WO2010012871A1 - Use of a hydroxyphenylacetate hydroxylase (hpah) for producing hydroxytyrosol - Google Patents

Use of a hydroxyphenylacetate hydroxylase (hpah) for producing hydroxytyrosol Download PDF

Info

Publication number
WO2010012871A1
WO2010012871A1 PCT/FR2008/001134 FR2008001134W WO2010012871A1 WO 2010012871 A1 WO2010012871 A1 WO 2010012871A1 FR 2008001134 W FR2008001134 W FR 2008001134W WO 2010012871 A1 WO2010012871 A1 WO 2010012871A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxytyrosol
tyrosol
hpa
enzyme
microorganism
Prior art date
Application number
PCT/FR2008/001134
Other languages
French (fr)
Inventor
Pierre-Pol Liebgott
Jean Lorquin
Original Assignee
Institut De Recherche Pour Le Developpement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut De Recherche Pour Le Developpement filed Critical Institut De Recherche Pour Le Developpement
Priority to PCT/FR2008/001134 priority Critical patent/WO2010012871A1/en
Publication of WO2010012871A1 publication Critical patent/WO2010012871A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)

Definitions

  • the invention relates to the field of enzymatic and microbiological production of hydroxytyrosol (2- (3,4-dihydroxyphenyl) ethanol) by the conversion of tyrosol (2- (4-hydroxyphenyl) ethanol) catalyzed by an enzyme with hydroxyphenylacetate hydroxylase (HPA hydroxylase or HPAH) activity (see Figure 1).
  • HPA hydroxylase or HPAH hydroxyphenylacetate hydroxylase
  • antioxidants olive oil and especially co-products resulting from its production are the natural sources of the most interesting active ingredients to fight the oxidation of fatty substances (Servili et al, 1999 Visioli et al, 2002). Indeed, recent work has demonstrated the role of some antioxidant compounds present in the olive on the good resistance to the radical oxidation of virgin olive oils. These are mainly oleuropein, tyrosol, caffeic acid and especially hydroxytyrosol (Bisignano et al, 1999, Bonoli et al, 2003).
  • Hydroxytyrosol is a single phenolic compound having a 1-position side chain of the alcohol (Cl) ring, as well as two hydroxyl substitutions positioned at the C3 and C4 positions. It is therefore an ortwo-diphenol, family of compounds generally known to have interesting antioxidant properties. Hydroxytyrosol is a natural antioxidant found in olive, which is found mainly in the by-products of the olive industry.
  • the antioxidant activity of hydroxytyrosol also gives it preservative properties of fatty substances; the protective activity against the oxidation of fatty substances was measured by the RANCIMAT technique (Rossignol-Castera and Bosque, 1994), and was compared with other reference compounds; the results of the experiment are illustrated in Figure 2 and show that hydroxytyrosol has a strong antioxidant activity.
  • Antimicrobial al. 2.0.0.4.
  • hydroxytyrosol The only natural source of hydroxytyrosol is at present olive and by-products of olive oil (Bezanignant et al., 2000).
  • Olive oil contains only a small amount of hydroxytyrosol, with contents ranging from 0.01 to 1 mg / 100 g of oil. This is explained by the high solubility of hydroxytyrosol in water (approximately 5 g / 100 ml); as a result, it is strongly present in olive-growing waters commonly called 'margines' (hydroxytyrosol is about 100 times more important than in olive oil), and is the majority of cases rejected in the wild.
  • a first route of production of hydroxytyrosol relies on its purification from these liquid olive oil by-products (vegetable waters).
  • ⁇ -glucosidase used in the process of Briante et al. is produced by a recombinant Escherichia coli strain, this ⁇ -glucosidase comes from the archaea Sulfolobus solfataricus which is a hyperthermophilic bacterium.
  • the enzyme and oleuropein must be previously purified from the bacterial culture and from olive leaves respectively, and secondly, the final extract is constituted a mixture of hydroxytyrosol and two forms of elenolic acid; an enzymatic synthesis by conversion of tyrosol in the presence of a tyrosinase extracted from a fungus (Espin et al 2001).
  • This second enzymatic method also has limitations: on the one hand, the process requires the prior purification of tyrosinase with several steps that further increase production costs; on the other hand, the process requires the presence of ascorbic acid to inhibit the tyrosinase activity cresolase and thus avoid the formation of quinones; an additional final purification step must therefore be implemented to remove ascorbic acid from the reaction mixture.
  • P. aeruginosa is a Class 2 pathogenic bacterium, which causes great reluctance to use the hydroxytyrosol it produces;
  • HPA hydroxyphenylacetate hydroxylase
  • the objects of the present invention relate to (i) the use of HPAH to catalyze the bioconversion of tyrosol to hydroxytyrosol, (ii) an in vitro hydroxytyrosol synthesis process comprising at least one conversion step of tyrosol to hydroxytyrosol by HPAH, (iii) an in vivo hydroxytyrosol synthesis method using a microbial strain expressing an enzyme with HPAH activity and not expressing a tyrosol and / or hydroxytyrosol degrading enzyme, (iv) a bacterial strain transformed in such a way that it optimally expresses an HPAH and that it does not degrade tyrosol or hydroxytyrosol, (v) the hydroxytyrosol obtained by the processes above and (vi) all or part of the microbial culture obtainable by said process in vivo and containing hydroxytyrosol.
  • the present invention thus relates to the use of an enzyme with hydroxyphenylacetate hydroxylase activity, free or immobilized, to catalyze the conversion of tyrosol to hydroxytyrosol, and to a process for the in vitro preparation of hydroxytyrosol comprising at least one conversion step by conversion of tyrosol to hydroxytyrosol catalyzed by an enzyme with hydroxyphenylacetate hydroxylase activity.
  • Hydroxylases also known as monooxygenases, are the enzymes that catalyze the initial hydroxylation reactions of non-monohydroxylated phenolic compounds.
  • bacterial monooxygenases comprising metalloprotein (for example tyrosinase) or flavoprotein type enzymes (for example A-hydroxyphenylacetate 3-monooxygenase).
  • metalloprotein for example tyrosinase
  • flavoprotein type enzymes for example A-hydroxyphenylacetate 3-monooxygenase.
  • the latter which carry out on the one hand the reduction of a flavin and then the actual hydroxylation of the phenolic compound, thus contain two functions: a reductase function and an oxygenase function.
  • Flavoprotein-monooxygenase Single-component Flavoprotein-monooxygenase
  • multi-component enzymes which can have from 2 to 6 components
  • the most widespread are those with double component (Flavoprotein monooxygenase double-component).
  • any enzyme with HPA hydroxylase activity that can occur:
  • the enzyme with HPAH activity can be extracted from a microorganism that expresses it.
  • the following bacteria express HPAH: Escherichia coli (Prieto et al., 1996), Micrococcus luteus (Sparnins and Chapman, 1976), Acinetobacter baumanii (Thotsaporn et al., 2004), Pseudomonas putida (Arunachalam et al, 1992) , Psendomonas aeruginosa (Zeng and Jin, 2003), Halomonas sp. HTB24 (see Example 1 below), Serratia marscecens (Trias et al, 1989) and, more generally, any bacteria capable of degrading 3- or 4-HPA to form 3,4-dihydroxyphenylacetic acid (DHPA).
  • DHPA 3,4-dihydroxyphenylacetic acid
  • the enzyme with HPAH activity can also be produced by a genetically modified microorganism by introducing an expression system allowing and / or optimizing the production of said enzyme.
  • the enzyme with HPAH activity is hydroxyphenylacetate 3-monooxygenase (EC 1.14.13.3 also known as HPA 3-monooxygenase) which is described for catalyzing the reaction shown schematically in FIG.
  • This enzyme is known to be in particular expressed by Escherichia coli in which the role in the catabolism of HPA has been studied by Cooper and Skinner (1980).
  • the enzymatic activity comes from cell fractions of microorganisms containing the enzyme HPAH activity, these fractions being obtained from any microbial strain naturally expressing an HPAH.
  • the strains that can be selected include Escherichia coli, Micrococcus luteus, Acinetobacter baumanii, Pseudomonas putida, Pseudomonas aeruginosa and Halomonas sp. HTB24.
  • the enzymatic reaction producing the hydroxytyrosol is advantageously carried out in an aqueous reaction medium buffered at a pH of between 6 and 9 with an enzyme concentration of between 1 and 200 mg. / ml and NAD (P) H at a concentration of between 1 and 100 ⁇ M, especially 1 to 50 ⁇ M; the expression NAD (P) H denotes either NADH or NADPH; these cofactors can be produced by cell extraction and purification.
  • the reaction starts with the introduction into the reaction medium of the tyrosol whose concentration is adjusted to the enzymatic activity of the reaction medium; it can be between 5 and 250 mM, and stirring of the various reagents (NAD (P) H, tyrosol) and ends after exhaustion of the tyrosol in the culture medium.
  • concentration adjusted to the enzymatic activity of the reaction medium; it can be between 5 and 250 mM, and stirring of the various reagents (NAD (P) H, tyrosol) and ends after exhaustion of the tyrosol in the culture medium.
  • the enzyme may be immobilized on a support such as a matrix of calcium alginate or the like, or else free in the reaction medium, for example from the cell fraction containing it. Insofar as the enzyme is not consumed during the reaction, it is preferable to immobilize it on a support by techniques known to those skilled in the art in order to recover it after the reaction.
  • the present invention relates to a process for the in vivo preparation of hydroxytyrosol, characterized in that it uses a microorganism expressing an enzyme with hydroxyphenylacetate hydroxylase activity and which does not express a tyrosol degrading enzyme. and / or hydroxytyrosol.
  • microorganism also referred to hereinafter strain or microbial strain is meant in particular and without limitation a bacterium, a yeast or a filamentous fungus.
  • the microorganism does not express an enzyme with an aryl dehydrogenase activity oxidizing tyrosol or hydroxytyrosol, which notably excludes Pseudomonas aeruginosa, Serratia marcescens and Halomonas sp. and Pseudomonas putida.
  • Aryl dehydrogenases are enzymes that catalyze the conversion of an alcohol to an aldehyde, an aldehyde to an acid, or both at once, i.e., an alcohol to an acid.
  • microorganisms that can be used according to this process can be selected by testing their enzymatic activity.
  • this test can be carried out by a first phase of culturing a microbial strain in a minimum culture medium comprising tyrosol; the selected strain is one that does not degrade tyrosol and therefore has no aryl dehydrogenase activity.
  • 1 ⁇ PA is added to the culture and measurement of the amount of tyrosol, hydroxytyrosol, HPA and DHPA in the medium is performed every hour.
  • the tyrosol is oxidized to HPA before being hydroxylated to hydroxytyrosol, before the addition of HPA in the culture medium.
  • the strain therefore has aryl dehydrogenases which degrade tyrosol and is not retained for the process;
  • tyrosol and HPA are hydroxylated, respectively, to hydroxytyrosol and 3,4-DHPA, but the hydroxytyrosol disappears over time in the culture medium.
  • the tyrosol is not oxidized to HPA while the hydroxytyrosol is oxidized to DHPA; strain therefore has an enzymatic aryl dehydrogenase activity which degrades hydroxytyrosol. The strain is not selected.
  • the microorganism can also be genetically engineered to express HPA-3-monooxygenase and to repress aryl dehydrogenase. It is thus possible to select a strain naturally expressing the previously mentioned HPA-3-monooxygenase, in particular Escherichia coli, Micrococcus luteus, Acinetobacter baumanii, Halomonas sp., Pseudomonas putida and Pseudomonas aeniginosa, and modify them to suppress the expression of aryl dehydrogenases capable of oxidizing tyrosol and / or hydroxytyrosol.
  • Said in vivo method advantageously comprises at least one step of culturing the microorganism in an aqueous culture medium at a pH of between 6 and 8 with the main carbon source of the tyrosol and optionally of the HPA.
  • the culture medium contains per liter: between 0.35 and 0.85 g of KH 2 PO 4 , preferably 0.6 g; between 0.35 and 0.85 g of K 2 HPO 4 , preferably 0.6 g; between 0.25 and 0.75 g of NaCl, preferably 0.5 g; between 0.75 and 1.25 g of NH 4 Cl, preferably 1 g.
  • the pH is adjusted to 7.0 with 10M KOH solution.
  • the cultures are carried out in the presence of peptide derivatives such as yeast extract or peptone at concentrations of 0.5 to 2 g / l. Tyrosol is present at a concentration of between 1 and 20 mM.
  • Other sources of carbon such as sugars can also be used at concentrations optimized for adequate enzyme production.
  • the in vivo method is carried out by culturing the cells according to the so-called "resting cell” method which consists of inhibiting cell growth using a very dense suspension of cells in the stationary phase (Allouche et al, 2005 ).
  • This method uses microbial cells deficient carbonaceous source which, therefore, no longer multiply and remain in the state of cell maintenance.
  • This alternative aims to prevent the degradation of the reaction product by the growing cells, as well as a synthesis of undesired proteins (Barghini et al, 1998).
  • the culture medium described above is suitable for a microbiological culture under stationary conditions ("resting cells"), provided that the carbon source is limited to tyrosol and possibly to HPA.
  • the in vivo method uses microbial cells immobilized on a solid support, for example, consisting of alginate beads. calcium, and on which flows the medium containing the tyrosol (Bouallagui and Sayadi, 2006, Brooks and ⁇ / ,, 2006).
  • microorganisms expressing an HPAH there are (i) strains which express the enzyme after induction by its natural substrate, 1 ⁇ PA (inducible expression microorganism of HP AH); and (ii) strains in which the expression of the enzyme is constitutive, that is to say independent of the presence or absence of HPA in the culture medium (microorganism with constitutive expression of HPAH) .
  • the inducible expression microorganism of HPAH is the bacterium Escherichia coli, in particular it is the strain W ⁇ 'Escherichia coli.
  • the in vivo method according to the invention then comprises the following steps:
  • step (2) It is during step (2) that the conversion of tyrosol to hydroxytyrosol takes place.
  • the culture medium that can be used in step (1) is that described above without tyrosol and in the presence of HPA at concentrations of between 1 and 20 mM.
  • Step (2) is then conducted in the presence of tyrosol with a constant addition of HPA, these two products may be present at the following concentrations: between 1 to 20 mM for tyrosol and between 1 and 10 mM, preferably 5 mM, for the HPA which is added every 2 hours.
  • the culture of step (2) is advantageously carried out under stationary growth conditions of the microorganism ("resting cell" conditions).
  • the present invention also relates to a microorganism genetically modified to express an enzyme with hydroxyphenylacetate hydroxylase activity and not to express an enzyme with aryl dehydrogenase activity.
  • it is a modified Escherichia coli strain comprising a heterologous constitutive promoter of expression of HPA-3 monooxygenase.
  • the present invention also relates to hydroxytyrosol obtained by one of the in vitro or in vivo methods described above. To do this, it is necessary to purify the hydroxytyrosol according to methods known to those skilled in the art. In particular, it may be successively (i) a liquid-liquid extraction of the culture medium with ethyl acetate followed by dry evaporation of the organic phase and redissolution in a methanol-water mixture ( 10: 90, v / v), then (ii) a solid phase extraction on a media type grafted silica Ci 8 (e.g., LiChroprep RP-18 Merck, 1.09303.0100 reference), hydroxytyrosol being then eluted with pure methanol which is evaporated to dryness. Hydroxytyrosol is finally weighed.
  • a media type grafted silica Ci 8 e.g., LiChroprep RP-18 Merck, 1.09303.0100 reference
  • the invention relates to a hydroxytyrosol-rich fraction originating from all or part of the microbial culture that may be derived from the in vivo process described above.
  • a hydroxytyrosol-rich fraction originating from all or part of the microbial culture that may be derived from the in vivo process described above.
  • Another variant to avoid this polymerization consists in stabilizing the hydroxytyrosol by derivation of one of the hydroxyl functions of the aromatic ring and then extracting it later.
  • the hydroxytyrosol-rich fraction may be the culture medium after removal of the cells, for example by filtration or centrifugation.
  • Figure 1 is a diagram showing the bioconversion of tyrosol to hydroxytyrosol by enzymatic catalysis with HPAH.
  • Figure 2 is a histogram which represents the induction time (expressed in hours) obtained during the accelerated oxidation test for various anti-oxidant compounds. The measurement is carried out by the RANCIMAT technique, here at 98 ° C on refined sunflower oil. The dose of antioxidant is fixed at 400 ppm in this experiment (after Rossignol-Castera and Bosque, 1994).
  • Figure 3 is a diagram showing the conversion reaction of 3- or 4-HPA to 3,4-dihydroxyphenylacetate catalyzed by HPA 3-monooxygenase.
  • Figure 4 comprises three graphs A, B and C representing the growth curve of the species Halomonas under the different culture conditions according to Example 1 (part LA.).
  • Figure 5 is a graph showing the purification (DEAE-Sepharose) of HPA 3-monooxygenase performed in Example 1.
  • Figure 6 is a graph showing the production of hydroxytyrosol (HTyr) by various aerobic bacteria in resting-cell condition.
  • A Pseudomonas aeruginosa
  • B Halomonas sp. strain HTB24
  • D H. neptunia
  • (+) C, H. alkaliantarctica
  • Serratia marcescens
  • O Micrococcus luteus
  • E Micrococcus luteus
  • W Escherichia coli strain W.
  • Figure 8 is a graph showing the production of hydroxytyrosol (HTyr) by Escherichia coli strain W. The concentration of various metabolites is followed by HPLC: (A), HTyr; (G), 4-HPA; ( ⁇ ), Tyrosol; (•), OD at 600 nm
  • Figure 9 is a graph showing HPLC analysis of the culture taken at 6 h according to Example 3 (1, hydroxytyrosol; 2, tyrosol).
  • Figure 10 is a graph showing HPLC analysis of the culture taken at 10 h according to Example 3 (I 3 hydroxytyrosol; 2, tyrosol).
  • Fig. 11 is a graph showing HPLC analysis of the culture taken at 10 h according to Example 3 (1, hydroxytyrosol; 2, tyrosol; 3, HPA).
  • Fig. 12 is a graph showing HPLC analysis of the 24 hour culture according to Example 3 (1, hydroxytyrosol; 2, tyrosol).
  • Example 1 Characterization of the Enzyme Responsible for the Synthesis of Hydroxytyrosol
  • the bacteria are cultured in a culture medium containing 5 mM tyrosol, yeast extract at 1 g / L and 50 g / L NaCl at 30 ° C. with stirring of 150 rpm, according to the following three conditions:
  • the bacteria are cultured by inoculating a concentrated inoculum from a preculture carried out on 5 mM tyrosol.
  • 4-HPA is responsible for the induction of the enzyme catalyzing the conversion of tyrosol to hydroxytyrosol by the implementation of various induction tests on strain HTB24.
  • the strain was cultured in medium containing yeast extract 1 g / L, glucose 20 mM, and various phenolic compounds such as 4-HPA, 3,4-DHPA or 4-hydroxybenzoate (4-HB) (column b of Table II).
  • the culture conditions are as follows: the cells were incubated at 30 ° C. with stirring of 150 rpm for 20 h in the presence of 4-tyrosol or 4-HPA (5 mM each). After 48 h of culture, the medium is centrifuged and the cells placed in stationary condition (resting cells) in the presence of 5 mM 4-HPA or tyrosol.
  • the aromatic compounds were identified by GC-MS (gas chromatography coupled to a mass spectrometer) and quantified by HPLC (average of three determinations, with standard deviations less than 0.1). CHMS was determined spectrophotometrically at 380 nm (Sparnins et al, 1974, Cooper and Skinner 1980). The percentages of degradation (4-tyrosol or 4-HPA) are indicated in parentheses and were calculated by the areas of peaks obtained in HPLC at their respective maximum wavelength (column c of Table II).
  • 4-HPA 4-hydroxyphenylacetic acid
  • 4-tyrosol 2- (4-hydroxyphenyl) ethanol
  • HTyr hydroxytyrosol
  • 3,4-DHPA 3,4-dihydroxyphenylacetic acid
  • 4-HB 4-hydroxybenzoic acid
  • 4-C 4-coumaric acid
  • CHMS 5-carboxymethyl-2-hydroxymuconic acid semialdehyde.
  • the purification of the enzyme was carried out in several stages by simultaneously following in the various fractions the hydroxylating activity of tyrosol and that of 4-HPA.
  • the purification steps were carried out according to different chromatographic modes (DEAE-Sepharose, gel permeation, MonoQ).
  • the hydroxylating activity of tyrosol or 4-HPA was determined at 25 ° C. in a glass tube containing 2 ⁇ l of 1 mM FAD, 10 ⁇ l of 2 mM NADH, 10 ⁇ l of extract containing a reductase component, 50 ⁇ l of enzyme (graphical chromato fraction), and 18 ⁇ l of 50 mM Tris-HCl buffer, pH 8.0.
  • the reaction is started by the addition of 5 mM tyrosol or 4-HPA.
  • the reaction is stopped by the addition of 5% (v / v) glacial acetic acid.
  • the sample is then centrifuged at 10,000 g for 10 min and the reaction product, hydroxytyrosol or 3,4-DHPA is quantified by HPLC (see protocol detailed in point 1.1.4 of Example 3). ).
  • the strains tested are: Pseudomonas aeruginosa DSM 50071 ⁇ , Serratia marcescens DSM 30121 ⁇ , Escherichia coli strain W DSM 1116 T , Halomonas alkaliantarctica DSM 15686 T , H. nephmia DSM 15720 ⁇ , and Micrococcus luteus DSM 20030, all obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen, Brunschweig in Germany (DSMZ). Halomonas sp. HTB24 was recently isolated and deposited in the Institut Pasteur collection (France) under the number CIP 109599.
  • the bacteria were pre-cultured twice in the presence of 5 mM 4-HPA as inducer, then removed and concentrated to resuspended at 6 g / L in pH 7.5 phosphate buffer. Incubation begins immediately after adding 5 mM tyrosol to the medium. The production of hydroxytyrosol is monitored by HPLC ( Figure 6).
  • Escherichia coli W may therefore be one of the bacteria to be retained for producing hydroxytyrosol from tyrosol.
  • Escherichia coli strain W (DMS 1116, ATCC 9637, TLC 2024, NCIB 8666) is a non-pathogenic bacterium that is described to produce diaminopimelate decarboxylase (Dewey, 1954), glutamine synthetase (Wu and Yuan, 1968), hydrogenases ( Ackrell et al., 1966), penicillin acylase and cephalosporins by bioconversion (US Pat. No. 3,945,888).
  • the culture medium contains per liter: 0.6 g of KH 2 PO 4 , 0.6 g of K 2 HPO 4 , 0.5 g of NaCl, 1 g of NH 4 Cl.
  • the pH is adjusted to 7.0 with 10M KOH solution.
  • the medium is then autoclaved at 120 ° C for 20 min. Routinely, cultures of 25 ml are carried out in 250 ml flasks of Erlenmeyer flasks in the presence of 5 mM of 4-HPA and 1 g / l of yeast extract.
  • Buffers For the resting-cell experiments (bioconversion by intact cells under stationary conditions), the buffer used is a 50 mM phosphate buffer at pH 7.0. Mother solutions.
  • the aromatic compounds were prepared in anaerobiosis, sterilized by filtration (Millipore filter, porosity 0.22 ⁇ m), and kept in penicillin bottles under N 2 to ambient temperature and protected from light (vials covered with aluminum foil).
  • Stock solutions of acidic aromatic compounds are prepared at a concentration of 250 mM and neutralized to pH 7 with NaOH (0.4 g per 25 mL). They are added to the culture medium before inoculation at 5 mM (final concentration).
  • yeast extract from PANREAC, reference 403687.1210
  • the stock solution of yeast extract is prepared and sterilized by autoclaving for 20 min at 120 ° C.
  • the experiments were carried out from 25 ml cultures in 250 ml cotton flasks. E. coli W is previously thawed from the laboratory collection and then inoculated into the medium in the presence of 5 mM 4-HPA. After 10 h at 37 ° C. in INFORS incubators with a stirring of 150 rpm, the pre-cultures are inoculated at a rate of 10% (v / v) of the preceding preculture into the medium containing 5 mM of 4-HPA. . The cultures are finally stirred under the same conditions in the presence of 4 mM of 4-HPA and tyrosol (2 or 3 mM) for several hours with monitoring of the appearance and disappearance of aromatic compounds, as well as growth. measured by absorbance at 600 nm.
  • hydroxytyrosol is controlled by HPLC, its structure confirmed by mass spectrometry coupled to a gas chromatograph after extraction and bypass.
  • a control by HPLC is carried out again by taking up the dry extract in methanol and injecting 10 ⁇ l; or
  • the dry extract is derived by BSTFA for injection into GC-MS.
  • HPLC Identification by HPLC.
  • the HPLC analyzes are carried out on a WATERS system equipped with a membrane degasser, a RHEODYNE 7725i injector (La JoIa, USA), a 1525 binary pump, a thermostatically controlled oven at 30 ° C. and a 2996 diode array detector.
  • the device is controlled by Millenium 32 software version 4.0.
  • the separation is ensured by a SYMETRY Cig column (150 x 4.6 mm, porosity 5 ⁇ m, WATERS).
  • the mobile phase entrained at a flow rate of 0.8 mL / min, is composed of two solvents: acetonitrile (A) and water distilled acidified with 1% acetic acid (B).
  • the total elution time is 55 min.
  • the gradient used is done in three steps: Step I 5 5 to 20% A in B for 30 min; Step 2, 20 to 100% A to B for 20 min; Step 3, return to 5% from A to B in 5 min.
  • the identification of the compounds is carried out on the one hand by the determination of retention times and on the other hand by the UV / VIS spectra of each compound eluted, compared to standards.
  • the analyzes were carried out with a GC-MS (AGILENT TECHNOLOGIES) apparatus consisting of a 6890N GC System chromato graph, a 5973 Mass Selectiv Detector mass spectrometer equipped with an electron impact ion source and a quadrupole type analyzer, MSD-CHEMSTATION acquisition software.
  • the compounds are separated using a DB-IMS capillary column (30 mx 0.25 mm, from JW Scientific) and whose temperature limits are between -60 0 C and 350 0 C.
  • the mobile phase is helium.
  • the pressure in the column is 10.5 psi and the flow rate is 1 mL / min.
  • the temperature of the injector (Inlet) is 280 ° C.
  • the programming of the temperature gradient is as follows: 1 min at 100 ° C., then increasing from 100 ° to 260 ° C. at 4 ° / min, then 10 min at 260 ° C.
  • the total elution time is 51 min.
  • the mass spectra obtained are compared with those of the NIST and WHILEY libraries contained in the software.
  • Escherichia coli is cultured in the medium described previously (see 1.1.2). It is found that there is synthesis of hydroxytyrosol when the bacterium has been previously precultured in the presence of 4-HPA, then grown in a medium containing 4-HPA and tyrosol, compared to a culture performed under the same conditions but in absence of 4-HPA.
  • the GC-MS analysis clearly shows the synthesis of hydroxytyrosol confirmed by its fragmentation in mass spectrometry and the NIST and WHILEY spectral libraries (FIGS. 7A and 7B). 1.2.2 Bacterial growth in the presence of tyrosol and 4-HPA
  • the tyrosol is hydroxylated to hydroxytyrosol, a transformation which lasts 2 h of time (FIG. 8).
  • the hydroxytyrosol then keeps a constant concentration of about 0.7 mM, even after 10 h of culture ( Figure 10).
  • Aruoma O.I., Deiana, M., Jenner, A., Halliwell, B., Kaur, H., Banni, S., Corongiu, F.P., Dessi, M.A. and
  • Phenolic compounds of olive fruit one- and two-dimensiona! nuclear magnetic resonance characterization of nuzhenide and its distribution in the constitutive parts of fruit. Journal of Agriculture and Food Chemistry. 47: 12-18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates (i) to the use of a HPA hydroxylase for catalysing the bioconversion of tyrosol into hydroxytyrosol, (ii) to a method for the in vitro preparation of hydroxytyrosol, which comprises at least one step of converting tyrosol into hydroxytyrosol by an HPAH, (iii) to a method for the in vitro preparation of hydroxytyrosol, using a microbial strain expressing an enzyme having an HPAH activity and not expressing any enzyme degrading tyrosol and/or hydroxytyrosol, (iv) to a bacterial strain transformed so as to express an HPAH without degrading tyrosol or hydroxytyrosol, (v) to the hydroxytyrosol obtained by the above methods, and (vi) to a portion or the entirety of the microbial culture that can be obtained by said in vivo method and that contains hydroxytyrosol.

Description

Utilisation d'une Hydroxyphénylacétate Hydroxylase (HPAH) pour produire de Use of Hydroxyphenylacetate Hydroxylase (HPAH) to produce
PhydroxytyrosolPhydroxytyrosol
L'invention relève du domaine de la production par voie enzymatique et microbiologique de l'hydroxytyrosol (2-(3,4-dihydroxyphényl)-éthanol) par la transformation du tyrosol (2-(4-hydroxyphényl)-éthanol), catalysée par une enzyme à activité hydroxyphénylacétate hydroxylase (HPA hydroxylase ou HPAH) (voir la Figure 1).The invention relates to the field of enzymatic and microbiological production of hydroxytyrosol (2- (3,4-dihydroxyphenyl) ethanol) by the conversion of tyrosol (2- (4-hydroxyphenyl) ethanol) catalyzed by an enzyme with hydroxyphenylacetate hydroxylase (HPA hydroxylase or HPAH) activity (see Figure 1).
Parmi les nombreuses sources naturelles d' antioxydants, l'huile d'olive et surtout les co-produits résultant de sa production constituent les sources naturelles d'actifs les plus intéressantes pour lutter contre l'oxydation des corps gras (Servili et al, 1999; Visioli et al, 2002). En effet, des travaux récents ont démontré le rôle de certains composés antioxydants présents dans l'olive sur la bonne résistance à l'oxydation radicalaire des huiles d'olive vierges. Il s'agit principalement de l'oleuropéine, du tyrosol, de l'acide caféique et surtout de l'hydroxytyrosol (Bisignano et al, 1999; Bonoli et al, 2003).Among the many natural sources of antioxidants, olive oil and especially co-products resulting from its production are the natural sources of the most interesting active ingredients to fight the oxidation of fatty substances (Servili et al, 1999 Visioli et al, 2002). Indeed, recent work has demonstrated the role of some antioxidant compounds present in the olive on the good resistance to the radical oxidation of virgin olive oils. These are mainly oleuropein, tyrosol, caffeic acid and especially hydroxytyrosol (Bisignano et al, 1999, Bonoli et al, 2003).
L'hydroxytyrosol est un composé phénolique simple ayant une chaîne latérale en position 1 du cycle (Cl) de type alcool, ainsi que deux substitutions hydroxyle positionnées en positions C3 et C4. C'est donc un ortλo-diphénol, famille de composés généralement connus pour avoir des propriétés antioxydantes intéressantes. L'hydroxytyrosol est un antioxydant naturel présent dans l'olive qui se retrouve majoritairement dans les sous-produits de l'industrie oléicole.Hydroxytyrosol is a single phenolic compound having a 1-position side chain of the alcohol (Cl) ring, as well as two hydroxyl substitutions positioned at the C3 and C4 positions. It is therefore an ortwo-diphenol, family of compounds generally known to have interesting antioxidant properties. Hydroxytyrosol is a natural antioxidant found in olive, which is found mainly in the by-products of the olive industry.
Sa consommation expliquerait l'effet bénéfique du régime crétois sur la santé humaine. Ce composé provient en fait de l'hydrolyse de l'oleuropéine réalisée lors du processus de fabrication de l'huile d'olive (Capasso et al, 1999; Casalino et al, 2002; Tuck et al, 2001 ; Amiot et al, 1986). De nombreuses recherches effectuées sur l'hydroxytyrosol ont montré l'intérêt de ce composé en tant qu'anti oxydant ; il est considéré comme prometteur pour améliorer la santé humaine en raison d'un large spectre d'action (Tableau I) et doit probablement sa bonne activité à sa grande stabilité.Its consumption would explain the beneficial effect of the Cretan diet on human health. This compound in fact comes from the hydrolysis of oleuropein carried out during the olive oil production process (Capasso et al, 1999, Casalino et al, 2002, Tuck et al, 2001, Amiot et al, 1986). ). Many studies carried out on hydroxytyrosol have shown the interest of this compound as an antioxidant; it is considered promising for improving human health because of a broad spectrum of action (Table I) and probably owes its good activity to its high stability.
L'activité antioxydante de l'hydroxytyrosol lui confère également des propriétés d'agent conservateur des corps gras ; l'activité protectrice contre l'oxydation des corps gras a été mesurée par la technique du RANCIMAT (Rossignol-Castera et Bosque, 1994), et a été comparée à d'autres composés de référence ; les résultats de l'expérience sont illustrés à la Figure 2 et montrent que l'hydroxytyrosol a une activité antioxydante forte. Seuls le gallate de propyle (E310) et le gallate d'octyle (E31 1) présentent une activité antioxydante des corps gras supérieure ; cependant, ce sont des antioxydants synthétiques toxiques à partir d'une certaine concentration et pouvant engendrer des allergies. L'hydroxytyrosol est également connu pour ses propriétés bénéfiques sur la santé humaine (Tableau I). Il est donc considéré comme un très bon complément ou additif alimentaire et comme un agent actif utile pour renforcer la protection cellulaire vis-à-vis du stress oxydant et des pathologies qu'il engendre.The antioxidant activity of hydroxytyrosol also gives it preservative properties of fatty substances; the protective activity against the oxidation of fatty substances was measured by the RANCIMAT technique (Rossignol-Castera and Bosque, 1994), and was compared with other reference compounds; the results of the experiment are illustrated in Figure 2 and show that hydroxytyrosol has a strong antioxidant activity. Only propyl gallate (E310) and octyl gallate (E31 1) exhibit superior antioxidant activity; however, they are toxic synthetic antioxidants from a certain concentration and can cause allergies. Hydroxytyrosol is also known for its beneficial properties on human health (Table I). It is therefore considered as a very good supplement or food additive and as a useful active agent to enhance cellular protection against oxidative stress and pathologies that it generates.
Action sur la santé RéférencesAction on health References
Anti-inflammatoire Manna el al , 1997 , Maiuπ (Ji al , 2005Anti-inflammatory Manna el al, 1997, Maiuπ (Ji al, 2005
. . .. . . . . . , _ .. , Kohyarna e/ a/ , 1997 , de Ia Puerta el al , 1999 , Petroni. . .. . . . . Kohyarna e / a /, 1997, from Ia Puerta el al, 1999, Petroni
Inhibition de la 5- et ! 2-hpoxygenase j |g9_Inhibition of 5- and! 2-hpoxygenase j | g9 _
Inhibition de l'agrégation plaquettaiie Petroni m al , \995Inhibition of platelet aggregation Petroni m al, 1995
Inhibition de la TXB2 * Pet.om a al , 1995Inhibition of TXB2 * Pet.om a al, 1995
Hypocholestérolémique FKi et al , 2007Hypocholesterolemic FKi et al, 2007
_, . , , ^ . . . . Aruoma el al , 1998 , Bonanome et al , 2000 , D'Angelo_,. ,, ^ . . . . Aruoma el al, 1998, Bonanome et al, 2000, D'Angelo
Protection des Low Density Lipopiotein el g/ 2QQ] Low Density Protection Lipopiotein el g / 2QQ]
Prévention des lésions cellulaires par les métabolites Viaoii m al , 1998 , Espm et al , 2001 , Visioii and Gaiii, réactifs de l'oxygène (Radicaux libres) 2001 , Schaffer a al , 2007Prevention of cell damage by metabolites Viaoii m al, 1998, Espm et al, 2001, Visioii and Gaiii, oxygen reagents (Free radicals) 2001, Schaffer et al, 2007
Hypotensive Visioh et al , 2002Hypotensive Visioh et al, 2002
Anti-cancérigène Visioh and Galli, 1998 , D'Angelo elal , 2005Anti-carcinogenic Visioh and Galli, 1998, D'Angelo elal, 2005
Protection de l'oxydation de l'ADN Aruoma m al , 1998 , Deiana et al , 1999Protection of DNA oxidation Aruoma m al, 1998, Deiana et al, 1999
. .. . , . Bisignano el al , 1999 , Capasso ef û/ , 1995 , Furnen el. .. ,. Bisignano el al, 1999, Capasso ef û /, 1995, Furnen el
Antimicrobien al . , 2.0.0.4.Antimicrobial al. , 2.0.0.4.
Inhibition de l'intégrase du HIV 1 Lee-Huang eι al , 2007Inhibition of HIV integrase 1 Lee-Huang eι al, 2007
*TXB2 = thromboxane B2* TXB2 = thromboxane B2
Tableau I. Propriétés biologiques de l'hydroxytyrosol.Table I. Biological properties of hydroxytyrosol.
A l'heure actuelle, et malgré des besoins industriels importants, en particulier cosmétiques et agro-alimentaires, il n'existe pas de procédé permettant la production d'hydroxytyrosol à l'échelle industrielle. Seuls des procédés de synthèse à petite échelle ont été décrits ; cependant ces procédés ne sont pas économiquement viables car ils conduisent à des coûts de production trop élevés.At present, and despite important industrial needs, in particular cosmetics and agro-food, there is no method for the production of hydroxytyrosol on an industrial scale. Only small-scale synthesis methods have been described; however, these processes are not economically viable because they lead to excessively high production costs.
La seule source naturelle d'hydroxytyrosol reste pour le moment l'olive et les sous- produits de l'huile d'olive (Bezançon et ai, 2000). L'huile d'olive ne contient qu'une faible quantité d'hydroxytyrosol, les teneurs allant de 0,01 à 1 mg/100 g d'huile. Ceci s'explique par la grande solubilité de l'hydroxytyrosol dans l'eau (environ 5 g/100 ml) ; en conséquence, il se retrouve fortement présent dans les eaux de végétation de l'olive appelées communément 'margines' (l'hydroxytyrosol y est en une quantité environ 100 fois plus importante que dans l'huile d'olive), et qui sont dans la majorité des cas rejetées dans la nature. Une première voie de production d'hydroxytyrosol s'appuie sur sa purification à partir de ces sous-produits liquides oléicoles (margines). La majorité de ce type de procédés mène souvent à l'obtention d'un produit impur étant donné la grande diversité et l'importante quantité de polyphénols répertoriés dans les margines (2,5-3% en poids, environ une centaine de composés différents ; Labat et al., 2000). De plus, l'obtention d'une fraction purifiée contenant l'hydroxytyrosol à partir de ces déchets implique plusieurs étapes chromatographiques utilisant de grandes quantités de solvants (Capasso et al., 1992, 1994 et 1999; Visioli et al, 1998). Par conséquent, depuis plusieurs années les études se sont multipliées pour tenter de trouver un procédé moins coûteux de purification d'hydroxytyrosol, ces tentatives se sont révélées dans l'ensemble sans grand succès.The only natural source of hydroxytyrosol is at present olive and by-products of olive oil (Bezançon et al., 2000). Olive oil contains only a small amount of hydroxytyrosol, with contents ranging from 0.01 to 1 mg / 100 g of oil. This is explained by the high solubility of hydroxytyrosol in water (approximately 5 g / 100 ml); as a result, it is strongly present in olive-growing waters commonly called 'margines' (hydroxytyrosol is about 100 times more important than in olive oil), and is the majority of cases rejected in the wild. A first route of production of hydroxytyrosol relies on its purification from these liquid olive oil by-products (vegetable waters). The majority of this type of process often leads to the production of an impure product given the great diversity and the large amount of polyphenols listed in vegetable waters (2.5-3% by weight, about a hundred different compounds). Labat et al., 2000). In addition, obtaining a purified fraction containing hydroxytyrosol from this waste involves several chromatographic steps using large amounts of solvents (Capasso et al., 1992, 1994 and 1999, Visioli et al, 1998). Therefore, for several years studies have multiplied in an attempt to find a cheaper method of purification of hydroxytyrosol, these attempts have been shown overall without much success.
D'autres voies de production basées sur des méthodes chimiques incluent la synthèse d'hydroxytyrosol par réduction chimique de l'acide 3,4-dihydroxyphénylacétique (Bai et ah, 1998; Tuck et al, 2000), et par conversion catalytique du tyrosol en hydroxytyrosol par un mélange de méthylrhénium trioxide (MTO) et de peroxyde d'hydrogène (Demande de Brevet EP 1 623 960).Other production routes based on chemical methods include the synthesis of hydroxytyrosol by chemical reduction of 3,4-dihydroxyphenylacetic acid (Bai et al., 1998, Tuck et al, 2000), and by catalytic conversion of tyrosol to hydroxytyrosol by a mixture of methylrhénium trioxide (MTO) and hydrogen peroxide (Patent Application EP 1 623 960).
Deux voies de production enzymatique d'hydroxytyrosol ont également été décrites : - une production d'hydroxytyrosol par hydrolyse d'oleuropéine en présence de β- glucosidase (Briante et al. 2001). La β-glucosidase utilisée dans le procédé de Briante et al. est produite par une souche d'Escherichia coli recombinante, cette β-glucosidase provient de l'archée Sulfolobus solfataricus qui est une bactérie hyperthermophile. Ce procédé présente plusieurs inconvénients : d'une part, l'enzyme et l'oleuropéine doivent être préalablement purifiées à partir de la culture bactérienne et à partir de feuilles d'oliviers respectivement, et d'autre part, l'extrait final est constitué d'un mélange d'hydroxytyrosol et de deux formes de l'acide élénolique ; une synthèse enzymatique par conversion du tyrosol en présence d'une tyrosinase extraite d'un champignon (Espin et al 2001). Cette seconde méthode enzymatique présente également des limites : d'une part, le procédé nécessite la purification préalable de la tyrosinase avec plusieurs étapes qui font encore augmenter les coûts de production ; d'autre part, le procédé nécessite la présence d'acide ascorbique pour inhiber l'activité crésolase de la tyrosinase et ainsi éviter la formation de quinones ; une étape de purification finale supplémentaire doit donc être mise en œuvre pour éliminer l'acide ascorbique du mélange réactionnel.Two enzymatic production routes of hydroxytyrosol have also been described: - production of hydroxytyrosol by hydrolysis of oleuropein in the presence of β-glucosidase (Briante et al., 2001). The β-glucosidase used in the process of Briante et al. is produced by a recombinant Escherichia coli strain, this β-glucosidase comes from the archaea Sulfolobus solfataricus which is a hyperthermophilic bacterium. This process has several disadvantages: first, the enzyme and oleuropein must be previously purified from the bacterial culture and from olive leaves respectively, and secondly, the final extract is constituted a mixture of hydroxytyrosol and two forms of elenolic acid; an enzymatic synthesis by conversion of tyrosol in the presence of a tyrosinase extracted from a fungus (Espin et al 2001). This second enzymatic method also has limitations: on the one hand, the process requires the prior purification of tyrosinase with several steps that further increase production costs; on the other hand, the process requires the presence of ascorbic acid to inhibit the tyrosinase activity cresolase and thus avoid the formation of quinones; an additional final purification step must therefore be implemented to remove ascorbic acid from the reaction mixture.
Un autre type de production a été réalisé à partir de cellules entières cultivées sur tyrosol. Les bactéries productrices sont Serratia marscecens (Allouche et Sayadi, 2005), Pseudomonas aeruginosa (Allouche et al, 2004 ; Bouallagui et Sayadi, 2006), Pseudomonas putida F6 (Brooks et al, 2006) et Halomonas sp. HTB24 (Liebgott et al, 2007). Le système enzymatique responsable de la bioconversion du tyrosol en hydroxytyrosol n'a jamais été identifié chez les différentes espèces bactériennes précitées. Ces procédés microbiologiques présentent également des limites :Another type of production was made from whole cells grown on tyrosol. The producing bacteria are Serratia marscecens (Allouche and Sayadi, 2005), Pseudomonas aeruginosa (Allouche et al, 2004, Bouallagui and Sayadi, 2006), Pseudomonas putida F6 (Brooks et al, 2006) and Halomonas sp. HTB24 (Liebgott et al, 2007). The enzymatic system responsible for the bioconversion of tyrosol to hydroxytyrosol has never been identified in the various bacterial species mentioned above. These microbiological processes also have limitations:
- P. aeruginosa est une bactérie pathogène de classe 2, ce qui entraîne une grande réticence à l'utilisation de l'hydroxytyrosol qu'elle produit ;- P. aeruginosa is a Class 2 pathogenic bacterium, which causes great reluctance to use the hydroxytyrosol it produces;
- pour toutes ces souches, la production d'hydroxytyrosol reste faible. En effet, on constate une dégradation de l'hydroxytyrosol en 3,4-dihydroxyphénylacétate (3,4-DHPA), ce dernier se dégradant par la suite en succinate et pyruvate.for all these strains, the production of hydroxytyrosol remains low. Indeed, there is a degradation of hydroxytyrosol 3,4-dihydroxyphenylacetate (3,4-DHPA), the latter subsequently degrading succinate and pyruvate.
En résumé, l'extraction à partir de matières premières naturelles donne de faibles quantités d'hydroxytyrosol, elle présente le risque de contamination par les solvants d'extraction et aboutit, du fait d'un nombre d'étapes trop important, à un prix de revient trop élevé. La synthèse chimique, quant à elle, est assez limitée ; elle utilise des substrats ou des catalyseurs toxiques et difficiles à obtenir. Enfin, pour le moment, les procédés microbiologiques décrits utilisent, pour certains, des bactéries pathogènes avec les inconvénients que l'on connaît et présentent un rendement trop faible pour être économiquement intéressants.In summary, the extraction from natural raw materials gives small amounts of hydroxytyrosol, it presents the risk of contamination by the extraction solvents and results, because of too many steps, a price too high. Chemical synthesis, on the other hand, is rather limited; it uses substrates or catalysts that are toxic and difficult to obtain. Finally, for the moment, the microbiological processes described use, for some, pathogenic bacteria with the disadvantages that are known and have a yield that is too low to be economically attractive.
Dans le cadre de leurs travaux, les Inventeurs ont maintenant mis en évidence que l'enzyme impliquée dans la bioconversion du tyrosol en hydroxytyrosol est une protéine à activité hydroxyphénylacétate hydroxylase (aussi appelée HPAH ou HPA hydroxylase), la HPA 3-monooxygénase. Ceci revêt un caractère étonnant car le tyrosol n'est pas le substrat naturel de cette enzyme ; le substrat naturel de l'enzyme est l'acide 4-hydroxyphénylacétique (4-HPA). Par la suite, le terme HPA désigne le 4-HPA ou le 3-HPA, de préférence, le 4-HPA.In the course of their work, the inventors have now demonstrated that the enzyme involved in the bioconversion of tyrosol to hydroxytyrosol is a protein with hydroxyphenylacetate hydroxylase (also called HPAH or HPA hydroxylase), HPA 3-monooxygenase activity. This is surprising because tyrosol is not the natural substrate for this enzyme; the natural substrate of the enzyme is 4-hydroxyphenylacetic acid (4-HPA). Subsequently, the term HPA refers to 4-HPA or 3-HPA, preferably 4-HPA.
Ainsi, les objets de la présente invention se rapportent à (i) l'utilisation d'une HPAH pour catalyser la bioconversion du tyrosol en hydroxytyrosol, (ii) un procédé de synthèse d'hydroxytyrosol in vitro comprenant au moins une étape de conversion du tyrosol en hydroxytyrosol par une HPAH, (iii) un procédé de synthèse d'hydroxytyrosol in vivo utilisant une souche microbienne exprimant une enzyme à activité HPAH et n'exprimant pas d'enzyme dégradant le tyrosol et/ou l'hydroxytyrosol, (iv) une souche bactérienne transformée de telle sorte qu'elle exprime de façon optimale une HPAH et qu'elle ne dégrade ni le tyrosol, ni l'hydroxytyrosol, (v) l'hydroxytyrosol obtenu par les procédés ci-dessus et (vi) tout ou partie de la culture microbienne susceptible d'être obtenue par ledit procédé in vivo et contenant de l'hydroxytyrosol. Selon un premier de ses objets, la présente invention se rapporte ainsi à l'utilisation d'une enzyme à activité hydroxyphénylacétate hydroxylase, libre ou immobilisée, pour catalyser la transformation du tyrosol en hydroxytyrosol, et à un procédé de préparation in vitro d' hydroxytyrosol comprenant au moins une étape de transformation par conversion du tyrosol en hydroxytyrosol catalysée par une enzyme à activité hydroxyphénylacétate hydroxylase.Thus, the objects of the present invention relate to (i) the use of HPAH to catalyze the bioconversion of tyrosol to hydroxytyrosol, (ii) an in vitro hydroxytyrosol synthesis process comprising at least one conversion step of tyrosol to hydroxytyrosol by HPAH, (iii) an in vivo hydroxytyrosol synthesis method using a microbial strain expressing an enzyme with HPAH activity and not expressing a tyrosol and / or hydroxytyrosol degrading enzyme, (iv) a bacterial strain transformed in such a way that it optimally expresses an HPAH and that it does not degrade tyrosol or hydroxytyrosol, (v) the hydroxytyrosol obtained by the processes above and (vi) all or part of the microbial culture obtainable by said process in vivo and containing hydroxytyrosol. According to a first of its objects, the present invention thus relates to the use of an enzyme with hydroxyphenylacetate hydroxylase activity, free or immobilized, to catalyze the conversion of tyrosol to hydroxytyrosol, and to a process for the in vitro preparation of hydroxytyrosol comprising at least one conversion step by conversion of tyrosol to hydroxytyrosol catalyzed by an enzyme with hydroxyphenylacetate hydroxylase activity.
Les hydroxylases, aussi appelées monooxygénases, sont les enzymes qui catalysent les réactions d'hydroxylation initiales des composés phénoliques non ou mono-hydroxylés. Il existe différentes sortes de monooxygénases bactériennes regroupant des enzymes de type métalloprotéine (par exemple la tyrosinase) ou de type flavoprotéine (par exemple la A- hydroxyphénylacétate 3-monooxygénase). Ces dernières qui effectuent d'une part la réduction d'une flavine et ensuite l'hydroxylation proprement dite du composé phénolique, renferment donc deux fonctions : une fonction réductase et une fonction oxygénase. Ces fonctions sont soit portées par une seule chaîne polypeptidique (Flavoprotéine-monooxygénase à simple composante), soit par plusieurs chaînes indépendantes (enzymes multi-composantes, pouvant compter de 2 à 6 composantes), les plus répandues sont celles à double composante (Flavoprotéine monooxygénase à double-composante).Hydroxylases, also known as monooxygenases, are the enzymes that catalyze the initial hydroxylation reactions of non-monohydroxylated phenolic compounds. There are different kinds of bacterial monooxygenases comprising metalloprotein (for example tyrosinase) or flavoprotein type enzymes (for example A-hydroxyphenylacetate 3-monooxygenase). The latter, which carry out on the one hand the reduction of a flavin and then the actual hydroxylation of the phenolic compound, thus contain two functions: a reductase function and an oxygenase function. These functions are either carried by a single polypeptide chain (single-component Flavoprotein-monooxygenase), or by several independent chains (multi-component enzymes, which can have from 2 to 6 components), the most widespread are those with double component (Flavoprotein monooxygenase double-component).
Sont utiles pour transformer le tyrosol en hydroxytyrosol selon la présente invention, toute enzyme à activité HPA hydroxylase pouvant se présenter :Are useful for converting tyrosol to hydroxytyrosol according to the present invention, any enzyme with HPA hydroxylase activity that can occur:
1. sous la forme d'une protéine unique avec une composante à activité réductase et une composante à activité hydroxylase ; ou1. in the form of a single protein with a reductase activity component and a hydroxylase activity component; or
2. sous la forme de deux enzymes, l'une étant une hydroxylase et l'autre étant n'importe quelle réductase capable d'engendrer la formation de FADH2.2. in the form of two enzymes, one being a hydroxylase and the other being any reductase capable of generating FADH 2 formation.
L'enzyme à activité HPAH peut être extraite à partir d'un microorganisme qui l'exprime. Par exemple, les bactéries suivantes expriment une HPAH : Escherichia coli (Prieto et al, 1996), Micrococcus luteus (Sparnins et Chapman, 1976), Acinetobacter baumanii (Thotsaporn et al., 2004), Pseudomonas putida (Arunachalam et al, 1992), Psendomonas aeruginosa (Zeng et Jin, 2003), Halomonas sp. HTB24 (voir l'exemple 1 ci- après), Serratia marscecens (Trias et al, 1989) et, plus généralement, toute bactérie capable de dégrader le 3- ou le 4-HPA en formant de l'acide 3,4-dihydroxyphénylacétique (DHPA).The enzyme with HPAH activity can be extracted from a microorganism that expresses it. For example, the following bacteria express HPAH: Escherichia coli (Prieto et al., 1996), Micrococcus luteus (Sparnins and Chapman, 1976), Acinetobacter baumanii (Thotsaporn et al., 2004), Pseudomonas putida (Arunachalam et al, 1992) , Psendomonas aeruginosa (Zeng and Jin, 2003), Halomonas sp. HTB24 (see Example 1 below), Serratia marscecens (Trias et al, 1989) and, more generally, any bacteria capable of degrading 3- or 4-HPA to form 3,4-dihydroxyphenylacetic acid (DHPA).
L'enzyme à activité HPAH peut aussi être produite par un microorganisme modifié génétiquement par introduction d'un système d'expression permettant et/ou optimisant la production de ladite enzyme. Selon un mode de réalisation particulier de l'invention, l'enzyme à activité HPAH est l'hydroxyphénylacétate 3-monooxygénase (EC 1.14.13.3 aussi désignée HPA 3- monooxygénase) qui est décrite pour catalyser la réaction schématisée sur la Figure 3.The enzyme with HPAH activity can also be produced by a genetically modified microorganism by introducing an expression system allowing and / or optimizing the production of said enzyme. According to a particular embodiment of the invention, the enzyme with HPAH activity is hydroxyphenylacetate 3-monooxygenase (EC 1.14.13.3 also known as HPA 3-monooxygenase) which is described for catalyzing the reaction shown schematically in FIG.
Cette enzyme est connue pour être notamment exprimée par Escherichia coli chez qui le rôle dans le catabolisme du HPA a été étudié par Cooper et Skinner (1980).This enzyme is known to be in particular expressed by Escherichia coli in which the role in the catabolism of HPA has been studied by Cooper and Skinner (1980).
Selon un autre mode particulier de mise en œuvre de l'invention, l'activité enzymatique provient de fractions cellulaires de microorganismes contenant l'enzyme à activité HPAH, ces fractions étant obtenues à partir de toute souche microbienne exprimant naturellement une HPAH. Dans le cas particulier de la HPA 3-monooxygénase, les souches pouvant être retenues sont notamment, Escherichia coli, Micrococcus luteus, Acinetobacter baumanii, Pseudomonas putida, Pseudomonas aeruginosa et Halomonas sp. HTB24.According to another particular embodiment of the invention, the enzymatic activity comes from cell fractions of microorganisms containing the enzyme HPAH activity, these fractions being obtained from any microbial strain naturally expressing an HPAH. In the particular case of HPA 3-monooxygenase, the strains that can be selected include Escherichia coli, Micrococcus luteus, Acinetobacter baumanii, Pseudomonas putida, Pseudomonas aeruginosa and Halomonas sp. HTB24.
Dans le cadre du procédé de production d'hydroxytyrosol in vitro, la réaction enzymatique produisant l'hydroxytyrosol est avantageusement mise en œuvre dans un milieu réactionnel aqueux tamponné à un pH compris entre 6 et 9 avec une concentration en enzyme comprise entre 1 et 200 mg/ml et du NAD(P)H à une concentration comprise entre 1 et 100 μM, notamment 1 à 50 μM ; l'expression NAD(P)H désigne indifféremment le NADH ou le NADPH ; ces cofacteurs peuvent être produits par extraction cellulaire puis purification.In the context of the in vitro hydroxytyrosol production process, the enzymatic reaction producing the hydroxytyrosol is advantageously carried out in an aqueous reaction medium buffered at a pH of between 6 and 9 with an enzyme concentration of between 1 and 200 mg. / ml and NAD (P) H at a concentration of between 1 and 100 μM, especially 1 to 50 μM; the expression NAD (P) H denotes either NADH or NADPH; these cofactors can be produced by cell extraction and purification.
La réaction démarre avec l'introduction dans le milieu réactionnel du tyrosol dont la concentration est ajustée à l'activité enzymatique du milieu réactionnel ; elle peut être comprise entre 5 et 250 mM, et l'agitation des différents réactifs (NAD(P)H, tyrosol) et se termine après épuisement du tyrosol dans le milieu de culture.The reaction starts with the introduction into the reaction medium of the tyrosol whose concentration is adjusted to the enzymatic activity of the reaction medium; it can be between 5 and 250 mM, and stirring of the various reagents (NAD (P) H, tyrosol) and ends after exhaustion of the tyrosol in the culture medium.
L'enzyme peut être immobilisée sur un support tel qu'une matrice d'alginate de calcium ou autre, ou bien libre dans le milieu réactionnel par exemple à partir de la fraction cellulaire la contenant. Dans la mesure où l'enzyme n'est pas consommée lors de la réaction, il est préférable de l'immobiliser sur un support par des techniques connues de l'homme du métier afin de la récupérer après la réaction.The enzyme may be immobilized on a support such as a matrix of calcium alginate or the like, or else free in the reaction medium, for example from the cell fraction containing it. Insofar as the enzyme is not consumed during the reaction, it is preferable to immobilize it on a support by techniques known to those skilled in the art in order to recover it after the reaction.
Selon un autre de ses objets, la présente invention se rapporte à un procédé de préparation in vivo d'hydroxytyrosol, caractérisé en ce qu'il utilise un microorganisme exprimant une enzyme à activité hydroxyphénylacétate hydroxylase et n'exprimant pas d'enzyme dégradant le tyrosol et/ou l'hydroxytyrosol.According to another of its objects, the present invention relates to a process for the in vivo preparation of hydroxytyrosol, characterized in that it uses a microorganism expressing an enzyme with hydroxyphenylacetate hydroxylase activity and which does not express a tyrosol degrading enzyme. and / or hydroxytyrosol.
Par microorganisme, aussi désigné par la suite souche ou souche microbienne, on entend notamment et sans caractère limitatif une bactérie, une levure ou un champignon filamenteux. En particulier, le microorganisme n'exprime pas d'enzyme à activité aryle déshydrogénase oxydant le tyrosol ou l'hydroxytyrosol, ce qui exclut notamment les souches Pseudomonas aeruginosa, Serratia marcescens, Halomonas sp. et Pseudomonas putida.By microorganism, also referred to hereinafter strain or microbial strain is meant in particular and without limitation a bacterium, a yeast or a filamentous fungus. In particular, the microorganism does not express an enzyme with an aryl dehydrogenase activity oxidizing tyrosol or hydroxytyrosol, which notably excludes Pseudomonas aeruginosa, Serratia marcescens and Halomonas sp. and Pseudomonas putida.
Les aryle déshydrogénases sont des enzymes qui catalysent la transformation d'un alcool en aldéhyde, d'un aldéhyde en acide, ou encore les deux à la fois c'est-à-dire d'un alcool en acide.Aryl dehydrogenases are enzymes that catalyze the conversion of an alcohol to an aldehyde, an aldehyde to an acid, or both at once, i.e., an alcohol to an acid.
En particulier, elles oxydent le tyrosol ou l'hydroxytyrosol, respectivement, en 4-HPA et en 3,4-DHPA (Liebgott et al, 2007 ; Hirano et al, 2005 ; MacKintosh et Fewson, 1988). En effet, dans les procédés de production d'hydroxytyrosol à partir de différentes bactéries décrites dans la littérature, le problème majeur reste celui de la dégradation de l'hydroxytyrosol dans le milieu de culture, par une oxydation en 3,4-DHPA. Ainsi l'utilisation d'un microorganisme n'exprimant pas d'aryle déshydrogénase permet d'obtenir une meilleure production d'hydroxytyrosol.In particular, they oxidize tyrosol or hydroxytyrosol, respectively, to 4-HPA and 3,4-DHPA (Liebgott et al, 2007, Hirano et al, 2005, MacKintosh and Fewson, 1988). Indeed, in the processes for producing hydroxytyrosol from different bacteria described in the literature, the major problem remains that of the degradation of hydroxytyrosol in the culture medium, by oxidation to 3,4-DHPA. Thus, the use of a microorganism that does not express aryl dehydrogenase makes it possible to obtain a better production of hydroxytyrosol.
Les microorganismes utilisables selon ce procédé peuvent être sélectionnés en testant leur activité enzymatique.The microorganisms that can be used according to this process can be selected by testing their enzymatic activity.
Concrètement, ce test peut être réalisé par une première phase de mise en culture d'une souche microbienne dans un milieu de culture minimum comprenant du tyrosol ; la souche sélectionnée est celle qui ne dégrade pas le tyrosol et qui ne possède donc pas d'activité aryle déshydrogénase.Concretely, this test can be carried out by a first phase of culturing a microbial strain in a minimum culture medium comprising tyrosol; the selected strain is one that does not degrade tyrosol and therefore has no aryl dehydrogenase activity.
Par la suite, au cours d'une seconde phase, de 1ΗPA est additionné dans la culture et la mesure de la quantité de tyrosol, d'hydroxytyrosol, d'HPA et de DHPA dans le milieu est réalisée toutes les heures.Subsequently, in a second phase, 1ΗPA is added to the culture and measurement of the amount of tyrosol, hydroxytyrosol, HPA and DHPA in the medium is performed every hour.
Lors de la mise en œuvre de ce test, on observe quatre cas de figure :During the implementation of this test, we observe four cases:
(1) le tyrosol est transformé en hydroxytyrosol et ce dernier ne disparaît pas au cours du temps. La souche testée est donc sélectionnée pour le procédé ;(1) tyrosol is converted into hydroxytyrosol and the latter does not disappear over time. The strain tested is therefore selected for the process;
(2) le tyrosol est oxydé en HPA avant d'être hydroxylé en hydroxytyrosol, cela avant l'ajout du HPA dans le milieu de culture. La souche possède donc des aryle déshydrogénases qui dégradent le tyrosol et elle n'est pas retenue pour le procédé ;(2) the tyrosol is oxidized to HPA before being hydroxylated to hydroxytyrosol, before the addition of HPA in the culture medium. The strain therefore has aryl dehydrogenases which degrade tyrosol and is not retained for the process;
(3) le tyrosol et le HPA ne sont pas transformés, respectivement, en hydroxytyrosol et en 3,4- DHPA, la souche ne possède donc pas d'enzyme à activité HPAH. La souche n'est donc pas sélectionnée ;(3) tyrosol and HPA are not converted, respectively, into hydroxytyrosol and 3,4-DHPA, so the strain does not have an enzyme with HPAH activity. The strain is not selected;
(4) le tyrosol et le HPA sont hydroxylés, respectivement, en hydroxytyrosol et en 3,4-DHPA, mais l'hydroxytyrosol disparaît au cours du temps dans le milieu de culture. Dans ce cas, le tyrosol n'est pas oxydé en HPA alors que l'hydroxytyrosol est oxydé en DHPA ; la souche possède donc une activité enzymatique aryle déshydrogénase qui dégrade l'hydroxytyrosol. La souche n'est donc pas sélectionnée.(4) tyrosol and HPA are hydroxylated, respectively, to hydroxytyrosol and 3,4-DHPA, but the hydroxytyrosol disappears over time in the culture medium. In this case, the tyrosol is not oxidized to HPA while the hydroxytyrosol is oxidized to DHPA; strain therefore has an enzymatic aryl dehydrogenase activity which degrades hydroxytyrosol. The strain is not selected.
Le microorganisme peut également être génétiquement modifié pour qu'il exprime la HPA-3-monooxygénase et qu'il réprime l'aryle déshydrogénase. On peut ainsi sélectionner une souche exprimant naturellement la HPA-3-monooxygénase déjà citée précédemment, notamment, Escherichia coli, Micrococcus luteus, Àcinetobacter baumanii, Halomonas sp., Pseudomonas putida et Pseudomonas aeniginosa et les modifier pour qu'elles répriment l'expression d'aryle déshydrogénases susceptibles d'oxyder le tyrosol et/ou l'hydroxytyrosol.The microorganism can also be genetically engineered to express HPA-3-monooxygenase and to repress aryl dehydrogenase. It is thus possible to select a strain naturally expressing the previously mentioned HPA-3-monooxygenase, in particular Escherichia coli, Micrococcus luteus, Acinetobacter baumanii, Halomonas sp., Pseudomonas putida and Pseudomonas aeniginosa, and modify them to suppress the expression of aryl dehydrogenases capable of oxidizing tyrosol and / or hydroxytyrosol.
Ledit procédé in vivo comprend avantageusement au moins une étape de culture du microorganisme dans un milieu de culture aqueux à pH compris entre 6 et 8 avec comme principale source de carbone du tyrosol et éventuellement de l'HPA.Said in vivo method advantageously comprises at least one step of culturing the microorganism in an aqueous culture medium at a pH of between 6 and 8 with the main carbon source of the tyrosol and optionally of the HPA.
Selon un mode de réalisation particulier, le milieu de culture contient par litre : entre 0,35 et 0,85 g de KH2PO4, de préférence 0,6 g ; entre 0,35 et 0,85 g de K2HPO4, de préférence 0,6 g ; entre 0,25 et 0,75 g de NaCl, de préférence 0,5 g ; entre 0,75 et 1,25 g de NH4Cl, de préférence 1 g. Le pH est ajusté à 7,0 avec une solution de KOH 10 M. Les cultures sont réalisées en présence de dérivés peptidiques tels que l'extrait de levure ou la peptone à des concentrations de 0,5 à 2 g/1. Le tyrosol est présent à une concentration comprise entre 1 et 20 mM. D'autres sources de carbone tels que des sucres peuvent également être utilisées à des concentrations optimisées pour une production enzymatique adéquate.According to a particular embodiment, the culture medium contains per liter: between 0.35 and 0.85 g of KH 2 PO 4 , preferably 0.6 g; between 0.35 and 0.85 g of K 2 HPO 4 , preferably 0.6 g; between 0.25 and 0.75 g of NaCl, preferably 0.5 g; between 0.75 and 1.25 g of NH 4 Cl, preferably 1 g. The pH is adjusted to 7.0 with 10M KOH solution. The cultures are carried out in the presence of peptide derivatives such as yeast extract or peptone at concentrations of 0.5 to 2 g / l. Tyrosol is present at a concentration of between 1 and 20 mM. Other sources of carbon such as sugars can also be used at concentrations optimized for adequate enzyme production.
Afin d'optimiser le rendement, le procédé in vivo est réalisé en cultivant les cellules selon la méthode dite en « resting cell » qui consiste à inhiber la croissance cellulaire en utilisant une suspension très dense de cellules en phase stationnaire (Allouche et al, 2005). Ce procédé utilise des cellules microbiennes carencées en source carbonée qui, par conséquent, ne se multiplient plus et restent à l'état de maintenance cellulaire. Cette alternative a pour objectif d'éviter la dégradation du produit de la réaction par les cellules en croissance, ainsi qu'une synthèse de protéines non souhaitées (Barghini et al, 1998).In order to optimize the yield, the in vivo method is carried out by culturing the cells according to the so-called "resting cell" method which consists of inhibiting cell growth using a very dense suspension of cells in the stationary phase (Allouche et al, 2005 ). This method uses microbial cells deficient carbonaceous source which, therefore, no longer multiply and remain in the state of cell maintenance. This alternative aims to prevent the degradation of the reaction product by the growing cells, as well as a synthesis of undesired proteins (Barghini et al, 1998).
Ces conditions sont obtenues en réalisant une culture préalable de cellules, en les centrifugeant à des conditions telles qu'elles sont récupérées intactes puis en les incubant pendant un temps très court dans un milieu contenant du tyrosol.These conditions are achieved by pre-culturing cells, centrifuging them under conditions such that they are recovered intact and then incubating them for a very short time in a medium containing tyrosol.
Le milieu de culture décrit ci-dessus est adapté à une culture microbiologique en conditions stationnaires (« resting cells »), sous réserve de limiter la source de carbone au tyrosol et éventuellement à l'HPA.The culture medium described above is suitable for a microbiological culture under stationary conditions ("resting cells"), provided that the carbon source is limited to tyrosol and possibly to HPA.
Selon un mode de mise en œuvre particulier, le procédé in vivo utilise des cellules microbiennes immobilisées sur un support solide, par exemple, constitué de billes d'alginate de calcium, et sur lequel coule le milieu contenant le tyrosol (Bouallagui et Sayadi, 2006; Brooks et α/,, 2006).According to one particular embodiment, the in vivo method uses microbial cells immobilized on a solid support, for example, consisting of alginate beads. calcium, and on which flows the medium containing the tyrosol (Bouallagui and Sayadi, 2006, Brooks and α / ,, 2006).
Cette technique permet une réutilisation plus importante sur le long terme des cellules fixées. Il devient donc plus aisé de produire des molécules à haute valeur ajoutée par l'intermédiaire de microorganismes intervenant comme des "sacs enzymatiques stables". Ceci permet d'obtenir des procédés à la fois moins coûteux, moins contraignants et plus performants.This technique allows a greater reuse in the long term of the fixed cells. It thus becomes easier to produce molecules with high added value via microorganisms acting as "stable enzyme bags". This makes it possible to obtain processes that are both less expensive, less restrictive and more efficient.
Parmi les microorganismes exprimant une HPAH, on distingue (i) les souches qui expriment l'enzyme après induction par son substrat naturel, 1ΗPA (microorganisme à expression inductible de l'HP AH) ; et (ii) des souches chez lesquelles l'expression de l'enzyme est constitutive, c'est-à-dire indépendante de la présence ou non d'HPA dans le milieu de culture (microorganisme à expression constitutive de l'HP AH).Among the microorganisms expressing an HPAH, there are (i) strains which express the enzyme after induction by its natural substrate, 1ΗPA (inducible expression microorganism of HP AH); and (ii) strains in which the expression of the enzyme is constitutive, that is to say independent of the presence or absence of HPA in the culture medium (microorganism with constitutive expression of HPAH) .
Lorsque le procédé in vivo selon l'invention est mis en œuvre avec un microorganisme à expression inductible de l'HPAH, on peut réaliser une étape additionnelle de préculture, préalable à la culture, en présence de HPA pour induire la synthèse de l'HPAH, alors que la culture qui suit s'effectue en présence de tyrosol pour produire l'hydroxytyrosol. Selon une variante de ce procédé in vivo, le microorganisme à expression inductible de l'HPAH est la bactérie Escherichia coli, en particulier, il s'agit de la souche W ά'Escherichia coli.When the in vivo process according to the invention is carried out with an inducible HPAH-inducing microorganism, it is possible to carry out an additional pre-culture step, prior to the culture, in the presence of HPA to induce the synthesis of HPAH. , while the following culture is carried out in the presence of tyrosol to produce hydroxytyrosol. According to one variant of this in vivo method, the inducible expression microorganism of HPAH is the bacterium Escherichia coli, in particular it is the strain W ά'Escherichia coli.
Le procédé in vivo selon l'invention comprend alors les étapes suivantes :The in vivo method according to the invention then comprises the following steps:
1. étape préalable de croissance du microorganisme à expression inductible de l'HPAH en présence de HPA pour induire les gènes nécessaires à la synthèse de l'HPAH ;1. preliminary step of growth of the inducible expression microorganism of HPAH in the presence of HPA to induce the genes necessary for the synthesis of HPAH;
2. étape de culture dudit microorganisme en milieu carence en source carbonée et en présence de tyrosol.2. step of culturing said microorganism in carbon source deficiency medium and in the presence of tyrosol.
C'est au cours de l'étape (2) qu'a lieu la conversion du tyrosol en hydroxytyrosol.It is during step (2) that the conversion of tyrosol to hydroxytyrosol takes place.
Le milieu de culture utilisable à l'étape (1) est celui décrit ci-dessus sans tyrosol et en présence de HPA à des concentrations comprises entre 1 et 20 mM.The culture medium that can be used in step (1) is that described above without tyrosol and in the presence of HPA at concentrations of between 1 and 20 mM.
L'étape (2) est ensuite conduite en présence de tyrosol avec un ajout constant de HPA, ces deux produits pouvant être présents aux concentrations suivantes : entre 1 à 20 mM pour le tyrosol et entre 1 et 10 mM, de préférence 5 mM, pour le HPA qui est rajouté toutes les 2 heures. La culture de l'étape (2) est avantageusement réalisée dans des conditions stationnaires de croissance du microorganisme (conditions de « resting cells »).Step (2) is then conducted in the presence of tyrosol with a constant addition of HPA, these two products may be present at the following concentrations: between 1 to 20 mM for tyrosol and between 1 and 10 mM, preferably 5 mM, for the HPA which is added every 2 hours. The culture of step (2) is advantageously carried out under stationary growth conditions of the microorganism ("resting cell" conditions).
Dans le cas où le procédé in vivo selon l'invention est mis en œuvre avec un micro organisme à expression constitutive de l'HPAH, que cette expression constitutive soit naturelle ou résulte d'une modification génétique, l'utilisation du HPA peut être évitée. Cette variante de mise en œuvre du procédé in vivo est avantageuse car elle facilite l'extraction de l'hydroxytyrosol.In the case where the in vivo method according to the invention is implemented with a microorganism with constitutive expression of HPAH, that this constitutive expression is natural or results from a genetic modification, the use of HPA can be avoided. . This An alternative embodiment of the process in vivo is advantageous because it facilitates the extraction of hydroxytyrosol.
Selon un autre de ses objets, la présente invention se rapporte encore à un microorganisme modifié génétiquement pour exprimer une enzyme à activité hydroxyphénylacétate hydroxylase et ne pas exprimer une enzyme à activité aryle déshydrogénase.According to another of its objects, the present invention also relates to a microorganism genetically modified to express an enzyme with hydroxyphenylacetate hydroxylase activity and not to express an enzyme with aryl dehydrogenase activity.
La construction d'une telle souche auto-induite par insertion d'un promoteur constitutif peur' être réalisée comme suit :The construction of such a self-induced strain by insertion of a constitutive promoter can be carried out as follows:
- introduire un promoteur constitutif en amont des gènes codant pour la HPA monooxygénase, ouintroduce a constitutive promoter upstream of the genes encoding HPA monooxygenase, or
- introduire un plasmide contenant le gène de la HPA monooxygénase régulée par un promoteur fort.introducing a plasmid containing the HPA monooxygenase gene regulated by a strong promoter.
Selon un mode de réalisation particulier, il s'agit d'une souche d'Escherichia coli modifiée comprenant un promoteur constitutif hétérologue d'expression de la HPA-3- monooxygenase .According to a particular embodiment, it is a modified Escherichia coli strain comprising a heterologous constitutive promoter of expression of HPA-3 monooxygenase.
La présente invention se rapporte encore à l'hydroxytyrosol obtenu par l'un des procédés in vitro ou in vivo décrit ci-dessus. Pour ce faire, il convient de purifier l'hydroxytyrosol selon les méthodes connues de l'homme du métier. En particulier, il peut s'agir successivement (i) d'une extraction liquide-liquide du milieu de culture par l'acétate d'éthyle suivie d'une évaporation à sec de la phase organique et redissolution dans un mélange méthanol-eau (10 : 90, v/v), puis (ii) d'une extraction en phase solide sur un support de type silice greffée Ci8 (par exemple, LiChroprep RP- 18 de Merck, référence 1.09303.0100), l'hydroxytyrosol étant ensuite élue au méthanol pur qui est évaporé à sec. L'hydroxytyrosol est enfin pesé.The present invention also relates to hydroxytyrosol obtained by one of the in vitro or in vivo methods described above. To do this, it is necessary to purify the hydroxytyrosol according to methods known to those skilled in the art. In particular, it may be successively (i) a liquid-liquid extraction of the culture medium with ethyl acetate followed by dry evaporation of the organic phase and redissolution in a methanol-water mixture ( 10: 90, v / v), then (ii) a solid phase extraction on a media type grafted silica Ci 8 (e.g., LiChroprep RP-18 Merck, 1.09303.0100 reference), hydroxytyrosol being then eluted with pure methanol which is evaporated to dryness. Hydroxytyrosol is finally weighed.
L'invention se rapporte enfin à une fraction riche en hydroxytyrosol provenant de tout ou partie de la culture microbienne susceptible d'être issue du procédé in vivo décrit ci-dessus. Pour éviter l'accumulation trop importante d'hydroxytyrosol dans le milieu et le risque qu'il polymérise, il est préférable d'extraire au fur et à mesure l'hydroxytyrosol du milieu de culture. Une autre variante pour éviter cette polymérisation consiste à stabiliser l'hydroxytyrosol par dérivation d'une des fonctions hydroxyles du cycle aromatique puis de l'extraire ultérieurement.Finally, the invention relates to a hydroxytyrosol-rich fraction originating from all or part of the microbial culture that may be derived from the in vivo process described above. To avoid the excessive accumulation of hydroxytyrosol in the medium and the risk that it polymerizes, it is preferable to extract the hydroxytyrosol gradually from the culture medium. Another variant to avoid this polymerization consists in stabilizing the hydroxytyrosol by derivation of one of the hydroxyl functions of the aromatic ring and then extracting it later.
De préférence, dans la mesure où l'hydroxytyrosol est présent dans le milieu de culture à l'issue du procédé, la fraction riche en hydroxytyrosol peut être le milieu de culture après élimination des cellules, par exemple, par filtration ou centrifugation. L'invention est maintenant décrite plus en détail au regard des figures suivantes :Preferably, since the hydroxytyrosol is present in the culture medium at the end of the process, the hydroxytyrosol-rich fraction may be the culture medium after removal of the cells, for example by filtration or centrifugation. The invention is now described in more detail with reference to the following figures:
La Figure 1 est un schéma représentant la bioconversion du tyrosol en hydroxytyrosol par catalyse enzymatique avec une HPAH.Figure 1 is a diagram showing the bioconversion of tyrosol to hydroxytyrosol by enzymatic catalysis with HPAH.
La Figure 2 est un histogramme qui représente le temps d'induction (exprimé en heures) obtenu lors du test d'oxydabilité accélérée pour différents composés anti oxydants. La mesure est réalisée par la technique RANCIMAT, ici à 98°C sur l'huile de tournesol raffinée. La dose d'antioxydant est fixée à 400 ppm dans cette expérience (d'après Rossignol-Castera et Bosque, 1994).Figure 2 is a histogram which represents the induction time (expressed in hours) obtained during the accelerated oxidation test for various anti-oxidant compounds. The measurement is carried out by the RANCIMAT technique, here at 98 ° C on refined sunflower oil. The dose of antioxidant is fixed at 400 ppm in this experiment (after Rossignol-Castera and Bosque, 1994).
La Figure 3 est un schéma représentant la réaction de transformation du 3- ou 4-HPA en 3,4-dihydroxyphénylacétate catalysée par la HPA 3-monooxygénase.Figure 3 is a diagram showing the conversion reaction of 3- or 4-HPA to 3,4-dihydroxyphenylacetate catalyzed by HPA 3-monooxygenase.
La Figure 4 comprend trois graphes A, B et C représentant la courbe de croissance de l'espèce Halomonas dans les différentes conditions de culture selon l'exemple 1 (partie LA.).Figure 4 comprises three graphs A, B and C representing the growth curve of the species Halomonas under the different culture conditions according to Example 1 (part LA.).
La Figure 5 est un graphe représentant la purification (DEAE-Sépharose) de la HPA 3-monooxygénase réalisée dans l'exemple 1.Figure 5 is a graph showing the purification (DEAE-Sepharose) of HPA 3-monooxygenase performed in Example 1.
La Figure 6 est un graphe représentant la production d' hydroxytyrosol (HTyr) par diverses bactéries aérobies en condition de resting-cell. (A), Pseudomonas aeruginosa; (B), Halomonas sp. souche HTB24; (D), H. neptunia; (+), CH. alkaliantarctica '; (Δ), Serratia marcescens; (O), Micrococcus luteus; (•), Escherichia coli souche W.Figure 6 is a graph showing the production of hydroxytyrosol (HTyr) by various aerobic bacteria in resting-cell condition. (A), Pseudomonas aeruginosa; (B), Halomonas sp. strain HTB24; (D), H. neptunia; (+), C, H. alkaliantarctica; (Δ), Serratia marcescens; (O), Micrococcus luteus; (•), Escherichia coli strain W.
Sur la Figure 7 sont indiqués : en A) le chromato gramme en phase gazeuse (GC) montrant les deux composés, le tyrosol et l'hydroxytyrosol, tous deux dérivés par le triméthylsillyle (TMS); en B) le spectre de masse de l'hydroxytyrosol dérivé par le TMS et réalisé en impact électronique.In Figure 7 are shown: in A) the gas phase chromato gram (GC) showing the two compounds, tyrosol and hydroxytyrosol, both derived by trimethylsilyl (TMS); in B) the mass spectrum of the hydroxytyrosol derived by the TMS and realized in electronic impact.
La Figure 8 est un graphe représentant la production d'hydroxytyrosol (HTyr) par Escherichia coli souche W. La concentration de divers métabolites est suivie par HPLC : (A), HTyr ; (G), 4-HPA; (Δ), Tyrosol; (•), DO à 600 nmFigure 8 is a graph showing the production of hydroxytyrosol (HTyr) by Escherichia coli strain W. The concentration of various metabolites is followed by HPLC: (A), HTyr; (G), 4-HPA; (Δ), Tyrosol; (•), OD at 600 nm
La Figure 9 est un graphe représentant l'analyse HPLC de la culture prélevée à 6 h selon l'exemple 3 (1, hydroxytyrosol ; 2, tyrosol).Figure 9 is a graph showing HPLC analysis of the culture taken at 6 h according to Example 3 (1, hydroxytyrosol; 2, tyrosol).
La Figure 10 est un graphe représentant l'analyse HPLC de la culture prélevée à 10 h selon l'exemple 3 (I3 hydroxytyrosol ; 2, tyrosol).Figure 10 is a graph showing HPLC analysis of the culture taken at 10 h according to Example 3 (I 3 hydroxytyrosol; 2, tyrosol).
La Figure 11 est un graphe représentant l'analyse HPLC de la culture prélevée à 10 h selon l'exemple 3 (1, hydroxytyrosol ; 2, tyrosol ; 3, HPA).Fig. 11 is a graph showing HPLC analysis of the culture taken at 10 h according to Example 3 (1, hydroxytyrosol; 2, tyrosol; 3, HPA).
La Figure 12 est un graphe représentant l'analyse HPLC de la culture prélevée à 24 h selon l'exemple 3 (1, hydroxytyrosol ; 2, tyrosol). Exemple 1 - Caractérisation de l'enzyme responsable de Ia synthèse de l'hydroxytyrosolFig. 12 is a graph showing HPLC analysis of the 24 hour culture according to Example 3 (1, hydroxytyrosol; 2, tyrosol). Example 1 Characterization of the Enzyme Responsible for the Synthesis of Hydroxytyrosol
LA. Culture à'Ηalomonas en présence de tyrosol et/ou de 4-HPATHE. Culture in ' Ηalomonas in the presence of tyrosol and / or 4-HPA
II a en premier lieu été étudié le comportement à'Ηalomonas HTB24, une bactérie halophile récemment isolée (Liebgott et al., 2007) et les variations de la production d'hydroxytyrosol par cette bactérie en fonction de différentes conditions de préculture.It has first been studied behavior 'Ηalomonas HTB24, a newly isolated halophilic bacterium (Liebgott et al., 2007) and variations in the production of hydroxytyrosol with these bacteria based on different conditions of preculture.
Les bactéries sont cultivées dans un milieu de culture contenant 5 mM de tyrosol, de l'extrait de levure à 1 g/L et 50 g/L de NaCl à 300C sous une agitation de 150 rpm, selon les trois conditions suivantes :The bacteria are cultured in a culture medium containing 5 mM tyrosol, yeast extract at 1 g / L and 50 g / L NaCl at 30 ° C. with stirring of 150 rpm, according to the following three conditions:
(A) les bactéries sont cultivées après avoir été pré-cultivées sur extrait de levure comme seule source de carbone ;(A) the bacteria are cultured after being pre-cultured on yeast extract as the only carbon source;
(B) les bactéries sont cultivées après avoir été pré-cultivées sur 5 mM de tyrosol ;(B) the bacteria are cultured after being pre-cultured on 5 mM tyrosol;
(C) les bactéries sont cultivées par ensemencement d'un inoculum concentré venant d'une préculture réalisée sur 5 mM de tyrosol.(C) the bacteria are cultured by inoculating a concentrated inoculum from a preculture carried out on 5 mM tyrosol.
Les résultats présentés dans les graphes A, B et C de la Figure 4 montrent que l'apparition d'hydroxytyrosol est corrélée à la présence de 4-HPA dans le milieu de culture. Il est supposé que la souche Halomonas HTB24 s'adapte à la présence de 4-HPA et induit les gènes codant pour la 4-HPA-3-monooxygénase.The results presented in graphs A, B and C of FIG. 4 show that the appearance of hydroxytyrosol correlates with the presence of 4-HPA in the culture medium. It is assumed that the Halomonas HTB24 strain adapts to the presence of 4-HPA and induces genes encoding 4-HPA-3-monooxygenase.
LB. Tests d'induction de l'enzyme responsable de la conversion du tyrosol en hydroxytyrosol en conditions stationnairesLB. Induction tests of the enzyme responsible for the conversion of tyrosol to hydroxytyrosol under stationary conditions
II est ensuite confirmé que le 4-HPA est responsable de l'induction de l'enzyme catalysant la conversion du tyrosol en hydroxytyrosol par la mise en œuvre de divers tests d'induction sur la souche HTB24.It is then confirmed that 4-HPA is responsible for the induction of the enzyme catalyzing the conversion of tyrosol to hydroxytyrosol by the implementation of various induction tests on strain HTB24.
Au cours de ces essais, il a été étudié le comportement à1 Halomonas HTB24 en fonction de différentes conditions de préculture et de culture.During these tests, it was studied the behavior 1 Halomonas HTB24 depending on different conditions of preculture and culture.
Deux pré-cultures successives contenant 5 mM d'inducteur aromatique et dans certains cas lg/L d'extrait de levure, ont été effectuées (colonne a du Tableau II). La souche HTB24 ne croit pas sur le 2-tyrosol et le 2-HPA. Pour les réactions de bioconversions, les cellules ont été préparées à raison de 6 g/L (poids frais). Au delà de cette valeur de concentration, les résultats sont trop fluctuants, probablement à cause de la plus faible disponibilité en oxygène.Two successive pre-cultures containing 5 mM of aromatic inducer and in some cases 1 g / L of yeast extract were carried out (column a of Table II). Strain HTB24 does not believe in 2-tyrosol and 2-HPA. For the bioconversions reactions, the cells were prepared at a rate of 6 g / L (fresh weight). Beyond this concentration value, the results are too fluctuating, probably because of the lower availability of oxygen.
Ensuite, la souche a été mise en culture dans un milieu contenant des combinaisons d'extrait de levure 1 g/L, de glucose à 20 mM, et divers composés phénoliques tels que le 4- HPA, le 3,4-DHPA ou le 4-hydroxybenzoate (4-HB) (colonne b du Tableau II). Les conditions de culture sont les suivantes : les cellules ont été incubées à 3O0C à une agitation de 150 rpm pendant 2Oh en présence de 4-tyrosol ou de 4-HPA (5 mM chacun). Après 48 h de culture, le milieu est centrifugé et les cellules mises en condition stationnaire (resting cells) en présence de 5 mM de 4-HPA ou de tyrosol.Then, the strain was cultured in medium containing yeast extract 1 g / L, glucose 20 mM, and various phenolic compounds such as 4-HPA, 3,4-DHPA or 4-hydroxybenzoate (4-HB) (column b of Table II). The culture conditions are as follows: the cells were incubated at 30 ° C. with stirring of 150 rpm for 20 h in the presence of 4-tyrosol or 4-HPA (5 mM each). After 48 h of culture, the medium is centrifuged and the cells placed in stationary condition (resting cells) in the presence of 5 mM 4-HPA or tyrosol.
Les composés aromatiques ont été identifiés par GC-MS (chromatographie en phase gazeuse couplée à un spectromètre de masse) et quantifiés par HPLC (moyenne de trois déterminations, avec des écart-types inférieurs à 0,1). Le CHMS a été déterminé par spectrophotométrie à 380 nm (Sparnins et al. 1974 ; Cooper and Skinner 1980). Les pourcentages de dégradation (4-tyrosol ou 4-HPA) sont indiqués entre parenthèses et ont été calculés grâce aux aires des pics obtenus en HPLC à leur longueur d'onde maximale respective (colonne c du Tableau II).The aromatic compounds were identified by GC-MS (gas chromatography coupled to a mass spectrometer) and quantified by HPLC (average of three determinations, with standard deviations less than 0.1). CHMS was determined spectrophotometrically at 380 nm (Sparnins et al, 1974, Cooper and Skinner 1980). The percentages of degradation (4-tyrosol or 4-HPA) are indicated in parentheses and were calculated by the areas of peaks obtained in HPLC at their respective maximum wavelength (column c of Table II).
Pre-grovvth conditions" Aromatic substrate used for conversion Htyrb (mM)Pre-grovvth conditions "Aromatic substrate used for conversion Htyrb (mM)
YE Aronidlio used for induction 4-HPA (% lonverled)' 4-tyrosol (% tonverted)'YE Aronidlio used for induction 4-HPA (% lonverled) '4-tyrosol (% toneded)'
4-HPA 3,4-DHPA1 CHMS (IOO) HTyr (52) 2 64-HPA 3,4-DHPA 1 CHMS (100) HTyr (52) 2 6
4-HPA 3,4-DHPA CHMS (I OO) HTyr (56) 2 84-HPA 3,4-DHPA CHMS (IOO) HTyr (56) 2 8
4-HPΛ + glucose -4-HPΛ + glucose -
3-HPA 3,4-DHPA, CHMS (100) HTyr (47) 2353-HPA 3,4-DHPA, CHMS (100) HTyr (47) 235
4-tyrosol 3,4-DHPA, CHMS (IOO) HTyr, 4-HPΛ, 3,4-DHPΛ, CHMS, (100) 1 544-tyrosol 3,4-DHPA, CHMS (100) HTyr, 4-HPΛ, 3,4-DHPΛ, CHMS, (100) 1 54
4-tyrosol 3,4-DHPA, CHMS (100) HTyr, 4-HPA, 3,4-DHPA, CHMS, (100) 1 644-tyrosol 3,4-DHPA, CHMS (100) HTyr, 4-HPA, 3,4-DHPA, CHMS, (100) 1 64
4-tyrosol + glucose HPA traces4-tyrosol + glucose HPA traces
3-tyrosol 3,4-DHPA, CHMS (100) 1 453-tyrosol 3,4-DHPA, CHMS (100) 1 45
3,4-DHPA [3,4-DHPA, CHMS] traces3,4-DHPA [3,4-DHPA, CHMS] traces
4-HB -4-HB -
4-C - tyrosine [1,4-DHPA, CHMS] traces4-C - tyrosine [1,4-DHPA, CHMS] traces
4-hydroxyphenylpyruv ate [3,4-DHPA CHMS] traces4-hydroxyphenylpyruvate [3,4-DHPA CHMS] traces
Tableau II. Conversion du tyrosol et du 4-HPA par des cellules de la souche Halomonas sp. HTB24 (conditions de « resting cells »).Table II. Conversion of tyrosol and 4-HPA by cells of the strain Halomonas sp. HTB24 (conditions of "resting cells").
Abréviations : 4-HPA, 4-hydroxyphenylacetic acid; 4-tyrosol, 2-(4-hydroxyphenyl)-ethanol; HTyr, hydroxytyrosol; 3,4-DHPA, 3,4-dihydroxyphenylacetic acid; 4-HB, 4-hydroxybenzoic acid; 4-C, 4-coumaric acid; CHMS, 5-carboxymethyl-2-hydroxymuconic acid semialdehyde.Abbreviations: 4-HPA, 4-hydroxyphenylacetic acid; 4-tyrosol, 2- (4-hydroxyphenyl) ethanol; HTyr, hydroxytyrosol; 3,4-DHPA, 3,4-dihydroxyphenylacetic acid; 4-HB, 4-hydroxybenzoic acid; 4-C, 4-coumaric acid; CHMS, 5-carboxymethyl-2-hydroxymuconic acid semialdehyde.
Les résultats montrent nettement que la production d'hydroxytyrosol est corrélée à la présence de 4-HPA dans le milieu de pré-culture.The results clearly show that the production of hydroxytyrosol is correlated with the presence of 4-HPA in the pre-culture medium.
LC. Isolement de la fraction cellulaire contenant l'activité enzvmatique responsable de la conversion du tyrosol en hydroxytyrosolLC. Isolation of the cell fraction containing the enzymatic activity responsible for the conversion of tyrosol to hydroxytyrosol
Pour confirmer que l'enzyme responsable de la conversion du tyrosol en hydroxytyrosol est bien la 4-HPA 3-monooxygénase, l'activité enzymatique de la fraction bactérienne où devrait se trouver l'enzyme (d'après la littérature, cette enzyme est intracellulaire) est mesurée.To confirm that the enzyme responsible for the conversion of tyrosol to hydroxytyrosol is indeed 4-HPA 3-monooxygenase, the enzymatic activity of the fraction bacterial in which the enzyme should be found (according to the literature, this enzyme is intracellular) is measured.
La purification de l'enzyme s'est effectuée en plusieurs étapes en suivant simultanément dans les différentes fractions l'activité hydroxylante du tyrosol et celle du 4- HPA. Les étapes de purification ont été réalisées suivant différents modes chromatographiques (DEAE-Sepharose, perméation sur gel, MonoQ). L'activité hydroxylante du tyrosol ou du 4-HPA a été déterminée à 250C dans un tube en verre contenant 2 μL de FAD 1 mM, 10 μL de NADH 2 mM, 10 μL d'extrait contenant une composante réductase, 50 μL d'enzyme (fraction chromato graphique), et 18 μL de tampon Tris-HCl 50 mM, pH 8,0. La réaction est démarrée par l'addition de 5 mM de tyrosol ou de 4-HPA. La réaction est stoppée par l'addition de 5% (v/v) d'acide acétique glacial. L'échantillon est ensuite centrifugé à 10 000 g pendant 10 min et le produit de la réaction, l'hydroxytyrosol ou le 3,4- DHPA est quantifié par HPLC (voir le protocole détaillé au point 1.1.4. de l'exemple 3).The purification of the enzyme was carried out in several stages by simultaneously following in the various fractions the hydroxylating activity of tyrosol and that of 4-HPA. The purification steps were carried out according to different chromatographic modes (DEAE-Sepharose, gel permeation, MonoQ). The hydroxylating activity of tyrosol or 4-HPA was determined at 25 ° C. in a glass tube containing 2 μl of 1 mM FAD, 10 μl of 2 mM NADH, 10 μl of extract containing a reductase component, 50 μl of enzyme (graphical chromato fraction), and 18 μl of 50 mM Tris-HCl buffer, pH 8.0. The reaction is started by the addition of 5 mM tyrosol or 4-HPA. The reaction is stopped by the addition of 5% (v / v) glacial acetic acid. The sample is then centrifuged at 10,000 g for 10 min and the reaction product, hydroxytyrosol or 3,4-DHPA is quantified by HPLC (see protocol detailed in point 1.1.4 of Example 3). ).
Il a ainsi été mis en évidence que l'activité hydroxylante du 4-HPA et du tyrosol coïncident systématiquement (même fraction). La Figure 5 représente l'une de ces étapes de purification (deux DEAE-Sépharose successives). ConclusionIt has thus been demonstrated that the hydroxylating activity of 4-HPA and tyrosol coincide systematically (same fraction). Figure 5 represents one of these purification steps (two successive DEAE-Sepharose). Conclusion
Ces travaux confirment bien que la 4-HPA 3-monooxygénase, qui catalyse normalement l'hydroxylation du 4-HPA en 3,4-DHPA, permet également l'hydroxylation du tyrosol en hydroxytyrosol. L'enzyme n'est donc pas spécifique du 4-HPA. Celle-ci a été caractérisée dans diverses bactéries telles que Escherichia coli (Prieto et al., 1996), Micrococcus luteus (Sparnins et Chapman, 1976), Pseudomonas aeruginosa (Ballou et al., 2005; Zeng et Jin 2003), Serratia marscecens (Trias et al., 1989), mais sans aucune description sur son éventuelle propriété à hydroxyler le tyrosol.These studies confirm that 4-HPA 3-monooxygenase, which normally catalyzes the hydroxylation of 4-HPA to 3,4-DHPA, also allows the hydroxylation of tyrosol to hydroxytyrosol. The enzyme is therefore not specific for 4-HPA. This has been characterized in various bacteria such as Escherichia coli (Prieto et al., 1996), Micrococcus luteus (Sparnins and Chapman, 1976), Pseudomonas aeruginosa (Ballou et al., 2005, Zeng and Jin 2003), Serratia marscecens (Trias et al., 1989), but without any description of its possible property to hydroxylate tyrosol.
Exemple 2 - Comparaison de plusieurs souches décrites dans la littérature comme produisant l'hvdroxytyrosol et de souches exprimant la 4-HPA-3-monooxygénaseExample 2 Comparison of Several Strains Described in the Literature as Producing Hydroxytyrosol and Strains Expressing 4-HPA-3-Monoxygenase
Des expériences de production d' hydroxytyrosol en condition de « resting cells » par différentes souches décrites dans la littérature ou connues pour exprimer la 4-HPA 3- monooxygénase ont été réalisées.Experiments for the production of hydroxytyrosol under the condition of "resting cells" by various strains described in the literature or known to express 4-HPA-3-monooxygenase have been carried out.
Les souches testées sont : Pseudomonas aeruginosa DSM 50071τ, Serratia marcescens DSM 30121τ, Escherichia coli souche W DSM 1116T, Halomonas alkaliantarctica DSM 15686T, H. nephmia DSM 15720τ, et Micrococcus luteus DSM 20030 , toutes obtenues du Deutsche Sammlung von Mikroorganismen und Zellkulturen, de Brunschweig en Allemagne (DSMZ). Halomonas sp. HTB24 a été récemment isolée et déposée à la collection de l'Institut Pasteur (France) sous le numéro CIP 109599.The strains tested are: Pseudomonas aeruginosa DSM 50071 τ , Serratia marcescens DSM 30121 τ , Escherichia coli strain W DSM 1116 T , Halomonas alkaliantarctica DSM 15686 T , H. nephmia DSM 15720 τ , and Micrococcus luteus DSM 20030, all obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen, Brunschweig in Germany (DSMZ). Halomonas sp. HTB24 was recently isolated and deposited in the Institut Pasteur collection (France) under the number CIP 109599.
Les bactéries ont été pré-cultivées deux fois en présence de 5 mM de 4-HPA comme inducteur, puis prélevées et concentrées pour être resuspendues à 6 g/L dans un tampon phosphate à pH 7,5. L'incubation débute juste après l'ajout de 5 mM de tyrosol dans le milieu. La production d'hydroxytyrosol est suivie par HPLC (Figure 6).The bacteria were pre-cultured twice in the presence of 5 mM 4-HPA as inducer, then removed and concentrated to resuspended at 6 g / L in pH 7.5 phosphate buffer. Incubation begins immediately after adding 5 mM tyrosol to the medium. The production of hydroxytyrosol is monitored by HPLC (Figure 6).
Au-delà de 10 h, chez toutes les souches sauf Escherichia coli W, est observée une diminution de l'hydroxytyrosol oxydé en 3,4-DHPA, due à des activités aryle déshydrogénases.Beyond 10 h, in all the strains except Escherichia coli W, a decrease of the oxidized hydroxytyrosol in 3,4-DHPA, due to aryl dehydrogenase activities, is observed.
Seule, Escherichia coli W garde une concentration constante en hydroxytyrosol ainsi qu'en tyrosol non transformé. Des tests complémentaires de culture en batch en présence de tyrosol ont également été réalisés avec ces mêmes souches. Seule Escherichia coli W n'oxyde pas le tyrosol en 4-HPA.Only Escherichia coli W keeps a constant concentration of hydroxytyrosol as well as unprocessed tyrosol. Additional tests of batch culture in the presence of tyrosol have also been carried out with these same strains. Only Escherichia coli W does not oxidize tyrosol to 4-HPA.
Escherichia coli W peut donc être une des bactéries à retenir pour produire de l'hydroxytyrosol à partir du tyrosol.Escherichia coli W may therefore be one of the bacteria to be retained for producing hydroxytyrosol from tyrosol.
Exemple 3 - Production d'hydroxytyrosol par Escherichia coli I. Confirmation de la production d'hydroxytyrosol par Escherichia coliEXAMPLE 3 Production of Hydroxytyrosol by Escherichia Coli I. Confirmation of Hydroxytyrosol Production by Escherichia Coli
Ll Matériels et MéthodesLl Materials and Methods
1.1.1 Description de la souche1.1.1 Description of the strain
Escherichia coli souche W (DMS 1116; ATCC 9637; CCM 2024; NCIB 8666) est une bactérie non pathogène qui est décrite pour produire une diaminopimélate décarboxylase (Dewey, 1954), une glutamine synthétase (Wu et Yuan, 1968), des hydrogénases (Ackrell et al., 1966), une pénicilline acylase ainsi que des céphalosporines par bioconversion (Brevet U.S. 3, 945,888).Escherichia coli strain W (DMS 1116, ATCC 9637, TLC 2024, NCIB 8666) is a non-pathogenic bacterium that is described to produce diaminopimelate decarboxylase (Dewey, 1954), glutamine synthetase (Wu and Yuan, 1968), hydrogenases ( Ackrell et al., 1966), penicillin acylase and cephalosporins by bioconversion (US Pat. No. 3,945,888).
1.1.2 Milieux de culture et solutions mères1.1.2 Culture media and stock solutions
Le milieu de culture contient par litre : 0,6 g de KH2PO4, 0,6 g de K2HPO4, 0,5 g de NaCl, 1 g de NH4Cl. Le pH est ajusté à 7,0 avec une solution de KOH 10 M. Le milieu est ensuite autoclave à 120°C pendant 20 min. En routine, des cultures de 25 mL sont réalisées dans des erlenmeyers cotonnés de 250 mL en présence de 5 mM de 4-HPA et 1 g/L d'extrait de levure.The culture medium contains per liter: 0.6 g of KH 2 PO 4 , 0.6 g of K 2 HPO 4 , 0.5 g of NaCl, 1 g of NH 4 Cl. The pH is adjusted to 7.0 with 10M KOH solution. The medium is then autoclaved at 120 ° C for 20 min. Routinely, cultures of 25 ml are carried out in 250 ml flasks of Erlenmeyer flasks in the presence of 5 mM of 4-HPA and 1 g / l of yeast extract.
Tampons. Pour les expériences en resting-cells (bioconversion par des cellules intactes en conditions stationnaires), le tampon utilisé est un tampon phosphate 50 mM à pH 7,0. Solutions mères. Les composés aromatiques ont été préparés en anaérobiose, stérilisés par filtration (filtre Millipore, porosité 0,22 μm), et conservés en flacons de pénicilline sous N2 à température ambiante et à l'abri de la lumière (flacons couverts avec du papier d'aluminium). Les solutions mères de composés aromatiques acides sont préparés à une concentration de 250 mM et ont été neutralisés à pH 7 avec du NaOH (0,4 g pour 25 mL). Ils sont ajoutés dans le milieu de culture avant inoculation à 5 mM (concentration finale).Buffers. For the resting-cell experiments (bioconversion by intact cells under stationary conditions), the buffer used is a 50 mM phosphate buffer at pH 7.0. Mother solutions. The aromatic compounds were prepared in anaerobiosis, sterilized by filtration (Millipore filter, porosity 0.22 μm), and kept in penicillin bottles under N 2 to ambient temperature and protected from light (vials covered with aluminum foil). Stock solutions of acidic aromatic compounds are prepared at a concentration of 250 mM and neutralized to pH 7 with NaOH (0.4 g per 25 mL). They are added to the culture medium before inoculation at 5 mM (final concentration).
La solution mère d'extrait de levure [25 % (p/v)] (yeast extract, de chez PANREAC, référence 403687.1210) est préparée et stérilisée à l'autoclave pendant 20 min à 1200C.The stock solution of yeast extract [25% (w / v)] (yeast extract, from PANREAC, reference 403687.1210) is prepared and sterilized by autoclaving for 20 min at 120 ° C.
1.1.3 Pré-cultures et cultures1.1.3 Pre-crops and crops
Les expériences ont été réalisées à partir de cultures de 25 ml, dans des erlenmeyers cotonnés de 250 ml. E. coli W est préalablement décongelée de la collection du laboratoire, puis ensemencée dans le milieu en présence de 5 mM de 4-HPA. Après 10 h à 37°C dans des incubateurs INFORS à une agitation de 150 rpm, les pré-cultures sont inoculées à raison de 10% (v/v) de la pré-culture précédente dans le milieu contenant 5 mM de 4-HPA. Les cultures sont enfin mises en agitation dans les mêmes conditions en présence de 4 mM de 4-HPA et de tyrosol (2 ou 3 mM) pendant plusieurs heures avec un suivi de l'apparition et disparition des composés aromatiques, ainsi que de la croissance mesurée par l'absorbance à 600 nm.The experiments were carried out from 25 ml cultures in 250 ml cotton flasks. E. coli W is previously thawed from the laboratory collection and then inoculated into the medium in the presence of 5 mM 4-HPA. After 10 h at 37 ° C. in INFORS incubators with a stirring of 150 rpm, the pre-cultures are inoculated at a rate of 10% (v / v) of the preceding preculture into the medium containing 5 mM of 4-HPA. . The cultures are finally stirred under the same conditions in the presence of 4 mM of 4-HPA and tyrosol (2 or 3 mM) for several hours with monitoring of the appearance and disappearance of aromatic compounds, as well as growth. measured by absorbance at 600 nm.
1.1.4 Extraction et identification chimique par HPLC et GC-MS1.1.4 Extraction and chemical identification by HPLC and GC-MS
La production d'hydroxytyrosol est contrôlée par HPLC, sa structure confirmée par spectrométrie de masse couplée à un chromatographe en phase gazeuse après extraction et dérivation.The production of hydroxytyrosol is controlled by HPLC, its structure confirmed by mass spectrometry coupled to a gas chromatograph after extraction and bypass.
Extraction. 1 ml de culture bactérienne est prélevé et centrifugé (8000g, 5 min); 400 μL de surnageant sont acidifiés par 20 μL d'acide acétique glacial puis centrifugé à nouveau (précipitation des protéines extracellulaires). Enfin, 10 à 20 μL du surnageant obtenu (appelée solution primaire) sont injectés en HPLC. Pour contrôler la structure chimique des composés, la solution primaire est extraite 2 fois à l'acétate d'éthyle. Après évaporation à sec, deux orientations sont possibles :Extraction. 1 ml of bacterial culture is removed and centrifuged (8000g, 5 min); 400 .mu.l of supernatant are acidified with 20 .mu.l of glacial acetic acid and then centrifuged again (precipitation of the extracellular proteins). Finally, 10 to 20 μl of the supernatant obtained (called the primary solution) are injected in HPLC. To control the chemical structure of the compounds, the primary solution is extracted twice with ethyl acetate. After dry evaporation, two orientations are possible:
- un contrôle par HPLC est réalisé à nouveau en reprenant l'extrait sec dans du méthanol et en injectant 10 μl ; oua control by HPLC is carried out again by taking up the dry extract in methanol and injecting 10 μl; or
- l'extrait sec est dérivé par du BSTFA pour injection en GC-MS.the dry extract is derived by BSTFA for injection into GC-MS.
Identification par HPLC. Les analyses HPLC sont effectuées sur une chaîne WATERS équipée d'un dégazeur à membrane, d'un iηjecteur RHEODYNE 7725i (La JoIa, USA), d'une pompe binaire 1525, d'un four thermostaté à 30°C et d'un détecteur à barrette de diode 2996. L'appareil est piloté par le logiciel Millenium 32 version 4.0. La séparation est assurée par une colonne Cig SYMETRY (150 x 4,6 mm, porosité 5 μm, WATERS). La phase mobile, entraînée à un débit de 0,8 mL/min est composée de deux solvants : l'acétonitrile (A) et l'eau distillée acidifiée à 1% d'acide acétique (B). La durée totale de l'élution est de 55 min. Le gradient utilisé s'effectue en trois étapes : Etape I5 de 5 à 20% de A dans B pendant 30 min ; Etape 2, de 20 à 100% de A dans B pendant 20 min ; Etape 3, retour à 5% de A dans B en 5 min. L'identification des composés s'effectue d'une part par la détermination des temps de rétention et d'autre part grâce aux spectres UV/VIS de chaque composé élue, cela comparativement à des standards.Identification by HPLC. The HPLC analyzes are carried out on a WATERS system equipped with a membrane degasser, a RHEODYNE 7725i injector (La JoIa, USA), a 1525 binary pump, a thermostatically controlled oven at 30 ° C. and a 2996 diode array detector. The device is controlled by Millenium 32 software version 4.0. The separation is ensured by a SYMETRY Cig column (150 x 4.6 mm, porosity 5 μm, WATERS). The mobile phase, entrained at a flow rate of 0.8 mL / min, is composed of two solvents: acetonitrile (A) and water distilled acidified with 1% acetic acid (B). The total elution time is 55 min. The gradient used is done in three steps: Step I 5 5 to 20% A in B for 30 min; Step 2, 20 to 100% A to B for 20 min; Step 3, return to 5% from A to B in 5 min. The identification of the compounds is carried out on the one hand by the determination of retention times and on the other hand by the UV / VIS spectra of each compound eluted, compared to standards.
Dérivation et identification par GC-MS. La dérivation est effectuée sur l'extrait sec avec un mélange BSTFA + 1% TMCS (N,O-bis(triméthylsilyl)trifluoroacétamide + 1% triméthylchlorosilane) de chez SIGMA-ALDRICH (Réf. T6381). A 0,3-1 mg d'échantillon sec sont ajoutés 100 μL de pyridine et 100 μL de réactif (B STF A+1% TMCS). Le mélange est ensuite placé à l'étuve pendant 20 min à 60°C, évaporé sous azote et le résidu repris dans le méthanol ou l'acétate d'éthyle. Un μL est injecté en GC-MS.Derivation and identification by GC-MS. The derivation is carried out on the dry extract with a mixture of BSTFA + 1% TMCS (N, O-bis (trimethylsilyl) trifluoroacetamide + 1% trimethylchlorosilane) from SIGMA-ALDRICH (Ref T6381). To 0.3-1 mg of dry sample are added 100 μL of pyridine and 100 μL of reagent (B STF A + 1% TMCS). The mixture is then placed in an oven for 20 min at 60 ° C., evaporated under nitrogen and the residue taken up in methanol or ethyl acetate. One μL is injected into GC-MS.
Les analyses ont été menées avec un appareil GC-MS (AGILENT TECHNOLOGIES) composé d'un chromato graphe 6890N GC System, d'un spectromètre de masse 5973 Mass Selectiv Detector équipé d'une source d'ion à impact électronique et d'un analyseur de type quadrupôle, d'un logiciel d'acquisition MSD-CHEMSTATION. Les composés sont séparés à l'aide d'une colonne capillaire DB-IMS (30 m x 0,25 mm, de chez JW Scientific) et dont les limites de température sont comprises entre -600C et 3500C. La phase mobile est l'hélium. La pression dans la colonne est de 10,5 psi et le débit de 1 mL/min. La température de l'injecteur (Inlet) est de 280°C. La programmation du gradient de température est la suivante : 1 min à 1000C, puis croissant de 100 à 2600C à raison de 4°/min, puis 10 min à 2600C. La durée totale de l'élution est de 51 min. Les spectres de masse obtenus sont comparés à ceux des banques NIST et WHILEY contenus dans le logiciel.The analyzes were carried out with a GC-MS (AGILENT TECHNOLOGIES) apparatus consisting of a 6890N GC System chromato graph, a 5973 Mass Selectiv Detector mass spectrometer equipped with an electron impact ion source and a quadrupole type analyzer, MSD-CHEMSTATION acquisition software. The compounds are separated using a DB-IMS capillary column (30 mx 0.25 mm, from JW Scientific) and whose temperature limits are between -60 0 C and 350 0 C. The mobile phase is helium. The pressure in the column is 10.5 psi and the flow rate is 1 mL / min. The temperature of the injector (Inlet) is 280 ° C. The programming of the temperature gradient is as follows: 1 min at 100 ° C., then increasing from 100 ° to 260 ° C. at 4 ° / min, then 10 min at 260 ° C. The total elution time is 51 min. The mass spectra obtained are compared with those of the NIST and WHILEY libraries contained in the software.
1.2 Résultats obtenus1.2 Results obtained
1.2.1 Escherichia coli produit de l'hydroxytyrosol1.2.1 Escherichia coli produces hydroxytyrosol
Escherichia coli est cultivée dans le milieu décrit précédemment (cf. 1.1.2). On constate qu'il y a synthèse d'hydroxytyrosol lorsque la bactérie a été préalablement précultivée en présence de 4-HPA, puis cultivée dans un milieu contenant du 4-HPA et du tyrosol, comparativement à une culture réalisée dans les mêmes conditions mais en absence de 4-HPA. L'analyse GC-MS montre bien la synthèse d'hydroxytyrosol confirmée par sa fragmentation en spectrométrie de masse et les banques de spectres NIST et WHILEY (Figure 7A et 7B). 1.2.2 Croissance bactérienne en présence de tyrosol et de 4-HPAEscherichia coli is cultured in the medium described previously (see 1.1.2). It is found that there is synthesis of hydroxytyrosol when the bacterium has been previously precultured in the presence of 4-HPA, then grown in a medium containing 4-HPA and tyrosol, compared to a culture performed under the same conditions but in absence of 4-HPA. The GC-MS analysis clearly shows the synthesis of hydroxytyrosol confirmed by its fragmentation in mass spectrometry and the NIST and WHILEY spectral libraries (FIGS. 7A and 7B). 1.2.2 Bacterial growth in the presence of tyrosol and 4-HPA
En présence de 1 g/1 d'extrait de levure, de 2 mM de tyrosol et de 4 mM de 4-HPA dans le milieu de culture, la bactérie dégrade d'abord le 4-HPA totalement en 6 h de temps, en formant le 3,4-DHPA comme composé intermédiaire (Figure 8). Après 6 h de culture, un prélèvement et une analyse HPLC sont effectués (Figure 9), montrant un très faible taux d'hydroxytyrosol (équivalent à 0,08 mM, pic 1).In the presence of 1 g / l of yeast extract, 2 mM of tyrosol and 4 mM of 4-HPA in the culture medium, the bacterium first degrades 4-HPA completely in 6 h of time, in forming 3,4-DHPA as an intermediate compound (Figure 8). After 6 h of culture, sampling and HPLC analysis are performed (FIG. 9), showing a very low level of hydroxytyrosol (equivalent to 0.08 mM, peak 1).
Après 6 h de culture, le tyrosol est hydroxylé en hydroxytyrosol, transformation qui dure 2 h de temps (Figure 8). L'hydroxytyrosol garde ensuite une concentration constante d'environ 0,7 mM, même après 10 h de culture (Figure 10).After 6 h of culture, the tyrosol is hydroxylated to hydroxytyrosol, a transformation which lasts 2 h of time (FIG. 8). The hydroxytyrosol then keeps a constant concentration of about 0.7 mM, even after 10 h of culture (Figure 10).
De la même manière, après 20 h et au delà, l'hydroxytyrosol et le tyrosol restent constants dans la culture qui est en phase stationnaire (absorbance de 2.0). E. coli ne dégrade plus le tyrosol, et n'a aucune action sur l'hydroxytyrosol. La 4-HPA monooxygénase ne semble plus fonctionner ; on suppose qu'elle est inhibée par le produit de la réaction qui est 1 ' hydroxytyrosol .In the same way, after 20 hours and beyond, the hydroxytyrosol and the tyrosol remain constant in the culture which is in the stationary phase (absorbance of 2.0). E. coli no longer degrades tyrosol, and has no action on hydroxytyrosol. 4-HPA monooxygenase no longer seems to work; it is believed to be inhibited by the reaction product which is hydroxytyrosol.
L'expérience précédente est à nouveau réalisée dans les mêmes conditions avec cette fois 3 mM de tyrosol. Les résultats concernant la production d'hydroxytyrosol sont identiques aux observations précédentes, et qui indiquent que le tyrosol n'a pas été totalement transformé. Après 1O h de croissance, 4 mM de 4-HPA sont à nouveau rajoutés dans le milieu. A ce stade, un prélèvement et une analyse HPLC sont immédiatement effectués (Figure 11). Après 24 h, les analyses sont illustrées par la Figure 12. Il y a eu une augmentation importante d'hydroxytyrosol qui atteint une concentration de 2,2 mM (soit 340 mg/L), ainsi qu'une consommation totale de 4-HPA.The previous experiment is again performed under the same conditions with this time 3 mM tyrosol. The results concerning the production of hydroxytyrosol are identical to the previous observations, which indicate that the tyrosol has not been totally transformed. After 10 h of growth, 4 mM of 4-HPA are again added to the medium. At this point, HPLC sampling and analysis are immediately performed (Figure 11). After 24 h, the analyzes are shown in Figure 12. There was a significant increase in hydroxytyrosol which reached a concentration of 2.2 mM (340 mg / L), as well as a total consumption of 4-HPA .
Ainsi, l'ajout de 4-HPA dans le milieu de culture permet d'augmenter considérablement le taux d'hydroxytyrosol.Thus, the addition of 4-HPA in the culture medium makes it possible to considerably increase the level of hydroxytyrosol.
1.3 Conclusions1.3 Conclusions
Si le substrat (tyrosol) et l'inducteur (le 4-HPA) sont ajustés aux bonnes concentrations et additionnés dans le milieu à des temps bien déterminés, il est possible d'élaborer un procédé dans lequel l'hydroxytyrosol reste l'unique composé présent dans le milieu. Une extraction à l'acétate d'éthyle permet de l'obtenir avec un taux de pureté approchant 98-99%. Références bibliographiquesIf the substrate (tyrosol) and the inducer (4-HPA) are adjusted to the correct concentrations and added to the medium at well-defined times, it is possible to develop a process in which hydroxytyrosol remains the only compound present in the middle. Extraction with ethyl acetate makes it possible to obtain it with a degree of purity approaching 98-99%. Bibliographical references
Ackrell, B.A.C., Asato, R.N., et Mower, H.F. 1966. Multiple forms of bacterial hydrogenases. J. Bacteriol. 92:Ackrell, B.A.C., Asato, R.N., and Mower, H.F. 1966. Multiple forms of bacterial hydrogenases. J. Bacteriol. 92:
828-838.828-838.
Allouche, N., Damak, M., Ellouz, R. et Sayadi, S. 2004. Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion oftyrosol. Applied and Environmental Microbiology.Allouche, N., Damak, M., Ellouz, R. and Sayadi, S. 2004. Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Applied and Environmental Microbiology.
70: 2105-2109.70: 2105-2109.
Allouche, N. et Sayadi, S. 2005. Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid and 3- hydroxyphenylacetic acid by differential conversion oftyrosol isomers using Serratia marcescens sixain. Journal ofAgricidtiiral and Food Chemistry. 53: 6525-6530.Allouche, N. and Sayadi, S. 2005. Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens sixain. Journal of Agricultural and Food Chemistry. 53: 6525-6530.
Amiot, MJ. , Fleuriet, A. et Macheix, JJ. 1986. Importance and évolution of phenolic compounds in olive during growth and maturation. Journal ofΛgricultural and Food Chemistry. 34: 823-826.Amiot, MJ. , Fleuriet, A. and Macheix, JJ. 1986. Importance and evolution of phenolic compounds in olive during growth and maturation. Journal of Agricultural and Food Chemistry. 34: 823-826.
Arunachalam U., Massey V. et Vaidyanathan C. S. 1992. p-Hydroxyphenylacetate-3-hydroxylase : a two- component enzyme. The Journal of Biological Chemistry. 267: 25848-25855.Arunachalam U., Massey V. and Vaidyanathan C. S. 1992. p-Hydroxyphenylacetate-3-hydroxylase: a two-component enzyme. The Journal of Biological Chemistry. 267: 25848-25855.
Aruoma, O.I., Deiana, M., Jenner, A., Halliwell, B., Kaur, H., Banni, S., Corongiu, F.P., Dessi, M.A. etAruoma, O.I., Deiana, M., Jenner, A., Halliwell, B., Kaur, H., Banni, S., Corongiu, F.P., Dessi, M.A. and
Aeschbach, R. (1998). Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and on low-density lipoprotein oxidation. Journal ofAgricultural and Food Chemistry. 46: 5181 -5187.Aeschbach, R. (1998). Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and on low-density lipoprotein oxidation. Journal of Agriculture and Food Chemistry. 46: 5181-5187.
Bai, C, Yan, X., Takenaka, M., Sekiya, K. et Nagata, T. 1998. Détermination of synthetic hydroxytyrosol in rat plasma by GC-MS. Journal ofAgricultural and Food Chemistry. 46: 3998-4001.Bai, C, Yan, X., Takenaka, M., Sekiya, K. and Nagata, T. 1998. Determination of synthetic hydroxytyrosol in plasma by GC-MS. Journal of Agriculture and Food Chemistry. 46: 3998-4001.
Ballou, D.P., Entsch, B. et CoIe, LJ. 2005. Dynamics involved in catalysis by single-component and two- component flavin-dependent aromatic hydroxylases. Biochemical and Biophysical Research Communications.Ballou, D.P., Entsch, B. and CoIe, LJ. 2005. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochemical and Biophysical Research Communications.
338: 590-598.338: 590-598.
Barghini, P., Montebove, F., Ruzzi, M. et Schiesser, A. 1998. Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Applied Microbiology and Biotechnology. 49:Barghini, P., Montebove, F., Ruzzi, M. and Schiesser, A. 1998. Optimum conditions for bioconversion of ferulic acid in vanillic acid by Pseudomonas fluorescens BF13 cells. Applied Microbiology and Biotechnology. 49:
309-314.309-314.
Bezançon, P., Debosque S., Delpeuch F., Descomps, B., Gerber, M., Léger, C. L., Padilla, M., etBezançon, P., Debosque S., Delpeuch F., Descomps, B., Gerber, M., Léger, C.L., Padilla, M., and
Puygrenier, M. 2000. Alimentation méditerranéenne et santé : actualités et perspectives. 170 pp. Editions JohnPuygrenier, M. 2000. Mediterranean diet and health: news and perspectives. 170 pp. John Editions
Libbey Eurotext, Montrouge, France.Libbey Eurotext, Montrouge, France.
Bisignano, G., Tomaino, A., Lo Cascio, R., Crisafi, G., Uccella, N. et Saija, A. 1999. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. Journal ofPharmacy and Pharmacology. 51 : 971-974.Bisignano, G., Tomaino, A., Lo Cascio, R., Crisafi, G., Uccella, N. and Saija, A. 1999. On the in vitro antimicrobial activity of oleuropein and hydroxytyrosol. Journal ofPharmacy and Pharmacology. 51: 971-974.
Bonanome, A., Pagnan, A., Caruso, D. et al. 2000. Evidence of postprandial absorption of olive oil phénols in humans. Nutrition, Metabolism & Cardiovascular Diseases. 10: 11 1 -120.Bonanome, A., Pagnan, A., Caruso, D. et al. 2000. Evidence of postprandial absorption of olive oil phenols in humans. Nutrition, Metabolism & Cardiovascular Diseases. 10: 11 1 -120.
Bonoli, M., Montanucci, M., Toschi, T.G. et Lercker, G. 2003. Fast séparation and détermination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array détection. Journal of Chromatography. 1011 : 163-172.Bonoli, M., Montanucci, M., Toschi, T.G. and Lercker, G. 2003. Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra virgin olive oil by capillary electrophoresis zone with ultraviolet-diode array detection. Journal of Chromatography. 1011: 163-172.
Bouallagui, Z. et Sayadi, S. 2006. Production of high hydroxytyrosol yields via tyrosol conversion byBouallagui, Z. and Sayadi, S. 2006. Production of high hydroxytyrosol yields via tyrosol conversion
Pseudomonas aeruginosa immobilized resting-cells. Journal of Agricultural and Food Chemistry. 54: 9906-Pseudomonas aeruginosa immobilized resting-cells. Journal of Agricultural and Food Chemistry. 54: 9906-
9911.9911.
Briante, R., La Cara, F., Tonziello, M.P., Febbraio, F. et Nucci, R. 2001. Antioxidant activity of the main bioactive derivatives from oleuropein hydrolysis by hyperthermophilic β-glycosidase. Journal of Agricultural and Food Chemistry. 49: 3198-3203. Brooks, S., J., Doyle, E., M. et O'connor, K.E. 2006. Tyrosol to hydroxytyrosol biotransformation by immobilised cell extracts of Pseudomonas putida F6. Enzyme and Microbial Technology. 39: 191 -196. Capasso, R., Cristiπzio, G., Evidente, A. et Scognamiglio, F. 1992. Isolation, spectroscopy and sélective phytotoxic effects of polyphenols from vegetable waste waters. Phytochemistry. 31 : 4125-4128. Capasso, R., Evidente, A. et Visca, C. 1994. Production of hydroxytyrosol from olive oil végétation waters Agrochimica. 38: 166-171.Briante, R., La Cara, F., Tonziello, MP, Febbraio, F. and Nucci, R. 2001. Antioxidant activity of the bioactive hand derivatives of oleuropein hydrolysis by hyperthermophilic β-glycosidase. Journal of Agricultural and Food Chemistry. 49: 3198-3203. Brooks, S., J., Doyle, E., M., and O'connor, KE 2006. Tyrosol to hydroxytyrosol biotransformation by immobilized cell extracts of Pseudomonas putida F6. Enzyme and Microbial Technology. 39: 191-196. Capasso, R., Cristiπzio, G., Evidente, A. and Scognamiglio, F. 1992. Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters. Phytochemistry. 31: 4125-4128. Capasso, R., Evidente, A. and Visca, C. 1994. Production of hydroxytyrosol from olive oil vegetation waters Agrochimica. 38: 166-171.
Capasso, R., Evidente, A., Schivo, L., Orru, G., Marcialis, M.A. et Cristinzio, G. 1995. Antibacterial polyphenols from olive oil mill waste waters. Journal of Applied Bacteriology. 79: 393-398. Capasso, R., Evidente, A., Avolio, S. et SoIIa, F. 1999. A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters. Journal ofÂgricultural and FoodChemistiy. 47: 1745-1748. Casalino, E., Calzaretti, G., Sblano, C, Landriscina, V., Felice Tecce, M. et Landriscina, C. 2002. Antioxidant effect of hydroxytyrosol (DPE) and Mn2+ in liver of cadmium-intoxicated rats. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 133: 625-632.Capasso, R., Evidente, A., Schivo, L., Orru, G., Marcialis, M.A. and Cristinzio, G. 1995. Antibacterial polyphenols from olive oil mill waste waters. Journal of Applied Bacteriology. 79: 393-398. Capasso, R., Evidente, A., Avolio, S. and SoIIa, F. 1999. A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters. Journal of Agricultural and Food Chemistry. 47: 1745-1748. Casalino, E., Calzaretti, G., Sblano, C, Landriscina, V., Felice Tecce, M. and Landriscina, C. 2002. Antioxidant effect of hydroxytyrosol (DPE) and Mn2 + in liver of cadmium-intoxicated rats. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 133: 625-632.
Cooper, R.A. et Skinner, M.A. 1980. Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4- dihydroxyphenylacetate pathway in Escherichia coli. Journal of Bacteriology. 143: 302-306. D'Angelo, S., Manna, C, Migliardi, V., Mazzoni, O., Morrica, P., Capasso, G., Pontoni, G., Galletti, P. et Zappia, V. 2001. Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil. Drug Metabolism and Disposition. 29: 1492-1498.Cooper, R. A. and Skinner, M.A. 1980. Catabolism of 3- and 4-hydroxyphenylacetate by 3,4-dihydroxyphenylacetate pathway in Escherichia coli. Journal of Bacteriology. 143: 302-306. D'Angelo, S., Manna, C, Migliardi, V., Mazzoni, O., Morrica, P., Capasso, G., Pontoni, G., Galletti, P. and Zappia, V. 2001. Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil. Drug Metabolism and Disposition. 29: 1492-1498.
D'Angelo, S., lngrosso, D., Migliardi, V. et al. 2005. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells. Free Radical Biology & Médiane. 38: 908-919.D'Angelo, S., Ingrosso, D., Migliardi, V. et al. 2005. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage caused by long-wave ultraviolet radiation in melanoma cells. Free Radical Biology & Median. 38: 908-919.
Deiana, M., Aruoma, O.I., Bianchi, M.L. et al. 1999. Inhibition of peroxynitrite dépendent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radical Biology & Medicine. 26: 762-769. de la Puerta, R., Ruiz Gutierrez, V. et Hoult, J.R. 1999. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochemical Pharmacology. 57: 445-449.Deiana, M., Aruoma, O.I., Bianchi, M.L. et al. 1999. Inhibition of peroxynitrite-dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radical Biology & Medicine. 26: 762-769. Puerta, R., Ruiz Gutierrez, V. and Hoult, J.R. 1999. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochemical Pharmacology. 57: 445-449.
Dewey, D.L. 1954. The distribution of diaminopimelic acid decarboxylase among some organisms of the coli- aerogenes group and certain other bacteria. J. Gen. Microbiol. 11 : 307-312.Dewey, D.L. 1954. The distribution of diaminopimelic acid decarboxylase among some organisms of the coli-aerogenes group and certain other bacteria. J. Gen. Microbiol. 11: 307-312.
Espin, J.C., Soler-Rivas, C, Cantos, E., Tomas-Barberan, F.A. et Wichers, HJ. 2001. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. Journal of Agricultural and Food Chemistry. 49: 1 187-1 193.Espin, J.C., Soler-Rivas, C, Cantos, E., Tomas-Barberan, F.A. and Wichers, HJ. 2001. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. Journal of Agricultural and Food Chemistry. 49: 1,187-1,193.
Fki, ]., Sahnoun, Z., et Sayadi, S. 2007. Hypocholesterolemic effects of phenolic extracts and purified hydroxytyrosol recovered from olive mill wastewater in rats fed a cholesterol-rich diet. J Agric Food Chem. 55:624-631.Fki,]., Sahnoun, Z., and Sayadi, S. 2007. Hypocholesterolemic effects of phenolic extracts and purified hydroxytyrosol recovered from olive mill wastewater in fed rats cholesterol-rich diet. J Agric Food Chem. 55: 624-631.
Furneri, P.M., Piperno, A., Sajia, A. et Bisignano, G. 2004. Antimycoplasmal activity of hydroxytyrosol. Antimicrobial Agents and Chemotherapy. 48: 4892-4894.Furneri, P.M., Piperno, A., Sajia, A. and Bisignano, G. 2004. Antimycoplasmal activity of hydroxytyrosol. Antimicrobial Agents and Chemotherapy. 48: 4892-4894.
Hirano, J., Miyamoto, K., et Ohta, H. 2005. Purification and characterization of the alcohol dehydrogenase with a broad substrate specificity originated from 2-phenylethanol-assimilating Brevibacterium sp. KU 1309. J. Biosc. Bioeng. 100: 318-322. Kohyama, N., Nagata, T., Fujimoto, S. et Sekiya, K. 1997. Inhibition of arachidonate lipoxygenase activities by 2-(3,4-dihydroxyphenyl)ethanol, a phenolic compound from olives. Bioscience, Biotechnology, andHirano, J., Miyamoto, K., and Ohta, H. 2005. Purification and characterization of the alcohol dehydrogenase with a broad substrate specificity originated from 2-phenylethanol-assimilating Brevibacterium sp. KU 1309. J. Biosc. Bioeng. 100: 318-322. Kohyama, N., Nagata, T., Fujimoto, S. and Sekiya, K. 1997. Inhibition of arachidonate lipoxygenase activities by 2- (3,4-dihydroxyphenyl) ethanol, a phenolic compound from olives. Bioscience, Biotechnology, and
Biochemistry. 61: 347-350.Biochemistry. 61: 347-350.
Labat, M., Augur, C, Rio, B., Perraud-Gaime, 1. et Sayadi, S. 2000. Biotechnological potentialities of coffee and similar with olive, two models of agroindustrial products rich in polyphenolic compounds: a review. InLabat, M., Augur, C., Rio, B., Perraud-Gaime, 1. and Sayadi, S. 2000. Biotechnological potentialities of coffee and similar with olive, two models of agroindustrial products rich in polyphenolic compounds: a review. in
Coffee .Biotechnology and Quality, pp. 517-531. Edited by Sera, T., Soccol, C. R., Pandey, A. & Roussos, S.Coffee .Biotechnology and Quality, pp. 517-531. Edited by Sera, T., Soccol, C.R., Pandey, A. & Roussos, S.
Dordrecht: Kluwer Académie Publishers.Dordrecht: Kluwer Academy Publishers.
Lee-Huang, S., Huang, P.L., Zhang, D., Lee, J.W., Bao, J., Sun, Y., Chang, Y.T., Zhang, J. et Huang, P.L.Lee-Huang, S., Huang, P.L., Zhang, D., Lee, J.W., Bao, J., Sun, Y., Chang, Y.T., Zhang, J. and Huang, P.L.
2007. Discovery of small-molecule HIV-I fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I.2007. Discovery of small-molecule HIV-I fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I.
Integrase inhibition. Biochemical and Biophysical Research Communications. 354: 872-878.Integrase inhibition. Biochemical and Biophysical Research Communications. 354: 872-878.
Liebgott, P.P., Labat, M., Casalot, L., Amouric, A. et Lorquin, J. 2007. Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by a new Halomonas sp. strainLiebgott, P.P., Labat, M., Casalot, L., Amouric, A. and Lorquin, J. 2007. Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by a new Halomonas sp. strain
HTB24. FEMS Microbiology Letters. 276: 24-33.HTB24. FEMS Microbiology Letters. 276: 24-33.
MacKintosh, W., et Fewson, CA. 1988. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II freom Acinetobacter calcoaceticus; Substrate specificities and inhibition studies. Biochem. J. 255: 653-661MacKintosh, W., and Fewson, CA. 1988. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II freom Acinetobacter calcoaceticus; Substrate specificities and inhibition studies. Biochem. J. 255: 653-661
Maiuri, M.C., De Stefano, D., Di Meglio, P., Irace, C, Savarese, M., Sacchi, R., Cinelli, M.P. et Carnuccio,Maiuri, M.C., De Stefano, D., Di Meglio, P., Irace, C., Savarese, M., Sacchi, R., Cinelli, M.P. and Carnuccio,
R. 2005. Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Archives ofPharmacology. 371 : 457-465.R. 2005. Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Archives ofPharmacology. 371: 457-465.
Manna, C, Galletti, P., Cucciolla, V., Moltedo, O., Leone, A. et Zappia, V. 1997. The Protective effect of the olive oil polyphenol (3,4-Dihydroxyphenyl)- ethanol counteracts reactive oxygen metabolite-induced cytotoxicity in caco-2 cells. Journal of Nutrition. 127: 286-292.Manna, C, Galletti, P., Cucciolla, V., Moltedo, O., Leone, A. and Zappia, V. 1997. The Protective Effect of Olive Oil Polyphenol (3,4-Dihydroxyphenyl) Ethanol Counteracts Reactive Oxygen metabolite-induced cytotoxicity in caco-2 cells. Journal of Nutrition. 127: 286-292.
Petroni, A., Blasevich, M., Salami, M., Papini, N., Montedoro, G. F. et GaIIi, C. 1995. Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thrombosis Research. 78: 151-160.Petroni, A., Blasevich, M., Salami, M., Papini, N., Montedoro, G. F. and GaIIi, C. 1995. Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thrombosis Research. 78: 151-160.
Petroni, A., Blasevich, M., Papini, N., Salami, M., Sala, A. et GaIIi, C. 1997. Inhibition of leukocyte leukotriene B4 production by an olive oil-derived phénol identified by mass-spectrometry. ThrombosisPetroni, A., Blasevich, M., Papini, N., Salami, M., Sala, A. and GaIIi, C. 1997. Inhibition of leukocyte leukocyte B4 production by an olive oil-derived phenol identified by mass-spectrometry. Thrombosis
Research. 87: 315-322.Research. 87: 315-322.
Prieto, M.A., Diaz, E. Et Garcia, J.L. 1996. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Journal ofPrieto, M.A., Diaz, E. and Garcia, J.L. 1996. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Journal of
Bacteriology. 178: 1 1 1 -120.Bacteriology. 178: 1 - 1 - 120.
Rossignol-Castera, A., et Bosque, F. 1994 . Nouvelle approche des antioxydants. OCL, vol. 1 , N^.Rossignol-Castera, A., and Bosque, F. 1994. New approach of antioxidants. OCL, vol. 1, N,
Schaffer, S., Podstawa, M., Visioli, F., Bogani, P., Millier, W.E. et Eckert, G.P. 2007. Hydroxytyrosol-rich olive mill wastewater extract protects brain cells in vitro and ex vivo. Journal of Agricitltural and FoodSchaffer, S., Podstawa, M., Visioli, F., Bogani, P., Millier, W.E. and Eckert, G.P. 2007. Hydroxytyrosol-rich olive wastewater extract protects brain cells in vitro and ex vivo. Journal of Agricultural and Food
Chemistry. 55: 5043-5049.Chemistry. 55: 5043-5049.
Servili, M., Baldioli, M., Selvaggini, R., Macchioni, A. et Montedoro, G. 1999. Phenolic compounds of olive fruit: one- and two-dimensiona! nuclear magnetic résonance characterization of nuzhenide and its distribution in the constitutive parts of fruit. Journal ofAgricultural and Food Chemistry. 47: 12-18.Servili, M., Baldioli, M., Selvaggini, R., Macchioni, A. and Montedoro, G. 1999. Phenolic compounds of olive fruit: one- and two-dimensiona! nuclear magnetic resonance characterization of nuzhenide and its distribution in the constitutive parts of fruit. Journal of Agriculture and Food Chemistry. 47: 12-18.
Sparnins, V.L., Chapman, P.J. et Dagley, S. 1974. Bacterial dégradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. Journal of Bacteriology. 120: 159-167.Sparnins, V.L., Chapman, P.J. and Dagley, S. 1974. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. Journal of Bacteriology. 120: 159-167.
Sparnins, V.L., et Chapman, P.J. 1976. Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria. Journal of Bacteriology. 127: 362-366. Thotsaporn, K., Sucharitakul, J., Wongratana, J., Suadee, C. et Chaiyen, P. 2004. Cloning and expression of ;?-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baiimanniï. évidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases. Biochimica et Biophysica Acta. 1680:Sparnins, VL, and Chapman, PJ 1976. Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria. Journal of Bacteriology. 127: 362-366. Thotsaporn, K., Sucharitakul, J., Wongratana, J., Suadee, C., and Chaiyen, P. 2004. Cloning and expression of hydroxyphenylacetate 3-hydroxylase from Acinetobacter baiimanni. evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases. Biochimica and Biophysica Acta. 1680
60-66.60-66.
Trias, J., Vinas, M., Guinea, J. et Loren, J.G. 1989. Brown pigmentation in Serratia marcescens cultures associated with tyrosine metabolism. Canadian Journal ofMicrobiology. 35: 1037-1042.Trias, J., Vinas, M., Guinea, J. and Loren, J.G. 1989. Brown pigmentation in Serratia marcescens cultures associated with tyrosine metabolism. Canadian Journal of Microbiology. 35: 1037-1042.
Tuck, K.L., Tan, H.W., et Hayball, PJ. 2000. Synthesis of tritium-labeled hydroxytyrosol, a phenolic compound found in olive oil. Journal of Agήcultural and Food Chemistry. 48: 4087-4090.Tuck, K.L., Tan, H.W., and Hayball, PJ. 2000. Synthesis of tritium-labeled hydroxytyrosol, a phenolic compound found in olive oil. Journal of Agricultural and Food Chemistry. 48: 4087-4090.
Tuck, K.L., Freeman, M.P., Hayball, P.J., Stretch, G. L. et Stupans, I. 2001. The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. Journal of Nutrition. 131 : 1993- 1996.Tuck, K.L., Freeman, M.P., Hayball, P.J., Stretch, G.L. and Stupans, I. 2001. The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. Journal of Nutrition. 131: 1993-96.
Visioli, F., et Galli, C. 1998. Olive oil phénols and their potential effects on human health. Journal ofVisioli, F., and Galli, C. 1998. Olive oil phenols and their potential effects on human health. Journal of
Agήcultural and Food Chemistry. 46: 4292-4296.Agecultural and Food Chemistry. 46: 4292-4296.
Visioli, F., Bellomo, G. et Galli, C. 1998. Free radical-scavenging properties of olive oil polyphenols.Visioli, F., Bellomo, G. and Galli, C. 1998. Free radical-scavenging properties of olive oil polyphenols.
Biochemical and Biophysical Research Communications. 247: 60-64.Biochemical and Biophysical Research Communications. 247: 60-64.
Visioli, F. et Galli, C. 2001. Antiatherogenic components of olive oil. Current Atherosclerosis Reports. 3: 64-Visioli, F. and Galli, C. 2001. Antiatherogenic components of olive oil. Current Atherosclerosis Reports. 3: 64-
67.67.
Visioli, F., Poli, A. et Galli, C. 2002. Antioxidant and other biological activities of phénols from olives and olive oil. Médicinal Research Reviews. 22: 65-75.Visioli, F., Poli, A. and Galli, C. 2002. Antioxidant and other biological activities of phenols from olives and olive oil. Medicinal Research Reviews. 22: 65-75.
Wu, C, et Yuan, L.H. 1968. Régulation of synthesis of glutamine synthetase in Escherichia coli. J. Gen.Wu, C, and Yuan, L.H. 1968. Regulation of synthesis of glutamine synthetase in Escherichia coli. J. Gen.
Microbiol. 51 : 57-65.Microbiol. 51: 57-65.
Zeng, L. et Jin, S. 2003. aph(3)' -IIb, a gène encoding an aminoglycoside-modifying enzyme, is under the positive control of surrogate regulator HpaA. Antimicrobial Agents and Chemotherapy. 47: 3867-3876. Zeng, L. and Jin, S. 2003. aph (3) '-IIb, a gene encoding an aminoglycoside-modifying enzyme, is under the positive control of surrogate regulator HpaA. Antimicrobial Agents and Chemotherapy. 47: 3867-3876.

Claims

REVENDICATIONS
1. Utilisation d'une enzyme à activité hydroxyphénylacétate hydroxylase, libre ou immobilisée, pour catalyser la transformation du tyrosol en hydroxytyrosol.1. Use of an enzyme with free or immobilized hydroxyphenylacetate hydroxylase activity to catalyze the conversion of tyrosol to hydroxytyrosol.
2. Utilisation selon la revendication 1 , caractérisée en ce que ladite enzyme à activité hydroxyphénylacétate hydroxylase est Phydroxyphénylacétate 3-monooxygénase.2. Use according to claim 1, characterized in that said enzyme with hydroxyphenylacetate hydroxylase activity is hydroxyphenylacetate 3-monooxygenase.
3. Procédé de préparation in vitro d'hydroxytyrosol comprenant au moins une étape de transformation du tyrosol en hydroxytyrosol catalysée par une enzyme à activité hydroxyphénylacétate hydroxylase.3. Process for the in vitro preparation of hydroxytyrosol comprising at least one step of converting tyrosol to hydroxytyrosol catalyzed by an enzyme with hydroxyphenylacetate hydroxylase activity.
4. Procédé de préparation in vivo d'hydroxytyrosol, caractérisé en ce qu'il utilise un microorganisme exprimant une enzyme à activité hydroxyphénylacétate hydroxylase et n'exprimant pas d'enzyme dégradant le tyrosol ou l'hydroxytyrosol.4. Process for the in vivo preparation of hydroxytyrosol, characterized in that it uses a microorganism expressing an enzyme with hydroxyphenylacetate hydroxylase activity and which does not express a tyrosol or hydroxytyrosol degrading enzyme.
5. Procédé selon la revendication 4, caractérisé en ce qu'il comprend les étapes suivantes :5. Method according to claim 4, characterized in that it comprises the following steps:
(1) étape préalable de croissance dudit microorganisme en présence d'HP A ;(1) prior step of growth of said microorganism in the presence of HP A;
(2) étape de culture dudit microorganisme en milieu carence en source carbonée et en présence de tyrosol.(2) step of culturing said microorganism in carbon source deficiency medium and in the presence of tyrosol.
6. Procédé selon la revendication 5, caractérisé en ce que ladite culture selon l'étape (2) est réalisée dans des conditions stationnaires de croissance dudit microorganisme.6. Method according to claim 5, characterized in that said culture according to step (2) is carried out under stationary growth conditions of said microorganism.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que ledit microorganisme est Escherichia coli.7. The method of claim 5 or 6, characterized in that said microorganism is Escherichia coli.
8. Microorganisme modifié génétiquement pour exprimer une enzyme à activité hydroxyphénylacétate hydroxylase et ne pas exprimer une enzyme à activité aryle déshydrogénase.8. Microorganism genetically modified to express an enzyme with hydroxyphenylacetate hydroxylase activity and not to express an enzyme with aryl dehydrogenase activity.
9. Microorganisme selon la revendication 8, caractérisé en ce qu'il est une souche d' Escherichia coli.9. Microorganism according to claim 8, characterized in that it is a strain of Escherichia coli.
10. Hydroxytyrosol obtenu par le procédé selon l'une quelconque des revendications 3 à 710. Hydroxytyrosol obtained by the process according to any one of claims 3 to 7
11. Fraction riche en hydroxytyrosol provenant de tout ou partie de la culture microbienne susceptible d'être issue du procédé selon l'une quelconque des revendications 4 à 7. 11. Fraction rich in hydroxytyrosol from all or part of the microbial culture likely to be derived from the process according to any one of claims 4 to 7.
PCT/FR2008/001134 2008-07-30 2008-07-30 Use of a hydroxyphenylacetate hydroxylase (hpah) for producing hydroxytyrosol WO2010012871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2008/001134 WO2010012871A1 (en) 2008-07-30 2008-07-30 Use of a hydroxyphenylacetate hydroxylase (hpah) for producing hydroxytyrosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2008/001134 WO2010012871A1 (en) 2008-07-30 2008-07-30 Use of a hydroxyphenylacetate hydroxylase (hpah) for producing hydroxytyrosol

Publications (1)

Publication Number Publication Date
WO2010012871A1 true WO2010012871A1 (en) 2010-02-04

Family

ID=40578645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/001134 WO2010012871A1 (en) 2008-07-30 2008-07-30 Use of a hydroxyphenylacetate hydroxylase (hpah) for producing hydroxytyrosol

Country Status (1)

Country Link
WO (1) WO2010012871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502262A1 (en) * 2017-12-22 2019-06-26 Rhodia Operations Process for the hydroxylation of phenolic derivatives catalyzed by hpab monooxygenase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310562A1 (en) * 2000-08-11 2003-05-14 Consejo Superior De Investigaciones Cientificas Enzymatic synthesis of antioxidant hydroxytyrosol
WO2008064839A2 (en) * 2006-11-27 2008-06-05 Dsm Ip Assets B.V. Method for preparing hydroxytyrosol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310562A1 (en) * 2000-08-11 2003-05-14 Consejo Superior De Investigaciones Cientificas Enzymatic synthesis of antioxidant hydroxytyrosol
WO2008064839A2 (en) * 2006-11-27 2008-06-05 Dsm Ip Assets B.V. Method for preparing hydroxytyrosol
WO2008064835A1 (en) * 2006-11-27 2008-06-05 Dsm Ip Assets B.V. Fermentative production of hydroxytyrosol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502262A1 (en) * 2017-12-22 2019-06-26 Rhodia Operations Process for the hydroxylation of phenolic derivatives catalyzed by hpab monooxygenase
WO2019122446A1 (en) * 2017-12-22 2019-06-27 Rhodia Operations Process for the hydroxylation of phenolic derivatives catalyzed by hpab monooxygenase

Similar Documents

Publication Publication Date Title
Priefert et al. Biotechnological production of vanillin
Duetz et al. Biotransformation of limonene by bacteria, fungi, yeasts, and plants
Bicas et al. A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene
Held et al. Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP 1
Eng et al. Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production
Li et al. The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from Vanilla root
Orenes-Piñero et al. A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius
Pérez-Rodríguez et al. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116
Samain et al. Initial steps of catabolism of trihydroxybenzenes in Pelobacter acidigallici
van der Werf et al. Xanthobacter sp. C20 contains a novel bioconversion pathway for limonene
Labuda Biotechnology of vanillin: vanillin from microbial sources
Gigot et al. Optimization and scaling up of a biotechnological synthesis of natural green leaf volatiles using Beta vulgaris hydroperoxide lyase
Liebgott et al. Hydroxytyrosol from tyrosol using hydroxyphenylacetic acid-induced bacterial cultures and evidence of the role of 4-HPA 3-hydroxylase
Jernerén et al. Linolenate 9 R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae
EP3368679B1 (en) Process for preparing a vinylphenolic compound from a precursor hydroxycinnamic acid derived from an oilseed cake
KR20180099380A (en) Recombinant e.coli producing equol and method for producing equol using thereof
Adamu et al. Biotransformation of ferulic acid to 4-vinyl guaiacol by Lactobacillus farciminis
EP0606441B1 (en) Method for enzymatically preparing aromatic substances
Kaspera et al. Regio-and stereoselective fungal oxyfunctionalisation of limonenes
WO2010012871A1 (en) Use of a hydroxyphenylacetate hydroxylase (hpah) for producing hydroxytyrosol
Akacha et al. Enzymatic synthesis of green notes with hydroperoxide-lyase from olive leaves and alcohol-dehydrogenase from yeast in liquid/gas reactor
CA2979423A1 (en) Microorganisms and use thereof for the production of diacids
TR et al. Utilization of phenylpropanoids by newly isolated bacterium Pseudomonas sp. TRMK1
García et al. Biooxidation of 1, 8-cineole by Aspergillus terreus
Eng et al. Jasmonic acid biosynthesis by microorganisms: Derivatives, first evidences on biochemical pathways and culture conditions for production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08875609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 1205A EN DATE DU 28/04/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 08875609

Country of ref document: EP

Kind code of ref document: A1