WO2010016285A1 - Method of producing fatty acid ester and glycerol, biodiesel containing fatty acid ester, and solid catalyst to be used therefor - Google Patents

Method of producing fatty acid ester and glycerol, biodiesel containing fatty acid ester, and solid catalyst to be used therefor Download PDF

Info

Publication number
WO2010016285A1
WO2010016285A1 PCT/JP2009/052336 JP2009052336W WO2010016285A1 WO 2010016285 A1 WO2010016285 A1 WO 2010016285A1 JP 2009052336 W JP2009052336 W JP 2009052336W WO 2010016285 A1 WO2010016285 A1 WO 2010016285A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
solid catalyst
acid ester
zinc oxide
alcohol
Prior art date
Application number
PCT/JP2009/052336
Other languages
French (fr)
Japanese (ja)
Inventor
新 陳
哲平 能村
Original Assignee
ズードケミー触媒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ズードケミー触媒株式会社 filed Critical ズードケミー触媒株式会社
Publication of WO2010016285A1 publication Critical patent/WO2010016285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for producing a fatty acid ester and glycerin by reacting oil and fat with alcohol, biodiesel containing the fatty acid ester, and a solid catalyst to be used.
  • Oils and fats are mainly composed of esters of fatty acids called glycerides and glycerin, and fatty acid esters obtained by transesterification using oils and fats and alcohol are close to the properties of diesel and are called biodiesel.
  • This fuel has the advantage that it can be used as it is without modification to any diesel engine.
  • waste edible oil that contributes to environmental pollution can also be used as a raw material, it is a biomass raw material that can double the environmental burden.
  • biodiesel fuel mixed with petroleum-based diesel fuel, and that alone reduces the load on the engine due to its high lubricity and is environmentally friendly. It has been reported that the burden on health and health has also been reduced.
  • Patent Document 1 A method using a complex oxide having a perovskite structure such as CaTiO 3 or CaMnO 3 as a heterogeneous solid catalyst for the direct production of biodiesel fuel (see Patent Document 1), A method using an alkaline earth metal oxide, hydroxide or carbonate in a subcritical state (see Patent Document 2), a method using quick lime or bituminous lime (see Patent Document 3), calcium hydroxide or calcium oxide There is known a method using the method (see Patent Document 4). However, these methods have problems such as high temperature required, difficulty in regeneration of the catalyst, expensive catalyst, and insufficient reaction rate.
  • a method for producing an aliphatic ester (a) a step of alcoholysis of fats and oils with a heterogeneous catalyst, (b) a step of evaporating excess alcohol from the reaction solution after the alcoholysis, (c) fatty acid alkyl ester and unreacted Separating the mixed solution of glycerin and glycerin to obtain a mixed solution of fatty acid alkyl ester and unreacted edible oil, (d) again using the alcohol recovered in (b) in the presence of a catalyst, , A step of alcoholysis, (e) a method including five steps of evaporating excess alcohol from the reaction solution after alcoholysis, separating fatty acid ester and glycerin to obtain fatty acid ester, preferably including a spinel structure ZnAl 2 O 4, xZnO, yAl 2 O 3 (x and y are 0 to 2) a method using a catalyst is disclosed (for example , See Patent Document 5, 6).
  • the present invention can omit the steps of catalyst separation, product neutralization and water washing, which are disadvantages of a soaking alkaline catalyst. It is an object of the present invention to provide a method for producing fatty acid ester and glycerin that can be produced in a system, biodiesel containing the fatty acid ester produced by the production method, and a highly active solid-metal catalyst that can be used in the production method. .
  • the present invention relates to a method for producing a fatty acid ester and glycerin from fats and oils and alcohol, using at least one solid catalyst consisting of activated zinc oxide and an alkali supported on the activated zinc oxide at atmospheric pressure, It is a manufacturing method of fatty acid ester and glycerol characterized by making it react on 70 degreeC mild conditions.
  • R-OH (1) R represents an alkyl group having 1 to 10 carbon atoms.
  • R in the general formula (1) is an alkyl group having 1 to 4 carbon atoms.
  • the fats and oils are composed of one or a mixture of two or more selected from soybean oil, rapeseed oil, corn oil, sunflower oil, sesame oil, olive oil, or waste oils thereof. is there.
  • the method is characterized by reacting alcohol and fat with a molar ratio of 3: 1 to 30: 1 for 1 to 10 hours.
  • zinc oxide is an active zinc white containing 80% by weight or more of zinc oxide.
  • the alkali supported on zinc oxide used for the solid catalyst is one of Group 1 or Group 2 metals, and more preferably, the Group 1 and 2 metals are Li, Na, K,
  • the method is characterized by being at least one selected from Ca and Ba.
  • the amount of alkali supported on zinc oxide used for the solid catalyst is 1 to 20% by weight.
  • the alkali used for the solid catalyst is produced from a soluble alkali salt, and more preferably, the soluble alkali salt is a fluoride or nitrate compound of Group 1 and Group 2 metals.
  • the alkali used for the solid catalyst is a method characterized in that an alkali is supported on zinc oxide by an impregnation method.
  • the solid catalyst is activated in advance for use, and more specifically, activated by calcination in air at 300 to 700 ° C. for 2 to 10 hours, and more specifically, It is a method characterized in that it is used for the reaction immediately after it is lowered to room temperature after firing.
  • biodiesel containing the fatty acid ester produced by the above method Furthermore, biodiesel containing the fatty acid ester produced by the above method.
  • a method for efficiently producing a fatty acid ester and glycerin from fats and oils and alcohol under conditions of normal pressure at a relatively low temperature and an insoluble solid catalyst is used in the method.
  • the catalyst removal step by washing with water, which is necessary in the production method using a catalyst, is unnecessary, and furthermore, there is almost no elution of the active metal component of the insoluble solid catalyst in the solution after the reaction.
  • the biodiesel containing a fatty acid ester can be provided, and thus has great industrial value, and is useful from the viewpoint of resource reuse and pollution prevention.
  • the main reaction of the production method of the present invention is represented by the following reaction formula (2).
  • the oil and fat used in the present invention is not particularly limited, but a vegetable oil mainly containing the triglyceride 1 of fatty acid represented by the reaction formula (2) is preferable.
  • examples thereof include one kind of soybean oil, rapeseed oil, corn oil, sunflower oil, sesame oil, olive oil, palm oil and the like, or a mixture of two or more thereof.
  • These fats and oils are not limited to clean ones and may be waste oils.
  • the alcohol used in the present invention (2 in the reaction formula (2)) is not particularly limited, but the general formula R—OH (1) The alcohol shown by these is preferable.
  • R is an alkyl group
  • examples of the alcohol in which R is an alkyl group include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, cyclohexanol, heptanol and the like.
  • R is preferably an alkyl group having 1 to 4 carbon atoms.
  • methanol in which R is a methyl group ethanol in which R is an ethyl group, propanol in which R is a propyl group, isopropanol in which R is an isopropyl group, n-butanol in which R is an n-butyl group, R Is preferably isobutanol having an isobutyl group, t-butanol having R being a t-butyl group, more preferably methanol or ethanol, still more preferably methanol.
  • purity of alcohol Preferably it is 95% or more, More preferably, it is 98% or more.
  • One kind of alcohol may be used, or two or more kinds may be mixed and used.
  • the supply amount of alcohol in the reaction of fats and oils with alcohol is 1 to 10 times the theoretical supply amount. If it is less than 1 time, the fats and alcohols may not sufficiently react, and the conversion rate may not be sufficiently improved. If it exceeds 10 times, the amount of alcohol recovered / recycled becomes large, and there is a possibility that the load of utilities in manufacturing cannot be reduced sufficiently.
  • the lower limit is more preferably 2 to 5 times.
  • the theoretical supply amount of alcohol referred to in the present invention means the number of moles of alcohol corresponding to fats and oils. Therefore, in terms of molar ratio, alcohol and fat are reacted at a molar ratio of 3: 1 to 30: 1, more preferably 6: 1 to 15: 1.
  • the temperature condition for reacting the oil and fat of the present invention with alcohol is preferably in the temperature range of 50 ° C to 70 ° C.
  • the time for reacting the oil and fat of the present invention with alcohol is 1 to 10 hours, more preferably 3 to 6 hours, still more preferably 10 to 360 minutes, and most preferably 20 to 120 minutes.
  • the reaction pressure may be normal pressure.
  • Each condition of reaction temperature, reaction time, and catalyst addition amount can be freely selected from the above range as required.However, when the reaction temperature is low, the reaction time and catalyst addition amount are compared to when the reaction temperature is high. Tend to increase.
  • This reaction can be carried out in various reaction modes. For example, it may be performed by a batch method or a distribution method. Moreover, in this invention, fats and oils and alcohol may be mixed uniformly during reaction. A batch system is preferred.
  • the stirring condition affects the reaction speed. If the stirring speed is high, the reaction can proceed more efficiently.
  • the reaction mixture after completion of the reaction contains fatty acid ester, glycerin and excess unreacted alcohol, and may further contain other impurities depending on unreacted raw materials and reaction raw materials.
  • Reaction After the methanol component is vaporized and separated and recovered, the catalyst is separated and recovered by filtration. The filtrate is allowed to stand to separate into light and heavy liquids. In the light liquid, the amount of the fatty acid ester is at least 90% by weight, preferably 98% or more.
  • the solid catalyst used in the present invention is a compound that activates commercially available zinc oxide containing at least 80% of zinc oxide or a composite compound of an alkaline metal oxide containing the same.
  • the form of the solid catalyst may be, for example, a powder or may be formed into a granule.
  • alkali metal on zinc oxide by an impregnation method.
  • it is at least 1 sort (s) selected from a 1st and 2nd group metal, Preferably, it is at least 1 sort (s) selected from Li, Na, K, Ca, and Ba.
  • the amount of alkali supported is 1 to 20% by weight, preferably 5 to 10% by weight.
  • the alkali precursor is a soluble salt of the metal, preferably a metal fluoride or nitrate.
  • the activation method is a method of baking in air at 300 to 700 ° C., preferably 400 to 600 ° C. for 2 to 10 hours, preferably 3 to 5 hours.
  • the calcined catalyst is preferably used for the reaction as soon as possible when the temperature is lowered to room temperature.
  • the amount of catalyst used is preferably 1 to 8 parts by weight per 100 parts by weight of fats and oils. Furthermore, 2 to 5 parts by weight is more preferable.
  • the solid catalyst used in the present invention can be separated from the reaction solution only by filtration as compared with a caustic soda catalyst, etc., and is relatively easy because there is no metal elution, and the post-treatment of the reaction solution is simple.
  • the light liquid contains a fatty acid methyl ester as a main component and can be used as a raw material for diesel fuel, that is, biodiesel and natural higher alcohol.
  • the heavy liquid of a glycerol main component can be utilized as a raw material of industrial glycerol.
  • typical examples of unreacted alcohol separation include mixer-settler extraction, liquid-liquid extraction, extraction using a pulse column, jet extraction, and Bodbierniac rotary extraction. However, it is not limited to this.
  • the method for producing the fatty acid alkyl ester and / or glycerin of the present invention is a method of reacting fats and alcohols with an insoluble solid catalyst. Therefore, the catalyst removal step by water washing which is necessary in the conventional production method using a homogeneous catalyst is not necessary, and this is an advantageous production method in this respect. Since there is almost no elution of the active metal component of the insoluble solid catalyst in the solution after the reaction, a high-purity fatty acid ester or glycerin can be advantageously produced in terms of energy.
  • the presence or absence of elution of the active metal component of the catalyst in the reaction solution obtained by reacting oils and fats with alcohol using an insoluble solid catalyst is determined by the fluorescent X-ray analysis method ( XRF).
  • the alcohol recovered by the step of distilling off the light boiling component (alcohol) from the reaction solution after the reaction can be reused.
  • the solid catalyst obtained by filtering the light boiling component removing liquid can be recycled as it is or after being reactivated.
  • the upper layer where the filtrate is stationary contains mainly fatty acid ester that becomes biodiesel, and in the fatty acid ester component, the elution of the metal component of the catalyst was used as a reactant as a blank sample as a result of XRF measurement. Little compared to vegetable oil.
  • the lower layer contains glycerin that is nearly colorless.
  • Reactor Batch type, 500 ml three-neck flask Reactant: Soybean oil 100 g, Methanol 44 g Reaction temperature: The reaction is maintained by heating to a reaction temperature of 64 ° C. and methanol reflux in a water bath. Stirring speed: 250 rpm or more Pressure: Normal pressure catalyst: 5 g
  • Example 1 After putting 5 g of activated zinc oxide powder as a solid catalyst in a 500 ml three-necked flask in advance, 44 g of methanol was added as alcohol (see FIG. 1). After lightly mixing, 100 g of soybean oil was added. Thereafter, a stirrer and a Dimroth were set, and the reaction was carried out for 6 hours while methanol was refluxed in a water bath, and then distilled to recover excess methanol for recycling. After the subsequent reaction product was filtered, the catalyst was recovered. The filtrate was allowed to stand overnight and separated into light and heavy liquids.
  • the light layer (upper layer) is mainly composed of fatty acid methyl ester which is biodiesel.
  • Yield of fatty acid methyl ester Amount of methyl ester produced at the end of the reaction / amount of vegetable oil charged ⁇ 100%.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the reaction time was shortened to 1 hour.
  • Example 3 A similar experiment was performed using activated 10% -Li 2 O / ZnO instead of the activated zinc oxide used in Example 1.
  • Example 4 A similar experiment was conducted using activated 10% -BaO / ZnO instead of the activated zinc oxide used in Example 1.
  • Example 5 A similar experiment was performed using activated 10% -K 2 O / ZnO instead of the activated zinc oxide used in Example 1.
  • the catalyst which can manufacture the biodiesel containing a fatty acid ester efficiently from fats and oils and alcohol on the conditions of a comparatively low temperature and a normal pressure, and the method of manufacturing biodiesel by it are provided. And its industrial value is great. It is also useful from the viewpoint of resource reuse and pollution prevention.

Abstract

A method of producing a fatty acid ester and glycerol whereby, in producing a fatty acid ester and glycerol by reacting a fat with an alcohol, a catalyst separation step and a product neutralization/washing step, which are shortcomings of the homogeneous phase alkali catalyst method, can be omitted and the production can be conducted in a system at low temperature and atmospheric pressure that is relatively advantageous from the standpoint of production; a biodiesel containing the fatty acid ester produced by the preceding production method; and a solid catalyst having a high activity and being free from elution of metals which can be used in the preceding production method. In a method of producing a fatty acid ester and glycerol from a fat and an alcohol, at least one solid catalyst comprising activated zinc oxide and an alkali carried on the activated zinc oxide is used and the reaction is conducted under mild conditions at atmospheric pressure and 50 to 70oC.

Description

脂肪酸エステルとグリセリンの製造方法および脂肪酸エステルを含むバイオディーゼル並びに使用する固体触媒Process for producing fatty acid ester and glycerol, biodiesel containing fatty acid ester and solid catalyst used
 本発明は、油脂とアルコールを反応させる脂肪酸エステルとグリセリンの製造方法および脂肪酸エステルを含むバイオディーゼル並びに使用する固体触媒に関する。 The present invention relates to a method for producing a fatty acid ester and glycerin by reacting oil and fat with alcohol, biodiesel containing the fatty acid ester, and a solid catalyst to be used.
 油脂は、トリグリセリドと呼ばれる脂肪酸とグリセリンのエステルが主成分であり、油脂とアルコールを用いたエステル交換処理により得られる脂肪酸エステルは、ディーゼルの性質に近く、バイオディーゼルと呼ばれている。この燃料は、どんなディーゼルエンジンにも改造する必要がなくそのまま使用することができる利点がある。また、環境汚染の一因となる廃食用油を原料として用いることもできるため、環境負荷を二重に減らすことができるバイオマス原料である。アメリカやヨーロッパでは、既に、石油系ディーゼル燃料に1~20%程度バイオディーゼル燃料を混合したものを使用しはじめており、それだけでも、高潤滑性のためにエンジンに与える負荷が軽減し、かつ、環境や健康に与える負荷も軽減していることが報告されている。 Oils and fats are mainly composed of esters of fatty acids called glycerides and glycerin, and fatty acid esters obtained by transesterification using oils and fats and alcohol are close to the properties of diesel and are called biodiesel. This fuel has the advantage that it can be used as it is without modification to any diesel engine. Moreover, since waste edible oil that contributes to environmental pollution can also be used as a raw material, it is a biomass raw material that can double the environmental burden. In the United States and Europe, we have already started using 1 to 20% biodiesel fuel mixed with petroleum-based diesel fuel, and that alone reduces the load on the engine due to its high lubricity and is environmentally friendly. It has been reported that the burden on health and health has also been reduced.
 このようにあらゆる点で石油系ディーゼル燃料よりも優れたバイオディーゼル燃料を積極的に利用しようとする動きは、近年徐々に活発化しているが、石油系ディーゼル燃料の2、3倍という高コストであることが大きな問題となっている。これは、現在のバイオディーゼル燃料製造プロセスでは水酸化カリウムなどの均相アルカリ触媒が用いられているため、製品化の際にこれらの触媒を分離除去するためのコストが付加されることが原因であり、分離プロセスの不要な活性の高い不均相固体触媒の探索が急務となっている。 In recent years, the movement to actively use biodiesel fuel, which is superior to petroleum diesel fuel in all respects, has been gradually increasing in recent years, but at a cost two to three times that of petroleum diesel fuel. There is a big problem. This is because the current biodiesel fuel production process uses a phase-homogeneous alkali catalyst such as potassium hydroxide, which adds to the cost of separating and removing these catalysts during commercialization. There is an urgent need to search for highly active heterogeneous solid catalysts that do not require a separation process.
 バイオディーゼル燃料の製造を直接の目的とした不均相固体触媒として、CaTiO、CaMnOのようなペロブスカイト型構造を有する複合酸化物を用いる方法(特許文献1参照)、アルコールを超臨界状態もしくは亜臨界状態にして、アルカリ土類金属酸化物、水酸化物もしくは炭酸塩を用いる方法(特許文献2参照)、生石灰もしくは苦土石灰を用いる方法(特許文献3参照)、水酸化カルシウムもしくは酸化カルシウムを用いる方法(特許文献4参照)などが知られている。しかしながら、これらの方法では、高温度が必要である、触媒の再生が困難である、触媒が高価である、或いは反応速度が充分ではない等の問題があった。 A method using a complex oxide having a perovskite structure such as CaTiO 3 or CaMnO 3 as a heterogeneous solid catalyst for the direct production of biodiesel fuel (see Patent Document 1), A method using an alkaline earth metal oxide, hydroxide or carbonate in a subcritical state (see Patent Document 2), a method using quick lime or bituminous lime (see Patent Document 3), calcium hydroxide or calcium oxide There is known a method using the method (see Patent Document 4). However, these methods have problems such as high temperature required, difficulty in regeneration of the catalyst, expensive catalyst, and insufficient reaction rate.
 また、脂肪族エステルを製造する方法に関し、(a)不均一触媒で油脂をアルコリシスする工程、(b)アルコリシス後の反応液から過剰のアルコールを蒸発させる工程、(c)脂肪酸アルキルエステル及び未反応の油脂の混合溶液とグリセリンとを分離し、脂肪酸アルキルエステル及び未反応の油脂の混合溶液を得る工程、(d)該混合溶液を触媒の存在下で、(b)で回収したアルコールで、再度、アルコリシスする工程、(e)アルコリシス後の反応液から過剰のアルコールを蒸発させ、脂肪酸エステルとグリセリンとを分離し、脂肪酸エステルを得る工程、の5工程を含む手法において、好ましくはスピネル構造を含むZnAl、xZnO、yAl(x及びyは0~2)触媒を用いる方法が開示されている(例えば、特許文献5、6参照)。しかしながら、この製造方法においては、触媒の活性が低いため、高い反応温度が必要である。 Further, regarding a method for producing an aliphatic ester, (a) a step of alcoholysis of fats and oils with a heterogeneous catalyst, (b) a step of evaporating excess alcohol from the reaction solution after the alcoholysis, (c) fatty acid alkyl ester and unreacted Separating the mixed solution of glycerin and glycerin to obtain a mixed solution of fatty acid alkyl ester and unreacted edible oil, (d) again using the alcohol recovered in (b) in the presence of a catalyst, , A step of alcoholysis, (e) a method including five steps of evaporating excess alcohol from the reaction solution after alcoholysis, separating fatty acid ester and glycerin to obtain fatty acid ester, preferably including a spinel structure ZnAl 2 O 4, xZnO, yAl 2 O 3 (x and y are 0 to 2) a method using a catalyst is disclosed (for example , See Patent Document 5, 6). However, in this production method, since the activity of the catalyst is low, a high reaction temperature is required.
特開2002-294277号公報JP 2002-294277 A 特開2002-308825号公報JP 2002-308825 A 特開2004-35873号公報JP 2004-35873 A 特開2001-271090号公報JP 2001-271090 A 米国特許第5908946号明細書US Pat. No. 5,908,946 米国特許第6147196号明細書US Pat. No. 6,147,196
 本発明は、油脂とアルコールを反応させることによる脂肪酸エステルとグリセリンの製造において均相アルカリ触媒の欠点である触媒分離、製品中和・水洗の工程を省略できる、生産上比較的有利な低温常圧系で製造できる脂肪酸エステルとグリセリンの製造方法ならびにその製造方法により製造された脂肪酸エステルを含むバイオディーゼル並びにその製造方法に使用できる高活性かつ金属の溶出がない固体触媒を提供することを目的とする。 In the production of fatty acid ester and glycerin by reacting oil and fat with alcohol, the present invention can omit the steps of catalyst separation, product neutralization and water washing, which are disadvantages of a soaking alkaline catalyst. It is an object of the present invention to provide a method for producing fatty acid ester and glycerin that can be produced in a system, biodiesel containing the fatty acid ester produced by the production method, and a highly active solid-metal catalyst that can be used in the production method. .
 本発明者らは、上記の課題を解決すべく鋭意研究を続けた結果、活性化酸化亜鉛を含む固体触媒は適切な温度条件で反応を行えば、アルコールと油脂の反応による脂肪酸エステルを含むバイオディーゼルの合成において高活性かつ金属の溶出がないことを見出し、これらの触媒により、温和の条件でよりバイオディーゼルの合成を実現することができた。 As a result of continual research to solve the above-mentioned problems, the present inventors have found that a solid catalyst containing activated zinc oxide reacts under an appropriate temperature condition, and thus a bio-comprising fatty acid ester produced by a reaction between alcohol and fat. It was found that the synthesis of diesel was highly active and there was no metal elution, and with these catalysts, the synthesis of biodiesel could be realized under mild conditions.
 すなわち、本発明は、油脂とアルコールから、脂肪酸エステルとグリセリンを製造する方法において、活性化した酸化亜鉛および活性化した酸化亜鉛に担持したアルカリからなる少なくとも1つの固体触媒を用い常圧、50~70℃の温和条件で反応させることを特徴とする脂肪酸エステルとグリセリンの製造方法である。 That is, the present invention relates to a method for producing a fatty acid ester and glycerin from fats and oils and alcohol, using at least one solid catalyst consisting of activated zinc oxide and an alkali supported on the activated zinc oxide at atmospheric pressure, It is a manufacturing method of fatty acid ester and glycerol characterized by making it react on 70 degreeC mild conditions.
 また、アルコールが、下記一般式(1)で示されるものであり、
  R-OH (1)
(Rは炭素数1から10のアルキル基を示す。)、より好適には一般式(1)のRが炭素数1~4のアルキル基であることを特徴とする方法である。
Moreover, alcohol is shown by following General formula (1),
R-OH (1)
(R represents an alkyl group having 1 to 10 carbon atoms.) More preferably, R in the general formula (1) is an alkyl group having 1 to 4 carbon atoms.
 更に、油脂が、大豆油、菜種油、コーン油、ひまわり油、ゴマ油、オリーブ油から選択される1種またはこれらの2種以上の混合物から成る植物油、あるいはこれらの廃油からなることを特徴とする方法である。 Furthermore, the fats and oils are composed of one or a mixture of two or more selected from soybean oil, rapeseed oil, corn oil, sunflower oil, sesame oil, olive oil, or waste oils thereof. is there.
 また、アルコールと油脂を3:1~30:1のモル比で1~10時間反応させることを特徴とする方法である。 Further, the method is characterized by reacting alcohol and fat with a molar ratio of 3: 1 to 30: 1 for 1 to 10 hours.
 使用する固体触媒として、酸化亜鉛は80重量%以上の酸化亜鉛を含有する活性亜鉛華であることを特徴とする方法である。 As a solid catalyst to be used, zinc oxide is an active zinc white containing 80% by weight or more of zinc oxide.
 また、固体触媒に使用する酸化亜鉛に担持したアルカリは、第1または第2族金属のうちの1種であり、より好適には、第1および第2族金属は、Li、Na、K、Ca、Baから選択される少なくとも1種であることを特徴とする方法である。 In addition, the alkali supported on zinc oxide used for the solid catalyst is one of Group 1 or Group 2 metals, and more preferably, the Group 1 and 2 metals are Li, Na, K, The method is characterized by being at least one selected from Ca and Ba.
 更に、固体触媒に使用する酸化亜鉛に対するアルカリの担持量は1~20重量%であることを特徴とする方法である。 Furthermore, the amount of alkali supported on zinc oxide used for the solid catalyst is 1 to 20% by weight.
 また、固体触媒に使用するアルカリは可溶性アルカリ塩から製造され、より好適には、可溶性アルカリ塩は、第1および第2族金属のフッ化物または硝酸塩化合物であることを特徴とする方法である。 Also, the alkali used for the solid catalyst is produced from a soluble alkali salt, and more preferably, the soluble alkali salt is a fluoride or nitrate compound of Group 1 and Group 2 metals.
 更に、固体触媒に使用するアルカリは含浸法で酸化亜鉛にアルカリを担持させることを特徴とする方法である。 Furthermore, the alkali used for the solid catalyst is a method characterized in that an alkali is supported on zinc oxide by an impregnation method.
 また、固体触媒は使用に際し予め活性化させ、より詳細には、空気中で300~700℃で2~10時間焼成することにより活性化することを特徴とする方法であり、更に詳細には、焼成後室温まで下がった後すぐに反応に使用することを特徴とする方法である。 The solid catalyst is activated in advance for use, and more specifically, activated by calcination in air at 300 to 700 ° C. for 2 to 10 hours, and more specifically, It is a method characterized in that it is used for the reaction immediately after it is lowered to room temperature after firing.
 更に、上記方法で製造された脂肪酸エステルを含むバイオディーゼルである。 Furthermore, biodiesel containing the fatty acid ester produced by the above method.
 また、上記方法に使用する固体触媒である。 Also, it is a solid catalyst used in the above method.
 本発明によれば、油脂とアルコールから、比較的低温度で常圧の条件で効率的に脂肪酸エステルとグリセリンを製造する方法を提供し、その方法に不溶性固体触媒を用いるため、従来の均一系触媒を用いる製造方法で必要な水洗による触媒除去工程が不要となり、更に反応後液中の不溶性固体触媒の活性金属成分の溶出はほとんどないことから、高純度の脂肪酸エステルおよびグリセリンをエネルギー的に有利に製造することができ、脂肪酸エステルを含むバイオディーゼルを提供することができるため、工業的価値が大きく、資源の再利用、公害防止の観点から有用である。 According to the present invention, there is provided a method for efficiently producing a fatty acid ester and glycerin from fats and oils and alcohol under conditions of normal pressure at a relatively low temperature, and an insoluble solid catalyst is used in the method. The catalyst removal step by washing with water, which is necessary in the production method using a catalyst, is unnecessary, and furthermore, there is almost no elution of the active metal component of the insoluble solid catalyst in the solution after the reaction. The biodiesel containing a fatty acid ester can be provided, and thus has great industrial value, and is useful from the viewpoint of resource reuse and pollution prevention.
本発明の実験装置の概略図である。It is the schematic of the experimental apparatus of this invention.
 以下に本発明を詳述する。 The present invention is described in detail below.
 本発明の製造方法の主反応は、次の反応式(2)で示される。 The main reaction of the production method of the present invention is represented by the following reaction formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明で使用する油脂は、特に限定されるものではないが、反応式(2)に示される脂肪酸のトリグリセリド1を主として含む植物油が好適である。例えば、大豆油、菜種油、コーン油、ひまわり油、ゴマ油、オリーブ油、パーム油等の1種またはこれらの2種以上の混合物が挙げられる。これらの油脂は、清浄なものに限らず、廃油であってもよい。 The oil and fat used in the present invention is not particularly limited, but a vegetable oil mainly containing the triglyceride 1 of fatty acid represented by the reaction formula (2) is preferable. Examples thereof include one kind of soybean oil, rapeseed oil, corn oil, sunflower oil, sesame oil, olive oil, palm oil and the like, or a mixture of two or more thereof. These fats and oils are not limited to clean ones and may be waste oils.
 また、本発明で使用するアルコール(反応式(2)の2)は特に限定されないが、一般式
  R-OH (1)
で示されるアルコールが好ましい。
Further, the alcohol used in the present invention (2 in the reaction formula (2)) is not particularly limited, but the general formula R—OH (1)
The alcohol shown by these is preferable.
 なお、Rがアルキル基であるアルコールとしては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノールなどが例示される。この中で、アルコールとしては、Rが炭素数1から4のアルキル基であることが好ましい。 Examples of the alcohol in which R is an alkyl group include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, cyclohexanol, heptanol and the like. Among these, as the alcohol, R is preferably an alkyl group having 1 to 4 carbon atoms.
 具体的には、Rがメチル基であるメタノール、Rがエチル基であるエタノール、Rがプロピル基であるプロパノール、Rがイソプロピル基であるイソプロパノール、Rがn-ブチル基であるn-ブタノール、Rがイソブチル基であるイソブタノール、Rがt-ブチル基であるt-ブタノールが好ましく、より好ましくはメタノール、エタノールであり、さらに好ましくはメタノールである。アルコールの純度としては特に限定されないが、好ましくは95%以上、より好ましくは98%以上である。アルコールは1種類を用いてもよいし、2種以上を混合して用いてもよい。 Specifically, methanol in which R is a methyl group, ethanol in which R is an ethyl group, propanol in which R is a propyl group, isopropanol in which R is an isopropyl group, n-butanol in which R is an n-butyl group, R Is preferably isobutanol having an isobutyl group, t-butanol having R being a t-butyl group, more preferably methanol or ethanol, still more preferably methanol. Although it does not specifically limit as purity of alcohol, Preferably it is 95% or more, More preferably, it is 98% or more. One kind of alcohol may be used, or two or more kinds may be mixed and used.
 油脂類とアルコールとの反応におけるアルコールの供給量が理論供給量の1~10倍であることが好ましい。1倍未満であると、油脂類とアルコールとが充分に反応しないおそれがあり、転化率を充分に向上できないおそれがある。10倍を超えると、アルコールの回収・リサイクル量が大きくなるため、製造におけるユーティリティーの負荷を充分には低減できないおそれがある。下限値として、より好ましくは、2~5倍である。 It is preferable that the supply amount of alcohol in the reaction of fats and oils with alcohol is 1 to 10 times the theoretical supply amount. If it is less than 1 time, the fats and alcohols may not sufficiently react, and the conversion rate may not be sufficiently improved. If it exceeds 10 times, the amount of alcohol recovered / recycled becomes large, and there is a possibility that the load of utilities in manufacturing cannot be reduced sufficiently. The lower limit is more preferably 2 to 5 times.
 なお、本発明でいうアルコールの理論供給量は、油脂類に対応するアルコールのモル数を意味している。したがって、モル比で換算すると、アルコールと油脂を3:1~30:1、より好適には、6:1~15:1のモル比で反応させる。 In addition, the theoretical supply amount of alcohol referred to in the present invention means the number of moles of alcohol corresponding to fats and oils. Therefore, in terms of molar ratio, alcohol and fat are reacted at a molar ratio of 3: 1 to 30: 1, more preferably 6: 1 to 15: 1.
 本発明の油脂とアルコールを反応させる温度条件は、50℃~70℃の温度範囲が好ましい。本発明の油脂とアルコールを反応させる時間は、1~10時間、より好ましくは3~6時間、更に好ましくは、10分から360分の範囲であり、最適には20分から120分の範囲である。反応の圧力は常圧でよい。反応温度、反応時間、触媒添加量の各条件は、必要に応じて上記範囲より自由に選択できるが、反応温度が低い場合は、反応温度が高い場合と比較して、反応時間や触媒添加量が増加する傾向にある。 The temperature condition for reacting the oil and fat of the present invention with alcohol is preferably in the temperature range of 50 ° C to 70 ° C. The time for reacting the oil and fat of the present invention with alcohol is 1 to 10 hours, more preferably 3 to 6 hours, still more preferably 10 to 360 minutes, and most preferably 20 to 120 minutes. The reaction pressure may be normal pressure. Each condition of reaction temperature, reaction time, and catalyst addition amount can be freely selected from the above range as required.However, when the reaction temperature is low, the reaction time and catalyst addition amount are compared to when the reaction temperature is high. Tend to increase.
 本反応は種々の反応態様で実施できる。たとえば、バッチ方式で行っても良いし、流通方式で行っても良い。また、本発明において、油脂とアルコールは、反応中、均一に混合していても良い。好ましくはバッチ方式である。攪拌状況は反応の速度に影響し、攪拌速度が早いと、反応はさらに効率よく進めることができる。 This reaction can be carried out in various reaction modes. For example, it may be performed by a batch method or a distribution method. Moreover, in this invention, fats and oils and alcohol may be mixed uniformly during reaction. A batch system is preferred. The stirring condition affects the reaction speed. If the stirring speed is high, the reaction can proceed more efficiently.
 反応終了後の反応混合物は、脂肪酸エステル、グリセリン、過剰の未反応アルコールを含み、さらに未反応の原料、反応原料により、その他の不純物を含むこともあるが、この反応混合物から、過剰(または未反応)メタノール成分を気化させて分離回収した後、触媒はろ過で分離・回収する。ろ液は静置して軽液と重液に分離する。軽液には脂肪酸エステルの量は少なくとも重量パーセントで90%、好ましくは98%以上である。 The reaction mixture after completion of the reaction contains fatty acid ester, glycerin and excess unreacted alcohol, and may further contain other impurities depending on unreacted raw materials and reaction raw materials. Reaction) After the methanol component is vaporized and separated and recovered, the catalyst is separated and recovered by filtration. The filtrate is allowed to stand to separate into light and heavy liquids. In the light liquid, the amount of the fatty acid ester is at least 90% by weight, preferably 98% or more.
 本発明に用いる固体触媒は、酸化亜鉛を少なくとも80%含む市販活性亜鉛華を活性化するものあるいはそれを含むアルカリ性金属酸化物の複合化合物である。固体触媒の形態は、例えば粉末状でもよいし、顆粒状に成型してもよい。 The solid catalyst used in the present invention is a compound that activates commercially available zinc oxide containing at least 80% of zinc oxide or a composite compound of an alkaline metal oxide containing the same. The form of the solid catalyst may be, for example, a powder or may be formed into a granule.
 酸化亜鉛を含むアルカリ性金属酸化物の複合化合物は、酸化亜鉛に含浸法でアルカリ金属を担持したものがある。また、アルカリの種類としては、第1および第2族金属より選択される少なくとも1種であり、好ましくは、Li、Na、K、Ca、Baから選択される少なくとも1種である。アルカリの担持量は1~20重量%、好ましくは5~10重量%である。触媒を調製する際、アルカリの前躯体はその金属の可溶性塩であること、好ましくは金属のフッ化物あるいは硝酸塩である。 Some composite compounds of alkaline metal oxides containing zinc oxide carry an alkali metal on zinc oxide by an impregnation method. Moreover, as a kind of alkali, it is at least 1 sort (s) selected from a 1st and 2nd group metal, Preferably, it is at least 1 sort (s) selected from Li, Na, K, Ca, and Ba. The amount of alkali supported is 1 to 20% by weight, preferably 5 to 10% by weight. In preparing the catalyst, the alkali precursor is a soluble salt of the metal, preferably a metal fluoride or nitrate.
 本発明に記載したすべての固体触媒は使用の際、活性化が必要である。活性化方法としては空気中で300~700℃、好ましくは400~600℃で2~10時間、好ましくは3~5時間焼成する方法である。焼成した触媒は室温まで降温するとできるだけ早いうちに反応に使ったほうが好ましい。 All solid catalysts described in the present invention need to be activated before use. The activation method is a method of baking in air at 300 to 700 ° C., preferably 400 to 600 ° C. for 2 to 10 hours, preferably 3 to 5 hours. The calcined catalyst is preferably used for the reaction as soon as possible when the temperature is lowered to room temperature.
 また、触媒の使用量は、油脂100重量部に対して1重量部から8重量部がよい。さらに2重量部から5重量部がより好ましい。 Also, the amount of catalyst used is preferably 1 to 8 parts by weight per 100 parts by weight of fats and oils. Furthermore, 2 to 5 parts by weight is more preferable.
 本発明に使用する固体触媒は、苛性ソーダ触媒などと比較して反応液との分離がろ過だけで分離でき、金属の溶出がないため、比較的容易であり、反応液の後処理が簡便である。軽液は脂肪酸のメチルエステルが主成分であり、ディーゼル燃料、つまりバイオディーゼルや天然高級アルコール用の原料として利用することができる。また、グリセリン主成分の重液は、工業用グリセリンの原料として利用することができる。未反応のアルコールの分離には、減圧蒸留等の蒸留の他にも代表的なものとしてミキサーセトラー式抽出、液液抽出、パルスコラムを用いた抽出、ジェット式抽出、ボドビエルニアク回転抽出などがあげられるが、これには限定されない。 The solid catalyst used in the present invention can be separated from the reaction solution only by filtration as compared with a caustic soda catalyst, etc., and is relatively easy because there is no metal elution, and the post-treatment of the reaction solution is simple. . The light liquid contains a fatty acid methyl ester as a main component and can be used as a raw material for diesel fuel, that is, biodiesel and natural higher alcohol. Moreover, the heavy liquid of a glycerol main component can be utilized as a raw material of industrial glycerol. In addition to distillation such as vacuum distillation, typical examples of unreacted alcohol separation include mixer-settler extraction, liquid-liquid extraction, extraction using a pulse column, jet extraction, and Bodbierniac rotary extraction. However, it is not limited to this.
 本発明の脂肪酸アルキルエステル及び/又はグリセリンを製造する方法は、特に不溶性固体触媒を用いて油脂類とアルコールを反応させる方法である。従って、従来の均一系触媒を用いる製造方法で必要な水洗による触媒除去工程が不要となることから、この点においても有利な製造方法である。反応後液中の不溶性固体触媒の活性金属成分の溶出はほとんどないことにより、高純度の脂肪酸エステルやグリセリンをエネルギー的に有利に製造することができる。 The method for producing the fatty acid alkyl ester and / or glycerin of the present invention is a method of reacting fats and alcohols with an insoluble solid catalyst. Therefore, the catalyst removal step by water washing which is necessary in the conventional production method using a homogeneous catalyst is not necessary, and this is an advantageous production method in this respect. Since there is almost no elution of the active metal component of the insoluble solid catalyst in the solution after the reaction, a high-purity fatty acid ester or glycerin can be advantageously produced in terms of energy.
 本発明においては、不溶性固体触媒を用いて油脂類とアルコールを反応させた反応液中の触媒の活性金属成分の溶出の有無は、反応後の反応液は溶液状態のまま蛍光X線分析法(XRF)により測定する。 In the present invention, the presence or absence of elution of the active metal component of the catalyst in the reaction solution obtained by reacting oils and fats with alcohol using an insoluble solid catalyst is determined by the fluorescent X-ray analysis method ( XRF).
 本発明の方法においては、反応後の反応液から軽沸成分(アルコール)を留去する工程によって回収したアルコールを再利用できる。また、軽沸成分除去液をろ過により回収した固体触媒はそのまままたは再活性化して循環利用ができる。ろ過液が静止した上層は主にバイオディーゼルとなる脂肪酸エステルが含有し、その脂肪酸エステル成分中には、XRF測定を行った結果触媒の金属成分の溶出は、ブランクサンプルとする反応物として使用した植物油に比べてほとんどない。また、下層は無色に近いグリセリンが含まれる。 In the method of the present invention, the alcohol recovered by the step of distilling off the light boiling component (alcohol) from the reaction solution after the reaction can be reused. Further, the solid catalyst obtained by filtering the light boiling component removing liquid can be recycled as it is or after being reactivated. The upper layer where the filtrate is stationary contains mainly fatty acid ester that becomes biodiesel, and in the fatty acid ester component, the elution of the metal component of the catalyst was used as a reactant as a blank sample as a result of XRF measurement. Little compared to vegetable oil. The lower layer contains glycerin that is nearly colorless.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(反応条件)
リアクター:バッチ式、 500ml三つ口フラスコ
反応物:大豆油100g、メタノール44g
反応温度:水浴で反応物を反応物温度64℃、メタノール還流まで加熱して維持する。
攪拌速度:250rmp以上
圧力:常圧
触媒:5g
(Reaction conditions)
Reactor: Batch type, 500 ml three-neck flask Reactant: Soybean oil 100 g, Methanol 44 g
Reaction temperature: The reaction is maintained by heating to a reaction temperature of 64 ° C. and methanol reflux in a water bath.
Stirring speed: 250 rpm or more Pressure: Normal pressure catalyst: 5 g
(分析条件)
機器:高圧液クロマトグラフィ(HPLC) LC-system、RID-10A (示差屈折検出器)、(株)島津製作所
カラム:シリカゲル ZORBAX Rx-SIL (4.6×250mm, 5μm),使用温度 40℃。
移動層:0.8% イソプロパノール/ヘキサン
(Analysis conditions)
Instrument: High pressure liquid chromatography (HPLC) LC-system, RID-10A (differential refraction detector), Shimadzu Corporation Column: Silica gel ZORBAX Rx-SIL (4.6 × 250 mm, 5 μm), working temperature 40 ° C.
Moving bed: 0.8% isopropanol / hexane
 操作の手順は実施例で以下に説明する。 The operation procedure will be described below in the embodiment.
(実施例1)
 500ml三つ口フラスコに予め固体触媒としての活性化された酸化亜鉛粉末を5g入れた後、アルコールとしてメタノール44gを入れた(図1参照)。軽く混ぜてから100gの大豆油を入れた。その後攪拌器やジムロートを設定し、水浴でメタノールを還流させたまま6時間反応させた後、蒸留して過剰のメタノールを回収しリサイクルした。その後の反応物をろ過した後、触媒を回収した。ろ液を一晩静止して、軽液と重液に分離させた。軽質層(上層)はバイオディーゼルとなる脂肪酸メチルエステルが主成分である。この軽質層の液を一定量サンプリングしてヘキサンで希釈してHPLCで分析した。HPLCでは二つのピークしか現れなかったが、同定の結果ひとつのピークは脂肪酸メチルエステルとして認定される成分であり、もうひとつのピークは大豆油に認定された。それぞれのピークに対するHPLCデータに基づき軽質層に含む脂肪酸メチルエステルと残留した大豆油の量を計算して、脂肪酸メチルエステルの収率を以下の通り計算した結果を表1に示した。
Example 1
After putting 5 g of activated zinc oxide powder as a solid catalyst in a 500 ml three-necked flask in advance, 44 g of methanol was added as alcohol (see FIG. 1). After lightly mixing, 100 g of soybean oil was added. Thereafter, a stirrer and a Dimroth were set, and the reaction was carried out for 6 hours while methanol was refluxed in a water bath, and then distilled to recover excess methanol for recycling. After the subsequent reaction product was filtered, the catalyst was recovered. The filtrate was allowed to stand overnight and separated into light and heavy liquids. The light layer (upper layer) is mainly composed of fatty acid methyl ester which is biodiesel. A certain amount of the light layer solution was sampled, diluted with hexane, and analyzed by HPLC. Although only two peaks appeared in HPLC, as a result of identification, one peak was a component certified as a fatty acid methyl ester, and the other peak was certified as soybean oil. The amount of fatty acid methyl ester contained in the light layer and the amount of residual soybean oil was calculated based on the HPLC data for each peak, and the yield of fatty acid methyl ester was calculated as shown in Table 1.
脂肪酸メチルエステルの収率: 反応終了時のメチルエステル生成量/植物油の仕込み量×100%。 Yield of fatty acid methyl ester: Amount of methyl ester produced at the end of the reaction / amount of vegetable oil charged × 100%.
 同時にこの回収した液におけるXRFを測定した結果を表2に示した。 At the same time, the results of measuring XRF in the collected liquid are shown in Table 2.
(実施例2)
 反応時間を1時間に短縮した以外は実施例1と同様に実験を実施した。
(Example 2)
The experiment was performed in the same manner as in Example 1 except that the reaction time was shortened to 1 hour.
(実施例3)
 実施例1に使用した活性化された酸化亜鉛の代わりに活性化された10%-LiO/ZnOを用いて同様にして実験を実施した。
(Example 3)
A similar experiment was performed using activated 10% -Li 2 O / ZnO instead of the activated zinc oxide used in Example 1.
(実施例4)
 実施例1に使用した活性化された酸化亜鉛の代わりに活性化された10%-BaO/ZnOを用いて同様にして実験を実施した。
Example 4
A similar experiment was conducted using activated 10% -BaO / ZnO instead of the activated zinc oxide used in Example 1.
(実施例5)
 実施例1に使用した活性化された酸化亜鉛の代わりに活性化された10%-KO/ZnOを用いて同様にして実験を実施した。
(Example 5)
A similar experiment was performed using activated 10% -K 2 O / ZnO instead of the activated zinc oxide used in Example 1.
(比較例1)
 実施例1に使用した活性化された酸化亜鉛の代わりに活性化されない酸化亜鉛を用いて同様にして実験を実施した。
(Comparative Example 1)
A similar experiment was conducted using non-activated zinc oxide instead of the activated zinc oxide used in Example 1.
(比較例2)
 実施例1に使用した活性化された酸化亜鉛の代わりにCaOを用いて同様にして実験を実施した。
(Comparative Example 2)
Experiments were performed in the same manner using CaO instead of the activated zinc oxide used in Example 1.
(比較例3)
 実施例1に使用した活性化された酸化亜鉛の代わりにMgOを用いて同様にして実験を実施した。
(Comparative Example 3)
A similar experiment was conducted using MgO instead of the activated zinc oxide used in Example 1.
(比較例4)
 実施例1に使用した活性化された酸化亜鉛の代わりにKOHを用いて同様にして実験を実施した。
(Comparative Example 4)
A similar experiment was performed using KOH instead of the activated zinc oxide used in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果より、本発明の方法による実施例の活性化酸化亜鉛を含有する固体触媒を使用すると、比較例の触媒を使用したものと比較して、非常に高い収率のバイオディーゼルとなる脂肪酸メチルエステルが得られた。更に、表2の結果により、本発明の方法による実施例において、使用した触媒の金属成分の反応液中への溶出は、ブランクサンプルとする反応物として使用した植物油に比べてほとんどなかった。 From the results shown in Table 1, when the solid catalyst containing the activated zinc oxide of the example according to the method of the present invention is used, a very high yield of biodiesel is obtained as compared with that using the catalyst of the comparative example. Fatty acid methyl ester was obtained. Furthermore, according to the results of Table 2, in the examples according to the method of the present invention, the elution of the metal components of the used catalyst into the reaction solution was hardly compared to the vegetable oil used as a reactant as a blank sample.
 本発明によれば、油脂とアルコールから、比較的低温度で常圧の条件で効率的に脂肪酸エステルを含むバイオディーゼルを製造することができる触媒、およびそれによるバイオディーゼルを製造する方法を提供することができ、その工業的価値は大きい。また資源の再利用、公害防止の観点から有用である。 ADVANTAGE OF THE INVENTION According to this invention, the catalyst which can manufacture the biodiesel containing a fatty acid ester efficiently from fats and oils and alcohol on the conditions of a comparatively low temperature and a normal pressure, and the method of manufacturing biodiesel by it are provided. And its industrial value is great. It is also useful from the viewpoint of resource reuse and pollution prevention.

Claims (17)

  1.  油脂とアルコールから、脂肪酸エステルとグリセリンを製造する方法において、活性化した酸化亜鉛および活性化した酸化亜鉛に担持したアルカリからなる少なくとも1つの固体触媒を用い常圧、50~70℃の温和条件で反応させることを特徴とする脂肪酸エステルとグリセリンの製造方法。 In a method for producing a fatty acid ester and glycerin from fats and oils and alcohol, at least one solid catalyst comprising an activated zinc oxide and an alkali supported on the activated zinc oxide is used at normal pressure and mild conditions of 50 to 70 ° C. A method for producing a fatty acid ester and glycerin, characterized by reacting.
  2.  アルコールが、下記一般式(1)で示されるものであることを特徴とする請求項1記載の方法。
      R-OH (1)
    (Rは炭素数1から10のアルキル基を示す。)
    The method according to claim 1, wherein the alcohol is represented by the following general formula (1).
    R-OH (1)
    (R represents an alkyl group having 1 to 10 carbon atoms.)
  3.  一般式(1)のRが炭素数1~4のアルキル基であることを特徴とする請求項1または2記載の方法。 3. The method according to claim 1, wherein R in the general formula (1) is an alkyl group having 1 to 4 carbon atoms.
  4.  油脂が、大豆油、菜種油、コーン油、ひまわり油、ゴマ油、オリーブ油から選択される1種またはこれらの2種以上の混合物から成る植物油、あるいはこれらの廃油からなることを特徴とする請求項1乃至3のいずれかに記載の方法。 Oils and fats are composed of one or a mixture of two or more selected from soybean oil, rapeseed oil, corn oil, sunflower oil, sesame oil and olive oil, or waste oils thereof. 4. The method according to any one of 3.
  5.  アルコールと油脂を3:1~30:1のモル比で1~10時間反応させることを特徴とする請求項1乃至4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the alcohol and fat are reacted at a molar ratio of 3: 1 to 30: 1 for 1 to 10 hours.
  6.  固体触媒に使用する酸化亜鉛は80重量%以上の酸化亜鉛を含有する活性亜鉛華であることを特徴とする請求項1乃至5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the zinc oxide used for the solid catalyst is activated zinc white containing 80% by weight or more of zinc oxide.
  7.  固体触媒に使用する酸化亜鉛に担持したアルカリは、第1または第2族金属から選択される少なくとも1種の金属であることを特徴とする請求項1乃至6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the alkali supported on zinc oxide used for the solid catalyst is at least one metal selected from Group 1 or Group 2 metals.
  8.  第1および第2族金属は、Li、Na、K、Ca、Baから選択される少なくとも1種であることを特徴とする請求項7記載の方法。 The method according to claim 7, wherein the first and second group metals are at least one selected from Li, Na, K, Ca, Ba.
  9.  固体触媒に使用する酸化亜鉛に対するアルカリの担持量は1~20重量%であることを特徴とする請求項1乃至8のいずれかに記載の方法。 The method according to any one of claims 1 to 8, wherein the supported amount of alkali with respect to zinc oxide used for the solid catalyst is 1 to 20% by weight.
  10.  固体触媒に使用するアルカリは可溶性アルカリ塩から製造されることを特徴とする請求項1乃至9のいずれかに記載の方法。 The method according to any one of claims 1 to 9, wherein the alkali used for the solid catalyst is produced from a soluble alkali salt.
  11.  可溶性アルカリ塩は、第1および第2族金属のフッ化物または硝酸塩化合物であることを特徴とする請求項10に記載の方法。 The method according to claim 10, wherein the soluble alkali salt is a fluoride or nitrate compound of Group 1 and Group 2 metals.
  12.  固体触媒に使用するアルカリは含浸法で酸化亜鉛にアルカリを担持させることを特徴とする請求項1乃至11のいずれかに記載の方法。 The method according to any one of claims 1 to 11, wherein the alkali used in the solid catalyst is supported on zinc oxide by an impregnation method.
  13.  固体触媒は予め活性化させることを特徴とする請求項1乃至12のいずれかに記載の方法。 The method according to claim 1, wherein the solid catalyst is activated in advance.
  14.  固体触媒は空気中で300~700℃で2~10時間焼成することにより活性化することを特徴とする請求項13に記載の方法。 The method according to claim 13, wherein the solid catalyst is activated by calcination in air at 300 to 700 ° C for 2 to 10 hours.
  15.  焼成後室温まで下がった後すぐに反応に使用することを特徴とする請求項14記載の方法。 The method according to claim 14, wherein the method is used for the reaction immediately after the temperature is lowered to room temperature after firing.
  16.  請求項1乃至15に記載の方法で製造された脂肪酸エステルを含むバイオディーゼル。 Biodiesel containing a fatty acid ester produced by the method according to claim 1.
  17.  請求項1乃至15に記載の方法で使用する固体触媒。 Solid catalyst used in the method according to any one of claims 1 to 15.
PCT/JP2009/052336 2008-08-04 2009-02-12 Method of producing fatty acid ester and glycerol, biodiesel containing fatty acid ester, and solid catalyst to be used therefor WO2010016285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008201347A JP2010037422A (en) 2008-08-04 2008-08-04 Method for manufacturing fatty acid ester and glycerin, and biodiesel containing fatty acid ester as well as solid catalyst to be used therefor
JP2008-201347 2008-08-04

Publications (1)

Publication Number Publication Date
WO2010016285A1 true WO2010016285A1 (en) 2010-02-11

Family

ID=41663512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052336 WO2010016285A1 (en) 2008-08-04 2009-02-12 Method of producing fatty acid ester and glycerol, biodiesel containing fatty acid ester, and solid catalyst to be used therefor

Country Status (2)

Country Link
JP (1) JP2010037422A (en)
WO (1) WO2010016285A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796328B2 (en) 2012-06-20 2014-08-05 Abbvie Inc. TRPV1 antagonists
US8969325B2 (en) 2011-12-19 2015-03-03 Abbvie Inc. TRPV1 antagonists
CN104707555A (en) * 2015-02-07 2015-06-17 胡海军 Reactor and method for continuously preparing fatty acid ester by virtue of reactor
CN105688956A (en) * 2016-03-15 2016-06-22 齐齐哈尔大学 Solid base catalyst, preparing method thereof and method for utilizing solid base catalyst to catalyze and synthesize biodiesel
EP4234664A1 (en) 2022-02-24 2023-08-30 Evonik Operations GmbH Composition comprising glucolipids and enzymes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209284A (en) * 2009-03-12 2010-09-24 Tohoku Techno Arch Co Ltd Ester exchange reaction product, and method for producing the same
KR101872428B1 (en) * 2017-12-18 2018-07-31 (주)에코이노베이션 Sewagee sludge treatment system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIE ET AL.: "Ba-ZnO catalysts for soybean oil transesterification", CATAL.LETT., vol. 117, no. 3-4, 2007, pages 159 - 165 *
XIE ET AL.: "Synthesis of biodiesel from soybean oil using hetero geneous KF/ZnO catalyst", CATAL. LETT., vol. 107, no. 1-2, 2006, pages 53 - 59 *
YANG ET AL.: "Soybean oil transesterification over zinc oxide modified with alkali earth metals", FUEL PROCESS.TECHNOL., vol. 88, no. 6, 2007, pages 631 - 638 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969325B2 (en) 2011-12-19 2015-03-03 Abbvie Inc. TRPV1 antagonists
US8796328B2 (en) 2012-06-20 2014-08-05 Abbvie Inc. TRPV1 antagonists
CN104707555A (en) * 2015-02-07 2015-06-17 胡海军 Reactor and method for continuously preparing fatty acid ester by virtue of reactor
CN105688956A (en) * 2016-03-15 2016-06-22 齐齐哈尔大学 Solid base catalyst, preparing method thereof and method for utilizing solid base catalyst to catalyze and synthesize biodiesel
EP4234664A1 (en) 2022-02-24 2023-08-30 Evonik Operations GmbH Composition comprising glucolipids and enzymes

Also Published As

Publication number Publication date
JP2010037422A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2010016285A1 (en) Method of producing fatty acid ester and glycerol, biodiesel containing fatty acid ester, and solid catalyst to be used therefor
EP1711588B1 (en) Improved process for preparing fatty acid alkylesters for use as a biodiesel
EP1963471B1 (en) Process for producing fatty acid alkyl esters and glycerin
JP5576271B2 (en) Process for producing fatty acid alkyl ester and / or glycerin from fats and oils
US20070167642A1 (en) Method of production of fatty acid alkyl esters and/or glycerine and fatty acid alkyl ester-containing composition
US20070066838A1 (en) Method of manufacturing fatty acid ethyl esters from triglycerides and alcohols
JP2009502812A (en) Process for producing carboxylic acid alkyl ester
JP2005206575A (en) Production method for fatty acid alkyl ester and/or glycerol and fatty acid alkyl ester-containing composition
EP2370560A2 (en) Heterogeneous catalysts for mono-alkyl ester production, method of making, and method of using same
JP2005126346A (en) Method for producing fatty acid lower alkyl ester from fats and oils
WO2003106604A1 (en) Process for producing fatty acid alkyl ester composition
JP2007254305A (en) Method for producing fatty acid alkyl ester and/or glycerol
CN100360644C (en) Production process of biological diesel
US20110144375A1 (en) Process for production of biodiesel
US20110224451A1 (en) Process for production of biodiesel
JP5186083B2 (en) Process for producing fatty acid alkyl ester and / or glycerin from fats and oils
KR101072674B1 (en) Process for the preparation of aliphatic alkylester
CN101522863A (en) Process for producing fatty acid esters and fuels comprising fatty acid esters
JP2006225578A (en) Method for producing glycerol and/or fatty acid alkyl ester
JP2006225352A (en) Method for producing fatty acid alkyl ester and/or glycerin
JP2013072071A (en) Method for producing fatty acid alkyl ester and/or glycerol from oil and fat
JP2006225353A (en) Method for producing glycerin and/or fatty acid alkyl ester
JPWO2008133189A1 (en) Process for producing fatty acid alkyl ester and / or glycerin from fats and oils
WO2010010118A1 (en) Sulfated zirconia catalyst; its production by melting the precursors and its use for esterification of fatty acids with alcohols
JP2010180379A (en) Method of production of fatty acid alkyl ester, and diesel fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804772

Country of ref document: EP

Kind code of ref document: A1