WO2010015110A1 - 单小区mbms的混合传输方法、基站和用户设备 - Google Patents

单小区mbms的混合传输方法、基站和用户设备 Download PDF

Info

Publication number
WO2010015110A1
WO2010015110A1 PCT/CN2008/001443 CN2008001443W WO2010015110A1 WO 2010015110 A1 WO2010015110 A1 WO 2010015110A1 CN 2008001443 W CN2008001443 W CN 2008001443W WO 2010015110 A1 WO2010015110 A1 WO 2010015110A1
Authority
WO
WIPO (PCT)
Prior art keywords
retransmission
threshold
antenna
user equipment
base station
Prior art date
Application number
PCT/CN2008/001443
Other languages
English (en)
French (fr)
Inventor
张碧军
汪勇刚
胡中骥
杨玉丽
Original Assignee
上海贝尔阿尔卡特股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔阿尔卡特股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔阿尔卡特股份有限公司
Priority to PCT/CN2008/001443 priority Critical patent/WO2010015110A1/zh
Priority to CN200880129933.3A priority patent/CN102067686B/zh
Publication of WO2010015110A1 publication Critical patent/WO2010015110A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of multimedia broadcast multicast, and more particularly to a hybrid transmission method for a single cell MBMS, a base station, and a user equipment. Background technique
  • the concept of beam forming originates from the smart antenna SA.
  • the basic principle of SA is to use the correlation of the channel impulse response of the half-wavelength spacing antenna array, and form a directional beam through the originating processing to improve the signal-to-noise ratio at the receiving end. , to expand the coverage of the system.
  • the traditional BF is limited to a single signal stream, that is, the transmitted signal is multiplied by a weighting factor and transmitted through multiple antennas. Generally this gain is also referred to as the array gain.
  • the specific meaning of BF has been expanded.
  • the antenna spacing is not limited to half wavelength, it can be 4 wavelengths/10 wavelengths, etc.
  • the channel matrix is related. Sex will be greatly weakened, and this kind of irrelevance can bring diversity gain.
  • the common method is to encode STBC in space time, and it can also bring multiplexing gain.
  • the common one is v-blast.
  • BF has the same meaning as precoding in MIM0.
  • the current multi-stream BF can be understood as such.
  • the typical meaning of the eigenvalue BF is to use the second-order statistical information of the channel, that is, the correlation matrix of the channel, to determine the BF vector by SVD.
  • the eigenvector corresponding to the largest eigenvalue is selected as the BF vector; In the middle, the selection is performed in order of size.
  • MU-MIM0 BF is equivalent to SDMA.
  • the BF matrix or precoding matrix needs to maximize the SINR of a single user while minimizing interference between users.
  • the common algorithm is BD.
  • MBMS Multimedia Broadcast Multicast Server
  • 3GPP 3GPP in the R6 version refers to a point-to-multipoint (ptm) service in which a data source transmits data to multiple users in a wireless network without changing the network structure. Realize network resource sharing. In addition to mobile core and access network resources, MBMS can also share more intense air interface resources to improve the utilization of wireless resources.
  • MBMS is typically configured through two scenarios, single cell (SC) and multi-cell point-to-multipoint p--m transmission.
  • SC MBMS transmission advanced physical layer technologies such as link adaptation, hybrid automatic repeat request (HARQ), closed-loop MIMO (Multiple Input and Multiple Output), etc., can be used to utilize the air interface from the terminal to the e-NB. Feedback on the above to improve the reception performance of the user equipment UE.
  • HARQ hybrid automatic repeat request
  • closed-loop MIMO Multiple Input and Multiple Output
  • BF beamforming
  • DOA based on the angle of arrival
  • Uplink feedback signaling overhead limitation All existing BF schemes require all UEs to feed back channel information to the e-NB, such as channel correlation matrix or channel state information CSI, and uplink feedback signaling is greatly credited;
  • the worst case UE reception performance is improved at the expense of other UE performance degradation:
  • the beam width becomes narrower. From the point of view of improved coverage and reduced neighbor cell interference, this is actually only beneficial for unicast transmission due to the point-to-point p- 1-p characteristic.
  • MBMS is point-to-multipoint, and multiple UEs share the same time-frequency resource. If the narrower beam points to the worst case UE, other UEs may suffer a large performance loss. Summary of the invention
  • a hybrid transmission method for single cell MBMS which can be regarded as a combination of ring-ring transmit diversity, DoA-based BF operation, and HARQ.
  • the method includes the following steps: performing initial transmission using an antenna at the edge of the antenna matrix; setting a retransmission threshold in advance, and transmitting the retransmission threshold to all MBMS user equipment UEs of interest; and decoding the SINR at the UE receiver
  • the UE transmits a feedback signal between the retransmission thresholds; at the e-NB, all the receiving antennas are used to estimate the angle of arrival DoA of the UEs that have sent back the feedback signal; for retransmission, all the transmitting antennas are used for the angle of arrival based on the angle of arrival Beamforming BF operation of the DoA; and returning to the initial transmission step if there is no UE between the thresholds.
  • a base station performing hybrid transmission of a single cell MBMS is further proposed, where the base station performs the following steps: performing initial transmission using an antenna of an antenna matrix at the edge of the antenna matrix; setting a retransmission threshold in advance, Transmitting the threshold to all MBMS user equipment UEs of interest; UEs at the UE receiver that decode the SINR between the retransmission thresholds send feedback signals; use all receive antennas at the base station to estimate the The angle of arrival DoA of the UEs that have sent back the feedback signal; for retransmission, the beamforming angle DoA based beamforming BF operation is performed using all of the transmitting antennas of the base station; and if there is no UE between the thresholds, then Go to the initial launch step.
  • a user equipment UE that performs hybrid transmission of a single cell MBMS is also proposed, and the user equipment performs the following steps: using an antenna of the edge of the antenna matrix for initial transmission; setting a retransmission threshold in advance, Transmitting the retransmission threshold to all MBMS user equipment UEs of interest; UEs at the UE receiver that decode the SINR between the retransmission thresholds send feedback signals; use all receive antennas at the e-NB to estimate those ⁇ Transmitting the arrival angle of the feedback signal DoA; for retransmission, performing a beamforming angle DoA based beamforming BF operation using all transmit antennas; and returning to the initial transmission step if there is no UE between the thresholds .
  • the antenna at the edge of the antenna matrix is initially transmitted using a full rate and full diversity orthogonal space block code 0-SFBC.
  • the retransmission threshold is a valid signal to noise ratio SINR threshold.
  • the effective signal to noise ratio SINR threshold is preset by the eNB, and the preconfigured effective signal to noise ratio SINR threshold is sent back to all MBMS user equipment UEs of interest.
  • the UE that decodes the SINR between the retransmission thresholds sends back a feedback signal to the e-NB.
  • a beam-forming DoA-based beamforming BF operation is performed based on a maximum-minimum principle using all transmit antennas.
  • the SINR threshold greatly reduces the uplink feedback overhead.
  • the first and fourth antennas are used in the case of four transmit antennas (as indicated by the dotted line in Figure 7), in eight Using the first and eighth antennas in the case of a transmit antenna, the effect of spatial correlation on transmit diversity is effectively reduced due to the wider antenna spacing at the e-NB; compared to the prior art for SC MBMS, The DoA-based BF algorithm is only used for retransmission.
  • the hybrid scheme according to an embodiment of the present invention is easier to implement in an actual system, and the scheme can be applied to any number of transmit antennas; when combined with HARQ, based on BF
  • the DoA is suitable for retransmission and is targeted at the worst case UEs in the UEs that send back signals. As a result, the worst-case UE reception performance is greatly improved, but at the expense of other UE performance degradation.
  • Uplink signaling feedback due to initial transmission Using the ring-band space-frequency block coding SFBC and SINR thresholds, only UEs whose decoding threshold is between predetermined thresholds need to send back signals to the e-NB, which greatly reduces the UL signaling feedback overhead; 2) Downlink: SINR should be The threshold is pre-signaled to all interested MBMS UEs and is determined by configuration parameters such as cell radius, mcs, and the like. These parameters can be updated if needed. -. .
  • FIG. 1 is a flowchart showing a hybrid transmission method of a single cell MBMS according to a first embodiment of the present invention
  • FIG. 2 is a flowchart showing another hybrid transmission method of a single cell MBMS according to a second embodiment of the present invention
  • FIG. 3 is a flow chart showing a hybrid transmission method of a single cell MBMS according to a third embodiment of the present invention
  • FIG. 4 is a flowchart showing a hybrid transmission method of a single cell MBMS according to a fourth embodiment of the present invention
  • a flowchart of a hybrid transmission method of a single cell MBMS according to a fifth embodiment of the present invention is shown
  • FIG. 6 is a flowchart showing a hybrid transmission method of a single cell MBMS according to a sixth embodiment of the present invention.
  • An antenna structure for initial transmission and retransmission for 2, 4, and 8 transmit antennas according to an embodiment of the present invention (wherein an antenna indicated by a broken line is used for initial transmission, and a retransmission is used for all transmit antennas);
  • Figure 8 shows a cumulative distribution CDF simulation result plot for the effective SINR of 2x2 0- SFBC without HARQ
  • Figure 9 is a graph showing simulation results for CDF comparison of effective SINR using 4x2/8x2 BF of HARQ for 2x2 0-SFBC with/without HARQ;
  • Figure 10 is a graph showing simulation results for CDF comparison of effective SINR using 4x2/8x2 BF of HARQ for 2x2 0-SFBC with/without HARQ;
  • Fig. 11 is a graph showing simulation results for CDF comparison of effective SINR using 4x2/8x2 BF of HARQ for 2x2 0-SFBC with/without HARQ. detailed description
  • Embodiments of the present invention propose a robust hybrid transmission method 'overcoming the number of transmitting antennas Limitations, uplink feedback signaling overhead limitations, and limitations to improve worst case reception performance at the expense of other UE performance degradation.
  • the hybrid transmission method can be considered as a combination of open loop transmit diversity, DoA based BF operation, and HARQ. As shown in FIG.
  • the method includes the following steps: performing initial transmission using an antenna at the edge of the antenna matrix (S101); setting a retransmission threshold in advance, and transmitting the retransmission threshold to all MBMS user equipments of interest ( S102); the UE at the UE receiver that decodes the SINR between the retransmission thresholds sends a feedback signal (S103); at the e-NB, uses all the receiving antennas to estimate the DOA of those UEs that have sent back the feedback signal DoA (S104); for retransmission, performing a beamforming angle DoA based beamforming BF operation using all transmit antennas (S105); and determining whether there is a UE between the thresholds (S106) if not between the thresholds If there is a UE, it returns to the initial transmission step, and if it does, then returns to step S103 to continue the transmission according to an embodiment of the present invention.
  • Fig. 2 is a flow chart showing another hybrid transmission method of a single cell MBMS according to a second embodiment of the present invention.
  • the method includes the following steps: for the initial transmission, an antenna of a most edge of the antenna matrix performs initial transmission using a full-rate and full-diversity orthogonal space-frequency block code 0-SFBC (S201); Pre-setting a retransmission threshold, and transmitting the retransmission threshold to all MBMS user equipment UEs of interest (S202), where the UE that decodes the SINR between the retransmission thresholds sends a feedback signal (S203); At the e-NB, all the receiving antennas are used to estimate the angle of arrival DoA of the UEs that have sent back the feedback signal (S204); for retransmission, the beamforming angle DoA based beamforming BF operation is performed using all transmitting antennas (S205) And determining whether there is a UE between the thresholds (S206), if there is no UE between the
  • FIG. 3 is a flow chart showing a hybrid transmission method of a single cell MBMS according to a third embodiment of the present invention.
  • the hybrid transmission method can be considered as a combination of open loop transmit diversity, DoA based BF operation, and HARQ. As shown in FIG.
  • the method includes the following steps: performing initial transmission by using an antenna at the edge of the antenna matrix (S301); when the retransmission threshold is preset, setting an effective signal to noise ratio SINR threshold by using an eNB, and The pre-configured effective signal to noise ratio (SINR) threshold is sent back to all interested MBMS user equipments (S302); the UE at the UE receiver that decodes the SINR between the retransmission thresholds sends a feedback signal (S303); At the e-NB, all the receiving antennas are used to estimate the angle of arrival DoA of the UE that has sent back the feedback signal (S304); for retransmission, the beamforming angle DoA based beamforming BF operation is performed using all the transmitting antennas (S305); And determining the threshold Whether there is a UE (S306), if there is no UE between the thresholds, then return to the initial transmission step, and if yes, return to step S303 to continue the transmission according to an embodiment of the present invention.
  • SINR
  • the hybrid transmission method can be considered as a combination of open loop transmit diversity, DoA based BF operation, and HARQ. As shown in FIG.
  • the method includes the following steps: performing initial transmission using an antenna at the edge of the antenna matrix (S401); setting a retransmission threshold in advance, and transmitting the retransmission threshold to all MBMS user equipments of interest ( S402); at the UE receiver, the UE decoding the SINR between the retransmission thresholds sends back a feedback signal to the e-NB (S403); at the e-NB, using all the receiving antennas to estimate those sent back feedback signals
  • the angle of arrival DoA of the UE (S404); for retransmission, the beamforming angle DoA based beamforming BF operation is performed using all transmit antennas (S405); and determining whether there is a UE between the thresholds (S406), if If there is no UE between the thresholds, then the initial transmission step is returned, and if it is, then return to step S403 to continue the transmission according to an embodiment of the present invention.
  • Fig. 5 is a flow chart showing a hybrid transmission method of a single cell MBMS according to a fifth embodiment of the present invention.
  • the hybrid transmission method can be considered as a combination of ring-ring transmit diversity, DoA-based BF operation, and HARQ. As shown in FIG.
  • the method includes the following steps: performing initial transmission using an antenna at the edge of the antenna matrix (S101); setting a retransmission threshold in advance, and transmitting the retransmission threshold to all MBMS user equipments of interest ( S102); the UE at the UE receiver that decodes the SINR between the retransmission thresholds sends a feedback signal (S103); at the e-NB, uses all the receiving antennas to estimate the angle of arrival of the UE that has sent back the feedback signal DoA (S104); for retransmission, performing a beamforming angle DoA based beamforming BF operation based on a maximum-minimum principle using all transmit antennas (S105); and determining whether there is a UE between the thresholds (S106), if If there is no UE between the thresholds, then the initial transmission step is returned, and if it is, then return to step S103 to continue the transmission according to the embodiment of the present invention.
  • FIG. 6 is a flow chart showing a hybrid transmission method of a single cell MBMS according to a sixth embodiment of the present invention.
  • the hybrid transmission method can be considered as a combination of open loop transmit diversity, DoA based BF operation, and HARQ. As shown in FIG.
  • the method includes the following steps: For the initial transmission, an antenna of a most edge of the antenna matrix performs initial transmission using a full-rate and full-diversity orthogonal space-frequency block code 0-SFBC (S601); When the retransmission threshold is preset, the effective signal to noise ratio SINR threshold is preset by the eNB, and the pre-configured effective signal to noise ratio SINR threshold is sent back to all interested MBMS user equipments UE (S602); At the machine, the UE that decodes the SINR between the retransmission thresholds sends back a feedback signal to the e-NB (S603); at the e-NB, uses all the receiving antennas to estimate the angle of arrival of the UEs that have sent back the feedback signal.
  • S601 full-rate and full-diversity orthogonal space-frequency block code 0-SFBC
  • DoA for retransmission, beamforming DoA-based beamforming BF operation based on maximum-minimum principle using all transmit antennas (S605); Whether the UE exists between the thresholds is broken (S606), if there is no UE between the thresholds, 'returns to the initial transmission step, and if yes, returns to step S103 to continue transmission according to an embodiment of the present invention.
  • a base station for performing hybrid transmission of a single cell MBMS performs the following steps: performing initial transmission using an antenna of an antenna chip at the edge of the antenna matrix; setting a retransmission threshold in advance, Transmitting the retransmission threshold to all MBMS user equipment UEs of interest; UEs at the UE receiver that decode the SINR between the retransmission thresholds send feedback signals; use all receive antennas at the base station to estimate those sent back The angle of arrival DoA of the UE of the feedback signal; for retransmission, a beamforming angle DoA based beamforming BF operation is performed using all of the transmitting antennas of the base station; and if there is no UE between the thresholds, returning to the initial transmitting step .
  • a user equipment UE that performs hybrid transmission of a single cell MBMS is further proposed.
  • the user equipment performs the following steps: using an antenna of the edge of the antenna matrix for initial transmission; setting a retransmission threshold in advance Transmitting the retransmission threshold to all MBMS user equipment UEs of interest; UEs at the UE receiver decoding the SINR between the retransmission thresholds to send feedback signals; using all receiving antennas at the e-NB Estimating the angle of arrival DoA of the UEs that have sent back the feedback signal; for retransmission, performing a beamforming angle DoA based beamforming BF operation using all transmit antennas; and returning if there is no UE between the thresholds Initial launch step.
  • Table 1 shows the relevant system and link level simulation parameters.
  • TTI transmission time interval
  • a transmission time interval TTI includes 12 OFDM symbols having a large CP length.
  • modulation and channel coding groups can be selected.
  • For HARQ five TTI feedback delays are assumed and synchronous HARQ operations are performed at the e-NB.
  • receive antennas There are 2 receive antennas with 10 wavelength intervals at all UEs, so there is no need to consider the receive antenna spatial correlation.
  • DoA the ideal DoA values are used in the simulation. Calculate valid SIN o using the EESM mapping algorithm from link level to system level
  • Figure 8 clearly shows that for 2 X 2 SFBC without HARQ, the effective SINR interval is between [- 25 and 15] dB at 90% coverage operating point.
  • the SINR threshold is set to [- 23 ⁇ 16] during simulation. ] dB, other wider thresholds can be chosen for different coverage requirements.
  • 2 X 2 0-SFBC using HARQ was also simulated for comparison. Corresponding results for 6, 10 and 14 UEs per cell are given in Figures 9-11.
  • the MBMS will focus on 90% of the coverage operating point.
  • the advantages of the hybrid scheme according to an embodiment of the present invention compared to other schemes are two aspects: On the one hand, the SINR is improved for 4X2/8X2 BF using HARQ and 2X2 0-SFBC without HARQ; The scheme according to an embodiment of the present invention reduces the average number of retransmissions compared to the 2X20-SFBC using HARQ.
  • the average retransmission number of 4x2 BF w HARQ is reduced by about 30% compared with 2x2 SFBC w HARQ; 8x2 BF w HARQ is compared with 2x2 SFBC w HARQ Reduced by '33% to 37%.
  • an effective SINR of 4.3 to 4.5 dB was obtained compared to 2x2 SFBC ⁇ HARQ.
  • the advantages of the new BF scheme are mainly due to the following reasons: A narrower beam is formed, and the total transmit power is aimed at the UE with the smallest SINR, so the worst UE reception performance is improved by means of retransmission. This new BF operation has proven to be a very efficient solution and can be used to replace retransmissions using transmit diversity.
  • the program is executed by instructing related hardware, and the program may be stored in a computer readable storage medium.
  • the program is executed, the following steps are performed: using an antenna of the edge of the antenna matrix for initial transmission; setting a retransmission threshold in advance, The retransmission threshold is sent to all interested MBMS user equipment UEs; the UE at the UE receiver that decodes the SINR between the retransmission thresholds sends a feedback signal; at the e-NB, all the receiving antennas are used to estimate those sent The angle of arrival DoA of the UE that returns the feedback signal; for retransmission, the beamforming angle DoA based beamforming BF operation is performed using all transmit antennas; and determining whether there is a UE between the thresholds, if not between the thresholds If there is a UE, it returns to the initial transmitting step, and if it is, returns to step S103 to continue the transmission according to an
  • the main advantages of the method, the base station and the user equipment according to the embodiments of the present invention are: since the open-loop SFBC and SINR thresholds are used for the initial transmission, the uplink feedback overhead is greatly reduced; for the initial transmission, as shown in FIG.
  • the first and fourth antennas are used in the case of 4 transmit antennas, and the first and eighth antennas are used in the case of 8 transmit antennas, effectively reducing spatial correlation due to wider antenna spacing at the e-NB Effect on transmit diversity;
  • this hybrid scheme according to an embodiment of the present invention is easier to implement in an actual system, as compared to the prior art for SC MBMS, because the DoA-based BF algorithm is used only for retransmission, and The scheme can be applied to any number of transmit antennas; when combined with HARQ, the BF-based DoA is suitable for retransmission and targets the worst case UE among those UEs that send back signals. As a result, the reception performance of the worst case UE is greatly improved, but at the expense of the degradation of other UE performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

单小区 MBMS的混合传输方法、 基站和用户设备 技术领域
本发明涉及多媒体广播组播领域, 更具体地, 涉及单小区 MBMS的混合传输方 法、 基站和用户设备。 背景技术
波束成形 BF (beam forming) 的概念起源于智能天线 SA, SA的基本原理是利用 半波长间距天线阵列信道冲击响应的相关性, 通过发端处理, 形成一个指向性的波 束,提高接收端的信噪比, 扩大系统的覆盖范围。 传统的 BF只限于单独的信号流, 即 传输信号与一个权重因子相乘后, 通过多根天线发射出去。 一般这种增益也称为阵 列增益。后来,随着 MIM0系统研究的不断深入, BF的具体含义有了扩展, 在 MIM0系统 中,天线间距不仅限于半波长, 它可以是 4波长 /10波长等, 在这种情况下信道矩阵的 相关性将大大减弱, 而这种不相关性可以带来分集增益, 常见的方法是空时编码 STBC, 也可以带来复用增益, 常见的是 v-blast。 在这种意义下, BF与 MIM0中的预编 码含义相同。例如,现在常见的多流 BF就可以这样理解。特征根 BF的典型含义是利用 信道的二阶统计信息,即信道的相关矩阵,通过 SVD确定 BF矢量, 在单流 BF中,选取与 最大特征值对应的特征矢量为 BF矢量; 在多流 BF中,按照大小顺序依次进行选取。对 于 MU- MIM0, BF等同于 SDMA,这里 BF矩阵或者预编码矩阵,需要最大化单个用户的 SINR, 同时尽量减小用户间的干扰,常见的算法是 BD。
3GPP 在 R6版本中定义的 MBMS (Multimedia Broadcast Multicast Server: 多媒体广播多播业务) 指无线网络中一个数据源向多个用户发送数据的点到多点 (p-t-m)业务, 在不改变网络结构的基础上实现网络资源共享。 除了移动核心网和 接入网资源, MBMS还可以共享更为紧张的空中接口资源,以提高无线资源的利用率。
MBMS 典型地通过两种情景来配置, 即单小区 (SC) 和多小区点到多点 p- - m 传输。 对于 SC MBMS传输, 可以使用诸如链路自适应、 混合自动重传请求 (HARQ)、 闭环 MIMO (Multiple Input and Multiple Output) 等之类的先进物理层技术,利 用从终端到 e- NB的空中接口上的反馈来改善用户设备 UE的接收性能。
众所周知的是波束成形 (BF) 是一种先进的闭环 MIM0技术, 用于改善覆盖率 和小区边缘 UE的吞吐量。 在 3GPP的单播中已经广泛地讨论了两种类型的 BF操作。 一种是基于上行链路反馈的下行链路 BF, 另一种是基于上行链路估计的 行链路 BFo 因为根据实际情况考虑, 反馈信令开销是关键因素, 因此诸如基于波达角 DoA (Direction of arrival )方案的第二种方案迄今为止是最优选的。
对于利用波束成形 BF的单小区多媒体广播组播业务 SC MBMS, 现有 BF方案的 主要缺点总结如下:
1)发射天线限制: 由于正交接收站 RS的开销, 现有的 BF方案更适用于小的发 射天线数目, 例如 2或 4; .
2)上行链路反馈信令开销限制: 现有的全部 BF方案需要所有 UE向 e- NB反馈 信道信息, 例如信道相关矩阵或信道状态信息 CSI, 上行链路反馈信令幵销较大; 3)以其他 UE性能恶化为代价, 改善了最差情况 UE接收性能: 随着 e- NB处发 射天线数目的增加, 波束宽度变得更窄。 从覆盖率改善和邻居小区干扰减小的观点 来看, 由于点到点 p- 1- p特性, 实际上这只对于单播发射是有益的。但是 MBMS是点 到多点的, 并且多个 UE共享相同的时间-频率资源, 如果较窄的波束指向最差情况 UE, 其他 UE可能会受到很大的性能损失。 发明内容
本发明的目的在于在提供一种具有鲁棒性的混合传输方法, 克服发射天线个数 的限制, 上行链路反馈信令开销限制、 以及克服以其他 UE性能恶化为代价改善最差 情况接收性能的限制。
根据本发明的实施例, 提出了一种单小区 MBMS的混合传输方法, 可以将所述混 合传输方法看作是幵环发射分集、基于 DoA的 BF操作和 HARQ的组合。所述方法包括以 下步骤: 使用天线矩阵最边缘的天线进行初始发射; 预先设置重传阈值, 将所述重 传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中解码 SINR位于所述重传 阈值之间的 UE发送反馈信号; 在 e-NB处, 使用全部接收天线估计那些已发回反馈信 号的 UE的波达角 DoA; 对于重新发射, 使用全部发射天线进行基于波达角 DoA的波束 成形 BF操作; 以及如果在所述阈值之间不存在 UE, 则回到初始发射步骤。
根据本发明的实施例, 还提出了一种进行单小区 MBMS的混合传输的基站, 所述 基站执行以下步骤: 使用基站的天线矩阵最边缘的天线进行初始发射; 预先设置重 传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号; 在基站处使用全部接收天线估计那 些已发回反馈信号的 UE的波达角 DoA; 对于重新发射, 使用基站的全部发射天线进行 基于波达角 DoA的波束成形 BF操作; 以及如果在所述阈值之间不存在 UE, 则回到初始 发射步骤。
根据本发明的实施例,还提出了一种进行单小区 MBMS的混合传输的用户设备 UE, 所述用户设备执行以下步骤.. 使用天线矩阵最边缘的天线进行初始发射; 预先设置 重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中解 码 SINR位于所述重传阈值之间的 UE发送反馈信号; 在 e-NB处使用全部接收天线估计 那些巳发回反馈信号的 ϋΕ的波达角 DoA; 对于重新发射, 使用全部发射天线进行基于 波达角 DoA的波束成形 BF操作; 以及如果在所述阈值之间不存在 UE, 则回到初始发射 步骤。
- 优选地, 对于所述初始发射, 所述天线矩阵最边缘的天线使用全速率和全分集 正交空频块码 0- SFBC进行初始发射。
优选地, 所述重传阈值是有效信噪比 SINR阈值。
. 优选地, 在所述预先设置重传阈值时, 通过 eNB预先设置有效信噪比 SINR阈值, 并且将所述预先配置的有效信噪比 SINR阈值发送回全部感兴趣的 MBMS用户设备 UE。
优选地, 在 UE接收机处, 解码 SINR位于所述重传阈值之间的 UE向 e-NB发回反馈 信号。
优选地, 对于重新发射,使用全部发射天线基于最大 -最小原理进行基于波 角 DoA的波束成形 BF操作。
与现有技术相比, 本发明的有益效果在于: 由于对于初始发射使用开环 SFBC和
SINR阈值, 大大降低了上行链路反馈开销; 对于初始发射, 如图 7所示, 在 4个发射 天线的情况下使用第一和第四天线(如图 7中虚线所示), 在 8个发射天线的情况下使 用第一和第八天线, 由于 e-NB处更宽的天线间距, 有效地降低了空间相关性对于发 射分集的影响; 与用于 SC MBMS的现有技术相比, 由于将基于 DoA的 BF算法只用于重 新发射, .根据本发明实施例的该混合方案在实际系统中更容易实现, 并且所述方案 可以应用于任意发射天线数目; 当与 HARQ组合时, 基于 BF的 DoA适用于重新发射, 并 且目标在于那些发回信号的 UE中最差情况的 UE。 结果, 大大地改善了最差情况 UE的 接收性能, 但是并没有以其他 UE性能的退化为代价。
这种混合方案对于界面信令的影响: 1)上行链路信令反馈: 由于对于初始发射 使用幵环空频分组编码 SFBC和 SINR阈值, 只有解码阈值在预定阈值之间的 UE需要向 e-NB发回信号, 大大地降低了 UL信令反馈开销; 2)下行链路: 应该将 SINR阈值预先 发信号至全部感兴趣的 MBMS UE,并且通过诸如小区半径、 mcs等之类的配置参数来确 定所述阈值。 如果需要可以对这些参数进行更新。 -. .
附图说明
根据结合附图的以下描述, 本发明的优点将变得易于理解, 其中:
图 1示出了根据本发明第一实施例的单小区 MBMS的混合传输方法的流程图; ή 2示出了根据本发明第二实施例的另一种单小区 MBMS的混合传输方法的流 程图;
图 3示出了根据本发明第三实施例的单小区 MBMS的混合传输方法的流程图; 图 4示出了根据本发明第四实施例的单小区 MBMS的混合传输方法的流程图; 图 5示出了根据本发明第五实施例的单小区 MBMS的混合传输方法的流程图; 图 6示出了根据本发明第六实施例的单小区 MBMS的混合传输方法的流程图; 图 7示出了根据本发明实施例的对于 2、 4和 8条发射天线情况下初始发射和 重发射的天线结构 (其中, 用虚线表示的天线用于初始发射, 重新发射使用全部发 射天线);
图 8示出了对于没有利用 HARQ的 2x2 0- SFBC 的有效 SINR的累积分布 CDF仿 真结果图;
图 9示出了对于利用 /没有利用 HARQ的 2x2 0- SFBC、 利用 HARQ的 4x2/8x2 BF 的有效 SINR的 CDF比较的仿真结果图;
图 10示出了对于利用 /没有利用 HARQ的 2x2 0- SFBC、利用 HARQ的 4x2/8x2 BF 的有效 SINR的 CDF比较的仿真结果图;
图 11示出了对于利用 /没有利用 HARQ的 2x2 0- SFBC、利用 HARQ的 4x2/8x2 BF 的有效 SINR的 CDF比较的仿真结果图。 具体实施方式
现在对本发明的实施例提供详细参考。 为解释本发明将参考附图描述下述实施 例。
本发明的实施例提出了一种具有鲁棒性的混合传输方法' 克服发射天线个数的 限制, 上行链路反馈信令开销限制、 以及克服以其他 UE性能恶化为代价改善最差情 况接收性能的限制。
图 1示出了根据本发明第一实施例的单小区 MBMS的混合传输方法的流程图。可以 将所述混合传输方法看作是开环发射分集、 基于 DoA的 BF操作和 HARQ的组合。 如图 1 所示, 所述方法包括以下步骤: 使用天线矩阵最边缘的天线进行初始发射 (S101 ); 预先设置重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE (S102 ) ; UE接收机处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号 (S103);在 e- NB处, 使用全部接收天线估计那些已发回反馈信号的 UE的波达角 DoA (S104); 对于重新发 射, 使用全部发射天线进行基于波达角 DoA的波束成形 BF操作 (S105) ; 以及判断所述 阈值之间是否存在 UE (S106 ),如果在所述阈值之间不存在 UE,则回到初始发射步骤, 如果存在则回到步骤 S103继续进行根据本发明实施例的发射。
图 2示出了根据本发明第二实施例的另一种单小区 MBMS的混合传输方法的流程 图。 如图 2所示, 所述方法包括以下步骤: 对于所述初始发射, 所述天线矩阵最边缘 的天线使用全速率和全分集正交空频块码 0-SFBC进行初始发射(S201 ); 与预先设置 重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE (S202 ) , UE接收机 处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号 (S203) ; 在 e- NB处, 使用全 部接收天线估计那些已发回反馈信号的 UE的波达角 DoA (S204) ; 对于重新发射, 使用 全部发射天线进行基于波达角 DoA的波束成形 BF操作 (S205);以及判断所述阈值之间 是否存在 UE (S206 ), 如果在所述阈值之间不存在 UE, 则回到初始发射步骤, 如果存 在则回到步骤 S203继续进行根据本发明实施例的发射。 其中, 所述重传阈值可以是 有效信噪比 SINR阈值。
图 3示出了根据本发明第三实施例的单小区 MBMS的混合传输方法的流程图。可以 将所述混合传输方法看作是开环发射分集、 基于 DoA的 BF操作和 HARQ的组合。 如图 3 所示, 所述方法包括以下步骤: 使用天线矩阵最边缘的天线进行初始发射 (S301 ); 在所述预先设置重传阈值时, 通过 eNB预先设置有效信噪比 SINR阈值, 并且将所述预 先配置的有效信噪比 SINR阈值发送回全部感兴趣的 MBMS用户设备 UE (S302); UE接收 机处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号 (S303) ; 在 e-NB处, 使用 全部接收天线估计那些已发回反馈信号的 UE的波达角 DoA (S304) ; 对于重新发射, 使 用全部发射天线进行基于波达角 DoA的波束成形 BF操作 (S305);以及判断所述阈值之 间是否存在 UE (S306), 如果在所述阈值之间不存在 UE, 则回到初始发射步骤, 如果 存在则回到步骤 S303继续进行根据本发明实施例的发射。
图 4示出了根据本发明第四实施例的单小区 MBMS的混合传输方法的流程图。可以 将所述混合传输方法看作是开环发射分集、 基于 DoA的 BF操作和 HARQ的组合。 如图 4 所示, 所述方法包括以下步骤: 使用天线矩阵最边缘的天线进行初始发射 (S401 ) ; 预先设置重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE (S402 ) ; 在 UE接收机处, 解码 SINR位于所述重传阈值之间的 UE向 e- NB发回反馈信号 (S403); 在 e-NB处, 使用全部接收天线估计那些已发回反馈信号的 UE的波达角 DoA (S404) ; 对 于重新发射, 使用全部发射天线进行基于波达角 DoA的波束成形 BF操作 (S405) ; 以及 判断所述阈值之间是否存在 UE (S406 ) , 如果在所述阈值之间不存在 UE, 则回到初始 发射步骤, 如果存在则回到步骤 S403继续进行根据本发明实施例的发射。
图 5示出了根据本发明第五实施例的单小区 MBMS的混合传输方法的流程图。可以 将所述混合传输方法看作是幵环发射分集、 基于 DoA的 BF操作和 HARQ的组合。 如图 5 所示, 所述方法包括以下步骤: 使用天线矩阵最边缘的天线进行初始发射 (S101 ); 预先设置重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE (S102) ; UE接收机处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号(S103);在 e- NB处, 使用全部接收天线估计那些已发回反馈信号的 UE的波达角 DoA (S104); 对于重新发 射, 使用全部发射天线基于最大 -最小原理进行基于波达角 DoA的波束成形 BF操作 (S105) ; 以及判断所述阈值之间是否存在 UE ( S106),如果在所述阈值之间不存在 UE, 则回到初始发射步骤,如果存在则回到步骤 S103继续进行根据本发明实施例的发射。
图 6示出了根据本发明第六实施例的单小区 MBMS的混合传输方法的流程图。可以 将所述混合传输方法看作是开环发射分集、 基于 DoA的 BF操作和 HARQ的组合。 如图 6 所示, 所述方法包括以下步骤: 对于所述初始发射, 所述天线矩阵最边缘的天线使 用全速率和全分集正交空频块码 0-SFBC进行初始发射(S601 ); 在所述预先设置重传 阈值时, 通过 eNB预先设置有效信噪比 SINR阈值, 并且将所述预先配置的有效信噪比 SINR阈值发送回全部感兴趣的 MBMS用户设备 UE ( S602 ) ; 在 UE接收机处, 解码 SINR 位于所述重传阈值之间的 UE向 e-NB发回反馈信号(S603 ) ; 在 e- NB处, 使用全部接收 天线估计那些已发回反馈信号的 UE的波达角 DoA (S604 ); 对于重新发射, 使用全部 发射天线基于最大-最小原理进行基于波达角 DoA的波束成形 BF操作(S605 ); 以及判 断所述阈值之间是否存在 UE ( S606), 如果在 述阈值之间不存在 UE,'则回到初始发 射步骤, 如果存在则回到步骤 S103继续进行根据本发明实施例的发射。
根据本发明的第七实施例, 还提出了一种进行单小区 MBMS的混合传输的基站, 所述基站执行以下步骤: 使用基站的天线矩阵最边缘的天线进行初始发射; 预先设 置重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中 解码 SINR位于所述重传阈值之间的 UE发送反馈信号; 在基站处使用全部接收天线估 计那些已发回反馈信号的 UE的波达角 DoA; 对于重新发射, 使用基站的全部发射天线 进行基于波达角 DoA的波束成形 BF操作; 以及如果在所述阈值之间不存在 UE, 则回到 初始发射步骤。
根据本发明的第八实施例, 还提出了一种进行单小区 MBMS的混合传输的用户设 备 UE, 所述用户设备执行以下步骤: 使用天线矩阵最边缘的天线进行初始发射; 预 先设置重传阈值, 将所述重传阈值发送给全.部感兴趣的 MBMS用户设备 UE; UE接收机 处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号; 在 e-NB处使用全部接收天 线估计那些已发回反馈信号的 UE的波达角 DoA; 对于重新发射, 使用全部发射天线进 行基于波达角 DoA的波束成形 BF操作; 以及如果在所述阈值之间不存在 UE, 则回到初 始发射步骤。
为了进一步验证本发明方法的有益效果, 以下给出了相应的系统仿真结果及其 分析。
表 1给出了相关系统和链路级仿真参数。
表 1 : 系统和链路级仿真参数
Figure imgf000009_0001
UE速度 30 km/h
宏小区链路级别仿真基本参数
载波频率 2. 0 GHz
釆样频率 7. 68 MHz
每个 TTI的 OFDM符号个数 12
CP和数据长度 128/512 样本
调制和信道编码 QPSK和 1/2 turbo
反馈延迟 5 TTIs
链路级别到系统级别的映射方法
EESM算法
e-NB参数
发射天线数目 2、 4和 8
天线增益 14 dBi
噪声系数 5 dB
UE参数
接收天线数目 2
天线间距 。 10个波长
噪声系数 9 dB
在仿真时, 假设全部 UE在整个扇区内随机并且均匀地散射。 不考虑邻居小区的 干扰。假设一个传输时间间隔 TTI包括具有较大 CP长度的 12个 OFDM符号。可以选择各 种调制和信道编码组。 在仿真时使用 QPSK和 l/2turbo。 对于 HARQ, 假设了 5个 TTI反 馈延迟, 并且在 e-NB处执行同步 HARQ操作。 在全部 UE处存在具有 10个波长间隔的 2 个接收天线, 因此不需要考虑接收天线空间相关性。 存在多种算法用于估计 DoA, 但 是在仿真时使用理想的 DoA值。 使用从链路级到系统级的 EESM映射算法来计算有效 SIN o
对于没有利用 HARQ (图中用 "wo"表示, 对于利用 HARQ的在图中用 "w"表示) 的 2发射 2接收天线 (用 "2X 2"表示) SFBC, 有效 SINR的累积分布函数 (CDF) 首先 在图 8中示出作为基础。
图 8清楚地示出了对于没有利用 HARQ的 2 X 2 0 SFBC, 有效 SINR的间隔在 90%的覆 盖工作点下是在 [- 25〜15] dB之间。 为了与本发明的混合方案进行比较, 即与利用 HMQ的 4X 2/8 X 2 BF与没有利用 HARQ的 2 X 2 0- SFBC进行比较, 在仿真时将 SINR阈值 设定为 [- 23〜16] dB, 对于不同的覆盖要求也可以选择其他更宽的阈值。 同时, 对利 用 HARQ的 2 X 2 0- SFBC也进行了仿真以便进行比较。 在图 9〜图 11中分别给出了对于 每个小区 6个、 10个和 14个 UE的相应结果。 从图 9〜图 11中可以看出, 因为广播 /多播需要覆盖小区边缘, 对于 MBMS将重点 集中于 90%的覆盖工作点。根据本发明实施例的混合方案与其他方案相比的优点在于 两个方面: 一方面, 对于利用 HARQ的 4X2/8X2 BF与没有利用 HARQ的 2X2 0-SFBC 相比较,改善了 SINR;另一方面,根据本发明实施例的方案与利用 HARQ的 2X20-SFBC 相比, 减少了平均重传次数。
为了便于比较, 在表 2中示出了利用 4X2/8X2 BF与利用 HARQ的 2X2 SFBC相比 较时减小了平均重传次数, 还示出了在 6、 10和 14个 UE的情况下与没有利用 HARQ的 2 X2 SFBC方案相比的有效 SINR增益。
表 2: 新 BF方案的性能改善
Figure imgf000011_0001
从表 2可以看出, 在 3种用户个数的情况下, 4x2 BF w HARQ与 2x2 SFBC w HARQ 相比平均重传个数减少了约 30%; 8x2 BF w HARQ与 2x2 SFBC w HARQ相比减小了' 33%〜 37% 同时, 与 2x2 SFBC ψ HARQ相比, 获得了 4.3〜4.5dB的有效 SINR。 新的 BF方案 的优点主要是由于以下原因产生的: 形成了较窄的波束, 并且总的发射功率瞄准具 有最小 SINR的 UE, 因此借助重传改善了最差 UE接收性能。 已经证实了这种新的 BF操 作是一种非常有效的方案, 并且可以用于取代利用发射分集的重传。
本领域普通技术人员可以理解: 实施上述实施例方法中的全部或部分步骤可以 通过程序来指令相关的硬件来完成, 所述程序可以存储于计算机可读存储介质中, 执行该程序时执行如下步骤: 使用天线矩阵最边缘的天线进行初始发射; 预先设置 重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中解 码 SINR位于所述重传阈值之间的 UE发送反馈信号; 在 e- NB处, 使用全部接收天线估 计那些已发回反馈信号的 UE的波达角 DoA; 对于重新发射, 使用全部发射天线进行基 于波达角 DoA的波束成形 BF操作; 以及判断所述阈值之间是否存在 UE, 如果在所述阈 值之间不存在 UE, 则回到初始发射步骤, 如果存在则回到步骤 S103继续进行根据本 发明实施例的发射, 所述存储介质可以是 R0M/RAM、 磁盘、 光盘等存储介质。
根据本发明实施例所述的方法、 基站和用户设备的主要优点在于: 由于对于初 始发射使用开环 SFBC和 SINR阈值, 大大降低了上行链路反馈开销; 对于初始发射, 如图 7所示, 在 4个发射天线的情况下使用第一和第四天线, 在 8个发射天线的情况下 使用第一和第八天线, 由于 e-NB处更宽的天线间距, 有效地降低了空间相关性对于 发射分集的影响; 与用于 SC MBMS的现有技术相比, 由于将基于 DoA的 BF算法只用于 重新发射, 根据本发明实施例的该混合方案在实际系统中更容易实现, 并且所述方 案可以应用于任意发射天线数目; 当与 HARQ组合时, 基于 BF的 DoA适用于重新发射, 并且目标在于那些发回信号的 UE中最差情况的 UE。 结果, 大大地改善了最差情况 UE 的接收性能, 但是并没有以其他 UE性能的退化为代价。
当将 HARQ用于 SC MMBS时, 这种混合方案在是易于实现和性能改善方面均具有非 常吸引人的特性。 因此, 根据本发明的这种方案可以推荐为未来 LTE+或 4G系统的备 选技术方案。
尽管已经示出和描述了本发明的一些实施例,但本领域普通技术人员应当理解, 在不脱离所附权利要求及其等价物所限定的本发明的原理和范围的情况下, 可以在 对以上实施例中做出变化。

Claims

1. 一种单小区 MBMS的混合传输方法, 包括以下步骤- 使用天线矩阵最边缘的天线进行初始发射;
预先设置重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号;
在 e- NB处, 使用全部接收天线估计那些已发回反馈信号的 UE的波达角 DoA;
' 对于重新发射, 使用全部发射天线进行基于波达角 DoA的波束成形 BF操作; 以及 如果在所述阈值之间不存在 UE, 则回到初始发射步骤。
2.根据权利要求 1所述的混合传输方法,其中对于所述初始发射, 所述天线矩阵 求
最边缘的天线使用全速率和全分集正交空频块码 0-SFBC进行初始发射。
3.根据权利要求 1所述的混合传输方法, 其中所述重传阈值是有效信噪比 SINR 阈值。
4.根据权利要求 3所述的混合传输方法, 其中在所述预先设置重传阈值时, 通过 eNB预先设置有效信噪比 SINR阈值,并且将所述预先配置的有效信噪比 SINR阈值发送 回全部感兴趣的 MBMS用户设备 UE。
5.根据权利要求 1所述的混合传输方法, 其中在 UE接收机处, 解码 SINR位于所述 重传阈值之间的 UE向 e-NB发回反馈信号。
6.根据权利要求 1所述的混合传输方法,其中对于重新发射, 使用全部发射天线 基于最大-最小原理进行基于波达角 DoA的波束成形 BF操作。
7. 一种进行单小区 MBMS的混合传输的基站, 所述基站执行以下步骤: 使用基站的天线矩阵最边缘的天线进行初始发射;
预先设置重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号;
在基站处使用全部接收天线估计那些已发回反馈信号的 UE的波达角 DoA;
对于重新发射, 使用基站的全部发射天线进行基于波达角 DoA的波束成形 BF操 作; 以及
如果在所述阈值之间不存在 UE, 则回到初始发射步骤。
8.根据权利要求 7所述的基站,其中对于所述初始发射, 所述天线矩阵最边缘的 天线使用全速率和全分集正交空频块码 0-SFBC进行初始发射。
9. 根据权利要求 7所述的基站, 其中所述重传阈值是有效信噪比 SINR阈值。
10.根据权利要求 9所述的基站, 其中在所述预先设置重传阈值时, 通过 eNB预先 设置有效信噪比 SINR阈值, 并且将所述预先配置的有效信噪比 SINR阈值发送回全部 感兴趣的 MBMS用户设备 UE。
11. 根据权利要求 7所述的基站, 其中在 UE接收机处, 解码 SINR位于所述重传阈 值之间的 UE向所述基站发回反馈信号。
12. 根据权利要求 7所述的基站, 其中对于重新发射, 使用所述基站的全部发射 天线基于最大 -最小原理进行基于波达角 DoA的波束成形 BF操作。
13. 一种进行单小区 MBMS的混合传输的用户设备 UE, 所述用户设备执行以下步 骤:
使用天线矩阵最边缘的天线进行初始发射;
预先设置重传阈值, 将所述重传阈值发送给全部感兴趣的 MBMS用户设备 UE; UE接收机处中解码 SINR位于所述重传阈值之间的 UE发送反馈信号;
在 e-NB处使用全部接收天线估计那些已发回反馈信号的 UE的波达角 DoA;
对于重新发射, 使用全部发射天线进行基于波达角 DoA的波束成形 BF操作; 以及 如果在所述阈值之间不存在 UE, 则回到初始发射步骤。
14.根据权利要求 13所述的用户设备,其中对于所述初始发射,所述天线矩阵最 边缘的天线使用全速率和全分集正交空频块码 0-SFBC进行初始发射。
15. 根据权利要求 13所述的用户设备, 其中所述重传阈值是有效信噪比 SINR阈 值。
16.根据权利要求 15所述的用户设备,其中在所述预先设置重传阈值时,通过 eNB 预先设置有效信噪比 SINR阈值, 并且将所述预先配置的有效信噪比 SINR阈值发送回 全部感兴趣的 MBMS用户设备 UE。
17. 根据权利要求 13所述的用户设备, 其中在 UE接收机处, 解码 SINR位于所述 重传阈值之间的 UE向所述基站发回反馈信号。
18. 根据权利要求 13所述的用户设备, 其中对于重新发射, 使用所述基站的全 部发射天线基于最大 -最小原理进行基于波达角 DoA的波束成形 BF操作。
PCT/CN2008/001443 2008-08-07 2008-08-07 单小区mbms的混合传输方法、基站和用户设备 WO2010015110A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2008/001443 WO2010015110A1 (zh) 2008-08-07 2008-08-07 单小区mbms的混合传输方法、基站和用户设备
CN200880129933.3A CN102067686B (zh) 2008-08-07 2008-08-07 单小区mbms的混合传输方法、基站和用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001443 WO2010015110A1 (zh) 2008-08-07 2008-08-07 单小区mbms的混合传输方法、基站和用户设备

Publications (1)

Publication Number Publication Date
WO2010015110A1 true WO2010015110A1 (zh) 2010-02-11

Family

ID=41663273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001443 WO2010015110A1 (zh) 2008-08-07 2008-08-07 单小区mbms的混合传输方法、基站和用户设备

Country Status (2)

Country Link
CN (1) CN102067686B (zh)
WO (1) WO2010015110A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598390B (zh) * 2022-02-09 2023-09-29 中国计量大学 多发多收空频分组码ofdm卫星激光通信系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2899297Y (zh) * 2006-04-18 2007-05-09 王烈 一种基于小区广播技术的无线发射装置
US20080045228A1 (en) * 2006-08-18 2008-02-21 Interdigital Technology Corporation Sending and reducing uplink feedback signaling for transmission of mbms data
CN101222256A (zh) * 2007-01-09 2008-07-16 中兴通讯股份有限公司 利用多天线系统发射多媒体广播多播业务的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2899297Y (zh) * 2006-04-18 2007-05-09 王烈 一种基于小区广播技术的无线发射装置
US20080045228A1 (en) * 2006-08-18 2008-02-21 Interdigital Technology Corporation Sending and reducing uplink feedback signaling for transmission of mbms data
CN101222256A (zh) * 2007-01-09 2008-07-16 中兴通讯股份有限公司 利用多天线系统发射多媒体广播多播业务的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL: "Multimedia Broadcast and Multicast Services in 3G Mobile Networks", ALCATEL TELECOMMUNICATIONS REVIEW, 4TH QUARTER 2003/ 1 QUARTER 2004, pages 1 - 10 *

Also Published As

Publication number Publication date
CN102067686B (zh) 2013-04-24
CN102067686A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
KR101728292B1 (ko) 배향 기반 빔 선택을 위한 방법 및 장치
TWI459743B (zh) 多單元無線網路中之合作多重輸入多重輸出
JP4832087B2 (ja) 無線基地局装置及び端末装置
JP5129346B2 (ja) コラボラティブ多入力多出力通信システムにおけるプリコーディングされた信号を送信する方法
JP5561359B2 (ja) 協調マルチポイント通信装置、基地局、及び方法
CA2689906C (en) Interference-improved uplink data rates for a group of mobile stations transmitting to a base station
KR101321295B1 (ko) 다중안테나 시스템의 데이터 전송 방법
WO2010096952A1 (zh) 协同波束赋形方法、设备和基站
KR101810688B1 (ko) 통신 시스템에서 협력 전송을 제어하는 단말과 그의 협력 전송 제어 방법
TW201021603A (en) Methods and apparatus for scheduling wireless transmissions
JP2004531945A (ja) 無線通信システム
EP3085141B1 (en) Beamforming for coordinated multipoint communications
WO2010017664A1 (zh) 基于固定波束族的波束赋形方法、基站和用户设备
US10256954B2 (en) Data transmission method, device and system for downlink virtual multi-antenna system
WO2012055131A1 (zh) 一种频分双工系统下行多用户多径波束赋形方法及装置
JP6456985B2 (ja) ビームトラッキングに基づくパーティションスケジューリング
Feng et al. A joint unitary precoding and scheduling algorithm for MIMO-OFDM system with limited feedback
WO2010015110A1 (zh) 单小区mbms的混合传输方法、基站和用户设备
JP6130719B2 (ja) プリコーディング方法、システムおよび装置
WO2010118653A1 (zh) 多播广播业务预编码方法、基站及终端
Varshney et al. Massive MIMO systems in wireless communication
CN102077484A (zh) 针对单小区mbms传输的合成波束赋形方法和系统
Zarifeh et al. Massive MIMO exploitation to reduce HARQ delay in wireless communication system
WO2016015307A1 (zh) 一种信号发送方法及相关设备
Madhusudan et al. Beamforming in wireless coded-caching systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129933.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08783629

Country of ref document: EP

Kind code of ref document: A1