WO2010013951A2 - 연속된 하나의 선으로 구성된 저항 패턴을 구비한 터치 센서 및 터치 센서를 이용한 터치 위치 감지 방법 - Google Patents

연속된 하나의 선으로 구성된 저항 패턴을 구비한 터치 센서 및 터치 센서를 이용한 터치 위치 감지 방법 Download PDF

Info

Publication number
WO2010013951A2
WO2010013951A2 PCT/KR2009/004236 KR2009004236W WO2010013951A2 WO 2010013951 A2 WO2010013951 A2 WO 2010013951A2 KR 2009004236 W KR2009004236 W KR 2009004236W WO 2010013951 A2 WO2010013951 A2 WO 2010013951A2
Authority
WO
WIPO (PCT)
Prior art keywords
resistance pattern
resistance
lower substrate
touch sensor
touch
Prior art date
Application number
PCT/KR2009/004236
Other languages
English (en)
French (fr)
Other versions
WO2010013951A3 (ko
Inventor
조한용
천재욱
Original Assignee
Cho Han Yong
Chun Jae Wook
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cho Han Yong, Chun Jae Wook filed Critical Cho Han Yong
Publication of WO2010013951A2 publication Critical patent/WO2010013951A2/ko
Publication of WO2010013951A3 publication Critical patent/WO2010013951A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • the present invention relates to a touch sensor, and more particularly to a touch sensor and a touch position sensing method of the resistive pattern.
  • the touch sensor is a device for receiving position information of a contacted position on an object surface.
  • Touch sensors include resistive film type, capacitive type, ultrasonic type, and infrared type.
  • Resistive touch sensors include four-wire and five-wire systems.
  • WO 99/16045 discloses a four-wire touch sensor with the name 'TOUCH SCREEN'.
  • the four-wire touch sensor disclosed in the present invention connects a plurality of conductive strips in parallel at a tight interval to a pair of resistance strips disposed at both ends of a substrate (A PLURALITY OF PARALLEL, CLOSELY SPACED CONDUCTIVE).
  • STRIPS The resistive film of the conventional 4-wire touch sensor compensates for the flaws.
  • WO 2005/010804 discloses a five-wire touch sensor whose name is 'TOUCH SENSOR WITH NON-UNIFORM RESISTIVE BAND'.
  • the touch sensor disclosed in the present invention includes a band segment, and the band segment has a resistance that changes linearly along the longitudinal direction to maximize the touch area of the touch sensor and to adjust the touch position of the surface of various shapes. It is designed to receive input.
  • both 4-wire and 5-wire touch sensors share a similar structure. That is, as shown in FIG. 1, the conductive segment region 1 is formed at the edge of the resistive film coated on the lower substrate to form an equipotential distribution in the touch region 3 of the touch sensor 10. Is formed. In addition, a dead zone 2 in which no equipotential is formed is formed in the touch region 3 defined by the conductive segment region 1.
  • the conventional resistive touch sensor may receive a touch position only when power is supplied to the resistive film at all times even during an input standby in which the surface of the sensor is not touched during operation. In order to reduce power consumption, even if the power supply is time-divided, power must be supplied to the resistive film during touch standby.
  • the touch sensor (commonly called a touch screen) installed in the display device is made of a transparent material. That is, the touch sensor includes a lower glass substrate or a transparent sheet coated with a transparent conductive layer made of a material such as indium tin oxide (ITO), tin antimony oxide (TAO), tin oxide (TO), or zinc oxide (ZnO). do.
  • a transparent synthetic resin sheet or a conductive film coated with a transparent conductive material such as ITO on the upper cover is used.
  • an opaque conductive segment region is formed at an edge of the resistive film to form an equipotential in the touch region of the resistive film.
  • a part of the touch area defined by the segment area has a dead zone that cannot be used as the touch area because no equipotential is formed. Therefore, when the touch sensor is used in the display device, a touch sensor larger than the display area of the display device should be used. Since the area of the touch sensor must be larger than the display area of the display device, not only is it difficult to manufacture the touch sensor and the display device integrally, but also it is an obstacle in manufacturing the electronic device including the touch sensor compactly.
  • a touch screen is installed in portable electronic devices such as mobile phones, cameras, computers, and portable multimedia players (PMPs).
  • portable electronic devices such as mobile phones, cameras, computers, and portable multimedia players (PMPs).
  • PMPs portable multimedia players
  • Conventional touch screens require power to be supplied even in an input standby state in which the surface of the touch sensor is not touched, so that power is consumed to shorten the time of use without recharging the portable electronic device.
  • Figure 15 of the International Patent Publication No. WO 2005/010804 shows an embodiment of a touch screen installed in a spherical surface.
  • a specific method for forming an equipotential on a resistive film of a touch sensor installed in a three-dimensional plane such as a spherical surface and receiving the coordinates of a touched position using a technique disclosed in the above document is not proposed.
  • a touch sensor that can simultaneously receive the touched force as well as the touched position, it may further facilitate the utilization of the touch sensor.
  • a device such as a camera, a mobile phone, an MP3, or a game machine may simultaneously sense a touch position and a touch force or touch pressure to implement a multi-level function.
  • the touch force is weak, scroll slowly on the screen; if the touch force is strong, scroll the screen quickly; or if the touch force is weak, enter lowercase letters. If the touch force is strong, the capital letter may be input.
  • the present invention is to solve the problems of the conventional touch sensor as described above.
  • a resistive pattern type touch sensor that can be attached to the surface of any three-dimensional object, such as the surface of the sphere or the surface of the pyramid can receive a touch signal.
  • a resistive touch sensor includes a lower substrate, a flexible upper sheet disposed at a predetermined distance from an upper surface of the lower substrate, a plurality of spacers disposed between the lower substrate and the flexible sheet; A resistive pattern disposed on the upper surface of the lower substrate such that the conductive material does not overlap one continuous line, a conductive film (resistive film) disposed on the lower surface of the flexible sheet, and both ends of the resistive pattern It includes a pair of resistors connected in series.
  • the resistance pattern is preferably disposed to extend in a zigzag form in one direction from the upper surface of the lower substrate.
  • the touch sensor In order to measure the voltage applied to the ends of the resistive patterns at both ends of the resistive patterns so that the touch position can be sensed when a plurality of line segments of the resistive patterns are simultaneously in contact with the conductive film (resistive film) of the upper sheet by touch.
  • the resistor is connected.
  • the touch sensor it is preferable to use the lower substrate, the flexible upper sheet, the resistance pattern, and the conductive film made of a transparent material.
  • the resistive pattern and the conductive film can be made transparent using ITO. According to the present invention, it is possible to manufacture a three-wire resistive touch sensor (screen) having a structure having no opaque segment area and no dead zone.
  • a touch sensor capable of detecting a touch force proportional to the length of the line segment simultaneously contacted with the first resistance pattern.
  • a resistive touch sensor includes a lower substrate, a flexible upper sheet disposed at a predetermined distance from an upper surface of the lower substrate, a plurality of spacers disposed between the lower substrate and the flexible sheet; A first resistance pattern formed by overlapping one continuous line with a conductive material on the upper surface of the lower substrate, and a non-overlapping single conductive line with the conductive material on the lower surface of the flexible upper sheet. It includes the first resistance pattern formed.
  • the first resistance pattern extends in a zigzag form in one direction from the upper surface of the lower substrate, and the second resistance pattern extends in a zigzag form in the other direction from the lower surface of the flexible upper sheet. It is desirable to.
  • a resistor is serially connected to one end of each of the first and second resistance patterns for voltage measurement at the end. It is desirable to connect.
  • the zig-zag advancing direction of the first resistance pattern and the zig-zag advancing direction of the second resistance pattern may be orthogonal to simplify the coordinate calculation of the touch position.
  • the lower substrate, the flexible upper sheet, the first resistance pattern, and the second resistance pattern are preferably formed of a transparent material.
  • a four-wire resistive touch sensor (screen) having a structure having no opaque segment area and no dead zone.
  • a touch sensor capable of detecting a touch force proportional to the length of the line segment simultaneously contacted with the first resistance pattern.
  • the first coordinate of the touch position (coordinate of the travel direction of the first resistance pattern) using the first resistance pattern
  • the second coordinate of the touch position (second resistance) using the second resistance pattern
  • a method of detecting a touch position of a touch sensor wherein a resistance is connected at both ends, and a voltage is applied to a resistance pattern formed so as not to overlap a single continuous line on an upper surface of a lower substrate. And a voltage induced on the conductive film when the conductive film coated on the lower surface of the flexible upper sheet disposed at a predetermined distance to face the upper surface of the lower substrate is deformed by an external force and contacts the resistance pattern.
  • the coordinates of the touch point can be obtained by calculating the average value of the coordinates.
  • a method of detecting a touch position of a touch sensor by applying a voltage to a first resistance pattern which is formed so as not to overlap a single continuous line on an upper surface of a lower substrate. And a second resistance pattern formed on the lower surface of the flexible upper sheet spaced apart by a predetermined distance so as to face the upper surface of the lower substrate so as not to overlap with one line and having a resistance connected to one end thereof by an external force.
  • the first coordinate value is a coordinate value of a travel direction of the first resistance pattern
  • the second coordinate value is a coordinate value of a travel direction of the second resistance pattern.
  • a first coordinate value of a touch position is obtained using a first resistance pattern
  • a second coordinate value of a touch position is obtained using a second resistance pattern.
  • the low resolution ADC can be used to detect the touch position.
  • the contact length between the overlapping contact points by subtracting the value of Lt1 and Lt2 from the total length L of the first resistance pattern
  • the method may further include obtaining a length of the line segment and corresponding touch force to be proportional to the length (distance) of the line segment between the overlapping contact points.
  • a voltage applied to a resistor connected to an end of the resistance pattern may be input to correspond to touch force.
  • various control functions corresponding to the touch position and the touch force are received using the touch sensor according to the present invention. Can be performed.
  • a method of sensing a touch position of a touch sensor of a touch sensor includes applying a voltage to a resistive film of an upper sheet of a touch sensor, grounding the resistive film of a lower substrate, and resistance of the upper sheet. Measuring a voltage induced in the resistive film of the lower substrate by contacting the film with the resistive film of the lower substrate, and when the voltage induced in the resistive film of the lower substrate is measured, cut off the voltage applied to the upper substrate, And applying a power for touch sensing to the resistive film and calculating a touch position by measuring a voltage induced on the upper substrate.
  • a voltage is applied to the resistive film of the upper sheet, and a voltage is not applied to the resistive film (resistance pattern) of the lower substrate, thereby reducing power consumption. can do.
  • the touch sensor according to the present invention is configured to sense a touch position by using a resistance pattern, and thus has a structure without a dead zone and a segment region for forming an equipotential in the touch region. Therefore, the manufacturing process of the touch sensor is simple and manufacturing cost is reduced, and since the touch sensor can be integrally attached to the display device, the electronic device using the touch screen can be manufactured compactly.
  • the touch sensor according to the present invention can easily form a linear resistance pattern on the surface of any three-dimensional shape, can be attached to the surface of various shapes. In particular, it can be used as a touch screen of an old display device or as a tactile sensor on a robot surface.
  • the touch sensor according to the present invention can obtain the length of the line segment of the linear pattern at the same time, it is possible to detect the touch force at the same time as the touch position. Therefore, when used in an electronic device such as a mobile phone, a camera, a game machine, it is possible to implement a variety of control functions by receiving a touch position and a touch force at the same time.
  • the touch sensor according to the present invention can prevent the consumption of power during the touch standby, compared to the conventional resistive type touch sensor can save energy compared to the conventional touch sensor.
  • it is possible to manufacture a touch sensor using three or four wires and the manufacturing cost can be reduced because a process of printing an electrode for forming an equipotential at the edge of the touch area is not required. have.
  • the method of using four wires in the touch sensor according to the present invention can detect the touch position by using a low resolution ADC can reduce the cost of utilizing the touch sensor.
  • touch sensors having various shapes can be easily manufactured as compared with the conventional resistive touch sensors.
  • FIG. 1 is a schematic diagram for explaining a conventional touch sensor
  • FIG. 2 is a schematic diagram of one embodiment of a touch sensor according to the present invention.
  • FIG. 3 is a schematic diagram for explaining a method for obtaining coordinates when one line segment of the first resistance pattern is shorted in the touch sensor according to the present invention
  • 4 and 5 are schematic diagrams for explaining a method for obtaining coordinates when two line segments of the first resistance pattern are short-circuited in the touch sensor according to the present invention.
  • FIG. 6 is a schematic view for explaining a method for obtaining coordinates when three or more line segments of the first resistance pattern are short-circuited in the touch sensor according to the present invention.
  • FIG. 7 is an electrical circuit diagram of a conventional resistive touch sensor.
  • FIG. 8 is an electrical circuit diagram of a power saving touch sensor according to the present invention.
  • 9 (a) and 9 (b) are electrical circuit diagrams of another embodiment of the touch sensor according to the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a touch sensor according to the present invention.
  • FIG. 11 is an electrical circuit diagram of the embodiment shown in FIG.
  • FIG. 12 is a schematic view for explaining a method of obtaining a touch position of the embodiment shown in FIG. 10.
  • FIG. 13 is an explanatory diagram of a state in which the touch sensor of the embodiment shown in FIG. 10 is connected to a controller;
  • FIG. 14 is a schematic diagram of another embodiment of a touch sensor according to the present invention.
  • FIG. 15 is a schematic view showing various forms of a resistance pattern of a touch sensor according to the present invention.
  • the touch sensor 100 may include a plurality of spacers 130 installed between the lower substrate 110 and the flexible sheet 140 and the lower substrate 110 and the flexible sheet 140. It includes.
  • the spacer 130 may use a material having elasticity.
  • the lower substrate 110 preferably uses a transparent glass substrate, but is not limited thereto. A transparent flexible synthetic resin substrate may also be used.
  • the resistance pattern 120 formed of a conductive material is fixed to the upper surface of the lower substrate 110.
  • the resistance pattern 120 is formed so as not to overlap one continuous line from the start point 121 to the end point 122.
  • the resistance pattern 120 may be formed by coating indium tin oxide (ITO) on a lower substrate so as to have a predetermined width and thickness, or by etching an ITO film deposited on a glass substrate with a predetermined thickness.
  • ITO indium tin oxide
  • the resistance patterns 120 are disposed at regular intervals in the vertical direction (Y axis direction), and extend in a zigzag form to travel in the Y axis direction to have the same length in the horizontal direction (X axis direction). have.
  • the resistance pattern of the present embodiment extends in a zigzag form, but is not limited thereto, and may be disposed in an arbitrary pattern shape on a surface so that lines do not overlap from the start point to the end point. That is, any form can be used as long as the coordinates of the plane can be matched one-to-one by the length of the line.
  • the flexible top sheet 140 preferably uses a transparent polyethylene terephthalate (PET) sheet.
  • the flexible top sheet 140 is more preferably used a material having a suitable elasticity.
  • a conductive film (resistance film) 150 is coated with a surface having a constant thickness.
  • the plurality of spacers 130 are made of a transparent material and are fixed at regular intervals between the lower substrate 110 and the flexible upper sheet 140 so that when the external force does not act on the flexible upper sheet 140, the lower substrate ( The resistance pattern 120 formed on the 110 and the conductive film 150 formed on the flexible upper sheet 140 may be prevented from contacting each other.
  • the flexible upper sheet 140 and the lower substrate 110 are bonded by an adhesive applied to the edge of the flexible upper sheet 140 or the lower substrate 110.
  • the resistance pattern 120 is a line resistance because the ITO is formed by coating a continuous line on the upper surface of the glass substrate, and the resistance film 150 is formed on the ITO flexible upper sheet 140. Because it is coated with a cotton resistance.
  • the resistance pattern 120 is coated with a line having a constant width and thickness to have a constant resistance per unit length according to the resistivity of ITO. As shown in FIG.
  • the voltage is distributed along the line since the resistance pattern 120 is a line resistance.
  • the resistive pattern 120 and the resistive film 150 contact at the point T by applying pressure to the flexible upper sheet 140, the resistive pattern 120 applied to the contact point T (x, y) on the resistive film 150. ) Is induced at the terminal 155 of the resistive film 150.
  • the coordinates of the contact point T can be obtained by using the correspondence according to the geometric arrangement of the lower substrate 110 of the resistance pattern 120 and the resistance value per unit length.
  • the coordinate T (x, y) of the contact point can be obtained.
  • the contact resistance between the resistance pattern 120 and the resistance film 150 is ignored.
  • the start point A ( ⁇ x, ⁇ y) of the pattern, the end point B ( ⁇ x, Ey) of the pattern, and the length of the line segments coated in the X direction of the pattern are Lx, the Y direction of the pattern is coated.
  • the length of the line segment is referred to as dy, it is possible to correspond one to one point on the resistance pattern 120 to the coordinates of the plane one by one from the geometric relationship between the line and the plane.
  • the length and resistance value from the start point A to the end point B are also determined from the arrangement shape of the resistance pattern.
  • the resistance pattern 120 is formed by coating ITO having a predetermined width and thickness, the resistance increases in proportion to the length of the line, and when voltage is applied to both ends of the pattern, the voltage will drop in proportion to the length of the line.
  • voltage Vcc is applied to both ends A and B of the pattern, a voltage drop occurs in proportion to the length of the line. Therefore, when the voltage Vt induced in the resistive film 150 of the upper sheet is measured by contact, the voltage Vcc is measured with the applied voltage Vcc.
  • the ratio of the given voltage Vt will be the ratio of the total length of the first resistance pattern to the length of the contact point. That is, the relationship of Equation 1 below holds.
  • Vcc is the voltage applied to the start and end points of the pattern
  • Vt is the measured voltage at the contact point T (x, y)
  • L is the total length of the line of the first resistance pattern 120 (A to B points). Length), L (x, y) is the length from the point A to the contact point T (x, y).
  • the y coordinate of T (x, y) is obtained. That is, the y coordinate can be obtained by Equation 3 below.
  • the x coordinate value is obtained as follows using the y coordinate value.
  • FIG. 4 illustrates a case where two adjacent line segments of the resistance pattern 120 come into contact with the resistance film 150.
  • current flows through the path through the resistive film 150 (arrow a path) and the path through the resistive pattern (arrow b path), thereby reducing the overall resistance.
  • the length of the entire line of the resistance pattern 120 is slightly reduced. Therefore, an error occurs when the coordinates are calculated in the manner described above. To correct this error, assuming that most of the current flows in the path a and almost no current flows in the path b, the coordinates of the contact point can be obtained by the following method.
  • the resistor Rb is connected in series to the point A ( ⁇ x, ⁇ y) of the resistance pattern and the voltage Vcc is applied to the point B ( ⁇ x, Ey).
  • the resistor Rb connected to the starting point A is a predetermined known value.
  • the voltage at the A ( ⁇ x, ⁇ y) point (voltage applied to the resistor Rb) is measured, and the voltage at the contact point T (x, y) (voltage induced at the resistive film 150 of the upper sheet)
  • the following equation can be used to obtain the number of line segments contacted at the same time and the coordinates of the contact point T (x, y).
  • the voltage Vb applied to the resistor Rb is as follows.
  • the current flows through the path a which is the shortest distance through the resistance film 150 at the contacted position. Assume Therefore, it may be assumed that the length of the line of the resistance pattern 150 is reduced as shown in FIG. 5. In this case, the voltage Vb 'applied to the resistor Rb is obtained as follows.
  • ⁇ L is the length of the line segment assuming that the resistance is reduced by the simultaneous contact of the resistance pattern (actually the resistance is decreased by the increase of the current path). [Equation 6] once again summarized for ⁇ L as follows.
  • FIG. 6 (a) shows a case where three line segments are contacted by touch at the same time
  • FIG. 6 (b) shows a case where four line segments are contacted at the same time.
  • the length L (B, Q) from, P) and the end point B to the contact point Q (x2, y2) can be obtained by the following relationship, respectively.
  • Mx1 L (A, P) -Np (Lx + dy)
  • Mx2 L (A, P) -Nq (Lx + dy)
  • the touch force can be made to be proportional to the number of the line segments contacted at the same time or the length (distance) of the line segments between the contact points contacted simultaneously. For example, when two or less line segments are in contact, the touch force is set to 1, and when three or more line segments are in contact, the touch force is set to 2 to detect a combination of contact position and touch force at the same time. have.
  • FIG. 7 illustrates an electrical equivalent circuit for explaining a conventional resistive touch sensor operation.
  • a resistive film 220 is coated on the lower substrate 210.
  • the resistive film 240 is coated on the lower surface of the upper sheet 230.
  • the resistive film 240 of the upper sheet 230 contacts the resistive film 220 of the lower substrate 210 by an external force, the voltage of the contact point T is induced in the resistive film 240, and the read point is read. It will detect the coordinates of.
  • the conventional touch sensor having the basic structure as described above, power is supplied to the resistive film 220 at the time of operation so that current flows.
  • Such a conventional touch sensor causes a battery to be quickly consumed in a portable electronic device, thereby preventing the portable electronic device from being used for a long time.
  • the touch sensor 300 includes the switch S1 350 connected to the resistance pattern 320 of the lower substrate 310 and the switch S2 connected to the resistance film 340 of the upper sheet 330. 370) further.
  • the resistor Rb 360 is connected to the resistor pattern 320 to receive a touched time in the touch standby state.
  • the power supply Vcc may be selectively connected to the resistance pattern 320 and the resistive film 340 according to the switching of the S1 350 and the S2 370.
  • the switch S2 is closed to apply the power supply Vcc to the second resistance pattern 340 of the upper sheet 330.
  • the switch S2 When the voltage Vb is sensed by the resistor Rb 360 connected to the first resistance pattern 320 by contact, the switch S2 is opened and the switch S1 is closed.
  • the coordinates of the contact point T are sensed by the method described above.
  • the switch S1 350 When the touch is terminated and the voltage Vt induced in the resistive film disappears, the switch S1 350 is opened, the switch S2 370 is closed, and the display returns to the touch standby state.
  • the touch sensor of the present embodiment 340 consumes power only in the touched state without consuming power in the touch standby state. Therefore, power consumption may be reduced during operation of the touch sensor.
  • the touch sensor 300 capable of reducing power consumption of the present embodiment may be applied to a conventional 4-wire or 5-wire touch sensor using a resistive film instead of the first resistive pattern 320.
  • FIG. 9A is another embodiment of a touch sensor capable of reducing the influence of power consumption and noise according to the present invention.
  • the present embodiment 400 differs from the embodiment 300 shown in FIG. 8 in that two resistors Rf 460 and 470 are connected to both ends of the first resistance pattern instead of using a switch. That is, the voltage applied to the resistors Rf 460 and 470 connected to both ends of the resistance pattern 420 is measured without applying the power to the resistive film 440 to measure the contact voltage Vt at the resistive film 440. In this embodiment, the coordinates of the contact point can be obtained.
  • Fig. 9B is an equivalent circuit of the embodiment shown in Fig. 9A.
  • each length from both ends of a resistance pattern to a contact point can be calculated
  • the contact point has an area
  • Lu is the distance from one end of the resistance pattern to the point close to the one end of the contact point
  • Lb is the distance from the other end of the resistance pattern to a point near the other end of the contact point.
  • Lu may be a distance to a contact point close to one end of the resistance pattern
  • Lb may be a distance to a point close to the other end of the resistance pattern.
  • the distance between two points P (x1, y1) and Q (x2, y2) is obtained. If the distance is within a certain range, it is determined that one point is touched. Judging by
  • the touch sensor was manufactured using the circuit shown in FIG. 5 to measure the coordinates of the touch position, it was difficult to calculate accurate coordinates due to the influence of external noise, and it was difficult to distinguish the touched and untouched cases. There was a problem. It was determined that the circuit shown in FIG. 9 could solve this problem of the embodiment shown in FIG.
  • a circuit for measuring the voltage applied to the resistive film of the top sheet should be configured with high impedance. This is because the resistance of the circuit for measuring the voltage of the resistance film is low because the line resistance of the resistance pattern is very high.
  • the resistance of the voltage measuring circuit of the resistive film of the upper sheet should be at least several tens more than the resistance value of the resistive pattern.
  • pull up or pull down should be performed in order to measure the voltage of the resistive film stably.
  • the resistance for pull up or pull down Must have a very high resistance connected. Therefore, the embodiment shown in FIG. 5 is vulnerable to noise induced in the upper sheet when measuring the voltage of the resistive film of the upper sheet.
  • Fig. 9A solves the above problems of the embodiment shown in Fig. 5.
  • the resistance film is connected to Vcc, noise induced in the upper sheet escapes through Vcc, and thus has a strong characteristic against noise.
  • FIG. 9 (a) measures the voltage for calculating the touch position at each of two resistors in series at both ends of the resistance pattern, it is clear whether the touch sensor is touched or not. Can be distinguished.
  • the touch sensor is not touched, the voltages Vb and Vu measured at both ends of the resistance pattern are 0 V.
  • Vb and Vu are not 0V. If the measured voltage on one side is close to 0V, the voltage on the other side increases a lot, so there is an advantage that the contact can be clearly determined.
  • the embodiment shown in FIG. 9B differs from the embodiment shown in FIG. 9A by grounding the resistive film and connecting the Vcc voltage to the resistors connected to both ends of the resistive pattern.
  • the embodiment shown in FIG. 9 (b) is characterized in that the noise induced in the top sheet escapes through the ground, and thus is stronger in noise than the embodiment shown in FIG. 9 (a).
  • the resist pattern coated on the lower substrate is a linear pattern. Since the resistance patterns are arranged so as not to overlap one continuous line, in order to improve the accuracy of the touch position, the number of output bits of the ADC (Analog to Digital Converter) that receives the touch voltage Vt and converts it into a digital signal must be increased. (The resolution of the ADC should be high). For example, if the resolution of the touch center is 1024 in the X direction and 1024 in the Y direction, the ADC should be 20 bits or more to satisfy the resolution of the touch sensor. In practice, it is desirable to provide a low cost touch sensor using a low resolution ADC with a low number of bits.
  • ADC Analog to Digital Converter
  • FIG. 10 is an embodiment of a touch sensor 500 capable of sensing coordinates of a touch position using a low resolution ADC
  • FIG. 11 is an electrical equivalent circuit of the embodiment shown in FIG. 10.
  • the embodiment 500 shown in FIG. 10 differs from the embodiment 100 shown in FIG. 2 in that the entire surface of the lower surface of the top sheet 540 is not coated with ITO, but is a continuous one as shown.
  • the second resistive pattern in which the line is extended is formed in a zigzag form so as to have a constant interval in the Y-axis direction, and resistors Rb1 and Rb2 are connected to one ends of the first and second resistive patterns, respectively.
  • switches S1-S4 are connected to both ends of each resistance pattern.
  • the touch sensor 500 requires four wires and has a disadvantage in that a circuit is complicated by connecting a switch and a resistor to the outside, but has a merit of detecting touch positions simply and accurately using a low resolution ADC. . That is, the y coordinate of the touch position T (x, y) is obtained using the first resistance pattern 520 of the lower substrate, and the x coordinate of the touch position T (x, y) is obtained using the second resistance pattern.
  • each switch (S1-S4) by controlling the on / off appropriately has the advantage of minimizing the consumption of power in the touch standby.
  • FIG. 12 schematically illustrates a first resistance pattern 520 and a second resistance pattern 550 of the embodiment of FIG. 10 to describe a method of sensing the touch position T (x, y).
  • a touch position measuring method of the touch sensor 500 of the present embodiment will be described.
  • the voltage Vt1 applied to the resistor Rb1 560 is expressed by the following equation. 15].
  • Vt1 when Vt1 is detected, it is determined that the touch state is in the touch standby state, and the switches S1 561 and S2 562 are closed and the switches S3 571 and S4 572 are opened, Power is supplied to the first resistance pattern 520 and the second resistance pattern 550 is in a high impedance state.
  • Vt1 and Vt2 when Vt1 and Vt2 are measured, the method of obtaining the y coordinate of the contact point T (x, y) described in the embodiment illustrated in FIG. 5 using the first resistance pattern 520 may be applied as it is. As shown in FIG.
  • L (A, P) is the distance from the start point A of the first resistance pattern 520 to the contact point P
  • L (B, Q) is the distance from the end point B to the contact point Q
  • p is the resistance per unit length of the first resistance pattern.
  • dy is the length of the Y-axis line segment of the first resistance pattern 520
  • Lx is the length of the X-axis line segment.
  • the first resistance pattern 520 has a constant length Lx and Y in the X-axis direction. It extends in a zigzag form to have equal spacing dy in the axial direction.
  • the arithmetic mean of y1 and y2 obtained by the above Equation 17 is obtained to obtain the y coordinate of the contact point T (x, y), that is, the zigzag traveling direction coordinate (first coordinate) of the first resistance pattern.
  • the switches S1 and S2 are opened in FIG. 11, and S4 and S3 are closed to close the second resistance pattern 550.
  • Power is supplied to the first resistance pattern 520 to be in a high impedance state.
  • Vt1 and Vt2 are measured, the x coordinate of the contact point T is obtained by using the second resistance pattern 550.
  • FIG. 12 (a) it is assumed that three adjacent line segments of the second resistance pattern 550 are in contact at the contact point T at the same time, and a point close to the start point M of the pattern is P 'and a point close to the end point N of the pattern.
  • Q ' it is assumed that three adjacent line segments of the second resistance pattern 550 are in contact at the contact point T at the same time, and a point close to the start point M of the pattern is P 'and a point close to the end point N of the pattern.
  • Q ' it is assumed that three adjacent line segments of the second resistance pattern 550 are in contact at the contact point T at the same time, and a point close
  • L (M, P ') is the distance from the starting point M of the second resistance pattern 550 to the contact point P'
  • L (N, Q ') is the distance from the end point N to the contact point Q'
  • ⁇ x is a resistance per unit length of the second resistance pattern 550.
  • the coordinates of y1 and y2 are obtained using the following equation.
  • dx is the length of the X-axis line segment of the second resistance pattern 520
  • Ly is the length of the Y-axis line segment.
  • the second resistance pattern 520 has a constant length Ly and X in the Y-axis direction. It extends in the form of a zigzag to have equal intervals dx in the axial direction.
  • FIG. 13 illustrates a state in which the touch sensor 500 of the embodiment illustrated in FIG. 10 is directly connected to the controller 580.
  • the controller 580 is an electronic device, such as a computer or a microprocessor, that sequentially powers or cuts off the first and second resistance patterns of the touch sensor 500 and executes software for measuring the voltage across the resistors Rb1 and Rb2. to be.
  • the controller 580 is connected to the sensor 500 by four general-purpose input / output lines (GPIO lines, L1, L4, L5, L6) and two ADC lines (L2, L3).
  • Four general-purpose input and output lines (L1, L4, L5, L6) can be driven in a high, low, high impedance state.
  • ADC lines L2 and L3 may be further connected with a resistor for calibration.
  • This embodiment replaces the switches S1-S4 of the embodiment shown in FIG. 10 with four GPIO lines L1, L4, L5, L6 of the controller 580.
  • FIG. 14 is an embodiment of a touch sensor for sensing a touch of a three-dimensional object surface according to another embodiment of the present invention.
  • This embodiment shows that properly placing the points on the linear pattern in a one-to-one correspondence to a three-dimensional curved surface can easily make the touch sensor 600 capable of detecting a touch on a surface having an arbitrary shape.
  • the touch sensor 600 of the present embodiment may be applied to a display device having an arm, a torso, or a curved surface of a robot.
  • the first resistance pattern 620 is coated with ITO on the upper surface of the lower substrate 610 which is an insulator.
  • the upper surface of the lower substrate 610 may be represented by a function S (x, y, z) of spatial coordinates.
  • the first resistance pattern 620 is formed on the upper surface of the lower substrate so as not to overlap one line, and may be represented as a function L1 (x, y, z) of spatial coordinates. As shown in FIG. 13, the first resistance pattern 620 is formed to extend zigzag in one direction on the upper surface S (x, y, z) of the lower substrate 620. That is, one point on the first resistance pattern 620 has a one-to-one correspondence with a point on the upper surface of the lower substrate 610.
  • the flexible upper sheet 640 is fixed to the lower substrate 610 at a predetermined distance from the lower substrate 610, and a plurality of spacers 630 are inserted between the upper sheet 640 and the lower substrate 610. It is.
  • the lower surface of the upper sheet 640 facing the upper surface S (x, y, z) of the lower substrate 610 is the same shape.
  • the second resistance pattern 650 is coated with ITO on the lower surface of the upper sheet 640.
  • the second resistance pattern 650 is formed on the lower surface of the top sheet 640 so as not to overlap one line, and may be represented as a function L2 (x, y, z) of coordinates in space.
  • the second resistance pattern is formed such that the first resistance pattern 620 extends zigzag in a direction orthogonal to one direction extending in zigzag.
  • the method of detecting the touch position of the touch sensor 600 of the present embodiment is the same as the method of detecting the touch position of the embodiment shown in FIG. 10.
  • the touch sensor of the present embodiment differs from the embodiment shown in FIG. 10 in that the touch sensor of the present embodiment can easily manufacture a circular touch sensor or a touch sensor that can be installed on a spherical surface.
  • 15 is a schematic diagram illustrating various embodiments of a resistance pattern of a touch sensor according to the present disclosure.
  • 15A shows a touch sensor with a circular resistance pattern. The correspondence between the coordinates (x, y) of the circular plane and the point (l) on the linear resistance pattern can be calculated simply by using Pygoda's Theorem.
  • the first resistance pattern 1100 and the second resistance pattern 1200 are arranged to be perpendicular to each other.
  • Fig. 15B is an embodiment in which a linear resistance pattern is formed on a ring-shaped plane.
  • the first resistance pattern 1300 and the second resistance pattern 1400 are disposed to be perpendicular to each other.
  • Fig. 15C shows a resistance pattern formed on the spherical surface.
  • the first resistance pattern 1500 and the second resistance pattern 1600 are disposed to be orthogonal to each other on a spherical surface.
  • the touch sensor according to the present invention does not require an opaque electrode for forming an equipotential in the touch area, and thus can be used as an input means (touch screen) by integrally mounting it on the display screen of the display device.
  • the touch sensor according to the present invention may be connected to a controller capable of performing logical operations to implement various types of input functions. For example, it can be used as a substitute for a computer keyboard, a variable resistor for adjusting a volume, an input device for scrolling a menu or data, a switch having a plurality of buttons, and the like.
  • the touch sensor according to the present invention can detect the touch force corresponding to the number or length of the line segments of the contact pattern at the same time, it can be used as a tactile sensor for detecting the touch position and the touch force at the same time.
  • it can be attached to the body of the robot to detect the contact position and the contact force when in contact with an external object.
  • it can be attached to the outside of the artificial skin to be able to detect the touch position and the touch force at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

본 발명은 터치 센서에 관한 것으로, 보다 상세하게는 저항 패턴 방식의 터치 센서 및 터치 좌표의 측정방법에 관한 것이다. 본 발명에 따른 터치 센서는, 하부 기판과, 상기 하부 기판의 상부면에서 일정 거리 이격 되어 배치된 가요성 상부 시트와, 상기 하부 기판과 가요성 시트 사이에 설치된 복수의 스페이서와, 상기 하부 기판의 상부면에 전도성 재료가 연속된 하나의 선으로 겹치지 않게 배치된 저항 패턴과, 상기 가요성 시트의 하부면에 배치된 전도성 막과, 상기 저항패턴의 양단에 각각 직렬로 연결된 한 쌍의 저항을 포함한다. 본 발명에 따르면, 터치 센서의 가장자리에 전극 인쇄에 의하여 형성되는 불투명한 세그먼트 영역과 데드 존(dead zone)이 없는 구조를 갖는 저항형 터치 센서(스크린)을 제조할 수 있게 된다. 또한 본 발명에 따른 터치 센서는 터치 위치뿐만 아니라 터치력(터치면적)도 감지할 수 있다.

Description

연속된 하나의 선으로 구성된 저항 패턴을 구비한 터치 센서 및 터치 센서를 이용한 터치 위치 감지 방법
본 발명은 터치 센서에 관한 것으로, 보다 상세하게는 저항 패턴 방식의 터치 센서 및 터치 위치 감지 방법에 관한 것이다.
터치 센서는 물체 표면의 접촉된 위치의 위치 정보를 입력받기 위한 장치이다. 터치 센서에는 저항막 방식, 정전 용량 방식, 초음파 방식, 그리고 적외선 방식 등이 있다. 저항막 방식의 터치 센서에는 4 선 방식과 5 선 방식이 있다.
국제 특허 공개 WO 99/16045호에는 발명의 명칭이 '터치 스크린(TOUCH SCREEN)'인 4선 방식의 터치 센서가 공개되어 있다. 상기 발명에 공개된 4선 방식의 터치 센서는 기판의 양단에 배치된 한 쌍의 저항 스트립(RESISTANCE STRIPS)에 복수의 도전 스트립을 조밀한 간격으로 평행하게 연결하여(A PLURALITY OF PARALLEL, CLOSELY SPACED CONDUCTIVE STRIPS) 종래의 4선 방식의 터치 센서의 저항막이 손상 받기 쉬운 결점을 보완한 것이다.
또한, 국제 특허 공개 번호 WO 2005/010804호에는 발명의 명칭이 '비 균등 저항 밴드를 구비한 터치 센서(TOUCH SENSOR WITH NON-UNIFORM RESISTIVE BAND)'인 5선 방식의 터치 센서가 공개되어 있다. 상기 발명에 공개된 터치 센서는 밴드 세그먼트를 포함하고, 밴드 세그먼트가 길이방향을 따라서 선형적으로 변화하는 저항을 구비하여 터치 센서의 터치 영역을 최대로 할 수 있도록 하고 다양한 형상의 표면의 터치 위치를 입력받을 수 있도록 고안된 것이다.
4 선 방식이나 5 선 방식의 터치 센서는 모두 유사한 구조를 공유한다. 즉 도 1에 도시된 것과 같이, 터치 센서(10)의 터치 영역(3)(TOUCH REGION)에 등전위 분포를 형성하기 위하여 하부 기판에 코팅된 저항막의 가장자리에 도전성 세그먼트 영역(1)(segment region)이 형성되어 있다. 또한, 도전성 세크먼트 영역(1)에 의하여 한정되는 터치 영역(3) 내부에 등 전위가 형성되지 않는 데드 존(dead zone)(2)이 형성된다. 또한, 종래의 저항막 방식의 터치 센서는 동작시에 센서의 표면이 터치 되지 않는 입력 대기 중에도 항상 저항막에 전원이 공급되고 있어야 만 터치 위치를 입력받을 수 있다. 전력 소모를 줄이기 위하여 전원의 공급을 시분할로 하더라도 터치 대기 중에 저항막에 전원이 공급되고 있어야 한다.
최근 터치 센서는 디스플레이 장치와 함께 많이 사용된다. 디스플레이 장치에 설치되는 터치 센서(통상 터치 스크린이라고 부른다)는 투명한 재질로 되어 있다. 즉, 터치 센서는 ITO(indium tin oxide), TAO(tin antimony oxide), TO(tin oxide), ZnO(zinc oxide)와 같은 재료로 된 투명한 전도성 층이 코팅된 하부의 유리 기판이나 투명한 시트를 포함한다. 또한, 상부 커버에 ITO와 같은 투명한 전도성 재료가 코팅된 투명한 합성수지 시트나 도전성 필름을 사용한다.
종래의 저항막 방식 터치 센서는 저항막의 터치 영역에 등전위를 형성하기 위하여 저항막의 가장자리에 불투명한 도전성 세그먼트 영역(segment region)이 형성되어 있다. 또한, 세크먼트 영역에 의하여 한정되는 터치 영역의 일부는 등전위가 형성되지 않아서 터치 영역으로 사용할 수 없는 데드 존(dead zone)이 존재한다. 따라서 터치 센서가 디스플레이 장치에 사용될 경우 디스플레이 장치의 표시 영역보다 큰 터치 센서를 사용하여야 한다. 터치 센서의 면적이 디스플레이 장치의 표시 영역보다 커져야 하므로, 터치 센서와 디스플레이 장치를 일체로 제조하기가 곤란할 뿐만 아니라, 터치 센서를 구비한 전자 장치를 컴팩트하게 제조하는 데 장애가 된다.
최근 휴대폰, 카메라, 컴퓨터, PMP(Portable Multimedia Player) 등과 같은 휴대용 전자 장치에 터치 스크린이 장착되는 경향이다. 종래의 터치 스크린은 터치 센서의 표면이 터치 되지 않은 입력 대기 상태에서도 전력이 공급되어야 하기 때문에, 전력이 소모되어 휴대용 전자장치를 재충전하지 않고 사용하는 시간을 단축시킨다.
한편, 상기 국제 특허 공개 번호 WO 2005/010804호의 도 15에는 구면에 설치된 터치 스크린의 실시예가 도시되어 있다. 그러나, 상기 문헌에 공개된 기술을 이용하여 구면과 같은 3차원 평면에 설치된 터치 센서의 저항막에 등전위를 형성하고, 터치된 위치의 좌표를 정확하게 입력받기 위한 구체적인 방법이 제시되어 있지 않다.
한편, 터치된 위치뿐만 아니라 터치된 힘을 동시에 입력받을 수 있는 터치센서가 제공된다면, 터치 센서의 활용을 더욱 촉진할 수 있을 것이다. 예를 들면, 카메라, 휴대폰, MP3, 게임기와 같은 장치에서 터치 위치와 터치(압)력(touch force or touch pressure)을 동시에 감지하여 여러 단계의 기능을 구현하도록 할 수 있을 것이다. 정보를 스크롤 검색할 경우 터치력이 약할 경우에는 화면의 스크롤을 천천히 진행하고, 터치력이 강할 경우에는 화면의 스크롤을 빠르게 진행하도록 하거나, 문자의 입력에서 터치력이 약할 경우에는 소문자가 입력되도록 하고 터치력이 강할 경우에는 대문자가 입력되도록 할 수 있을 것이다.
본 발명은 상기와 같은 종래의 터치 센서의 문제점을 해결하기 위한 것이다.
본 발명의 제1의 목적은 터치 영역을 최대로 할 수 있는 터치 센서를 제공하는 것이다. 종래의 터치 센서와 달리, 터치 영역에 등 전위를 형성하기 위한 세그먼트 영역과 데드 존(dead zone)이 없는 구조를 갖는 저항 패턴형 터치 센서 및 터치위치 감지 방법을 제공하는 것이다.
본 발명의 제2의 목적은 터치 위치뿐만 아니라, 터치력을 동시에 감지할 수 있는 저항 패턴형 터치 센서와 감지 방법을 제공하는 것이다.
본 발명의 제3의 목적은 구조가 간단하여 임의의 형상의 표면에 부착하여 터치 신호를 입력받을 수 있는 터치 센서 및 터치 위치 감지 방법을 제공하는 것이다. 구의 표면이나 각뿔의 표면과 같이 임의의 3차원 물체의 표면에 부착하여 터치 신호를 입력받을 수 있는 저항 패턴형 터치 센서를 제공하는 것이다.
본 발명의 제4의 목적은 전력 소모를 최소로 할 수 있는 터치 센서를 제공하는 것이다. 종래의 터치 센서와 달리, 터치 대기 중일 경우에는 전력을 소모하지 않는 저항형 터치 센서 및 터치 위치 감지 방법을 제공하는 것이다.
본 발명의 제5의 목적은 제조 공정이 단순하고, 부품의 수를 최소로 하여 염가로 제조가 가능한 저항형 터치 센서를 제공하는 것이다.
본 발명의 일 측면에 따른 저항형 터치 센서는, 하부 기판과, 상기 하부 기판의 상부면에서 일정 거리 이격 되어 배치된 가요성 상부 시트와, 상기 하부 기판과 가요성 시트 사이에 설치된 복수의 스페이서와, 상기 하부 기판의 상부면에 전도성 재료가 연속된 하나의 선으로 겹치지 않게 배치된 저항 패턴과, 상기 가요성 시트의 하부면에 배치된 전도성 막(저항막)과, 상기 저항패턴의 양단에 각각 직렬로 연결된 한 쌍의 저항을 포함한다. 상기 저항 패턴은 하부 기판의 상부면에서 일 방향으로 지그재그 형태로 진행하도록 연장시켜서 배치하는 것이 바람직하다. 저항패턴의 복수의 선분이 동시에 터치에 의하여 상부시트의 전도성 막(저항막)과 접촉되는 경우 터치 위치를 감지할 수 있도록, 저항 패턴의 양단에 각각 저항 패턴의 단부에 걸리는 전압을 측정을 위하여 직렬로 저항이 연결되어 있다. 터치 센서를 터치 스크린으로 사용하기 위하여 상기 하부 기판과 가요성 상부 시트와 저항 패턴과 전도성 막을 투명한 재질로 된 것을 사용하는 것이 바람직하다. 저항패턴과 및 전도성 막은 ITO를 사용하여 투명하게 제조할 수 있다. 본 발명에 따르면, 불투명한 세그먼트 영역과 데드 존(dead zone)이 없는 구조를 갖는 3선 방식의 저항형 터치 센서(스크린)을 제조할 수 있게 된다. 또한 본 발명에 따르면, 제1 저항패턴의 동시에 접촉된 선분의 길이에 비례하는 터치력을 감지할 수 있는 터치 센서를 제공한다.
본 발명의 다른 측면에 의한 저항형 터치 센서는, 하부 기판과, 상기 하부 기판의 상부면에서 일정 거리 이격 되어 배치된 가요성 상부 시트와, 상기 하부 기판과 가요성 시트 사이에 설치된 복수의 스페이서와, 상기 하부 기판의 상부면에 전도성 재료가 연속된 하나의 선으로 겹치지 않게 배치되어 형성된 제1 저항 패턴과, 상기 가요성 상부 시트의 하부면에 전도성 재료가 연속된 하나의 선으로 겹치지 않게 배치되어 형성된 제1 저항 패턴을 포함한다. 상기 제1 저항 패턴은 하부 기판의 상부면에서 일 방향으로 지그재그 형태로 진행하도록 연장시켜 배치하고, 상기 제2 저항 패턴은 가요성 상부 시트의 하부면에서 타방향으로 지그재그 형태로 진행하도록 연장시켜 배치하는 것이 바람직하다. 또한, 제1 및 제2 저항패턴의 복수의 선분이 동시에 터치에 의하여 접촉될 경우 접촉 위치를 감지하기 위하여, 제1 저항 패턴 및 제2 저항 패턴 각각의 일단에 단부의 전압 측정을 위하여 저항을 직렬 연결하는 것이 바람직하다. 또한, 터치 위치의 좌표 연산을 간편하게 하기 위하여 상기 제1 저항패턴의 지그재그 진행 방향과 제2 저항패턴의 지그재그 진행방향은 직교하도록 하는 것이 바람직하다. 터치 센서를 터치 스크린으로 사용할 수 있도록, 상기 하부 기판과 가요성 상부 시트와 제1 저항 패턴과 제2 저항패턴은 투명한 재질로 형성하는 것이 바람직하다. 본 발명에 따르면, 불투명한 세그먼트 영역과 데드 존(dead zone)이 없는 구조를 갖는 4선 방식의 저항형 터치 센서(스크린)을 제조할 수 있게 된다. 또한 본 발명에 따르면, 제1 저항패턴의 동시에 접촉된 선분의 길이에 비례하는 터치력을 감지할 수 있는 터치 센서를 제공한다. 또한 본 발명에 따르면, 제1 저항패턴을 이용하여 터치 위치의 제1 좌표(제1 저항 패턴의 진행방향의 좌표)를 구하고, 제2 저항패턴을 이용하여 터치 위치의 제2 좌표(제2 저항패턴의 진행방향 좌표)를 구하면 분해능이 낮은 ADC를 이용하여 터치 위치를 감지할 수 있는 장점이 있다.
본 발명의 또 다른 측면에 의한 터치 센서의 터치 위치를 감지하는 방법은, 양단에 각각 저항이 연결되어 있고, 하부 기판의 상부면에 연속된 하나의 선으로 겹치지 않게 형성된 저항 패턴에 전압을 인가하는 단계와, 상기 하부 기판의 상부면과 대향하도록 일정거리 이격되어 배치된 가요성 상부 시트의 하부면에 코팅된 도전성 막이 외력에 의하여 변형되어 상기 저항패턴과 접촉될 때, 상기 도전성 막에 유기되는 전압과 상기 저항패턴의 저항이 연결된 양단부의 전압을 각각 측정하는 단계와, 상기 측정된 세 개의 전압을 이용하여, 저항패턴의 양 단부로부터 접촉점까지의 길이를 각각 계산하는 단계와, 상기 저항패턴과 하부기판의 상부면과의 대응관계를 이용하여, 저항패턴의 양 단부로 부터 접촉점 까지의 각각의 좌표(T1, T2)를 계산하는 단계와, 상기 저항패턴의 양 단부로부터 접촉점 까지의 각각의 좌표 사이의 거리를 계산하는 단계와, 상기 계산된 거리가 정해진 범위에 포함되는 경우 저항 패턴의 양단부로부터 접촉점 까지의 각각의 좌표의 평균값을 계산하는 단계를 포함하는 것을 특징으로 한다. 본 발명에 따르면, 3선 방식의 저항 패턴형 터치 센서에 있어서, 저항패턴의 복수의 선분이 동시에 터치에 의하여 도전성 막과 접촉된 경우, 좌표의 평균값을 구하여 터치점의 좌표를 구할 수 있다.
본 발명의 또 다른 측면에 의한 터치 센서의 터치 위치를 감지하는 방법은, 하부 기판의 상부면에 연속된 하나의 선으로 겹치지 않게 형성되고, 일단에 저항이 연결된 제1 저항 패턴에 전압을 인가하는 단계와, 상기 하부 기판의 상부면과 대향하도록 일정거리 이격되어 배치된 가요성 상부 시트의 하부면에 하나의 선으로 겹치지 않게 형성되고, 일단에 저항이 연결된 제2 저항패턴이 외력에 의하여 변형되어 상기 제1 저항패턴과 접촉될 때, 제2 저항패턴에 유기되는 전압(Vt)과 상기 제1 저항패턴의 저항이 연결된 단부의 전압(Vb)을 측정하는 단계와, 상기 측정된 전압 Vt 및 Vb를 이용하여, 제1 저항패턴의 전원 측 단부로부터 접촉점까지의 길이(Lt1) 및 그라운드 측 단부로부터 접촉점까지의 길이(Lt2)를 계산하는 단계와, 상기 제1 저항패턴과 하부기판의 상부면과의 대응관계를 이용하여, 각각의 길이 Lt1에 대응하는 접촉점 T1 및 Lt2에 대응하는 T2의 각각의 제1 좌표를 계산하는 단계와, 상기 제2 저항패턴에 전압을 인가하는 단계와, 제2 저항패턴과 접촉되어 제1 저항패턴에 유기되는 전압(Vt')과 상기 제2 저항패턴의 그라운드측 연결 단부의 전압(Vb')을 측정하는 단계와, 상기 측정된 전압 Vt' 및 Vb'을 이용하여, 제2 저항패턴의 전원 측 단부로부터 접촉점까지의 길이(Lt1') 및 그라운드 측 단부로부터 접촉점까지의 길이(Lt2')를 계산하는 단계와, 상기 제2 저항패턴과 상부 시트의 하부면과의 대응관계를 이용하여 각각의 길이 Lt1'에 대응하는 접촉점 T1' 및 Lt2'에 대응하는 T2'의 제2 좌표를 계산하는 단계와, 상기 접촉점 T1과 T2의 제1 좌표값의 산술 평균치 및 T1'과 T2'의 제2 좌표값의 산술 평균치를 계산하여 접촉점 T의 좌표를 구하는 단계를 포함한다. 제1 좌표값은 제1 저항패턴의 진행방향의 좌표값이고, 제2 좌표값은 제2 저항패턴의 진행방향의 좌표값이다. 본 발명에 따르면, 4선 방식의 저항패턴형 터치 센서에 있어서,제1 저항패턴을 이용하여 터치 위치의 제1 좌표값을 구하고, 제2 저항패턴을 이용하여 터치 위치의 제2 좌표값을 구하도록 되어 있어서 분해능이 낮은 ADC를 사용하여 터치 위치를 감지할 수 있게 된다.
본 발명에 따른 터치 센서의 터치 위치를 감지하는 방법에 있어서, 터치 위치뿐만 아니라 터치력을 감지하기 위하여, 상기 제1 저항패턴의 전체길이 L에서 Lt1 및 Lt2의 값을 빼서 중복 접촉된 접촉점 사이의 선분의 길이를 구하는 단계와, 중복 접촉된 접촉점 사이의 선분의 길이(거리)에 비례하도록 터치력을 대응시키는 단계를 더 포함할 수도 있다. 실제로는 저항 패턴의 단부에 연결된 저항에 걸리는 전압을 입력받아 터치력에 대응시키면 된다. 본 발명에 따르면, 제1 저항패턴의 동시에 접촉된 선분의 수에 비례하는 터치력을 감지할 수 있으므로, 본 발명에 따른 터치센서를 이용하여 터치 위치와 터치력을 입력받아 이에 대응하는 다양한 제어기능을 수행할 수 있다.
본 발명의 또 다른 측면에 따른 터치 센서의 터치 센서의 터치 위치를 감지하는 방법은, 터치 센서의 상부시트의 저항막에 전압을 인가하고, 하부 기판의 저항막을 접지시키는 단계와, 상부 시트의 저항막과 하부기판의 저항막이 접촉하여 하부기판의 저항막에 유기된 전압을 측정하는 단계와, 하부 기판의 저항막에 유기된 전압이 측정되면, 상부기판에 인가된 전압을 차단하고, 하부기판의 저항막에 터치 감지를 위한 전원을 인가하는 단계와, 상부 기판에 유기된 전압을 측정하여 터치 위치를 연산하는 단계를 포함한다. 본 발명의 방법에 따르면, 터치 센서가 터치 대기 중에는 상부 시트의 저항막에 전압이 인가되고 하부 기판의 저항막(저항패턴)에는 전압이 인가되지 않고 접지된 상태를 유지하므로 전력이 소모되는 것을 절감할 수 있다.
본 발명에 따른 터치 센서는, 저항 패턴을 이용하여 터치 위치를 감지하도록 되어 있어서 터치 영역에 등 전위를 형성하기 위한 세그먼트 영역과 데드 존(dead zone)이 없는 구조를 갖는다. 따라서, 터치 센서의 제조 공정이 단순하여 제조비용이 절감되며, 디스플레이 장치에 일체로 부착하여 사용할 수 있어서 터치스크린이 사용되는 전자 장치를 컴팩트하게 제조할 수 있다.
본 발명에 따른 터치 센서는 임의의 3차원 형상의 표면에 선형의 저항패턴을 용이하게 형성할 수가 있어서, 다양한 형상의 표면에 부착하여 사용할 수 있다. 특히 구형의 디스플레이 장치의 터치 스크린이나 로봇 표면의 촉각 센서로 활용이 가능하다. 또한 본 발명에 따른 터치 센서는 동시에 접촉된 선형패턴의 선분의 길이를 구할 수 있어서, 터치 위치와 동시에 터치력의 감지가 가능하다. 따라서 휴대폰, 카메라, 게임기와 같은 전자장치에 활용하면, 터치 위치와 터치력을 동시에 입력받아 다양한 제어 기능을 구현할 수 있도록 할 수 있다.
또한, 본 발명에 따른 터치 센서는 종래의 저항막 형식의 터치 센서에 비하여, 터치 대기 중에 전력의 소모를 방지할 수 있어서 종래의 터치 센서에 비하여 에너지를 절약할 수 있다. 또한, 본 발명에 따르면, 3선 또는 4선을 사용하는 여 터치 센서를 제조할 수 있으며, 터치 영역의 가장자리에 등전위를 형성하기 위한 전극을 인쇄하는 공정이 필요하지 않기 때문에 제조 원가를 절감할 수 있다. 특히 본 발명에 따른 터치 센서에 있어서 4선을 사용하는 방식은 분해능이 낮은 ADC를 이용하여 터치 위치를 감지할 수 있도록 하여 터치 센서의 활용하기 위한 비용을 절감할 수 있다. 또한, 선형의 저항 패턴을 사용하므로 종래의 저항막 터치 센서에 비하여 다양한 형상의 터치센서를 용이하게 제조할 수 있다.
도 1은 종래의 터치 센서를 설명하기 위한 개략도
도 2는 본 발명에 따른 터치 센서의 일실시예의 개략도
도 3은 본 발명에 따른 터치 센서에 있어서 제1 저항패턴의 1개의 선분이 단락된 경우의 좌표를 구하는 방법을 설명하기 위한 개략도
도 4 및 도 5는 본 발명에 따른 터치 센서에 있어서 제1 저항패턴의 2개의 선분이 단락된 경우의 좌표를 구하는 방법을 설명하기 위한 개략도
도 6는 본 발명에 따른 터치 센서에 있어서 제1 저항패턴의 3개 이상의 선분이 단락된 경우의 좌표를 구하는 방법을 설명하기 위한 개략도
도 7은 종래의 저항막 방식 터치 센서의 전기 회로도
도 8은 본 발명에 따른 절전형 터치 센서의 전기 회로도
도 9(a), 도 9(b)는 본 발명에 따른 터치센서의 다른 실시예의 전기회로도
도 10은 본 발명에 따른 터치 센서의 다른 실시예의 개략도
도 11은 도 10에 도시된 실시예의 전기 회로도
도 12는 도 10에 도시된 실시예의 터치 위치를 구하는 방법을 설명하기 위한 개략도
도 13은 도 10에 도시된 실시예의 터치센서를 콘트롤러에 연결한 상태의 설명도
도 14는 본 발명에 따른 터치센서의 다른 실시예의 개략도
도 15은 본 발명에 따른 터치 센서의 저항패턴의 다양한 형태를 나타내는 개략도
<도면 부호의 간단한 설명>
110, 510 610 하부 기판 150 저항막
120, 저항패턴
520 제1 저항패턴 550, 650 제2 저항패턴
140, 540, 640 가요성 상부 시트
130, 530, 630 스페이서
이하에서는 첨부의 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세히 설명한다.
도 2를 참조하면, 본 발명에 따른 터치 센서(100)는 하부기판(110)과 가요성의 시트(140)와 하부기판(110)과 가요성 시트(140) 사이에 설치된 복수의 스페이서(130)를 포함한다. 스페이서(130)는 탄성을 갖는 재질을 사용할 수도 있다. 하부기판(110)은 투명한 유리 기판을 사용하는 것이 바람직하나, 이에 한정되는 것은 아니고 투명한 가요성 합성수지 기판을 사용할 수도 있다.
하부 기판(110)의 상부면에는 전도성 재료로 형성된 저항 패턴(120)이 고정되어 있다. 저항 패턴(120)은 시작점(121)에서 종점(122)까지 연속된 하나의 선으로 겹치지 않도록 형성되어 있다. 저항 패턴(120)은 일정한 폭과 두께를 갖도록 ITO(Indium Tin Oxide)를 하부 기판에 증착에 의하여 코팅하거나, 유리 기판에 일정한 두께로 증착된 ITO 막을 에칭하여 형성할 수도 있다. 본 실시예에 있어서 저항 패턴(120)은 세로 방향(Y 축 방향)으로 일정한 간격으로 배치되어 있고, 가로 방향(X 축 방향)으로는 동일한 길이를 갖도록 지그재그 형태로 Y 축 방향으로 진행하도록 연장되어 있다. 본 실시예의 저항 패턴은 지그재그 형태로 연장되어 있으나, 이에 한정되는 것은 아니고, 시작점에서 종점까지 선이 겹치지 않도록 면에 임의의 패턴형태로 배치할 수 있다. 즉, 선의 길이로 면의 좌표를 일대일 대응시킬 수 있으면 어떠한 형태라도 가능하다.
가요성 상부 시트(140)는 투명한 PET(polyethylene terephthalate) 시트를 사용하는 것이 바람직하다. 가요성 상부 시트(140)는 적당한 탄성을 갖는 재질을 사용하는 것이 보다 바람직하다. 가요성 시트(140)의 하부면에는 도전성 막(저항막)(150)이 일정한 두께의 면으로 코팅되어 있다. 복수의 스페이서(130)는 투명한 재질로 되어 있으며 하부기판(110)과 가요성 상부 시트(140) 사이에 일정한 간격으로 고정되어, 외력이 가요성 상부 시트(140)에 작용하지 않을 때 하부기판(110)에 형성된 저항패턴(120)과 가요성 상부 시트(140)에 형성된 도전성 막(150)이 접촉하는 것을 방지한다. 도시하지는 않았으나, 가요성 상부시트(140)와 하부기판(110)은 가요성 상부 시트(140)나 하부 기판(110)의 가장자리에 도포된 접착제에 의하여 결합된다.
도 3을 참조하여, 도 2의 실시예의 가요성 상부시트(140)를 손가락으로 눌렀을 경우, 저항 패턴(120)과 저항막(120)이 접촉하였을 때 터치 위치를 감지하는 방법에 대하여 설명한다. 본 실시예에서 저항 패턴(120)은 유리 기판의 상부면에 ITO가 하나의 연속된 선으로 코팅되어 형성된 것이기 때문에 선 저항이고, 저항막(150)은 ITO 가 가요성 상부 시트(140)에 면으로 코팅되어 있기 때문에 면 저항이다. 저항 패턴(120)은 일정한 폭과 두께를 갖는 선으로 코팅되어 ITO의 저항도(resistivity)에 따라서 단위 길이당 일정한 저항을 갖는다. 도 3에 도시된 것과 같이, 저항 패턴의 양단 A 및 B 점에 일정한 전압을 걸어 주면, 저항 패턴(120)이 선 저항이므로 선을 따라서 전압이 분포하게 된다. 이 때 가요성 상부 시트(140)에 압력을 가하여 저항 패턴(120)과 저항막(150)이 점 T에서 접촉되면, 저항막(150)에 접촉점 T(x,y)에 걸리는 저항패턴(120)의 전압이 저항막(150)의 단자(155)에 유기된다. 이 전압을 측정하면, 저항 패턴(120)의 하부 기판(110)에 대한 기하학적인 배치에 따른 대응관계와, 단위 길이당 저항값을 이용하여 접촉점 T의 좌표를 구할 수 있다. 즉, 저항막(150)에 유기된 전압과 시작점 A에서부터 접촉점 T까지의 선의 길이를 구하면 접촉점의 좌표 T(x, y)를 구할 수 있다. 본 실시예에 있어서 저항패턴(120)과 저항막(150) 사이의 접촉 저항은 무시한다.
도 3과 같은 저항 패턴(120)에서, 패턴의 시작점 A (Δx, Δy), 패턴의 종점 B (Δx, Ey), 패턴의 X 방향으로 코팅된 선분의 길이를 Lx, 패턴의 Y방향으로 코팅된 선분의 길이를 dy 라고 하면, 선과 면의 기하학적인 관계로부터 저항 패턴(120)의 위의 한 점을 평면의 좌표에 일 대일 대응시키는 것이 가능하다. 또한, 시작점 A 에서부터 종점 B 까지의 길이와 저항값도 저항 패턴의 배치 형상으로부터 정해진다. 저항 패턴(120)은 일정한 폭과 두께를 갖는 ITO가 코팅되어서 형성된 것이므로 선의 길이에 비례하여 저항이 증가하고, 패턴의 양단에 전압이 걸리면 선의 길이에 비례하여 전압이 강하될 것이다. 패턴의 양단점 A, B에 전압 Vcc를 인가하면 선의 길이에 비례하여 전압 강하가 일어나므로, 접촉에 의하여 상부 시트의 저항막(150)에 유기되는 전압 Vt을 측정하면, 인가한 전압 Vcc와 측정된 전압 Vt의 비가 제1 저항패턴의 전체 길이와 접촉점의 길이의 비가 될 것이다. 즉, 아래의 [수학식 1]의 관계가 성립한다.
수학식 1
Figure PCTKR2009004236-appb-M000001
여기에서, Vcc는 패턴의 시작점과 종점에 인가한 전압, Vt 는 접촉점 T(x,y)에서의 측정 전압, L은 제1 저항패턴(120)의 선의 전체 길이(A점에서 B점까지의 길이), L(x,y)는 A 점에서 접촉점 T(x,y)까지의 길이이다. 다시 정리하면, 아래의 [수학식 2]가 된다.
수학식 2
Figure PCTKR2009004236-appb-M000002
여기에서 L(x,y)의 값을 (Lx + dy)로 나누어서 정수 값을 구하면, T(x,y)의 y 좌표가 얻어진다. 즉, y 좌표는 아래의 [수학식 3]으로 구할 수 있다.
수학식 3
Figure PCTKR2009004236-appb-M000003
Figure PCTKR2009004236-appb-I000001
다음으로, y 좌표값을 이용하여 다음과 같이 x 좌표값을 구한다.
수학식 4
Figure PCTKR2009004236-appb-M000004
x = Mx + Δx, N이 짝수인 경우
x = Lx - Mx + Δx, N이 홀수인 경우
터치 센서의 해상도(resolution)를 높게 하기 위하여는 dy를 작게 하는 것이 좋다. 이 경우에 실제로는 저항패턴의 두 개 이상의 선분이 상부 시트의 저항막과 접촉하게 될 것이다.
도 4는 저항패턴(120)의 인접한 두 개의 선분이 저항막(150)과 접촉한 경우를 도시한다. 이러한 경우에 저항막(150)을 통한 경로(화살표 a 경로)와 저항 패턴을 통한 경로(화살표 b 경로)로 전류가 흐르게 되어 전체적으로 저항이 감소하게 된다. 외견상 저항 패턴(120)의 전체 선의 길이가 약간 줄어든 것과 같다. 따라서, 앞에서 설명한 방식으로 좌표를 계산하면 오차가 발생하게 된다. 이러한 오차를 보정하기 위하여, 경로 a로 대부분의 전류가 흐르고, 경로 b로는 거의 전류가 흐르지 않는다고 가정하고, 다음과 같은 방법으로 접촉점의 좌표를 구할 수 있다.
도 4에 도시된 것과 같이, 저항 패턴의 A(Δx,Δy) 점에 저항 Rb를 직렬로 연결하고 B 점(Δx, Ey)에 전압 Vcc를 인가한다. 여기에서 시작점 A에 연결된 저항 Rb는 사전에 정해진 알고 있는 값이다. 이 경우, A(Δx,Δy) 점의 전압(저항 Rb에 걸리는 전압)을 측정하고, 접촉점 T(x,y)의 전압(상부 시트의 저항막(150)에 유기되는 전압)을 측정하면, 아래의 식을 이용하여 동시에 접촉된 선분의 수와 접촉점 T(x,y)의 좌표를 구할 수 있다.
먼저, 저항 패턴(120)과 저항막(150)이 터치에 의하여 접촉하기 전에, 저항 Rb에 걸리는 전압 Vb는 다음과 같다.
수학식 5
Figure PCTKR2009004236-appb-M000005
여기에서 ρ는 저항 패턴(120)의 단위 길이당 저항이고, L은 저항 패턴(120)의 전체 선의 길이이다. 저항 패턴은 ITO가 일정한 폭과 두께로 코팅이 되어 형성되어 있으므로 ρ는 일정하다. 따라서 저항 패턴(120)의 전체 저항을 R이라고 하면 R = ρL이다.
도 4에 도시된 것과 같이, 저항 패턴(120)의 두 개의 인접한 선분이 동시에 저항막(150)과 접촉되었다면, 접촉된 위치에서 전류는 저항막(150) 통하여 최단 거리인 경로 a를 통하여 흐르는 것으로 가정한다. 따라서, 도 5에 도시한 것과 같이 저항 패턴(150)의 선의 길이가 줄어든 것으로 가정할 수 있다. 이 경우 저항 Rb에 걸리는 전압 Vb'을 구하면 다음과 같다.
수학식 6
Figure PCTKR2009004236-appb-M000006
여기에서 ΔL은 저항패턴의 동시 접촉에 의하여 줄어들었다고(실제적으로는 전류의 경로의 증가에 의하여 저항이 감소하게 됨) 가정한 선분의 길이이다. [수학식 6]을 ΔL에 대하여 다시 한 번 정리하면 다음과 같다.
수학식 7
Figure PCTKR2009004236-appb-M000007
터치 센서를 제조할 때, ρ, Vcc, Rb, L 값은 사전에 정해진 값이므로, Vb'를 측정하면, [수학식 7]에 의하여 저항 패턴(120)의 인접한 선분이 동시에 접촉되어 줄어든 것으로 가정할 수 있는 선분의 길이(ΔL)를 구할 수 있게 된다. 본 실시예에 있어서, ΔL이 Lx의 두 배보다 작으면 두 개의 선분이 동시에 접촉된 경우이고, Lx의 두 배이면 3개의 선분이 동시에 접촉된 경우이고, Lx의 두배 이상이면 4개의 선분이 동시에 접촉된 경우가 될 것이다.
도 6(a)는 터치에 의하여 동시에 3개의 선분이 접촉된 경우를, 도 6(b)는 동시에 4개의 선분이 접촉된 경우를 나타낸다. 두 개 이상의 선분이 동시에 접촉된 경우, 접촉점의 근사치 좌표를 구하는 방법에 대하여 설명한다. 두 개의 이상의 선분이 접촉된 경우, 시작점 A 에 가까운 접촉점의 좌표를 P(x1, y1)이라고 하고, 종점 B 에 가까운 접촉점의 좌표를 Q(x2, y2)라고 한다. 또한, 시작점 A에서 측정된 전압을 Vb'이라고 하고, 접촉점 T에서 접촉에 의하여 저항막에 유기된 전압의 측정치를 Vt라고 하면, 시작점 A에서 점촉점 P(x1,y1)까지의 길이 L(A,P) 및 종점 B에서 접촉점 Q(x2,y2)까지의 길이 L(B,Q)는 다음의 관계식에 의하여 각각 구할 수 있다.
수학식 8
Figure PCTKR2009004236-appb-M000008
수학식 9
Figure PCTKR2009004236-appb-M000009
L(A,P)와 L(B,Q)를 구한 후, 다음의 식들을 이용하여 P(x1,y1), Q(x2,y2)를 각각 구한다.
수학식 10
Figure PCTKR2009004236-appb-M000010
y1 = Np dy+Δy
Mx1 = L(A,P)-Np(Lx+dy)
x1 = Mx1+Δx Np가 짝수인 경우
x1 = Lx-Mx1+Δx Np가 홀수인 경우
수학식 11
Figure PCTKR2009004236-appb-M000011
y2 = Ey - Nqdy+Δy
Mx2 = L(A,P)-Nq(Lx+dy)
x2 = Mx2+Δx Nq가 짝수인 경우
x1 = Lx-Mx1+Δx Nq가 홀수인 경우
또한, 상기의 식으로 구한 P(x1, y1), Q(x2, y2)의 좌표로부터 동시에 접촉된 선분의 수(C)를 다음의 수식을 이용하여 구할 수 있다.
수학식 12
Figure PCTKR2009004236-appb-M000012
[수학식 12]에 의한 C 값이 1 이 아닌 경우는 여러 개의 선분이 동시에 접촉된 경우이다. 이러한 경우에는 동시에 접촉된 선분의 수 또는 동시에 접촉된 접촉점 사이의 선분의 길이(거리)에 비례하도록 터치력(접촉력)을 대응시킬 수 있다. 예를 들면, 두 개 이하의 선분이 접촉된 경우에는 터치력을 1로 세팅하고, 3개 이상의 선분이 접촉된 경우에는 터치력을 2로 세팅하여 접촉 위치와 터치력의 조합을 동시에 감지할 수 있다.
도 6에 도시된 것과 같이, 여러 개의 선분이 동시에 접촉된 경우에는 P(x1,y1), Q(x2,y2)의 중점을 점촉점 T(x,y)라고 가정하고 가상의 접촉점을 구할 수 있다. 즉, x = (x1+x2)/2, y = (y1+y2)/2로 접촉점 T(x,y)의 좌표를 구한다.
이하에서는 저항형 터치 센서에 있어서, 전력의 소모를 줄일 수 있는 터치 센서의 실시예에 대하여 설명한다. 도 7에는 종래의 저항막 방식의 터치 센서 동작을 설명하기 위한 전기적인 등가 회로가 도시되어 있다. 도 7에 도시된 것과 같이 종래의 4선 방식 또는 5선 방식의 저항형 터치 센서는 하부 기판(210)에 저항막(220)이 코팅되어 있다. 또한, 상부 시트(230)의 하부면에도 저항막(240)이 코팅되어 있다. 외력에 의하여 상부 시트(230)의 저항막(240)이 하부기판(210)의 저항막(220)과 접촉하면, 접촉점(T)의 전압이 저항막(240)에 유기되고, 이를 읽어 들여서 접촉점의 좌표를 감지하게 된다. 상기와 같은 기본적인 구조를 갖는 종래의 터치 센서는 작동시에 항상 저항막(220)에 전원이 공급되어 전류가 흐르도록 되어 있다. 4-선 방식의 경우 도시하지는 않았으나 X-좌표 감지용 및 Y-좌표 감지용 저항막에 교대로 전류가 흐르도록 되어 있다. 즉, 종래의 터치 센서는 모두 터치 대기 중인 상태에서도 하부 기판의 저항막에 전류가 흐르도록 되어 있어서, 저항막 의 저항에 의하여 전력이 소모되고 있으며, 전력의 소모에 따른 열이 발생하고 있다. 이러한 종래의 터치 센서는 휴대용 전자 장치에 있어서, 밧데리가 빨리 소모되도록 하여 휴대용 전자장치를 장시간 사용할 수 없게 한다.
도 8을 참조하면, 본 실시예의 터치 센서(300)는 하부 기판(310)의 저항패턴(320)에 연결된 스위치 S1(350)와 상부 시트(330)의 저항막(340)에 연결된 스위치 S2(370)를 더 포함한다. 또한, 저항패턴(320)에는 터치 대기 상태에서 터치 된 시점을 입력받기 위한 저항 Rb(360)가 연결되어 있다. 또한, 전원 Vcc는 S1(350)과 S2(370)의 스위칭에 따라서 저항 패턴(320)과 저항막(340)에 선택적으로 연결이 가능하다. 터치 대기 중에는 스위치 S2를 폐쇄하여 전원 Vcc을 상부 시트(330)의 제2 저항 패턴(340)에 인가한다. 접촉에 의하여 제1 저항패턴(320)에 연결된 저항 Rb(360)에 전압 Vb 가 감지되면, 스위치 S2를 개방하고 스위치 S1을 폐쇄한다. 스위치 S1의 폐쇄에 의하여 저항막(340)에 유기된 전압 Vt와 저항 Rb에 걸리는 전압 Vb를 측정하여 접촉점 T의 좌표를 앞에서 설명한 방법으로 감지한다. 터치가 종료되어 저항막에 유기된 전압 Vt가 없어지면, 스위치 S1(350)을 개방하고 스위치 S2(370)를 폐쇄하여 다시 터치 대기 상태로 전환한다. 본 실시예(340)의 터치 센서는 터치 대기 상태에서는 전력을 소모하지 않고 터치된 상태에서만 전력을 소모하게 된다. 따라서 터치 센서의 동작 중에 전력 소모를 줄일 수 있게 된다. 본 실시예의 전력 소모를 절감할 수 있는 터치 센서(300)는 제1 저항패턴(320) 대신에 저항막을 사용하는 종래의 4선 또는 5선 방식의 터치 센서에도 적용할 수 있음은 물론이다.
도 9(a)는 본 발명에 따른 전력 소모와 노이즈의 영향을 줄일 수 있는 터치 센서의 다른 실시예이다. 본 실시예(400)가 도 8에 도시된 실시예(300)와 다른 점은 스위치를 사용하지 않는 대신에 두 개의 저항 Rf(460, 470)을 제1 저항패턴의 양단에 연결한 점이다. 즉, 저항막(440)에 전원을 항상 인가해서 저항막(440)에서 접촉 전압(Vt)를 측정하지 않고, 저항패턴(420)의 양단에 연결된 저항 Rf(460, 470)에 걸리는 전압을 측정하여 접촉점의 좌표를 구할 수 있는 실시예이다. 도 9(b)는 도 9(a)에 도시된 실시예의 등가회로이다. 등가회로에서 Rt의 값은 Ru, Rb, Rf 값에 비하여 무시할 수 있을 정도로 작으므로, 양단의 저항에 걸리는 전압 Vb, Vu를 측정하면, Ru 및 Rb는 다음의 식으로 구할 수 있다.
수학식 13
Figure PCTKR2009004236-appb-M000013
Figure PCTKR2009004236-appb-I000002
저항패턴의 단위 길이 당의 저항을 ρ라고 하면, 저항패턴의 양단으로부터 접촉점까지의 각각의 길이를 다음의 식으로 구할 수 있다.
수학식 14
Figure PCTKR2009004236-appb-M000014
Figure PCTKR2009004236-appb-I000003
여기서, 접촉점은 면적을 가지고 있으며, Lu는 저항패턴의 일단으로부터 접촉점의 일단에 가까운 지점까지의 거리이고, Lb는 저항패턴의 타단으로부터 접촉점의 타단에 가까운 지점까지의 거리이다. 수학식 14에 의하여 구하여진 값을 앞의 도 3 내지 도 5에서 설명한 방법으로, 저항패턴과 좌표의 기하학적인 관계를 이용하여 면적을 갖는 접촉점으로 가정하고 저항패턴의 양단에 가까운 지점의 좌표 P(x1, y1), Q(x2, y2)를 구할 수 있다.
만약 두 개의 서로 다른 위치가 터치된 경우, Lu는 저항패턴의 일단에 가까운 접촉지점까지의 거리이고, Lb는 저항패턴의 타단에 가까운 지점까지의 거리가 될 수도 있다. 이 경우 두 점 P(x1, y1), Q(x2, y2) 사이의 거리를 구하여, 거리가 일정한 범위 이내인 경우에는 한 점이 터치된 경우로 판단하고, 일정한 범위 이상인 경우에는 두 점이 터치된 경우로 판단할 수 있다.
실제로 도 5에 도시된 회로를 이용하여 터치센서를 제작하여 터치 위치의 좌표를 측정하였으나, 외부의 노이즈 영향이 심하여 정확한 좌표를 연산하기라 어렵고, 터치된 경우와 터치되지 않은 경우를 구별하는 것이 어려운 문제점이 있었다. 도 9에 도시된 회로는 도 4에 도시된 실시예의 이러한 문제점을 해결할 수 있는 것으로 판단되었다. 도 5에 도시된 것과 같은 회로를 이용하여 터치 센서를 제조할 경우, 상부시트의 저항막에 걸리는 전압을 측정하기 위한 회로를 고저항(high impedance)로 구성하여야 한다. 이는 저항패턴의 선저항이 매우 높기 때문에, 저항막의 전압을 측정하기 위한 회로의 저항이 낮게 되면 좌표 계산에 오차가 발생하기 때문이다. 따라서 상부시트의 저항막의 전압 측정 회로의 저항은 저항 패턴의 저항값보다 적어도 수십 배 이상은 커야 한다. 이 경우 터치센서가 터치되지 않았을 경우 저항막의 전압을 안정되게 측정하기 위해서는 pull up 또는 pull down이 되어야 하는 데, 저항막의 전압을 측정하기 위한 회로가 고저항이 되어야 하므로 pull up 또는 pull down을 위한 저항은 아주 높은 저항이 연결되어야 한다. 따라서 도 5에 도시된 실시예는 상부시트의 저항막의 전압을 측정할 때 상부시트에 유기되는 noise에 취약하게 된다.
도 9(a)에 도시된 실시예는 도 5에 도시된 실시예의 상기와 같은 문제점을 해결한다. 도 9(a)의 실시예는 저항막이 Vcc에 연결되기 때문에 상부 시트에 유기되는 noise가 Vcc를 통하여 빠져 나가므로 noise에 강한 특성을 가지게 된다.
또한 도 5에 도시된 실시예에서는 저항막에서 측정되는 전압으로 상부시트와 하판이 접촉되었는지를 판단하게 된다. 만약 상부시트의 저항막이 pull up이 되었을 경우 눌리지 않으면 저항막의 전압은 Vcc 값이 된다. 이 경우 터치센서에서 접촉점이 저항패턴의 전압이 Vcc에 가까운 점이 눌렸을 경우 저항막에서 측정되는 전압이 Vcc에 가까운 값이 측정되므로 터치센서가 터치 되었는지 터치되지 않았는지를 판단하기 어렵게 된다. 반대로 상부시트의 저항막이 pull down이 되었을 경우에도 터치를 인식하기 어려운 경우가 발생한다. 즉 pull down이 되었을 경우 터치 센서가 터치되지 않은 경우 저항막에서 측정되는 전압은 0V 이다. 터치센서에서 터치점이 저항패턴의 접지점에 가까운 점이 터치된 경우 측정되는 전압은 0V에 가까운 전압이 측정되기 때문에 터치여부를 판단하기 어려운 경우가 발생한다.
이에 대하여 도 9(a)에 도시된 실시예는 터치 위치를 연산하기 위한 전압을 저항패턴의 양단에 직렬로 두개의 저항에서 각각 측정하기 때문에, 터치 센서가 터치된 경우와 터치되지 않은 경우를 명확하게 구별할 수 있다. 터치 센서가 터치되지 않은 경우, 저항패턴의 양단에서 측정되는 전압 Vb, Vu는 모두 0 V 이고, 터치 센서가 터치된 경우에는 Vb와 Vu는 0V 가 되지 않는다. 만약 측정된 한 쪽 전압이 0V에 가까운 경우에도 다른 쪽의 전압이 많이 올라 가기 때문에 접촉을 명료하게 판단할 수 있는 장점이 있다.
도 9(b)에 도시된 실시예가, 도 9(a)에 도시된 실시예와 다른 점은, 저항막을 접지시키고, Vcc 전압을 저항패턴의 양단에 연결된 저항에 각각 연결한 점이다. 도 9(b)에 도시된 실시예는 상부시트에 유기되는 노이즈가 접지를 통하여 빠져나가게 되어 있어서, 도 9(a)에 도시된 실시예보다 노이즈에 강한 특징이 있다.
도 2 내지 도 6 및 도 9에 도시된 실시예들은 하부 기판에 코팅된 저항 패턴이 선형 패턴인 실시예들이다. 저항 패턴이 연속된 하나의 선으로 겹치지 않게 배치되어 있으므로, 터치 위치의 정밀도를 향상시키기 위하여는 터치 전압 Vt를 입력받아 디지탈 신호로 변환하는 ADC(Analog to Digital Converter)의 출력 비트(bit) 수가 커져야 한다(ADC의 해상도가 높아져야 한다). 예를 들면 터치 센터의 해상도가 X방향으로 1024, Y방향으로 1024 라고 하면, ADC는 상기 터치 센서의 해상도를 충족하기 위하여 20 bit 이상이 되어야 한다. 현실적으로 비트 수가 적은 저해상도 ADC를 사용하여 제조 원가가 저렴한 터치 센서를 제공하는 것이 바람직하다.
도 10은 저해상도의 ADC를 사용하여 터치 위치의 좌표를 감지할 수 있는 터치 센서(500)의 실시예이고, 도 11은 도 10에 도시된 실시예의 전기적인 등가회로이다. 도 10에 도시된 실시예(500)가 도 2에 도시된 실시예(100)와 다른 점은, 상부 시트(540)의 하부면 전체에 ITO가 코팅된 것이 아니라, 도시된 것과 같이 연속된 하나의 선이 연장된 제2 저항 패턴이 Y축 방향으로 일정한 간격을 갖도록 지그 재그 형태로 연장되어 형성되어 있고, 제1 및 제2 저항패턴의 일단에 각각 저항 Rb1 및 Rb2가 각각 연결되어 있는 것이다. 또한, 각각의 저항 패턴의 양단에 스위치(S1 - S4)가 연결되어 있다. 본 실시예의 터치 센서(500)는 4선이 필요하고, 외부에 스위치와 저항이 연결되어 회로가 복잡해지는 단점이 있으나, 저해상도의 ADC를 이용하여 간단하고 정확하게 터치 위치를 감지할 수 있다는 장점이 있다. 즉, 하부기판의 제1 저항패턴(520)을 이용하여 터치 위치 T (x,y)의 y 좌표를 구하고, 제2 저항패턴을 이용하여 터치 위치 T(x,y)의 x 좌표를 구한다. 또한 각각의 스위치(S1 - S4)를 적절히 온/오프 조절하여 터치 대기 중의 전력의 소모를 최소화할 수 있는 장점이 있다.
도 12는 터치 위치 T(x,y)를 감지하는 방법을 설명하기 위하여 도 10의 실시예의 제1 저항 패턴(520)과 제2 저항 패턴(550)을 개략적으로 도시한 것이다. 도 11과 도 12를 참조하여, 본 실시예의 터치 센서(500)의 터치 위치 측정 방법을 설명한다. 먼저 터치 대기 중에 전력의 소모를 최소화하기 위하여 S1(561)과 S4(572)를 폐쇄 상태로 하고, S2(562)와 S3(571)를 개방 상태로 유지하면서 저항 Rb1(560)에 유기되는 전압을 측정한다. 터치가 되지 않은 상태에서 Vt1의 값은 0 볼트이다. 도 12에 도시된 것과 같이 임의의 점 T(x,y)가 터치 되어 제1 저항 패턴(520)과 제2 저항 패턴(550)이 접촉하면 저항 Rb1(560)에 걸리는 전압 Vt1은 [수학식 15]와 같다.
수학식 15
Figure PCTKR2009004236-appb-M000015
다음으로 Vt1이 검출되면, 터치 대기 상태에서 터치 상태가 된 것으로 판단하여, 스위치 S1(561)과 S2(562)를 폐쇄 상태로 하고 스위치 S3(571)와 S4(572)를 개방 상태로 하여, 제1 저항패턴(520)에는 전원을 공급하고 제2 저항패턴(550)은 하이 임피던스 상태가 되도록 한다. 이 경우 Vt1과 Vt2를 측정하면, 제1 저항패턴(520)을 이용하여 도 5에 도시된 실시예에서 설명한 접촉점 T(x,y)의 y 좌표를 구하는 방법을 그대로 적용할 수 있다. 도 12(b)에 도시된 것과 같이 접촉점 T에서 제1 저항패턴의 이웃 하는 세 개의 선분이 동시에 접촉되었다고 가정하고, 패턴의 시작점 A에 가까운 접촉점을 P, 종점 B에 가까운 접촉점을 Q라고 한다. 이때 P 점의 y 좌표를 y1이라 하고, Q 점의 y 좌표를 y2라고 하면 y1과 y2는 다음의 식으로 구할 수 있다.
수학식 16
Figure PCTKR2009004236-appb-M000016
Figure PCTKR2009004236-appb-I000004
여기에서, L(A,P)는 제1 저항패턴(520)의 시작점 A에서 접촉점 P까지의 거리이고, L(B,Q)는 종점 B에서 접촉점 Q까지의 거리이다. 또한, ρy는 제1 저항 패턴의 단위 길이당 저항이다. 다음의 식을 이용하여 y1 및 y2의 좌표를 구한다. 여기에서 dy는 제1 저항패턴(520)의 Y 축 방향 선분의 길이이고 Lx는 X 축 방향 선분의 길이로, 본 실시예에서 제1 저항 패턴(520)은 X 축 방향으로 일정한 길이 Lx 및 Y축 방향으로 등간격 dy를 갖도록 지그 재그 형태로 연장된 것이다.
수학식 17
Figure PCTKR2009004236-appb-M000017
y1 = Npdy+Δy
Figure PCTKR2009004236-appb-I000005
y2 = Ey - Nqdy+Δy
상기 [수학식 17]에 의해서 구해지는 y1과 y2의 산술 평균을 구하여 접촉점 T(x,y)의 y 좌표, 즉 제1 저항패턴의 지그재그 진행 방향 좌표(제1 좌표)를 구한다.
다음으로 제2 저항패턴(550)을 이용하여 접촉점 T(x,y)의 x 좌표를 구하기 위하여, 도 11에서 스위치 S1과 S2를 개방하고, S4와 S3를 폐쇄하여 제2 저항 패턴(550)에 전원을 공급하고, 제1 저항패턴(520)은 하이 임피던스 상태가 되도록 한다. 다음으로, Vt1과 Vt2를 측정하면 제2 저항패턴(550)을 이용하여 접촉점 T의 x 좌표를 구한다. 도 12(a)에 도시된 것과 같이 접촉점 T에서 제2 저항패턴(550)의 이웃하는 세 개의 선분이 동시에 접촉되었다고 가정하고, 패턴의 시작점 M에 가까운 점을 P', 종점 N에 가까운 점을 Q'이라고 한다. 이때 P' 점의 x 좌표를 x1이라 하고, Q' 점의 x 좌표를 x2라고 하면 x1과 x2는 다음의 식으로 구할 수 있다.
수학식 18
Figure PCTKR2009004236-appb-M000018
Figure PCTKR2009004236-appb-I000006
여기에서, L(M,P')는 제2 저항 패턴(550)의 시작점 M에서 접촉점 P'까지의 거리이고, L(N,Q')는 종점 N에서 접촉점 Q'까지의 거리이다. 또한, ρx는 제2 저항 패턴(550)의 단위 길이당 저항이다. 다음의 식을 이용하여, y1, y2의 좌표를 구한다. 여기에서 dx는 제2 저항패턴(520)의 X 축 방향 선분의 길이이고 Ly는 Y 축 방향 선분의 길이로, 본 실시예에서 제2 저항 패턴(520)은 Y 축 방향으로 일정한 길이 Ly 및 X축 방향으로 등간격 dx를 갖도록 지그 재그 형태로 연장된 것이다.
수학식 19
Figure PCTKR2009004236-appb-M000019
x1 = Np'dx+Δx
Figure PCTKR2009004236-appb-I000007
x2 = Ex - Nq'dx+Δx
상기 [수학식 19]에 의해서 구해지는 x1과 x2의 산술 평균을 구하여 접촉점 T(x,y)의 x 좌표, 즉 제2 저항패턴의 지그재그 진행방향의 좌표(제2좌표)를 구한다.
도 13은 도 10에 도시된 실시예의 터치 센서(500)를 콘트롤러(580)에 직접 연결하여 사용하는 상태를 도시한 것이다. 콘트롤러(580)는 컴퓨터나 마이크로 프로세서와 같이 터치 센서(500)의 제1 및 제2 저항 패턴에 순차적으로 전원을 공급하거나 차단하고 저항 Rb1 및 Rb2에 걸리는 전압을 측정하기 위한 소프트웨어를 실행하는 전자 장치이다. 콘트롤러(580)는 센서(500)와 네 개의 범용 입/출력 라인(GPIO 라인, L1, L4, L5, L6) 및 두 개의 ADC 라인(L2, L3)으로 연결되어 있다. 네 개의 범용 입출력 라인(L1, L4, L5, L6)은 하이, 로우, 하이 임피던스 상태로 구동될 수 있다. 또한 도시하지는 않았으나, 두 개의 ADC 라인(L2, L3)에는 갤리브레이션을 위한 저항이 추가로 연결될 수 있다. 본 실시예는 도 10에 도시된 실시예의 스위치(S1 - S4)를 콘트롤러(580)의 네 개의 GPIO 라인(L1, L4, L5, L6)으로 대체한 것이다.
도 14는 본 발명의 또 다른 실시예로, 3차원 형상 물체 표면의 터치를 감지하기 위한 터치 센서의 실시예이다. 본 실시예는 선형 패턴 상의 점을 삼차원 곡면에 일대일 대응하도록 적절히 배치하면 임의의 형상을 갖는 표면의 터치를 감지할 수 있는 터치 센서(600)를 용이하게 만들 수 있다는 것을 보여 준다. 본 실시예의 터치 센서(600)는 로봇의 암이나 몸통, 곡면을 갖는 디스플레이 장치 등에 적용이 가능하다. 본 실시예의 터치센서(600)는 절연체인 하부기판(610)의 상부면에 제1 저항 패턴(620)이 ITO로 코팅되어 형성되어 있다. 하부기판(610)의 상부면은 공간상의 좌표의 함수 S(x, y, z)로 나타낼 수 있다. 또한, 제1 저항패턴(620)은 하나의 선으로 겹치지 않도록 하부기판의 상부면에 형성되며, 공간상의 좌표의 함수 L1(x,y,z)로 나타낼 수 있다. 도 13에 도시된 것과 같이, 제1 저항패턴(620)은 하부기판(620)의 상부면 S(x,y,z)에서 일 방향으로 지그재그로 연장되도록 형성되어 있다. 즉, 제1 저항패턴(620) 상의 한 점은 하부기판(610)의 상부면 상의 점과 일대일 대응 관계에 있다.
가요성 상부 시트(640)는 하부 기판(610)과 일정한 거리 이격된 상태로 하부기판(610)과 고정되고, 상부시트(640)와 하부 기판(610) 사이에는 복수의 스페이서(630)가 삽입되어 있다. 하부기판(610)의 상부면 S(x,y,z)과 마주 보는 상부 시트(640)의 하부면은 동일한 형상이다. 상부 시트(640)의 하부면에는 제2 저항패턴(650)이 ITO로 코팅되어 있다. 제2 저항 패턴(650)은 하나의 선으로 겹치지 않도록 상부시트(640)의 하부면에 형성되며, 공간상의 좌표의 함수 L2(x,y,z)로 나타낼 수 있다. 또한, 제2 저항패턴은 제1 저항패턴(620)이 지그재그로 연장된 일방향에 직교하는 방향으로 지그재그로 연장되도록 형성되어 있다.
본 실시예의 터치 센서(600)의 터치 위치를 감지하는 방법은 도 10에 도시된 실시예의 터치 위치를 감지하는 방법과 동일하다. 본 실시예의 터치 센서가 도 10에 도시된 실시예와 다른 점은, 본 실시예의 터치 센서는 원형의 터치 센서나 구면상에 설치할 수 있는 터치 센서를 간편하게 제조할 수 있다는 점이다.
도 15는 본 발명에 따른 터치 센서의 저항패턴의 다양한 실시예를 나타내는 개략도이다. 도 15(a)는 원형의 저항 패턴을 갖는 터치 센서를 도시한다. 원형의 면의 좌표(x,y)와 선형 저항 패턴 상의 점(l)과의 대응 관계는 피다고라스의 정리를 이용하면 간단히 계산할 수 있다. 또한, 제1 저항패턴(1100)과 제2 저항패턴(1200)은 서로 직교하도록 배치되어 있다. 도 15(b)는 링형상의 평면에 선형의 저항 패턴을 형성한 실시예이다. 제1 저항패턴(1300)과 제2 저항패턴(1400)은 서로 직교하도록 배치되어 있다. 도 15(c)는 구면상에 형성된 저항패턴을 도시한다. 제1 저항패턴(1500)과 제2 저항패턴(1600)은 구면상에서 서로 직교하도록 배치되어 있다.
앞에서 설명되고, 도면에 도시된 본 발명의 일실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.
본 발명에 따른 터치 센서는 터치 영역에 등전위를 형성하기 위한 불투명한 전극이 불필요하여 디스플레이 장치의 표시 화면에 일체로 컴팩트하게 장착시켜서 입력 수단(터치 스크린)으로 사용될 수 있다. 또한, 본 발명에 따른 터치 센서는 논리적 연산을 수행할 수 있는 콘트롤러에 연결되어 다양한 형태의 입력기능을 구현할 수 있다. 예를 들면, 컴퓨터의 키보드를 대체하거나, 볼륨을 조절하기 위한 가변저항, 메뉴나 자료를 스크롤하기 위한 입력장치, 복수의 버튼을 가진 스위치 등으로 활용할 수 있다. 또한, 본 발명에 의한 터치 센서는 동시에 접촉되는 패턴의 선분의 수나 길이에 대응하는 터치력을 감지할 수 있으므로, 터치위치와 터치력을 동시에 감지하는 촉각센서로 활용할 수 있다. 예를 들면 로봇의 몸체에 부착하여 외부의 물체와 접촉할 경우 접촉위치와 접촉력을 감지할 수 있다. 또한, 인공피부의 외부에 부착하여 터치 위치와 터치력을 동시에 감지할 수 있도록 할 수 있다.

Claims (14)

  1. 하부 기판과,
    상기 하부 기판의 상부면에서 일정 거리 이격 되어 배치된 가요성 상부 시트와,
    상기 하부 기판과 가요성 시트 사이에 설치된 복수의 스페이서와,
    상기 하부 기판의 상부면에 전도성 재료가 연속된 하나의 선으로 겹치지 않게 배치된 저항 패턴과,
    상기 가요성 시트의 하부면에 배치된 전도성 막과,
    상기 저항패턴의 양단에 각각 직렬로 연결된 한 쌍의 저항을 포함하는 것을 특징으로 하는 터치 센서.
  2. 제1항에 있어서,
    상기 저항 패턴은 하부 기판의 상부면에서 일 방향으로 지그재그 형태로 진행하도록 연장되어 배치된 것을 특징으로 하는 터치 센서.
  3. 제2항에 있어서,
    상기 하부 기판과 가요성 상부 시트와 저항 패턴과 전도성 막은 투명한 재질로 된 것을 특징으로 하는 터치 센서.
  4. 제3항에 있어서,
    상기 저항패턴 및 전도성 막은 ITO로 형성된 것을 특징으로 하는 터치 센서.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 전도성막은 접지되어 있고, 상기 저항패턴에 연결된 한 쌍의 저항에 각각 기준 전압이 연결된 것을 특징으로 하는 터치 센서.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 전도성막은 기준전압에 연결되어 있고, 상기 저항패턴에 연결된 한 쌍의 저항은 접지된 것을 특징으로 하는 터치 센서.
  7. 하부 기판과,
    상기 하부 기판의 상부면에서 일정 거리 이격 되어 배치된 가요성 상부 시트와,
    상기 하부 기판과 가요성 시트 사이에 설치된 복수의 스페이서와,
    상기 하부 기판의 상부면에 전도성 재료가 연속된 하나의 선으로 겹치지 않게 배치되어 형성된 제1 저항 패턴과,
    상기 가요성 상부 시트의 하부면에 전도성 재료가 연속된 하나의 선으로 겹치지 않게 배치되어 형성된 제2 저항 패턴과,
    상기 제1 저항 패턴 및 제2 저항 패턴 각각의 일단에 단부의 전압 측정을 위하여 직렬 연결된 저항을 포함하는 것을 특징으로 하는 터치 센서.
  8. 제7항에 있어서,
    상기 제1 저항 패턴의 하나의 선은 하부 기판의 상부면에서 일 방향으로 지그재그 형태로 진행하도록 연장되어 배치되고,
    상기 제2 저항 패턴의 하나의 선은 가요성 상부 시트의 하부면에서 타방향으로 지그재그 형태로 진행하도록 연장되어 배치된 것을 특징으로 하는 터치 센서.
  9. 제8항에 있어서,
    상기 제1 저항패턴의 지그재그 진행 방향과 제2 저항패턴의 지그재그 진행방향은 직교하도록 된 것을 특징으로 하는 터치 센서.
  10. 제9항 중 어느 한 항에 있어서,
    상기 하부 기판과 가요성 시트와 제1 저항 패턴과 제2 저항패턴은 투명한 재질로 된 것을 특징으로 하는 터치 센서.
  11. 제10항에 있어서,
    상기 제1 저항패턴 및 제2 저항패턴은 ITO로 형성된 것을 특징으로 하는 터치 센서.
  12. 양단에 각각 저항이 연결되어 있고, 하부 기판의 상부면에 연속된 하나의 선으로 겹치지 않게 형성된 저항 패턴에 전압을 인가하는 단계와,
    상기 하부 기판의 상부면과 대향하도록 일정거리 이격되어 배치된 가요성 상부 시트의 하부면에 코팅된 도전성 막이 외력에 의하여 변형되어 상기 저항패턴과 접촉될 때, 상기 도전성 막에 유기되는 전압과 상기 저항패턴의 저항이 연결된 양단부의 전압을 각각 측정하는 단계와,
    상기 측정된 세 개의 전압을 이용하여, 저항패턴의 양 단부로부터 접촉점까지의 길이를 각각 계산하는 단계와,
    상기 저항패턴과 하부기판의 상부면과의 대응관계를 이용하여, 저항패턴의 양 단부로 부터 접촉점 까지의 각각의 좌표(T1, T2)를 계산하는 단계와,
    상기 저항패턴의 양 단부로부터 접촉점 까지의 각각의 좌표 사이의 거리를 계산하는 단계와,
    상기 계산된 거리가 정해진 범위에 포함되는 경우, 저항 패턴의 양단부로부터 접촉점 까지의 각각의 좌표의 평균값을 계산하는 단계를 포함하는 것을 특징으로 하는 터치 센서의 터치 위치를 감지하는 방법.
  13. 하부 기판의 상부면에 연속된 하나의 선으로 겹치지 않게 형성되고, 일단에 저항이 연결된 제1 저항 패턴에 전압을 인가하는 단계와,
    상기 하부 기판의 상부면과 대향하도록 일정거리 이격되어 배치된 가요성 상부 시트의 하부면에 하나의 선으로 겹치지 않게 형성되고, 일단에 저항이 연결된 제2 저항패턴이 외력에 의하여 변형되어 상기 제1 저항패턴과 접촉될 때, 제2 저항패턴에 유기되는 전압(Vt)과 상기 제1 저항패턴의 저항이 연결된 단부의 전압(Vb)을 측정하는 단계와,
    상기 측정된 전압 Vt 및 Vb를 이용하여, 제1 저항패턴의 전원 측 단부로부터 접촉점까지의 길이(Lt1) 및 그라운드 측 단부로부터 접촉점까지의 길이(Lt2)를 계산하는 단계와,
    상기 제1 저항패턴과 하부기판의 상부면과의 대응관계를 이용하여, 각각의 길이 Lt1에 대응하는 접촉점 T1 및 Lt2에 대응하는 T2의 각각의 제1 좌표(제1 저항패턴의 지그재그 진행 방향 좌표)를 계산하는 단계와,
    상기 제2 저항패턴에 전압을 인가하는 단계와,
    제2 저항패턴과 접촉되어 제1 저항패턴에 유기되는 전압(Vt')과 상기 제2 저항패턴의 그라운드측 연결 단부의 전압(Vb')을 측정하는 단계와,
    상기 측정된 전압 Vt' 및 Vb'을 이용하여, 제2 저항패턴의 전원 측 단부로부터 접촉점까지의 길이(Lt1') 및 그라운드 측 단부로부터 접촉점까지의 길이(Lt2')를 계산하는 단계와,
    상기 제2 저항패턴과 상부 시트의 하부면과의 대응관계를 이용하여 각각의 길이 Lt1'에 대응하는 접촉점 T1' 및 Lt2'에 대응하는 T2'의 제2 좌표(제2 저항 패턴의 지그재그 진행 방향 좌표)를 계산하는 단계와,
    상기 접촉점 T1과 T2의 제1 좌표값의 산술 평균치 및 T1'과 T2'의 제2 좌표값의 산술 평균치를 계산하여 접촉점 T의 좌표를 구하는 단계를 포함하는 것을 특징으로 하는 터치 센서의 터치 위치를 감지하는 방법.
  14. 제12항 또는 제13항에 있어서,
    상기 제1 저항패턴의 전체길이 L에서 Lt1 및 Lt2의 값을 빼서 중복 접촉된 접촉점 사이의 선분의 길이를 구하는 단계와,
    중복 접촉된 접촉점 사이의 선분의 길이에 비례하도록 터치력을 대응시키는 단계를 더 포함하는 터치 센서의 터치 위치를 감지하는 방법.
PCT/KR2009/004236 2008-07-29 2009-07-29 연속된 하나의 선으로 구성된 저항 패턴을 구비한 터치 센서 및 터치 센서를 이용한 터치 위치 감지 방법 WO2010013951A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080074107 2008-07-29
KR10-2008-0074107 2008-07-29

Publications (2)

Publication Number Publication Date
WO2010013951A2 true WO2010013951A2 (ko) 2010-02-04
WO2010013951A3 WO2010013951A3 (ko) 2010-04-22

Family

ID=41610850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004236 WO2010013951A2 (ko) 2008-07-29 2009-07-29 연속된 하나의 선으로 구성된 저항 패턴을 구비한 터치 센서 및 터치 센서를 이용한 터치 위치 감지 방법

Country Status (2)

Country Link
KR (1) KR20100012845A (ko)
WO (1) WO2010013951A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
KR101587436B1 (ko) * 2014-07-31 2016-01-22 디케이 유아이엘 주식회사 스마트 플립 커버링 휴대 단말기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020039094A1 (en) * 2000-08-04 2002-04-04 Tsutomu Yamada Touch-panel device
KR100347439B1 (ko) * 2001-02-28 2002-08-03 주식회사 에이터치 터치 패널의 압력 감지 구조 및 감지 방법
US20050110772A1 (en) * 2003-11-24 2005-05-26 Lg Philips Lcd Co., Ltd. Resistive type touch panel
KR20080064100A (ko) * 2008-06-02 2008-07-08 주식회사 애트랩 터치패널 장치 및 이의 접촉위치 검출방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020039094A1 (en) * 2000-08-04 2002-04-04 Tsutomu Yamada Touch-panel device
KR100347439B1 (ko) * 2001-02-28 2002-08-03 주식회사 에이터치 터치 패널의 압력 감지 구조 및 감지 방법
US20050110772A1 (en) * 2003-11-24 2005-05-26 Lg Philips Lcd Co., Ltd. Resistive type touch panel
KR20080064100A (ko) * 2008-06-02 2008-07-08 주식회사 애트랩 터치패널 장치 및 이의 접촉위치 검출방법

Also Published As

Publication number Publication date
WO2010013951A3 (ko) 2010-04-22
KR20100012845A (ko) 2010-02-08

Similar Documents

Publication Publication Date Title
US11635839B2 (en) System and method for detecting and characterizing force inputs on a surface
WO2010093162A2 (ko) 터치 스크린 입력장치
CN105975137B (zh) 一种触控显示面板及触控显示装置
WO2010085070A2 (ko) 입력장치
EP1138014B1 (en) A flexible transparent touch sensing system for electronic devices
WO2011002175A2 (ko) 정전용량식 터치 패널
EP2162817B1 (en) Uniform threshold for capacitive sensing
WO2017043829A1 (ko) 디스플레이 모듈을 포함하는 터치 압력 검출 가능한 터치 입력 장치
WO2009145485A2 (ko) 가장자리 위치 인식 특성이 개선된 접촉 감지 장치
WO2011142610A2 (en) Integrator circuit with inverting integrator and non-inverting integrator
WO2011049285A1 (ko) 멀티 터치를 감지할 수 있는 터치 패널 및 이 장치의 멀티 터치 감지 방법
WO2012070834A2 (ko) 터치 스크린 패널 및 이를 포함한 영상 표시 장치
WO2018151481A1 (ko) 터치 입력 장치
WO2016093526A1 (ko) 터치 스크린 패널
AU2003270692A1 (en) Dynamic corrections for a non-linear touchscreen
US20150301660A1 (en) Touch sensor and electronic device
WO2018097460A1 (ko) 사용자 인터페이스 제공을 위한 터치 입력 방법 및 장치
CN104903829B (zh) 在电阻触摸屏中使用电容接近检测来进行唤醒
WO2013129849A1 (ko) 선형성이 강화된 터치 검출 방법 및 터치 검출 장치
WO2011025294A2 (ko) 멀티 터치 패널
WO2018097435A1 (ko) 압력 감지부 및 이를 포함하는 터치 입력 장치
WO2012093873A2 (ko) 터치스크린의 터치 위치 검출 방법 및 이러한 방법을 사용하는 터치스크린
WO2010013951A2 (ko) 연속된 하나의 선으로 구성된 저항 패턴을 구비한 터치 센서 및 터치 센서를 이용한 터치 위치 감지 방법
WO2017135707A9 (ko) 터치 압력 감도 보정 방법 및 컴퓨터 판독 가능한 기록 매체
WO2010110532A2 (ko) 터치 기능을 구비한 복합 입력장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803156

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09803156

Country of ref document: EP

Kind code of ref document: A2