is And a halogenated alkyl group having 1 to 6, more preferably 1 to 6.
  • Examples of the chain hydrocarbon group include an alkyl group having 1 to 20, preferably 1 to 10, and more preferably 1 to 6 carbon atoms; Examples thereof include alkenyl groups having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
  • X in the general formula (1) represents an alicyclic hydrocarbon group, and the number of carbon atoms constituting the group is usually 4 to 20, preferably 4 to 10, more preferably 5 to 7. is there. Birefringence can be reduced by setting the number of carbon atoms constituting the alicyclic structure within this range.
  • the alicyclic hydrocarbon group may have a carbon-carbon unsaturated bond, but the content thereof is 10% or less, preferably 5% or less, more preferably 3% or less of the total carbon-carbon bonds. is there. By setting the carbon-carbon unsaturated bond of the alicyclic hydrocarbon group within this range, transparency and heat resistance are improved.
  • the carbon constituting the alicyclic hydrocarbon group includes a hydrogen atom, a hydrocarbon group, a halogen atom, an alkoxy group, a hydroxy group, an ether group, an ester group, a cyano group, an amide group, an imide group, a silyl group, and A chain hydrocarbon group or the like substituted with a polar group (halogen atom, alkoxy group, hydroxy group, ether group, ester group, cyano group, amide group, imide group, or silyl group) may be bonded.
  • a hydrogen atom or a chain hydrocarbon group having 1 to 6 carbon atoms is preferred in terms of heat resistance and low water absorption.
  • the repeating unit represented by the following formula (4) is excellent in terms of heat resistance and low water absorption.
  • the repeating unit represented by the following formula (5) is excellent in terms of heat resistance and low water absorption.
  • the repeating unit represented by the following formula (6) is excellent in terms of heat resistance and low water absorption.
  • Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rl, Rm, and Rn are each independently hydrogen.
  • An atom or a lower chain hydrocarbon group, a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms is excellent in terms of heat resistance and low water absorption.
  • the repeating unit having a chain structure represented by the formula (3) is stronger in the obtained hydrocarbon polymer. Excellent characteristics.
  • a repeating unit (a) having an alicyclic structure represented by the formula (1) and a chain represented by the formula (2) and / or the formula (3) in the hydrocarbon copolymer is usually 90% or more, preferably 95% or more, more preferably 97% or more, on a mass basis.
  • the content of the repeating unit (b) having a chain structure in the alicyclic hydrocarbon copolymer is appropriately selected according to the purpose of use, but is usually 1% or more and less than 10%, preferably 1% on a mass basis. It is 8% or less, more preferably 2% or more and 6% or less. When the content of the repeating unit (b) is in the above range, low birefringence, heat resistance, and low water absorption are highly balanced.
  • the chain length of the repeating unit (a) has a specific distribution.
  • A (weight average molecular weight of the chain of the repeating unit (a) having an alicyclic structure)
  • C number average molecular weight of the chain of the repeating unit (a) having an alicyclic structure).
  • a / C is preferably in the range of 1.3 or more, more preferably 1.3 to 8, and most preferably 1.7 to 6. If A / C is excessively small, the degree of block increases, and if it is excessively large, the degree of randomness increases, and in any case, low birefringence is inferior.
  • the molecular weight of the alicyclic hydrocarbon copolymer of the present invention is 1,000 in terms of polystyrene (or polyisoprene) converted weight average molecular weight (Mw) measured by gel permeation chromatography (hereinafter, GPC). It is in the range of ⁇ 1,000,000, preferably 5,000 to 500,000, more preferably 10,000 to 300,000, and most preferably 50,000 to 250,000. If the weight average molecular weight (Mw) of the alicyclic hydrocarbon copolymer is excessively small, the strength characteristics of the molded product are inferior. Conversely, if the molecular weight is excessively large, the birefringence of the molded product increases.
  • the molecular weight distribution of such a copolymer can be appropriately selected according to the purpose of use, but the ratio (Mw) of polystyrene (or polyisoprene) -converted weight average molecular weight (Mw) and number average molecular weight (Mn) measured by GPC. / Mn), usually 2.5 or less, preferably 2.3 or less, more preferably 2 or less. When Mw / Mn is in this range, mechanical strength and heat resistance are highly balanced.
  • the glass transition temperature (Tg) of the copolymer may be appropriately selected according to the purpose of use, but is usually 50 ° C to 250 ° C, preferably 70 ° C to 200 ° C, more preferably 90 ° C to 180 ° C. .
  • the production method of the alicyclic hydrocarbon copolymer of the present invention includes: (1) copolymerizing an aromatic vinyl compound and another monomer copolymerizable with the main chain and aromatic ring carbon-carbon ring. Examples thereof include a method of hydrogenating a saturated bond, and (2) a method of copolymerizing an alicyclic vinyl compound with another monomer copolymerizable and hydrogenating if necessary.
  • Main chain, aromatic ring and cycloalkene It can be efficiently obtained by a method for hydrogenating carbon-carbon unsaturated bond - unsaturated carbon ring and the like.
  • D is out of the above range, the low birefringence of the resulting alicyclic hydrocarbon copolymer is poor.
  • the method (1) is preferable because an alicyclic hydrocarbon copolymer can be obtained more efficiently.
  • D / F is preferably 1.3 or more, more preferably 1.3 or more and 8 or less, and most preferably 1.7 or more and 6 or less.
  • D / F is outside this range, the low birefringence of the resulting alicyclic hydrocarbon copolymer is poor.
  • the weight average molecular weight and number average molecular weight of the chain of repeating units derived from the above compound (a ′) are, for example, unsaturated dicarboxylic acids in the main chain of the aromatic vinyl copolymer described in the document Macromolecules 1983, 16, 1925-1928. It can be confirmed by, for example, a method of measuring the molecular weight of the aromatic vinyl chain taken out by reductive decomposition after adding a heavy bond with ozone.
  • the molecular weight of the copolymer before hydrogenation is 1,000 to 1,000,000, preferably 5,000 to 500,000 in terms of polystyrene (or polyisoprene) equivalent weight average molecular weight (Mw) measured by GPC. More preferably, it is in the range of 10,000 to 300,000.
  • Mw weight average molecular weight
  • aromatic vinyl compound used in the method (1) include, for example, styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, ⁇ -propylstyrene, ⁇ -isopropylstyrene, ⁇ -t-butylstyrene. , 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-t-butylstyrene, monochlorostyrene, monofluorostyrene, 4-phenylstyrene, etc., styrene, 2-methylstyrene, 3-methylstyrene 4-methylstyrene and the like are preferable.
  • alicyclic vinyl compound used in the method (2) include, for example, cyclobutylethylene, cyclopentylethylene, cyclohexylethylene, cycloheptylethylene, cyclooctylethylene, ⁇ -methylcyclohexylethylene, ⁇ -t.
  • cyclohexylethylene and ⁇ -methylcyclohexylethylene are preferred.
  • aromatic vinyl compounds and alicyclic vinyl compounds can be used alone or in combination of two or more.
  • Other monomers that can be copolymerized are not particularly limited, but chain vinyl compounds and chain conjugated diene compounds are used. When chain conjugated dienes are used, the operability in the production process is excellent. The resulting alicyclic hydrocarbon copolymer is excellent in strength properties.
  • chain vinyl compound examples include chain olefin monomers such as ethylene, propylene, 1-butene, 1-pentene and 4-methyl-1-pentene; 1-cyanoethylene (acrylonitrile), 1-cyano- Nitrile monomers such as 1-methylethylene (methacrylonitrile) and 1-cyano-1-chloroethylene ( ⁇ -chloroacrylonitrile); 1- (methoxycarbonyl) -1-methylethylene (methacrylic acid methyl ester), 1- (Ethoxycarbonyl) -1-methylethylene (methacrylic acid ethyl ester), 1- (propoxycarbonyl) -1-methylethylene (methacrylic acid propyl ester), 1- (butoxycarbonyl) -1-methylethylene (methacrylic) Acid butyl ester), 1-methoxycarbo (Meth) acrylic acid such as ruethylene (acrylic acid methyl ester), 1-ethoxycarbonylethylene (acrylic acid ethyl ester), 1-propoxycarbonylethylene (acryl
  • chain conjugated diene examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like.
  • chain vinyl compounds and chain conjugated dienes chain conjugated dienes are preferable, and butadiene and isoprene are particularly preferable.
  • These chain vinyl compounds and chain conjugated dienes can be used alone or in combination of two or more.
  • chain vinyl compounds can be used alone or in combination of two or more.
  • the method for polymerizing the compound (a ′) is not particularly limited, but after the polymerization is started using a batch polymerization method (batch method), a monomer sequential addition method (a part of the total amount of monomers used), And a method of proceeding polymerization by successively adding monomers).
  • a hydrocarbon copolymer having a preferable chain structure can be obtained.
  • the copolymer before hydrogenation has a more random chain structure, so that the above-mentioned D value is smaller and / or the D / F shows a larger value.
  • the degree of randomness of the copolymer is determined by the speed ratio between the polymerization rate of the aromatic vinyl compound and the polymerization rate of other copolymerizable monomers, and the smaller this speed ratio, the more It has a random chain structure.
  • the polymerization selectivity of the monomer is further lowered during the growth process by polymer polymerization.
  • the resulting copolymer has a more random chain structure.
  • the polymerization temperature can be kept low and stable.
  • the monomer sequential addition method first, out of the total amount of monomers used, usually 0.01% to 60% by mass, preferably 0.02% to 20% by mass, more preferably 0.05% to 10% by mass. Polymerization is started by adding an initiator in the state in which the monomer is present in the polymerization reactor as an initial monomer. When the initial monomer amount is in such a range, the reaction heat generated in the initial reaction after the initiation of polymerization can be easily removed, and the resulting copolymer can have a more random chain structure.
  • the chain structure of the resulting copolymer becomes more random. Thereafter, the remainder of the monomer is continuously added, and the rate of addition is determined in consideration of the consumption rate of the monomer in the polymerization system.
  • the total monomer polymerization conversion immediately after completion of the monomer addition is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the chain structure of the resulting copolymer becomes more random.
  • the polymerization reaction is not particularly limited, such as radical polymerization, anionic polymerization, and cationic polymerization.
  • the polymerization operation, the ease of the hydrogenation reaction in the post-process, and the mechanical properties of the finally obtained hydrocarbon copolymer are not limited.
  • the anionic polymerization method is preferable.
  • radical polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization can be used in the presence of an initiator, usually at 0 ° C. to 200 ° C., preferably 20 ° C. to 150 ° C.
  • an initiator usually at 0 ° C. to 200 ° C., preferably 20 ° C. to 150 ° C.
  • bulk polymerization and suspension polymerization are desirable when it is necessary to prevent impurities from being mixed into the resin.
  • Radical initiators include organic peroxides such as benzoyl peroxide, lauroyl peroxide, t-butyl-peroxy-2-ethylhexanoate, azoisobutyronitrile, 4,4-azobis-4-cyanopentanoic acid
  • An azo compound such as azodibenzoyl, a water-soluble catalyst typified by potassium persulfate and ammonium persulfate, a redox initiator, and the like can be used.
  • anionic polymerization bulk polymerization, solution polymerization, slurry polymerization, etc. in the temperature range of usually 0 ° C. to 200 ° C., preferably 20 ° C. to 100 ° C., particularly preferably 20 ° C. to 80 ° C. in the presence of an initiator.
  • solution polymerization is preferable in view of removal of reaction heat.
  • an inert solvent capable of dissolving the polymer and its hydride is used.
  • Examples of the inert solvent used in the solution reaction include aliphatic hydrocarbons such as n-butane, n-pentane, iso-pentane, n-hexane, n-heptane, and iso-octane; cyclopentane, cyclohexane, methylcyclopentane, Examples include alicyclic hydrocarbons such as methylcyclohexane and decalin; aromatic hydrocarbons such as benzene and toluene. Among them, when aliphatic hydrocarbons and alicyclic hydrocarbons are used, hydrogenation reaction is also performed. It can be used as it is as an inert solvent. These solvents can be used alone or in combination of two or more, and are usually used at a ratio of 200 to 10,000 parts by mass with respect to 100 parts by mass of all the monomers used.
  • Examples of the initiator for anionic polymerization include monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, and phenyllithium, dilithiomethane, 1,4-diobtan, 1,4-dilithiol.
  • a polyfunctional organolithium compound such as 2-ethylcyclohexane can be used.
  • a polymerization accelerator an additive having a function of preventing a chain of a certain component from becoming long
  • a randomizer an additive having a function of preventing a chain of a certain component from becoming long
  • anionic polymerization for example, a Lewis base compound can be used as a randomizer.
  • Lewis base compound examples include ether compounds such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine
  • ether compounds such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine
  • a tertiary amine compound such as potassium-t-amyl oxide and potassium-t-butyl oxide
  • phosphine compound such as triphenylphosphine.
  • the polymer obtained by the above radical polymerization or anion polymerization can be recovered by a known method such as a steam stripping method, a direct solvent removal method, or an alcohol coagulation method.
  • a steam stripping method a direct solvent removal method
  • an alcohol coagulation method a direct solvent removal method
  • an alcohol coagulation method a direct solvent removal method
  • the polymer is not recovered from the polymerization solution and can be used as it is in the hydrogenation step.
  • Method of hydrogenating unsaturated bonds When carrying out hydrogenation reactions such as carbon-carbon double bonds of unsaturated rings such as aromatic rings and cycloalkene rings of the copolymer before hydrogenation, and unsaturated bonds of the main chain, the reaction method and reaction form are special.
  • a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction that occurs simultaneously with the hydrogenation reaction is preferable, for example, in an organic solvent, nickel,
  • the method is performed using a catalyst containing at least one metal selected from cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium, and rhenium.
  • a catalyst containing at least one metal selected from cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium, and rhenium As the hydrogenation catalyst, either a heterogeneous catalyst or a homogeneous catalyst can be used.
  • the heterogeneous catalyst can be used in the form of a metal or a metal compound or supported on a suitable carrier.
  • suitable carrier include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide and the like.
  • the amount of the catalyst supported is usually 0.01 to 80% by mass, preferably 0.8. The range is from 05 to 60% by mass.
  • the homogeneous catalyst is a catalyst in which a nickel, cobalt, titanium or iron compound and an organometallic compound (for example, an organoaluminum compound or an organolithium compound) are combined, or an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium.
  • an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium.
  • the nickel, cobalt, titanium, or iron compound include acetylacetone salts, naphthene salts, cyclopentadienyl compounds, cyclopentadienyl dichloro compounds, and the like of various metals.
  • alkylaluminum such as triethylaluminum and triisobutylaluminum
  • aluminum halide such as diethylaluminum chloride and ethylaluminum dichloride
  • alkylaluminum hydride such as diisobutylaluminum hydride and the like are preferably used.
  • organometallic complex catalysts include metal complexes such as ⁇ -dichloro- ⁇ -benzene complex, dichloro-tris (triphenylphosphine) complex, hydrido-chloro-triphenylphosphine) complex of the above metals.
  • metal complexes such as ⁇ -dichloro- ⁇ -benzene complex, dichloro-tris (triphenylphosphine) complex, hydrido-chloro-triphenylphosphine) complex of the above metals.
  • These hydrogenation catalysts can be used alone or in combination of two or more, and the amount used is usually 0.01 to 100 parts, preferably on a mass basis with respect to the polymer. 0.05 to 50 parts, more preferably 0.1 to 30 parts.
  • the hydrogenation reaction is usually from 10 ° C. to 250 ° C., but preferably from 50 ° C. to 200 ° C. because the hydrogenation rate can be increased and the polymer chain scission reaction that occurs simultaneously with the hydrogenation reaction can be reduced. More preferably, it is 80 ° C to 180 ° C.
  • the hydrogen pressure is usually 0.1 MPa to 30 MPa, but in addition to the above reasons, it is preferably 1 MPa to 20 MPa, more preferably 2 MPa to 10 MPa from the viewpoint of operability.
  • the hydrogenation rate of the hydride obtained in this way is determined by 1H-NMR, as determined by carbon-carbon unsaturated bond of the main chain, carbon-carbon double bond of aromatic ring, carbon-carbon of unsaturated ring. All of the double bonds are usually 90% or more, preferably 95% or more, more preferably 97% or more. When the hydrogenation rate is low, the low birefringence, thermal stability, etc. of the resulting copolymer are lowered.
  • the method for recovering the hydride after completion of the hydrogenation reaction is not particularly limited. Usually, after removing the hydrogenation catalyst residue by a method such as filtration or centrifugation, the solvent is removed directly from the hydride solution by drying, the hydride solution is poured into a poor solvent for the hydride, and the hydride A method of coagulating can be used.
  • the polymer block [A] contains a repeating unit [1] represented by the following formula (1).
  • the content of the repeating unit [1] in the polymer block [A] is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 R 2 to R 12 are R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12.
  • a preferred structure of the repeating unit [1] represented by the above formula (1) is such that R 1 is hydrogen or a methyl group, and R 2 -R 12 are all hydrogen.
  • the remainder other than the repeating unit [1] in the polymer block [A] is a hydrogenated repeating unit derived from a chain conjugated diene or a chain vinyl compound.
  • the polymer block [B] contains the repeating unit [1] and the repeating unit [2] represented by the following formula (2) and / or the repeating unit [3] represented by the following formula (3).
  • the content of the repeating unit [1] in the polymer block [B] is preferably 40 to 95 mol%, more preferably 50 to 90 mol%. When the content of the repeating unit [1] is in the above range, transparency and mechanical strength are excellent.
  • 2 ⁇ m2 + m3 is preferably It is 2 mol% or more, more preferably 5 to 60 mol%, most preferably 10 to 50 mol%.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a preferred structure of the repeating unit [2] represented by the above formula (2) is that in which R 13 is hydrogen or a methyl group.
  • each of R 14 and R 15 independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a preferred structure of the repeating unit [3] represented by the above formula (3) is one in which R 14 is hydrogen and R 15 is a methyl group or an ethyl group.
  • the polymer block [B] may further contain a repeating unit [X] represented by the following formula (X).
  • the content of the repeating unit [X] is an amount that does not impair the properties of the block copolymer of the present invention, and is preferably 30 mol% or less, more preferably 20 mol% or less, based on the entire block copolymer. It is.
  • the block copolymer used in the present invention has a molar fraction of the repeating unit [1] in the polymer block [A] and a molar fraction of the repeating unit [1] in the polymer block [B]. In the case of b, it is preferable that a> b. Thereby, it is excellent in transparency and mechanical strength.
  • the block copolymer used in the present invention has a ratio when the number of moles of all repeating units constituting the block [A] is ma and the number of moles of all repeating units constituting the block [B] is mb.
  • Mo: mb is preferably 5:95 to 95: 5, more preferably 30:70 to 95: 5, and particularly preferably 40:60 to 90:10.
  • (ma: mb) is in the above range, the mechanical strength and heat resistance are excellent.
  • the molecular weight of the block copolymer used in the present invention is a weight average molecular weight in terms of polystyrene (or polyisoprene) measured by gel permeation chromatography (hereinafter referred to as GPC) using tetrahydrofuran (THF) as a solvent ( (Hereinafter referred to as Mw)) is preferably in the range of 10,000 to 300,000, more preferably 15,000 to 250,000, and particularly preferably 20,000 to 200,000. When the Mw of the block copolymer is in the above range, the balance of mechanical strength, heat resistance, and moldability is excellent.
  • the molecular weight distribution of the block copolymer can be appropriately selected according to the purpose of use, but the ratio (Mw) of polystyrene (or polyisoprene) converted Mw and number average molecular weight (hereinafter referred to as Mn) measured by GPC. / Mn), preferably 5 or less, more preferably 4 or less, particularly preferably 3 or less. When Mw / Mn is in this range, the mechanical strength and heat resistance are excellent.
  • the glass transition temperature (hereinafter referred to as Tg) of the block copolymer may be appropriately selected depending on the purpose of use, but is measured on the high temperature side by a differential scanning calorimeter (hereinafter referred to as DSC).
  • the value is preferably 70 ° C. to 200 ° C., more preferably 80 ° C. to 180 ° C., and particularly preferably 90 ° C. to 160 ° C.
  • the block copolymer used in the present invention has a polymer block [A] and a polymer block [B], and even if it is a ([A]-[B]) type diblock copolymer, Even if the [A]-[B]-[A]) type or ([B]-[A]-[B]) type triblock copolymer is used, the polymer block [A] and the polymer block [A] B] may be a block copolymer in which a total of 4 or more are alternately connected. Moreover, the block copolymer which these blocks couple
  • the block copolymer used in the present invention can be obtained by the following method.
  • an aromatic vinyl compound or / and a monomer mixture containing an alicyclic vinyl compound having an unsaturated bond in the ring, and a vinyl monomer (excluding an aromatic vinyl compound and an alicyclic vinyl compound) are used.
  • a block copolymer having a polymer block containing a repeating unit derived from an alicyclic vinyl compound, and a polymer block containing a repeating unit derived from a vinyl monomer And the like can be obtained with the following method, for example.
  • a monomer mixture [a ′] containing 50 mol% or more of an aromatic vinyl compound and / or an alicyclic vinyl compound having an unsaturated bond in the ring is polymerized to obtain an aromatic
  • a polymer block [A ′] containing a repeating unit derived from an aliphatic vinyl compound or / and an alicyclic vinyl compound having an unsaturated bond in the ring is obtained.
  • a polymer block [B ′] containing units is obtained.
  • the aromatic ring and / or the aliphatic ring of the block copolymer is hydrogenated. Turn into.
  • a polymer containing a repeating unit derived from a saturated alicyclic vinyl compound by polymerizing a monomer mixture [a] containing 50 mol% or more of a saturated alicyclic vinyl compound.
  • a block [A] is obtained.
  • the monomer mixture [b] is polymerized to obtain a polymer block [B] containing a repeating unit derived from a saturated alicyclic vinyl compound and a repeating unit derived from a vinyl monomer.
  • a block copolymer having the polymer block [A] and the polymer block [B] is obtained.
  • the method (1) is more preferable from the viewpoints of availability of monomers, polymerization yield, ease of introduction of the repeating unit [1] into the polymer block [B ′], and the like. .
  • aromatic vinyl compound in the method (1) examples include styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, ⁇ -propyl styrene, ⁇ -isopropyl styrene, ⁇ -t-butyl styrene, 2-methyl styrene.
  • 3-methylstyrene 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, mono Examples thereof include fluorostyrene, 4-phenylstyrene and the like, and those having a substituent such as a hydroxyl group or an alkoxy group. Of these, styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene and the like are preferable.
  • the unsaturated alicyclic vinyl compound in the method (1) include cyclohexenylethylene, ⁇ -methylcyclohexenylethylene, ⁇ -t-butylcyclohexenylethylene, and the like, and a halogen group and an alkoxy group. Or those having a substituent such as a hydroxyl group.
  • aromatic vinyl compounds and alicyclic vinyl compounds can be used alone or in combination of two or more.
  • any one of the monomer mixtures [a ′] and [b ′] it is preferable to use an aromatic vinyl compound, and it is more preferable to use styrene or ⁇ -methylstyrene.
  • the vinyl monomer used in the above method includes a chain vinyl compound and a chain conjugated diene compound.
  • chain vinyl compound examples include chain olefin monomers such as ethylene, propylene, 1-butene, 1-pentene, and 4-methyl-1-pentene.
  • chain olefin monomers are preferable, and ethylene Most preferred are propylene and 1-butene.
  • chain conjugated diene examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like.
  • chain vinyl compounds and chain conjugated dienes chain conjugated dienes are preferable, and butadiene and isoprene are particularly preferable.
  • These chain vinyl compounds and chain conjugated dienes can be used alone or in combination of two or more.
  • the polymerization reaction may be carried out by any method such as radical polymerization, anionic polymerization, cationic polymerization, etc., but preferably by anionic polymerization in the presence of an inert solvent. Most preferably, living anionic polymerization is performed.
  • Anionic polymerization is usually carried out in the presence of a polymerization initiator in a temperature range of 0 ° C. to 200 ° C., preferably 20 ° C. to 100 ° C., particularly preferably 20 ° C. to 80 ° C.
  • the initiator include monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium and phenyllithium, dilithiomethane, 1,4-diobtan, 1,4-dilithio-2-ethylcyclohexane.
  • a polyfunctional organolithium compound such as can be used.
  • inert solvent used examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, and isooctane; cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, decalin And alicyclic hydrocarbons such as benzene, toluene and the like, and the use of aliphatic hydrocarbons and alicyclic hydrocarbons is an inert solvent for hydrogenation reaction. Can be used as is. These solvents can be used alone or in combination of two or more, and are usually used at a ratio of 200 to 10,000 parts by mass with respect to 100 parts by mass of all the monomers used.
  • a polymerization accelerator, a randomizer, or the like can be used in order to prevent a chain of a certain component from becoming long in each block.
  • a Lewis base compound or the like can be used as a randomizer.
  • Lewis base compounds include ether compounds such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine, etc.
  • Tertiary amine compounds such as potassium-t-amyl oxide and potassium-t-butyl oxide; and phosphine compounds such as triphenylphosphine.
  • These Lewis base compounds can be used alone or in combination of two or more.
  • Examples of the method for obtaining a block copolymer by living anionic polymerization include conventionally known sequential addition polymerization reaction method and coupling method. In the present invention, it is preferable to use sequential addition polymerization reaction method.
  • a step of obtaining the polymer block [A ′], and a polymer block The process of obtaining [B ′] is performed sequentially and continuously. Specifically, in the presence of the living anion polymerization catalyst in an inert solvent, the monomer mixture [a ′] is polymerized to obtain a polymer block [A ′], and then the monomer mixture [b ′] is added to the reaction system. To continue the polymerization to obtain a polymer block [B ′] connected to the polymer block [A ′].
  • the monomer mixture [a ′] is added again for polymerization, the polymer block [A ′] is connected to form a triblock body, and the monomer mixture [b ′] is added again for polymerization. Then, a tetrablock body in which the polymer blocks [B ′] are connected is obtained.
  • the obtained block copolymer is recovered by a known method such as a steam stripping method, a direct desolvation method, or an alcohol coagulation method.
  • a steam stripping method such as a steam stripping method, a direct desolvation method, or an alcohol coagulation method.
  • the polymerization solution can be used as it is in the hydrogenation reaction step, so that the block copolymer need not be recovered from the polymerization solution. .
  • a pre-hydrogenation block copolymer having a polymer block [A ′] and a polymer block [B ′] obtained in the method (1) (hereinafter referred to as a pre-hydrogenation block copolymer), it has the following structure: Those having a repeating unit are preferred.
  • the polymer block [A ′] constituting the preferred pre-hydrogenation block copolymer is a polymer block containing 50 mol% or more of the repeating unit [4] represented by the following formula (4).
  • R 16 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 17 to R 21 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number
  • 1 is an alkoxy group or a halogen group to 20.
  • the [R 17 -R 21] represents an R 17, R 18, ⁇ ⁇ and R 21.
  • a preferred polymer block [B ′] necessarily contains the repeating unit [4], the repeating unit [5] represented by the following formula (5) and the repeating unit [6] represented by the following formula (6). ]
  • R 22 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 23 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 24 represents a hydrogen atom, an alkyl group or alkenyl group having 1 to 20 carbon atoms.
  • the block [B ′] may contain a repeating unit [Y] represented by the following formula (Y).
  • R 28 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 29 represents a nitrile group, an alkoxycarbonyl group, a formyl group, a hydroxycarbonyl group, or a halogen group
  • R 30 represents a hydrogen atom. Or R 29 and R 30 may be bonded to each other to form an acid anhydride group or an imide group.
  • a preferable block copolymer before hydrogenation is a case where the number of moles of all repeating units constituting the block [A ′] is ma ′ and the number of moles of all repeating units constituting the block [B ′] is mb ′.
  • the ratio (ma ′: mb ′) is 5:95 to 95: 5, more preferably 30:70 to 95: 5, and particularly preferably 40:60 to 90:10.
  • (ma ′: mb ′) is in the above range, the mechanical strength and heat resistance are excellent.
  • the molecular weight of the block copolymer before hydrogenation is preferably 12,000 to 400,000, more preferably 19,000 to 350,000, in terms of polystyrene (or polyisoprene) equivalent Mw measured by GPC using THF as a solvent. Particularly preferred is a range of 25,000 to 300,000. When the Mw of the block copolymer is excessively small, the mechanical strength decreases, and when it is excessively large, the hydrogenation rate decreases.
  • the molecular weight distribution of the block copolymer before hydrogenation can be appropriately selected depending on the purpose of use, but is the ratio (Mw / Mn) of Mw and Mn in terms of polystyrene (or polyisoprene) measured by GPC, It is 5 or less, more preferably 4 or less, and particularly preferably 3 or less. When Mw / Mn is in this range, the hydrogenation rate is improved.
  • the Tg of the block copolymer before hydrogenation may be appropriately selected according to the purpose of use, but is 70 ° C to 150 ° C, more preferably 80 ° C to 140 ° C, as measured on the high temperature side by DSC. Particularly preferred is 90 ° C to 130 ° C.
  • Method and reaction for hydrogenating the above-mentioned block copolymer before hydrogenation such as carbon-carbon unsaturated bonds of unsaturated rings such as aromatic rings and cycloalkene rings, and unsaturated bonds of main chains and side chains
  • a hydrogenation method that can increase the hydrogenation rate and has a low polymer chain scission reaction is preferable.
  • nickel, cobalt, iron examples thereof include a method performed using a catalyst containing at least one metal selected from titanium, rhodium, palladium, platinum, ruthenium, and rhenium.
  • the hydrogenation catalyst either a heterogeneous catalyst or a homogeneous catalyst can be used.
  • the heterogeneous catalyst can be used in the form of a metal or metal compound or supported on a suitable carrier.
  • the support include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide and the like, and the supported amount of the catalyst is preferably 0.01 to 80% by mass, more preferably. It is in the range of 0.05 to 60% by mass.
  • the homogeneous catalyst is a catalyst in which a nickel, cobalt, titanium or iron compound and an organometallic compound (for example, an organoaluminum compound or an organolithium compound) are combined, or an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium.
  • an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium.
  • the nickel, cobalt, titanium, or iron compound for example, acetylacetone salt, naphthenic acid salt, cyclopentadienyl compound, cyclopentadienyl dichloro compound and the like of various metals are used.
  • alkylaluminum such as triethylaluminum and triisobutylaluminum
  • aluminum halide such as diethylaluminum chloride and ethylaluminum dichloride
  • alkylaluminum hydride such as diisobutylaluminum hydride and the like are preferably used.
  • organometallic complex catalysts include metal complexes such as ⁇ -dichloro- ⁇ -benzene complexes, dichloro-tris (triphenylphosphine) complexes, hydrido-chloro-triphenylphosphine complexes of the above metals.
  • These hydrogenation catalysts can be used alone or in combination of two or more, and the amount used is preferably 0.01 to 100 parts by weight, more preferably 100 parts by weight of the polymer. 0.05 to 50 parts by mass, particularly preferably 0.1 to 30 parts by mass.
  • the hydrogenation reaction is usually 10 ° C. to 250 ° C., but is preferably 50 ° C. to 200 ° C., more preferably 80 ° C. to 80 ° C., because the hydrogenation rate can be increased and the polymer chain scission reaction can be reduced. 180 ° C.
  • the hydrogen pressure is preferably 0.1 MPa to 30 MPa, but in addition to the above reasons, from the viewpoint of operability, it is more preferably 1 MPa to 20 MPa, and particularly preferably 2 MPa to 10 MPa.
  • the hydrogenation rate of the block copolymer obtained in this way is determined by 1H-NMR as determined by carbon-carbon unsaturated bonds in the main chain and side chains, and carbon-carbon unsaturation in aromatic rings and cycloalkene rings. Any of the bonds is preferably 90% or more, more preferably 95% or more, and particularly preferably 97% or more. When the hydrogenation rate is low, the low birefringence, thermal stability, etc. of the resulting copolymer are lowered.
  • the block copolymer After completion of the hydrogenation reaction, the block copolymer is prepared by removing the hydrogenation catalyst from the reaction solution by a method such as filtration or centrifugation, and then removing the solvent directly by drying. It can be recovered by a method such as pouring into a poor solvent and solidifying.
  • a method such as filtration or centrifugation
  • removing the solvent directly by drying It can be recovered by a method such as pouring into a poor solvent and solidifying.
  • the compounding agent that can be incorporated into the block copolymer is not particularly limited, but stabilizers such as antioxidants, heat stabilizers, light-resistant stabilizers, weather-resistant stabilizers, ultraviolet absorbers, and near-infrared absorbers; Examples thereof include resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, flame retardants, and fillers. These compounding agents can be used alone or in combination of two or more, and the compounding amount is appropriately selected within a range not impairing the effects of the present invention.
  • an antioxidant for example, an ultraviolet absorber, and a light-resistant stabilizer with the polymer.
  • the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. Among them, phenolic antioxidants, particularly alkyl-substituted phenolic antioxidants are preferable.
  • phenolic antioxidants particularly alkyl-substituted phenolic antioxidants are preferable.
  • These antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention, but the polymer 100 according to the present invention.
  • the amount is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass with respect to parts by mass.
  • ultraviolet absorbers examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2 -Hydroxy-4-methoxy-2'-benzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone trihydrate, 2-hydroxy-4-n-octoxybenzophenone, 2,2 ', 4,4'- Benzophenone ultraviolet absorbers such as tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane; 2- (2′-hydroxy-5′-methyl- Phenyl) benzotriazole, 2- (2 -Benzotriazol-2-yl) -4-methyl-6- (3,4,5,6-tetrahydrophthalimidylmethyl) phenol, 2- (2
  • 2- (2′-hydroxy-5′-methyl-phenyl) benzotriazole 2- (2H-benzotriazol-2-yl) -4-methyl-6- (3,4,5,6- Tetrahydrophthalimidylmethyl) phenol, 2- (2H-benzotriazol-2-yl) -4-6-bis (1-methyl-1-phenylethyl) phenol and the like are preferable from the viewpoints of heat resistance and low volatility. .
  • the light-resistant stabilizer examples include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, etc., but in the present invention, from the viewpoint of lens transparency, color resistance, etc., hindered amine-based It is preferable to use a light-resistant stabilizer.
  • hindered amine light-resistant stabilizers those having a polystyrene-equivalent Mn measured by GPC using THF as a solvent are preferably 1000 to 10,000, more preferably 2000 to 5000, Those of 2800 to 3800 are particularly preferred.
  • HALS include N, N ′, N ′′, N ′ ′′-tetrakis- [4,6-bis- ⁇ butyl- (N-methyl-2,2,6,6-tetra Methylpiperidin-4-yl) amino ⁇ -triazin-2-yl] -4,7-diazadecane-1,10-diamine, dibutylamine and 1,3,5-triazine and N, N′-bis (2,2 , 6,6-Tetramethyl-4-piperidyl) butylamine, poly [ ⁇ (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ ], 1,6-hexanediamine- N, N'-bis (2,2,6,6-tetrakis-
  • Bound high molecular weight HALS polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 1,2,3,4-butanetetracarboxylic acid and 1,2 , 2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane
  • ester, piperidine ring and the like high molecular weight HALS attached through an ester bond.
  • the blending amount of the UV absorber and HALS with respect to the block copolymer according to the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, with respect to 100 parts by mass of the polymer. Particularly preferred is 0.05 to 10 parts by mass. If the amount added is too small, the effect of improving light resistance cannot be obtained sufficiently, and coloring occurs when used outdoors for a long time. On the other hand, when the blending amount of HALS is too large, a part of the HALS is generated as a gas, or the dispersibility in the polymer is lowered, and the transparency of the lens is lowered.
  • the polymer according to the present invention by blending the polymer according to the present invention with a soft polymer having the lowest glass transition temperature of 30 ° C. or less, it is possible to maintain long properties without deteriorating various properties such as transparency, heat resistance, and mechanical strength. It can prevent cloudiness in high temperature and high humidity environment.
  • the soft polymer include olefin-based soft polymers such as polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, ethylene-propylene-diene copolymer (EPDM); polyisobutylene, isobutylene-isoprene rubber, Isobutylene-based soft polymers such as isobutylene-styrene copolymer; polybutadiene, polyisoprene, butadiene-styrene random copolymer, isoprene-styrene random copolymer, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer Butadiene-styrene block copolymer, styrene-butadiene-styrene block copolymer, isoprene-styrene block copolymer, styrene-isopre
  • Soft polymers containing silicon soft polymers containing silicon; soft polymers containing silicon such as dimethylpolysiloxane and diphenylpolysiloxane; soft acrylic polymers such as polybutyl acrylate, polybutyl methacrylate, and polyhydroxyethyl methacrylate; polyethylene oxide, polypropylene oxide, epichlorohydrin rubber, etc.
  • Epoxy-based soft polymers fluorine-based soft polymers such as vinylidene fluoride rubber and tetrafluoroethylene-propylene rubber; natural rubber, polypeptide, protein, polyester-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, polyamide And other soft polymers such as thermoplastic elastomers.
  • These soft polymers may have a cross-linked structure or may have a functional group introduced by a modification reaction.
  • diene-based soft polymers are preferable.
  • hydrides obtained by hydrogenating carbon-carbon unsaturated bonds of the soft polymers are advantageous in terms of rubber elasticity, mechanical strength, flexibility, and dispersibility.
  • the blending amount of the soft polymer varies depending on the type of the compound, but generally, if the blending amount is too large, the glass transition temperature and the transparency of the polymer are greatly lowered and cannot be used as a lens. On the other hand, if the blending amount is too small, the molded product may become clouded under high temperature and high humidity.
  • the blending amount is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass, and particularly preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the block copolymer.
  • the method of forming the polymer composition by blending the above-mentioned compounding agent with the polymer used in the present invention is, for example, a state where the block copolymer is melted with a mixer, a twin-screw kneader, a roll, a Brabender, an extruder, or the like. And a method of kneading with a compounding agent, a method of dissolving and dispersing in an appropriate solvent and solidifying.
  • a twin-screw kneader it is often used after being kneaded and usually extruded in the form of a strand in a molten state and cut into a pellet by a pelletizer.
  • Fluorinated film 55 is a layer formed by performing a fluorination process on the molded part 50, and has a function of reducing the surface reflectance of the objective lens 37.
  • the refractive index of the fluorinated film 55 with respect to d-line is 1.35 to 1.45, and the value of the refractive index can be measured by the surface reflectance.
  • the layer thickness of the fluorinated film 55 is preferably 50 to 300 nm.
  • the antireflection film 60 is made of an inorganic material and basically has a two-layer structure. A first layer 61 is formed directly on the fluorinated film 55, and a second layer 62 is formed thereon.
  • the first layer 61 is a layer made of a high refractive index material having a refractive index of 1.7 or more, and preferably Ta 2 O 5 , a mixture of Ta 2 O 5 and TiO 2 , ZrO 2 , ZrO 2 and TiO 2. And is composed of any mixture.
  • the first layer 61 may be composed of TiO 2 , Nb 2 O 3 , and HfO 2 .
  • the second layer 62 is a layer made of a low refractive index material having a refractive index of less than 1.7, and is preferably made of SiO 2 and MgF 2 .
  • the first layer 61 and the second layer 62 may be alternately stacked on the first layer 61 and the second layer 62, and the antireflection film 60 may have a 2-7 layer structure as a whole.
  • the layer in direct contact with the fluorinated film 55 may be a layer of high refractive index material (first layer 61) or a layer of low refractive index material (second layer), depending on the type of the molded part 50.
  • Layer 62 the layer that is in direct contact with the fluorinated film 55 is a layer of a high refractive index material.
  • the fluorinated film 55 and the antireflection film 60 are also formed on the back surface 37b in the same manner as the fluorinated film 55 and the antireflection film 60 are formed on the front surface 37a.
  • the fluorinated film 55 and the antireflection film 60 are formed on both the front surface 37a and the back surface 37b.
  • the objective lens 37 may not have the antireflection film 60.
  • the above resin material is injection-molded on a mold under a certain condition to form a molded part 50 having a predetermined shape. Thereafter, a fluorination treatment is performed on the molding unit 50 to form a fluorinated film 55 on the molding unit 50.
  • the molded part 50 is exposed to a fluorine gas atmosphere, and a fluorinated film 55 is formed on the surface thereof.
  • the refractive index of the polymer material (resin) can be lowered, and the surface reflectance of the objective lens 37 can be lowered.
  • the fluorination rate and the film thickness of the fluorinated film 55 can be arbitrarily controlled, and the surface reflectance at a desired wavelength. Can be reduced.
  • the fluorine gas atmosphere means being covered with a gas containing fluorine gas, and includes being covered with a mixed gas of fluorine gas and an inert gas such as nitrogen or argon.
  • concentration of the fluorine gas in the fluorine gas atmosphere can be appropriately selected according to the desired refractive index and the thickness of the fluorinated film 55.
  • the molding part 50 is not particularly limited as long as it is a polymer composed of carbon and hydrogen as a constituent element of the resin and is a polymer composed of carbon and hydrogen in addition to the above example.
  • constituent element of the additive whose addition amount is 5% or less with respect to the total mass, such as an antioxidant, an ultraviolet absorber, and a plasticizer added to the molded part 50 may be other than carbon and hydrogen. .
  • the molded part 50 is not particularly limited as long as the above conditions are satisfied.
  • the above-described resin can be used in consideration of high transparency, high heat resistance, low water absorption, high purity, and low birefringence. More preferred is a polymer of the material.
  • the penetration depth of fluorine from the material surface and the fluorine content in the material after fluorine treatment vary depending on the concentration of fluorine gas during the fluorine treatment, the fluorine treatment temperature, and the fluorine treatment time.
  • the low-refractive fluorinated film 55 having a desired thickness can be formed by appropriately selecting the fluorine concentration, processing temperature, and processing time. Is possible.
  • the normal fluorine treatment conditions are a fluorine concentration of 1 ppm to 25% and a treatment temperature of 0 to 100. C. and a treatment time of 0.1 second to 120 minutes are preferred.
  • the first layer 61 is formed using a vapor deposition source that constitutes the first layer 61.
  • a vapor deposition source that constitutes the first layer 61.
  • OA600 manufactured by OPTRAN can be used as the evaporation source and the evaporation source may be evaporated by electron gun heating.
  • OPTRAN a vapor deposition source
  • the molding portion 50 is reversed by the reversing mechanism inside the vapor deposition apparatus, and the first layer 61 is also formed on the opposite surface in the same manner as described above. (The same applies to the film formation on the back surface of the second layer 62.)
  • the second layer 62 is formed on the first layer 61 using the vapor deposition source constituting the second layer 62.
  • the vapor deposition source constituting the second layer 62.
  • O 2 gas is introduced up to a pressure of 1.0 ⁇ 10 ⁇ 2 Pa inside the vacuum vapor deposition apparatus, and the vapor deposition rate is controlled to 5 liters / sec. It is better to form the film while doing so.
  • the film forming temperature (temperature in the vapor deposition apparatus) is maintained within an appropriate temperature range.
  • the objective lens 37 is manufactured by the above process. [2] Operation of Optical Pickup Device 30 Next, the operation of the optical pickup device 30 will be described.
  • Blue-violet light is emitted from the semiconductor laser oscillator 32 during an operation of recording information on the optical disc D or an operation of reproducing information recorded on the optical disc D.
  • the emitted blue-violet light is transmitted through the collimator 33 and collimated into infinite parallel light, then transmitted through the beam splitter 34 and transmitted through the quarter wavelength plate 35.
  • Violet light that formed the concentrated light spot is modulated by the information recording surface D 2 of the optical disk D by the information bits, is reflected by the information recording surface D 2. Then, the reflected light is sequentially transmitted through the objective lens 37 and the diaphragm 36, the polarization direction is changed by the quarter wavelength plate 35, and the reflected light is reflected by the beam splitter 34. Thereafter, the reflected light passes through the sensor lens group 38 to be given astigmatism, is received by the sensor 39, and finally is photoelectrically converted by the sensor 39 to become an electrical signal.
  • the surface of the molded part 50 is fluorinated to form the fluorinated film 55, and the resin material of the molded part 50 has an alicyclic hydrocarbon structure, Since the number of tertiary carbons of the resin contains 3 or less, the interface between the resin portion layer not subjected to fluorination treatment and the resin portion layer subjected to fluorination treatment can be flattened. As a result, a decrease in optical performance due to the fluorination treatment can be prevented.
  • the antireflection function by the antireflection film 60 can be improved as compared with the case where the layer thickness exceeds 300 nm, and the layer thickness is less than 50 nm. Compared with the case, the antireflection function by the fluorinated film 55 can be improved.
  • the density of the resin material molded portion 50 is less than 1 g / cm 3, as compared with the case of 1 g / cm 3 or more, to increase the rate of introduction of fluorine into the interior molding section 50 by the fluorination treatment it can. Accordingly, the interface between the resin portion layer that has not been fluorinated and the layer of the resin portion that has been fluorinated can be more reliably flattened, thereby more reliably preventing the optical performance from being deteriorated. be able to.
  • the optical element according to the present invention has been described as the objective lens 37, but other types and applications of optical elements may be used.
  • Example 1 The inside of the stainless steel reactor equipped with a stirrer was sufficiently dried and purged with nitrogen. Thereafter, 300 parts by mass of dehydrated cyclohexane, 60 parts by mass of styrene and 0.38 parts by mass of dibutyl ether were charged into the reactor, and the n-butyllithium solution (15% hexane solution) 0 was added while stirring them at 60 ° C. .36 parts by mass was added to initiate the polymerization reaction.
  • Polymerization reaction is performed for 1 hour, and then the reaction solution is mixed with 8 parts by mass of styrene, 12 parts by mass of isoprene and 0.8 parts by mass of 1,2,2,6,6-pentamethyl-4-piperidinyl methacrylate. A monomer was added and the polymerization reaction was further performed for 1 hour, and then 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
  • reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 1”.
  • the number of tertiary carbons per unit structure of the base resin in this “resin material 1” was 2, and the density of “resin material 1” was measured to be 0.94 g / cm 3 .
  • This “resin material 1” was dried at 70 ° C. for 6 hours to remove moisture, and then was injected with an injection molding machine at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
  • Example 2 In the sample of Example 1, the fluorination treatment time was 10 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 2”. Here, the film thickness of the obtained fluorinated film was 100 nm.
  • Example 3 In the sample of Example 1, the fluorination treatment time was 30 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 3”. Here, the film thickness of the obtained fluorinated film was 300 nm.
  • Comparative Example 1 The inside of the stainless steel reactor equipped with a stirrer was sufficiently dried and purged with nitrogen. Thereafter, 300 parts by mass of dehydrated cyclohexane, 60 parts by mass of 2,4-dimethylstyrene and 0.38 parts by mass of dibutyl ether were charged into the reactor. While stirring at 60 ° C., an n-butyllithium solution (15% Containing hexane solution) 0.36 parts by mass was added to initiate the polymerization reaction.
  • the polymerization reaction was carried out for 1 hour, and then 8 parts by mass of 2,4-dimethylstyrene, 12 parts by mass of isoprene and 1,2,2,6,6-pentamethyl-4-piperidinyl methacrylate 0.8 were added to the reaction solution. A mixed monomer consisting of parts by mass was added, and a polymerization reaction was further performed for 1 hour. Thereafter, 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
  • reaction material 2 After completion of the reaction, the reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 2”.
  • the number of monomers having a large number of tertiary carbons per unit structure of the base resin is four, and the density of “resin material 2” was measured to be 0.97 g / cm 3 . .
  • This “resin material 2” was dried at 70 ° C. for 6 hours to remove moisture, and thereafter, with an injection molding machine, NA 0 .0 at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
  • the objective lens is exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 6% for 6 minutes to subject the objective lens to fluorination treatment.
  • the sample of Example 1 was used.
  • the film thickness of the obtained fluorinated film was 50 nm.
  • Comparative Example 2 In the sample of Comparative Example 1, the fluorination treatment time was 11 minutes (otherwise, it was the same as the sample of Comparative Example 1), and the objective lens thus produced was used as the sample of “Comparative Example 2”.
  • the film thickness of the obtained fluorinated film was 100 nm.
  • This “resin material 3” was dried at 70 ° C. for 6 hours to remove moisture, and thereafter, with an injection molding machine, NA 0 .0 at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
  • the objective lens was exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 5% for 8 minutes to subject the objective lens to fluorination treatment.
  • the sample of Example 4 was used.
  • the film thickness of the obtained fluorinated film was 50 nm.
  • Comparative Example 5 In the sample of Comparative Example 4, the fluorination treatment time was 15 minutes (otherwise, it was the same as the sample of Comparative Example 4), and the objective lens thus produced was used as the sample of “Comparative Example 5”.
  • the film thickness of the obtained fluorinated film was 100 nm.
  • the first, third, and fourth lenses were molded and then fluorinated in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 6 described above.
  • an imaging system lens is configured by these four lenses, and samples of “Example 1 ′” to “Example 3 ′” and “Comparative Example 1 ′” to “Comparative Example 6 ′” are used.
  • Example 1 the first, third, and fourth lenses are molded from “resin material 1”, and each lens is subjected to fluorination treatment for 5 minutes.
  • the obtained imaging system lens was used as a sample of “Example 1 ′”.
  • the film thickness of the obtained fluorinated film was 50 nm, respectively.
  • Example 2 the first, third, and fourth lenses were molded from “resin material 1”, and each lens was subjected to fluorination treatment for 10 minutes, and then combined with the second lens.
  • the obtained imaging lens was used as a sample of “Example 2 ′”.
  • each film thickness of the obtained fluorinated film was 100 nm.
  • Example 3 the first, third, and fourth lenses were molded from “resin material 1”, and each lens was subjected to a fluorination treatment for 30 minutes, and then combined with the second lens.
  • the obtained imaging lens was used as a sample of “Example 3 ′”.
  • each film thickness of the obtained fluorinated film was 300 nm.
  • the first, third, and fourth lenses were molded from “resin material 2”, and each lens was subjected to fluorination treatment for 6 minutes, and then combined with the second lens.
  • the obtained imaging lens was used as a sample of “Comparative Example 1 ′”.
  • the film thickness of the obtained fluorinated film was 50 nm, respectively.
  • the first, third, and fourth lenses were molded from “resin material 2”, and each lens was subjected to fluorination treatment for 11 minutes, and then combined with the second lens.
  • the obtained imaging lens was used as a sample of “Comparative Example 2 ′”.
  • each film thickness of the obtained fluorinated film was 100 nm.
  • each lens was subjected to fluorination treatment for 35 minutes, and then combined with the second lens.
  • the obtained imaging lens was used as a sample of “Comparative Example 3 ′”.
  • each film thickness of the obtained fluorinated film was 300 nm.
  • the first, third, and fourth lenses are molded from “resin material 3”, each lens is subjected to fluorination treatment for 8 minutes, and then combined with the second lens to obtain a lens.
  • the obtained imaging lens was used as a sample of “Comparative Example 4 ′”.
  • the film thickness of the obtained fluorinated film was 50 nm, respectively.
  • each lens was fluorinated for 15 minutes, and then combined with the second lens.
  • the obtained imaging lens was used as a sample of “Comparative Example 5 ′”.
  • each film thickness of the obtained fluorinated film was 100 nm.
  • Example 6 the first, third, and fourth lenses were molded from “resin material 3”, and each lens was subjected to a fluorination treatment for 50 minutes, and then combined with the second lens.
  • the obtained imaging lens was used as a sample of “Comparative Example 6 ′”.
  • each film thickness of the obtained fluorinated film was 300 nm.
  • Example 4 In the sample of Example 1, the fluorination treatment time was 2 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 4”.
  • the film thickness of the obtained fluorinated film was 20 nm.
  • Example 5 In the sample of Example 1, the fluorination treatment time was 60 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 5”. Here, the film thickness of the obtained fluorinated film was 500 nm. (1.13)
  • Example 6 100 parts by mass of bicyclo [2,2,1] hept-2-ene and 7.6 parts by mass of 1-hexene are dissolved in 300 parts by mass of toluene. Here, 2 parts by mass of diethylaluminum chloride solution and 0% of tungsten hexachloride are dissolved. 0.003 part by mass was added, and the mixture was stirred at 80 ° C. for 3 hours. After stirring, a large amount of methanol was put into the mixed solution to be solidified, and the solidified polymer was dried.
  • This “resin material 4” was dried at 70 ° C. for 6 hours to remove moisture, and thereafter, with an injection molding machine, NA 0 .0 at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
  • Example 7 1.1 atm the objective lens, ambient temperature, by exposure for 12 minutes under an atmosphere of F 2 gas concentration 5%, performed fluorination process on the objective lens, "implement the resulting objective lens
  • the sample was “Example 6”.
  • the film thickness of the obtained fluorinated film was 100 nm.
  • the formation time of the 100 nm fluorinated film was 10 minutes (see Table 4).
  • Example 7 Six TiO 2 layers and SiO 2 layers were alternately formed as antireflection films on the fluorinated film in the sample of Example 1, and the obtained objective lens was used as a sample of “Example 7”.
  • MTF difference before and after fluorination treatment is less than 10%
  • ⁇ : MTF difference before and after fluorination treatment is 10% or more and 30% or less
  • ⁇ : MTF difference before and after fluorination treatment is 30 (2.3) Evaluation of light resistance greater than%
  • the samples (objective lenses) of Examples 1 to 5 and 7 prepared were irradiated with a laser of 20 mW and 405 nm at 80 ° C., and light resistance was evaluated according to the following criteria. As a result, the results were as shown in Tables 3 and 5 above.
  • the surface of the optical element (molded part) molded with a resin material having a cycloaliphatic hydrocarbon structure and containing a resin having three or less tertiary carbons in the unit structure is fluorinated. It can be seen that deterioration of the optical performance is prevented.

Abstract

Provided are an optical element and an optical pickup device which can prevent lowering of the optical performance caused by a fluorination process.  The optical element has a molded portion molded by a resin material.  The resin material contains a resin having an alicyclic hydrocarbon structure, wherein each unit structure has three or less tertiary carbon atoms.  The molded portion has, on the surface thereof, a layer containing a resin having the alicyclic hydrocarbon structure in which at least one hydrogen atom is replaced by a fluorine atom.

Description

光学素子及び光ピックアップ装置Optical element and optical pickup device
 本発明は、光学素子及び光ピックアップ装置に関する。 The present invention relates to an optical element and an optical pickup device.
 従来、脂環式構造を持つ樹脂材料は吸水率が低く、光学素子の材料として好ましく用いられている。また、このような光学素子には、透過率を高める観点から反射防止の処理が施されている。 Conventionally, a resin material having an alicyclic structure has a low water absorption and is preferably used as a material for an optical element. Further, such an optical element is subjected to antireflection treatment from the viewpoint of increasing the transmittance.
 ここで、反射防止の手法としては、無機材料による蒸着膜を付ける方法や、フッ素ガスで樹脂中のC-H結合をC-F結合に置換させるフッ素化処理をすることで反射防止効果を得る方法(例えば、特許文献1参照)などが知られている。 Here, as an antireflection method, an antireflection effect is obtained by attaching a vapor deposition film of an inorganic material or by fluorinating the fluorine gas by substituting CH bonds in the resin with CF bonds. A method (for example, refer to Patent Document 1) is known.
 このうち、無機材料による蒸着膜を付ける方法では、大掛かりな装置が必要であり、面角度がきつくなると膜厚が不均一になり易い。また、無機層(蒸着膜)と樹脂層(基材)との密着性が悪く、ブルーレーザー等の短波長光を照射すると、膜剥がれが起こってしまう。 Of these, the method of applying a vapor deposition film made of an inorganic material requires a large-scale apparatus, and the film thickness tends to be non-uniform when the surface angle becomes tight. In addition, the adhesion between the inorganic layer (deposited film) and the resin layer (base material) is poor, and film peeling occurs when short-wavelength light such as blue laser is irradiated.
 一方、フッ素化処理を行う手法は気相中で行われるため、面角度に関係なく均一な膜を付けることができて好ましい。 On the other hand, since the method of performing the fluorination treatment is performed in the gas phase, it is preferable because a uniform film can be formed regardless of the surface angle.
 しかしながら、高NAとなる光ピックアップ装置の対物レンズや高画素数の撮像系レンズに対してフッ素化処理を適用すると、収差やMTFといった光学性能の低下が生じてしまう。 However, when the fluorination treatment is applied to the objective lens of the optical pickup device having a high NA and the imaging system lens having a high pixel count, optical performance such as aberration and MTF is deteriorated.
特開2005-274748号公報JP 2005-274748 A
 本発明の課題は、フッ素化処理による光学性能の低下を防止することのできる光学素子及び光ピックアップ装置を提供することである。 An object of the present invention is to provide an optical element and an optical pickup device that can prevent a decrease in optical performance due to a fluorination treatment.
 本発明の一態様によれば、本発明の光学素子は、樹脂材料から成形された成形部を有する光学素子であって、
 前記樹脂材料は、
 脂環式炭化水素構造を有し、単位構造中の三級炭素の数が3個以下の樹脂を含有し、
 前記成形部が表面に、前記脂環式炭化水素構造を構成する少なくとも一部の水素がフッ素に置換された樹脂を含有する層を有していることを特徴とする。
According to one aspect of the present invention, the optical element of the present invention is an optical element having a molded part molded from a resin material,
The resin material is
A resin having an alicyclic hydrocarbon structure, wherein the number of tertiary carbons in the unit structure is 3 or less,
The molded part has a layer containing a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine on the surface.
 本発明の光学素子においては、
 前記フッ素化膜の厚みは、50~300nmであることが好ましい。
In the optical element of the present invention,
The thickness of the fluorinated film is preferably 50 to 300 nm.
 また、本発明の光学素子においては、
 前記樹脂材料の密度は、1g/cm未満であることが好ましい。
In the optical element of the present invention,
The density of the resin material is preferably less than 1 g / cm 3 .
 また、本発明の光学素子においては、
 前記フッ素化膜上に無機材料からなる反射防止コートが設けられていることが好ましい。
In the optical element of the present invention,
It is preferable that an antireflection coating made of an inorganic material is provided on the fluorinated film.
 また、本発明の光学素子においては、
 像側の開口数NAが0.8以上であり、
 光ピックアップ装置の対物レンズであることが好ましい。
In the optical element of the present invention,
The numerical aperture NA on the image side is 0.8 or more,
An objective lens of the optical pickup device is preferable.
 また、本発明の他の態様によれば、光ピックアップ装置において、
 本発明の光学素子を対物レンズとして備えることを特徴とする。
According to another aspect of the present invention, in the optical pickup device,
The optical element of the present invention is provided as an objective lens.
 フッ素化処理に伴う光学性能の低下について本発明者等が鋭意研究を行い、単一波長で使用される光ピックアップ装置用の対物レンズに対し405nm、650nm、780nmの各波長光を透過させて収差を測定したところ、650nmや780nmでは収差が発生せず、405nmでのみ収差が発生することがわかった。このことから、フッ素化処理により反射防止を行うと、短波長の光に対して光線経路がばらつくと考えられた。また、フッ素化処理されたレンズの断面を観察したところ、フッ素化処理されていない樹脂部分の層と、フッ素化処理された樹脂部分の層との界面が波打っている様子が観察され、更に検討を進めたところ、局所的にフッ素化が進むことで界面が波打つことが分かった。このことから、界面が波打つことで短波長の光線が曲げられる結果、光学性能が低下していると考えられた。 The present inventors have conducted intensive research on the deterioration of optical performance due to the fluorination treatment, and transmitted light of each wavelength of 405 nm, 650 nm, and 780 nm to an objective lens for an optical pickup device used at a single wavelength. As a result, it was found that no aberration occurred at 650 nm and 780 nm, and aberration occurred only at 405 nm. From this, it was considered that when the reflection was prevented by the fluorination treatment, the light beam path varied with respect to light having a short wavelength. In addition, when the cross section of the fluorinated lens was observed, it was observed that the interface between the resin portion layer not subjected to fluorination treatment and the resin portion layer subjected to fluorination treatment was wavy. As a result of investigations, it was found that the interface wavy due to local progress in fluorination. From this, it was considered that the optical performance was deteriorated as a result of bending the short-wavelength light by the undulation of the interface.
 そして、このような界面の波打ちを防止するためには、フッ素に対する樹脂部分の反応性を分子レベルで均一にするのが有効であると考え、C-H結合がラジカル反応によってC-F結合に置換されるというフッ素化のメカニズムに着目したところ、不安定な三級炭素は樹脂中では出来るだけ少ない方が良いとの結論に至り、単位構造当りの三級炭素数を3個以下とすれば光学性能の低下が防止されることを見出した。 In order to prevent such undulation of the interface, it is considered effective to make the reactivity of the resin part with respect to fluorine uniform at the molecular level, and the C—H bond is converted into a C—F bond by radical reaction. Focusing on the fluorination mechanism of substitution, we came to the conclusion that it is better to have as few unstable tertiary carbons as possible in the resin, and if the number of tertiary carbons per unit structure is 3 or less It has been found that a decrease in optical performance is prevented.
 すなわち、本発明によれば、成形部の表面は、フッ素化処理されてフッ素化膜を形成、即ち、脂環式炭化水素構造を構成する少なくとも一部の水素がフッ素に置換された樹脂を含有する層を有しており、成形部の樹脂材料は脂環式炭化水素構造を有し、単位構造中の三級炭素の数が3個以下の樹脂を含有するので、フッ素化されていない樹脂部分の層と、フッ素化された樹脂部分の層との界面を平坦にすることができ、その結果、フッ素化処理による光学性能の低下を防止することができる。 That is, according to the present invention, the surface of the molded part is fluorinated to form a fluorinated film, that is, contains a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine. The resin material of the molding part has an alicyclic hydrocarbon structure and contains a resin having a tertiary carbon number of 3 or less in the unit structure. The interface between the partial layer and the fluorinated resin portion layer can be flattened, and as a result, a decrease in optical performance due to the fluorination treatment can be prevented.
本発明の好ましい実施形態で使用される光ピックアップ装置の概略構成を示す図面である。It is drawing which shows schematic structure of the optical pick-up apparatus used by preferable embodiment of this invention.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
[1]光ピックアップ装置30
 図1に示す通り、光ピックアップ装置30には、光源としての半導体レーザー発振器32が具備されている。半導体レーザー発振器32は、BD(Blu-ray Disc)用として波長380~420nmの特定波長(例えば405nm)のブルー光(青紫色光)を出射するようになっている。半導体レーザー発振器32から出射される青紫色光の光軸上には、半導体レーザー発振器32から離間する方向に向かって、コリメータ33、ビームスプリッタ34、1/4波長板35、絞り36、対物レンズ37が順次配設されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[1] Optical pickup device 30
As shown in FIG. 1, the optical pickup device 30 includes a semiconductor laser oscillator 32 as a light source. The semiconductor laser oscillator 32 emits blue light (blue-violet light) having a specific wavelength (for example, 405 nm) having a wavelength of 380 to 420 nm for BD (Blu-ray Disc). On the optical axis of the blue-violet light emitted from the semiconductor laser oscillator 32, a collimator 33, a beam splitter 34, a ¼ wavelength plate 35, an aperture 36, and an objective lens 37 are arranged in a direction away from the semiconductor laser oscillator 32. Are sequentially arranged.
 ビームスプリッタ34と近接した位置であって、上述した青紫色光の光軸と直交する方向には、2組のレンズからなるセンサーレンズ群38、センサー39が順次配設されている。
[1-2]対物レンズ37
 対物レンズ37は、高密度な光ディスクD(BD(Blu-ray Disc)用光ディスク)に対向した位置に配置されており、半導体レーザー発振器32から出射された青紫色光を光ディスクDの一面上に集光するようになっている。対物レンズ37は像側開口数NAが0.8以上となっている。対物レンズ37には、2次元アクチュエータ40が具備されており、2次元アクチュエータ40の動作により、対物レンズ37は光軸上を移動自在となっている。
A sensor lens group 38 and a sensor 39 each including two sets of lenses are sequentially arranged at a position close to the beam splitter 34 and in a direction orthogonal to the optical axis of the blue-violet light described above.
[1-2] Objective lens 37
The objective lens 37 is disposed at a position facing a high-density optical disc D (BD (Blu-ray Disc) optical disc), and collects blue-violet light emitted from the semiconductor laser oscillator 32 on one surface of the optical disc D. It comes to shine. The objective lens 37 has an image-side numerical aperture NA of 0.8 or more. The objective lens 37 is provided with a two-dimensional actuator 40, and the objective lens 37 is movable on the optical axis by the operation of the two-dimensional actuator 40.
 図1中の拡大図に示す通り、対物レンズ37は主には成形部50で構成されており、その表面37a上にフッ素化膜55と反射防止膜60とが形成されている。
[1-2.1]成形部50
 このうち、成形部50はレンズ形状に成形されており、集光機能などの本質的な光学機能を発揮するようになっている。また、成形部50は樹脂材料から成形され、この樹脂材料は、脂環式炭化水素構造を有するとともに、単位構造中の三級炭素の数が3個以下の樹脂を母材樹脂として含有しており、好ましくは密度が1g/cm未満となっている。
As shown in the enlarged view of FIG. 1, the objective lens 37 is mainly composed of a molding part 50, and a fluorinated film 55 and an antireflection film 60 are formed on the surface 37a.
[1-2.1] Molding unit 50
Among these, the shaping | molding part 50 is shape | molded by the lens shape, and exhibits essential optical functions, such as a condensing function. The molded part 50 is molded from a resin material. The resin material has an alicyclic hydrocarbon structure, and contains a resin having three or less tertiary carbons in the unit structure as a base resin. Preferably, the density is less than 1 g / cm 3 .
 ここで、本発明における単位構造とは、モノマーにおける単位構造をいい、樹脂がコポリマーであれば、最も三級炭素の数が多いモノマーにおける単位構造を指す。
[1-2.1A]成形部50の樹脂材料
 本発明で用いられる3級炭素の数が3個以下の脂環式炭化水素樹脂は、特に限定されないが、好ましくは下記の樹脂が用いられる。
Here, the unit structure in the present invention refers to a unit structure in a monomer. If the resin is a copolymer, it refers to a unit structure in a monomer having the largest number of tertiary carbons.
[1-2.1A] Resin Material of Molded Part 50 The alicyclic hydrocarbon resin having 3 or less tertiary carbons used in the present invention is not particularly limited, but the following resins are preferably used.
 脂環式構造を有する重合体としては、重合体全繰り返し単位中に、下記式(1)で表される脂環式構造を有する繰り返し単位(a)と、下記式(2)及び/又は下記式(3)で表される鎖状構造の繰り返し単位(b)とを、合計含有量が90質量%以上になるように含有し、さらに繰り返し単位(b)の含有量が1質量%以上10質量%未満である脂環式炭化水素系共重合体が好ましい。 As the polymer having an alicyclic structure, the repeating unit (a) having an alicyclic structure represented by the following formula (1), the following formula (2) and / or the following in all polymer repeating units: The repeating unit (b) having a chain structure represented by the formula (3) is contained so that the total content is 90% by mass or more, and the content of the repeating unit (b) is 1% by mass or more and 10%. An alicyclic hydrocarbon copolymer that is less than mass% is preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Xは脂環式炭化水素基であり、式(1)、式(2)、及び式(3)中、R1~R13は、それぞれ独立に水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、シリル基、及び極性基(ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基で置換された鎖状炭化水素基である。その中でも水素原子又は炭素原子数1~6個の鎖状炭化水素基の場合が、耐熱性、低吸水性に優れるので好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子を挙げることができる。極性基で置換された鎖状炭化水素基としては、例えば炭素原子数1~20、好ましくは1~10、より好ましくは1~6のハロゲン化アルキル基が挙げられる。鎖状炭化水素基としては、例えば炭素原子数1~20、好ましくは1~10、より好ましくは1~6のアルキル基;炭素原子数2~20、好ましくは2~10、より好ましくは2~6のアルケニル基が挙げられる。 In the formula (1), X is an alicyclic hydrocarbon group, and in the formulas (1), (2), and (3), R1 to R13 are each independently a hydrogen atom or a chain hydrocarbon group. , Halogen atom, alkoxy group, hydroxy group, ether group, ester group, cyano group, amide group, imide group, silyl group, and polar group (halogen atom, alkoxy group, hydroxy group, ether group, ester group, cyano group, A chain hydrocarbon group substituted with an amide group, an imide group, or a silyl group, and among them, a hydrogen atom or a chain hydrocarbon group having 1 to 6 carbon atoms is preferred for heat resistance and low water absorption. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and examples of the chain hydrocarbon group substituted with a polar group include 1 to 20 carbon atoms, preferably Is And a halogenated alkyl group having 1 to 6, more preferably 1 to 6. Examples of the chain hydrocarbon group include an alkyl group having 1 to 20, preferably 1 to 10, and more preferably 1 to 6 carbon atoms; Examples thereof include alkenyl groups having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
 一般式(1)中のXは脂環式炭化水素基を表し、それを構成する炭素数は、通常4個~20個、好ましくは4個~10個、より好ましくは5個~7個である。脂環式構造を構成する炭素数をこの範囲にすることで複屈折を低減することができる。 X in the general formula (1) represents an alicyclic hydrocarbon group, and the number of carbon atoms constituting the group is usually 4 to 20, preferably 4 to 10, more preferably 5 to 7. is there. Birefringence can be reduced by setting the number of carbon atoms constituting the alicyclic structure within this range.
 脂環式炭化水素基は、炭素-炭素不飽和結合を有してもよいが、その含有量は、全炭素-炭素結合の10%以下、好ましくは5%以下、より好ましくは3%以下である。脂環式炭化水素基の炭素-炭素不飽和結合をこの範囲とすることで、透明性、耐熱性が向上する。また、脂環式炭化水素基を構成する炭素には、水素原子、炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、シリル基、及び極性基(ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基等が結合していてもよく、中でも水素原子又は炭素原子数1~6個の鎖状炭化水素基が耐熱性、低吸水性の点で好ましい。 The alicyclic hydrocarbon group may have a carbon-carbon unsaturated bond, but the content thereof is 10% or less, preferably 5% or less, more preferably 3% or less of the total carbon-carbon bonds. is there. By setting the carbon-carbon unsaturated bond of the alicyclic hydrocarbon group within this range, transparency and heat resistance are improved. The carbon constituting the alicyclic hydrocarbon group includes a hydrogen atom, a hydrocarbon group, a halogen atom, an alkoxy group, a hydroxy group, an ether group, an ester group, a cyano group, an amide group, an imide group, a silyl group, and A chain hydrocarbon group or the like substituted with a polar group (halogen atom, alkoxy group, hydroxy group, ether group, ester group, cyano group, amide group, imide group, or silyl group) may be bonded. A hydrogen atom or a chain hydrocarbon group having 1 to 6 carbon atoms is preferred in terms of heat resistance and low water absorption.
 また、式(3)中の……は、主鎖中の炭素-炭素飽和、又は炭素-炭素不飽和結合を示すが、透明性、耐熱性を強く要求される場合、不飽和結合の含有率は、主鎖を構成する全炭素-炭素間結合の、通常10%以下、好ましくは5%以下、より好ましくは3%以下である。 In the formula (3),... Represents a carbon-carbon saturated or carbon-carbon unsaturated bond in the main chain. When transparency and heat resistance are strongly required, the content of unsaturated bonds. Is usually not more than 10%, preferably not more than 5%, more preferably not more than 3% of the total carbon-carbon bonds constituting the main chain.
 式(1)で表される繰り返し単位の中でも、下記式(4)で表される繰り返し単位が、耐熱性、低吸水性の点で優れている。 Among the repeating units represented by the formula (1), the repeating unit represented by the following formula (4) is excellent in terms of heat resistance and low water absorption.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(2)で表される繰り返し単位の中でも、下記式(5)で表される繰り返し単位が、耐熱性、低吸水性の点で優れている。 Among the repeating units represented by the formula (2), the repeating unit represented by the following formula (5) is excellent in terms of heat resistance and low water absorption.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(3)で表される繰り返し単位の中でも、下記式(6)で表される繰り返し単位が、耐熱性、低吸水性の点で優れている。 Among the repeating units represented by the formula (3), the repeating unit represented by the following formula (6) is excellent in terms of heat resistance and low water absorption.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(4)、式(5)、及び式(6)中の、Ra、Rb、Rc、Rd、Re、Rf、Rg、Rh、Ri、Rj、Rk、Rl、Rm、Rnはそれぞれ独立に水素原子または低級鎖状炭化水素基を示し、水素原子または炭素数1~6の低級アルキル基が、耐熱性、低吸水性の点で優れている。 In formula (4), formula (5), and formula (6), Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rl, Rm, and Rn are each independently hydrogen. An atom or a lower chain hydrocarbon group, a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms is excellent in terms of heat resistance and low water absorption.
 式(2)及び式(3)で表される鎖状構造の繰り返し単位の中では、式(3)で表される鎖状構造の繰り返し単位の方が、得られる炭化水素系重合体の強度特性に優れている。 Among the repeating units having a chain structure represented by the formulas (2) and (3), the repeating unit having a chain structure represented by the formula (3) is stronger in the obtained hydrocarbon polymer. Excellent characteristics.
 本発明においては、炭化水素共重合体中の、式(1)で表される脂環式構造を有する繰り返し単位(a)と、式(2)及び/又は式(3)で表される鎖状構造の繰り返し単位(b)との合計含有量は、質量基準で、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。合計含有量を上記範囲にすることで、低複屈折性、耐熱性、低吸水性、機械強度が高度にバランスされる。 In the present invention, a repeating unit (a) having an alicyclic structure represented by the formula (1) and a chain represented by the formula (2) and / or the formula (3) in the hydrocarbon copolymer. The total content with the repeating unit (b) in the shape structure is usually 90% or more, preferably 95% or more, more preferably 97% or more, on a mass basis. By setting the total content within the above range, low birefringence, heat resistance, low water absorption, and mechanical strength are highly balanced.
 脂環式炭化水素系共重合体における鎖状構造の繰り返し単位(b)の含有量は使用目的に応じて適宜選択されるが、通常、質量基準で1%以上10%未満、好ましくは1%以上8%以下、より好ましくは2%以上6%以下の範囲である。繰り返し単位(b)の含有量が上記範囲にあると、低複屈折性、耐熱性、低吸水性が高度にバランスされる。 The content of the repeating unit (b) having a chain structure in the alicyclic hydrocarbon copolymer is appropriately selected according to the purpose of use, but is usually 1% or more and less than 10%, preferably 1% on a mass basis. It is 8% or less, more preferably 2% or more and 6% or less. When the content of the repeating unit (b) is in the above range, low birefringence, heat resistance, and low water absorption are highly balanced.
 また、繰り返し単位(a)の連鎖長は、脂環式炭化水素系共重合体の分子鎖長に対して十分に短く、具体的には、A=(脂環式構造を有する繰り返し単位(a)の連鎖の重量平均分子量)、B=(脂環式炭化水素系共重合体の重量平均分子量(Mw)×(脂環式構造を有する繰り返し単位(a)の数/脂環式炭化水素系共重合体を構成する全繰り返し単位数))とした時、AがBの30%以下であり、好ましくは20%以下、より好ましくは15%以下、特に好ましくは10%以下の範囲である。Aがこの範囲外では、低複屈折性に劣る。 Further, the chain length of the repeating unit (a) is sufficiently shorter than the molecular chain length of the alicyclic hydrocarbon copolymer, and specifically, A = (repeating unit having an alicyclic structure (a ) Chain weight average molecular weight), B = (weight average molecular weight of alicyclic hydrocarbon copolymer (Mw) × (number of repeating unit (a) having alicyclic structure / alicyclic hydrocarbon system) A) is 30% or less of B, preferably 20% or less, more preferably 15% or less, and particularly preferably 10% or less. When A is outside this range, the low birefringence is poor.
 さらに、繰り返し単位(a)の連鎖長が特定の分布を有しているもの好ましい。具体的には、A=(脂環式構造を有する繰り返し単位(a)の連鎖の重量平均分子量)、C=(脂環式構造を有する繰り返し単位(a)の連鎖の数平均分子量)としたとき、A/Cが、好ましくは1.3以上、より好ましくは1.3~8、最も好ましくは1.7~6の範囲である。A/Cが過度に小さいとブロック程度が増加し、過度に大きいとランダムの程度が増加して、いずれの場合にも低複屈折性に劣る。 Furthermore, it is preferable that the chain length of the repeating unit (a) has a specific distribution. Specifically, A = (weight average molecular weight of the chain of the repeating unit (a) having an alicyclic structure), C = (number average molecular weight of the chain of the repeating unit (a) having an alicyclic structure). In some cases, A / C is preferably in the range of 1.3 or more, more preferably 1.3 to 8, and most preferably 1.7 to 6. If A / C is excessively small, the degree of block increases, and if it is excessively large, the degree of randomness increases, and in any case, low birefringence is inferior.
 本発明の脂環式炭化水素系共重合体の分子量は、ゲル・パーミエーション・クロマトグラフィー(以下、GPC)により測定されるポリスチレン(またはポリイソプレン)換算重量平均分子量(Mw)で、1,000~1,000,000、好ましくは5,000~500,000、より好ましくは10,000~300,000、最も好ましくは50,000~250,000の範囲である。脂環式炭化水素系共重合体の重量平均分子量(Mw)が過度に小さいと成形物の強度特性に劣り、逆に過度に大きいと成形物の複屈折が大きくなる。 The molecular weight of the alicyclic hydrocarbon copolymer of the present invention is 1,000 in terms of polystyrene (or polyisoprene) converted weight average molecular weight (Mw) measured by gel permeation chromatography (hereinafter, GPC). It is in the range of ˜1,000,000, preferably 5,000 to 500,000, more preferably 10,000 to 300,000, and most preferably 50,000 to 250,000. If the weight average molecular weight (Mw) of the alicyclic hydrocarbon copolymer is excessively small, the strength characteristics of the molded product are inferior. Conversely, if the molecular weight is excessively large, the birefringence of the molded product increases.
 かかる共重合体の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(またはポリイソプレン)換算の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で、通常2.5以下、好ましくは2.3以下、より好ましくは2以下の範囲である。Mw/Mnがこの範囲にあると、機械強度と耐熱性が高度にバランスされる。 The molecular weight distribution of such a copolymer can be appropriately selected according to the purpose of use, but the ratio (Mw) of polystyrene (or polyisoprene) -converted weight average molecular weight (Mw) and number average molecular weight (Mn) measured by GPC. / Mn), usually 2.5 or less, preferably 2.3 or less, more preferably 2 or less. When Mw / Mn is in this range, mechanical strength and heat resistance are highly balanced.
 共重合体のガラス転移温度(Tg)は、使用目的に応じて適宜選択されればよいが、通常50℃~250℃、好ましくは70℃~200℃、より好ましくは90℃~180℃である。
(脂環式炭化水素系共重合体の製造方法)
 本発明の脂環式炭化水素系共重合体の製造方法としては、(1)芳香族ビニル系化合物と共重合可能なその他のモノマーとを共重合し、主鎖及び芳香環の炭素-炭素不飽和結合を水素化する方法、(2)脂環式ビニル系化合物と共重合可能なその他のモノマーとを共重合し、必要に応じて水素化する方法等が挙げられる。
The glass transition temperature (Tg) of the copolymer may be appropriately selected according to the purpose of use, but is usually 50 ° C to 250 ° C, preferably 70 ° C to 200 ° C, more preferably 90 ° C to 180 ° C. .
(Method for producing alicyclic hydrocarbon-based copolymer)
The production method of the alicyclic hydrocarbon copolymer of the present invention includes: (1) copolymerizing an aromatic vinyl compound and another monomer copolymerizable with the main chain and aromatic ring carbon-carbon ring. Examples thereof include a method of hydrogenating a saturated bond, and (2) a method of copolymerizing an alicyclic vinyl compound with another monomer copolymerizable and hydrogenating if necessary.
 上記の方法で本発明の脂環式炭化水素系共重合体を製造する場合には、芳香族ビニル系化合物及び/又は脂環式ビニル系化合物(a’)と共重合可能なその他のモノマー(b’)との共重合体で、共重合体中の化合物(a’)由来の繰り返し単位が、D=(芳香族ビニル系化合物及び/又は脂環式ビニル系化合物由来の繰り返し単位連鎖の重量平均分子量)、E=(炭化水素系共重合体の重量平均分子量(Mw)×(芳香族ビニル系化合物及び/又は脂環式ビニル系化合物由来の繰り返し単位数/炭化水素系共重合体を構成する全繰り返し単位数))、とした時、DがEの30%以下、好ましくは20%以下、より好ましくは15%以下、最も好ましくは10%以下である連鎖構造を有する共重合体の、主鎖、及び芳香環やシクロアルケン環等の不飽和環の炭素-炭素不飽和結合を水素化する方法により効率的に得ることができる。Dが上記範囲外では、得られる脂環式炭化水素系共重合体の低複屈折性が劣る。 When the alicyclic hydrocarbon-based copolymer of the present invention is produced by the above-described method, the aromatic vinyl compound and / or other monomer copolymerizable with the alicyclic vinyl compound (a ′) ( b ′), the repeating unit derived from the compound (a ′) in the copolymer is D = (weight of the repeating unit chain derived from the aromatic vinyl compound and / or the alicyclic vinyl compound) Average molecular weight), E = (Weight average molecular weight of hydrocarbon copolymer (Mw) × (Number of repeating units derived from aromatic vinyl compound and / or alicyclic vinyl compound / Hydrocarbon copolymer) Of the copolymer having a chain structure in which D is 30% or less of E, preferably 20% or less, more preferably 15% or less, and most preferably 10% or less. Main chain, aromatic ring and cycloalkene It can be efficiently obtained by a method for hydrogenating carbon-carbon unsaturated bond - unsaturated carbon ring and the like. When D is out of the above range, the low birefringence of the resulting alicyclic hydrocarbon copolymer is poor.
 本発明では(1)の方法がより効率的に脂環式炭化水素系共重合体を得ることができるので好ましい。 In the present invention, the method (1) is preferable because an alicyclic hydrocarbon copolymer can be obtained more efficiently.
 上記水素化前の共重合体は、さらに、F=(芳香族ビニル系化合物及び/又は脂環式ビニル系化合物由来の繰り返し単位の連鎖の数平均分子量)、としたときの、D/Fが一定の範囲であるのが好ましい。具体的には、D/Fが、好ましくは1.3以上、より好ましくは1.3以上、8以下、最も好ましくは1.7以上、6以下の範囲である。D/Fがこの範囲外では、得られる脂環式炭化水素系共重合体の低複屈折性が劣る。 The copolymer before hydrogenation further has a D / F when F = (number average molecular weight of a chain of repeating units derived from an aromatic vinyl compound and / or an alicyclic vinyl compound). A certain range is preferable. Specifically, D / F is preferably 1.3 or more, more preferably 1.3 or more and 8 or less, and most preferably 1.7 or more and 6 or less. When D / F is outside this range, the low birefringence of the resulting alicyclic hydrocarbon copolymer is poor.
 上記化合物(a’)由来の繰り返し単位の連鎖の重量平均分子量および数平均分子量は、例えば、文献Macromorecules 1983, 16,1925-1928記載の、芳香族ビニル系共重合体の主鎖中不飽和二重結合をオゾン付加した後還元分解し、取り出した芳香族ビニル連鎖の分子量を測定する方法等により確認できる。 The weight average molecular weight and number average molecular weight of the chain of repeating units derived from the above compound (a ′) are, for example, unsaturated dicarboxylic acids in the main chain of the aromatic vinyl copolymer described in the document Macromolecules 1983, 16, 1925-1928. It can be confirmed by, for example, a method of measuring the molecular weight of the aromatic vinyl chain taken out by reductive decomposition after adding a heavy bond with ozone.
 水素化前の共重合体の分子量は、GPCにより測定されるポリスチレン(またはポリイソプレン)換算重量平均分子量(Mw)で、1,000~1,000,000、好ましくは5,000~500,000、より好ましくは10,000~300,000の範囲である。共重合体の重量平均分子量(Mw)が過度に小さいと、それから得られる脂環式炭化水素系共重合体の成形物の強度特性に劣り、逆に過度に大きいと水素化反応性に劣る。 The molecular weight of the copolymer before hydrogenation is 1,000 to 1,000,000, preferably 5,000 to 500,000 in terms of polystyrene (or polyisoprene) equivalent weight average molecular weight (Mw) measured by GPC. More preferably, it is in the range of 10,000 to 300,000. When the weight average molecular weight (Mw) of the copolymer is excessively small, the strength characteristics of the molded product of the alicyclic hydrocarbon copolymer obtained therefrom are inferior. Conversely, when the copolymer is excessively large, the hydrogenation reactivity is inferior.
 上記(1)の方法において使用する芳香族ビニル系化合物の具体例としては、例えば、スチレン、α-メチルスチレン、α-エチルスチレン、α-プロピルスチレン、α-イソプロピルスチレン、α-t-ブチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-t-ブチルスチレン、モノクロロスチレン、モノフルオロスチレン、4-フェニルスチレン等が挙げられ、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン等が好ましい。 Specific examples of the aromatic vinyl compound used in the method (1) include, for example, styrene, α-methylstyrene, α-ethylstyrene, α-propylstyrene, α-isopropylstyrene, α-t-butylstyrene. , 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-t-butylstyrene, monochlorostyrene, monofluorostyrene, 4-phenylstyrene, etc., styrene, 2-methylstyrene, 3-methylstyrene 4-methylstyrene and the like are preferable.
 上記(2)の方法において使用する脂環式ビニル系化合物の具体例としては、例えば、シクロブチルエチレン、シクロペンチルエチレン、シクロヘキシルエチレン、シクロヘプチルエチレン、シクロオクチルエチレン、α-メチルシクロヘキシルエチレン、α-t-ブチルシクロヘキシルエチレン、シクロペンテニルエチレン、シクロヘキセニルエチレン、シクロヘプテニルエチレン、シクロオクテニルエチレン、シクロデケニルエチレン、α-メチルシクロヘキセニルエチレン、及びα-t-ブチルシクロヘキセニルエチレン等が挙げられ、これらの中でも、シクロヘキシルエチレン、α-メチルシクロヘキシルエチレンが好ましい。 Specific examples of the alicyclic vinyl compound used in the method (2) include, for example, cyclobutylethylene, cyclopentylethylene, cyclohexylethylene, cycloheptylethylene, cyclooctylethylene, α-methylcyclohexylethylene, α-t. -Butylcyclohexylethylene, cyclopentenylethylene, cyclohexenylethylene, cycloheptenylethylene, cyclooctenylethylene, cyclodecenylethylene, α-methylcyclohexenylethylene, α-t-butylcyclohexenylethylene, and the like. Of these, cyclohexylethylene and α-methylcyclohexylethylene are preferred.
 これらの芳香族ビニル系化合物及び脂環式ビニル系化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 These aromatic vinyl compounds and alicyclic vinyl compounds can be used alone or in combination of two or more.
 共重合可能なその他のモノマーとしては、格別な限定はないが、鎖状ビニル化合物及び鎖状共役ジエン化合物等が用いられ、鎖状共役ジエンを用いた場合、製造過程における操作性に優れ、また得られる脂環式炭化水素系共重合体の強度特性に優れる。 Other monomers that can be copolymerized are not particularly limited, but chain vinyl compounds and chain conjugated diene compounds are used. When chain conjugated dienes are used, the operability in the production process is excellent. The resulting alicyclic hydrocarbon copolymer is excellent in strength properties.
 鎖状ビニル化合物の具体例としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン等の鎖状オレフィンモノマー;1-シアノエチレン(アクリロニトリル)、1-シアノ-1-メチルエチレン(メタアクリロニトリル)、1-シアノ-1-クロロエチレン(α-クロロアクリロニトリル)等のニトリル系モノマー;1-(メトキシカルボニル)-1-メチルエチレン(メタアクリル酸メチルエステル)、1-(エトキシカルボニル)-1-メチルエチレン(メタアクリル酸エチルエステル)、1-(プロポキシカルボニル)-1-メチルエチレン(メタアクリル酸プロピルエステル)、1-(ブトキシカルボニル)-1-メチルエチレン(メタアクリル酸ブチルエステル)、1-メトキシカルボニルエチレン(アクリル酸メチルエステル)、1-エトキシカルボニルエチレン(アクリル酸エチルエステル)、1-プロポキシカルボニルエチレン(アクリル酸プロピルエステル)、1-ブトキシカルボニルエチレン(アクリル酸ブチルエステル)などの(メタ)アクリル酸エステル系モノマー、1-カルボキシエチレン(アクリル酸)、1-カルボキシ-1-メチルエチレン(メタクリル酸)、無水マレイン酸などの不飽和脂肪酸系モノマー等が挙げられ、中でも、鎖状オレフィンモノマーが好ましく、エチレン、プロピレン、1-ブテンが最も好ましい。 Specific examples of the chain vinyl compound include chain olefin monomers such as ethylene, propylene, 1-butene, 1-pentene and 4-methyl-1-pentene; 1-cyanoethylene (acrylonitrile), 1-cyano- Nitrile monomers such as 1-methylethylene (methacrylonitrile) and 1-cyano-1-chloroethylene (α-chloroacrylonitrile); 1- (methoxycarbonyl) -1-methylethylene (methacrylic acid methyl ester), 1- (Ethoxycarbonyl) -1-methylethylene (methacrylic acid ethyl ester), 1- (propoxycarbonyl) -1-methylethylene (methacrylic acid propyl ester), 1- (butoxycarbonyl) -1-methylethylene (methacrylic) Acid butyl ester), 1-methoxycarbo (Meth) acrylic acid such as ruethylene (acrylic acid methyl ester), 1-ethoxycarbonylethylene (acrylic acid ethyl ester), 1-propoxycarbonylethylene (acrylic acid propyl ester), 1-butoxycarbonylethylene (acrylic acid butyl ester) Examples include ester monomers, unsaturated fatty acid monomers such as 1-carboxyethylene (acrylic acid), 1-carboxy-1-methylethylene (methacrylic acid), and maleic anhydride, among which chain olefin monomers are preferred, Most preferred are ethylene, propylene and 1-butene.
 鎖状共役ジエンは、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、及び1,3-ヘキサジエン等が挙げられる。これら鎖状ビニル化合物及び鎖状共役ジエンの中でも鎖状共役ジエンが好ましく、ブタジエン、イソプレンが特に好ましい。これらの鎖状ビニル化合物及び鎖状共役ジエンは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of the chain conjugated diene include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. Of these chain vinyl compounds and chain conjugated dienes, chain conjugated dienes are preferable, and butadiene and isoprene are particularly preferable. These chain vinyl compounds and chain conjugated dienes can be used alone or in combination of two or more.
 これらの鎖状ビニル系化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 These chain vinyl compounds can be used alone or in combination of two or more.
 化合物(a’)を重合する方法は、格別制限はないが、一括重合法(バッチ法)、モノマー逐次添加法(モノマー全使用量の内の一部を用いて重合を開始した後、残りのモノマーを逐次添加して重合を進めていく方法)等が挙げられ、特にモノマー逐次添加法を用いると、好ましい連鎖構造を有する炭化水素系共重合体が得られる。水素化前の共重合体は、前述のDの値がより小さい程、及び/又は、D/Fが大きな値を示す程、よりランダムな連鎖構造を有する。共重合体がどの程度のランダム性を有しているかは、芳香族ビニル系化合物の重合速度と共重合可能なその他のモノマーの重合速度との速度比で決まり、この速度比が小さい程、よりランダムな連鎖構造を有していることになる。 The method for polymerizing the compound (a ′) is not particularly limited, but after the polymerization is started using a batch polymerization method (batch method), a monomer sequential addition method (a part of the total amount of monomers used), And a method of proceeding polymerization by successively adding monomers). In particular, when the monomer sequential addition method is used, a hydrocarbon copolymer having a preferable chain structure can be obtained. The copolymer before hydrogenation has a more random chain structure, so that the above-mentioned D value is smaller and / or the D / F shows a larger value. The degree of randomness of the copolymer is determined by the speed ratio between the polymerization rate of the aromatic vinyl compound and the polymerization rate of other copolymerizable monomers, and the smaller this speed ratio, the more It has a random chain structure.
 前記モノマー逐次添加法によれば、均一に混合された混合モノマーが重合系内に逐次的に添加されるため、バッチ法とは異なり、ポリマーの重合による成長過程においてモノマーの重合選択性をより下げることができるので、得られる共重合体がよりランダムな連鎖構造になる。また、重合系内での重合反応熱の蓄積が小さくてすむので重合温度を低く安定に保つことがでる。 According to the monomer sequential addition method, since the uniformly mixed monomer is sequentially added into the polymerization system, unlike the batch method, the polymerization selectivity of the monomer is further lowered during the growth process by polymer polymerization. The resulting copolymer has a more random chain structure. In addition, since the accumulation of polymerization reaction heat in the polymerization system is small, the polymerization temperature can be kept low and stable.
 モノマー逐次添加法の場合、まずモノマーの全使用量のうち、通常0.01質量%~60質量%、好ましくは0.02質量%~20質量%、より好ましくは0.05質量%~10質量%のモノマーを初期モノマーとして予め重合反応器内に存在させた状態で開始剤を添加して重合を開始する。初期モノマー量をこのような範囲にすると、重合開始後の初期反応において発生する反応熱除去を容易にすることができ、得られる共重合体をよりランダムな連鎖構造にすることができる。 In the case of the monomer sequential addition method, first, out of the total amount of monomers used, usually 0.01% to 60% by mass, preferably 0.02% to 20% by mass, more preferably 0.05% to 10% by mass. Polymerization is started by adding an initiator in the state in which the monomer is present in the polymerization reactor as an initial monomer. When the initial monomer amount is in such a range, the reaction heat generated in the initial reaction after the initiation of polymerization can be easily removed, and the resulting copolymer can have a more random chain structure.
 上記初期モノマーの重合転化率を70%以上、好ましくは80%以上、より好ましくは90%以上になるまで反応を継続すると、得られる共重合体の連鎖構造がよりランダムになる。その後、前記モノマーの残部を継続的に添加するが、添加の速度は重合系内のモノマーの消費速度を考慮して決定される。 When the reaction is continued until the polymerization conversion rate of the initial monomer is 70% or more, preferably 80% or more, more preferably 90% or more, the chain structure of the resulting copolymer becomes more random. Thereafter, the remainder of the monomer is continuously added, and the rate of addition is determined in consideration of the consumption rate of the monomer in the polymerization system.
 通常は、初期モノマーの重合添加率が90%に達するまでの所要時間をT、初期モノマーの全使用モノマーに対する比率(%)をIとしたとき、関係式[(100-I)×T/I]で与えられる時間の0.5~3倍、好ましくは0.8~2倍、より好ましくは1~1.5倍となる範囲内で残部モノマーの添加が終了するように決定される。具体的には通常0.1~30時間、好ましくは0.5時間~5時間、より好ましくは1時間~3時間の範囲となるように、初期モノマー量と残りモノマーの添加速度を決定する。また、モノマー添加終了直後の全モノマー重合転化率は、通常80%以上、好ましくは85%以上、より好ましくは90%以上である。モノマー添加終了直後の全モノマー重合転化率を上記の範囲とすると、得られる共重合体の連鎖構造がよりランダムになる。 Usually, when the time required for the polymerization addition rate of the initial monomer to reach 90% is T, and the ratio (%) of the initial monomer to all the monomers used is I, the relational expression [(100−I) × T / I ] Is determined so that the addition of the remaining monomer is completed within a range of 0.5 to 3 times, preferably 0.8 to 2 times, more preferably 1 to 1.5 times the time given by Specifically, the initial monomer amount and the rate of addition of the remaining monomers are determined so that they are usually in the range of 0.1 to 30 hours, preferably 0.5 to 5 hours, more preferably 1 to 3 hours. Further, the total monomer polymerization conversion immediately after completion of the monomer addition is usually 80% or more, preferably 85% or more, and more preferably 90% or more. When the total monomer polymerization conversion rate immediately after the completion of monomer addition is within the above range, the chain structure of the resulting copolymer becomes more random.
 重合反応は、ラジカル重合、アニオン重合、カチオン重合等、特別な制約はないが、重合操作、後工程での水素化反応の容易さ、及び最終的に得られる炭化水素系共重合体の機械的強度を考えると、アニオン重合法が好ましい。 The polymerization reaction is not particularly limited, such as radical polymerization, anionic polymerization, and cationic polymerization. However, the polymerization operation, the ease of the hydrogenation reaction in the post-process, and the mechanical properties of the finally obtained hydrocarbon copolymer are not limited. In view of strength, the anionic polymerization method is preferable.
 ラジカル重合の場合は、開始剤の存在下、通常0℃~200℃、好ましくは20℃~150℃で、塊状重合、溶液重合、懸濁重合、乳化重合等の方法を用いることができるが、特に樹脂中への不純物等の混入等を防止する必要のある場合は、塊状重合、懸濁重合が望ましい。ラジカル開始剤としては、過酸化ベンゾイル、過酸化ラウロイル、t-ブチル-パーオキシ-2-エチルヘキサノエート等の有機過酸化物、アゾイソブチロニトリル、4,4-アゾビス-4-シアノペンタン酸、アゾジベンゾイル等のアゾ化合物、過硫酸カリウム、過硫酸アンモニウムに代表される水溶性触媒やレドックス開始剤などが使用可能である。 In the case of radical polymerization, methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization can be used in the presence of an initiator, usually at 0 ° C. to 200 ° C., preferably 20 ° C. to 150 ° C. In particular, bulk polymerization and suspension polymerization are desirable when it is necessary to prevent impurities from being mixed into the resin. Radical initiators include organic peroxides such as benzoyl peroxide, lauroyl peroxide, t-butyl-peroxy-2-ethylhexanoate, azoisobutyronitrile, 4,4-azobis-4-cyanopentanoic acid An azo compound such as azodibenzoyl, a water-soluble catalyst typified by potassium persulfate and ammonium persulfate, a redox initiator, and the like can be used.
 アニオン重合の場合には、開始剤の存在下、通常0℃~200℃、好ましくは20℃~100℃、特に好ましくは20℃~80℃の温度範囲において、塊状重合、溶液重合、スラリー重合等の方法を用いることができるが、反応熱の除去を考慮すると、溶液重合が好ましい。この場合、重合体及びその水素化物を溶解できる不活性溶媒を用いる。溶液反応で用いる不活性溶媒は、例えばn-ブタン、n-ペンタン、iso-ペンタン、n-ヘキサン、n-ヘプタン、iso-オクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類等が挙げられ、中でも脂肪族炭化水素類や脂環式炭化水素類を用いると、水素化反応にも不活性な溶媒としてそのまま使用することができる。これらの溶媒は、それぞれ単独で、或いは2種類以上を組み合わせて使用でき、通常、全使用モノマー100質量部に対して200~10,000質量部となるような割合で用いられる。 In the case of anionic polymerization, bulk polymerization, solution polymerization, slurry polymerization, etc. in the temperature range of usually 0 ° C. to 200 ° C., preferably 20 ° C. to 100 ° C., particularly preferably 20 ° C. to 80 ° C. in the presence of an initiator. However, solution polymerization is preferable in view of removal of reaction heat. In this case, an inert solvent capable of dissolving the polymer and its hydride is used. Examples of the inert solvent used in the solution reaction include aliphatic hydrocarbons such as n-butane, n-pentane, iso-pentane, n-hexane, n-heptane, and iso-octane; cyclopentane, cyclohexane, methylcyclopentane, Examples include alicyclic hydrocarbons such as methylcyclohexane and decalin; aromatic hydrocarbons such as benzene and toluene. Among them, when aliphatic hydrocarbons and alicyclic hydrocarbons are used, hydrogenation reaction is also performed. It can be used as it is as an inert solvent. These solvents can be used alone or in combination of two or more, and are usually used at a ratio of 200 to 10,000 parts by mass with respect to 100 parts by mass of all the monomers used.
 上記アニオン重合の開始剤としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウムなどのモノ有機リチウム、ジリチオメタン、1,4-ジオブタン、1,4-ジリチオー2-エチルシクロヘキサン等の多官能性有機リチウム化合物などが使用可能である。 Examples of the initiator for anionic polymerization include monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, and phenyllithium, dilithiomethane, 1,4-diobtan, 1,4-dilithiol. A polyfunctional organolithium compound such as 2-ethylcyclohexane can be used.
 重合反応においては、また、重合促進剤や、ランダマイザー(或る1成分の連鎖が長くなるのを防止する機能を有する添加剤)などを使用できる。アニオン重合の場合には、例えばルイス塩基化合物をランダマイザーとして使用できる。ルイス塩基化合物の具体例としては、例えば、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジフェニルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルフェニルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物;カリウム-t-アミルオキシド、カリウム-t-ブチルオキシド等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物が挙げられる。これらのルイス塩基化合物は、それぞれ単独で、或いは2種類以上を組み合わせて使用できる。 In the polymerization reaction, a polymerization accelerator, a randomizer (an additive having a function of preventing a chain of a certain component from becoming long), or the like can be used. In the case of anionic polymerization, for example, a Lewis base compound can be used as a randomizer. Specific examples of the Lewis base compound include ether compounds such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine A tertiary amine compound such as potassium-t-amyl oxide and potassium-t-butyl oxide; and a phosphine compound such as triphenylphosphine. These Lewis base compounds can be used alone or in combination of two or more.
 上記のラジカル重合やアニオン重合により得られた重合体は、例えばスチームストリッピング法、直接脱溶媒法、アルコール凝固法等の公知の方法で回収できる。また、重合時に、水素化反応で不活性な溶媒を用いた場合には、重合溶液から重合体を回収せず、そのまま水素添加工程に使用することができる。
(不飽和結合の水素化方法)
 水素化前の共重合体の芳香環やシクロアルケン環などの不飽和環の炭素-炭素二重結合や主鎖の不飽和結合等の水素化反応を行う場合は、反応方法、反応形態に特別な制限はなく、公知の方法にしたがって行えばよいが、水素化率を高くでき、且つ水素化反応と同時に起こる重合体鎖切断反応の少ない水素化方法が好ましく、例えば、有機溶媒中、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム、及びレニウムから選ばれる少なくとも1つの金属を含む触媒を用いて行う方法が挙げられる。水素化触媒は、不均一触媒、均一触媒のいずれも使用可能である。
The polymer obtained by the above radical polymerization or anion polymerization can be recovered by a known method such as a steam stripping method, a direct solvent removal method, or an alcohol coagulation method. In addition, when an inert solvent is used in the hydrogenation reaction during the polymerization, the polymer is not recovered from the polymerization solution and can be used as it is in the hydrogenation step.
(Method of hydrogenating unsaturated bonds)
When carrying out hydrogenation reactions such as carbon-carbon double bonds of unsaturated rings such as aromatic rings and cycloalkene rings of the copolymer before hydrogenation, and unsaturated bonds of the main chain, the reaction method and reaction form are special. There is no particular limitation, and it may be carried out according to a known method, but a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction that occurs simultaneously with the hydrogenation reaction is preferable, for example, in an organic solvent, nickel, The method is performed using a catalyst containing at least one metal selected from cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium, and rhenium. As the hydrogenation catalyst, either a heterogeneous catalyst or a homogeneous catalyst can be used.
 不均一系触媒は、金属または金属化合物のままで、又は適当な担体に担持して用いることができる。担体としては、例えば、活性炭、シリカ、アルミナ、炭化カルシウム、チタニア、マグネシア、ジルコニア、ケイソウ土、炭化珪素等が挙げられ、触媒の担持量は、通常0.01~80質量%、好ましくは0.05~60質量%の範囲である。均一系触媒は、ニッケル、コバルト、チタンまたは鉄化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒、またはロジウム、パラジウム、白金、ルテニウム、レニウム等の有機金属錯体触媒を用いることができる。ニッケル、コバルト、チタンまたは鉄化合物としては、例えば、各種金属のアセチルアセトン塩、ナフテン塩、シクロペンタジエニル化合物、シクロペンタジエニルジクロロ化合物等が用いられる。有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等のハロゲン化アルミニウム、ジイソブチルアルミニウムハイドライド等の水素化アルキルアルミニウム等が好適に用いられる。 The heterogeneous catalyst can be used in the form of a metal or a metal compound or supported on a suitable carrier. Examples of the carrier include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide and the like. The amount of the catalyst supported is usually 0.01 to 80% by mass, preferably 0.8. The range is from 05 to 60% by mass. The homogeneous catalyst is a catalyst in which a nickel, cobalt, titanium or iron compound and an organometallic compound (for example, an organoaluminum compound or an organolithium compound) are combined, or an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium. Can be used. Examples of the nickel, cobalt, titanium, or iron compound include acetylacetone salts, naphthene salts, cyclopentadienyl compounds, cyclopentadienyl dichloro compounds, and the like of various metals. As the organic aluminum compound, alkylaluminum such as triethylaluminum and triisobutylaluminum, aluminum halide such as diethylaluminum chloride and ethylaluminum dichloride, alkylaluminum hydride such as diisobutylaluminum hydride and the like are preferably used.
 有機金属錯体触媒の例としては、上記各金属のγ-ジクロロ-π-ベンゼン錯体、ジクロロ-トリス(トリフェニルホスフィン)錯体、ヒドリド-クロロ-トリフェニルホスフィン)錯体等の金属錯体が使用される。これらの水素化触媒は、それぞれ単独で、或いは2種類以上組み合わせて使用することができ、その使用量は、重合体に対して、質量基準にて、通常、0.01~100部、好ましくは0.05~50部、より好ましくは0.1~30部である。 Examples of organometallic complex catalysts include metal complexes such as γ-dichloro-π-benzene complex, dichloro-tris (triphenylphosphine) complex, hydrido-chloro-triphenylphosphine) complex of the above metals. These hydrogenation catalysts can be used alone or in combination of two or more, and the amount used is usually 0.01 to 100 parts, preferably on a mass basis with respect to the polymer. 0.05 to 50 parts, more preferably 0.1 to 30 parts.
 水素化反応は、通常10℃~250℃であるが、水素化率を高くでき、且つ、水素化反応と同時に起こる重合体鎖切断反応を小さくできるという理由から、好ましくは50℃~200℃、より好ましくは80℃~180℃である。また水素圧力は、通常0.1MPa~30MPaであるが、上記理由に加え、操作性の観点から、好ましくは1MPa~20MPa、より好ましくは2MPa~10MPaである。 The hydrogenation reaction is usually from 10 ° C. to 250 ° C., but preferably from 50 ° C. to 200 ° C. because the hydrogenation rate can be increased and the polymer chain scission reaction that occurs simultaneously with the hydrogenation reaction can be reduced. More preferably, it is 80 ° C to 180 ° C. The hydrogen pressure is usually 0.1 MPa to 30 MPa, but in addition to the above reasons, it is preferably 1 MPa to 20 MPa, more preferably 2 MPa to 10 MPa from the viewpoint of operability.
 このようにして得られた、水素化物の水素化率は、1H-NMRによる測定において、主鎖の炭素-炭素不飽和結合、芳香環の炭素-炭素二重結合、不飽和環の炭素-炭素二重結合のいずれも、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。水素化率が低いと、得られる共重合体の低複屈折性、熱安定性等が低下する。 The hydrogenation rate of the hydride obtained in this way is determined by 1H-NMR, as determined by carbon-carbon unsaturated bond of the main chain, carbon-carbon double bond of aromatic ring, carbon-carbon of unsaturated ring. All of the double bonds are usually 90% or more, preferably 95% or more, more preferably 97% or more. When the hydrogenation rate is low, the low birefringence, thermal stability, etc. of the resulting copolymer are lowered.
 水素化反応終了後に水素化物を回収する方法は特に限定されていない。通常、濾過、遠心分離等の方法により水素化触媒残渣を除去した後、水素化物の溶液から溶媒を直接乾燥により除去する方法、水素化物の溶液を水素化物にとっての貧溶媒中に注ぎ、水素化物を凝固させる方法を用いることができる。 The method for recovering the hydride after completion of the hydrogenation reaction is not particularly limited. Usually, after removing the hydrogenation catalyst residue by a method such as filtration or centrifugation, the solvent is removed directly from the hydride solution by drying, the hydride solution is poured into a poor solvent for the hydride, and the hydride A method of coagulating can be used.
 脂環式構造を有する重合体としては、重合体ブロック〔A〕および重合体ブロック〔B〕を有するブロック共重合体が更に好ましい。重合体ブロック〔A〕は、下記式(1)で表される繰り返し単位〔1〕を含有する。重合体ブロック〔A〕中の繰り返し単位〔1〕の含有量は、好ましくは50モル%以上、より好ましくは70モル%以上、特に好ましくは90モル%以上である。 As the polymer having an alicyclic structure, a block copolymer having a polymer block [A] and a polymer block [B] is more preferable. The polymer block [A] contains a repeating unit [1] represented by the following formula (1). The content of the repeating unit [1] in the polymer block [A] is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素原子、または炭素数1~20のアルキル基を表し、R-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。尚、前記R-R12は、R、R、R、R、R、R、R、R、R10、R11およびR12である。以降同様。)
 上記式(1)で表される繰り返し単位〔1〕の好ましい構造は、Rが水素またはメチル基で、R-R12がすべて水素のものである。重合体ブロック〔A〕中の繰り返し単位〔1〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。重合体ブロック〔A〕における、前記繰り返し単位〔1〕以外の残部は、鎖状共役ジエンや鎖状ビニル化合物由来の繰り返し単位を水素化したものである。
(Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 R 2 to R 12 are R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12. The same applies hereinafter.)
A preferred structure of the repeating unit [1] represented by the above formula (1) is such that R 1 is hydrogen or a methyl group, and R 2 -R 12 are all hydrogen. When the content of the repeating unit [1] in the polymer block [A] is in the above range, transparency and mechanical strength are excellent. The remainder other than the repeating unit [1] in the polymer block [A] is a hydrogenated repeating unit derived from a chain conjugated diene or a chain vinyl compound.
 重合体ブロック〔B〕は、前記繰り返し単位〔1〕ならびに下記式(2)で表される繰り返し単位〔2〕および/または下記式(3)で表される繰り返し単位〔3〕を含有する。重合体ブロック〔B〕中の繰り返し単位〔1〕の含有量は、好ましくは40~95モル%、より好ましくは50~90モル%である。繰り返し単位〔1〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。ブロック〔B〕中の繰り返し単位〔2〕のモル分率をm2(モル%)および、繰り返し単位〔3〕のモル分率をm3(モル%)としたときに、2×m2+m3が、好ましくは2モル%以上、より好ましくは5~60モル%、最も好ましくは10~50モル%である。 The polymer block [B] contains the repeating unit [1] and the repeating unit [2] represented by the following formula (2) and / or the repeating unit [3] represented by the following formula (3). The content of the repeating unit [1] in the polymer block [B] is preferably 40 to 95 mol%, more preferably 50 to 90 mol%. When the content of the repeating unit [1] is in the above range, transparency and mechanical strength are excellent. When the molar fraction of the repeating unit [2] in the block [B] is m2 (mol%) and the molar fraction of the repeating unit [3] is m3 (mol%), 2 × m2 + m3 is preferably It is 2 mol% or more, more preferably 5 to 60 mol%, most preferably 10 to 50 mol%.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。)
 上記式(2)で表される繰り返し単位〔2〕の好ましい構造は、R13が水素またはメチル基のものである。
(In the formula, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
A preferred structure of the repeating unit [2] represented by the above formula (2) is that in which R 13 is hydrogen or a methyl group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。)
 上記式(3)で表される繰り返し単位〔3〕の好ましい構造は、R14が水素で、R15がメチル基またはエチル基のものである。
(In the formula, each of R 14 and R 15 independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
A preferred structure of the repeating unit [3] represented by the above formula (3) is one in which R 14 is hydrogen and R 15 is a methyl group or an ethyl group.
 重合体ブロック〔B〕中の、前記繰り返し単位〔2〕または繰り返し単位〔3〕の含有量が少なすぎると、機械的強度が低下する。したがって、繰り返し単位〔2〕および繰り返し単位〔3〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。重合体ブロック〔B〕は、さらに、下記式(X)で表される繰り返し単位〔X〕を含有していてもよい。繰り返し単位〔X〕の含有量は、本発明のブロック共重合体の特性を損なわない範囲の量であり、好ましくはブロック共重合体全体に対し、30モル%以下、より好ましくは20モル%以下である。 If the content of the repeating unit [2] or the repeating unit [3] in the polymer block [B] is too small, the mechanical strength is lowered. Therefore, when the content of the repeating unit [2] and the repeating unit [3] is in the above range, transparency and mechanical strength are excellent. The polymer block [B] may further contain a repeating unit [X] represented by the following formula (X). The content of the repeating unit [X] is an amount that does not impair the properties of the block copolymer of the present invention, and is preferably 30 mol% or less, more preferably 20 mol% or less, based on the entire block copolymer. It is.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、R25は水素原子、または炭素数1~20のアルキル基を表し、R26はニトリル基、アルコキシカルボニル基、ホルミル基、ヒドロキシカルボニル基、もしくはハロゲン基を表し、R27は水素原子を表す。または、R26とR27とは相互に結合して、酸無水物基、もしくはイミド基を形成してもよい。)
 また、本発明に用いるブロック共重合体は、重合体ブロック〔A〕中の繰り返し単位〔1〕のモル分率をa、重合体ブロック〔B〕中の繰り返し単位〔1〕のモル分率をbとした場合に、a>bの関係があることが好ましい。これにより、透明性、および機械的強度に優れる。
(Wherein R 25 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R 26 represents a nitrile group, an alkoxycarbonyl group, a formyl group, a hydroxycarbonyl group, or a halogen group, and R 27 represents a hydrogen atom. Or R 26 and R 27 may be bonded to each other to form an acid anhydride group or an imide group.)
In addition, the block copolymer used in the present invention has a molar fraction of the repeating unit [1] in the polymer block [A] and a molar fraction of the repeating unit [1] in the polymer block [B]. In the case of b, it is preferable that a> b. Thereby, it is excellent in transparency and mechanical strength.
 さらに、本発明に用いるブロック共重合体は、ブロック〔A〕を構成する全繰り返し単位のモル数をma、ブロック〔B〕を構成する全繰り返し単位のモル数をmbとした場合に、その比(ma:mb)が、好ましくは5:95~95:5、より好ましくは30:70~95:5、特に好ましくは40:60~90:10である。(ma:mb)が上記範囲にある場合に、機械的強度および耐熱性に優れる。 Further, the block copolymer used in the present invention has a ratio when the number of moles of all repeating units constituting the block [A] is ma and the number of moles of all repeating units constituting the block [B] is mb. (Ma: mb) is preferably 5:95 to 95: 5, more preferably 30:70 to 95: 5, and particularly preferably 40:60 to 90:10. When (ma: mb) is in the above range, the mechanical strength and heat resistance are excellent.
 本発明に用いるブロック共重合体の分子量は、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(以下、GPCと記す。)により測定されるポリスチレン(またはポリイソプレン)換算重量平均分子量(以下、Mwと記す。)で、好ましくは10,000~300,000、より好ましくは15,000~250,000、特に好ましくは20,000~200,000の範囲である。ブロック共重合体のMwが上記範囲にあると、機械的強度、耐熱性、成形性のバランスに優れる。 The molecular weight of the block copolymer used in the present invention is a weight average molecular weight in terms of polystyrene (or polyisoprene) measured by gel permeation chromatography (hereinafter referred to as GPC) using tetrahydrofuran (THF) as a solvent ( (Hereinafter referred to as Mw)) is preferably in the range of 10,000 to 300,000, more preferably 15,000 to 250,000, and particularly preferably 20,000 to 200,000. When the Mw of the block copolymer is in the above range, the balance of mechanical strength, heat resistance, and moldability is excellent.
 ブロック共重合体の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(またはポリイソプレン)換算のMwと数平均分子量(以下、Mnと記す。)との比(Mw/Mn)で、好ましくは5以下、より好ましくは4以下、特に好ましくは3以下の範囲である。Mw/Mnがこの範囲にあると、機械的強度や耐熱性に優れる。 The molecular weight distribution of the block copolymer can be appropriately selected according to the purpose of use, but the ratio (Mw) of polystyrene (or polyisoprene) converted Mw and number average molecular weight (hereinafter referred to as Mn) measured by GPC. / Mn), preferably 5 or less, more preferably 4 or less, particularly preferably 3 or less. When Mw / Mn is in this range, the mechanical strength and heat resistance are excellent.
 ブロック共重合体のガラス転移温度(以下、Tgと記す。)は、使用目的に応じて適宜選択されればよいが、示差走査型熱量計(以下、DSCと記す。)による、高温側の測定値で、好ましくは70℃~200℃、より好ましくは80℃~180℃、特に好ましくは90℃~160℃である。 The glass transition temperature (hereinafter referred to as Tg) of the block copolymer may be appropriately selected depending on the purpose of use, but is measured on the high temperature side by a differential scanning calorimeter (hereinafter referred to as DSC). The value is preferably 70 ° C. to 200 ° C., more preferably 80 ° C. to 180 ° C., and particularly preferably 90 ° C. to 160 ° C.
 本発明に用いる上記ブロック共重合体は、重合体ブロック〔A〕および重合体ブロック〔B〕を有し、(〔A〕-〔B〕)型のジブロック共重合体であっても、(〔A〕-〔B〕-〔A〕)型や(〔B〕-〔A〕-〔B〕)型のトリブロック共重合体であっても、重合体ブロック〔A〕と重合体ブロック〔B〕とが、交互に合計4個以上つながったブロック共重合体であってもよい。また、これらのブロックがラジアル型に結合したブロック共重合体であってもよい。 The block copolymer used in the present invention has a polymer block [A] and a polymer block [B], and even if it is a ([A]-[B]) type diblock copolymer, Even if the [A]-[B]-[A]) type or ([B]-[A]-[B]) type triblock copolymer is used, the polymer block [A] and the polymer block [A] B] may be a block copolymer in which a total of 4 or more are alternately connected. Moreover, the block copolymer which these blocks couple | bonded with radial type may be sufficient.
 本発明に用いるブロック共重合体は、以下の方法により得ることができる。その方法としては、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物を含有するモノマー混合物、および、ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を含有するモノマー混合物を重合して、芳香族ビニル化合物または/および脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック、および、ビニル系モノマー由来の繰り返し単位を含有する重合体ブロックを有するブロック共重合体を得る。そして該ブロック共重合体の芳香環または/および脂肪族環を水素化する方法や、飽和脂環族ビニル化合物を含有するモノマー混合物、および、ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を含有するモノマー混合物を重合して、脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック、および、ビニル系モノマー由来の繰り返し単位を含有する重合体ブロックを有するブロック共重合体を得る方法などが挙げられる。中でも、本発明に用いるブロック共重合体としてより好ましいものは、例えば、以下の方法により得ることができる。 The block copolymer used in the present invention can be obtained by the following method. As the method, an aromatic vinyl compound or / and a monomer mixture containing an alicyclic vinyl compound having an unsaturated bond in the ring, and a vinyl monomer (excluding an aromatic vinyl compound and an alicyclic vinyl compound) are used. A block having a polymer block containing a repeating unit derived from an aromatic vinyl compound and / or an alicyclic vinyl compound, and a polymer block containing a repeating unit derived from a vinyl monomer by polymerizing the monomer mixture A copolymer is obtained. And a method of hydrogenating an aromatic ring and / or an aliphatic ring of the block copolymer, a monomer mixture containing a saturated alicyclic vinyl compound, and a vinyl monomer (aromatic vinyl compound and alicyclic vinyl compound) A block copolymer having a polymer block containing a repeating unit derived from an alicyclic vinyl compound, and a polymer block containing a repeating unit derived from a vinyl monomer And the like. Especially, what is more preferable as a block copolymer used for this invention can be obtained with the following method, for example.
 (1)第一の方法としては、まず、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物を50モル%以上含有するモノマー混合物〔a’〕を重合して、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック〔A’〕を得る。ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を2モル%以上含有し、且つ、芳香族ビニル化合物および/または環に不飽和結合を有する脂環族ビニル化合物をモノマー混合物〔a’〕中の割合よりも少ない割合の量で含有するモノマー混合物〔b’〕を重合して、芳香族ビニル化合物および/または前記脂環族ビニル化合物由来の繰り返し単位とビニル系モノマー由来の繰り返し単位を含有する重合体ブロック〔B’〕を得る。これらの工程を少なくとも経て、前記重合体ブロック〔A’〕および重合体ブロック〔B’〕を有するブロック共重合体を得た後、該ブロック共重合体の芳香環または/および脂肪族環を水素化する。 (1) As a first method, first, a monomer mixture [a ′] containing 50 mol% or more of an aromatic vinyl compound and / or an alicyclic vinyl compound having an unsaturated bond in the ring is polymerized to obtain an aromatic A polymer block [A ′] containing a repeating unit derived from an aliphatic vinyl compound or / and an alicyclic vinyl compound having an unsaturated bond in the ring is obtained. A monomer mixture containing a vinyl monomer (excluding an aromatic vinyl compound and an alicyclic vinyl compound) in an amount of 2 mol% or more and having an aromatic vinyl compound and / or an unsaturated bond in the ring [ a ′] by polymerizing the monomer mixture [b ′] contained in an amount smaller than the proportion in the aromatic vinyl compound and / or the repeating unit derived from the alicyclic vinyl compound and the repeating derived from the vinyl monomer. A polymer block [B ′] containing units is obtained. After obtaining the block copolymer having the polymer block [A ′] and the polymer block [B ′] through at least these steps, the aromatic ring and / or the aliphatic ring of the block copolymer is hydrogenated. Turn into.
 (2)第二の方法としては、まず、飽和脂環族ビニル化合物を50モル%以上含有するモノマー混合物〔a〕を重合して、飽和脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック〔A〕を得る。ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を2モル%以上含有し、且つ、飽和脂環族ビニル化合物をモノマー混合物〔a〕中の割合よりも少ない割合の量で含有するモノマー混合物〔b〕を重合して、飽和脂環族ビニル化合物由来の繰り返し単位とビニル系モノマー由来の繰り返し単位を含有する重合体ブロック〔B〕を得る。これらの工程を少なくとも経て、前記重合体ブロック〔A〕および重合体ブロック〔B〕を有するブロック共重合体を得る。 (2) As a second method, first, a polymer containing a repeating unit derived from a saturated alicyclic vinyl compound by polymerizing a monomer mixture [a] containing 50 mol% or more of a saturated alicyclic vinyl compound. A block [A] is obtained. Contains 2 mol% or more of vinyl-based monomers (excluding aromatic vinyl compounds and alicyclic vinyl compounds), and contains saturated alicyclic vinyl compounds in a proportion smaller than the proportion in the monomer mixture [a]. The monomer mixture [b] is polymerized to obtain a polymer block [B] containing a repeating unit derived from a saturated alicyclic vinyl compound and a repeating unit derived from a vinyl monomer. At least through these steps, a block copolymer having the polymer block [A] and the polymer block [B] is obtained.
 上記方法の中で、モノマーの入手容易性、重合収率、重合体ブロック〔B’〕への繰り返し単位〔1〕の導入のし易さ等の観点から、上記(1)の方法がより好ましい。 Among the above methods, the method (1) is more preferable from the viewpoints of availability of monomers, polymerization yield, ease of introduction of the repeating unit [1] into the polymer block [B ′], and the like. .
 上記(1)の方法における芳香族ビニル化合物の具体例としては、スチレン、α-メチルスチレン、α-エチルスチレン、α-プロピルスチレン、α-イソプロピルスチレン、α-t-ブチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、4-フェニルスチレン等や、これらにヒドロキシル基、アルコキシ基などの置換基を有するもの等が挙げられる。中でもスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン等が好ましい。 Specific examples of the aromatic vinyl compound in the method (1) include styrene, α-methyl styrene, α-ethyl styrene, α-propyl styrene, α-isopropyl styrene, α-t-butyl styrene, 2-methyl styrene. 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, mono Examples thereof include fluorostyrene, 4-phenylstyrene and the like, and those having a substituent such as a hydroxyl group or an alkoxy group. Of these, styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene and the like are preferable.
 上記(1)方法における不飽和脂環族ビニル系化合物の具体例としては、シクロヘキセニルエチレン、α-メチルシクロヘキセニルエチレン、およびα-t-ブチルシクロヘキセニルエチレン等や、これらにハロゲン基、アルコキシ基、またはヒドロキシル基等の置換基を有するもの等が挙げられる。 Specific examples of the unsaturated alicyclic vinyl compound in the method (1) include cyclohexenylethylene, α-methylcyclohexenylethylene, α-t-butylcyclohexenylethylene, and the like, and a halogen group and an alkoxy group. Or those having a substituent such as a hydroxyl group.
 これらの芳香族ビニル化合物および脂環族ビニル系化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることもできるが、本発明においては、モノマー混合物〔a’〕および〔b’〕のいずれにも、芳香族ビニル化合物を用いるのが好ましく、中でも、スチレンまたはα-メチルスチレンを用いるのがより好ましい。 These aromatic vinyl compounds and alicyclic vinyl compounds can be used alone or in combination of two or more. In the present invention, any one of the monomer mixtures [a ′] and [b ′] In addition, it is preferable to use an aromatic vinyl compound, and it is more preferable to use styrene or α-methylstyrene.
 上記方法で使用するビニル系モノマーには、鎖状ビニル化合物および鎖状共役ジエン化合物が含まれる。 The vinyl monomer used in the above method includes a chain vinyl compound and a chain conjugated diene compound.
 鎖状ビニル化合物の具体例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン等の鎖状オレフィンモノマー等が挙げられ、中でも、鎖状オレフィンモノマーが好ましく、エチレン、プロピレン、1-ブテンが最も好ましい。 Specific examples of the chain vinyl compound include chain olefin monomers such as ethylene, propylene, 1-butene, 1-pentene, and 4-methyl-1-pentene. Among these, chain olefin monomers are preferable, and ethylene Most preferred are propylene and 1-butene.
 鎖状共役ジエンは、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、および1,3-ヘキサジエン等が挙げられる。これら鎖状ビニル化合物および鎖状共役ジエンの中でも鎖状共役ジエンが好ましく、ブタジエン、イソプレンが特に好ましい。これらの鎖状ビニル化合物および鎖状共役ジエンは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of the chain conjugated diene include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. Of these chain vinyl compounds and chain conjugated dienes, chain conjugated dienes are preferable, and butadiene and isoprene are particularly preferable. These chain vinyl compounds and chain conjugated dienes can be used alone or in combination of two or more.
 上記のモノマーを含有するモノマー混合物を重合する場合、ラジカル重合、アニオン重合、カチオン重合等のいずれの方法で重合反応を行ってもよいが、アニオン重合によるのが好ましく、不活性溶媒の存在下にリビングアニオン重合を行うのが最も好ましい。 When polymerizing a monomer mixture containing the above monomers, the polymerization reaction may be carried out by any method such as radical polymerization, anionic polymerization, cationic polymerization, etc., but preferably by anionic polymerization in the presence of an inert solvent. Most preferably, living anionic polymerization is performed.
 アニオン重合は、重合開始剤の存在下、通常0℃~200℃、好ましくは20℃~100℃、特に好ましくは20℃~80℃の温度範囲において行う。開始剤としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウムなどのモノ有機リチウム、ジリチオメタン、1,4-ジオブタン、1,4-ジリチオー2-エチルシクロヘキサン等の多官能性有機リチウム化合物などが使用可能である。 Anionic polymerization is usually carried out in the presence of a polymerization initiator in a temperature range of 0 ° C. to 200 ° C., preferably 20 ° C. to 100 ° C., particularly preferably 20 ° C. to 80 ° C. Examples of the initiator include monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium and phenyllithium, dilithiomethane, 1,4-diobtan, 1,4-dilithio-2-ethylcyclohexane. A polyfunctional organolithium compound such as can be used.
 使用する不活性溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類等が挙げられ、中でも脂肪族炭化水素類や脂環式炭化水素類を用いると、水素化反応にも不活性な溶媒としてそのまま使用することができる。これらの溶媒は、それぞれ単独で、或いは2種類以上を組み合わせて使用でき、通常、全使用モノマー100質量部に対して200~10,000質量部となるような割合で用いられる。 Examples of the inert solvent used include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, and isooctane; cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, decalin And alicyclic hydrocarbons such as benzene, toluene and the like, and the use of aliphatic hydrocarbons and alicyclic hydrocarbons is an inert solvent for hydrogenation reaction. Can be used as is. These solvents can be used alone or in combination of two or more, and are usually used at a ratio of 200 to 10,000 parts by mass with respect to 100 parts by mass of all the monomers used.
 それぞれの重合体ブロックを重合する際には、各ブロック内で、或る1成分の連鎖が長くなるのを防止するために、重合促進剤やランダマイザーなどを使用することができる。特に重合反応をアニオン重合により行う場合には、ルイス塩基化合物などをランダマイザーとして使用できる。ルイス塩基化合物の具体例としては、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジフェニルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルフェニルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物;カリウム-t-アミルオキシド、カリウム-t-ブチルオキシド等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物が挙げられる。これらのルイス塩基化合物は、それぞれ単独で、或いは2種類以上を組み合わせて使用することができる。 When polymerizing each polymer block, a polymerization accelerator, a randomizer, or the like can be used in order to prevent a chain of a certain component from becoming long in each block. In particular, when the polymerization reaction is performed by anionic polymerization, a Lewis base compound or the like can be used as a randomizer. Specific examples of Lewis base compounds include ether compounds such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine, etc. Tertiary amine compounds; alkali metal alkoxide compounds such as potassium-t-amyl oxide and potassium-t-butyl oxide; and phosphine compounds such as triphenylphosphine. These Lewis base compounds can be used alone or in combination of two or more.
 リビングアニオン重合によりブロック共重合体を得る方法は、従来公知の、逐次付加重合反応法およびカップリング法などが挙げられるが、本発明においては、逐次付加重合反応法を用いるのが好ましい。 Examples of the method for obtaining a block copolymer by living anionic polymerization include conventionally known sequential addition polymerization reaction method and coupling method. In the present invention, it is preferable to use sequential addition polymerization reaction method.
 逐次付加重合反応法により、重合体ブロック〔A’〕および重合体ブロック〔B’〕を有する上記ブロック共重合体を得る場合には、重合体ブロック〔A’〕を得る工程と、重合体ブロック〔B’〕を得る工程は、順次連続して行われる。具体的には、不活性溶媒中で、上記リビングアニオン重合触媒存在下、モノマー混合物〔a’〕を重合して重合体ブロック〔A’〕を得、引き続きその反応系にモノマー混合物〔b’〕を添加して重合を続け、重合体ブロック〔A’〕とつながった重合体ブロック〔B’〕を得る。さらに所望に応じて、再びモノマー混合物〔a’〕を添加して重合し、重合体ブロック〔A’〕をつなげてトリブロック体とし、さらには再びモノマー混合物〔b’〕を添加して重合し、重合体ブロック〔B’〕をつなげたテトラブロック体を得る。 When the block copolymer having the polymer block [A ′] and the polymer block [B ′] is obtained by the sequential addition polymerization reaction method, a step of obtaining the polymer block [A ′], and a polymer block The process of obtaining [B ′] is performed sequentially and continuously. Specifically, in the presence of the living anion polymerization catalyst in an inert solvent, the monomer mixture [a ′] is polymerized to obtain a polymer block [A ′], and then the monomer mixture [b ′] is added to the reaction system. To continue the polymerization to obtain a polymer block [B ′] connected to the polymer block [A ′]. Furthermore, if desired, the monomer mixture [a ′] is added again for polymerization, the polymer block [A ′] is connected to form a triblock body, and the monomer mixture [b ′] is added again for polymerization. Then, a tetrablock body in which the polymer blocks [B ′] are connected is obtained.
 得られたブロック共重合体は、例えばスチームストリッピング法、直接脱溶媒法、アルコール凝固法等の公知の方法によって回収する。重合反応において、水素化反応で不活性な溶媒を用いた場合には、重合溶液そのままを水素化反応工程にも使用することができるので、重合溶液からブロック共重合体を回収しなくてもよい。 The obtained block copolymer is recovered by a known method such as a steam stripping method, a direct desolvation method, or an alcohol coagulation method. In the polymerization reaction, when an inert solvent is used in the hydrogenation reaction, the polymerization solution can be used as it is in the hydrogenation reaction step, so that the block copolymer need not be recovered from the polymerization solution. .
 上記(1)の方法において得られる、重合体ブロック〔A’〕および重合体ブロック〔B’〕を有するブロック共重合体(以下、水素化前ブロック共重合体という。)のうち下記の構造の繰り返し単位を有するものが好ましい。 Of the block copolymer having a polymer block [A ′] and a polymer block [B ′] obtained in the method (1) (hereinafter referred to as a pre-hydrogenation block copolymer), it has the following structure: Those having a repeating unit are preferred.
 好ましい水素化前ブロック共重合体を構成する重合体ブロック〔A’〕は、下記式(4)で表される繰り返し単位〔4〕を50モル%以上含有する重合体ブロックである。 The polymer block [A ′] constituting the preferred pre-hydrogenation block copolymer is a polymer block containing 50 mol% or more of the repeating unit [4] represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R16は水素原子、または炭素数1~20のアルキル基を表し、R17-R21は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基またはハロゲン基である。尚、上記〔R17-R21〕は、R17、R18、・・およびR21を表す。)
 また、好ましい重合体ブロック〔B’〕は、前記繰り返し単位〔4〕を必ず含み、下記式(5)で表される繰り返し単位〔5〕および下記式(6)で表される繰り返し単位〔6〕のいずれかを少なくとも1つ含む重合体ブロックである。また、重合体ブロック〔A’〕中の繰り返し単位〔4〕のモル分率をa’、ブロック〔B’〕中の繰り返し単位〔4〕のモル分率をb’とした場合、a’>b’である。
(Wherein R 16 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 17 to R 21 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number, 1 is an alkoxy group or a halogen group to 20. Note that the [R 17 -R 21] represents an R 17, R 18, · · and R 21.)
A preferred polymer block [B ′] necessarily contains the repeating unit [4], the repeating unit [5] represented by the following formula (5) and the repeating unit [6] represented by the following formula (6). ] A polymer block containing at least one of the above. Further, when the mole fraction of the repeating unit [4] in the polymer block [A ′] is a ′ and the mole fraction of the repeating unit [4] in the block [B ′] is b ′, a ′> b ′.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、R22は水素原子、または炭素数1~20のアルキル基を表す。) (In the formula, R 22 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R23は水素原子、または炭素数1~20のアルキル基を表し、R24は水素原子、炭素数1~20のアルキル基またはアルケニル基を表す。)
 さらに、ブロック〔B’〕中には、下記式(Y)で示される繰り返し単位〔Y〕を含有していてもよい。
(In the formula, R 23 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 24 represents a hydrogen atom, an alkyl group or alkenyl group having 1 to 20 carbon atoms.)
Furthermore, the block [B ′] may contain a repeating unit [Y] represented by the following formula (Y).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、R28は水素原子、または炭素数1~20のアルキル基を表し、R29はニトリル基、アルコキシカルボニル基、ホルミル基、ヒドロキシカルボニル基、またはハロゲン基を表し、R30は水素原子を表す。または、R29とR30とは相互に結合して、酸無水物基、またはイミド基を形成してもよい。)
 さらに、好ましい水素化前ブロック共重合体は、ブロック〔A’〕を構成する全繰り返し単位のモル数をma’、ブロック〔B’〕を構成する全繰り返し単位のモル数をmb’とした場合に、その比(ma’:mb’)が、5:95~95:5、より好ましくは30:70~95:5、特に好ましくは40:60~90:10である。(ma’:mb’)が上記範囲にある場合に、機械的強度や耐熱性に優れる。
(Wherein R 28 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R 29 represents a nitrile group, an alkoxycarbonyl group, a formyl group, a hydroxycarbonyl group, or a halogen group, and R 30 represents a hydrogen atom. Or R 29 and R 30 may be bonded to each other to form an acid anhydride group or an imide group.)
Furthermore, a preferable block copolymer before hydrogenation is a case where the number of moles of all repeating units constituting the block [A ′] is ma ′ and the number of moles of all repeating units constituting the block [B ′] is mb ′. The ratio (ma ′: mb ′) is 5:95 to 95: 5, more preferably 30:70 to 95: 5, and particularly preferably 40:60 to 90:10. When (ma ′: mb ′) is in the above range, the mechanical strength and heat resistance are excellent.
 好ましい水素化前ブロック共重合体の分子量は、THFを溶媒としてGPCにより測定されるポリスチレン(またはポリイソプレン)換算Mwで、12,000~400,000、より好ましくは19,000~350,000、特に好ましくは25,000~300,000の範囲である。ブロック共重合体のMwが過度に小さいと、機械的強度が低下し、過度に大きいと、水素添加率が低下する。 The molecular weight of the block copolymer before hydrogenation is preferably 12,000 to 400,000, more preferably 19,000 to 350,000, in terms of polystyrene (or polyisoprene) equivalent Mw measured by GPC using THF as a solvent. Particularly preferred is a range of 25,000 to 300,000. When the Mw of the block copolymer is excessively small, the mechanical strength decreases, and when it is excessively large, the hydrogenation rate decreases.
 好ましい水素化前のブロック共重合体の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(またはポリイソプレン)換算のMwとMnとの比(Mw/Mn)で、5以下、より好ましくは4以下、特に好ましくは3以下の範囲である。Mw/Mnがこの範囲にあると、水素添加率が向上する。 The molecular weight distribution of the block copolymer before hydrogenation can be appropriately selected depending on the purpose of use, but is the ratio (Mw / Mn) of Mw and Mn in terms of polystyrene (or polyisoprene) measured by GPC, It is 5 or less, more preferably 4 or less, and particularly preferably 3 or less. When Mw / Mn is in this range, the hydrogenation rate is improved.
 好ましい水素化前のブロック共重合体のTgは、使用目的に応じて適宜選択されればよいが、DSCによる高温側の測定値で、70℃~150℃、より好ましくは80℃~140℃、特に好ましくは90℃~130℃である。 The Tg of the block copolymer before hydrogenation may be appropriately selected according to the purpose of use, but is 70 ° C to 150 ° C, more preferably 80 ° C to 140 ° C, as measured on the high temperature side by DSC. Particularly preferred is 90 ° C to 130 ° C.
 上記の、水素化前のブロック共重合体の、芳香環やシクロアルケン環などの不飽和環の炭素-炭素不飽和結合、および主鎖や側鎖の不飽和結合等を水素化する方法および反応形態に特別な制限はなく、公知の方法にしたがって行えばよいが、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましく、例えば、有機溶媒中、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム、およびレニウムから選ばれる少なくとも1つの金属を含む触媒を用いて行う方法が挙げられる。水素化触媒は、不均一系触媒、均一系触媒のいずれも使用可能である。 Method and reaction for hydrogenating the above-mentioned block copolymer before hydrogenation, such as carbon-carbon unsaturated bonds of unsaturated rings such as aromatic rings and cycloalkene rings, and unsaturated bonds of main chains and side chains There is no particular limitation on the form, and it may be performed according to a known method. However, a hydrogenation method that can increase the hydrogenation rate and has a low polymer chain scission reaction is preferable. For example, in an organic solvent, nickel, cobalt, iron, Examples thereof include a method performed using a catalyst containing at least one metal selected from titanium, rhodium, palladium, platinum, ruthenium, and rhenium. As the hydrogenation catalyst, either a heterogeneous catalyst or a homogeneous catalyst can be used.
 不均一系触媒は、金属または金属化合物のままで、または適当な担体に担持して用いることができる。担体としては、例えば、活性炭、シリカ、アルミナ、炭化カルシウム、チタニア、マグネシア、ジルコニア、ケイソウ土、炭化珪素等が挙げられ、触媒の担持量は、好ましくは0.01~80質量%、より好ましくは0.05~60質量%の範囲である。均一系触媒は、ニッケル、コバルト、チタンまたは鉄化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒、またはロジウム、パラジウム、白金、ルテニウム、レニウム等の有機金属錯体触媒を用いることができる。ニッケル、コバルト、チタンまたは鉄化合物としては、例えば、各種金属のアセチルアセトン塩、ナフテン酸塩、シクロペンタジエニル化合物、シクロペンタジエニルジクロロ化合物等が用いられる。有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等のハロゲン化アルミニウム、ジイソブチルアルミニウムハイドライド等の水素化アルキルアルミニウム等が好適に用いられる。 The heterogeneous catalyst can be used in the form of a metal or metal compound or supported on a suitable carrier. Examples of the support include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide and the like, and the supported amount of the catalyst is preferably 0.01 to 80% by mass, more preferably. It is in the range of 0.05 to 60% by mass. The homogeneous catalyst is a catalyst in which a nickel, cobalt, titanium or iron compound and an organometallic compound (for example, an organoaluminum compound or an organolithium compound) are combined, or an organometallic complex catalyst such as rhodium, palladium, platinum, ruthenium or rhenium. Can be used. As the nickel, cobalt, titanium, or iron compound, for example, acetylacetone salt, naphthenic acid salt, cyclopentadienyl compound, cyclopentadienyl dichloro compound and the like of various metals are used. As the organic aluminum compound, alkylaluminum such as triethylaluminum and triisobutylaluminum, aluminum halide such as diethylaluminum chloride and ethylaluminum dichloride, alkylaluminum hydride such as diisobutylaluminum hydride and the like are preferably used.
 有機金属錯体触媒の例としては、上記各金属のγ-ジクロロ-π-ベンゼン錯体、ジクロロ-トリス(トリフェニルホスフィン)錯体、ヒドリド-クロロ-トリフェニルホスフィン錯体等の金属錯体が使用される。これらの水素化触媒は、それぞれ単独で、或いは2種類以上組み合わせて使用することができ、その使用量は、重合体100質量部に対して、好ましくは0.01~100質量部、より好ましくは0.05~50質量部、特に好ましくは0.1~30質量部である。 Examples of organometallic complex catalysts include metal complexes such as γ-dichloro-π-benzene complexes, dichloro-tris (triphenylphosphine) complexes, hydrido-chloro-triphenylphosphine complexes of the above metals. These hydrogenation catalysts can be used alone or in combination of two or more, and the amount used is preferably 0.01 to 100 parts by weight, more preferably 100 parts by weight of the polymer. 0.05 to 50 parts by mass, particularly preferably 0.1 to 30 parts by mass.
 水素化反応は、通常10℃~250℃であるが、水素化率を高くでき、且つ、重合体鎖切断反応を小さくできるという理由から、好ましくは50℃~200℃、より好ましくは80℃~180℃である。また水素圧力は、好ましくは0.1MPa~30MPaであるが、上記理由に加え、操作性の観点から、より好ましくは1MPa~20MPa、特に好ましくは2MPa~10MPaである。 The hydrogenation reaction is usually 10 ° C. to 250 ° C., but is preferably 50 ° C. to 200 ° C., more preferably 80 ° C. to 80 ° C., because the hydrogenation rate can be increased and the polymer chain scission reaction can be reduced. 180 ° C. The hydrogen pressure is preferably 0.1 MPa to 30 MPa, but in addition to the above reasons, from the viewpoint of operability, it is more preferably 1 MPa to 20 MPa, and particularly preferably 2 MPa to 10 MPa.
 このようにして得られた、ブロック共重合体の水素化率は、1H-NMRによる測定において、主鎖および側鎖の炭素-炭素不飽和結合、芳香環やシクロアルケン環の炭素-炭素不飽和結合のいずれも、好ましくは90%以上、より好ましくは95%以上、特に好ましくは97%以上である。水素化率が低いと、得られる共重合体の低複屈折性、熱安定性等が低下する。 The hydrogenation rate of the block copolymer obtained in this way is determined by 1H-NMR as determined by carbon-carbon unsaturated bonds in the main chain and side chains, and carbon-carbon unsaturation in aromatic rings and cycloalkene rings. Any of the bonds is preferably 90% or more, more preferably 95% or more, and particularly preferably 97% or more. When the hydrogenation rate is low, the low birefringence, thermal stability, etc. of the resulting copolymer are lowered.
 水素化反応終了後、ブロック共重合体は、例えば濾過、遠心分離等の方法により反応溶液から水素化触媒を除去した後、溶媒を直接乾燥により除去する方法、反応溶液を、ブロック共重合体にとっての貧溶媒中に注ぎ、凝固させる方法等によって回収できる。
[1-2.1B]樹脂材料に対する配合剤
 上記の本発明における重合体には、必要に応じて各種配合剤を配合することができる。ブロック共重合体に配合することができる配合剤については、格別限定はないが、酸化防止剤、熱安定剤、耐光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料や顔料などの着色剤;帯電防止剤、難燃剤、フィラーなどが挙げられる。これらの配合剤は、単独で、あるいは2種以上を組み合せて用いることができ、その配合量は本発明の効果を損なわない範囲で適宜選択される。
After completion of the hydrogenation reaction, the block copolymer is prepared by removing the hydrogenation catalyst from the reaction solution by a method such as filtration or centrifugation, and then removing the solvent directly by drying. It can be recovered by a method such as pouring into a poor solvent and solidifying.
[1-2.1B] Compounding Agents for Resin Materials Various compounding agents can be blended in the polymer of the present invention as necessary. The compounding agent that can be incorporated into the block copolymer is not particularly limited, but stabilizers such as antioxidants, heat stabilizers, light-resistant stabilizers, weather-resistant stabilizers, ultraviolet absorbers, and near-infrared absorbers; Examples thereof include resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, flame retardants, and fillers. These compounding agents can be used alone or in combination of two or more, and the compounding amount is appropriately selected within a range not impairing the effects of the present invention.
 本発明においては、重合体に、上記配合剤の中でも、酸化防止剤、紫外線吸収剤、および耐光安定剤を配合するのが好ましい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、透明性、耐熱性等を低下させることなく、成形時の酸化劣化等によるレンズの着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明に係る重合体100質量部に対して好ましくは0.001~5質量部、より好ましくは0.01~1質量部である。 In the present invention, among the above-mentioned compounding agents, it is preferable to blend an antioxidant, an ultraviolet absorber, and a light-resistant stabilizer with the polymer. Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. Among them, phenolic antioxidants, particularly alkyl-substituted phenolic antioxidants are preferable. By blending these antioxidants, it is possible to prevent lens coloring and strength reduction due to oxidative deterioration during molding without lowering transparency, heat resistance and the like. These antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention, but the polymer 100 according to the present invention. The amount is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass with respect to parts by mass.
 紫外線吸収剤としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノントリヒドレート、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、4-ドデシロキシ-2-ヒドロキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタンなどのベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5’-メチル-フェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミディルメチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2’-ヒドロキシ-3’,5’-ジ-第三-ブチル-フェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-第三-ブチル-5’-メチル-フェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-第三-アミルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕などのベンゾトリアゾール系紫外線吸収剤などが挙げられる。これらの中でも、2-(2’-ヒドロキシ-5’-メチル-フェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミディルメチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノールなどが耐熱性、低揮発性などの観点から好ましい。 Examples of ultraviolet absorbers include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2 -Hydroxy-4-methoxy-2'-benzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone trihydrate, 2-hydroxy-4-n-octoxybenzophenone, 2,2 ', 4,4'- Benzophenone ultraviolet absorbers such as tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane; 2- (2′-hydroxy-5′-methyl- Phenyl) benzotriazole, 2- (2 -Benzotriazol-2-yl) -4-methyl-6- (3,4,5,6-tetrahydrophthalimidylmethyl) phenol, 2- (2H-benzotriazol-2-yl) -4-6-bis (1-methyl-1-phenylethyl) phenol, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) benzotriazole, 2- (2′-hydroxy-3′-second) 3-butyl-5′-methyl-phenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5 ′ -Di-tertiary-amylphenyl) benzotriazole, 2- [2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methyl Benzotriazole UV absorbers such as [phenyl] benzotriazole, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol] Etc. Among these, 2- (2′-hydroxy-5′-methyl-phenyl) benzotriazole, 2- (2H-benzotriazol-2-yl) -4-methyl-6- (3,4,5,6- Tetrahydrophthalimidylmethyl) phenol, 2- (2H-benzotriazol-2-yl) -4-6-bis (1-methyl-1-phenylethyl) phenol and the like are preferable from the viewpoints of heat resistance and low volatility. .
 耐光安定剤としては、ベンゾフェノン系耐光安定剤、ベンゾトリアゾール系耐光安定剤、ヒンダードアミン系耐光安定剤などが挙げられるが、本発明においては、レンズの透明性、耐着色性等の観点から、ヒンダードアミン系耐光安定剤を用いるのが好ましい。ヒンダードアミン系耐光安定剤(以下、HALSと記す。)の中でも、THFを溶媒として用いたGPCにより測定したポリスチレン換算のMnが1000~10000であるものが好ましく、2000~5000であるものがより好ましく、2800~3800であるものが特に好ましい。Mnが小さすぎると、該HALSを重合体に加熱溶融混練して配合する際に、揮発のため所定量を配合できなかったり、射出成形等の加熱溶融成形時に発泡やシルバーストリークが生じるなど加工安定性が低下する。また、ランプを点灯させた状態でレンズを長時間使用する場合に、レンズから揮発性成分がガスとなって発生する。逆にMnが大き過ぎると、ブロック共重合体への分散性が低下して、レンズの透明性が低下し、耐光性改良の効果が低減する。したがって、本発明においては、HALSのMnを上記範囲とすることにより加工安定性、低ガス発生性、透明性に優れたレンズが得られる。 Examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, etc., but in the present invention, from the viewpoint of lens transparency, color resistance, etc., hindered amine-based It is preferable to use a light-resistant stabilizer. Among hindered amine light-resistant stabilizers (hereinafter referred to as HALS), those having a polystyrene-equivalent Mn measured by GPC using THF as a solvent are preferably 1000 to 10,000, more preferably 2000 to 5000, Those of 2800 to 3800 are particularly preferred. When Mn is too small, when HALS is blended by heating and kneading into a polymer, a predetermined amount cannot be blended due to volatilization, or foaming or silver streak occurs during heating and melt molding such as injection molding. Sex is reduced. Further, when the lens is used for a long time with the lamp turned on, a volatile component is generated as a gas from the lens. Conversely, if Mn is too large, the dispersibility in the block copolymer is lowered, the transparency of the lens is lowered, and the effect of improving light resistance is reduced. Therefore, in the present invention, a lens having excellent processing stability, low gas generation and transparency can be obtained by setting the HALS Mn within the above range.
 このようなHALSの具体例としては、N,N’,N’’,N’’’-テトラキス-〔4,6-ビス- {ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ}-トリアジン-2-イル〕-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミンと1,3,5-トリアジンとN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、1,6-ヘキサンジアミン-N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)とモルフォリン-2,4,6-トリクロロ-1,3,5-トリアジンとの重縮合物、ポリ〔(6-モルフォリノ-s-トリアジン-2,4-ジイル)(2,2,6,6,-テトラメチル-4-ピペリジル)イミノ〕-ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕などの、ピペリジン環がトリアジン骨格を介して複数結合した高分子量HALS;コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールと3,9-ビス(2-ヒドロキシ-1,1-ジメチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンとの混合エステル化物などの、ピペリジン環がエステル結合を介して結合した高分子量HALSなどが挙げられる。 Specific examples of such HALS include N, N ′, N ″, N ′ ″-tetrakis- [4,6-bis- {butyl- (N-methyl-2,2,6,6-tetra Methylpiperidin-4-yl) amino} -triazin-2-yl] -4,7-diazadecane-1,10-diamine, dibutylamine and 1,3,5-triazine and N, N′-bis (2,2 , 6,6-Tetramethyl-4-piperidyl) butylamine, poly [{(1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl } {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], 1,6-hexanediamine- N, N'-bis (2,2,6,6-tetramethyl 4-piperidyl) and a polycondensate of morpholine-2,4,6-trichloro-1,3,5-triazine, poly [(6-morpholino-s-triazine-2,4-diyl) (2,2 , 6,6, -tetramethyl-4-piperidyl) imino] -hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]] and other piperidine rings via a triazine skeleton. Bound high molecular weight HALS; polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 1,2,3,4-butanetetracarboxylic acid and 1,2 , 2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Such ester, piperidine ring and the like high molecular weight HALS attached through an ester bond.
 これらの中でも、ジブチルアミンと1,3,5-トリアジンとN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物などのMnが2,000~5,000のものが好ましい。 Among these, polycondensates of dibutylamine, 1,3,5-triazine and N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [{(1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2 , 2,6,6-tetramethyl-4-piperidyl) imino}], a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and the like. 5,000 to 5,000 are preferred.
 本発明に係るブロック共重合体に対する上記紫外線吸収剤およびHALSの配合量は、重合体100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.02~15質量部、特に好ましくは0.05~10質量部である。添加量が少なすぎると耐光性の改良効果が十分に得られず、屋外で長時間使用する場合等に着色が生じる。一方、HALSの配合量が多すぎると、その一部がガスとなって発生したり、重合体への分散性が低下して、レンズの透明性が低下する。 The blending amount of the UV absorber and HALS with respect to the block copolymer according to the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, with respect to 100 parts by mass of the polymer. Particularly preferred is 0.05 to 10 parts by mass. If the amount added is too small, the effect of improving light resistance cannot be obtained sufficiently, and coloring occurs when used outdoors for a long time. On the other hand, when the blending amount of HALS is too large, a part of the HALS is generated as a gas, or the dispersibility in the polymer is lowered, and the transparency of the lens is lowered.
 また、本発明に係る重合体に、最も低いガラス転移温度が30℃以下である軟質重合体を配合することにより、透明性、耐熱性、機械的強度などの諸特性を低下させることなく、長時間の高温高湿度環境下での白濁を防止できる。 In addition, by blending the polymer according to the present invention with a soft polymer having the lowest glass transition temperature of 30 ° C. or less, it is possible to maintain long properties without deteriorating various properties such as transparency, heat resistance, and mechanical strength. It can prevent cloudiness in high temperature and high humidity environment.
 上記軟質重合体の具体例としては、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、エチレン-プロピレン-ジエン共重合体(EPDM)などのオレフィン系軟質重合体;ポリイソブチレン、イソブチレン-イソプレンゴム、イソブチレン-スチレン共重合体などのイソブチレン系軟質重合体;ポリブタジエン、ポリイソプレン、ブタジエン-スチレンランダム共重合体、イソプレン-スチレンランダム共重合体、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ブタジエン-スチレン・ブロック共重合体、スチレン-ブタジエン-スチレン・ブロック共重合体、イソプレン-スチレン・ブロック共重合体、スチレン-イソプレン-スチレン・ブロック共重合体などのジエン系軟質重合体;ジメチルポリシロキサン、ジフェニルポリシロキサンなどのケイ素含有軟質重合体;ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレートなどのアクリル系軟質重合体;ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;フッ化ビニリデン系ゴム、四フッ化エチレン-プロピレンゴムなどのフッ素系軟質重合体;天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性反応により官能基を導入したものでもよい。 Specific examples of the soft polymer include olefin-based soft polymers such as polyethylene, polypropylene, ethylene-α-olefin copolymer, ethylene-propylene-diene copolymer (EPDM); polyisobutylene, isobutylene-isoprene rubber, Isobutylene-based soft polymers such as isobutylene-styrene copolymer; polybutadiene, polyisoprene, butadiene-styrene random copolymer, isoprene-styrene random copolymer, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer Butadiene-styrene block copolymer, styrene-butadiene-styrene block copolymer, isoprene-styrene block copolymer, styrene-isoprene-styrene block copolymer, etc. Soft polymers containing silicon; soft polymers containing silicon such as dimethylpolysiloxane and diphenylpolysiloxane; soft acrylic polymers such as polybutyl acrylate, polybutyl methacrylate, and polyhydroxyethyl methacrylate; polyethylene oxide, polypropylene oxide, epichlorohydrin rubber, etc. Epoxy-based soft polymers; fluorine-based soft polymers such as vinylidene fluoride rubber and tetrafluoroethylene-propylene rubber; natural rubber, polypeptide, protein, polyester-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, polyamide And other soft polymers such as thermoplastic elastomers. These soft polymers may have a cross-linked structure or may have a functional group introduced by a modification reaction.
 上記軟質重合体の中でもジエン系軟質重合体が好ましく、特に該軟質重合体の炭素-炭素不飽和結合を水素化した水素化物が、ゴム弾性、機械的強度、柔軟性、および分散性の点で優れる。軟質重合体の配合量は、化合物の種類に応じて異なるが、一般に、配合量が多すぎれば、重合体のガラス転移温度や透明性が大きく低下し、レンズとして使用することができない。また配合量が少なすぎれば、高温高湿下において成形物の白濁を生じる場合がある。配合量は、ブロック共重合体100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.02~5質量部、特に好ましくは0.05~2質量部である。 Among the above-mentioned soft polymers, diene-based soft polymers are preferable. Particularly, hydrides obtained by hydrogenating carbon-carbon unsaturated bonds of the soft polymers are advantageous in terms of rubber elasticity, mechanical strength, flexibility, and dispersibility. Excellent. The blending amount of the soft polymer varies depending on the type of the compound, but generally, if the blending amount is too large, the glass transition temperature and the transparency of the polymer are greatly lowered and cannot be used as a lens. On the other hand, if the blending amount is too small, the molded product may become clouded under high temperature and high humidity. The blending amount is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass, and particularly preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the block copolymer.
 本発明で用いる重合体に上記配合剤を配合して重合体組成物を形成する方法は、例えば、ミキサー、二軸混錬機、ロール、ブラベンダー、押出機などでブロック共重合体を溶融状態にして配合剤と混練する方法、適当な溶剤に溶解して分散させ凝固する方法などが挙げられる。二軸混練機を用いる場合、混錬後に通常は溶融状態でストランド状に押し出し、ペレタイザーにてペレット状にカットして用いられることが多い。
[1-2.2]フッ素化膜55
 フッ素化膜55は成形部50に対しフッ素化処理が実行されることで形成された層であり、対物レンズ37の表面反射率を低下させる機能を有している。フッ素化膜55はd線に対する屈折率が1.35~1.45となっており、当該屈折率の値は表面反射率により測定することができる。フッ素化膜55の層厚(成形部50の表面37aから内部への厚み)は好ましくは50~300nmである。層厚が300nmを超えると、干渉縞の影響が光の波長に大きく依存し、その上に反射防止膜60を形成してもその機能を発揮させるのが難しくなり、逆に層厚が50nm未満であると、フッ素化膜55の機能を十分に発揮させるのが難しくなるからである。
[1-2.3]反射防止膜60
 反射防止膜60は、無機材料から構成されており、基本的には2層構造を有している。フッ素化膜55に対し直に第1層61が形成されており、その上に第2層62が形成されている。
The method of forming the polymer composition by blending the above-mentioned compounding agent with the polymer used in the present invention is, for example, a state where the block copolymer is melted with a mixer, a twin-screw kneader, a roll, a Brabender, an extruder, or the like. And a method of kneading with a compounding agent, a method of dissolving and dispersing in an appropriate solvent and solidifying. When a twin-screw kneader is used, it is often used after being kneaded and usually extruded in the form of a strand in a molten state and cut into a pellet by a pelletizer.
[1-2.2] Fluorinated film 55
The fluorinated film 55 is a layer formed by performing a fluorination process on the molded part 50, and has a function of reducing the surface reflectance of the objective lens 37. The refractive index of the fluorinated film 55 with respect to d-line is 1.35 to 1.45, and the value of the refractive index can be measured by the surface reflectance. The layer thickness of the fluorinated film 55 (thickness from the surface 37a to the inside of the molding part 50) is preferably 50 to 300 nm. When the layer thickness exceeds 300 nm, the influence of interference fringes greatly depends on the wavelength of light, and even if the antireflection film 60 is formed thereon, it becomes difficult to exert its function, and conversely, the layer thickness is less than 50 nm. This is because it is difficult to sufficiently exert the function of the fluorinated film 55.
[1-2.3] Antireflection film 60
The antireflection film 60 is made of an inorganic material and basically has a two-layer structure. A first layer 61 is formed directly on the fluorinated film 55, and a second layer 62 is formed thereon.
 第1層61は屈折率1.7以上の高屈折率材料から構成された層であり、好ましくはTa,TaとTiOとの混合物、ZrO,ZrOとTiOとの混合物のいずれかで構成されている。第1層61はTiO,Nb,HfOで構成されてもよい。第2層62は屈折率1.7未満の低屈折率材料から構成された層であり、好ましくはSiO,MgFから構成されている。 The first layer 61 is a layer made of a high refractive index material having a refractive index of 1.7 or more, and preferably Ta 2 O 5 , a mixture of Ta 2 O 5 and TiO 2 , ZrO 2 , ZrO 2 and TiO 2. And is composed of any mixture. The first layer 61 may be composed of TiO 2 , Nb 2 O 3 , and HfO 2 . The second layer 62 is a layer made of a low refractive index material having a refractive index of less than 1.7, and is preferably made of SiO 2 and MgF 2 .
 対物レンズ37では、第1層61,第2層62の上にさらに第1層61,第2層62を交互に積層し、反射防止膜60を全体で2~7層構造としてもよい。この場合、フッ素化膜55に直に接触する層は成形部50の種類に応じて、高屈折率材料の層(第1の層61)としてもよいし、低屈折率材料の層(第2の層62)としてもよい。本実施形態ではフッ素化膜55に直に接触する層が高屈折率材料の層となっている。 In the objective lens 37, the first layer 61 and the second layer 62 may be alternately stacked on the first layer 61 and the second layer 62, and the antireflection film 60 may have a 2-7 layer structure as a whole. In this case, the layer in direct contact with the fluorinated film 55 may be a layer of high refractive index material (first layer 61) or a layer of low refractive index material (second layer), depending on the type of the molded part 50. Layer 62). In the present embodiment, the layer that is in direct contact with the fluorinated film 55 is a layer of a high refractive index material.
 なお、対物レンズ37では、表面37aに対してフッ素化膜55と反射防止膜60とが形成されているのと同様に、裏面37bにもフッ素化膜55と反射防止膜60とが形成されており、表面37aと裏面37bとの両面に対しフッ素化膜55と反射防止膜60とが形成されている。但し、対物レンズ37は反射防止膜60を有していなくても良い。
[1-2.4]対物レンズ37の製造方法
 続いて、対物レンズ37の製造方法について説明する。
In the objective lens 37, the fluorinated film 55 and the antireflection film 60 are also formed on the back surface 37b in the same manner as the fluorinated film 55 and the antireflection film 60 are formed on the front surface 37a. The fluorinated film 55 and the antireflection film 60 are formed on both the front surface 37a and the back surface 37b. However, the objective lens 37 may not have the antireflection film 60.
[1-2.4] Method for Manufacturing Objective Lens 37 Next, a method for manufacturing the objective lens 37 will be described.
 始めに、上記の樹脂材料を一定条件下で金型に対し射出成形し、所定形状を有する成形部50を形成する。その後、成形部50に対してフッ素化処理を実行し、成形部50上にフッ素化膜55を形成する。 First, the above resin material is injection-molded on a mold under a certain condition to form a molded part 50 having a predetermined shape. Thereafter, a fluorination treatment is performed on the molding unit 50 to form a fluorinated film 55 on the molding unit 50.
 フッ素化処理では、成形部50をフッ素ガス雰囲気中に晒し、その表面にフッ素化膜55を形成する。これにより、高分子材料(樹脂)の屈折率を低下させ、対物レンズ37の表面反射率を低下させることができる。 In the fluorination treatment, the molded part 50 is exposed to a fluorine gas atmosphere, and a fluorinated film 55 is formed on the surface thereof. Thereby, the refractive index of the polymer material (resin) can be lowered, and the surface reflectance of the objective lens 37 can be lowered.
 フッ素ガス雰囲気中のフッ素ガス濃度、フッ素ガス雰囲気中に曝露する温度や時間を適宜選択することにより、フッ素化率及びフッ素化膜55の膜厚を任意に制御でき、所望の波長の表面反射率を低下させることが出来る。 By appropriately selecting the fluorine gas concentration in the fluorine gas atmosphere and the temperature and time of exposure to the fluorine gas atmosphere, the fluorination rate and the film thickness of the fluorinated film 55 can be arbitrarily controlled, and the surface reflectance at a desired wavelength. Can be reduced.
 ここで、フッ素ガス雰囲気とは、フッ素ガスを含む気体に覆われていることを意味し、フッ素ガスと窒素,アルゴン等の不活性ガスとの混合ガスに覆われていることも含まれる。 Here, the fluorine gas atmosphere means being covered with a gas containing fluorine gas, and includes being covered with a mixed gas of fluorine gas and an inert gas such as nitrogen or argon.
 また、フッ素ガス雰囲気中のフッ素ガスの濃度は、所望の屈折率およびフッ素化膜55の厚さに応じて適宜選択することができる。 Further, the concentration of the fluorine gas in the fluorine gas atmosphere can be appropriately selected according to the desired refractive index and the thickness of the fluorinated film 55.
 また、成形部50とは、樹脂の構成元素が炭素と水素から成る重合体で、上記の例のほかにも、炭素と水素からなる重合体であるならば、特に限定されるものではない。 Further, the molding part 50 is not particularly limited as long as it is a polymer composed of carbon and hydrogen as a constituent element of the resin and is a polymer composed of carbon and hydrogen in addition to the above example.
 なお、成形部50に添加される酸化防止剤や紫外線吸収剤、可塑剤のような、全質量に対して添加量が5%以下である添加剤の構成元素は、炭素と水素以外でも構わない。 In addition, the constituent element of the additive whose addition amount is 5% or less with respect to the total mass, such as an antioxidant, an ultraviolet absorber, and a plasticizer added to the molded part 50 may be other than carbon and hydrogen. .
 また、成形部50を製造する際に使用される触媒や反応停止剤のような重合副資材が残留している場合でも、全質量に対して残留量が1%未満であれば、その構成元素が炭素と水素に限定されるものではない。 Further, even when a polymerization auxiliary material such as a catalyst or a reaction terminator used in manufacturing the molded part 50 remains, if the residual amount is less than 1% with respect to the total mass, its constituent elements Is not limited to carbon and hydrogen.
 本実施形態において、成形部50としては、特に上記条件が満たされていれば限定されないが、高透明性、高耐熱性、低吸水性、高純度、低複屈折性を加味すると、上述の樹脂材料の重合体であることがより好ましい。 In the present embodiment, the molded part 50 is not particularly limited as long as the above conditions are satisfied. However, the above-described resin can be used in consideration of high transparency, high heat resistance, low water absorption, high purity, and low birefringence. More preferred is a polymer of the material.
 この重合体を例えば窒素ガス等で希釈した種々の濃度のフッ素ガス中に、所定温度、所定時間曝すことにより、高分子材料の表面から内部に向かって徐々に分子内でのフッ素の導入が起こり、材料のフッ素含有率が増加してゆくことになる。 When this polymer is exposed to fluorine gas of various concentrations diluted with nitrogen gas, for example, at a predetermined temperature and for a predetermined time, fluorine is gradually introduced into the molecule from the surface to the inside of the polymer material. The fluorine content of the material will increase.
 材料表面からのフッ素の浸透深さ、フッ素処理後の材料中のフッ素含有率は、フッ素処理中のフッ素ガスの濃度、フッ素処理温度、フッ素処理時間に依存して変化する。 The penetration depth of fluorine from the material surface and the fluorine content in the material after fluorine treatment vary depending on the concentration of fluorine gas during the fluorine treatment, the fluorine treatment temperature, and the fluorine treatment time.
 これらの条件については特に制限はないが、フッ素濃度が高い場合、処理時間が長い場合、処理温度が高い場合に、フッ素の浸透深さが深くなり、またフッ素処理後の高分子材料のフッ素含有率が高くなる。 There are no particular restrictions on these conditions, but when the fluorine concentration is high, the treatment time is long, the treatment temperature is high, the penetration depth of fluorine becomes deep, and the fluorine-containing polymer material after fluorine treatment contains The rate is high.
 フッ素含有率の増加に伴ってフッ素化された部分の屈折率が低減するので、フッ素濃度、処理温度、処理時間を適宜選択すれば、所望の厚さの低屈折フッ素化膜55を形成することが可能である。 Since the refractive index of the fluorinated portion decreases as the fluorine content increases, the low-refractive fluorinated film 55 having a desired thickness can be formed by appropriately selecting the fluorine concentration, processing temperature, and processing time. Is possible.
 ただし、極端にフッ素濃度を高くしたり、極端な高温長時間でのフッ素処理を行うと分子が劣化するため、通常のフッ素処理条件としてはフッ素濃度が1ppm~25%、処理温度が0~100℃、処理時間が0.1秒~120分が好適である。 However, if the fluorine concentration is extremely increased or the fluorine treatment is performed at an extremely high temperature for a long time, the molecule deteriorates. Therefore, the normal fluorine treatment conditions are a fluorine concentration of 1 ppm to 25% and a treatment temperature of 0 to 100. C. and a treatment time of 0.1 second to 120 minutes are preferred.
 その後、フッ素化膜55上に反射防止膜60を形成する。詳しくは、第1層61を構成する蒸着源を用いて第1層61を形成する。例えば、第1層61として(Ta+5%TiO)膜を形成する場合には、蒸発源としてオプトラン社製OA600を用い、電子銃加熱により当該蒸着源を蒸発させればよい。蒸着中は、真空蒸着装置内部の圧力が1.0×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜するのがよい。そして成膜温度(蒸着装置内の温度)を適切な温度範囲内で保持する。 Thereafter, an antireflection film 60 is formed on the fluorinated film 55. Specifically, the first layer 61 is formed using a vapor deposition source that constitutes the first layer 61. For example, when a (Ta 2 O 5 + 5% TiO 2 ) film is formed as the first layer 61, OA600 manufactured by OPTRAN can be used as the evaporation source and the evaporation source may be evaporated by electron gun heating. During vapor deposition, it is preferable to form a film while introducing O 2 gas up to a pressure of 1.0 × 10 −2 Pa inside the vacuum vapor deposition apparatus and controlling the vapor deposition rate at 5 Å / sec. Then, the film forming temperature (temperature in the vapor deposition apparatus) is maintained within an appropriate temperature range.
 その後、成形部50の反対面にも第1層61を形成するため、蒸着装置内部の反転機構により成形部50を反転させ、上記と同様にしてその反対面にも第1層61を形成する(第2層62の裏面への成膜についても同様である。)。 Thereafter, in order to form the first layer 61 on the opposite surface of the molding portion 50, the molding portion 50 is reversed by the reversing mechanism inside the vapor deposition apparatus, and the first layer 61 is also formed on the opposite surface in the same manner as described above. (The same applies to the film formation on the back surface of the second layer 62.)
 その後、第1層61の上に続けて、第2層62を構成する蒸着源を用いて第2層62を形成する。例えば、第2層62としてSiO膜を形成する場合には、真空蒸着装置内部の圧力が1.0×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜するのがよい。そして成膜温度(蒸着装置内の温度)を適切な温度範囲内で保持する。 Thereafter, the second layer 62 is formed on the first layer 61 using the vapor deposition source constituting the second layer 62. For example, when a SiO 2 film is formed as the second layer 62, O 2 gas is introduced up to a pressure of 1.0 × 10 −2 Pa inside the vacuum vapor deposition apparatus, and the vapor deposition rate is controlled to 5 liters / sec. It is better to form the film while doing so. Then, the film forming temperature (temperature in the vapor deposition apparatus) is maintained within an appropriate temperature range.
 以上の工程により対物レンズ37が製造される。
[2]光ピックアップ装置30の動作
 続いて、光ピックアップ装置30の動作について説明する。
The objective lens 37 is manufactured by the above process.
[2] Operation of Optical Pickup Device 30 Next, the operation of the optical pickup device 30 will be described.
 光ディスクDへの情報の記録動作時や光ディスクDに記録された情報の再生動作時に、半導体レーザー発振器32から青紫色光が出射される。出射された青紫色光は、コリメータ33を透過して無限平行光にコリメートされた後、ビームスプリッタ34を透過して、1/4波長板35を透過する。さらに、当該青紫色光は絞り36及び対物レンズ37を透過した後、光ディスクDの保護基板Dを介して情報記録面Dに集光スポットを形成する。 Blue-violet light is emitted from the semiconductor laser oscillator 32 during an operation of recording information on the optical disc D or an operation of reproducing information recorded on the optical disc D. The emitted blue-violet light is transmitted through the collimator 33 and collimated into infinite parallel light, then transmitted through the beam splitter 34 and transmitted through the quarter wavelength plate 35. Furthermore, after passing through the blue-violet light aperture 36 and the objective lens 37, forms a converged spot on an information recording surface D 2 through the protective substrate D 1 of the optical disc D.
 集光スポットを形成した青紫色光は、光ディスクDの情報記録面Dで情報ビットによって変調され、情報記録面Dによって反射される。そして、この反射光は、対物レンズ37及び絞り36を順次透過した後、1/4波長板35によって偏光方向が変更され、ビームスプリッタ34で反射する。その後、当該反射光は、センサーレンズ群38を透過して非点収差が与えられ、センサー39で受光されて、最終的には、センサー39によって光電変換されることによって電気的な信号となる。 Violet light that formed the concentrated light spot is modulated by the information recording surface D 2 of the optical disk D by the information bits, is reflected by the information recording surface D 2. Then, the reflected light is sequentially transmitted through the objective lens 37 and the diaphragm 36, the polarization direction is changed by the quarter wavelength plate 35, and the reflected light is reflected by the beam splitter 34. Thereafter, the reflected light passes through the sensor lens group 38 to be given astigmatism, is received by the sensor 39, and finally is photoelectrically converted by the sensor 39 to become an electrical signal.
 以後、このような動作が繰り返し行われ、光ディスクDに対する情報の記録動作や、光ディスクDに記録された情報の再生動作が完了する。 Thereafter, such an operation is repeatedly performed, and the operation of recording information on the optical disc D and the operation of reproducing information recorded on the optical disc D are completed.
 以上の本実施形態によれば、成形部50の表面はフッ素化処理されてフッ素化膜55を形成しており、成形部50の樹脂材料は脂環式炭化水素構造を有し、単位構造中の三級炭素の数が3個以下の樹脂を含有するので、フッ素化処理されていない樹脂部分の層と、フッ素化処理された樹脂部分の層との界面を平坦にすることができ、その結果、フッ素化処理による光学性能の低下を防止することができる。 According to the above embodiment, the surface of the molded part 50 is fluorinated to form the fluorinated film 55, and the resin material of the molded part 50 has an alicyclic hydrocarbon structure, Since the number of tertiary carbons of the resin contains 3 or less, the interface between the resin portion layer not subjected to fluorination treatment and the resin portion layer subjected to fluorination treatment can be flattened. As a result, a decrease in optical performance due to the fluorination treatment can be prevented.
 また、フッ素化膜55の層厚が50~300nmであるので、層厚が300nmを超えた場合と比較して、反射防止膜60による反射防止機能を向上させることができ、層厚が50nm未満の場合と比較して、フッ素化膜55による反射防止機能を向上させることができる。 Further, since the thickness of the fluorinated film 55 is 50 to 300 nm, the antireflection function by the antireflection film 60 can be improved as compared with the case where the layer thickness exceeds 300 nm, and the layer thickness is less than 50 nm. Compared with the case, the antireflection function by the fluorinated film 55 can be improved.
 また、成形部50の樹脂材料の密度が1g/cm未満であるので、1g/cm以上の場合と比較して、フッ素化処理による成形部50内部へのフッ素の導入速度を高めることができる。従って、フッ素化処理されていない樹脂部分の層と、フッ素化処理された樹脂部分の層との界面をより確実に平坦化することができ、これにより、光学性能の低下をより確実に防止することができる。 Furthermore, the density of the resin material molded portion 50 is less than 1 g / cm 3, as compared with the case of 1 g / cm 3 or more, to increase the rate of introduction of fluorine into the interior molding section 50 by the fluorination treatment it can. Accordingly, the interface between the resin portion layer that has not been fluorinated and the layer of the resin portion that has been fluorinated can be more reliably flattened, thereby more reliably preventing the optical performance from being deteriorated. be able to.
 なお、上記の実施形態においては、本発明に係る光学素子を対物レンズ37として説明したが、他の種類・用途の光学素子としても良い。 In the above embodiment, the optical element according to the present invention has been described as the objective lens 37, but other types and applications of optical elements may be used.
 以下、実施例および比較例を挙げることにより、本発明に係る光学素子をさらに具体的に説明する。但し、本発明は実施例に限定されるものではない。
(1)サンプルの作製
 本発明の実施例,比較例として、以下の表1~表5に示すようなサンプルを作製した。以下、各サンプルについて具体的に説明する。
Hereinafter, the optical element according to the present invention will be described more specifically by giving examples and comparative examples. However, the present invention is not limited to the examples.
(1) Preparation of Samples As examples and comparative examples of the present invention, samples as shown in Tables 1 to 5 below were prepared. Hereinafter, each sample will be specifically described.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
(1.1)実施例1
 攪拌装置を備えたステンレス製反応器内を十分に乾燥、窒素置換した。その後、この反応器に対し脱水シクロヘキサン300質量部、スチレン60質量部及びジブチルエーテル0.38質量部を仕込み、これらを60℃で攪拌しながら、n-ブチルリチウム溶液(15%含有ヘキサン溶液)0.36質量部を添加して重合反応を開始させた。
(1.1) Example 1
The inside of the stainless steel reactor equipped with a stirrer was sufficiently dried and purged with nitrogen. Thereafter, 300 parts by mass of dehydrated cyclohexane, 60 parts by mass of styrene and 0.38 parts by mass of dibutyl ether were charged into the reactor, and the n-butyllithium solution (15% hexane solution) 0 was added while stirring them at 60 ° C. .36 parts by mass was added to initiate the polymerization reaction.
 1時間重合反応を行い、その後、反応溶液中に、スチレン8質量部、イソプレン12質量部及び1,2,2,6,6-ペンタメチル-4-ピペリジニルメタクリレート0.8質量部からなる混合モノマーを添加し、さらに1時間重合反応を行い、その後、反応溶液にイソプロピルアルコール0.2質量部を添加して反応を停止させた。 Polymerization reaction is performed for 1 hour, and then the reaction solution is mixed with 8 parts by mass of styrene, 12 parts by mass of isoprene and 0.8 parts by mass of 1,2,2,6,6-pentamethyl-4-piperidinyl methacrylate. A monomer was added and the polymerization reaction was further performed for 1 hour, and then 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
 次に、上記重合反応溶液300質量部を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、シリカ-アルミナ担持型ニッケル触媒(日揮科学工業社製:E22U、ニッケル担持型量60%)10質量部を添加して混合した。反応器内部を水素ガスで置換して、さらに溶液を攪拌しながら水素を供給し、温度を160℃に設定し、その後圧力4.5MPaにて8時間水素化反応を行った。 Next, 300 parts by mass of the polymerization reaction solution was transferred to a pressure-resistant reactor equipped with a stirrer, and as a hydrogenation catalyst, a silica-alumina supported nickel catalyst (manufactured by JGC Kagaku Kogyo Co., Ltd .: E22U, nickel supported amount 60). %) 10 parts by mass were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was further supplied while stirring the solution, the temperature was set to 160 ° C., and then a hydrogenation reaction was performed at a pressure of 4.5 MPa for 8 hours.
 反応終了後、反応溶液をろ過して水素化触媒を除去し、シクロヘキサン800質量部を加えて希釈し、その後当該反応溶液を3500質量部のイソプロパノール中に注いで共重合体を析出させた。その後、この共重合体をろ過し取り出し、80℃にて48時間減圧乾燥させて「樹脂材料1」を得た。なお、この「樹脂材料1」における母材樹脂の単位構造当りの三級炭素数は2個であり、「樹脂材料1」の密度を測定したところ0.94g/cmであった。 After completion of the reaction, the reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 1”. The number of tertiary carbons per unit structure of the base resin in this “resin material 1” was 2, and the density of “resin material 1” was measured to be 0.94 g / cm 3 .
 この「樹脂材料1」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにてNA0.85の光ピックアップ用対物レンズを成形した。 This “resin material 1” was dried at 70 ° C. for 6 hours to remove moisture, and then was injected with an injection molding machine at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
 次に、上記対物レンズを1.1気圧、常温、Fガス濃度5%の雰囲気下に5分間曝すことにより、当該対物レンズに対してフッ素化処理を行い、得られた対物レンズを「実施例1」のサンプルとした。ここで、得られたフッ素化膜の膜厚は50nmであった。また、同様の条件(1.1気圧、常温、Fガス濃度5%)で100nmのフッ素化膜の形成時間を測定したところ、10分であった(表4参照)。
(1.2)実施例2
 実施例1のサンプルにおいてフッ素化処理時間を10分とし(それ以外は実施例1のサンプルと同じ。)、これにより作製した対物レンズを「実施例2」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.3)実施例3
 実施例1のサンプルにおいてフッ素化処理時間を30分とし(それ以外は実施例1のサンプルと同じ。)、これにより作製した対物レンズを「実施例3」のサンプルとした。ここで、得られたフッ素化膜の膜厚は300nmであった。
(1.4)比較例1
 攪拌装置を備えたステンレス製反応器内を十分に乾燥、窒素置換した。その後、この反応器に対し脱水シクロヘキサン300質量部、2,4-ジメチルスチレン60質量部及びジブチルエーテル0.38質量部を仕込み、これらを60℃で攪拌しながら、n-ブチルリチウム溶液(15%含有ヘキサン溶液)0.36質量部を添加して重合反応を開始させた。
Next, the objective lens is exposed to an atmosphere of 1.1 atm, normal temperature and F 2 gas concentration for 5 minutes to subject the objective lens to fluorination treatment. The sample of Example 1 was used. Here, the film thickness of the obtained fluorinated film was 50 nm. Further, when the time for forming a 100 nm fluorinated film was measured under the same conditions (1.1 atm, normal temperature, F 2 gas concentration 5%), it was 10 minutes (see Table 4).
(1.2) Example 2
In the sample of Example 1, the fluorination treatment time was 10 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 2”. Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.3) Example 3
In the sample of Example 1, the fluorination treatment time was 30 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 3”. Here, the film thickness of the obtained fluorinated film was 300 nm.
(1.4) Comparative Example 1
The inside of the stainless steel reactor equipped with a stirrer was sufficiently dried and purged with nitrogen. Thereafter, 300 parts by mass of dehydrated cyclohexane, 60 parts by mass of 2,4-dimethylstyrene and 0.38 parts by mass of dibutyl ether were charged into the reactor. While stirring at 60 ° C., an n-butyllithium solution (15% Containing hexane solution) 0.36 parts by mass was added to initiate the polymerization reaction.
 1時間重合反応を行い、その後、反応溶液中に、2,4-ジメチルスチレン8質量部、イソプレン12質量部及び1,2,2,6,6-ペンタメチル-4-ピペリジニルメタクリレート0.8質量部からなる混合モノマーを添加し、さらに1時間重合反応を行い、その後、反応溶液にイソプロピルアルコール0.2質量部を添加して反応を停止させた。 The polymerization reaction was carried out for 1 hour, and then 8 parts by mass of 2,4-dimethylstyrene, 12 parts by mass of isoprene and 1,2,2,6,6-pentamethyl-4-piperidinyl methacrylate 0.8 were added to the reaction solution. A mixed monomer consisting of parts by mass was added, and a polymerization reaction was further performed for 1 hour. Thereafter, 0.2 parts by mass of isopropyl alcohol was added to the reaction solution to stop the reaction.
 次に、上記重合反応溶液300質量部を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、シリカ-アルミナ担持型ニッケル触媒(日揮科学工業社製:E22U,ニッケル担持型量60%)10質量部を添加して混合した。反応器内部を水素ガスで置換して、さらに溶液を攪拌しながら水素を供給し、温度を160℃に設定し、その後圧力4.5MPaにて8時間水素化反応を行った。 Next, 300 parts by mass of the above polymerization reaction solution was transferred to a pressure-resistant reactor equipped with a stirrer, and as a hydrogenation catalyst, a silica-alumina supported nickel catalyst (manufactured by JGC Kagaku Kogyo Co., Ltd .: E22U, nickel supported amount 60). %) 10 parts by mass were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was further supplied while stirring the solution, the temperature was set to 160 ° C., and then a hydrogenation reaction was performed at a pressure of 4.5 MPa for 8 hours.
 反応終了後、反応溶液をろ過して水素化触媒を除去し、シクロヘキサン800質量部を加えて希釈し、その後当該反応溶液を3500質量部のイソプロパノール中に注いで共重合体を析出させた。その後、この共重合体をろ過し取り出し、80℃にて48時間減圧乾燥させて「樹脂材料2」を得た。なお、この「樹脂材料2」における母材樹脂の単位構造当りの三級炭素数が多いモノマーは4個であり、「樹脂材料2」の密度を測定したところ0.97g/cmであった。 After completion of the reaction, the reaction solution was filtered to remove the hydrogenation catalyst, 800 parts by mass of cyclohexane was added for dilution, and then the reaction solution was poured into 3500 parts by mass of isopropanol to precipitate a copolymer. Thereafter, this copolymer was filtered out and dried under reduced pressure at 80 ° C. for 48 hours to obtain “resin material 2”. In this “resin material 2”, the number of monomers having a large number of tertiary carbons per unit structure of the base resin is four, and the density of “resin material 2” was measured to be 0.97 g / cm 3 . .
 この「樹脂材料2」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにてNA0.85の光ピックアップ用対物レンズを成形した。 This “resin material 2” was dried at 70 ° C. for 6 hours to remove moisture, and thereafter, with an injection molding machine, NA 0 .0 at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
 次に、上記対物レンズを1.1気圧、常温、Fガス濃度5%の雰囲気下に6分間曝すことにより、当該対物レンズに対してフッ素化処理を行い、得られた対物レンズを「比較例1」のサンプルとした。ここで、得られたフッ素化膜の膜厚は50nmであった。
(1.5)比較例2
 比較例1のサンプルにおいてフッ素化処理時間を11分とし(それ以外は比較例1のサンプルと同じ。)、これにより作製した対物レンズを「比較例2」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.6)比較例3
 比較例1のサンプルにおいてフッ素化処理時間を35分とし(それ以外は比較例1のサンプルと同じ。)、これにより作製した対物レンズを「比較例3」のサンプルとした。ここで、得られたフッ素化膜の膜厚は300nmであった。
(1.7)比較例4
 エチレン及びテトラシクロ[4,4,0,12,5,17,10]ドデカ-3-エンのランダム共重合体100質量部と、界面活性剤としてのペンタエリスリトールジステアレート0.5質量部と、安定剤としてのペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.3質量部とを、二軸混練機にて混練し「樹脂材料3」を得た。なお、この「樹脂材料3」における母材樹脂の単位構造当りの三級炭素数は8個であり、「樹脂材料3」の密度を測定したところ1.04g/cmであった。
Next, the objective lens is exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 6% for 6 minutes to subject the objective lens to fluorination treatment. The sample of Example 1 was used. Here, the film thickness of the obtained fluorinated film was 50 nm.
(1.5) Comparative Example 2
In the sample of Comparative Example 1, the fluorination treatment time was 11 minutes (otherwise, it was the same as the sample of Comparative Example 1), and the objective lens thus produced was used as the sample of “Comparative Example 2”. Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.6) Comparative Example 3
In the sample of Comparative Example 1, the fluorination treatment time was 35 minutes (otherwise, it was the same as the sample of Comparative Example 1), and the objective lens thus produced was used as the sample of “Comparative Example 3”. Here, the film thickness of the obtained fluorinated film was 300 nm.
(1.7) Comparative Example 4
Ethylene and tetracyclo [4,4,0,1 2,5, 1 7,10] dodeca-3 random copolymer 100 parts by weight of the ene, pentaerythritol distearate 0.5 part by weight of a surfactant And 0.3 parts by mass of pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as a stabilizer were kneaded in a biaxial kneader “resin material 3 " The number of tertiary carbons per unit structure of the base resin in this “resin material 3” was 8, and the density of “resin material 3” was measured to be 1.04 g / cm 3 .
 この「樹脂材料3」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにてNA0.85の光ピックアップ用対物レンズを成形した。 This “resin material 3” was dried at 70 ° C. for 6 hours to remove moisture, and thereafter, with an injection molding machine, NA 0 .0 at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
 次に、上記対物レンズを1.1気圧、常温、Fガス濃度5%の雰囲気下に8分間曝すことにより、当該対物レンズに対してフッ素化処理を行い、得られた対物レンズを「比較例4」のサンプルとした。ここで、得られたフッ素化膜の膜厚は50nmであった。
(1.8)比較例5
 比較例4のサンプルにおいてフッ素化処理時間を15分とし(それ以外は比較例4のサンプルと同じ。)、これにより作製した対物レンズを「比較例5」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。
(1.9)比較例6
 比較例4のサンプルにおいてフッ素化処理時間を50分とし(それ以外は比較例4のサンプルと同じ。)、これにより作製した対物レンズを「比較例6」のサンプルとした。ここで、得られたフッ素化膜の膜厚は300nmであった。
(1.10)実施例1’~3’,比較例1’~6’
 4枚のレンズで構成される3Mピクセル用の撮像系レンズのうち、2枚目のレンズを、硝材K-BaSF12から成形した。
Next, the objective lens was exposed to an atmosphere of 1.1 atm, normal temperature, and F 2 gas concentration of 5% for 8 minutes to subject the objective lens to fluorination treatment. The sample of Example 4 was used. Here, the film thickness of the obtained fluorinated film was 50 nm.
(1.8) Comparative Example 5
In the sample of Comparative Example 4, the fluorination treatment time was 15 minutes (otherwise, it was the same as the sample of Comparative Example 4), and the objective lens thus produced was used as the sample of “Comparative Example 5”. Here, the film thickness of the obtained fluorinated film was 100 nm.
(1.9) Comparative Example 6
In the sample of Comparative Example 4, the fluorination treatment time was 50 minutes (otherwise, it was the same as the sample of Comparative Example 4), and the objective lens thus produced was used as the sample of “Comparative Example 6”. Here, the film thickness of the obtained fluorinated film was 300 nm.
(1.10) Examples 1 'to 3', Comparative Examples 1 'to 6'
Of the imaging system lens for 3M pixels constituted by four lenses, the second lens was molded from glass material K-BaSF12.
 また、1、3、4枚目のレンズについては、上記の実施例1~3,比較例1~6と同様に、成形した後フッ素化処理を行った。 The first, third, and fourth lenses were molded and then fluorinated in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 6 described above.
 そして、これら4枚のレンズによって撮像系レンズを構成し、「実施例1’」~「実施例3’」,「比較例1’」~「比較例6’」のサンプルとした。 Then, an imaging system lens is configured by these four lenses, and samples of “Example 1 ′” to “Example 3 ′” and “Comparative Example 1 ′” to “Comparative Example 6 ′” are used.
 具体的には、実施例1と同様に「樹脂材料1」から1,3,4枚目のレンズを成形し、各レンズに5分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「実施例1’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ50nmであった。 Specifically, as in Example 1, the first, third, and fourth lenses are molded from “resin material 1”, and each lens is subjected to fluorination treatment for 5 minutes. The obtained imaging system lens was used as a sample of “Example 1 ′”. Here, the film thickness of the obtained fluorinated film was 50 nm, respectively.
 また、実施例2と同様に「樹脂材料1」から1,3,4枚目のレンズを成形し、各レンズに10分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「実施例2’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ100nmであった。 Similarly to Example 2, the first, third, and fourth lenses were molded from “resin material 1”, and each lens was subjected to fluorination treatment for 10 minutes, and then combined with the second lens. The obtained imaging lens was used as a sample of “Example 2 ′”. Here, each film thickness of the obtained fluorinated film was 100 nm.
 また、実施例3と同様に「樹脂材料1」から1,3,4枚目のレンズを成形し、各レンズに30分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「実施例3’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ300nmであった。 Similarly to Example 3, the first, third, and fourth lenses were molded from “resin material 1”, and each lens was subjected to a fluorination treatment for 30 minutes, and then combined with the second lens. The obtained imaging lens was used as a sample of “Example 3 ′”. Here, each film thickness of the obtained fluorinated film was 300 nm.
 また、比較例1と同様に「樹脂材料2」から1,3,4枚目のレンズを成形し、各レンズに6分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「比較例1’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ50nmであった。 Similarly to Comparative Example 1, the first, third, and fourth lenses were molded from “resin material 2”, and each lens was subjected to fluorination treatment for 6 minutes, and then combined with the second lens. The obtained imaging lens was used as a sample of “Comparative Example 1 ′”. Here, the film thickness of the obtained fluorinated film was 50 nm, respectively.
 また、比較例2と同様に「樹脂材料2」から1,3,4枚目のレンズを成形し、各レンズに11分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「比較例2’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ100nmであった。 Similarly to Comparative Example 2, the first, third, and fourth lenses were molded from “resin material 2”, and each lens was subjected to fluorination treatment for 11 minutes, and then combined with the second lens. The obtained imaging lens was used as a sample of “Comparative Example 2 ′”. Here, each film thickness of the obtained fluorinated film was 100 nm.
 また、比較例3と同様に「樹脂材料2」から1,3,4枚目のレンズを成形し、各レンズに35分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「比較例3’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ300nmであった。 Similarly to Comparative Example 3, the first, third, and fourth lenses were molded from “resin material 2”, and each lens was subjected to fluorination treatment for 35 minutes, and then combined with the second lens. The obtained imaging lens was used as a sample of “Comparative Example 3 ′”. Here, each film thickness of the obtained fluorinated film was 300 nm.
 また、比較例4と同様に「樹脂材料3」から1,3,4枚目のレンズを成形し、各レンズに8分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「比較例4’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ50nmであった。 Similarly to Comparative Example 4, the first, third, and fourth lenses are molded from “resin material 3”, each lens is subjected to fluorination treatment for 8 minutes, and then combined with the second lens to obtain a lens. The obtained imaging lens was used as a sample of “Comparative Example 4 ′”. Here, the film thickness of the obtained fluorinated film was 50 nm, respectively.
 また、比較例5と同様に「樹脂材料3」から1,3,4枚目のレンズを成形し、各レンズに15分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「比較例5’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ100nmであった。 Similarly to Comparative Example 5, the first, third, and fourth lenses were molded from “resin material 3”, and each lens was fluorinated for 15 minutes, and then combined with the second lens. The obtained imaging lens was used as a sample of “Comparative Example 5 ′”. Here, each film thickness of the obtained fluorinated film was 100 nm.
 また、比較例6と同様に「樹脂材料3」から1,3,4枚目のレンズを成形し、各レンズに50分のフッ素化処理を行った後、2枚目のレンズと組み合わせ、得られた撮像系レンズを「比較例6’」のサンプルとした。ここで、得られたフッ素化膜の膜厚はそれぞれ300nmであった。
(1.11)実施例4
 実施例1のサンプルにおいてフッ素化処理時間を2分とし(それ以外は実施例1のサンプルと同じ。)、これにより作製した対物レンズを「実施例4」のサンプルとした。ここで、得られたフッ素化膜の膜厚は20nmであった。
(1.12)実施例5
 実施例1のサンプルにおいてフッ素化処理時間を60分とし(それ以外は実施例1のサンプルと同じ。)、これにより作製した対物レンズを「実施例5」のサンプルとした。ここで、得られたフッ素化膜の膜厚は500nmであった。
(1.13)実施例6
 ビシクロ[2,2,1]ヘプタ-2-エン100質量部及び1-ヘキセン7.6質量部をトルエン300質量部に溶解し、ここにジエチルアルミニウムクロライド溶液を2質量部、六塩化タングステンを0.003質量部加えて、80℃で3時間攪拌した。攪拌後、大量のメタノールを混合液中に投入し凝固させ、凝固したポリマーを乾燥させた。
Similarly to Comparative Example 6, the first, third, and fourth lenses were molded from “resin material 3”, and each lens was subjected to a fluorination treatment for 50 minutes, and then combined with the second lens. The obtained imaging lens was used as a sample of “Comparative Example 6 ′”. Here, each film thickness of the obtained fluorinated film was 300 nm.
(1.11) Example 4
In the sample of Example 1, the fluorination treatment time was 2 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 4”. Here, the film thickness of the obtained fluorinated film was 20 nm.
(1.12) Example 5
In the sample of Example 1, the fluorination treatment time was 60 minutes (otherwise, it was the same as the sample of Example 1), and the objective lens thus produced was used as the sample of “Example 5”. Here, the film thickness of the obtained fluorinated film was 500 nm.
(1.13) Example 6
100 parts by mass of bicyclo [2,2,1] hept-2-ene and 7.6 parts by mass of 1-hexene are dissolved in 300 parts by mass of toluene. Here, 2 parts by mass of diethylaluminum chloride solution and 0% of tungsten hexachloride are dissolved. 0.003 part by mass was added, and the mixture was stirred at 80 ° C. for 3 hours. After stirring, a large amount of methanol was put into the mixed solution to be solidified, and the solidified polymer was dried.
 得られたポリマー100質量部をテトラヒドロフランに溶解させ、これに水素化触媒として10質量部のパラジウム/アルミナを添加し、170℃4MPaの圧力下で4時間加熱攪拌しつつ水素化反応を行った。その後、触媒を濾過して「樹脂材料4」を得た。なお、この「樹脂材料4」における母材樹脂の単位構造当りの三級炭素数は2個であり、「樹脂材料4」の密度を測定したところ1.01g/cmであった。 100 parts by mass of the obtained polymer was dissolved in tetrahydrofuran, 10 parts by mass of palladium / alumina was added thereto as a hydrogenation catalyst, and a hydrogenation reaction was carried out while heating and stirring at 170 ° C. under a pressure of 4 MPa for 4 hours. Thereafter, the catalyst was filtered to obtain “resin material 4”. The number of tertiary carbons per unit structure of the base resin in this “resin material 4” was two, and the density of “resin material 4” was measured to be 1.01 g / cm 3 .
 この「樹脂材料4」を70℃で6時間乾燥させて水分を除去し、その後射出成形機により、シリンダー温度280℃、金型温度80℃、射出速度30mm/sec、射出圧80MPaにてNA0.85の光ピックアップ用対物レンズを成形した。 This “resin material 4” was dried at 70 ° C. for 6 hours to remove moisture, and thereafter, with an injection molding machine, NA 0 .0 at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection speed of 30 mm / sec, and an injection pressure of 80 MPa. 85 objective lenses for optical pickup were molded.
 次に、上記対物レンズを1.1気圧,常温,Fガス濃度5%の雰囲気下に12分間曝すことにより、当該対物レンズに対してフッ素化処理を行い、得られた対物レンズを「実施例6」のサンプルとした。ここで、得られたフッ素化膜の膜厚は100nmであった。「樹脂材料1」において、同様の条件(1.1気圧,常温,Fガス濃度5%)では、100nmのフッ素化膜の形成時間が10分であった(表4参照)。
(1.14)実施例7
 実施例1のサンプルにおけるフッ素化膜の上に、反射防止膜としてTiO層及びSiO層を交互に6層成膜し、得られた対物レンズを「実施例7」のサンプルとした。
(2)サンプルの評価
(2.1)収差の評価
 作製した実施例1~3,6及び比較例1~6の各サンプル(対物レンズ)について、フッ素化処理前後で波長405nmのレーザー光を透過させた場合の収差を測定し、以下の基準に従って評価したところ、上述の表1,表4に示す通りとなった。
Next, 1.1 atm the objective lens, ambient temperature, by exposure for 12 minutes under an atmosphere of F 2 gas concentration 5%, performed fluorination process on the objective lens, "implement the resulting objective lens The sample was “Example 6”. Here, the film thickness of the obtained fluorinated film was 100 nm. In “resin material 1”, under the same conditions (1.1 atm, room temperature, F 2 gas concentration 5%), the formation time of the 100 nm fluorinated film was 10 minutes (see Table 4).
(1.14) Example 7
Six TiO 2 layers and SiO 2 layers were alternately formed as antireflection films on the fluorinated film in the sample of Example 1, and the obtained objective lens was used as a sample of “Example 7”.
(2) Sample evaluation (2.1) Aberration evaluation For each of the samples (objective lenses) of Examples 1 to 3 and 6 and Comparative Examples 1 to 6, the laser beam having a wavelength of 405 nm was transmitted before and after the fluorination treatment. When the aberration was measured and evaluated according to the following criteria, the results were as shown in Tables 1 and 4 above.
 ◎ :フッ素化処理前後で変化が無い
 ○ :フッ素化処理前後で10mλ以下の変化を生じた
 × :フッ素化処理前後で10mλより大きく、50mλ以下の変化を生じた
 ××:フッ素化処理前後で50mλより大きい変化を生じた
(2.2)MTFの評価
 作製した実施例1’~3’及び比較例1’~6’の各サンプル(撮像系レンズ)について、ナノテックス(株)製のMATRIXプラスを使用してMTFを測定し、以下の基準に従って評価したところ、上述の表2に示す通りとなった。
◎: No change before and after fluorination treatment ○: Change of 10 mλ or less before and after fluorination treatment ×: Change of greater than 10 mλ and less than 50 mλ before and after fluorination treatment XX: Before and after fluorination treatment (2.2) Evaluation of MTF that caused a change larger than 50 mλ For each sample (imaging system lens) of the manufactured Examples 1 ′ to 3 ′ and Comparative Examples 1 ′ to 6 ′, MATRIX manufactured by Nanotex Co., Ltd. When MTF was measured using a plus and evaluated according to the following criteria, it was as shown in Table 2 above.
 ○:フッ素化処理前後でのMTFの差が、10%未満
 △:フッ素化処理前後でのMTFの差が、10%以上、30%以下
 ×:フッ素化処理前後でのMTFの差が、30%より大きい
(2.3)耐光性の評価
 作成した実施例1~5,7の各サンプル(対物レンズ)に対し80℃で20mW、405nmのレーザーを照射し、以下の基準に従って耐光性を評価したところ、上述の表3,表5に示す通りとなった。
○: MTF difference before and after fluorination treatment is less than 10% Δ: MTF difference before and after fluorination treatment is 10% or more and 30% or less ×: MTF difference before and after fluorination treatment is 30 (2.3) Evaluation of light resistance greater than% The samples (objective lenses) of Examples 1 to 5 and 7 prepared were irradiated with a laser of 20 mW and 405 nm at 80 ° C., and light resistance was evaluated according to the following criteria. As a result, the results were as shown in Tables 3 and 5 above.
 ◎:5000hのレーザー照射前後で変化がない。 ◎: No change before and after laser irradiation of 5000 h.
 ○:3000hのレーザー照射前後で変化がない。
(2.4)光線透過率の測定
 作成した実施例1,7のサンプル(対物レンズ)について、波長450nmの光線透過率を測定したところ、上述の表5に示す通り、実施例1では97%、実施例7では99%であった。
(3)まとめ
 表1の結果から、実施例1~3のサンプルでは、比較例1~6のサンプルと比較してフッ素化処理による収差の発生が防止されることが分かる。
○: No change before and after laser irradiation of 3000 h.
(2.4) Measurement of light transmittance The light transmittance at a wavelength of 450 nm was measured for the prepared samples (objective lenses) of Examples 1 and 7. As shown in Table 5 above, in Example 1, it was 97%. In Example 7, it was 99%.
(3) Summary From the results in Table 1, it can be seen that the samples of Examples 1 to 3 prevent the occurrence of aberration due to the fluorination treatment as compared with the samples of Comparative Examples 1 to 6.
 また、表2の結果から、実施例1’~3’のサンプルでは、比較例1’~6’のサンプルと比較してフッ素化処理によるMTFの低下が防止されることが分かる。 Also, from the results in Table 2, it can be seen that in the samples of Examples 1 'to 3', the decrease in MTF due to the fluorination treatment is prevented as compared with the samples of Comparative Examples 1 'to 6'.
 これらから、脂環式炭化水素構造を有し、単位構造中の三級炭素の数が3個以下の樹脂を含有する樹脂材料で成形された光学素子(成形部)の表面がフッ素化処理されている場合には、光学性能の低下が防止されることが分かる。 From these, the surface of the optical element (molded part) molded with a resin material having a cycloaliphatic hydrocarbon structure and containing a resin having three or less tertiary carbons in the unit structure is fluorinated. It can be seen that deterioration of the optical performance is prevented.
 また、表4の結果から、樹脂材料の密度が1g/cm未満であれば、フッ素化処理による光学性能の低下がより確実に防止されることが分かる。 In addition, from the results of Table 4, it can be seen that if the density of the resin material is less than 1 g / cm 3 , the optical performance deterioration due to the fluorination treatment can be more reliably prevented.
 また、表3の結果から、フッ素化膜の厚みが50~300nmであれば、耐光性が向上することが分かる。 Also, from the results in Table 3, it can be seen that if the thickness of the fluorinated film is 50 to 300 nm, the light resistance is improved.
 30 光ピックアップ装置
 32 半導体レーザー発振器
 33 コリメータ
 34 ビームスプリッタ
 35 1/4波長板
 36 絞り
 37 対物レンズ
 37a 表面
 37b 裏面
 38 センサーレンズ群
 39 センサー
 40 2次元アクチュエータ
 50 成形部
 55 フッ素化膜
 60 反射防止膜
 61 第1層
 62 第2層
 D 光ディスク
 D 保護基板
 D 情報記録面
DESCRIPTION OF SYMBOLS 30 Optical pick-up apparatus 32 Semiconductor laser oscillator 33 Collimator 34 Beam splitter 35 1/4 wavelength plate 36 Diaphragm 37 Objective lens 37a Front surface 37b Back surface 38 Sensor lens group 39 Sensor 40 Two-dimensional actuator 50 Molding part 55 Fluorinated film 60 Antireflection film 61 First layer 62 Second layer D Optical disc D 1 Protective substrate D 2 Information recording surface

Claims (6)

  1.  樹脂材料から成形された成形部を有する光学素子であって、
     前記樹脂材料は、
     脂環式炭化水素構造を有し、単位構造中の三級炭素の数が3個以下の樹脂を含有し、
     前記成形部が表面に、
     前記脂環式炭化水素構造を構成する少なくとも一部の水素がフッ素に置換された樹脂を含有する層を有していることを特徴とする光学素子。
    An optical element having a molded part molded from a resin material,
    The resin material is
    A resin having an alicyclic hydrocarbon structure, wherein the number of tertiary carbons in the unit structure is 3 or less,
    The molded part is on the surface,
    An optical element comprising a layer containing a resin in which at least a part of hydrogen constituting the alicyclic hydrocarbon structure is substituted with fluorine.
  2.  請求項1に記載の光学素子において、
     前記フッ素化膜の厚みは、50~300nmであることを特徴とする光学素子。
    The optical element according to claim 1,
    An optical element having a thickness of the fluorinated film of 50 to 300 nm.
  3.  請求項1または2に記載の光学素子において、
     前記樹脂材料の密度は、1g/cm未満であることを特徴とする光学素子。
    The optical element according to claim 1 or 2,
    The optical element characterized in that the density of the resin material is less than 1 g / cm 3 .
  4.  請求項1~3の何れか一項に記載の光学素子において、
     前記フッ素化膜上に無機材料からなる反射防止コートが設けられていることを特徴とする光学素子。
    The optical element according to any one of claims 1 to 3,
    An optical element, wherein an antireflection coating made of an inorganic material is provided on the fluorinated film.
  5.  請求項1~4の何れか一項に記載の光学素子において、
     像側の開口数NAが0.8以上であり、
     光ピックアップ装置の対物レンズであることを特徴とする光学素子。
    The optical element according to any one of claims 1 to 4,
    The numerical aperture NA on the image side is 0.8 or more,
    An optical element that is an objective lens of an optical pickup device.
  6.  請求項1~5の何れか一項に記載の光学素子を対物レンズとして備えることを特徴とする光ピックアップ装置。 An optical pickup device comprising the optical element according to any one of claims 1 to 5 as an objective lens.
PCT/JP2009/062964 2008-08-08 2009-07-17 Optical element and optical pickup device WO2010016376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523824A JPWO2010016376A1 (en) 2008-08-08 2009-07-17 Optical element and optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-205957 2008-08-08
JP2008205957 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016376A1 true WO2010016376A1 (en) 2010-02-11

Family

ID=41663599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062964 WO2010016376A1 (en) 2008-08-08 2009-07-17 Optical element and optical pickup device

Country Status (2)

Country Link
JP (1) JPWO2010016376A1 (en)
WO (1) WO2010016376A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030090B1 (en) 2017-08-10 2018-07-24 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer impact modifiers
US10316165B2 (en) 2017-09-21 2019-06-11 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer cross-linkers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274748A (en) * 2004-03-23 2005-10-06 Tadahiro Omi Method for manufacturing transparent member having fluoride layer on surface, and plastic member
WO2006054462A1 (en) * 2004-11-22 2006-05-26 Konica Minolta Opto, Inc. Optical device and optical pickup device
JP2007328124A (en) * 2006-06-07 2007-12-20 Fujifilm Corp Optically anisotropic material and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274748A (en) * 2004-03-23 2005-10-06 Tadahiro Omi Method for manufacturing transparent member having fluoride layer on surface, and plastic member
WO2006054462A1 (en) * 2004-11-22 2006-05-26 Konica Minolta Opto, Inc. Optical device and optical pickup device
JP2007328124A (en) * 2006-06-07 2007-12-20 Fujifilm Corp Optically anisotropic material and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030090B1 (en) 2017-08-10 2018-07-24 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer impact modifiers
US10125206B1 (en) 2017-08-10 2018-11-13 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer impact modifiers
US10287381B2 (en) 2017-08-10 2019-05-14 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer impact modifiers
US10316165B2 (en) 2017-09-21 2019-06-11 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer cross-linkers
US11001697B2 (en) 2017-09-21 2021-05-11 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer cross-linkers

Also Published As

Publication number Publication date
JPWO2010016376A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
US7715302B2 (en) Optical element and optical pickup apparatus
JP3912549B2 (en) Optical element for optical device and optical pickup device
US6965003B2 (en) Block copolymer, process for producing the same, and molded object
JP4285430B2 (en) Objective lens and optical pickup device
JP5145798B2 (en) Optical element for optical pickup device and manufacturing method thereof
JP4277525B2 (en) Resin composition
JP4224655B2 (en) Alicyclic hydrocarbon copolymer
US7072118B2 (en) Optical element and manufacturing method of the optical element
JP2005302088A (en) Objective lens and optical pickup device
JP5440178B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP2005251354A (en) Optical element
WO2010016376A1 (en) Optical element and optical pickup device
US7682676B2 (en) Optical element and optical pickup device
JPWO2007119512A1 (en) Optical element and optical resin lens
JP4362713B2 (en) Optical element and manufacturing method thereof
JP4254726B2 (en) Optical element for optical pickup device and manufacturing method thereof
JP5257046B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP2005221987A (en) Optical element and optical pickup device
JP4600131B2 (en) Objective lens and optical pickup device
JP2004325950A (en) Plastic optical element and optical pickup device
JP2005310266A (en) Objective lens and optical pickup device
JP2009197139A (en) Optical molding
JP2009037666A (en) Optical pickup device, optical element and condensing optical system therefor, optical information reproducing unit, and optical information recording/reproducing unit
JP2002148401A (en) Optical lens
JP4492278B2 (en) Beam shaping element, light source device and optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523824

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804863

Country of ref document: EP

Kind code of ref document: A1