WO2010011085A1 - Linear compressor - Google Patents
Linear compressor Download PDFInfo
- Publication number
- WO2010011085A1 WO2010011085A1 PCT/KR2009/004068 KR2009004068W WO2010011085A1 WO 2010011085 A1 WO2010011085 A1 WO 2010011085A1 KR 2009004068 W KR2009004068 W KR 2009004068W WO 2010011085 A1 WO2010011085 A1 WO 2010011085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- motor
- cooling
- movable member
- variable
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
- F04B35/045—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/04—Motor parameters of linear electric motors
- F04B2203/0401—Current
Definitions
- the present invention relates to a linear compressor, and more particularly, to a linear compressor for supplying necessary cooling power through a natural cooling force variable and a forced cooling force variable, and a cooling system using the same.
- a motor is also provided in a compressor, a mechanical device that increases power by compressing air, refrigerant, or various working gases by receiving power from a power generator such as an electric motor or a turbine. Or widely used throughout the industry.
- a reciprocating compressor for compressing the refrigerant while linearly reciprocating the piston inside the cylinder is formed by forming a compression space in which the working gas is absorbed and discharged between the piston and the cylinder.
- Rotary compressor that compresses the refrigerant while the roller is eccentrically rotated along the inner wall of the cylinder so that a compression space for absorbing and discharging the working gas is formed between the reciprocating compressor and the eccentrically rotating roller and the cylinder.
- Scroll compressor that compresses the refrigerant while the rotating scroll rotates along the fixed scroll by forming a compression space for absorbing and discharging the working gas between the orbiting scroll and the fixed scroll.
- the piston is directly connected to the reciprocating linear motion drive motor, so that there is no mechanical loss due to the motion conversion to improve the compression efficiency as well as a simple linear compressor has been developed a lot.
- FIG. 1 is a block diagram of a motor control device applied to a linear compressor according to the prior art.
- the motor control apparatus applies a diode bridge 11 for receiving and rectifying an AC power, which is a commercial power source, and outputting the rectified part, a rectifying unit including a capacitor C1 smoothing the rectified voltage, and applying a DC voltage.
- a motor including an inverter unit 12, a motor 13, and a capacitor C2 connected in series with the motor 13, which are converted into an AC voltage according to a control signal from the controller 17 and provided to the motor unit.
- a voltage detector 14 that detects the voltage across the capacitor C1
- a current detector 15 that detects a current flowing in the motor unit, a sense voltage from the voltage detector 14, and a current detector 15
- a calculation unit 16 for calculating the counter electromotive force (EMF) from the sense current from the control unit 16, and a control unit 17 for generating a control signal by reflecting the deferred power from the calculation unit 16 and the sense current from the current detection unit 15.
- the calculation unit 16 calculates the counter electromotive force according to Equation 1 below.
- L is the inductance of the motor 13
- V is the voltage applied to the inverter unit 12
- R is the resistance value of the motor.
- the calculator 16 calculates the counter electromotive force EMF according to the sensed current from the current detector 5.
- FIG. 2 is a graph of variable cooling power of the linear compressor of FIG. 1.
- the graph of FIG. 2 shows the result of the control of the control unit 17 in order to obtain the required cooling power when the inverter unit 12 of the motor control device applies the BLDC inverter.
- the controller 17 controls the inverter unit 12 to forcibly raise the AC voltage applied to the motor 13, thereby acquiring the cooling force required according to the load. As shown in the figure, as the temperature rises from 10 ° C to 50 ° C, the controller 17 may obtain a desired cooling power or cooling power ratio through four forced voltage rising controls.
- An object of the present invention is to provide a linear compressor and a cooling system using the same to simplify the cooling control process by performing the variable control of the natural cooling force corresponding to the load, and selectively performing a forced cooling variable control by the power control as needed. do.
- an object of the present invention is to provide a linear compressor and a cooling system using the same to implement a variable power cooling control, to implement a power impact on the components and simplification of the components.
- the present invention provides a linear compressor capable of supplying the cooling device with a simple control and a required cooling power even with a small number of compressors, especially in a linear compressor connected to at least one cooling device, especially in the case of a large variation in the required cooling power. It is an object to provide a cooling system using the same.
- an object of the present invention is to provide a motor control device and a linear compressor using the same so as to use only a voltage value, not a current value, when calculating the counter electromotive force.
- an object of the present invention is to provide a motor control device for improving the accuracy of voltage sensing and a linear compressor using the same.
- an object of the present invention is to provide a linear compressor using a motor control device so that the output of a constant voltage and a constant frequency is applied to the motor even if the external power source is variable.
- the linear compressor of the present invention includes a compression space in which the refrigerant is sucked, a movable member for compressing the refrigerant sucked into the compression space while reciprocating linear movement, at least one spring installed to elastically support the movable member in the direction of movement of the movable member, and
- the motor comprises a motor, a motor unit including a capacitor connected in series with the motor, and a motor control unit that performs a natural cooling force variable by reciprocating motion of the movable member in response to a load.
- the motor control unit preferably maintains the magnitude and frequency of the voltage applied to the motor unit to be substantially constant to perform the natural cooling force variable.
- the linear compressor of the present invention includes a compression space in which the refrigerant is sucked, a movable member for compressing the refrigerant sucked into the compression space while reciprocating linear movement, and at least one spring provided to elastically support the movable member in the direction of movement of the movable member;
- the motor unit includes a motor, a motor unit including a capacitor connected in series with the motor, and a motor controller configured to vary the stroke of the movable member in response to a change in the refrigerant, thereby performing natural cooling force variation.
- the motor control unit may detect a voltage corresponding to a commercial power applied from the outside or a power applied to the motor unit, and control the motor unit based on the detected voltage.
- the motor control unit may vary the magnitude or frequency of the voltage applied to the motor unit to perform the forced cooling force variable.
- the motor control unit changes the magnitude or frequency of the voltage applied to the motor unit to a plurality of values to perform forced cooling force variation, and then maintains the magnitude or frequency of the variable voltage constant, thereby maintaining the maintained AC voltage in the motor unit. It is preferred to perform the natural cold power variable by applying to.
- the motor control unit preferably varies the magnitude or frequency of the voltage in response to the cooling force variable command from the cooling control device.
- the motor controller may further include a rectifier that receives an AC power and outputs a DC voltage, an inverter that receives a DC voltage, converts the AC voltage according to a control signal, and provides the motor to the motor, and detects a voltage applied to the inverter.
- the control unit may be configured to include a control unit corresponding to the first and second voltages to generate and apply a control signal to the inverter unit to substantially maintain the magnitude and frequency of the AC voltage.
- the controller may adjust the sampling time of the second voltage detector for detecting the second voltage.
- the controller may calculate a counter electromotive force corresponding to the first and second voltages to generate a control signal according to the calculated counter electromotive force.
- the cooling system of the present invention is connected to supply at least one cooling device, the refrigerant to the cooling device, the natural cold power variable control to naturally vary the cooling power in response to the load, and the cooling power in response to the load or cooling control command
- a compressor for supplying a refrigerant to the cooling device by forcibly varying the forced cooling force variable control, and a refrigerant pipe connecting the cooling device and the compressor.
- the cooling system of the present invention is connected to supply at least one cooling device and the refrigerant to the cooling device, and performs only a natural cold power variable control to naturally vary the cooling power in response to the load, to supply the refrigerant to the cooling device And a refrigerant pipe connecting the cooling device and the compressor.
- the present invention performs the variable control of the natural cold power corresponding to the load, and optionally to perform the forced cold variable control by the power control to simplify the cooling control process, while supplying the necessary cooling power while reducing the applied power It works.
- the present invention has the effect of implementing the natural cooling power control, the power impact on the components and the simplification of the components.
- the present invention is a linear compressor connected to at least one cooling device, especially in the case of a large variation in the required cooling power, it is possible to stably supply the required cooling power to the cooling devices even with simple control and a small number of compressors. It works.
- the present invention of such a configuration has the effect of performing the control of the motor accurately by accurately calculating the acting power by using only the voltage value, not the current value, when calculating the counter electromotive force.
- the present invention by applying a voltage having a substantially fixed magnitude and frequency characteristics or a voltage having a variable magnitude and frequency characteristics to the motor provided in the linear compressor, there is an effect that the cooling power is variable according to the load.
- the present invention has the effect of improving the reliability of the linear compressor by allowing the output of substantially constant voltage and constant frequency to be applied to the motor even under the input of a variable external power source.
- FIG. 1 is a block diagram of a motor control device applied to a linear compressor according to the prior art.
- FIG. 2 is a graph of variable cooling power of the linear compressor of FIG. 1.
- FIG. 3 is a block diagram of a motor control device applied to the linear compressor according to the present invention.
- 4 to 6 are first to third embodiments of the detection circuit of the voltage detector of FIG. 3.
- FIG. 7 and 8 are operational circuit diagrams of the inverter of FIG. 3.
- 9-11 are graphs of sensed voltages.
- FIG. 12 is a sectional view of a linear compressor according to the present invention.
- 17 is a diagram illustrating an example of a cooling system to which the linear compressor of FIG. 3 is applied.
- FIG. 18 is a configuration diagram showing an example of a refrigeration cycle constituting a cooling system according to the present invention.
- FIG. 19 is a block diagram illustrating an example of a cooling system according to the present invention.
- FIG. 3 is a block diagram of a motor control device applied to the linear compressor according to the present invention.
- the motor control apparatus shown in FIG. 3 includes a rectifying unit including a diode bridge 21 for receiving and rectifying an AC power, which is a commercial power source, and outputting a rectifier, a capacitor C1 for smoothing the rectified voltage, and a control unit receiving a DC voltage.
- a motor section including an inverter section 22, a motor 23, and a capacitor C connected in series with the motor 23, which are converted into an AC voltage and provided to the motor section in accordance with the control signal from 27;
- the voltage detector 24 detects the voltage across the capacitor C1 or the divided voltages of the voltage divider resistors R1 and R2, and the voltage V1 between the capacitor C and the voltage V1 between the capacitor C and the ground.
- Control comprises a control unit 27 for generating a signal.
- the control unit 27 does not describe a process of generating a control signal according to the counter electromotive force and the sensed voltage, but this process is only a degree that is clearly understood by those skilled in the art.
- controller 27 may be configured by the calculator 26 and a single element or a circuit.
- the diode bridge 21 is a device that performs a general rectification function
- the capacitor C1 is a device that smoothes the rectified voltage.
- the voltage divider R1 and R2 are composed of at least two series connected resistors R1 and R2, and divide the rectified voltage from the diode bridge 21.
- the rectified voltage of the diode bridge 21 is hundreds to thousands of volts (for example, 200 to 1000 V)
- a partial pressure is required because excessive voltage may be applied to the control unit 27.
- a voltage of a predetermined magnitude (for example, about 5 V or 0.2 V) is applied to the operation unit 26 and the control unit 27, and the resistor R1 is at least several hundred to several thousand times larger than the resistance R2. Configure to have resistance value.
- the ratio of the resistance value or the resistance value of the resistors R1 and R2 is recognized by the calculation unit 26 and the control unit 27, and it is possible to calculate or predict the magnitude of the DC link voltage Vdc based on the divided voltage.
- the calculator 26 and the controller 27 read the voltage rectified from the diode rectifier circuit 11 or a part thereof.
- the inverter unit 22, the motor unit 23 and the voltage detection unit 24 are just enough to be easily recognized by a person familiar with the technical field to which the present invention belongs, and thus description thereof is omitted.
- the voltage detector 25 detects the voltage between the capacitor C or the voltage between the capacitor C and the ground, and in particular, detects a part of the voltage between the capacitor C and the ground (ie, the divided voltage).
- the voltage (or sense voltage) V2 is applied to the calculator 26 and the controller 27. This voltage detector 25 is described in detail below.
- the calculator 26 calculates the counter electromotive force EMF from the voltage from the voltage detector 24 and the voltage V2 from the voltage detector 25. This operation is performed according to the following equations. Such mathematical operations may be implemented in hardware, middleware, and software. This embodiment corresponds to the case where the voltage Vc at both ends of the capacitor C is detected.
- i is a current flowing in the motor unit
- C corresponds to the capacitance of the capacitor (C).
- Vc of the capacitor C is converted from equation (2) as shown in equation (3).
- Equation 1 Substituting the voltage Vc according to Equation 3 into Equation 1 is as follows.
- L is the inductance of the motor
- V is the applied voltage (Vdc) to the inverter unit 22
- R is the resistance value of the motor.
- the voltage Vc may be defined as in Equation (5), and the derivative of the voltage Vc is as in Equation (2).
- the double derivative of the voltage Vc may be defined as shown in Equation 5 (3).
- Equation 5 when the derivative of the voltage Vc and the double derivative are substituted into Equation 4, Equation 6 is obtained.
- ⁇ is the kinetic frequency of the motor.
- Equation (6) is summarized as Equation (7).
- the calculator 26 and the controller 27 can calculate the counter electromotive force EMF from the voltage Vc at both ends of the capacitor C.
- FIG. In particular, in equation (7), a differential operation is required, such as RCdVc / dt, but in the calculation of counter electromotive force, since its magnitude is relatively significantly smaller than other values, the influence from noise is extremely reduced.
- control unit 27 calculates the speed by multiplying the counter electromotive force (EMF) from the calculating unit 26 by a specific constant, or calculates the displacement (for example, the displacement of the piston in the case of the linear compressor) by integrating the speed. It may be.
- EMF counter electromotive force
- control unit 27 generates a PWM signal and a control signal corresponding to the PWM signal, and controls the inverter unit 22 by such a control signal. It is also well known that such a PWM signal may be calculated as a duty through a relationship with the voltage Vdc. Through the control signal and the duty ratio, the control unit 27 adjusts the cooling force in the case of the refrigeration cycle.
- 4 to 6 are first to third embodiments of the detection circuit of the voltage detector of FIG. 3.
- the voltage detector 25a is formed of an IC chip OP amp, so that the voltage Vc can be detected through a general OP amp. The detection of this direct voltage Vc does not require software for a separate voltage calculation.
- the inverter unit 22 is composed of two pairs of switches SW1 and SW2 and SW3 and SW4 connected in series, and includes a motor between the switches SW1 and SW2 and between the switches SW3 and SW4. The addition is connected.
- the switch SW1 when the switch SW1 is on and the switch SW2 is off, the switch SW3 is off and the switch SW4 is on (hereinafter referred to as 'first operation').
- the switch SW1 when the switch SW1 is off and the switch SW3 is on, the switch SW4 is off and the switch SW2 is on (hereinafter referred to as 'second operation').
- the operation of the inverter unit 22 is equally applicable to the following.
- the voltage detection unit 25a is applied with a DC reference voltage Vcc (for example, + 12V and -12V) for the operation of the op amp, the voltage detection unit 25a is offset by a predetermined voltage value.
- Vcc DC reference voltage
- the voltage detector 25b includes a resistor R connecting the capacitor C and the ground.
- the voltage dividing resistor unit 25c enables the divided voltage of the voltage Vc 'of FIG. 5 to be detected.
- the voltage divider 25c includes the resistors Ra and Rb connected in series between the capacitor C and the ground, between the resistors Ra and Rb, and the DC reference voltage Vcc (for example, 5 V and 3.3). It consists of a resistor Rc connecting V).
- the voltage detector 25 senses the voltage V1 at the voltage divider 25c, and the voltage V1 has an offset voltage (for example, 2.5V) by the voltage divider 25c. , The detection or detection of the voltage can be made more accurate.
- the voltage V1 in FIG. 6 is detected, and the voltage detector 25 includes a voltage divider 25c and software or firmware calculation means.
- FIG. 7 and 8 are operational circuit diagrams of the inverter of FIG. 3.
- FIG. 7 shows the flow of current (dashed arrow) when the circuit of FIG. 6 operates in the first operation
- FIG. 8 shows the flow of current (dashed arrow) when the circuit of FIG. 6 operates in the second operation. To show.
- the sampled voltage V2 is divided into the divided voltages.
- the voltage dividing ratio and / or the offset voltage of the unit 25c may be taken into consideration to calculate the voltage across the capacitor C.
- 9-11 are graphs of sensed voltages.
- FIG. 10 is an enlarged view of the S region of FIG. 9 and illustrates a process in which the voltage detector 25 samples the voltage V2 from the detected voltage V1 by the PWM signal switching.
- the voltage V2 is sampled at the sensing position corresponding to the edge.
- the sampling time (switching time or period) corresponding to this sensing position may be controlled by the control of the control unit 27 or arithmetic means. Since the sampling time is closely related to the amount of data to be processed by the voltage detector 25, the amount of data to be calculated or processed may be adjusted by adjusting the sampling time.
- FIG. 11 compares the voltage Vc between the capacitor C and a voltage (final voltage) corresponding to the voltage V2 sampled in FIG. 10.
- the voltage (final voltage) corresponding to the sampled voltage V2 is a result of estimating the voltage across the capacitor C in consideration of the voltage division ratio and the offset voltage of the voltage divider resistor 25c.
- the voltage (final voltage) calculated and estimated from the voltages across the capacitor C through the control device corresponding to FIGS. 6 to 10 is applied to the voltages Vc across the actual capacitor C.
- EMF counter electromotive force
- the above-described motor control apparatus is not only capable of controlling a general BLDC motor and the like, but can also be applied to control of a linear motor of a compressor, in particular, a linear compressor.
- the motor control apparatus shown in FIG. 3 may be applied to the linear compressor as shown in FIG. 12.
- an inlet tube 32a and an outlet tube 32b through which refrigerant flows in and out of one side of the sealed container 32 are installed, and a cylinder is formed inside the sealed container 32.
- the piston 34 is installed to be fixed, and the piston 36 is installed inside the cylinder 34 so as to reciprocate linear movement so as to compress the refrigerant sucked into the compression space P inside the cylinder 34.
- an intake valve 52 is installed at one end of the piston 36 in contact with the compression space P
- a discharge valve assembly 54 is installed at one end of the cylinder 34 in contact with the compression space P. The intake valve 52 and the discharge valve assembly 54 are automatically adjusted to open and close according to the pressure in the compression space P, respectively.
- the airtight container 32 is installed so that the upper and lower shells are coupled to each other so that the inside is sealed, and an inlet tube 32a through which refrigerant is introduced and an outlet tube 32b through which the refrigerant is discharged are installed, and a cylinder ( 34, the piston 36 is installed so as to be elastically supported in the movement direction for reciprocating linear motion, and the linear motors 40 are assembled to each other by the frame 48 outside the cylinder 34 to form an assembly.
- the assembly is installed to be elastically supported by the support spring 59 on the bottom surface of the sealed container (32).
- a predetermined oil is contained in the bottom surface of the airtight container 32, and an oil supply device 60 for pumping oil is installed at the bottom of the assembly, and oil is supplied to the inside of the lower frame 48 of the assembly.
- An oil supply pipe 48a is formed to be supplied between the cylinders 34, so that the oil supply device 60 is operated by the vibration generated by the reciprocating linear movement of the piston 36 to pump oil, and The oil is supplied to the gap between the piston 36 and the cylinder 34 along the oil supply pipe 48a to cool and lubricate.
- the cylinder 34 is formed in a hollow shape so that the piston 36 can reciprocate linearly, and a compression space P is formed at one side, and one end is located close to the inside of the inlet pipe 32a. It is preferable to be provided on the same straight line as the inflow pipe 32a.
- the cylinder 34 has a piston 36 installed in one end close to the inlet pipe 32a so as to reciprocate linearly, and a discharge valve assembly 54 is installed at one end opposite to the inlet pipe 32a. .
- the discharge valve assembly 54 is a discharge cover 54a is installed to form a predetermined discharge space on one end of the cylinder 34, and the discharge valve is installed to open and close one end of the compression space (P) side of the cylinder ( 54b) and a valve spring 54c, which is a kind of coil spring that imparts an elastic force in the axial direction between the discharge cover 54a and the discharge valve 54b, and has an O-ring R around one end of the cylinder 34. It is installed so that the discharge valve 54a is in close contact with one end of the cylinder (34).
- a curved loop pipe 58 is installed between one side of the discharge cover 54a and the outlet pipe 32b.
- the loop pipe 58 not only guides the compressed refrigerant to be discharged to the outside. Vibration caused by the interaction of the cylinder 34, the piston 36, and the linear motor 40 buffers the transmission of the entire sealed container 32.
- valve spring 54c is compressed to open the discharge valve 54b.
- the refrigerant is discharged from the compressed space P, and then completely discharged along the loop pipe 58 and the outlet pipe 32b.
- the piston 36 has a refrigerant passage 36a formed at the center so that the refrigerant flowing from the inlet pipe 32a flows, and one end of the piston 36 adjacent to the inlet pipe 32a is connected by the linear motor. 40 is installed to be directly connected, and the suction valve 52 is installed at one end of the inflow pipe 32a in the opposite direction, and is installed to be elastically supported by various springs in the movement direction of the piston 36.
- the suction valve 52 is formed in a thin plate shape so that the center portion is partially cut to open and close the refrigerant passage 36a of the piston 36, and one side is fixed by a screw to one end of the piston 36a. It is installed as possible.
- the suction valve 52 is opened to compress the refrigerant.
- the suction in the space P and the pressure in the compression space P becomes equal to or greater than a predetermined suction pressure, the refrigerant in the compression space P is compressed while the suction valve 52 is closed.
- the piston 36 is installed so as to be elastically supported in the movement direction.
- a piston flange 36b protruding in a radial direction at one end of the piston 36 proximate to the inflow pipe 32a includes a mechanical spring such as a coil spring or the like.
- the refrigerant is elastically supported in the movement direction of the piston 36 by 38a, 38b, and the refrigerant contained in the compression space P on the opposite side to the inflow pipe 32a acts as a gas spring by its elastic force, thereby causing the piston 36 It will elastically support.
- the mechanical springs 38a and 38b have a constant mechanical spring constant K m regardless of the load, and the mechanical springs 38a and 38b are fixed to the linear motor 40 based on the piston flange 36b.
- the predetermined support frame 56 and the cylinder 34 are installed side by side in the axial direction, respectively, the mechanical spring 38a supported by the support frame 56 and the mechanical spring 38a installed in the cylinder 34.
- the gas spring has a variable gas spring constant (K g ) depending on the load, the gas contained in the compression space (P) is the elastic force increases as the pressure of the refrigerant increases as the ambient temperature increases.
- K g variable gas spring constant
- the gas spring has a larger gas spring constant K g as the load increases.
- the mechanical spring constant (K m ) is constant, while the gas spring constant (K g ) is variable depending on the load, so the overall spring constant is also variable depending on the load, and the natural frequency (f n ) of the piston is also the gas It depends on the spring constant K g .
- this load can be measured in various ways, but since such a linear compressor is configured to be included in a refrigeration / air conditioning cycle in which the refrigerant is compressed, condensed, evaporated, and expanded, the load is the condensing pressure which is the pressure at which the refrigerant is condensed. It can be defined as the difference in the evaporation pressure, which is the pressure at which the refrigerant is evaporated, and further determined in consideration of the average pressure obtained by averaging the condensation pressure and the evaporation pressure to increase accuracy.
- the load is calculated to be proportional to the difference between the condensation pressure and the evaporation pressure and the average pressure, and as the load increases, the gas spring constant K g increases.
- the load between the condensation pressure and the evaporation pressure increases. increases, even if it is the same difference between the condensing pressure and the evaporation pressure greater the average pressure is calculated so as to increase the load, in response to this load is calculated so as to increase the gas spring constant (K g).
- the linear compressor may be provided with a sensor (pressure sensor, temperature sensor, etc.) for calculating the load.
- the load is measured so as to measure the condensation temperature which is substantially proportional to the condensation pressure and the evaporation temperature which is proportional to the evaporation pressure, and is proportional to the difference between the condensation temperature and the evaporation temperature and the average temperature.
- the mechanical spring constant (K m ) and the gas spring constant (K g ) can be determined through various experiments, and the resonance frequency of the piston is increased according to the load by increasing the ratio of the gas spring constant to the total spring constant. It can be varied in a relatively wide range.
- the linear motor 40 is configured such that a plurality of laminations 42a are stacked in the circumferential direction, and an inner stator 42 installed to be fixed to the outside of the cylinder 34 by the frame 48 and a coil wound configured to wind the coils.
- the outer stator 44 is configured such that a plurality of laminations 44b are laminated in the circumferential direction around the hull 44a and is provided with a predetermined gap with the inner stator 42 outside the cylinder 34 by the frame 48.
- a permanent magnet 46 positioned in the gap between the inner stator 42 and the outer stator 44 and installed to be connected by the piston 36 and the connecting member 47, wherein the coil winding body 44a is provided. May be installed to be fixed to the outer side of the inner stator 42.
- the linear motor 40 corresponds to one embodiment of the motor 23 described above, and the capacitor C is connected in series to the coil winding 44a.
- the control unit 27 calculates the counter electromotive force, and controls the inverter unit 22 accordingly, wherein an AC voltage having a constant magnitude and frequency is applied to the motor 23 (that is, the linear motor 40).
- the reciprocating stroke distance of the piston 36 is automatically adjusted according to the load (for example, low load, heavy load, high load, overload, etc.).
- this natural output change is achieved by causing the reciprocating stroke distance of the piston 36 at low load and the reciprocating stroke distance of the piston 36 at overload to be different from each other.
- TDC Preferably reciprocating up to TDC
- the control unit 27 accurately controls the inverter 22 in keeping the magnitude and frequency of the voltage constant, the noise in the inverter 22 or the resistance in the conducting wire between the inverter 22 and the motor 23 or the like. Variations may occur in the magnitude and frequency of the voltage applied to the motor 23 due to various factors such as noise. However, since the magnitude of the voltage fluctuation and the frequency fluctuation, for example, the magnitude of the voltage fluctuates within ⁇ 2% or the frequency fluctuation of the voltage within ⁇ 1% has little effect on the change in natural output, This degree should be considered to be of constant magnitude and frequency. Thus, in the present specification, it is to be understood that the voltage applied to the motor 23 has a substantially constant magnitude and frequency.
- the capacitor C is a component that determines the circuit operating frequency f c of the motor control device, wherein each of the capacitor C and the coil winding 44a
- the magnitude should be designed to match the natural frequency f n at the maximum output (eg, overload) of the linear motor 40 (ie, resonance point design).
- the natural frequency f n is considered to be both the mechanical spring constant (K m ) and the gas spring constant (K g ) described above, or to make the mechanical spring constant (K m ) small and the gas spring constant (K g ) It is predicted and used in advance such that the influence on the natural frequency f n is large.
- This design allows the piston 36 of the linear motor 40 to reciprocate to top dead center (TDC) when a load requiring a maximum output is required, and at a load below this maximum output the linear motor 40 To perform the reciprocating motion in response to the load of the piston 36 of the. That is, the natural output change according to the load is performed.
- TDC top dead center
- FIG. 13 illustrates a case in which the inverter unit 22 applies an AC voltage having a specific magnitude and frequency to the motor 23 in the linear compressor of FIG. 12. That is, it is a graph of cooling capacity when a certain size and frequency are kept fixed (maintaining a substantially constant size and frequency).
- the above-described automatic output change ie, natural cold power variable
- the cooling capacity graph shows that the cooling capacity is changing according to the load (temperature, ambient temperature, etc.) (i.e., the load of the refrigerator), especially after 40 ° C (e.g., overload area). It can be seen that it has a substantially constant size.
- the cooling capacity by the control device according to the present invention is that an alternating voltage having a constant magnitude and frequency is applied to the linear motor 40 even when the external power source changes. Due to this, as shown in Fig. 13, the graph gradually changes, and the cooling cycle is driven stably.
- the circuit operating frequency (f c ) of the motor control device is made to match the natural frequency (f n ) of the maximum output, thereby performing TDC reciprocation at the maximum output.
- the cooling efficiency is maximized.
- FIG. 14 is a graph of cooling capacity of the linear compressor of FIG. 12.
- FIG. 14 is a case where the control unit 27 causes the inverter unit 22 to apply the alternating voltages having at least three characteristics (voltage magnitude or frequency, which are a plurality of different values) to the motor unit 23. That is, the control unit 27 may perform the variable control of the natural cold power corresponding to the graph (line I) indicating the cold power according to the alternating current voltage having an intermediate cold force, and the AC voltage having a magnitude higher than the AC voltage corresponding to the I line.
- the natural cold power variable control corresponding to the graph (line II) representing the cold power according to the present invention may be performed.
- the controller 27 may perform the variable natural cold power control corresponding to the graph (line III) representing the cold power according to the AC voltage having a magnitude lower than the AC voltage corresponding to the I line.
- the control unit 27 varies and maintains an alternating voltage applied to the motor 23 by the inverter unit 22, and performs a forced cooling force variable control through varying the alternating voltage.
- a natural cold power variable control corresponding to the variable AC voltage is performed. That is, the control unit 27 basically performs the natural cold power variable control, but can perform the forced cold power variable control as required by the cold power.
- This necessity of cooling power corresponds to the case where forced cooling force variable control is required in response to a load when cooling force above the cooling force that can be achieved by the natural cooling force variable control is required, or a cooling power control command from the user (increasing the cooling force, decreasing the cooling force, etc.) ),
- a forced cooling force variable control according to for example, a special cooling command, a low cooling command, etc.
- FIG. 15 is a graph of cooling capacity of the linear compressor of FIG. 12.
- FIG. 15 is a case where the natural cold force variable control and the forced cold force variable control are simultaneously or selectively performed by increasing the AC voltages corresponding to the lines I and III of FIG. 14 (line IV).
- the control unit 27 causes only the natural cooling force variable control to be performed, and at about 18-19 ° C., it is forced to apply an alternating voltage larger than before. Forced cold power variable control is performed to allow the cold power to be increased, and while performing such forced cold power variable control, the natural cold power variable control can be performed simultaneously or selectively.
- the controller 27 controls the inverter unit 22 so that the natural cold variable control is performed in a section in which the magnitude and frequency of the increased AC voltage during the forced cold variable control are kept constant, that is, at about 19-27 ° C. Done. That is, the controller 27 performs the natural cold power variable control and the forced cold power variable control according to the necessity of cooling or in response to the load.
- FIG. 16 is a graph of cooling capacity of the linear compressor of FIG. 12.
- Fig. 16 shows a graph of the cooling capacity of the conventional linear compressor (line VI) (ie, the graph of Fig. 2) and the graph of the cooling capacity of the linear compressor of Fig. 12 together.
- the graph VI line according to the prior art according to the load, in order to increase the cooling power ratio, only the forced cooling power variable control is possible, so as to increase the AC voltage applied to the motor in sequential steps. Accordingly, since the cold power is varied only by the forced cold power variable control, the forced cold power variable control must be repeatedly performed several times or more.
- the graph V line according to the present invention allows only natural cold power variable control to be performed up to a constant cold power ratio (for example, 60%), and forced cold power variable control and natural cold power variable control up to 60-75%. Simultaneously or selectively, the cooling power is increased, and only the natural cold power variable control is performed at the cooling power ratio of 75% or more, so that the required cooling power is achieved. In other words, it is possible to achieve a desired cooling power ratio or cold power while minimizing forced cold power variable control.
- a constant cold power ratio for example, 60%
- forced cold power variable control and natural cold power variable control up to 60-75%.
- the cooling system (or a combined cooling system) includes one outdoor unit 70, a kimchi refrigerator 80 that is a cooling device, a wine cellar 90, and a refrigerator 100, wherein the refrigerant is a refrigerant pipe 110 and a pipe connection ( Through 120, the outdoor unit 70 circulates between the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100.
- the cooling device should be understood to include a device for performing cooling and the like, in addition to such a refrigeration and refrigerating device.
- FIG. 18 is a configuration diagram showing an example of a refrigeration cycle constituting a cooling system according to the present invention.
- the outdoor unit 70 includes an accumulator 71, a linear compressor 72 according to FIG. 12, and a condenser 73 along the flow of the refrigerant.
- the condenser 73 may further include a fan 74, and the accumulator 71 serves to allow the refrigerant in the gas phase to enter the linear compressor 72.
- the refrigerant exiting the condenser 73 enters the pipe connection part 120 through the supply refrigerant pipe 111 and passes through the pipe connection part 120 to one of the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100. Supplied. This supply is controlled by valves 131, 132, 133.
- the refrigerant passing through one of the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100 is recovered to the accumulator 71 through the recovery refrigerant pipe 112 and the pipe connection part 120.
- the pipe connection part 120 may be actually provided, but may be understood as a virtual space in which the supply refrigerant pipe 111, the recovery refrigerant pipe 112, and / or the valves 131, 132, and 133 are located, and located on the outdoor unit 70 side. You may.
- the valves 131, 132, and 133 may be located at the outdoor unit 70 and / or the refrigerator side according to a control unit (not shown) in charge of the control.
- the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100 are respectively connected to the outdoor unit 70 through the supply refrigerant pipe 111 and the recovery refrigerant pipe 112.
- the kimchi refrigerator 80 includes an evaporator 81
- the wine refrigerator 90 includes an evaporator 91 and a fan 92
- the refrigerator 100 includes evaporators 101A and 101B and fans 102A and 102B.
- the refrigerator 100 includes a freezing compartment 103 and a refrigerating compartment 104, in which an evaporator 101A is used for freezing the freezer compartment 103 and an evaporator 101B is used for refrigerating the refrigerating compartment 104.
- the refrigerator 100 includes a heater 105 in the freezer compartment 103 and a valve 106 for controlling the supply of refrigerant to the freezer compartment 103 and the refrigerating compartment 104 for defrosting.
- a heater 105 in the freezer compartment 103 and a valve 106 for controlling the supply of refrigerant to the freezer compartment 103 and the refrigerating compartment 104 for defrosting.
- the present invention is not limited to a refrigerator equipped with a kimchi refrigerator, a wine refrigerator, a freezer and a refrigerating chamber, provided that refrigeration or freezing is possible without departing from the basic spirit of the present invention.
- the kimchi refrigerator 80, the wine cellar 90 and the refrigerator 100 are provided with temperature sensors 87, 97, 107A and 107B for measuring the temperature.
- a control unit for controlling the operation of the outdoor unit 70, the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100, and a cable (not shown) for transmitting and receiving signals therebetween are further included. It is provided.
- the control unit may be provided in each of the refrigerators and the outdoor unit, and may be provided in any one or at least one of them. Various modifications to the configuration and operation of the control unit can be found in an air conditioning system with one outdoor unit and a plurality of indoor units.
- the temperature sensors 87, 97, 107A, and 107B are generally located in a refrigerator, but may be located in an evaporator, or may be located in a refrigerator and an evaporator.
- the linear compressor 72 is applied to the linear compressor according to FIGS. 2 and 12 described above, and performs a natural cold power variable control and a forced cold power variable control.
- the linear compressor 72 may be composed of a plurality of linear compressors.
- the linear compressor 72 In the case of cooling the freezer compartment 103, the linear compressor 72 is operated, the refrigerant is supplied to the evaporator 101A via the condenser 73, the supply refrigerant pipe 111, the recovery refrigerant pipe 112, and the accumulator. The refrigerant is circulated to the linear compressor 72 via the 71. At this time, the valve 133 is open, the valves 131 and 132 are closed, and the valve 106 is operated to direct the refrigerant to the evaporator 101A. Fan 107A and fan 74 may also be operated together. When the temperature measured by the temperature sensor 107A becomes equal to or less than the set value (for example, -18 ° C), the supply of the refrigerant to the evaporator 101A is stopped.
- the set value for example, -18 ° C
- the valve 106 In the case of cooling the refrigerating compartment 104, the valve 106 is operated so that the refrigerant is directed to the evaporator 101B, and when the temperature measured by the temperature sensor 107B is below a set value (e.g., 3 ° C), The refrigerant supply to the evaporator 101B is stopped.
- a set value e.g. 3 ° C
- the linear compressor 72 controls the natural cold power to control the cooling force corresponding to the load. To be fulfilled.
- the linear compressor 72 can supply the required cooling power only by the natural cold power variable control.
- Cooling of each refrigerator may be sequentially performed as described above, but when cooling for a plurality of refrigerators is required (that is, when a significantly higher cooling power is required compared to previously required cooling power) (that is, when the variation in the cooling power is large ),
- the linear compressor 72 is a cooling controller (e.g., a controller of a refrigerator, Main control unit or the like) or a cooling control command from the cooling control device that manages the entire cooling system to perform forced cooling force variable control to achieve a cooling force that cannot be achieved by natural cooling variable control.
- FIG. 19 is a block diagram illustrating an example of a cooling system according to the present invention.
- the control unit 150 operates in conjunction with the linear compressor 72, the fan 74, the temperature sensors 87, 97, 107A and 107B, the fans 32, 42A and 42B, and the valves 106, 131, 132 and 133 to operate the cooling system.
- the control unit 150 receives a cooling control command by operating a user's button 152 (for example, a special cooling command, a low cooling command, etc.) (that is, an input means) or responds to a sensed temperature from a temperature sensor.
- a cooling control command can be generated and sent to the linear compressor 72.
- the control unit 150 may correspond to a cooling control device provided in each of the refrigerators 80, 90, and 100 of FIG. 18, and independently communicates with the linear compressor 72 to transmit a cooling control command. It may be a device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
The present invention relates to a linear compressor, and more particularly, to a linear compressor which supplies a necessary cooling capacity through a natural cooling capacity modulation and a forcible cooling capacity modulation, and to a cooling system using the linear compressor. The linear compressor of the present invention includes a compression space (P) into which refrigerant is sucked, a movable member (36) which linearly reciprocates to compress the refrigerant sucked into the compression space (P), one or more springs (38a, 38b) which are installed to elastically support the movable member (36) in a motion direction of the movable member (36), a motor unit which includes a motor and a capacitor connected in series to the motor so as to make the movable member (36) linearly reciprocate, and a motor control unit which performs a natural cooling capacity modulation, according to a load, by reciprocation of the movable member (36).
Description
본 발명은 리니어 압축기에 관한 것으로서, 특히 자연 냉력 가변과 강제 냉력 가변을 통하여 필요한 냉력을 공급하는 리니어 압축기 및 이를 이용한 냉각 시스템에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear compressor, and more particularly, to a linear compressor for supplying necessary cooling power through a natural cooling force variable and a forced cooling force variable, and a cooling system using the same.
일반적으로 모터는 전기모터나 터빈 등의 동력발생장치로부터 동력을 전달받아 공기나 냉매 또는 그 밖의 다양한 작동가스를 압축시켜 압력을 높여주는 기계장치인 압축기 등에도 구비되며, 냉장고와 에어컨 등과 같은 가전기기 또는 산업전반에 걸쳐 널리 사용되고 있다.In general, a motor is also provided in a compressor, a mechanical device that increases power by compressing air, refrigerant, or various working gases by receiving power from a power generator such as an electric motor or a turbine. Or widely used throughout the industry.
특히, 이러한 압축기를 크게 분류하면, 피스톤(Piston)과 실린더(Cylinder) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 피스톤이 실린더 내부에서 직선 왕복 운동하면서 냉매를 압축시키는 왕복동식 압축기(Reciprocating compressor)와, 편심 회전되는 롤러(Roller)와 실린더(Cylinder) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 롤러가 실린더 내벽을 따라 편심 회전되면서 냉매를 압축시키는 회전식 압축기(Rotary compressor)와, 선회 스크롤(Orbiting scroll)과 고정 스크롤(Fixed scroll) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 선회 스크롤이 고정 스크롤을 따라 회전되면서 냉매를 압축시키는 스크롤식 압축기(Scroll compressor)로 나뉘어진다.In particular, when the compressor is largely classified, a reciprocating compressor for compressing the refrigerant while linearly reciprocating the piston inside the cylinder is formed by forming a compression space in which the working gas is absorbed and discharged between the piston and the cylinder. Rotary compressor that compresses the refrigerant while the roller is eccentrically rotated along the inner wall of the cylinder so that a compression space for absorbing and discharging the working gas is formed between the reciprocating compressor and the eccentrically rotating roller and the cylinder. Scroll compressor that compresses the refrigerant while the rotating scroll rotates along the fixed scroll by forming a compression space for absorbing and discharging the working gas between the orbiting scroll and the fixed scroll. Are divided into
최근에는 왕복동식 압축기 중에서 특히 피스톤이 왕복 직선 운동하는 구동모터에 직접 연결되도록 하여 운동전환에 의한 기계적인 손실이 없어 압축효율을 향상시킬 뿐 아니라 구조가 간단한 리니어 압축기가 많이 개발되고 있다.Recently, among the reciprocating compressors, in particular, the piston is directly connected to the reciprocating linear motion drive motor, so that there is no mechanical loss due to the motion conversion to improve the compression efficiency as well as a simple linear compressor has been developed a lot.
도 1은 종래 기술에 따른 리니어 압축기에 적용된 모터 제어 장치의 구성도이다. 1 is a block diagram of a motor control device applied to a linear compressor according to the prior art.
도 1에 도시된 바와 같이, 모터 제어 장치는 상용전원인 교류전원을 입력받아 정류하는 출력하는 다이오드 브리지(11)와, 정류된 전압을 평활하는 캐패시터(C1)로 이루어진 정류부와, 직류전압을 인가받아 제어부(17)로부터의 제어 신호에 따라 교류전압으로 변환하여 모터부에 제공하는 인버터부(12)와, 모터(13)와, 모터(13)에 직렬로 연결된 캐패시터(C2)를 포함하는 모터부와, 캐패시터(C1)의 양단 전압을 검출하는 전압 검출부(14)와, 모터부에 흐르는 전류를 검출하는 전류 검출부(15)와, 전압검출부(14)로부터의 감지 전압과, 전류 검출부(15)로부터의 감지 전류로부터 역기전력(EMF)을 연산하는 연산부(16) 및, 연산부(16)로부터의 연기전력과, 전류 검출부(15)로부터의 감지 전류를 반영하여, 제어신호를 생성하는 제어부(17)로 이루어진다. As shown in FIG. 1, the motor control apparatus applies a diode bridge 11 for receiving and rectifying an AC power, which is a commercial power source, and outputting the rectified part, a rectifying unit including a capacitor C1 smoothing the rectified voltage, and applying a DC voltage. A motor including an inverter unit 12, a motor 13, and a capacitor C2 connected in series with the motor 13, which are converted into an AC voltage according to a control signal from the controller 17 and provided to the motor unit. And a voltage detector 14 that detects the voltage across the capacitor C1, a current detector 15 that detects a current flowing in the motor unit, a sense voltage from the voltage detector 14, and a current detector 15 A calculation unit 16 for calculating the counter electromotive force (EMF) from the sense current from the control unit 16, and a control unit 17 for generating a control signal by reflecting the deferred power from the calculation unit 16 and the sense current from the current detection unit 15. )
이러한 제어 장치에서, 연산부(16)는 하기의 수학식1에 따라 역기전력을 연산한다. In this control device, the calculation unit 16 calculates the counter electromotive force according to Equation 1 below.
여기서, L은 모터(13)의 인덕턴스이고, V는 인버터부(12)로의 인가전압이고, R은 모터의 저항값이다. Here, L is the inductance of the motor 13, V is the voltage applied to the inverter unit 12, R is the resistance value of the motor.
즉, 연산부(16)는 전류 검출부(5)로부터의 감지 전류에 따라 역기전력(EMF)를 연산하게 된다. That is, the calculator 16 calculates the counter electromotive force EMF according to the sensed current from the current detector 5.
도 2는 도 1의 리니어 압축기의 냉력 가변 그래프이다. 도 2의 그래프는 이러한 모터 제어 장치의 인버터부(12)가 BLDC 인버터를 적용하는 경우에, 필요한 냉력을 획득하기 위해, 제어부(17)가 제어한 결과를 도시한다. FIG. 2 is a graph of variable cooling power of the linear compressor of FIG. 1. The graph of FIG. 2 shows the result of the control of the control unit 17 in order to obtain the required cooling power when the inverter unit 12 of the motor control device applies the BLDC inverter.
부하인 온도가 상승함에 따라, 제어부(17)는 인버터부(12)를 제어하여, 모터(13)에 인가되는 교류전압을 강제적으로 상승시킴으로써, 부하에 따라 요구되는 냉력을 획득하게 된다. 도시된 바와 같이, 10℃에서 50℃로 온도가 상승함에 따라, 제어부(17)는 4번의 강제 전압 상승 제어를 통하여, 원하는 냉력 또는 냉력비를 획득할 수 있다. As the temperature, which is the load, rises, the controller 17 controls the inverter unit 12 to forcibly raise the AC voltage applied to the motor 13, thereby acquiring the cooling force required according to the load. As shown in the figure, as the temperature rises from 10 ° C to 50 ° C, the controller 17 may obtain a desired cooling power or cooling power ratio through four forced voltage rising controls.
이러한 다수의 강제 전압 상승 제어 또는 강제 전압 하강 제어를 통한 냉력 획득의 경우, 제어부(17)에 의한 다수의 제어가 수행되어야 하며, 이러한 강제 전압 상승 및 하강 제어를 위해, 지속적인 전압 가변으로 인한, 모터 제어 장치 내의 구성부품의 신뢰성이 심각한 문제가 된다. 또한, 이러한 다수의 전압 가변에 대한 보호 장치(보호 회로) 등이 추가적으로 구비되어야 한다.In the case of acquiring the cooling force through such a plurality of forced voltage rise control or forced voltage drop control, a plurality of controls by the controller 17 must be performed, and for such a forced voltage rise and fall control, the motor due to the continuous voltage variable, The reliability of the components in the control device is a serious problem. In addition, a protection device (protection circuit) for such a plurality of voltage variations should be additionally provided.
본 발명은 부하에 대응하는 자연 냉력 가변 제어를 수행하되, 필요에 따라 전원 제어에 의한 강제 냉력 가변 제어를 선택적으로 수행하여 냉각 제어 과정을 단순화시키는 리니어 압축기 및 이를 이용한 냉각 시스템을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a linear compressor and a cooling system using the same to simplify the cooling control process by performing the variable control of the natural cooling force corresponding to the load, and selectively performing a forced cooling variable control by the power control as needed. do.
또한, 본 발명은 자연 냉력 가변 제어를 수행하여, 구성부품에 대한 전원 충격 및 구성부품의 단순화를 구현하는 리니어 압축기 및 이를 이용한 냉각 시스템을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a linear compressor and a cooling system using the same to implement a variable power cooling control, to implement a power impact on the components and simplification of the components.
또한, 본 발명은 적어도 하나 이상의 냉각 장치와 연결된 리니어 압축기에서, 특히 필요한 냉력의 편차가 심할 경우에, 단순한 제어와, 적은 개수의 압축기를 사용하여서도 필요한 냉력을 냉각 장치에 공급할 수 있는 리니어 압축기 및 이를 이용한 냉각 시스템을 제공하는 것을 목적으로 한다. In addition, the present invention provides a linear compressor capable of supplying the cooling device with a simple control and a required cooling power even with a small number of compressors, especially in a linear compressor connected to at least one cooling device, especially in the case of a large variation in the required cooling power. It is an object to provide a cooling system using the same.
또한, 본 발명은 역기전력의 연산 시에, 전류값이 아닌 전압값만을 사용하도록 하는 모터 제어 장치 및 이를 이용한 리니어 압축기를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a motor control device and a linear compressor using the same so as to use only a voltage value, not a current value, when calculating the counter electromotive force.
또한, 본 발명은 전압 감지의 정확도를 향상시키는 모터 제어 장치 및 이를 이용한 리니어 압축기를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a motor control device for improving the accuracy of voltage sensing and a linear compressor using the same.
또한, 본 발명은 모터 제어 장치를 이용하여, 실질적으로 고정된 전압 및 주파수 특성을 지닌 전압 또는 가변된 전압 및 주파수 특성을 지닌 전압이 모터에 인가되도록 하는 리니어 압축기를 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a linear compressor which allows a voltage having a substantially fixed voltage and frequency characteristic or a voltage having a variable voltage and frequency characteristic to be applied to a motor using a motor control device.
또한, 본 발명은 모터 제어 장치를 이용하여, 외부 전원이 가변하더라도 일정한 전압 및 일정한 주파수의 출력이 모터에 인가되도록 하는 리니어 압축기를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a linear compressor using a motor control device so that the output of a constant voltage and a constant frequency is applied to the motor even if the external power source is variable.
본 발명인 리니어 압축기는 냉매가 흡입되는 압축공간과, 왕복 직선운동하면서 압축공간으로 흡입된 냉매를 압축시키는 가동부재와, 가동부재를 가동부재의 운동방향으로 탄성 지지하도록 설치된 적어도 하나 이상의 스프링과, 가동부재를 왕복 직선운동시키기 위해, 모터와, 모터에 직렬로 연결된 캐패시터를 포함하는 모터부와, 부하에 대응하여, 가동부재의 왕복 운동에 의한 자연 냉력 가변을 수행하는 모터 제어부로 이루어진다. The linear compressor of the present invention includes a compression space in which the refrigerant is sucked, a movable member for compressing the refrigerant sucked into the compression space while reciprocating linear movement, at least one spring installed to elastically support the movable member in the direction of movement of the movable member, and In order to reciprocally linearly move the member, the motor comprises a motor, a motor unit including a capacitor connected in series with the motor, and a motor control unit that performs a natural cooling force variable by reciprocating motion of the movable member in response to a load.
또한, 모터 제어부는 모터부로 인가되는 전압의 크기 및 주파수를 실질적으로 일정하게 유지하여, 자연 냉력 가변을 수행하는 것이 바람직하다. In addition, the motor control unit preferably maintains the magnitude and frequency of the voltage applied to the motor unit to be substantially constant to perform the natural cooling force variable.
또한, 본 발명인 리니어 압축기는 냉매가 흡입되는 압축공간과, 왕복 직선운동하면서 압축공간으로 흡입된 냉매를 압축시키는 가동부재와, 가동부재를 가동부재의 운동방향으로 탄성 지지하도록 설치된 적어도 하나 이상의 스프링과, 가동부재를 왕복 직선운동시키기 위해, 모터와, 모터에 직렬로 연결된 캐패시터를 포함하는 모터부와, 냉매 변화에 대응하여, 가동부재의 스트로크가 가변되어 자연 냉력 가변을 수행하는 모터 제어부로 이루어진다. In addition, the linear compressor of the present invention includes a compression space in which the refrigerant is sucked, a movable member for compressing the refrigerant sucked into the compression space while reciprocating linear movement, and at least one spring provided to elastically support the movable member in the direction of movement of the movable member; In order to reciprocally move the movable member, the motor unit includes a motor, a motor unit including a capacitor connected in series with the motor, and a motor controller configured to vary the stroke of the movable member in response to a change in the refrigerant, thereby performing natural cooling force variation.
또한, 모터 제어부는 외부에서 인가되는 상용전원 또는 모터부에 인가되는 전원에 대응하는 전압을 감지하여, 감지된 전압에 기준으로 하여 모터부를 제어하는 것이 바람직하다. In addition, the motor control unit may detect a voltage corresponding to a commercial power applied from the outside or a power applied to the motor unit, and control the motor unit based on the detected voltage.
또한, 모터 제어부는 모터부로 인가되는 전압의 크기 또는 주파수를 가변하여 강제 냉력 가변을 수행하는 것이 바람직하다. In addition, the motor control unit may vary the magnitude or frequency of the voltage applied to the motor unit to perform the forced cooling force variable.
또한, 모터 제어부는 모터부로 인가되는 전압의 크기 또는 주파수를 복수의 값들로 가변하여 강제 냉력 가변을 수행한 이후, 그 가변된 전압의 크기 또는 주파수를 일정하게 유지하여, 유지된 교류 전압을 모터부에 인가하여 자연 냉력 가변을 수행하는 것이 바람직하다. In addition, the motor control unit changes the magnitude or frequency of the voltage applied to the motor unit to a plurality of values to perform forced cooling force variation, and then maintains the magnitude or frequency of the variable voltage constant, thereby maintaining the maintained AC voltage in the motor unit. It is preferred to perform the natural cold power variable by applying to.
또한, 모터 제어부는 냉각 제어 장치로부터의 냉력 가변 명령에 대응하여, 전압의 크기 또는 주파수를 가변하는 것이 바람직하다. In addition, the motor control unit preferably varies the magnitude or frequency of the voltage in response to the cooling force variable command from the cooling control device.
또한, 모터 제어부는 교류전원을 입력받아 직류 전압으로 출력하는 정류부와, 직류전압을 인가받아 제어 신호에 따라 교류전압으로 변환하여 모터부에 제공하는 인버터부와, 인버터부에 인가되는 전압을 감지하는 제1 전압 검출부와, 캐패시터의 양단 전압, 또는 캐패시터와 접지 간의 전압에 대응하는 전압을 검출하는 제2 전압 검출부와, 제1전압 검출부로부터의 제1전압과, 제2전압 검출부로부터의 제2전압을 인가받아, 제1 및 제2전압에 대응하되 인버터부가 교류 전압의 크기 및 주파수를 실질적으로 일정하게 유지하도록 하는 제어 신호를 생성하여 인버터부에 인가하는 제어부를 포함하는 것이 바람직하다. The motor controller may further include a rectifier that receives an AC power and outputs a DC voltage, an inverter that receives a DC voltage, converts the AC voltage according to a control signal, and provides the motor to the motor, and detects a voltage applied to the inverter. A first voltage detector, a second voltage detector for detecting a voltage corresponding to the voltage across the capacitor, or a voltage between the capacitor and the ground; a first voltage from the first voltage detector; and a second voltage from the second voltage detector. The control unit may be configured to include a control unit corresponding to the first and second voltages to generate and apply a control signal to the inverter unit to substantially maintain the magnitude and frequency of the AC voltage.
또한, 제어부는 제2전압을 검출하는 제2전압 검출부의 샘플링 시간을 조절하는 것이 바람직하다. The controller may adjust the sampling time of the second voltage detector for detecting the second voltage.
또한, 제어부는 제1 및 제2전압에 대응하는 역기전력을 연산하여, 연산된 역기전력에 따른 제어 신호를 생성하는 것이 바람직하다. The controller may calculate a counter electromotive force corresponding to the first and second voltages to generate a control signal according to the calculated counter electromotive force.
또한, 본 발명인 냉각 시스템은 적어도 하나 이상의 냉각 장치와, 냉각 장치에 냉매를 공급하도록 연결되며, 부하에 대응하여 냉력을 자연적으로 가변하는 자연 냉력 가변 제어와, 부하 또는 냉각 제어 명령에 대응하여 냉력을 강제적으로 가변하는 강제 냉력 가변 제어를 수행하여, 냉매를 냉각 장치에 공급하는 압축기, 및 냉각 장치와 압축기를 연결하는 냉매 관을 포함한다. In addition, the cooling system of the present invention is connected to supply at least one cooling device, the refrigerant to the cooling device, the natural cold power variable control to naturally vary the cooling power in response to the load, and the cooling power in response to the load or cooling control command And a compressor for supplying a refrigerant to the cooling device by forcibly varying the forced cooling force variable control, and a refrigerant pipe connecting the cooling device and the compressor.
또한, 본 발명인 냉각 시스템은 적어도 하나 이상의 냉각 장치와, 냉각 장치에 냉매를 공급하도록 연결되며, 부하에 대응하여 냉력을 자연적으로 가변하는 자연 냉력 가변 제어만을 수행하여, 냉매를 냉각 장치에 공급하는 압축기, 및 냉각 장치와 압축기를 연결하는 냉매 관을 포함한다. In addition, the cooling system of the present invention is connected to supply at least one cooling device and the refrigerant to the cooling device, and performs only a natural cold power variable control to naturally vary the cooling power in response to the load, to supply the refrigerant to the cooling device And a refrigerant pipe connecting the cooling device and the compressor.
본 발명은 부하에 대응하는 자연 냉력 가변 제어를 수행하되, 필요에 따라 전원 제어에 의한 강제 냉력 가변 제어를 선택적으로 수행하여 냉각 제어 과정을 단순화시킴과 함께, 인가 전원을 절감하면서도 필요한 냉력을 공급하는 효과가 있다. The present invention performs the variable control of the natural cold power corresponding to the load, and optionally to perform the forced cold variable control by the power control to simplify the cooling control process, while supplying the necessary cooling power while reducing the applied power It works.
또한, 본 발명은 자연 냉력 제어를 수행하여, 구성부품에 대한 전원 충격 및 구성부품의 단순화를 구현하는 효과가 있다. In addition, the present invention has the effect of implementing the natural cooling power control, the power impact on the components and the simplification of the components.
또한, 본 발명은 적어도 하나 이상의 냉각 장치와 연결된 리니어 압축기에서, 특히 필요한 냉력의 편차가 심할 경우에, 단순한 제어와, 적은 개수의 압축기를 사용하여서도 필요한 냉력을 냉각 장치들에 안정적으로 공급할 수 있는 효과가 있다. In addition, the present invention is a linear compressor connected to at least one cooling device, especially in the case of a large variation in the required cooling power, it is possible to stably supply the required cooling power to the cooling devices even with simple control and a small number of compressors. It works.
이러한 구성의 본 발명은 역기전력의 연산 시에, 전류값이 아닌 전압값만을 사용하도록 하여, 연기전력을 정확하게 연산하여, 모터의 제어를 정확하게 수행할 수 있는 효과가 있다. The present invention of such a configuration has the effect of performing the control of the motor accurately by accurately calculating the acting power by using only the voltage value, not the current value, when calculating the counter electromotive force.
또한, 본 발명은 리니어 압축기에 구비된 모터에 실질적으로 고정된 크기 및 주파수 특성을 지닌 전압 또는 가변된 크기 및 주파수 특성을 지닌 전압을 인가하여, 부하에 따라, 냉력이 가변되도록 하는 효과가 있다. In addition, the present invention by applying a voltage having a substantially fixed magnitude and frequency characteristics or a voltage having a variable magnitude and frequency characteristics to the motor provided in the linear compressor, there is an effect that the cooling power is variable according to the load.
또한, 본 발명은 가변되는 외부 전원의 입력 하에서도 실질적으로 일정한 전압 및 일정한 주파수의 출력이 모터에 인가되도록 하여 리니어 압축기의 신뢰성을 향상시키는 효과가 있다. In addition, the present invention has the effect of improving the reliability of the linear compressor by allowing the output of substantially constant voltage and constant frequency to be applied to the motor even under the input of a variable external power source.
도 1은 종래 기술에 따른 리니어 압축기에 적용된 모터 제어 장치의 구성도이다. 1 is a block diagram of a motor control device applied to a linear compressor according to the prior art.
도 2는 도 1의 리니어 압축기의 냉력 가변 그래프이다. FIG. 2 is a graph of variable cooling power of the linear compressor of FIG. 1.
도 3은 본 발명에 따른 리니어 압축기에 적용된 모터 제어 장치의 구성도이다. 3 is a block diagram of a motor control device applied to the linear compressor according to the present invention.
도 4 내지 6은 도 3의 전압 검출부의 검출 회로의 제1 내지 제3실시예이다.4 to 6 are first to third embodiments of the detection circuit of the voltage detector of FIG. 3.
도 7 및 8은 도 3의 인버터의 동작 회로도들이다. 7 and 8 are operational circuit diagrams of the inverter of FIG. 3.
도 9 내지 11은 감지된 전압의 그래프들이다. 9-11 are graphs of sensed voltages.
도 12는 본 발명에 따른 리니어 압축기의 단면도이다. 12 is a sectional view of a linear compressor according to the present invention.
도 13 내지 16은 도 12의 리니어 압축기의 냉각 용량 그래프들이다. 13 through 16 are cooling capacity graphs of the linear compressor of FIG. 12.
도 17은 도 3의 리니어 압축기가 적용된 냉각 시스템의 일 예를 나타내는 도면이다. 17 is a diagram illustrating an example of a cooling system to which the linear compressor of FIG. 3 is applied.
도 18은 본 발명에 따른 냉각 시스템을 구성하는 냉동 사이클의 일 예를 나타내는 구성도이다.18 is a configuration diagram showing an example of a refrigeration cycle constituting a cooling system according to the present invention.
도 19는 본 발명에 따른 냉각 시스템의 일 예를 블럭화한 도면이다.19 is a block diagram illustrating an example of a cooling system according to the present invention.
이하 상기 목적이 구체적으로 실현될 수 있는 본 발명의 실시예들이 첨부된 도면을 참조하여 설명된다.DETAILED DESCRIPTION Hereinafter, embodiments of the present invention in which the above object can be specifically realized are described with reference to the accompanying drawings.
도 3은 본 발명에 따른 리니어 압축기에 적용된 모터 제어 장치의 구성도이다. 3 is a block diagram of a motor control device applied to the linear compressor according to the present invention.
도 3에 도시된 모터 제어 장치는 상용전원인 교류전원을 입력받아 정류하는 출력하는 다이오드 브리지(21)와, 정류된 전압을 평활하는 캐패시터(C1)로 이루어진 정류부와, 직류전압을 인가받아 제어부(27)로부터의 제어 신호에 따라 교류전압으로 변환하여 모터부에 제공하는 인버터부(22)와, 모터(23)와, 모터(23)에 직렬로 연결된 캐패시터(C)를 포함하는 모터부와, 캐패시터(C1)의 양단 전압 또는 분압저항부(R1, R2)의 분압 전압을 검출하는 전압 검출부(24)와, 캐패시터(C)의 양단 전압(Vc) 또는 캐패시터(C)와 접지 간의 전압(V1)을 검출하는 전압 검출부(25)와, 전압검출부(24)로부터의 감지 전압과, 전압 검출부(25)로부터의 감지 전압으로부터 역기전력(EMF)을 연산하는 연산부(26) 및, 연산부(26)로부터의 역기전력과, 전압 검출부(25)로부터의 감지 전압을 반영하여, 제어신호를 생성하는 제어부(27)로 이루어진다. 본 발명에서는 제어부(27)가 역기전력과 감지 전압에 따라, 제어 신호를 생성하는 과정에 대해서는 기재하지 않으나, 이러한 과정은 본 발명이 속하는 기술분야에 익숙한 사람에게는 명백하게 이해되는 정도에 불과하다. The motor control apparatus shown in FIG. 3 includes a rectifying unit including a diode bridge 21 for receiving and rectifying an AC power, which is a commercial power source, and outputting a rectifier, a capacitor C1 for smoothing the rectified voltage, and a control unit receiving a DC voltage. A motor section including an inverter section 22, a motor 23, and a capacitor C connected in series with the motor 23, which are converted into an AC voltage and provided to the motor section in accordance with the control signal from 27; The voltage detector 24 detects the voltage across the capacitor C1 or the divided voltages of the voltage divider resistors R1 and R2, and the voltage V1 between the capacitor C and the voltage V1 between the capacitor C and the ground. ) Is calculated from the voltage detector 25, the voltage detected by the voltage detector 24, the calculated voltage from the voltage detector 25, and the calculator 26 and the calculator 26. Reflects the counter electromotive force of and the sensed voltage from the voltage detector 25, Control comprises a control unit 27 for generating a signal. In the present invention, the control unit 27 does not describe a process of generating a control signal according to the counter electromotive force and the sensed voltage, but this process is only a degree that is clearly understood by those skilled in the art.
또한, 제어부(27)는 연산부(26)와 단일 소자 또는 회로로 구성될 수도 있다.In addition, the controller 27 may be configured by the calculator 26 and a single element or a circuit.
먼저, 다이오드 브리지(21)는 일반적인 정류 기능을 수행하는 소자이며, 캐패시터(C1)는 정류된 전압을 평활하는 소자이다. First, the diode bridge 21 is a device that performs a general rectification function, and the capacitor C1 is a device that smoothes the rectified voltage.
분압저항부(R1, R2)는 적어도 2개의 직렬 연결된 저항(R1)과 (R2)으로 이루어지고, 다이오드 브리지(21)로부터의 정류된 전압을 분압한다. 일반적으로 다이오드 브리지(21)의 정류된 전압이 수백 내지 수천 볼트(예를 들면, 200∼ 1000V)이기 때문에, 이러한 큰 전압이 연산부(26) 및/또는 제어부(27)에 인가되는 것은 연산부(26) 및 제어부(27)에 과도한 전압인가가 이루어질 수 있으므로, 이러한 분압이 요구된다. 연산부(26) 및 제어부(27)로는 소정의 크기(예를 들면, 약 5V 또는 0.2V)정도의 전압이 인가되는 것이 바람직하고, 저항(R1)은 저항(R2)보다 적어도 수백 내지 수천 배의 저항값을 지니도록 구성한다. 이러한 저항(R1, R2)의 저항값 또는 저항값이 비율은 연산부(26) 및 제어부(27)에 인지되어, 분압 전압에 의해서 직류 링크 전압(Vdc)의 크기를 산정하거나 예측하는 것이 가능하다. The voltage divider R1 and R2 are composed of at least two series connected resistors R1 and R2, and divide the rectified voltage from the diode bridge 21. In general, since the rectified voltage of the diode bridge 21 is hundreds to thousands of volts (for example, 200 to 1000 V), it is not necessary for such a large voltage to be applied to the calculator 26 and / or the controller 27. ), And such a partial pressure is required because excessive voltage may be applied to the control unit 27. Preferably, a voltage of a predetermined magnitude (for example, about 5 V or 0.2 V) is applied to the operation unit 26 and the control unit 27, and the resistor R1 is at least several hundred to several thousand times larger than the resistance R2. Configure to have resistance value. The ratio of the resistance value or the resistance value of the resistors R1 and R2 is recognized by the calculation unit 26 and the control unit 27, and it is possible to calculate or predict the magnitude of the DC link voltage Vdc based on the divided voltage.
즉, 연산부(26) 및 제어부(27)는 다이오드 정류회로(11)로부터 정류된 전압 또는 그 일부를 판독한다. That is, the calculator 26 and the controller 27 read the voltage rectified from the diode rectifier circuit 11 or a part thereof.
다음으로, 인버터부(22)와, 모터부(23) 및 전압 검출부(24)는 본 발명이 속하는 기술분야에 익숙한 사람에게는 용이하게 인식될 수 있는 정도에 불과하므로, 그 기재를 생략한다. Next, the inverter unit 22, the motor unit 23 and the voltage detection unit 24 are just enough to be easily recognized by a person familiar with the technical field to which the present invention belongs, and thus description thereof is omitted.
전압 검출부(25)는 캐패시터(C)의 양단 전압 또는 캐패시터(C)와 접지 간의 전압을 검출하되, 특히, 캐패시터(C)와 접지 간의 전압의 일부(즉, 분압 전압)을 검출하여, 검출된 전압(또는 감지 전압)(V2)을 연산부(26) 및 제어부(27)에 인가한다. 이 전압 검출부(25)에 대해서는 하기에서 상세하게 기재된다. The voltage detector 25 detects the voltage between the capacitor C or the voltage between the capacitor C and the ground, and in particular, detects a part of the voltage between the capacitor C and the ground (ie, the divided voltage). The voltage (or sense voltage) V2 is applied to the calculator 26 and the controller 27. This voltage detector 25 is described in detail below.
다음으로, 연산부(26)는 전압검출부(24)로부터의 전압과, 전압 검출부(25)로부터의 전압(V2)으로부터 역기전력(EMF)을 연산한다. 이러한 연산은 하기의 수학식들에 따라 이루어진다. 이러한 수학적 연산은 하드웨어적으로, 또는 미들웨어적으로, 및 소프트웨어적으로 구현될 수 있다. 본 실시예는 캐패시터(C)의 양단 전압(Vc)이 검출된 경우에 해당된다. Next, the calculator 26 calculates the counter electromotive force EMF from the voltage from the voltage detector 24 and the voltage V2 from the voltage detector 25. This operation is performed according to the following equations. Such mathematical operations may be implemented in hardware, middleware, and software. This embodiment corresponds to the case where the voltage Vc at both ends of the capacitor C is detected.
여기서, i는 모터부에 흐르는 전류이고, C는 캐피시터(C)의 캐패시턴스에 해당된다. 여기서, 캐패시터(C)의 전압(Vc)는 수학식2로부터 수학식3과 같이 변환된다. Here, i is a current flowing in the motor unit, and C corresponds to the capacitance of the capacitor (C). Here, the voltage Vc of the capacitor C is converted from equation (2) as shown in equation (3).
수학식3에 따른 전압(Vc)를 수학식1에 대입하면, 하기의 수학식 4과 같다.Substituting the voltage Vc according to Equation 3 into Equation 1 is as follows.
여기서, L은 모터(23)의 인덕턴스이고, V는 인버터부(22)로의 인가전압(Vdc)이고, R은 모터의 저항값이다. Here, L is the inductance of the motor 23, V is the applied voltage (Vdc) to the inverter unit 22, R is the resistance value of the motor.
여기서, 전압(Vc)는 수학식5의 (1)식과 같이 정의될 수 있으며, 전압(Vc)의 미분값은 수학식5의 (2)식과 같다. 또한, 전압(Vc)의 이중 미분값은 수학식5의 (3)과 같이 정의될 수 있다. Here, the voltage Vc may be defined as in Equation (5), and the derivative of the voltage Vc is as in Equation (2). In addition, the double derivative of the voltage Vc may be defined as shown in Equation 5 (3).
이러한 수학식5의 정의에 따라, 전압(Vc)의 미분값과, 이중 미분값을 수학식4에 대입하면, 수학식 6과 같다. 여기서, ω는 모터의 운동 주파수이다.According to the definition of Equation 5, when the derivative of the voltage Vc and the double derivative are substituted into Equation 4, Equation 6 is obtained. Where ω is the kinetic frequency of the motor.
수학식6을 정리하면, 수학식7과 같다. Equation (6) is summarized as Equation (7).
따라서, 연산부(26) 및 제어부(27)는 캐패시터(C)의 양단 전압(Vc)로부터 역기전력(EMF)를 연산할 수 있게 된다. 특히, 수학식7에서, RCdVc/dt와 같이 미분연산이 요구되나, 역기전력의 연산에서, 그 크기가 다른 값들에 비하여 상대적으로 현저하게 작은 값이므로, 노이즈로부터의 영향이 극히 감소되게 된다.Accordingly, the calculator 26 and the controller 27 can calculate the counter electromotive force EMF from the voltage Vc at both ends of the capacitor C. FIG. In particular, in equation (7), a differential operation is required, such as RCdVc / dt, but in the calculation of counter electromotive force, since its magnitude is relatively significantly smaller than other values, the influence from noise is extremely reduced.
또한, 역기전력의 연산에서 미분 연산의 중요도가 상당히 낮아지게 되므로, 미분 연산의 정확도가 낮더라도, 역기전력의 연산에 미치는 영향이 적게 되어, 연산부(26)에 구비되는 프로세서(예를들면, 마이크로프로세서 등)의 성능이 상대적으로 낮더라도, 역기전력의 연산을 비교적 정확하게 이루어질 수 있다. In addition, since the importance of the derivative operation is considerably lowered in the calculation of the counter electromotive force, even if the accuracy of the derivative operation is low, the influence on the calculation of the counter electromotive force is reduced, and thus, a processor (for example, a microprocessor or the like) provided in the operation unit 26. Even if the performance of) is relatively low, the back EMF can be calculated relatively accurately.
또한, 캐패시터(C)는 외부의 전류 및 노이즈의 급격한 변화에도 그 전압이 급격하게 변화되지 않으므로, 전압(Vc)의 값은 노이즈를 포함하지 않게 되어, 전체적인 역기전력(EMF)의 연산이 노이즈의 영향을 거의 받지 않게 된다. In addition, since the voltage of the capacitor C does not change abruptly even with a sudden change in external current and noise, the value of the voltage Vc does not include noise, and the operation of the total back EMF affects the noise. You rarely get
또한, 제어부(27)는 연산부(26)로부터의 역기전력(EMF)에 특정 상수를 곱하여서 속도를 연산하거나, 속도를 적분하여 변위(예를 들면, 리니어 압축기의 경우, 피스톤의 변위)를 연산할 수도 있다. In addition, the control unit 27 calculates the speed by multiplying the counter electromotive force (EMF) from the calculating unit 26 by a specific constant, or calculates the displacement (for example, the displacement of the piston in the case of the linear compressor) by integrating the speed. It may be.
또한, 제어부(27)는 널리 알려진 바와 같이, PWM 신호의 생성과, PWM 신호에 대응하는 제어 신호를 생성하게 되며, 이러한 제어 신호에 의해 인버터부(22)를 제어하게 된다. 이러한 PWM 신호는 전압(Vdc)와의 관계를 통하여 듀비티로 산정될 수도 있음도 널리 알려져 있다. 이러한 제어 신호 및 듀티비를 통하여, 제어부(27)는 냉동 사이클의 경우, 냉력을 조절하게 된다. In addition, as is well known, the control unit 27 generates a PWM signal and a control signal corresponding to the PWM signal, and controls the inverter unit 22 by such a control signal. It is also well known that such a PWM signal may be calculated as a duty through a relationship with the voltage Vdc. Through the control signal and the duty ratio, the control unit 27 adjusts the cooling force in the case of the refrigeration cycle.
도 4 내지 6은 도 3의 전압 검출부의 검출 회로의 제1 내지 제3실시예이다.4 to 6 are first to third embodiments of the detection circuit of the voltage detector of FIG. 3.
도 4는 캐패시터(C)의 양단 전압(Vc)를 직접적으로 검출하는 구성으로서, 전압 검출부(25a)가 IC chip OP amp로 이루어져서, 일반적인 OP amp를 통하여, 전압(Vc)이 검출될 수 있다. 이러한 직접적인 전압(Vc)의 검출은 별도의 전압 연산을 위한 소프트웨어가 요구되지 않는다. 4 is a configuration for directly detecting the voltage Vc across the capacitor C. The voltage detector 25a is formed of an IC chip OP amp, so that the voltage Vc can be detected through a general OP amp. The detection of this direct voltage Vc does not require software for a separate voltage calculation.
인버터부(22)는 직렬로 연결된 두 쌍의 스위치(SW1, SW2) 및 (SW3, SW4)로 이루어지고, 스위치(SW1)와(SW2) 사이와, 스위치(SW3)와 (SW4) 사이에 모터부가 연결된다. 특히, 스위치(SW1)이 온이고, 스위치(SW2)가 오프인 경우, 스위치(SW3)이 오프이고, 스위치(SW4)가 온으로 동작한다(이하, '제1동작'이라 한다). 또한, 스위치(SW1)이 오프이고, 스위치(SW3)가 온인 경우, 스위치(SW4)이 오프이고, 스위치(SW2)가 온으로 동작한다(이하, '제2동작'이라 한다). 이러한 인버터부(22)의 동작은 하기에서도 동일하게 적용되된다. The inverter unit 22 is composed of two pairs of switches SW1 and SW2 and SW3 and SW4 connected in series, and includes a motor between the switches SW1 and SW2 and between the switches SW3 and SW4. The addition is connected. In particular, when the switch SW1 is on and the switch SW2 is off, the switch SW3 is off and the switch SW4 is on (hereinafter referred to as 'first operation'). In addition, when the switch SW1 is off and the switch SW3 is on, the switch SW4 is off and the switch SW2 is on (hereinafter referred to as 'second operation'). The operation of the inverter unit 22 is equally applicable to the following.
또한, 전압 검출부(25a)는 op amp의 동작을 위한 직류 기준 전압(Vcc)(예를 들면, +12V, -12V)이 인가되므로, 일정 전압값만큼 오프셋된다. In addition, since the voltage detection unit 25a is applied with a DC reference voltage Vcc (for example, + 12V and -12V) for the operation of the op amp, the voltage detection unit 25a is offset by a predetermined voltage value.
도 5 및 6은 도 3의 OP amp의 사용없이, 저가의 저항만을 사용하여, 전압(Vc)에 근접하거나 일치하는 전압을 산정하기 위한 산정하기 위한 전압을 감지하도록 한다. 전압(Vc')는 캐패시터(C)와 접지 간의 전압에 해당된다. 전압 검출부(25b)는 캐패시터(C)와 접지 간을 연결하는 저항(R)으로 이루어진다. 5 and 6 allow the sensing of a voltage to estimate for estimating a voltage close to or coincident with the voltage Vc, using only a low cost resistor, without the use of the OP amp of FIG. The voltage Vc 'corresponds to the voltage between the capacitor C and ground. The voltage detector 25b includes a resistor R connecting the capacitor C and the ground.
도 5에서, 인버터부가 제1동작으로 동작하는 경우, 전압(Vc')는 캐패시터의 양단 전압(Vc)와 동일하게 되며, 인버터부가 제2동작으로 동작하는 경우, 전압(Vc')는 (Vc=Vc'-Vdc)로 연산될 수 있다. 이러한 연산 등은 전압 검출부(25)가 전압 검출부(25b)와, 소프트웨어적이거나, 펌웨어적인 연산 수단을 구비함으로 인식되어야 한다. In Fig. 5, when the inverter section operates in the first operation, the voltage Vc 'becomes equal to the voltage Vc at both ends of the capacitor, and when the inverter section operates in the second operation, the voltage Vc' becomes (Vc). = Vc'-Vdc). Such calculation or the like should be recognized as the voltage detector 25 having the voltage detector 25b and software or firmware calculation means.
도 6은 도 5와 달리, 분압 저항부(25c)는 도 5의 전압(Vc')의 분압 전압이 검출될 수 있도록 한다. 분압 저항부(25c)는 캐패시터(C)와 접지 간에 직렬로 연결된 저항(Ra, Rb)과, 저항(Ra) 및 (Rb) 사이와, 직류 기준 전압(Vcc)(예를 들면, 5V, 3.3V)를 연결하는 저항(Rc)로 이루어진다. 전압 검출부(25)는 분압 저항부(25c)에서의 전압(V1)을 감지하게 되고, 전압(V1)은 이러한 분압 저항부(25c)에 의해 오프셋 전압(예를 들면, 2.5V)을 지니게 되어, 전압의 감지 또는 검출이 보다 정확하게 이루어질 수 있다. 6 is different from FIG. 5, the voltage dividing resistor unit 25c enables the divided voltage of the voltage Vc 'of FIG. 5 to be detected. The voltage divider 25c includes the resistors Ra and Rb connected in series between the capacitor C and the ground, between the resistors Ra and Rb, and the DC reference voltage Vcc (for example, 5 V and 3.3). It consists of a resistor Rc connecting V). The voltage detector 25 senses the voltage V1 at the voltage divider 25c, and the voltage V1 has an offset voltage (for example, 2.5V) by the voltage divider 25c. , The detection or detection of the voltage can be made more accurate.
도 6에서의 전압(V1)이 검출되며, 전압 검출부(25)는 분압 저항부(25c)와, 소프트웨어적이거나, 펌웨어적인 연산 수단을 구비한다. The voltage V1 in FIG. 6 is detected, and the voltage detector 25 includes a voltage divider 25c and software or firmware calculation means.
도 7 및 8은 도 3의 인버터의 동작 회로도들이다. 7 and 8 are operational circuit diagrams of the inverter of FIG. 3.
도 7은 도 6의 회로가 제1동작으로 동작할 경우의 전류의 흐름(점선 화살표)을 도시하고, 도 8은 도 6의 회로가 제2동작으로 동작할 경우의 전류의 흐름(점선 화살표)을 도시한다. FIG. 7 shows the flow of current (dashed arrow) when the circuit of FIG. 6 operates in the first operation, and FIG. 8 shows the flow of current (dashed arrow) when the circuit of FIG. 6 operates in the second operation. To show.
도 7의 경우나 도 8의 경우에도, 도 5의 상술된 연산과 같은 소프트웨어적이거나, 펌웨어적인 연산 수단이 구비되어야 한다. 도 6의 전압(V1)을 모두 데이터로 사용하는 것이 실제적으로 어렵기 때문에, 일정한 샘플링 시간 또는 스위칭을 통하여, 전압(V1)을 반영하는 샘플링된 전압(V2)를 사용하게 된다. Even in the case of FIG. 7 or FIG. 8, software or firmware calculation means such as those described in FIG. 5 must be provided. Since it is practically difficult to use all of the voltage V1 of FIG. 6 as data, the sampled voltage V2 reflecting the voltage V1 is used through a constant sampling time or switching.
또한, 도 5의 전압(Vc')와 도 6의 전압(V1)은 분압 저항부(25c)로 인한 관계(즉, 분압 및 오프셋 전압)가 반영되어야 하므로, 샘플링된 전압(V2)를 분압 저항부(25c)의 분압 비율 및/또는 오프셋 전압이 고려되어, 캐패시터(C)의 양단 전압을 연산할 수 있다. In addition, since the voltage Vc 'of FIG. 5 and the voltage V1 of FIG. 6 must reflect the relationship (that is, the divided voltage and the offset voltage) due to the divided resistor 25c, the sampled voltage V2 is divided into the divided voltages. The voltage dividing ratio and / or the offset voltage of the unit 25c may be taken into consideration to calculate the voltage across the capacitor C.
도 9 내지 11은 감지된 전압의 그래프들이다. 9-11 are graphs of sensed voltages.
도 9는 캐패시터(C)의 실제적인 양단 전압(Vc)과, 전압(V1)을 함께 도시한다. 9 shows the actual voltage Vc and the voltage V1 of the capacitor C together.
도 10은 도 9의 S영역을 확대한 것으로, 전압 검출부(25)가 PWM 신호(switching)에 의해서, 검출된 전압(V1)으로부터 전압(V2)를 샘플링하는 과정을 도시한 것으로서, PWM 신호의 에지에 해당하는 감지 위치에서 전압(V2)을 샘플링하게 된다. 이러한 감지 위치에 해당하는 샘플링 시간(스위칭 시간 또는 주기)은 제어부(27)의 제어 또는 연산 수단 등에 의해 제어될 수 있다. 이러한 샘플링 시간은 전압 검출부(25)가 처리해야 하는 데이터 양에 밀접한 관련이 있으므로, 샘플링 시간의 조절을 통하여, 연산되거나 처리되는 데이터 양을 조절할 수 있다. FIG. 10 is an enlarged view of the S region of FIG. 9 and illustrates a process in which the voltage detector 25 samples the voltage V2 from the detected voltage V1 by the PWM signal switching. The voltage V2 is sampled at the sensing position corresponding to the edge. The sampling time (switching time or period) corresponding to this sensing position may be controlled by the control of the control unit 27 or arithmetic means. Since the sampling time is closely related to the amount of data to be processed by the voltage detector 25, the amount of data to be calculated or processed may be adjusted by adjusting the sampling time.
도 11은 캐패시터(C)의 양단 전압(Vc)와, 도 10에서 샘플링된 전압(V2)에 대응하는 전압(최종 전압)을 비교한 것이다. 이 샘플링된 전압(V2)에 대응하는 전압(최종 전압)은 전압(V2)를 분압 저항부(25c)의 분압 비율 및 오프셋 전압을 고려하여, 캐패시터(C)의 양단 전압을 추정한 결과이다. 도 11에 도시된 바와 같이, 도 6 내지 10에 대응하는 제어 장치를 통하여 캐패시터(C)의 양단 전압으로부터 연산 및 추정된 전압(최종 전압)이 실제의 캐패시터(C)의 양단 전압(Vc)에 거의 일치됨을 알 수 있으며, 이러한 연산 및 추정된 전압을 통하여, 역기전력(EMF)을 연산부(26)가 연산할 수 있게 된다. FIG. 11 compares the voltage Vc between the capacitor C and a voltage (final voltage) corresponding to the voltage V2 sampled in FIG. 10. The voltage (final voltage) corresponding to the sampled voltage V2 is a result of estimating the voltage across the capacitor C in consideration of the voltage division ratio and the offset voltage of the voltage divider resistor 25c. As shown in FIG. 11, the voltage (final voltage) calculated and estimated from the voltages across the capacitor C through the control device corresponding to FIGS. 6 to 10 is applied to the voltages Vc across the actual capacitor C. FIG. It can be seen that almost identical, and through this calculation and the estimated voltage, the calculator 26 can calculate the counter electromotive force (EMF).
상술된 모터 제어 장치는 일반적인 BLDC 모터의 제어 등도 가능할 뿐만 아니라, 압축기 특히, 리니어 압축기의 리니어 모터의 제어에도 적용될 수 있다. The above-described motor control apparatus is not only capable of controlling a general BLDC motor and the like, but can also be applied to control of a linear motor of a compressor, in particular, a linear compressor.
도 3에 도시된 모터 제어 장치는 도 12와 같은 리니어 압축기에 적용될 수 있다. The motor control apparatus shown in FIG. 3 may be applied to the linear compressor as shown in FIG. 12.
본 발명에 따른 리니어 압축기는 도 12에 도시된 바와 같이 밀폐용기(32) 일측에 냉매가 유,출입되는 유입관(32a) 및 유출관(32b)이 설치되고, 밀폐용기(32) 내측에 실린더(34)가 고정되도록 설치되며, 실린더(34) 내부의 압축공간(P)으로 흡입된 냉매를 압축시킬 수 있도록 실린더(34) 내부에 피스톤(36)이 왕복 직선 운동 가능하게 설치되는 동시에 피스톤(36)의 운동방향에 탄성 지지되도록 각종 스프링이 설치되고, 피스톤(36)은 직선 왕복 구동력을 발생시키는 리니어 모터(40)와 연결되도록 설치되되, 피스톤의 고유주파수(fn)가 부하에 의존하여 가변되더라도 리니어 모터(40)는 가변되는 부하에 따라 냉력(출력)을 변화시키는 자연 출력 변화를 유도한다. In the linear compressor according to the present invention, as shown in FIG. 12, an inlet tube 32a and an outlet tube 32b through which refrigerant flows in and out of one side of the sealed container 32 are installed, and a cylinder is formed inside the sealed container 32. The piston 34 is installed to be fixed, and the piston 36 is installed inside the cylinder 34 so as to reciprocate linear movement so as to compress the refrigerant sucked into the compression space P inside the cylinder 34. Various springs are installed to elastically support in the direction of movement of 36, and the piston 36 is installed to be connected to the linear motor 40 generating a linear reciprocating drive force, the natural frequency of the piston (f n ) is dependent on the load Even if it is variable, the linear motor 40 induces a natural output change that changes the cooling force (output) in accordance with the variable load.
아울러, 압축공간(P)과 접하고 있는 피스톤(36)의 일단에 흡입밸브(52)가 설치되고, 압축공간(P)과 접하고 있는 실린더(34)의 일단에 토출밸브 어셈블리(54)가 설치되며, 흡입밸브(52) 및 토출밸브 어셈블리(54)는 각각 압축공간(P) 내부의 압력에 따라 개폐되도록 자동적으로 조절된다.In addition, an intake valve 52 is installed at one end of the piston 36 in contact with the compression space P, and a discharge valve assembly 54 is installed at one end of the cylinder 34 in contact with the compression space P. The intake valve 52 and the discharge valve assembly 54 are automatically adjusted to open and close according to the pressure in the compression space P, respectively.
여기서, 밀폐용기(32)는 내부가 밀폐되도록 상,하부 쉘이 서로 결합되도록 설치되고, 일측에 냉매가 유입되는 유입관(32a) 및 냉매가 유출되는 유출관(32b)이 설치되며, 실린더(34) 내측에 피스톤(36)이 왕복 직선 운동 가능하게 운동방향으로 탄성 지지되도록 설치됨과 아울러 실린더(34) 외측에 리니어 모터(40)가 프레임(48)에 의해 서로 조립되어 조립체를 구성하고, 이러한 조립체가 밀폐용기(32) 내측 바닥면에 지지스프링(59)에 의해 탄성 지지되도록 설치된다.Here, the airtight container 32 is installed so that the upper and lower shells are coupled to each other so that the inside is sealed, and an inlet tube 32a through which refrigerant is introduced and an outlet tube 32b through which the refrigerant is discharged are installed, and a cylinder ( 34, the piston 36 is installed so as to be elastically supported in the movement direction for reciprocating linear motion, and the linear motors 40 are assembled to each other by the frame 48 outside the cylinder 34 to form an assembly. The assembly is installed to be elastically supported by the support spring 59 on the bottom surface of the sealed container (32).
아울러, 밀폐용기(32) 내부 바닥면에는 소정의 오일이 담겨지고, 조립체 하단에는 오일을 펌핑하는 오일공급장치(60)가 설치됨과 아울러 조립체 하측 프레임(48) 내부에는 오일을 피스톤(36)과 실린더(34) 사이로 공급될 수 있도록 오일공급관(48a)이 형성되며, 이에 따라 오일공급장치(60)는 피스톤(36)의 왕복 직선 운동함에 따라 발생되는 진동에 의해 작동되어 오일을 펌핑하고, 이러한 오일은 오일공급관(48a)을 따라 피스톤(36)과 실린더(34) 사이의 간극으로 공급되어 냉각 및 윤활 작용을 하도록 한다.In addition, a predetermined oil is contained in the bottom surface of the airtight container 32, and an oil supply device 60 for pumping oil is installed at the bottom of the assembly, and oil is supplied to the inside of the lower frame 48 of the assembly. An oil supply pipe 48a is formed to be supplied between the cylinders 34, so that the oil supply device 60 is operated by the vibration generated by the reciprocating linear movement of the piston 36 to pump oil, and The oil is supplied to the gap between the piston 36 and the cylinder 34 along the oil supply pipe 48a to cool and lubricate.
다음, 실린더(34)는 피스톤(36)이 왕복 직선 운동할 수 있도록 중공 형상으로 형성됨과 아울러 일측에 압축공간(P)이 형성되고, 유입관(32a) 내측에 일단이 근접하게 위치된 상태에서 유입관(32a)과 동일 직선상에 설치되는 것이 바람직하다.Next, the cylinder 34 is formed in a hollow shape so that the piston 36 can reciprocate linearly, and a compression space P is formed at one side, and one end is located close to the inside of the inlet pipe 32a. It is preferable to be provided on the same straight line as the inflow pipe 32a.
물론, 실린더(34)는 유입관(32a)과 근접한 일단 내부에 피스톤(36)이 왕복 직선 운동 가능하게 설치되고, 유입관(32a)과 반대방향 측 일단에 토출밸브 어셈블리(54)가 설치된다.Of course, the cylinder 34 has a piston 36 installed in one end close to the inlet pipe 32a so as to reciprocate linearly, and a discharge valve assembly 54 is installed at one end opposite to the inlet pipe 32a. .
이때, 토출밸브 어셈블리(54)는 실린더(34)의 일단 측에 소정의 토출공간을 형성하도록 설치되는 토출커버(54a)와, 실린더의 압축공간(P) 측 일단을 개폐하도록 설치되는 토출밸브(54b)와, 토출커버(54a)와 토출밸브(54b) 사이에 축방향으로 탄성력을 부여하는 일종의 코일 스프링인 밸브 스프링(54c)으로 이루어지되, 실린더(34)의 일단 내둘레에 오링(R)이 끼움되도록 설치되어 토출밸브(54a)가 실린더(34) 일단을 밀착되도록 한다. At this time, the discharge valve assembly 54 is a discharge cover 54a is installed to form a predetermined discharge space on one end of the cylinder 34, and the discharge valve is installed to open and close one end of the compression space (P) side of the cylinder ( 54b) and a valve spring 54c, which is a kind of coil spring that imparts an elastic force in the axial direction between the discharge cover 54a and the discharge valve 54b, and has an O-ring R around one end of the cylinder 34. It is installed so that the discharge valve 54a is in close contact with one end of the cylinder (34).
아울러, 토출커버(54a)의 일측과 유출관(32b) 사이에는 굴곡지게 형성된 루프 파이프(58)가 연결 설치되는데, 루프 파이프(58)는 압축된 냉매가 외부로 토출될 수 있도록 안내할 뿐 아니라 실린더(34), 피스톤(36), 리니어 모터(40)의 상호 작용에 의한 진동이 밀폐용기(32) 전체로 전달되는 것을 완충시켜 준다.In addition, a curved loop pipe 58 is installed between one side of the discharge cover 54a and the outlet pipe 32b. The loop pipe 58 not only guides the compressed refrigerant to be discharged to the outside. Vibration caused by the interaction of the cylinder 34, the piston 36, and the linear motor 40 buffers the transmission of the entire sealed container 32.
따라서, 피스톤(36)이 실린더(34) 내부에서 왕복 직선 운동함에 따라 상기 압축공간(P)의 압력이 소정의 토출압력 이상이 되면, 밸브 스프링(54c)이 압축되어 토출밸브(54b)를 개방시키고, 냉매가 압축공간(P)으로부터 토출된 다음, 루프 파이프(58) 및 유출관(32b)을 따라 완전히 외부로 토출된다.Therefore, when the pressure in the compression space P becomes higher than a predetermined discharge pressure as the piston 36 reciprocates linearly in the cylinder 34, the valve spring 54c is compressed to open the discharge valve 54b. The refrigerant is discharged from the compressed space P, and then completely discharged along the loop pipe 58 and the outlet pipe 32b.
다음, 피스톤(36)은 유입관(32a)으로부터 유입된 냉매가 유동될 수 있도록 냉매유로(36a)가 중앙에 형성되고, 유입관(32a)과 근접한 일단이 연결부재(47)에 의해 리니어 모터(40)가 직접 연결되도록 설치됨과 아울러 유입관(32a)과 반대방향 측 일단에 흡입밸브(52)가 설치되며, 피스톤(36)의 운동방향으로 각종 스프링에 의해 탄성 지지되도록 설치된다.Next, the piston 36 has a refrigerant passage 36a formed at the center so that the refrigerant flowing from the inlet pipe 32a flows, and one end of the piston 36 adjacent to the inlet pipe 32a is connected by the linear motor. 40 is installed to be directly connected, and the suction valve 52 is installed at one end of the inflow pipe 32a in the opposite direction, and is installed to be elastically supported by various springs in the movement direction of the piston 36.
이때, 흡입밸브(52)는 박판 형상으로 중앙부분이 피스톤(36)의 냉매유로(36a)를 개폐시키도록 중앙부분이 일부 절개되도록 형성되고, 일측이 피스톤(36a)의 일단에 스크류에 의해 고정되도록 설치된다.At this time, the suction valve 52 is formed in a thin plate shape so that the center portion is partially cut to open and close the refrigerant passage 36a of the piston 36, and one side is fixed by a screw to one end of the piston 36a. It is installed as possible.
따라서, 피스톤(36)이 실린더(34) 내부에서 왕복 직선 운동함에 따라 압축공간(P)의 압력이 토출압력보다 더 낮은 소정의 흡입압력 이하가 되면, 흡입밸브(52)가 개방되어 냉매가 압축공간(P)으로 흡입되고, 압축공간(P)의 압력이 소정의 흡입압력 이상이 되면, 흡입밸브(52)가 닫힌 상태에서 압축공간(P)의 냉매가 압축된다.Therefore, when the piston 36 moves reciprocally linearly in the cylinder 34, when the pressure of the compression space P becomes below a predetermined suction pressure lower than the discharge pressure, the suction valve 52 is opened to compress the refrigerant. When the suction in the space P and the pressure in the compression space P becomes equal to or greater than a predetermined suction pressure, the refrigerant in the compression space P is compressed while the suction valve 52 is closed.
특히, 피스톤(36)은 운동방향으로 탄성 지지되도록 설치되는데, 구체적으로 유입관(32a)과 근접한 피스톤(36)의 일단에 반경방향으로 돌출된 피스톤 플랜지(36b)가 코일 스프링 등과 같은 기계 스프링(38a,38b)에 의해 피스톤(36)의 운동방향으로 탄성 지지되고, 유입관(32a)과 반대방향 측 압축공간(P)에 포함된 냉매가 자체 탄성력에 의해 가스 스프링으로 작용하여 피스톤(36)을 탄성 지지하게 된다.In particular, the piston 36 is installed so as to be elastically supported in the movement direction. Specifically, a piston flange 36b protruding in a radial direction at one end of the piston 36 proximate to the inflow pipe 32a includes a mechanical spring such as a coil spring or the like. The refrigerant is elastically supported in the movement direction of the piston 36 by 38a, 38b, and the refrigerant contained in the compression space P on the opposite side to the inflow pipe 32a acts as a gas spring by its elastic force, thereby causing the piston 36 It will elastically support.
여기서, 기계 스프링(38a,38b)은 부하와 상관없이 일정한 기계 스프링 상수(Km)를 가지되, 기계 스프링(38a,38b)은 피스톤 플랜지(36b)를 기준으로 리니어 모터(40)에 고정되는 소정의 지지프레임(56)과 실린더(34)에 각각 축방향으로 나란하게 설치되는 것이 바람직하며, 지지프레임(56)에 지지되는 기계 스프링(38a)과 실린더(34)에 설치되는 기계 스프링(38a)이 동일한 기계 스프링 상수(Km)를 가지도록 구성되는 것이 바람직하다.Here, the mechanical springs 38a and 38b have a constant mechanical spring constant K m regardless of the load, and the mechanical springs 38a and 38b are fixed to the linear motor 40 based on the piston flange 36b. Preferably, the predetermined support frame 56 and the cylinder 34 are installed side by side in the axial direction, respectively, the mechanical spring 38a supported by the support frame 56 and the mechanical spring 38a installed in the cylinder 34. ) Is preferably configured to have the same mechanical spring constant (K m ).
하지만, 가스 스프링은 부하에 의존하는 가변되는 가스 스프링 상수(Kg)를 가지되, 압축공간(P)에 포함된 가스는 주변온도가 높아질수록 냉매의 압력이 커짐에 따라 자체 탄성력이 커짐으로 상기 가스 스프링은 부하가 커질수록 가스 스프링 상수(Kg)가 커지게 된다.However, the gas spring has a variable gas spring constant (K g ) depending on the load, the gas contained in the compression space (P) is the elastic force increases as the pressure of the refrigerant increases as the ambient temperature increases The gas spring has a larger gas spring constant K g as the load increases.
이때, 기계 스프링 상수(Km)는 일정한 반면, 가스 스프링 상수(Kg)는 부하에 의존하여 가변되기 때문에 전체 스프링 상수 역시 부하에 의존하여 가변되고, 피스톤의 고유주파수(fn) 역시 상기 가스 스프링 상수(Kg)에 의존하여 가변된다.At this time, the mechanical spring constant (K m ) is constant, while the gas spring constant (K g ) is variable depending on the load, so the overall spring constant is also variable depending on the load, and the natural frequency (f n ) of the piston is also the gas It depends on the spring constant K g .
따라서, 부하가 가변되더라도 기계 스프링 상수(Km) 및 피스톤의 질량(M)은 일정한 반면, 가스 스프링 상수(Kg)가 가변되기 때문에 피스톤의 고유주파수(fn)는 부하에 의존하는 가스 스프링 상수(Kg)에 의해 크게 영향을 받게 된다. Therefore, even if the load is variable, the mechanical spring constant (K m ) and the mass (M) of the piston are constant, whereas the gas spring constant (K g ) is variable, so the natural frequency (f n ) of the piston depends on the load. It is greatly affected by the constant K g .
물론, 이 부하는 다양하게 측정될 수 있으나, 이와 같은 리니어 압축기는 냉매가 압축, 응축, 증발, 팽창되는 냉동/공조용 사이클에 포함되도록 구성되기 때문에 상기 부하는 냉매가 응축되는 압력인 응축압과 냉매가 증발되는 압력인 증발압의 차이로 정의될 수 있으며, 나아가 보다 정밀도를 높이기 위하여 응축압과 증발압을 평균낸 평균압을 고려하여 결정된다.Of course, this load can be measured in various ways, but since such a linear compressor is configured to be included in a refrigeration / air conditioning cycle in which the refrigerant is compressed, condensed, evaporated, and expanded, the load is the condensing pressure which is the pressure at which the refrigerant is condensed. It can be defined as the difference in the evaporation pressure, which is the pressure at which the refrigerant is evaporated, and further determined in consideration of the average pressure obtained by averaging the condensation pressure and the evaporation pressure to increase accuracy.
즉, 부하는 상기 응축압과 증발압의 차 및 평균압에 비례하도록 산출되며, 부하가 커질수록 상기 가스 스프링 상수(Kg)가 커지게 되는데, 일예로 응축압과 증발압의 차가 클수록 부하가 커지고, 응축압과 증발압의 차가 동일하더라도 평균압이 클수록 부하가 커지도록 산출되며, 이와 같은 부하에 대응하여 가스 스프링 상수(Kg)가 커지도록 산출된다. 리니어 압축기는 부하를 산출하기 위한 센서(압력센서, 온도 센서 등)를 구비할 수 있다. That is, the load is calculated to be proportional to the difference between the condensation pressure and the evaporation pressure and the average pressure, and as the load increases, the gas spring constant K g increases. For example, the load between the condensation pressure and the evaporation pressure increases. increases, even if it is the same difference between the condensing pressure and the evaporation pressure greater the average pressure is calculated so as to increase the load, in response to this load is calculated so as to increase the gas spring constant (K g). The linear compressor may be provided with a sensor (pressure sensor, temperature sensor, etc.) for calculating the load.
이때, 이 부하는 실제적으로 응축압에 비례하는 응축온도 및 증발압에 비례하는 증발온도를 측정하고, 응축온도와 증발온도의 차 및 평균온도에 비례하도록 산출된다.At this time, the load is measured so as to measure the condensation temperature which is substantially proportional to the condensation pressure and the evaporation temperature which is proportional to the evaporation pressure, and is proportional to the difference between the condensation temperature and the evaporation temperature and the average temperature.
구체적으로, 기계 스프링 상수(Km) 및 가스 스프링 상수(Kg)는 다양한 실험을 통하여 결정될 수 있는데, 전체 스프링 상수에 대한 가스 스프링 상수가 차지하는 비율을 높아지도록 하여 부하에 따라 피스톤의 공진주파수가 비교적 넓은 범위에서 변동되도록 할 수 있다. Specifically, the mechanical spring constant (K m ) and the gas spring constant (K g ) can be determined through various experiments, and the resonance frequency of the piston is increased according to the load by increasing the ratio of the gas spring constant to the total spring constant. It can be varied in a relatively wide range.
리니어 모터(40)는 복수개의 라미네이션(42a)이 원주방향으로 적층되도록 구성되어 프레임(48)에 의해 실린더(34) 외측에 고정되도록 설치되는 이너 스테이터(42)와, 코일이 감겨지도록 구성된 코일 권선체(44a) 주변에 복수개의 라미네이션(44b)이 원주방향으로 적층되도록 구성되어 프레임(48)에 의해 실린더(34) 외측에 이너 스테이터(42)와 소정의 간극을 두고 설치되는 아웃터 스테이터(44)와, 이너 스테이터(42)와 아웃터 스테이터(44) 사이의 간극에 위치되어 피스톤(36)과 연결부재(47)에 의해 연결되도록 설치되는 영구자석(46)으로 이루어지되, 코일 권선체(44a)는 이너 스테이터(42) 외측에 고정되도록 설치될 수도 있다.The linear motor 40 is configured such that a plurality of laminations 42a are stacked in the circumferential direction, and an inner stator 42 installed to be fixed to the outside of the cylinder 34 by the frame 48 and a coil wound configured to wind the coils. The outer stator 44 is configured such that a plurality of laminations 44b are laminated in the circumferential direction around the hull 44a and is provided with a predetermined gap with the inner stator 42 outside the cylinder 34 by the frame 48. And a permanent magnet 46 positioned in the gap between the inner stator 42 and the outer stator 44 and installed to be connected by the piston 36 and the connecting member 47, wherein the coil winding body 44a is provided. May be installed to be fixed to the outer side of the inner stator 42.
리니어 모터(40)는 상술된 모터(23)의 일 실시예에 해당되는 것으로, 캐패시터(C)는 코일 권선체(44a)에 직렬로 연결되는 것이다. The linear motor 40 corresponds to one embodiment of the motor 23 described above, and the capacitor C is connected in series to the coil winding 44a.
제어부(27)는 상술된 바와 같이, 역기전력을 산정하여, 그에 따라 인버터부(22)를 제어하되, 일정한 크기와 주파수를 지닌 교류 전압이 모터(23)(즉, 리니어 모터(40))에 인가되도록 함으로써, 변동가능성이 있는 외부 전원의 변동에 의한 출력 변동을 방지할 뿐만 아니라, 부하(예를 들면, 저부하, 중부하, 고부하, 과부하 등)에 따라 피스톤(36)의 왕복행정 거리가 자동적으로 조절되도록 하여, 상술된 자연 출력 변화를 야기하게 된다. 즉, 이러한 자연 출력 변화는 저부하에서의 피스톤(36)의 왕복 행정 거리와, 과부하에서의 피스톤(36)의 왕복 행정 거리가 서로 상이하도록 됨으로써 이루어지며, 특히 과부하 시에는 피스톤(36)의 상사점(TDC)까지 왕복 운동하도록 되는 것이 바람직하다. 제어부(27)가 전압의 크기와 주파수를 일정하게 유지함에 있어서, 인버터(22)를 정확하게 제어할지라도, 인버터(22) 내부의 노이즈 또는 인버터(22)와 모터(23) 간의 도선에서의 저항 등에 의한 노이즈 등 다양한 요인에 의해 모터(23)에 인가되는 전압의 크기와 주파수에 변동이 야기될 수도 있다. 다만, 이러한 전압의 크기와 주파수의 변동이 예를 들면, 전압의 크기가 ±2% 내에서 변동하거나, 전압의 주파수가 ±1% 내에서 변동하는 정도는 자연 출력 변화에 미치는 영향이 적기 때문에, 이러한 정도도 일정한 크기와 주파수를 지닌 것으로 간주되어야 한다. 이에, 본 명세서에서는, 모터(23)에 인가되는 전압이 실질적으로 일정한 크기와 주파수를 지니는 것으로 이해되어야 한다. As described above, the control unit 27 calculates the counter electromotive force, and controls the inverter unit 22 accordingly, wherein an AC voltage having a constant magnitude and frequency is applied to the motor 23 (that is, the linear motor 40). By not only preventing output fluctuations caused by fluctuations in the external power source which may be fluctuating, the reciprocating stroke distance of the piston 36 is automatically adjusted according to the load (for example, low load, heavy load, high load, overload, etc.). In order to cause the above-described natural output change. That is, this natural output change is achieved by causing the reciprocating stroke distance of the piston 36 at low load and the reciprocating stroke distance of the piston 36 at overload to be different from each other. Preferably reciprocating up to TDC). Although the control unit 27 accurately controls the inverter 22 in keeping the magnitude and frequency of the voltage constant, the noise in the inverter 22 or the resistance in the conducting wire between the inverter 22 and the motor 23 or the like. Variations may occur in the magnitude and frequency of the voltage applied to the motor 23 due to various factors such as noise. However, since the magnitude of the voltage fluctuation and the frequency fluctuation, for example, the magnitude of the voltage fluctuates within ± 2% or the frequency fluctuation of the voltage within ± 1% has little effect on the change in natural output, This degree should be considered to be of constant magnitude and frequency. Thus, in the present specification, it is to be understood that the voltage applied to the motor 23 has a substantially constant magnitude and frequency.
또한, 캐패시터(C)는 코일 권선체(44a)와 함께 모터 제어 장치의 회로적인 운전주파수(fc)를 결정하는 구성요소로서, 여기서, 캐패시터(C)와 코일 권선체(44a)의 각각의 크기는 리니어 모터(40)의 최대 출력(예를 들면, 과부하 시)에서의 고유주파수(fn)와 일치하도록 설계되어야 한다(즉, 공진점 설계). 이때의 고유주파수(fn)는 상술된 기계 스프링 상수(Km) 및 가스 스프링 상수(Kg)가 모두 고려되거나, 기계 스프링 상수(Km)가 작도록 하고 가스 스프링 상수(Kg)가 고유주파수(fn)에 미치는 영향이 크도록 하는 것 등으로 미리 예측되어 사용된다. 이러한 설계는 최대 출력이 요구되는 부하가 요구되는 경우, 리니어 모터(40)의 피스톤(36)이 상사점(TDC)까지 왕복운동을 수행하도록 하고, 이 최대 출력 이하의 부하에서는 리니어 모터(40)의 피스톤(36)의 부하에 대응하여 왕복운동을 수행하도록 하기 위한 것이다. 즉, 부하에 따른 자연 출력 변화가 수행된다. In addition, the capacitor C, together with the coil winding 44a, is a component that determines the circuit operating frequency f c of the motor control device, wherein each of the capacitor C and the coil winding 44a The magnitude should be designed to match the natural frequency f n at the maximum output (eg, overload) of the linear motor 40 (ie, resonance point design). At this time, the natural frequency f n is considered to be both the mechanical spring constant (K m ) and the gas spring constant (K g ) described above, or to make the mechanical spring constant (K m ) small and the gas spring constant (K g ) It is predicted and used in advance such that the influence on the natural frequency f n is large. This design allows the piston 36 of the linear motor 40 to reciprocate to top dead center (TDC) when a load requiring a maximum output is required, and at a load below this maximum output the linear motor 40 To perform the reciprocating motion in response to the load of the piston 36 of the. That is, the natural output change according to the load is performed.
도 13 내지 16은 도 12의 리니어 압축기의 냉각 용량 그래프들이다.13 through 16 are cooling capacity graphs of the linear compressor of FIG. 12.
도 13은 도 12의 리니어 압축기에서, 특정 크기 및 주파수를 지닌 교류 전압을 인버터부(22)가 모터(23)에 인가한 경우이다. 즉, 특정 크기 및 주파수가 고정 유지되는 경우(실질적으로 일정한 크기 및 주파수를 유지하는 경우)의 냉각 용량 그래프이다. 상술된 자동 출력 변화(즉, 자연 냉력 가변)는 도 13에 도시된 냉각 용량 그래프에서 명확하게 인식될 수 있다. 즉, 냉각 용량 그래프는 부하(온도, 주위 온도 등)(즉, 냉장고의 부하)에 따라, 냉각 용량이 변화되고 있음을 도시하며, 특히 40℃(예를 들면, 과부하 영역) 이후에는 냉각 용량이 거의 일정한 크기를 지니게 됨을 알 수 있다. 또한, 상술된 바와 같이, 40℃ 이후에는 피스톤(36)이 상사점(TDC)까지 왕복운동하게 되며, 그 이하에서는 부하에 대응하는 왕복 행정 거리로 운동하게 된다. 이러한 자동 출력 변화(즉, 자연 냉력 가변)와 함께, 본 발명에 따른 제어장치에 의한 냉각 용량은 외부 전원이 변동이 되더라도 항상 일정한 크기 및 주파수를 지닌 교류 전압이 리니어 모터(40)에 인가되는 것으로 인하여, 도 13에 도시된 바와 같이, 그래프가 서서히 변화하여 냉각 싸이클이 안정적으로 구동된다. 또한, 자동 출력 변화 및 안정된 냉각 싸이클과 함께, 모터 제어 장치의 회로적 운전주파수(fc)가 최대출력의 고유주파수(fn)와 일치하도록 되어, 최대출력에서 상사점(TDC) 왕복을 수행하여, 냉각 효율이 최대가 된다. FIG. 13 illustrates a case in which the inverter unit 22 applies an AC voltage having a specific magnitude and frequency to the motor 23 in the linear compressor of FIG. 12. That is, it is a graph of cooling capacity when a certain size and frequency are kept fixed (maintaining a substantially constant size and frequency). The above-described automatic output change (ie, natural cold power variable) can be clearly recognized in the cooling capacity graph shown in FIG. 13. In other words, the cooling capacity graph shows that the cooling capacity is changing according to the load (temperature, ambient temperature, etc.) (i.e., the load of the refrigerator), especially after 40 ° C (e.g., overload area). It can be seen that it has a substantially constant size. In addition, as described above, after 40 ° C., the piston 36 reciprocates to the top dead center TDC, and below that, the piston 36 moves at a reciprocating stroke distance corresponding to the load. With this automatic output change (i.e., variable natural cold power), the cooling capacity by the control device according to the present invention is that an alternating voltage having a constant magnitude and frequency is applied to the linear motor 40 even when the external power source changes. Due to this, as shown in Fig. 13, the graph gradually changes, and the cooling cycle is driven stably. In addition, with the automatic output change and stable cooling cycle, the circuit operating frequency (f c ) of the motor control device is made to match the natural frequency (f n ) of the maximum output, thereby performing TDC reciprocation at the maximum output. Thus, the cooling efficiency is maximized.
도 14는 도 12의 리니어 압축기의 냉각 용량 그래프이다. 도 14는 제어부(27)가 적어도 3가지의 특징(복수의 상이한 값들인 전압 크기 또는 주파수)을 지닌 교류 전압들을 인버터부(22)가 모터부(23)에 인가하도록 한 경우이다. 즉, 제어부(27)는 중간적인 냉력을 지니는 교류전압에 따른 냉력을 나타내는 그래프(I 선)에 대응하는 자연 냉력 가변 제어를 수행할 수 있으며, I 선에 대응하는 교류전압보다 높은 크기의 교류 전압에 따른 냉력을 나타내는 그래프(II 선)에 대응하는 자연 냉력 가변 제어를 수행할 수 있다. 또한, 제어부(27)는 I 선에 대응하는 교류전압보다 낮은 크기의 교류 전압에 따른 냉력을 나타내는 그래프(III 선)에 대응하는 자연 냉력 가변 제어를 수행할 수 있다. FIG. 14 is a graph of cooling capacity of the linear compressor of FIG. 12. FIG. 14 is a case where the control unit 27 causes the inverter unit 22 to apply the alternating voltages having at least three characteristics (voltage magnitude or frequency, which are a plurality of different values) to the motor unit 23. That is, the control unit 27 may perform the variable control of the natural cold power corresponding to the graph (line I) indicating the cold power according to the alternating current voltage having an intermediate cold force, and the AC voltage having a magnitude higher than the AC voltage corresponding to the I line. The natural cold power variable control corresponding to the graph (line II) representing the cold power according to the present invention may be performed. In addition, the controller 27 may perform the variable natural cold power control corresponding to the graph (line III) representing the cold power according to the AC voltage having a magnitude lower than the AC voltage corresponding to the I line.
도 14에 도시된 바와 같이, 제어부(27)는 인버터부(22)에 의해 모터(23)에 인가되는 교류 전압을 가변하여 일정하게 유지하되, 교류 전압의 가변을 통하여, 강제 냉력 가변 제어를 수행하게 되며, 가변된 교류 전압을 일정하게 유지함으로써 가변된 교류 전압에 대응하는 자연 냉력 가변 제어를 수행하게 된다. 즉, 제어부(27)는 기본적으로 자연 냉력 가변 제어를 수행하되, 냉력 필요에 따라 강제 냉력 가변 제어를 수행할 수 있다. 이러한 냉력 필요성은 자연 냉력 가변 제어에 의해 성취될 수 있는 냉력 이상의 냉력이 요구되는 경우에 부하에 대응하여, 강제 냉력 가변 제어가 요구되는 경우이거나, 사용자로부터의 냉력 제어 명령(냉력 증가, 냉력 감소 등)(예를 들면, 특냉 명령, 저냉 명령 등)에 따른 강제 냉력 가변 제어가 요구되는 경우 등을 포함한다. As shown in FIG. 14, the control unit 27 varies and maintains an alternating voltage applied to the motor 23 by the inverter unit 22, and performs a forced cooling force variable control through varying the alternating voltage. By maintaining a constant AC voltage, a natural cold power variable control corresponding to the variable AC voltage is performed. That is, the control unit 27 basically performs the natural cold power variable control, but can perform the forced cold power variable control as required by the cold power. This necessity of cooling power corresponds to the case where forced cooling force variable control is required in response to a load when cooling force above the cooling force that can be achieved by the natural cooling force variable control is required, or a cooling power control command from the user (increasing the cooling force, decreasing the cooling force, etc.) ), For example, a case where a forced cooling force variable control according to (for example, a special cooling command, a low cooling command, etc.) is required.
도 15는 도 12의 리니어 압축기의 냉각 용량 그래프이다. 도 15는 도 14의 I 선과, III 선에 대응하는 교류 전압을 점차적으로 증가시킴으로써, 자연 냉력 가변 제어와, 강제 냉력 가변 제어를 동시에 또는 선택적으로 수행하는 경우(IV 선)이다. 15 is a graph of cooling capacity of the linear compressor of FIG. 12. FIG. 15 is a case where the natural cold force variable control and the forced cold force variable control are simultaneously or selectively performed by increasing the AC voltages corresponding to the lines I and III of FIG. 14 (line IV).
예를 들면, IV 선의 경과를 보면, 온도가 약 18℃ 이하에서는, 제어부(27)가 자연 냉력 가변 제어만이 수행되도록 하며, 약 18-19℃에서, 이전보다 큰 교류 전압을 인가하여 강제적으로 냉력이 증가되도록 하는 강제 냉력 가변 제어를 수행하되, 이러한 강제 냉력 가변 제어를 수행하는 중에, 자연 냉력 가변 제어가 동시에 또는 선택적으로 수행될 수 있다. 또한, 강제 냉력 가변 제어 시의 증가된 교류전압의 크기 및 주파수가 일정하게 유지되는 구간에서, 즉 약 19-27℃에서는 자연 냉력 가변 제어가 수행되도록 제어부(27)가 인버터부(22)를 제어하게 된다. 즉, 제어부(27)는 냉각의 필요성에 따라, 또는 부하에 대응하여 자연 냉력 가변 제어와 강제 냉력 가변 제어를 수행한다. For example, looking at the progress of the IV line, when the temperature is about 18 ° C. or less, the control unit 27 causes only the natural cooling force variable control to be performed, and at about 18-19 ° C., it is forced to apply an alternating voltage larger than before. Forced cold power variable control is performed to allow the cold power to be increased, and while performing such forced cold power variable control, the natural cold power variable control can be performed simultaneously or selectively. In addition, the controller 27 controls the inverter unit 22 so that the natural cold variable control is performed in a section in which the magnitude and frequency of the increased AC voltage during the forced cold variable control are kept constant, that is, at about 19-27 ° C. Done. That is, the controller 27 performs the natural cold power variable control and the forced cold power variable control according to the necessity of cooling or in response to the load.
도 16은 도 12의 리니어 압축기의 냉각 용량 그래프이다. 특히, 도 16은 종래의 리니어 압축기의 냉각 용략 그래프(VI 선)(즉, 도 2의 그래프)와, 도 12의 리니어 압축기의 냉각 용량 그래프를 함께 도시하고 있다. FIG. 16 is a graph of cooling capacity of the linear compressor of FIG. 12. In particular, Fig. 16 shows a graph of the cooling capacity of the conventional linear compressor (line VI) (ie, the graph of Fig. 2) and the graph of the cooling capacity of the linear compressor of Fig. 12 together.
도시된 바와 같이, 종래 기술에 따른 그래프 VI 선은 부하에 따라, 냉력 비율을 증가시키기 위해서, 강제 냉력 가변 제어만이 가능하여, 순차적 단계로 모터에 인가되는 교류 전압을 증가시켜야 한다. 이에 따라, 강제 냉력 가변 제어에 의해서만 냉력이 가변되므로, 수회 이상 강제 냉력 가변 제어를 반복적으로 수행해야 한다. As shown, the graph VI line according to the prior art, according to the load, in order to increase the cooling power ratio, only the forced cooling power variable control is possible, so as to increase the AC voltage applied to the motor in sequential steps. Accordingly, since the cold power is varied only by the forced cold power variable control, the forced cold power variable control must be repeatedly performed several times or more.
이에 반하여, 본 발명에 따른 그래프 V 선은 일정 냉력 비율(예를 들면 60%)까지는 자연 냉력 가변 제어만이 수행되도록 하고, 냉력 비율이 60-75%까지는 강제 냉력 가변 제어와 자연 냉력 가변 제어를 동시에 또는 선택적으로 수행하여, 냉력을 증가시키고, 냉력 비율이 75% 이상에서는 자연 냉력 가변 제어만이 수행되도록 하여, 필요한 냉력이 성취되도록 한다. 즉, 강제 냉력 가변 제어를 최소한으로 수행하면서도 원하는 냉력 비율 또는 냉력을 성취할 수 있다. On the contrary, the graph V line according to the present invention allows only natural cold power variable control to be performed up to a constant cold power ratio (for example, 60%), and forced cold power variable control and natural cold power variable control up to 60-75%. Simultaneously or selectively, the cooling power is increased, and only the natural cold power variable control is performed at the cooling power ratio of 75% or more, so that the required cooling power is achieved. In other words, it is possible to achieve a desired cooling power ratio or cold power while minimizing forced cold power variable control.
도 17은 도 3의 리니어 압축기가 적용된 냉각 시스템의 일 예를 나타내는 도면이다. 냉각 시스템(또는 복합 냉각 시스템)은 하나의 실외기(70), 냉각 장치인 김치 냉장고(80), 와인 저장고(90), 냉장고(100)를 포함하며, 냉매가 냉매 관(110) 및 관 연결부(120)를 통하여 실외기(70)와 김치 냉장고(80), 와인 저장고(90), 냉장고(100) 사이에서 순환한다. 여기서, 냉각 장치는 이러한 냉동 및 냉장 장치 이외에도, 공기조화기와 같이, 냉방 등을 수행하는 장치도 포함하는 것으로 이해되어야 한다. 17 is a diagram illustrating an example of a cooling system to which the linear compressor of FIG. 3 is applied. The cooling system (or a combined cooling system) includes one outdoor unit 70, a kimchi refrigerator 80 that is a cooling device, a wine cellar 90, and a refrigerator 100, wherein the refrigerant is a refrigerant pipe 110 and a pipe connection ( Through 120, the outdoor unit 70 circulates between the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100. Here, the cooling device should be understood to include a device for performing cooling and the like, in addition to such a refrigeration and refrigerating device.
도 18은 본 발명에 따른 냉각 시스템을 구성하는 냉동 사이클의 일 예를 나타내는 구성도이다.18 is a configuration diagram showing an example of a refrigeration cycle constituting a cooling system according to the present invention.
실외기(70)는 냉매의 흐름을 따라 어큐뮬레이터(71), 도 12에 따른 리니어 압축기(72), 응축기(73)를 포함한다. 응축기(73)에는 팬(74)이 더 구비될 수 있으며, 어큐뮬레이터(71)는 기상의 냉매가 리니어 압축기(72)로 들어갈 수 있도록 역할한다. 응축기(73)를 나온 냉매는 공급 냉매 관(111)을 통해, 관 연결부(120)로 들어가며, 관 연결부(120)를 거쳐 김치 냉장고(80), 와인 저장고(90) 및 냉장고(100) 중의 하나로 공급된다. 이러한 공급은 밸브(131,132,133)에 의해 제어된다. 김치 냉장고(80), 와인 저장고(90) 및 냉장고(100) 중의 하나를 거친 냉매는 회수 냉매 관(112), 관 연결부(120)를 거쳐 어큐뮬레이터(71)로 회수된다. 관 연결부(120)는 실제로 구비될 수도 있으나, 공급 냉매 관(111), 회수 냉매 관(112) 및/또는 밸브(131,132,133)가 위치하는 가상의 공간으로 이해되어도 좋으며, 실외기(70) 측에 위치할 수도 있다. 한편, 밸브(131,132,133)는 그 제어를 담당하는 제어 유닛(미도시)에 따라 실외기(70) 및/또는 냉장고 측에 위치할 수도 있다. 공급 냉매 관(111) 및 회수 냉매 관(112)을 통해, 김치 냉장고(80), 와인 저장고(90) 및 냉장고(100)가 각각 실외기(70)에 연결되어 있다. 김치 냉장고(80)는 증발기(81)를 구비하며, 와인 냉장고(90)는 증발기(91)와 팬(92)을 구비하고, 냉장고(100)는 증발기(101A,101B)와 팬(102A,102B)을 구비한다. 냉장고(100)는 냉동실(103)과 냉장실(104)을 구비하며, 증발기(101A)가 냉동실(103)의 냉동에 사용되고, 증발기(101B)가 냉장실(104)의 냉장에 사용된다. 또한, 냉장고(100)는 냉동실(103)에는 제상을 위해 히터(105)와, 냉동실(103) 및 냉장실(104)로의 냉매 공급을 제어하는 밸브(106)를 구비한다. 본 발명의 기본 사상에 벗어나지 않는 범위에서, 냉장 또는 냉동이 가능하다면 본 발명이 김치 냉장고, 와인 냉장고, 냉동실 및 냉장실이 구비된 냉장고에 제한되지 않는다는 것은 당업자에게 자명하다. 또한, 김치 냉장고(80), 와인 저장고(90) 및 냉장고(100) 각각에는 온도의 측정을 위한 온도 센서(87,97,107A,107B)가 구비되어 있다. 한편 실외기(70), 김치 냉장고(80), 와인 저장고(90) 및 냉장고(100)의 작동을 제어하기 하기 위한 제어 유닛(미도시), 이들 간의 신호를 주고 받기 위한 케이블(미도시)이 더 구비된다. 제어 유닛은 냉장고들 및 실외기 각각에 구비되어 좋고, 어느 하나 또는 이들 중 적어도 하나에 구비되는 형태여도 좋다. 제어 유닛의 구성과 작동에 대한 다양한 변형은 하나의 실외기와 복수개의 실내기를 갖춘 에어콘 시스템에서 찾아볼 수 있다. 온도 센서서(87,97,107A,107B)는 고내에 위치하는 것이 일반적이나, 증발기에 위치하여도 좋고, 고내 및 증발기에 위치하여도 좋다. The outdoor unit 70 includes an accumulator 71, a linear compressor 72 according to FIG. 12, and a condenser 73 along the flow of the refrigerant. The condenser 73 may further include a fan 74, and the accumulator 71 serves to allow the refrigerant in the gas phase to enter the linear compressor 72. The refrigerant exiting the condenser 73 enters the pipe connection part 120 through the supply refrigerant pipe 111 and passes through the pipe connection part 120 to one of the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100. Supplied. This supply is controlled by valves 131, 132, 133. The refrigerant passing through one of the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100 is recovered to the accumulator 71 through the recovery refrigerant pipe 112 and the pipe connection part 120. The pipe connection part 120 may be actually provided, but may be understood as a virtual space in which the supply refrigerant pipe 111, the recovery refrigerant pipe 112, and / or the valves 131, 132, and 133 are located, and located on the outdoor unit 70 side. You may. The valves 131, 132, and 133 may be located at the outdoor unit 70 and / or the refrigerator side according to a control unit (not shown) in charge of the control. The kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100 are respectively connected to the outdoor unit 70 through the supply refrigerant pipe 111 and the recovery refrigerant pipe 112. The kimchi refrigerator 80 includes an evaporator 81, the wine refrigerator 90 includes an evaporator 91 and a fan 92, and the refrigerator 100 includes evaporators 101A and 101B and fans 102A and 102B. ). The refrigerator 100 includes a freezing compartment 103 and a refrigerating compartment 104, in which an evaporator 101A is used for freezing the freezer compartment 103 and an evaporator 101B is used for refrigerating the refrigerating compartment 104. In addition, the refrigerator 100 includes a heater 105 in the freezer compartment 103 and a valve 106 for controlling the supply of refrigerant to the freezer compartment 103 and the refrigerating compartment 104 for defrosting. It is apparent to those skilled in the art that the present invention is not limited to a refrigerator equipped with a kimchi refrigerator, a wine refrigerator, a freezer and a refrigerating chamber, provided that refrigeration or freezing is possible without departing from the basic spirit of the present invention. In addition, the kimchi refrigerator 80, the wine cellar 90 and the refrigerator 100 are provided with temperature sensors 87, 97, 107A and 107B for measuring the temperature. Meanwhile, a control unit (not shown) for controlling the operation of the outdoor unit 70, the kimchi refrigerator 80, the wine cellar 90, and the refrigerator 100, and a cable (not shown) for transmitting and receiving signals therebetween are further included. It is provided. The control unit may be provided in each of the refrigerators and the outdoor unit, and may be provided in any one or at least one of them. Various modifications to the configuration and operation of the control unit can be found in an air conditioning system with one outdoor unit and a plurality of indoor units. The temperature sensors 87, 97, 107A, and 107B are generally located in a refrigerator, but may be located in an evaporator, or may be located in a refrigerator and an evaporator.
리니어 압축기(72)는 상술된 도 2 및 도 12에 따른 리니어 압축기가 적용되며, 자연 냉력 가변 제어와 강제 냉력 가변 제어를 수행한다. 또한, 리니어 압축기(72)는 복수개의 리니어 압축기로 구성될 수도 있다. The linear compressor 72 is applied to the linear compressor according to FIGS. 2 and 12 described above, and performs a natural cold power variable control and a forced cold power variable control. In addition, the linear compressor 72 may be composed of a plurality of linear compressors.
다음으로, 도 18에 도시된 냉동 사이클의 작동에 대해서 설명한다.Next, the operation of the refrigeration cycle shown in FIG. 18 will be described.
냉동실(103)을 냉각하는 경우에, 리니어 압축기(72)가 작동되고, 응축기(73), 공급 냉매 관(111)을 거쳐 증발기(101A)로 냉매가 공급되고, 회수 냉매 관(112), 어큐뮬레이터(71)를 거쳐 리니어 압축기(72)로 냉매가 순환된다. 이때, 밸브(133)는 개방되고, 밸브(131,132)는 폐쇄되며, 밸브(106)는 냉매가 증발기(101A)로 향하도록 작동된다. 팬(107A)과 팬(74)도 함께 작동될 수 있다. 온도 센서(107A)에 의해 측정되는 온도가 설정된 값(예: -18℃) 이하가 되면, 증발기(101A)로의 냉매 공급이 중단된다.In the case of cooling the freezer compartment 103, the linear compressor 72 is operated, the refrigerant is supplied to the evaporator 101A via the condenser 73, the supply refrigerant pipe 111, the recovery refrigerant pipe 112, and the accumulator. The refrigerant is circulated to the linear compressor 72 via the 71. At this time, the valve 133 is open, the valves 131 and 132 are closed, and the valve 106 is operated to direct the refrigerant to the evaporator 101A. Fan 107A and fan 74 may also be operated together. When the temperature measured by the temperature sensor 107A becomes equal to or less than the set value (for example, -18 ° C), the supply of the refrigerant to the evaporator 101A is stopped.
냉장실(104)을 냉각하는 경우에, 밸브(106)가 냉매가 증발기(101B)로 향하도록 작동되고, 온도 센서(107B)에 의해 측정되는 온도가 설정된 값(예: 3℃) 이하가 되면, 증발기(101B)로의 냉매 공급이 중단된다.In the case of cooling the refrigerating compartment 104, the valve 106 is operated so that the refrigerant is directed to the evaporator 101B, and when the temperature measured by the temperature sensor 107B is below a set value (e.g., 3 ° C), The refrigerant supply to the evaporator 101B is stopped.
위의 냉장고(100)의 냉각의 경우, 온도 센서(107A, 107B)에 의해 측정된 온도(즉, 부하)에 따라, 리니어 압축기(72)는 자연 냉력 가변 제어를 통해서, 부하에 대응하는 냉력이 성취되도록 한다. In the case of cooling the refrigerator 100, according to the temperature (i.e., load) measured by the temperature sensors 107A and 107B, the linear compressor 72 controls the natural cold power to control the cooling force corresponding to the load. To be fulfilled.
이러한 것은 냉장고, 김치 냉장고(90), 와인 냉장고(80)가 각각 냉각이 필요한 경우에는 리니어 압축기(72)는 자연 냉력 가변 제어만으로도 필요한 냉력을 공급할 수 있다. This is the case where the refrigerator, kimchi refrigerator 90, wine refrigerator 80, respectively, cooling is required, the linear compressor 72 can supply the required cooling power only by the natural cold power variable control.
각 냉장고의 냉각은 위와 같이 순차적으로 이루어질 수 있으나, 복수개의 냉장고에 대한 냉각이 요청되는 경우(즉, 이전에 필요한 냉력에 비하여 현저하게 높은 냉력이 요청되는 경우)(즉, 냉력의 편차가 큰 경우)에서는, 온도 센서(87,97,107A,107B)에 의해 측정되는 고내의 온도가 설정된 값 이상이 되면, 리니어 압축기(72)는 각 냉장고에 설치된 냉각 제어 장치(예를 들면, 냉장고의 제어장치, 메인 제어부 등) 또는 전체 냉각 시스템을 관리하는 냉각 제어 장치로부터 냉각 제어 명령을 수신하여, 강제 냉력 가변 제어를 수행하여, 자연 냉각 가변 제어로 성취할 수 없는 냉력을 성취하도록 한다. Cooling of each refrigerator may be sequentially performed as described above, but when cooling for a plurality of refrigerators is required (that is, when a significantly higher cooling power is required compared to previously required cooling power) (that is, when the variation in the cooling power is large ), When the temperature in the chamber measured by the temperature sensors 87, 97, 107A, and 107B is equal to or higher than a set value, the linear compressor 72 is a cooling controller (e.g., a controller of a refrigerator, Main control unit or the like) or a cooling control command from the cooling control device that manages the entire cooling system to perform forced cooling force variable control to achieve a cooling force that cannot be achieved by natural cooling variable control.
도 19는 본 발명에 따른 냉각 시스템의 일 예를 블럭화한 도면이다. 19 is a block diagram illustrating an example of a cooling system according to the present invention.
제어 유닛(150)은 리니어 압축기(72), 팬(74), 온도 센서(87,97,107A,107B), 팬(32,42A,42B), 밸브(106,131,132,133)와 연동하여 냉각 시스템을 운전하며, 제어 유닛(150)은 냉각 제어 명령을 사용자의 버튼(152)(예를 들면, 특냉 명령, 저냉 명령 등)(즉, 입력 수단) 조작에 의해 입력받거나, 온도 센서로부터의 감지된 온도에 대응하여 냉각 제어 명령을 생성하여, 리니어 압축기(72)로 전송할 수 있다. The control unit 150 operates in conjunction with the linear compressor 72, the fan 74, the temperature sensors 87, 97, 107A and 107B, the fans 32, 42A and 42B, and the valves 106, 131, 132 and 133 to operate the cooling system. The control unit 150 receives a cooling control command by operating a user's button 152 (for example, a special cooling command, a low cooling command, etc.) (that is, an input means) or responds to a sensed temperature from a temperature sensor. A cooling control command can be generated and sent to the linear compressor 72.
이러한 제어 유닛(150)은 도 18의 각 냉장고(80, 90, 100)에 구비된 냉각 제어 장치 등에 대응될 수도 있고, 이들과 독립적으로 리니어 압축기(72)와 통신하여, 냉각 제어 명령을 전송하는 장치일 수도 있다. The control unit 150 may correspond to a cooling control device provided in each of the refrigerators 80, 90, and 100 of FIG. 18, and independently communicates with the linear compressor 72 to transmit a cooling control command. It may be a device.
이상에서, 본 발명은 본 발명의 실시예들 및 첨부도면에 기초하여 상세하게 설명되었다. 그러나, 이상의 실시예들 및 도면에 의해 본 발명의 범위가 제한되지는 않으며, 본 발명의 범위는 후술되는 청구범위에 기재된 내용에 의해서만 제한되어야 한다.In the above, the present invention has been described in detail based on the embodiments of the present invention and the accompanying drawings. However, the scope of the present invention is not limited by the above embodiments and drawings, and the scope of the present invention should be limited only by the contents described in the claims below.
Claims (19)
- 냉매가 흡입되는 압축공간과; A compression space into which the refrigerant is sucked;왕복 직선운동하면서 압축공간으로 흡입된 냉매를 압축시키는 가동부재와; A movable member compressing the refrigerant sucked into the compression space while reciprocating linearly;가동부재를 가동부재의 운동방향으로 탄성 지지하도록 설치된 적어도 하나 이상의 스프링과; At least one spring installed to elastically support the movable member in the movement direction of the movable member;가동부재를 왕복 직선운동시키기 위해, 모터와, 모터에 직렬로 연결된 캐패시터를 포함하는 모터부와; A motor unit including a motor and a capacitor connected in series with the motor for reciprocating linear movement of the movable member;부하에 대응하여, 가동부재의 왕복 운동에 의한 자연 냉력 가변을 수행하는 모터 제어부로 이루어진 것을 특징으로 하는 리니어 압축기. And a motor controller configured to perform a variable natural cooling force by reciprocating motion of the movable member in response to the load.
- 제1항에 있어서, 모터 제어부는 모터부로 인가되는 전압의 크기 및 주파수를 실질적으로 일정하게 유지하여, 자연 냉력 가변을 수행하는 것을 특징으로 하는 리니어 압축기. The linear compressor according to claim 1, wherein the motor control unit maintains a substantially constant magnitude and frequency of the voltage applied to the motor unit to perform natural cooling force variation.
- 냉매가 흡입되는 압축공간과; A compression space into which the refrigerant is sucked;왕복 직선운동하면서 압축공간으로 흡입된 냉매를 압축시키는 가동부재와; A movable member compressing the refrigerant sucked into the compression space while reciprocating linearly;가동부재를 가동부재의 운동방향으로 탄성 지지하도록 설치된 적어도 하나 이상의 스프링과; At least one spring installed to elastically support the movable member in the movement direction of the movable member;가동부재를 왕복 직선운동시키기 위해, 모터와, 모터에 직렬로 연결된 캐패시터를 포함하는 모터부와; A motor unit including a motor and a capacitor connected in series with the motor for reciprocating linear movement of the movable member;냉매 변화에 대응하여, 가동부재의 스트로크가 가변되어 자연 냉력 가변을 수행하는 모터 제어부로 이루어진 것을 특징으로 하는 리니어 압축기. In response to the refrigerant change, the stroke of the movable member is variable, the linear compressor, characterized in that consisting of a motor control unit for performing a variable natural cooling power.
- 제3항에 있어서, 모터 제어부는 모터부로 인가되는 전압의 크기 및 주파수를 실질적으로 일정하게 유지하여, 자연 냉력 가변을 수행하는 것을 특징으로 하는 리니어 압축기. 4. The linear compressor according to claim 3, wherein the motor control unit maintains a substantially constant magnitude and frequency of the voltage applied to the motor unit, thereby performing a natural cooling force variable.
- 제3항에 있어서, 모터 제어부는 외부에서 인가되는 상용전원 또는 모터부에 인가되는 전원에 대응하는 전압을 감지하여, 감지된 전압에 기준으로 하여 모터부를 제어하는 것을 특징으로 하는 리니어 압축기. The linear compressor of claim 3, wherein the motor controller senses a voltage corresponding to a commercial power applied from the outside or a power applied to the motor, and controls the motor based on the detected voltage.
- 제1항 내지 제5항 중의 어느 한 항에 있어서, 모터 제어부는 모터부로 인가되는 전압의 크기 또는 주파수를 가변하여 강제 냉력 가변을 수행하는 것을 특징으로 하는 리니어 압축기. The linear compressor according to any one of claims 1 to 5, wherein the motor control unit changes the magnitude or frequency of the voltage applied to the motor unit to perform the forced cooling force variation.
- 제6항에 있어서, 모터 제어부는 모터부로 인가되는 전압의 크기 또는 주파수를 복수의 값들로 가변하여 강제 냉력 가변을 수행한 이후, 그 가변된 전압의 크기 또는 주파수를 일정하게 유지하여, 유지된 교류 전압을 모터부에 인가하여 자연 냉력 가변을 수행하는 것을 특징으로 하는 리니어 압축기. The method according to claim 6, wherein the motor control unit changes the magnitude or frequency of the voltage applied to the motor unit to a plurality of values to perform forced cooling force variation, and then maintains the magnitude or frequency of the variable voltage constant to maintain the alternating current. A linear compressor characterized by applying a voltage to the motor unit to perform a natural cold power variable.
- 제6항에 있어서, 모터 제어부는 냉각 제어 장치로부터의 냉력 가변 명령에 대응하여, 전압의 크기 또는 주파수를 가변하는 것을 특징으로 하는 리니어 압축기. The linear compressor according to claim 6, wherein the motor control unit varies the magnitude or frequency of the voltage in response to the cooling force variable command from the cooling control device.
- 제6항에 있어서, 모터 제어부는 교류전원을 입력받아 직류 전압으로 출력하는 정류부와, 직류전압을 인가받아 제어 신호에 따라 교류전압으로 변환하여 모터부에 제공하는 인버터부와, 인버터부에 인가되는 전압을 감지하는 제1 전압 검출부와, 캐패시터의 양단 전압, 또는 캐패시터와 접지 간의 전압에 대응하는 전압을 검출하는 제2 전압 검출부와, 제1전압 검출부로부터의 제1전압과, 제2전압 검출부로부터의 제2전압을 인가받아, 제1 및 제2전압에 대응하되 인버터부가 교류 전압의 크기 및 주파수를 실질적으로 일정하게 유지하도록 하는 제어 신호를 생성하여 인버터부에 인가하는 제어부를 포함하는 것을 특징으로 하는 리니어 압축기. The motor control unit of claim 6, wherein the motor control unit is provided with a rectifying unit for receiving an AC power and outputting the DC voltage, an inverter unit receiving the DC voltage, converting the AC voltage according to a control signal, and providing the motor unit to the motor unit, and being applied to the inverter unit. A first voltage detector for sensing a voltage, a second voltage detector for detecting a voltage corresponding to the voltage across the capacitor, or a voltage between the capacitor and the ground, a first voltage from the first voltage detector, and a second voltage detector And a control unit configured to receive the second voltage and generate a control signal corresponding to the first and second voltages, and to generate a control signal to maintain the magnitude and frequency of the AC voltage substantially constant. Linear compressor.
- 제9항에 있어서, 제어부는 제2전압을 검출하는 제2전압 검출부의 샘플링 시간을 조절하는 것을 특징으로 하는 리니어 압축기. 10. The linear compressor of claim 9, wherein the controller adjusts a sampling time of the second voltage detector for detecting the second voltage.
- 제9항에 있어서, 제어부는 제1 및 제2전압에 대응하는 역기전력을 연산하여, 연산된 역기전력에 따른 제어 신호를 생성하는 것을 특징으로 하는 리니어 압축기. The linear compressor of claim 9, wherein the controller calculates back EMF corresponding to the first and second voltages, and generates a control signal according to the calculated back EMF.
- 적어도 하나 이상의 냉각 장치와; At least one cooling device;냉각 장치에 냉매를 공급하도록 연결되며, 부하에 대응하여 냉력을 자연적으로 가변하는 자연 냉력 가변 제어와, 부하 또는 냉각 제어 명령에 대응하여 냉력을 강제적으로 가변하는 강제 냉력 가변 제어를 수행하여, 냉매를 냉각 장치에 공급하는 압축기; 및 It is connected to supply a coolant to the cooling device, and performs the natural cold power variable control to naturally vary the cold power in response to the load, and the forced cold variable control to forcibly vary the cold power in response to the load or cooling control command, A compressor for supplying a cooling device; And냉각 장치와 압축기를 연결하는 냉매 관을 포함하는 것을 특징으로 하는 냉각 시스템. And a refrigerant pipe connecting the cooling device and the compressor.
- 제12항에 있어서, 압축기는 자연 냉력 가변 제어와 강제 냉력 가변 제어를 선택적으로 수행하는 것을 특징으로 하는 냉각 시스템. 13. The cooling system of claim 12, wherein the compressor selectively performs natural cold variable control and forced cold variable control.
- 제12항에 있어서, 냉각 장치는 사용자로부터 냉각 제어 명령의 입력을 입력받거나, 냉각 장치에 구비된 냉각 공간에 대한 냉각 필요성에 대응하여 냉각 제어 명령을 생성하여, 압축기로 전송하는 것을 특징으로 하는 냉각 시스템. The cooling apparatus of claim 12, wherein the cooling apparatus receives an input of a cooling control command from a user, or generates and transmits a cooling control command to a compressor in response to a cooling need for a cooling space provided in the cooling apparatus. system.
- 제12항 내지 제14항 중의 어느 한 항에 있어서, 압축기는 냉매가 흡입되는 압축공간과, 왕복 직선운동하면서 압축공간으로 흡입된 냉매를 압축시키는 가동부재와, 가동부재를 가동부재의 운동방향으로 탄성 지지하도록 설치된 적어도 하나 이상의 스프링과, 가동부재를 왕복 직선운동시키기 위해, 모터와, 모터에 직렬로 연결된 캐패시터를 포함하는 모터부와, 모터부로 인가되는 전압의 크기 및 주파수를 실질적으로 일정하게 유지하여 자연 냉력 가변 제어를 수행하고, 인가되는 전압의 크기 또는 주파수를 가변하여 강제 냉력 가변 제어를 수행하는 모터 제어부로 이루어진 것을 특징으로 하는 냉각 시스템. The compressor according to any one of claims 12 to 14, wherein the compressor includes a compression space in which the refrigerant is sucked, a movable member for compressing the refrigerant sucked into the compression space while reciprocating linearly moving, and the movable member in the direction of movement of the movable member. Maintaining a substantially constant magnitude and frequency of a voltage applied to the motor portion, the motor portion including at least one spring provided to elastically support, and a motor, a capacitor connected in series with the motor, for reciprocating linear movement of the movable member. And a motor control unit configured to perform the variable control of the natural cold force and to perform the forced cold variable control by varying the magnitude or frequency of the applied voltage.
- 적어도 하나 이상의 냉각 장치와; At least one cooling device;냉각 장치에 냉매를 공급하도록 연결되며, 부하에 대응하여 냉력을 자연적으로 가변하는 자연 냉력 가변 제어만을 수행하여, 냉매를 냉각 장치에 공급하는 압축기 및; A compressor which is connected to supply a coolant to the cooling device and performs only natural cold power variable control for naturally varying cold power in response to a load, thereby supplying the coolant to the cooling device;냉각 장치와 압축기를 연결하는 냉매 관을 포함하는 것을 특징으로 하는 냉각 시스템. And a refrigerant pipe connecting the cooling device and the compressor.
- 제16항에 있어서, 압축기는 냉매가 흡입되는 압축공간과, 왕복 직선운동하면서 압축공간으로 흡입된 냉매를 압축시키는 가동부재와, 가동부재를 가동부재의 운동방향으로 탄성 지지하도록 설치된 적어도 하나 이상의 스프링과, 가동부재를 왕복 직선운동시키기 위해, 모터와, 모터에 직렬로 연결된 캐패시터를 포함하는 모터부와, 모터부로 인가되는 전압의 크기 및 주파수를 실질적으로 일정하게 유지하여 자연 냉력 가변 제어를 수행하는 모터 제어부로 이루어진 것을 특징으로 하는 냉각 시스템. 17. The compressor of claim 16, wherein the compressor comprises: a compression space into which the refrigerant is sucked, a movable member for compressing the refrigerant sucked into the compression space while reciprocating linearly, and at least one spring provided to elastically support the movable member in the direction of movement of the movable member. And, in order to reciprocally linearly move the movable member, a natural cold power variable control is performed by maintaining a substantially constant magnitude and frequency of a voltage applied to the motor, a motor part including a capacitor connected in series with the motor, and a voltage applied to the motor part. Cooling system comprising a motor control unit.
- 제17항에 있어서, 모터 제어부는 모터부로 인가되는 전압의 크기 및 주파수를 실질적으로 일정하게 유지하여, 자연 냉력 가변을 수행하는 것을 특징으로 하는 냉각 시스템. 18. The cooling system according to claim 17, wherein the motor control unit maintains a substantially constant magnitude and frequency of the voltage applied to the motor unit, thereby performing a natural cooling force variable.
- 제18항에 있어서, 모터 제어부는 외부에서 인가되는 상용전원 또는 모터부에 인가되는 전원에 대응하는 전압을 감지하여, 감지된 전압에 기준으로 하여 모터부를 제어하는 것을 특징으로 하는 냉각 시스템. The cooling system of claim 18, wherein the motor controller detects a voltage corresponding to a commercial power applied from the outside or a power applied to the motor, and controls the motor based on the detected voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/992,030 US8858186B2 (en) | 2008-02-20 | 2009-07-22 | Linear compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080071378A KR101466402B1 (en) | 2008-02-20 | 2008-07-22 | Linear Compressor |
KR10-2008-0071378 | 2008-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010011085A1 true WO2010011085A1 (en) | 2010-01-28 |
Family
ID=41571060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/004068 WO2010011085A1 (en) | 2008-02-20 | 2009-07-22 | Linear compressor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010011085A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050031470A1 (en) * | 2003-08-04 | 2005-02-10 | Samsung Electronics Co., Ltd. | Linear compressor and apparatus to control the same |
US20070159128A1 (en) * | 2004-01-22 | 2007-07-12 | Dainez Paulo S | Linear motor, a linear compressor, a method of controlling a linear compressor, a cooling system, and a linear compressor controlling a system |
KR20070092027A (en) * | 2006-03-08 | 2007-09-12 | 엘지전자 주식회사 | Controlling apparatus for linear compressor |
-
2009
- 2009-07-22 WO PCT/KR2009/004068 patent/WO2010011085A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050031470A1 (en) * | 2003-08-04 | 2005-02-10 | Samsung Electronics Co., Ltd. | Linear compressor and apparatus to control the same |
US20070159128A1 (en) * | 2004-01-22 | 2007-07-12 | Dainez Paulo S | Linear motor, a linear compressor, a method of controlling a linear compressor, a cooling system, and a linear compressor controlling a system |
KR20070092027A (en) * | 2006-03-08 | 2007-09-12 | 엘지전자 주식회사 | Controlling apparatus for linear compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011105720A2 (en) | Linear compressor | |
WO2011105723A2 (en) | Linear compressor | |
KR20090090249A (en) | Linear compressor | |
US9670933B2 (en) | Apparatus and method for controlling compressor, and refrigerator having the same | |
WO2011062427A2 (en) | Linear compressor | |
KR100764277B1 (en) | Controlling apparatus for linear compressor | |
WO2019045371A1 (en) | Refrigerator and method for controlling same | |
KR20100008307A (en) | Linear compressor | |
JP3762469B2 (en) | Linear compressor drive unit | |
WO2010011085A1 (en) | Linear compressor | |
US9217429B2 (en) | Linear compressor | |
KR20200000105A (en) | Driving control apparatus for reciprocating compressor | |
KR100783239B1 (en) | Controlling apparatus and its method for linear compressor | |
JPH09126145A (en) | Drive device for linear compressor | |
JPH09126147A (en) | Drive device for linear compressor | |
WO2011062428A2 (en) | Linear compressor | |
KR100690153B1 (en) | Linear compressor | |
KR100576032B1 (en) | Linear compressor controlling apparatus and its controlling method | |
WO2018117286A1 (en) | Compressor and control method for compressor | |
KR101936261B1 (en) | Controlling apparatus for motor and method thereof | |
WO2016068675A1 (en) | Compressor control apparatus and control method | |
KR100756719B1 (en) | Control apparatus for linear compressor | |
KR20200092686A (en) | Linear compressor and method for controlling linear compressor | |
KR102023281B1 (en) | Apparatus and method for controlling driving of reciprocating compressor | |
KR100648787B1 (en) | Linear compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09800566 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12992030 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09800566 Country of ref document: EP Kind code of ref document: A1 |