WO2010012595A1 - Method of forming a tantalum-containing layer on a substrate - Google Patents
Method of forming a tantalum-containing layer on a substrate Download PDFInfo
- Publication number
- WO2010012595A1 WO2010012595A1 PCT/EP2009/059067 EP2009059067W WO2010012595A1 WO 2010012595 A1 WO2010012595 A1 WO 2010012595A1 EP 2009059067 W EP2009059067 W EP 2009059067W WO 2010012595 A1 WO2010012595 A1 WO 2010012595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- group
- tantalum
- alkyl
- carbon atoms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Definitions
- the invention relates to a method for forming a tantalum-containing layer on a substrate using an ALD (Atomic Layer Deposition) process.
- ALD Atomic Layer Deposition
- MOCVD Metal-Organic Chemical Vapor Deposition
- ALD Atomic Layer Deposition
- films deposited by MOCVD need high thermal budget and generally follow a 3D-growth mechanism described by a Volmer-Weber model. Thin films grow by clusters nucleation and such technique also leads to insufficient step coverage.
- the typical ALD process involves gaseous reactants led onto a substrate by pulses, separated by inert gas purging.
- gaseous reactants are injected simultaneously and react by thermal self-decomposition while in ALD; the loss of the ligand is thermally induced by reaction with the surface groups on the substrate.
- the surface reactions are self-limited, which allow the deposition of highly uniform and conformal films.
- Precursors must be volatile and stable enough to be easily transferred to the reaction chamber without being decomposed. Moreover, they must be reactive enough with the chemical groups of the surface to ensure reasonable growth rate.
- ALD is of particular interest for the deposition of group V (V, Nb, Ta) metal containing films.
- Interest for conductive group V (V, Nb, Ta) metal containing thin films deposited by ALD has risen in the past few years for several main applications such as: copper diffusion barrier in BEOL applications, CMOS metal gate, High-k layers in memory devices or electrodes for Metal-Insulator-Metal applications (DRAM).
- common group V (V, Nb, Ta) based metal-organic precursors are not suitable for the deposition of conductive group V (V, Nb, Ta) containing films without assisting the thermal ALD process by plasma techniques.
- Halides such as TaCI 5 have been widely investigated such as disclosed in US 6,268,288.
- some by-products generated during the deposition process such as HCI or Cl 2 , can cause surface/interface roughness that can be detrimental to the final properties.
- Cl or F impurities can be detrimental to the final electrical properties. It is therefore expected to find new compounds having sufficient volatility but without containing Cl, F, or Br atoms.
- Those precursors present the advantages of being frequently liquid at room temperature, like TBTDET, and having fair volatility, sufficient shelf-life and thermal stability.
- Urdahl & al, in WO02/20870, have also proposed TBTDET for the deposition of Ta 2 O 5 .
- TAIMATA has been disclosed in US 6,593,484.
- a method for the deposition of tantalum nitride films by sequential injection of TBTDET or TAIMATA and other N source has been disclosed in US 2004/0219784.
- a method and apparatus of generating PDMAT precursor has been disclosed in US 2004/0014320.
- JP 2005-132757 disclosed the precursors mentioned above by introducing cyclopentadienyl based ligands, as described by the following general formulas:
- R 1 is an alkyl comprising 1 to 3 carbon atoms
- R 2 is an alkyl comprising 1 to 5 carbon atoms
- R 3 is an alkyl comprising 1 to 6 carbon atoms
- R 4 is methyl or ethyl
- m is an integer of 0 to 5 and, as for n, m+n becomes five or less
- Z is chlorine, bromine, or iodine.
- MOCVD process is the best solution in terms of interesting growth rate, so others processes have never been implemented.
- R 1 is an organic ligand, each one independently selected in the group consisting of H, linear or branched hydrocarbyl radical comprising from 1 to 6 carbon atom
- R 2 is an organic ligand, each one independently selected in the group consisting of H, linear or branched hydrocarbyl radical comprising from 1 to 6 carbon atom;
- R 3 is an organic ligand selected in the group consisting of H, linear or branched hydrocarbyl radical comprising from 1 to 6 carbon atom; b) reacting the vapor comprising the at least one compound of formula
- R 1 is an organic ligand, each one independently selected in the group consisting of H, linear or branched; alkyl, alkylsilyl, alkylamides, alkylsilylamides and/or alkoxides.
- R 2 may be chosen between an alkyl, alkylsilyl, alkylamides, alkylsilylamides and/or alkoxides.
- R 3 may be chosen between an alkyl, alkylsilyl, alkylamides, alkylsilylamides and/or alkoxides, preferably, R 3 is an alkyl with 3 or 4 carbon atoms such as isopropyl or tert-butyl. In a specific configuration, each R 1 and R 2 is different from one another, which can have beneficial features on the compound physical properties.
- imido ligands, NR, in an ALD process, can stabilize early transition metal in high-oxidation state by metal- nitrogen ⁇ -bonding and are playing a major role in the preservation of nitrogen atoms into the solid. They usually possess, as TBTDET or TAIMATA, very good thermal properties (good stability and volatility).
- other embodiments of the invention are:
- step c) reaction of the complex formed obtained in step b) with a reagent selected from another metal source, reducing reactants and/or nitriding reactants and/or oxidizing reactants.
- R 1 is selected in the group consisting of H, an alkyl comprising from 1 to 4 carbon atom, preferably, R 1 is methyl or ethyl or isopropyl or tert-butyl;
- R 2 is an alkyl comprising from 1 to 3 carbon atom, more preferably, R 2 is an alkyl with 1 or 2 carbon atom;
- R 3 is alkyl with 3 or 4 carbon atoms, more preferably, R 3 is isopropyl or tert-butyl.
- vapour provided in step a) further comprises one or more metal (M')-organic precursor(s) to produce thin films containing tantalum and M'.
- M' being independently selected from any other element in the group II, IM-A, IM-B, Sulpher (S), transition metal, lanthanoids, or rare-earth metals.
- the method further comprising providing at least one reaction gas wherein the at least one reaction gas is selected from the group consisting of hydrogen, hydrogen sulfide, hydrogen selenide, hydrogen telluride, carbon monoxide, ammonia, organic amine, silane, disilane, higher silanes, silylamines, diborane, hydrazine, methylhydrazine, chlorosilane and chloropolysilane, metal alkyl, arsine, phosphine, thalkylboron, oxygen, ozone, water, hydrogen peroxide, nitrous oxide, nitrogen monoxide, nitrogen dioxide, alcohols, plasma comprising fragments of those species, and combinations thereof, preferably ozone or water.
- the at least one reaction gas is selected from the group consisting of hydrogen, hydrogen sulfide, hydrogen selenide, hydrogen telluride, carbon monoxide, ammonia, organic amine, silane, disilane, higher silanes, silylamines, diborane, hydr
- tantalum precursor of formula (I) is selected in the group consisting of:
- the temperature of the substrate is 25 0 C to 450 0 C, preferably 380 0 C to 425°C, and wherein the atomic layer deposition chamber containing the substrate has a pressure of 0.133 Pa to 133 kPa, preferably below 27 kPa.
- the method further comprising the step of purging excess vapor comprising the at least one compound of formula (I) from the substrate, with an inert gas selected from the group consisting of hydrogen, nitrogen, helium, argon, and mixtures thereof.
- the tantalum-containing layer has a thickness of 0 ⁇ m to 10 ⁇ m.
- a method of manufacturing a semiconductor structure comprising the steps of the method defined in the present invention, wherein the substrate is a semiconductor substrate.
- the vaporization of the tantalum source is realized by introducing a carrier gas into a heated container containing the said metal source.
- the container is preferably heated at a temperature allowing to get the said metal source at a sufficient vapor pressure.
- the carrier gas can be selected from Ar, He, H 2 , N 2 or mixtures of them.
- the said tantalum source can be mixed to a solvant or to another metal source or to a mixture of them in the container.
- the container can for instance be heated at temperatures in the range of 25°C- 300 0 C, preferabbly below 150 0 C. Those skilled in the art will consider that the temperature of the container can be adjusted to control the amount of precursor vaporized. To control the evaporation level in the container, the pressure in the container can be modified.
- the level of vaporation of the tantalum source can be increased.
- the pressure in the container can for instance be changed in the range of 0.133 Pa until 133 kPa, preferably below 27 kPa.
- the said tantalum source can also be fed in liquid state to a vaporizer where it is vaporized.
- the said metal source can be mixed to a solvent.
- the said tantalum source can be mixed to another metal source.
- the said mixture of metal sources can be mixed to a solvent or a mixture of solvent.
- the said tantalum source can be mixed to a stabilizer.
- the said solvent can be selected in the group consisting of alcanes such as hexane, heptane, octane, aromatic solvents such as benzene, toluene, mesitylene, xylene, silicon containing solvent such as hexamethyldisiloxane, hexamethyldisilazane, tetramethylsilane, sulphur containing solvents such as dimethylsulfoxide, oxygen containing solvent such as tetrahydrofuran, dioxane.
- alcanes such as hexane, heptane, octane
- aromatic solvents such as benzene, toluene, mesitylene, xylene
- silicon containing solvent such as hexamethyldisiloxane, hexamethyldisilazane, tetramethylsilane
- sulphur containing solvents such as dimethylsulfoxide
- the said vaporized tantalum source is then introduced into a reaction chamber where it is contacted to the surface of a substrate.
- the substrate can be heated to sufficient temperature to obtain the desired film at sufficient growth rate and with desired physical state and composition. Typical temperatures range from 150 0 C to 600 0 C. Preferably the temperature is lower or equal to 450°C.
- the process can be assisted by a plasma technique. The use of plasma techniques allows ionizing the precursor vapor and/or the reactant used to form radicals and thus improve the reactivity of the said vaporized metal source and/or the reactivity of other gaseous species, used in the process.
- Example of reagent can be selected in the list: H 2 , N 2 H 2 , methylhydrazine, NH 3 , SiH 4 , Si 2 H 6 , Si 3 H 8 , TSA, Si 2 CI 6 or any chrlorosilane or chloropolysilane, thmethylaluminium, ZnEt 2 or any metal alkyl, BH 3 , B 2 H 6 , PH 3 , AsH 3 , trimethylboron, triethylboron, CO, monoamines, diamines, mixtures of them or plasma comprising fragment of those species.
- Example of oxidizing reagents can be selected in the list: O 2 , O 3 , H 2 O, H 2 O 2 , NO, NO 2 , N 2 O, CH 3 OH or any alcohol, mixture of them or plasma comprising fragments of those species.
- Oxidizing species may alternatively be metal-organic compounds containing a metal-oxygen bond.
- the deposition method, of this invention improves upon known methods by allowing the use of lower temperatures and producing higher quality films.
- TaN ALD using TBTDET and NH 3 resulted in thin films with resistivity values from 1 ,1 to 1.4 Ohmcm in the 240 0 C - 280 °C temperature range, while with the precursors of the invention the film resistivity is less than 0,5 Ohmcm and thus, two to three times lower compared to the conventional TBTDET.
- the thermal stability is improved: TBTDET is decomposed at 270 0 C, while TBTDETCp is decomposed from 315°C. The ALD process will be provided with a higher temperature.
- Another advantage is that the growth rate reaches a good level with the process of the invention: 0.6 Angstrom. cycle "1 .
- the said tantalum-organic precursor reacts in a self-limited manner with the chemical bonds present onto the surface of a substrate, chosen without limitation.
- un-deposited tantalum-organic precursors molecules are removed from the reaction chamber.
- the reagent introduced reacts also in a self-limited manner.
- the purge gas can for instance be selected within N 2 , Ar, He, H 2 mixtures of them.
- the purge gas may additionally contain other gas species that do not modify the chemical reactivity of the surface.
- the purge can be realized by vacuum. This process can be repeated as many times as necessary to reach the desired film thickness.
- the reagent is selected from reducing reactants, nitriding reactants, oxidizing reactants, or a mixture of them.
- Example of reagent can be selected in the list: H 2 , N 2 H 2 , methylhydrazine, NH 3 , SiH 4 , Si 2 H 6 , Si 3 H 8 , TSA, Si 2 CI 6 or any chrlorosilane or chloropolysilane, thmethylaluminium, ZnEt 2 or any metal alkyl, BH 3 , B 2 H 6 , PH 3 , AsH 3 , trimethylboron, triethyl boron, CO, monoamines, diamines, mixtures of them or plasma comprising fragment of those species.
- Example of oxidizing reagents can be selected in the list: O 2 , O 3 , H 2 O, H 2 O 2 , NO, NO 2 , N 2 O, CH 3 OH or any alcohol, mixture of them or plasma comprising fragments of those species, preferably plasma comprising H 2 , NH 3 or O 2 .
- Oxidizing species may alternatively be metal-organic compounds containing a metal-oxygen bond.
- This another metal source being independently selected from any other element in the group II, Ml-A, Nl-B, Sulpher (S), transition metal, lanthanoids, or rare-earth metals.
- the said metal-organic precursors react in a self-limited manner with the chemical bonds present onto the surface of a substrate.
- un-deposited metal-organic precursors molecules are removed from the reaction chamber.
- the reagent introduced reacts also in a self-limited manner.
- species are removed from the reaction chamber by a purge gas.
- the purge gas can for instance be selected within N 2 , Ar, He, H 2 mixtures of them.
- the purge gas may additionally contain other gas species that do not modify the chemical reactivity of the surface.
- the purge can be realized by vacuum. This process can be repeated as many times as necessary to reach the desired film thickness.
- the reagent is selected without limitation from reducing reactants, nithding reactants, oxidizing reactants, or a mixture of them.
- Example of reagent can be selected in the list: H 2 , N 2 H 2 , methylhydrazine, NH 3 , SiH 4 , Si 2 H 6 , Si 3 H 8 , TSA, Si 2 Cl6 or any chrlorosilane or chloropolysilane, thmethylaluminium, ZnEt 2 or any metal alkyl, BH 3 , B 2 H 6 , PH 3 , AsH 3 , thmethylboron, thethylboron, CO, monoamines, diamines, mixtures of them or plasma comprising fragment of those species.
- Oxidizing reagents can be selected in the list: O 2 , O 3 , H 2 O, H 2 O 2 , NO, NO 2 , N 2 O, CH 3 OH or any alcohol, mixture of them or plasma comprising fragments of those species.
- Oxidizing species may alternatively be metal-organic compounds containing a metal-oxygen bond.
- the container is heated at 120 0 C and N 2 is used as carrier gas at a flow of 50sccm.
- Ammonia (NH 3 ) is used as nitrogen source.
- the substrate is heated at 400 0 C.
- a pulse of NH 3 is then introduced into the reaction chamber during 8 seconds, followed by a 13 seconds N 2 purge.
- the first step is then done again. 400 cycles are performed this way.
- a film of tantalum nitride is obtained.
- a step coverage of 100% is achieved for thin films deposited on substrates with 3D architectures.
- the bottoms such as the sidewalls are conformaly and uniformly recovered.
- the method disclosed in the present invention allows to deposit tantalum carbo-nithde on structures with high aspect ratio, which was not possible with the same precursor by using conventional deposition technique.
- the container is heated at 120 0 C and N 2 is used as carrier gas at a flow of 50 seem.
- Ammonia (NH 3 ) is used as nitrogen source.
- the substrate is heated at 400°C.
- a pulse of thmethyl aluminium (TMA) is then introduced into the reaction chamber during about 8 seconds, followed by a 13 seconds N 2 purge.
- a pulse of NH 3 is then introduced into the reaction chamber during 8 seconds, followed by a 13 seconds N 2 purge.
- the first step is then done again. 400 cycles are performed this way. A film of tantalum nitride is obtained.
- the container is heated at 120 0 C and N 2 is used as carrier gas at a flow of 50 seem.
- Ozone (O 3 ) is used as oxygen source.
- the substrate is heated at 400 0 C.
- a pulse of O3 is then introduced into the reaction chamber during 8 seconds, followed by a 13 seconds N 2 purge.
- the first step is then done again. 400 cycles are performed this way.
- a film of tantalum oxy-nithde is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011520419A JP5639055B2 (en) | 2008-08-01 | 2009-07-15 | Method for forming a tantalum-containing layer on a substrate |
EP09780636.8A EP2310551B1 (en) | 2008-08-01 | 2009-07-15 | Method of forming a tantalum-containing layer on a substrate |
US13/056,934 US9085823B2 (en) | 2008-08-01 | 2009-07-15 | Method of forming a tantalum-containing layer on a substrate |
CN200980130303.2A CN102112654B (en) | 2008-08-01 | 2009-07-15 | Method of forming a tantalum-containing layer on a substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08305444 | 2008-08-01 | ||
EP08305444.5 | 2008-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010012595A1 true WO2010012595A1 (en) | 2010-02-04 |
Family
ID=40091873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/059067 WO2010012595A1 (en) | 2008-08-01 | 2009-07-15 | Method of forming a tantalum-containing layer on a substrate |
Country Status (6)
Country | Link |
---|---|
US (1) | US9085823B2 (en) |
EP (1) | EP2310551B1 (en) |
JP (1) | JP5639055B2 (en) |
KR (1) | KR101589777B1 (en) |
CN (1) | CN102112654B (en) |
WO (1) | WO2010012595A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130059077A1 (en) * | 2011-07-22 | 2013-03-07 | Applied Materials, Inc. | Method of Atomic Layer Deposition Using Metal Precursors |
CN111534808A (en) * | 2020-05-19 | 2020-08-14 | 合肥安德科铭半导体科技有限公司 | Atomic layer deposition method of Ta-containing film and product thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1916253A1 (en) * | 2006-10-26 | 2008-04-30 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | New group V metal containing precursors and their use for metal containing film deposition |
ATE535534T1 (en) * | 2008-10-07 | 2011-12-15 | Air Liquide | ORGANIC METAL NIOBIUM AND VANADIUM PRECURSORS FOR THIN FILM DEPOSITION |
KR102627456B1 (en) * | 2015-12-21 | 2024-01-19 | 삼성전자주식회사 | Tantalum compound and methods of forming thin film and integrated circuit device |
WO2018048124A1 (en) * | 2016-09-08 | 2018-03-15 | 주식회사 유피케미칼 | Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same |
KR102530814B1 (en) * | 2020-06-30 | 2023-05-10 | 주식회사 이지티엠 | Group 5 metal compound for thin film deposition and method of forming group 5 metal containing thin film using the same |
CN117904593B (en) * | 2024-03-15 | 2024-05-17 | 上海谱俊科技有限公司 | Metal workpiece, metal surface composite coating and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005132756A (en) * | 2003-10-29 | 2005-05-26 | Tosoh Corp | Tantalum compound, method for producing the same and method for forming tantalum-containing thin film |
US20080102205A1 (en) * | 2006-10-27 | 2008-05-01 | Barry Sean T | ALD of metal-containing films using cyclopentadienyl compounds |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1271025B (en) | 1994-10-20 | 1997-05-26 | Patreca Srl | VALVE FOR HIGH PRESSURE CYLINDERS WITH DEVICE FOR MAINTAINING RESIDUAL EMPTYING PRESSURE |
US6010969A (en) | 1996-10-02 | 2000-01-04 | Micron Technology, Inc. | Method of depositing films on semiconductor devices by using carboxylate complexes |
US6015917A (en) | 1998-01-23 | 2000-01-18 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6616972B1 (en) * | 1999-02-24 | 2003-09-09 | Air Products And Chemicals, Inc. | Synthesis of metal oxide and oxynitride |
US6268288B1 (en) | 1999-04-27 | 2001-07-31 | Tokyo Electron Limited | Plasma treated thermal CVD of TaN films from tantalum halide precursors |
US6743473B1 (en) | 2000-02-16 | 2004-06-01 | Applied Materials, Inc. | Chemical vapor deposition of barriers from novel precursors |
WO2001099166A1 (en) * | 2000-06-08 | 2001-12-27 | Genitech Inc. | Thin film forming method |
US6491978B1 (en) | 2000-07-10 | 2002-12-10 | Applied Materials, Inc. | Deposition of CVD layers for copper metallization using novel metal organic chemical vapor deposition (MOCVD) precursors |
WO2002020870A1 (en) | 2000-09-08 | 2002-03-14 | Applied Materials, Inc. | Chemical vapor deposition of tantalum oxide using oxygen-free liquid precursors |
KR100815009B1 (en) | 2000-09-28 | 2008-03-18 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Vapor deposition of oxides, silicates, and phosphates |
JP3963078B2 (en) | 2000-12-25 | 2007-08-22 | 株式会社高純度化学研究所 | Tertiary amylimidotris (dimethylamido) tantalum, method for producing the same, raw material solution for MOCVD using the same, and method for forming a tantalum nitride film using the same |
US7098131B2 (en) | 2001-07-19 | 2006-08-29 | Samsung Electronics Co., Ltd. | Methods for forming atomic layers and thin films including tantalum nitride and devices including the same |
US7186385B2 (en) | 2002-07-17 | 2007-03-06 | Applied Materials, Inc. | Apparatus for providing gas to a processing chamber |
WO2005002007A2 (en) | 2003-03-20 | 2005-01-06 | The Research Foundation Of State University Of Newyork | Process for producing semiconductor nanocrystal cores, core-shell, core-buffer-shell, and multiple layer systems in a non-coordinating solvent utilizing in situ surfactant generation |
US7378129B2 (en) * | 2003-08-18 | 2008-05-27 | Micron Technology, Inc. | Atomic layer deposition methods of forming conductive metal nitride comprising layers |
JP2005132757A (en) | 2003-10-29 | 2005-05-26 | Tosoh Corp | Tantalum compound, method for producing the same and method for forming tantalum-containing thin film |
KR20050091488A (en) * | 2004-03-12 | 2005-09-15 | 주식회사 유피케미칼 | The precursor compounds for the metal and ceramic film, and the method of synthesis |
CN100576474C (en) * | 2004-07-20 | 2009-12-30 | 应用材料股份有限公司 | The ald that contains tantalum material with tantalum predecessor TAIMATA |
JP5053543B2 (en) * | 2005-02-02 | 2012-10-17 | 東ソー株式会社 | Tantalum compound, production method thereof, tantalum-containing thin film, and formation method thereof |
US20060182885A1 (en) * | 2005-02-14 | 2006-08-17 | Xinjian Lei | Preparation of metal silicon nitride films via cyclic deposition |
US7348445B2 (en) | 2005-02-14 | 2008-03-25 | Praxair Technology, Inc. | Organoaluminum precursor compounds |
US7314835B2 (en) | 2005-03-21 | 2008-01-01 | Tokyo Electron Limited | Plasma enhanced atomic layer deposition system and method |
US7402517B2 (en) * | 2005-03-31 | 2008-07-22 | Battelle Memorial Institute | Method and apparatus for selective deposition of materials to surfaces and substrates |
JP5096016B2 (en) | 2006-02-14 | 2012-12-12 | 東ソー株式会社 | Tantalum compound and method for producing the same, tantalum-containing thin film using the same and method for forming the same |
US7959985B2 (en) | 2006-03-20 | 2011-06-14 | Tokyo Electron Limited | Method of integrating PEALD Ta-containing films into Cu metallization |
US7482289B2 (en) | 2006-08-25 | 2009-01-27 | Battelle Memorial Institute | Methods and apparatus for depositing tantalum metal films to surfaces and substrates |
US8617301B2 (en) | 2007-01-30 | 2013-12-31 | Lam Research Corporation | Compositions and methods for forming and depositing metal films on semiconductor substrates using supercritical solvents |
US20080248648A1 (en) | 2007-04-06 | 2008-10-09 | Thompson David M | Deposition precursors for semiconductor applications |
KR100998417B1 (en) * | 2007-08-20 | 2010-12-03 | 주식회사 하이닉스반도체 | Method of forming a dielectric layer in semiconductor memory device |
KR100884589B1 (en) | 2007-11-02 | 2009-02-19 | 주식회사 하이닉스반도체 | Multi phase clock generator and generating method |
EP2065390A1 (en) | 2007-11-30 | 2009-06-03 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Metal organic compounds containing an amidinate ligand and their use for vapour phase deposition of metal containing thin films |
EP2707375A4 (en) * | 2011-05-13 | 2015-01-07 | Greenct Canada | Group 11 mono-metallic precursor compounds and use thereof in metal deposition |
-
2009
- 2009-07-15 CN CN200980130303.2A patent/CN102112654B/en active Active
- 2009-07-15 WO PCT/EP2009/059067 patent/WO2010012595A1/en active Application Filing
- 2009-07-15 EP EP09780636.8A patent/EP2310551B1/en active Active
- 2009-07-15 JP JP2011520419A patent/JP5639055B2/en active Active
- 2009-07-15 US US13/056,934 patent/US9085823B2/en active Active
- 2009-07-15 KR KR1020117002424A patent/KR101589777B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005132756A (en) * | 2003-10-29 | 2005-05-26 | Tosoh Corp | Tantalum compound, method for producing the same and method for forming tantalum-containing thin film |
US20080102205A1 (en) * | 2006-10-27 | 2008-05-01 | Barry Sean T | ALD of metal-containing films using cyclopentadienyl compounds |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130059077A1 (en) * | 2011-07-22 | 2013-03-07 | Applied Materials, Inc. | Method of Atomic Layer Deposition Using Metal Precursors |
US8906457B2 (en) * | 2011-07-22 | 2014-12-09 | Applied Materials, Inc. | Method of atomic layer deposition using metal precursors |
CN111534808A (en) * | 2020-05-19 | 2020-08-14 | 合肥安德科铭半导体科技有限公司 | Atomic layer deposition method of Ta-containing film and product thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101589777B1 (en) | 2016-01-28 |
KR20110041498A (en) | 2011-04-21 |
CN102112654B (en) | 2013-03-20 |
US20110244681A1 (en) | 2011-10-06 |
JP5639055B2 (en) | 2014-12-10 |
US9085823B2 (en) | 2015-07-21 |
CN102112654A (en) | 2011-06-29 |
JP2011530002A (en) | 2011-12-15 |
EP2310551B1 (en) | 2014-04-02 |
EP2310551A1 (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI432597B (en) | Plasma enhanced cyclic deposition method of metal silicon nitride film | |
EP2174942B1 (en) | Niobium and vanadium organometallic precursors for thin film deposition | |
JP6437962B2 (en) | Method for depositing nitride film of group 13 metal or metalloid | |
JP5815669B2 (en) | Metal nitride-containing film deposition using a combination of an amino metal precursor and a metal halide precursor | |
CN100537842C (en) | The method for preparing metal silicon nitride films by cyclic deposition | |
EP2310551B1 (en) | Method of forming a tantalum-containing layer on a substrate | |
EP2644741A1 (en) | Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors | |
US20140322924A1 (en) | Silicon containing compounds for ald deposition of metal silicate films | |
KR101295031B1 (en) | Plasma enhanced cyclic deposition method of metal silicon nitride film | |
KR102209476B1 (en) | Cobalt-containing compounds, their synthesis, and use in cobalt-containing film deposition | |
EP2573096A1 (en) | Tantalum-organic compounds and their use for thin films deposition | |
KR20090107006A (en) | Plasma enhanced cyclic deposition method of metal silicon nitride film | |
WO2022226472A1 (en) | Deposition of vanadium-containing films | |
EP2808333A1 (en) | New tantalum precursors and their use | |
EP2808335A1 (en) | Vanadium precursors and their use | |
EP2810949A1 (en) | Niobium precursors and their use | |
EP2810950A1 (en) | Niobium-complexes and their use in a method for forming a niobium-containing layer on a substrate | |
EP2808332A1 (en) | Tantalum precursors and their use | |
EP2808336A1 (en) | New Vanadium precursors and their use | |
EP2808334A1 (en) | Method for forming a vanadium-containing layer on a substrate | |
EP2808331A1 (en) | Method for forming a tantalum-containing layer on a substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980130303.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09780636 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009780636 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011520419 Country of ref document: JP Kind code of ref document: A Ref document number: 20117002424 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13056934 Country of ref document: US |