WO2010010837A1 - Cell culture support and cell culture method - Google Patents

Cell culture support and cell culture method Download PDF

Info

Publication number
WO2010010837A1
WO2010010837A1 PCT/JP2009/062873 JP2009062873W WO2010010837A1 WO 2010010837 A1 WO2010010837 A1 WO 2010010837A1 JP 2009062873 W JP2009062873 W JP 2009062873W WO 2010010837 A1 WO2010010837 A1 WO 2010010837A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
temperature
cells
group
blemmer
Prior art date
Application number
PCT/JP2009/062873
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 伊原
泰光 藤野
幸司 宮崎
賢一 大久保
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010521684A priority Critical patent/JPWO2010010837A1/en
Publication of WO2010010837A1 publication Critical patent/WO2010010837A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the present invention relates to a cell culture support for in vitro cell culture used in the fields of humans, cell culture, tissue culture and the like, and a cell culture method using this cell culture support.
  • the monolayer cell culture method which is widely used as a general method for culturing animal cells, is not placed in the original culture environment of complex cells that have been in vivo, and therefore has a differentiation function that continues to survive. Although it is difficult to maintain and cells survive or proliferate, it is well known that the complex system of the living body is not accurately reproduced, resulting in termination of differentiation function and difficulty in control.
  • primary hepatocytes with highly differentiated metabolic functions in the body tend to lose their functions within a monolayer culture period.
  • the ability to metabolize ammonia which is one of the important functions of hepatocytes, is usually lost after about 10 generations from the start of culture. It has been known.
  • co-culture with blood vessel-derived cells is considered effective (in view of the structure of the liver in the living body). It cannot be stably co-cultured by mixing cells and fibroblasts or hepatocytes and endothelial cells.
  • thermoresponsive polymer patterned on the substrate is Nn-propyl methacrylamide monomer It is composed of a polymer, an N-isopropylacrylamide monomer polymer, and respective homopolymers. Since the two single polymers have a difference in temperature-responsive performance, they do not peel evenly when peeling at a low temperature after cell culture, and some cells are damaged.
  • Patent Document 2 As a method for patterning a cell adhesion layer on a cell culture substrate, for example, as in Patent Document 2, there is a method of patterning a cell adhesion layer on a substrate with a cell adhesion material by an inkjet method. It is merely applied to the film and a certain line width is drawn, and a technique for separately coating a plurality of polymers is not mentioned.
  • PEG polyethylene glycol
  • supercritical carbon dioxide is used as a means for fixing PEG to the substrate, which makes the process complicated and increases the size of the apparatus.
  • a cell culture support having a surface coated with two or more kinds of temperature-responsive polymers on a substrate, wherein at least one of the temperature-responsive polymers contains an acrylic resin.
  • R 1 and R 2 represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and an aryl group.
  • R 5 , R 6 , and R 7 represent a hydrogen atom or a methyl group;
  • 3 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, or a poly (oxyethylene) group represented by — (CH 2 CH 2 O) n — (CH 2 CH (CH 3 ) O) m —R 0.
  • Represents an alkyl group having a number of 3 or more and 22 or less, and x, y, and z represent mass% of each component, 0 ⁇ x ⁇ 80, 0 ⁇ y ⁇ 80, 0 ⁇ x ⁇ 40, where x + y + z 100 .) 3.
  • a cell culture method comprising culturing two or more different cells on the cell culture support according to any one of 1 to 4 above.
  • a cell culture method comprising superposing cells cultured by the cell culture method described in 6 above.
  • the cell culture support of the present invention has made it possible to cultivate many types of cells in the same layer, and to achieve a technique for peeling only the cells from the substrate without destroying the cells.
  • Temperature responsive polymer In the present invention, it is preferable to apply a temperature-responsive polymer on a general cell culture substrate.
  • the temperature-responsive polymer is a polymer material in which hydrophilicity and hydrophobicity are reversibly changed by a temperature change.
  • a preferred temperature-responsive polymer is a polymer obtained by copolymerizing an acrylic resin monomer and an acrylamide monomer.
  • a more preferred temperature-responsive polymer is a polymer represented by the general formula (1).
  • a cell culture substrate having a temperature-responsive polymer on the surface exhibits excellent adhesion to cells under hydrophobic conditions, so that the cells can be cultured and proliferated appropriately, and under hydrophilic conditions, Since cell adhesion can be reduced, cells can be detached without the use of proteolytic enzymes or chemicals, so that cells can be easily removed without causing cell damage or substrate contamination. Recovery is possible.
  • the critical temperature The temperature at which the hydrophilicity and hydrophobicity of the temperature-responsive polymer changes is called the critical temperature, and the temperature at which it becomes hydrophobic at high temperatures and hydrophilic at low temperatures is called the lower critical temperature.
  • Many of the cells used for cell culture are derived from constant temperature animals. Therefore, the cells are often cultured around 37 degrees near the human body temperature, and it is better that the cells adhere to the cell culture support at that temperature. In other words, it is preferable that the surface of the cell culture support is hydrophobic at around 37 degrees.
  • the cell culture support is detached from the cell culture support at a low temperature so as not to cause protein denaturation due to heat. Better. That is, it is preferable that the cell culture support surface has a hydrophilic property at a low temperature.
  • the lower critical temperature is preferably in the temperature range of about 20 ° C. or more and 40 ° C. or less because cells can be cultured and detached suitably.
  • At least one of the temperature-responsive polymers contains an acrylic resin.
  • the acrylic resin in the present invention may be a general acrylic resin such as acrylic acid, methacrylic acid, methyl acrylate or methyl methacrylate, or a derivative thereof.
  • an acrylic resin which is a polycyclic hydrocarbon compound composed of an alicyclic hydrocarbon skeleton may be used.
  • the polycyclic hydrocarbon compound has an aliphatic polycyclic structure and a three-dimensional crosslinked structure.
  • tricyclodecane dimethanol dimethacrylate tricyclodecane dimethanol diacrylate, adamantyl methacrylate, adamantyl acrylate, etc.
  • isobornyl methacrylate, isobornyl acrylate, vinyl norbornene and the like may be included.
  • a polymer in which an acrylic resin monomer and an acrylamide monomer are copolymerized improves cell detachability.
  • the reason is that the amide has the same chemical structure as the peptide bond of the protein in the living body, and thus the affinity between the cell and the polymer is increased, which is considered to cause cell damage at the time of detachment.
  • a polymer obtained by copolymerizing an acrylamide monomer and an acrylic resin monomer as a support for cell culture, a material satisfying both cell detachability and temperature responsiveness was obtained.
  • An acrylamide polymer is well known as a temperature-responsive polymer, and it can be obtained by polymerizing an acrylamide monomer.
  • acrylamide monomers that give such polymers are preferably N-substituted acrylamide derivatives, N, N-disubstituted acrylamide derivatives, N-substituted methacrylamide derivatives, N, N-disubstituted methacrylamide derivatives, and the like.
  • N-isopropylacrylamide, N-isopropylmethacrylamide, Nn-propylacrylamide, Nn-propylmethacrylamide, N-cyclopropylacrylamide, N-cyclopropylmethacrylamide, N-ethoxy Ethyl acrylamide, N-ethoxyethyl methacrylamide, N-tetrahydrofurfuryl acrylamide, N-tetrahydrofurfuryl methacrylamide, N-ethyl acrylamide, N-ethyl-N-methyl acrylamide, N, - diethyl acrylamide, N- methyl -N-n-propyl acrylamide, N- methyl -N- isopropylacrylamide, N- acryloyl Lupi Peri Dinh include N- acryloyl pyrrolidine.
  • acrylamide polymers examples include poly (N-isopropylacrylamide), poly (Nn-propylacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (Nn).
  • -Propylmethacrylamide poly (N-ethoxyethylacrylamide), poly (N-ethoxyethylmethacrylamide), poly (N-tetrahydrofurfurylacrylamide), poly (N-tetrafurfurylmethacrylamide), poly (N- Ethyl acrylamide), poly (N, N-diethylacrylamide), poly (N-acryloylpiperidine), and poly (N-acryloylpyrrolidine).
  • a copolymer obtained by polymerizing a plurality of different water-soluble acrylamide monomers selected from these is used as the polymer of the water-soluble acrylamide monomer. It is also effective.
  • a polymer comprising the water-soluble acrylamide monomer is preferred, but a copolymer of the water-soluble acrylamide monomer and another water-soluble acrylamide monomer or an organic solvent-soluble acrylamide monomer may also be a hydrophilic and hydrophobic polymer. Any material that exhibits both sexes can be used.
  • Specific examples of acrylamide monomers used for copolymerization include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, and acrylamide, or N-alkylmethacrylamide, N, N-dialkylmethacrylamide, and methacrylamide. And other methacrylamides. More preferably, N-alkylacrylamide or N, N-dialkylacrylamide is used.
  • alkyl group one having 1 to 4 carbon atoms is preferably selected.
  • acryloylmorpholine, N, N-dimethylaminopropylacrylamide, N-acryloylmethyl homopiperazine, N-acryloylmethylpiperazine, and the like can also be used.
  • the acrylic resin may be copolymerized with other monomers based on an acrylic resin monomer.
  • the temperature-responsive polymer is preferably a compound represented by the following general formula (1). is there.
  • R 1 and R 2 represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group.
  • R 5 , R 6 and R 7 each represent a hydrogen atom or a methyl group
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, or — (CH 2 CH 2 O) n — ( It represents a polyoxyalkylene group represented by CH 2 CH (CH 3 ) O) m —R 0 .
  • n represents an integer of 1 to 300
  • m represents an integer of 0 to 60.
  • R 0 represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms.
  • R 4 represents an alkyl group having 3 to 22 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms represented by R 1 and R 2 may be linear or branched.
  • it represents a group such as a methyl group, an ethyl group, an isopropyl group, an isobutyl group, or a dodecyl group, and may be substituted.
  • the substituent include groups such as a halogen atom, a hydroxy group, a carboxy group, and an acyl group, and examples thereof include a hydroxyethyl group and a hydroxypropyl group.
  • the cycloalkyl group include a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the aryl group represented by R 1 and R 2 include a phenyl group and a substituted phenyl group such as a tolyl group. Moreover, it is preferable that at least one of R 1 and R 2 is a hydrogen atom.
  • the alkyl group having 1 to 30 carbon atoms represented by R 3 may be linear or branched.
  • Examples of the branched alkyl group include a methyl group, an ethyl group, an isopropyl group, and an isobutyl group.
  • An unsubstituted alkyl group and a substituted alkyl group are included, and as an unsubstituted alkyl group, groups, such as a methyl group, an ethyl group, isopropyl group, a dodecyl group, are represented, for example.
  • examples of the substituent in the substituted alkyl group include groups such as a halogen atom, a hydroxy group, and a carboxy group, and examples thereof include a hydroxyethyl group and a hydroxypropyl group.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like, but may be a substituted cycloalkyl group.
  • Examples of the alkyl group having 1 to 30 carbon atoms represented by R 0 include groups such as methyl, ethyl, propyl, butyl, octyl, decyl, dodecyl, stearyl.
  • the alkyl group having 3 to 22 carbon atoms represented by R 4 may be a linear or branched alkyl group, and is a propyl group, isopropyl group, butyl group, t-butyl group, hexyl group, dodecyl group, stearyl group. Etc.
  • the production of the copolymer of the general formula (1) can be obtained by copolymerization of each component monomer.
  • examples of the monomer containing a group represented by R 1 , R 2 , or R 5 typically include diacetone acrylamide, acrylamide, N-isopropyl acrylamide (NIPAM), N-ethyl acrylamide, N -Pyrrolidinyl acrylamide, N-cyclopropyl acrylamide, N-diethyl acrylamide, N-methyl, N-isopropyl acrylamide, N-propyl acrylamide, N-methyl, N-isopropyl acrylamide, N-piperidinyl acrylamide , N-propylacrylamide, N-cyclopropylmethacrylamide, N-ethylmethallylamide, N-isopropylmethacrylamide and the like.
  • NIPAM N-isopropyl acrylamide
  • NIPAM N-ethyl acrylamide
  • N -Pyrrolidinyl acrylamide N-cyclopropyl acrylamide
  • the monomer containing R 3 and R 6 and the monomer containing a group represented by R 4 and R 7 can be selected from the following.
  • Examples include acrylic acid, methacrylic acid, methyl methacrylate, butyl methacrylate and the like.
  • (polyoxyalkylene) acrylate and methacrylate are commercially available hydroxy poly (oxyalkylene) materials such as “Pluronic” (Pluronic (manufactured by Asahi Denka Kogyo Co., Ltd.)), Adeka polyether (Asahi Denka Kogyo ( Co., Ltd.), Carbowax [Carbowax (Glico Products)], Triton [Toriton (Rohm and Haas)] and P.I. E.
  • G made by Daiichi Kogyo Seiyaku Co., Ltd.
  • G can be manufactured by making it react with acrylic acid, methacrylic acid, acrylic chloride, methacrylic chloride, acrylic anhydride, etc. by a well-known method.
  • Blemmer 50POEP-800B Blemmer 50AOEP-800B, Blemmer PLE-200, Blemmer ALE-200, Blemmer ALE-800, Blemmer PSE-400, Blemmer PSE-1300, Blemmer ASE series, Blemmer PKEP series, Blemmer AKEP series, Blemmer AE-300 , Blemmer ANE-1300, Blemmer PNEP series, Blemmer PNPE series, Blemmer 43ANE -500, Bremer 70ANEP-550, etc., and Kyoeisha Chemical Co., Ltd.
  • light ester MC light ester 130MA, light ester 041MA, light acrylate BO-A, light acrylate EC-A, light acrylate MTG-A, light acrylate 130A, light Examples thereof include acrylate DPM-A, light acrylate P-200A, light acrylate NP-4EA, and light acrylate NP-8EA, which can be selected and used.
  • the polymers made of these copolymers have both hydrophilicity and lipophilicity, and their properties reversibly change depending on the lower critical temperature. In order to change the lower critical temperature, it can be arbitrarily determined by changing the copolymerization ratio of x, y, z in the general formula (1).
  • the lower critical temperature can be increased by increasing the number of repeating units of the oxyethylene group.
  • the lower critical temperature can be lowered by making the substituents of R 4 and R 7 hydrophobic.
  • copolymerization may be random copolymerization or block copolymerization. Random copolymerization is preferred in order to sharpen the hydrophilic and hydrophobic changes at the lower critical temperature.
  • the polymerization initiator is a polymerization of an acrylic resin monomer and an acrylamide monomer, and is therefore an initiator that generates radicals.
  • azo initiators and peroxide initiators can be used.
  • Oil-soluble peroxide-based or azo-based initiators are preferred.
  • benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl Peroxide initiators such as peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 2,2′-azobisisobutyronitrile, 2,2 '-Azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,3-dimethylbutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2' -Azobis (2,3,3-trime Rubutyronitrile), 2,2'-azobis (2-isopropylbuty
  • organic peroxides such as tertiary isobutyl hydroperoxide, cumene hydroperoxide, paramentane hydroperoxide, hydrogen peroxide, and the like are preferable.
  • UV curable initiators are also preferred as polymerization initiators, such as acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone.
  • Triphenylamine Triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, Michler's ketone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- ( 4-Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one And the like of the photoradical initiator.
  • polymerization initiators are preferably used in an amount of 0.01 to 20% by mass, particularly 0.1 to 10% by mass, based on the monomer.
  • an organic solvent or water may or may not be used as a reaction site. Since it is necessary to remove the solvent in a later step, it is preferable not to use a solvent.
  • the organic solvent include alcohols such as methanol, ethanol and isopropyl alcohol, esters such as ethyl acetate and methyl acetate, ketones such as methyl ethyl ketone and acetone, ethers such as ether and isopropyl ether, and cyclic ethers such as tetrahydrofuran and dioxane.
  • alcohols such as methanol, ethanol and isopropyl alcohol
  • esters such as ethyl acetate and methyl acetate
  • ketones such as methyl ethyl ketone and acetone
  • ethers such as ether and isopropyl ether
  • cyclic ethers such as tetrahydrofuran and dioxane.
  • toluene which is
  • the boiling point of the solvent is preferably 50 ° C. or higher, more preferably 70 ° C. or higher. However, if it becomes as high as 150 ° C. or higher, man-hours are required for subsequent handling.
  • the solid content concentration is preferably 10% by mass or more and 40% by mass or less, and the viscosity of the final solution containing the copolymer is 30% by mass.
  • the degree of polymerization is preferably 10 mPa ⁇ s or more and 500 mPa ⁇ s or less in terms of%.
  • the residual monomer amount is set to 1% by mass or less, and the reaction is terminated. This measurement is performed with a gas chromatograph.
  • the reaction liquid containing the copolymer can be mixed with a poor solvent and precipitated, and further dissolved and precipitated repeatedly to be isolated as a solid content.
  • thermo-responsive polymer used in the present invention
  • No. 1 in the Examples is used.
  • examples thereof include polymers represented by E to L and the like.
  • a known and commonly used organic crosslinking agent may be used during polymerization for the purpose of improving the characteristics.
  • concentration of the organic crosslinking agent to be used is not particularly limited and can be selected according to the purpose.
  • organic crosslinking agents examples include conventionally known N, N′-methylenebisacrylamide, N, N′-propylenebisacrylamide, di (acrylamidomethyl) ether, 1,2-diacrylamide ethylene glycol, 1,3- Bifunctional compounds such as diacryloylethyleneurea, ethylene diacrylate, N, N'-diallyl tartaramide, N, N'-bisacrylylcystamine, and trifunctional compounds such as triallyl cyanurate and triallyl isocyanurate Can be exemplified.
  • Examples of the base material for the cell culture support according to the present invention include various polymer materials, glass, modified glass, wool cloth, cotton cloth, paper, metal (for example, aluminum) and the like. From the viewpoint of handling, as a substrate in the cell culture support of the present invention, a plastic material (for example, cellulose acetate, polyester, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, cellulose triacetate or polycarbonate, polystyrene, polymethyl methacrylate, etc. And polystyrene is particularly preferred in the present invention.
  • the thickness of the support is about 50 to 3000 ⁇ m, preferably 70 to 1800 ⁇ m.
  • the base material for cell culture is surface-treated by glow discharge, corona discharge, vacuum plasma treatment, atmospheric pressure plasma treatment or silane coupling treatment on the surface of the base material in order to make the temperature-responsive polymer easy to adhere. May be.
  • Temperature-responsive polymer coating method As a method of coating the surface of the substrate with the temperature-responsive polymer of the present invention, a method in which the substrate is coated with a monomer and polymerized, and a method in which the monomer is polymerized in advance to form a temperature-responsive polymer are applied. There is a way. Either method may be used, but from the viewpoint of patterning, it is preferable to polymerize after coating on a substrate with a monomer.
  • the method for applying the temperature-responsive polymer or its monomer on the substrate for example, bar coater method, curtain coating method, dipping method, air knife method, hopper coating method, reverse roll coating method, gravure.
  • Known methods such as a coating method, an extrusion coating method, and a vacuum deposition method (sputtering method) can be used.
  • a lithography method, an inkjet method, or a super inkjet method it is preferable to apply them by a lithography method, an inkjet method, or a super inkjet method.
  • the light source is, for example, a low pressure, medium pressure, high pressure mercury lamp, metal halide lamp or ultraviolet region having an operating pressure of 0.1 kPa to 1 MPa.
  • lamps such as xenon lamps, cold cathode fluorescent lamps, hot cathode fluorescent lamps, and LEDs having a light emission wavelength of 2 are used.
  • the application amount of the temperature-responsive polymer is preferably selected in accordance with the purpose of cell culture, but for the purpose of culturing cells and then peeling the cells from the substrate. is, 0.1 [mu] g / cm 2 or more, preferably 5.0 [mu] g / cm 2 or less, 0.5 [mu] g / cm 2 or more, 3.0 [mu] g / cm 2 or less being more preferred.
  • the material constituting the temperature-responsive polymer according to the present invention When adding the temperature-responsive polymer according to the present invention to the surface of the base material in a predetermined pattern, it is preferable to add the material constituting the temperature-responsive polymer in a liquefied state.
  • a method for adding the material constituting the liquefied temperature-responsive polymer in a predetermined pattern it is preferable to use a printing method such as a screen printing method or an ink jet method. By using such a printing method, the material constituting the temperature-responsive polymer can be more easily added in an arbitrary pattern to the surface of the substrate for cell culture.
  • a method may be employed in which a mask perforated in a predetermined pattern is prepared and placed on the substrate surface, and then a solution containing a material constituting the temperature-responsive polymer is spray applied.
  • an inkjet method with high individual correspondence is particularly preferable.
  • screen printing method and spray coating method are also possible, but when complex patterns are to be formed, mixing, overlapping, and boundary lines due to blurring between adjacent different types of temperature-responsive polymers Prone to problems such as opening gaps. From this point of view, an inkjet method having a high resolution is more preferable.
  • the material constituting the temperature-responsive polymer is heated and softened, or the material constituting the temperature-responsive polymer is changed to a predetermined solvent.
  • dissolve the method of melt
  • the line width that can be patterned is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 3 ⁇ m or more and 100 ⁇ m or less.
  • the cells cultured on the cell culture support of the present invention are brought to a temperature lower than the lower critical temperature of the temperature-responsive polymer, and the cultured cells are detached by hydrophilizing the support surface.
  • the surface of the cell culture support of the present invention is processed with a temperature-responsive polymer having two or more kinds of lower critical temperatures, two or more kinds of different cells are co-located in the same layer. Can be cultured. By making at least one of these cells a cell having an ability to regenerate blood vessels such as vascular endothelial cells, the cells are less likely to be insufficient in nutrients and gas exchange even if the number of layers is increased, which is the object of the present invention. It has become possible to establish a cell culture method capable of precisely and precisely expressing the differentiation function of various types of cells and maintaining the tissue function.
  • the number of cells in the laminate can be confirmed by, for example, cutting out a permeable membrane on which the laminate is mounted, fixing the formalin, preparing a paraffin-embedded section, and observing under a microscope.
  • the cell to be subjected to the method of the present invention is not particularly limited, but an adherent animal cell is preferable.
  • the origin of the cell is not particularly limited, and those derived from any animal such as human, mouse, rat and the like can be used.
  • Adhesive animal cells can target both primary cultured cells and established cells.
  • the method of the present invention is particularly suitable for culturing primary cultured cells in which it is difficult to maintain cell functions.
  • Primary cultured cells are cartilage, bone, skin, nerve, oral cavity, digestive tract, liver, pancreas, kidney, glandular tissue, adrenal gland, heart, muscle, tendon, adipose tissue, connective tissue, genital organ, eyeball, blood vessel, bone marrow or blood It may be derived from any of these tissues. It is suitable to seed one cell for one kind of temperature-responsive polymer on the surface of the cell culture support, and a single kind of cell derived from a single tissue can be used as the cell. . When a plurality of temperature-responsive polymers are present on the surface, a plurality of different types of cells can be used.
  • the cell culture thus obtained can be used as cells for medical biomaterials, for example.
  • the regenerative medical biomaterial refers to a material used as a substitute for tissue of animals such as humans.
  • Regenerative medical biomaterials include artificial pancreas, artificial spleen, artificial kidney, artificial organs like artificial heart, artificial digestive tract, artificial blood vessel, artificial skin, artificial nerve, artificial bone, depending on the type of cultured cells Examples include artificial cartilage, cochlear implant, artificial lens, artificial cornea, etc., or a part thereof.
  • biomedical materials for regenerative medicine are also used for experimental animal substitute cells, anticancer drug sensitivity tests, drug discovery support, and the like.
  • Blemmer PME-400 methacrylate with-(EO) m -CH 3 (m ⁇ 9)
  • Blemmer PSE-400 methacrylate with-(EO) m -C 18 H 37 (m ⁇ 9) (EO; Ethyleneoxy group)
  • EO Ethyleneoxy group
  • NIPAM N-isopropylacrylamide (manufactured by Kojin)
  • DEAA N-diethylacrylamide (manufactured by Kojin)
  • DAAM Diacetone acrylamide (Kyowa Hakko)
  • BMA Butyl methacrylate (Tokyo Chemicals)
  • the isolated polymer was dissolved in pure water at 25 ° C. to prepare a polymer solution having a concentration of 10% by mass. Thereafter, the temperature of the solution was raised, and the temperature at which the polymer was precipitated was defined as the lower critical temperature.
  • the results are shown in Table 1. However, since the polymer solutions C and D were not dissolved in pure water at 25 ° C. and the polymer had already precipitated, the lower critical temperature was set to none.
  • a monomer / MEK solution of the type shown in Table 3 (M to X shown in Table 2) is filled in ink tank-1 and ink tank-2 shown in Table 3 instead of ink, and has a nozzle diameter of 25 ⁇ m, a driving frequency of 12 kHz, Using an on-demand type ink jet printer with a maximum recording density of 720 ⁇ 720 dpi using a piezo type recording head having 128 nozzles and a nozzle density of 180 dpi (dpi in the present invention represents the number of dots per 2.54 cm).
  • the temperature-responsive polymer was adsorbed on the surface of the polystyrene cell culture dish.
  • the temperature-responsive polymer was adsorbed on the surface of the polystyrene cell culture dish.
  • the cultured cells were seeded on the cell culture support prepared above, and the cells were cultured.
  • the cells to be cultured were patterned using the difference in the lower critical temperature on the surface of the patterned temperature-responsive polymer surface.
  • the culture is performed using a minimum essential eagle medium (manufactured by SIGMA) containing 10% fetal bovine serum (manufactured by ICN) (containing pyruvic acid (manufactured by ICN) and non-essential amino acids (manufactured by ICN) as additives). It was performed in a 37 ° C. incubator filled with% carbon dioxide gas.
  • the cell culture array was allowed to stand in a 20 ° C. constant temperature bath for 5 minutes and then the surface was observed with an optical microscope. As a result, the cells were patterned on the cell culture array and adhered. In addition, it was confirmed that the cells had proliferated sufficiently.
  • the extracted cells were treated with trypsin-EDTA, and each cell was separated into individual states, followed by trypan blue staining to measure the number of viable cells. It was confirmed that the number of cells, which was 8.2 ⁇ 10 2 at the start of 18 cultures, increased to 5.3 ⁇ 10 3 after the culture.
  • the following results are shown in Table 3 with the value after the cell culture as 100%. In the present invention, it was confirmed that the culture efficiency was good for comparison.
  • the membrane was covered, the medium was gently aspirated, and the cell culture support material was incubated at 20 ° C. for 30 minutes and cooled, so that the cells on any cell culture support material were detached together with the covered membrane. .
  • the covered membrane and cells were placed on the same cultured cells that were normally grown on the same cell culture support material, and the two were adhered in a 37 ° C. incubator filled with 5% carbon dioxide gas. After the two cell sheets adhered, the PVDF membrane was peeled off. By repeating the same operation, a 20-layer cell sheet was prepared.
  • the covered membrane could be easily peeled from any cell sheet.
  • the 20 stacked cell sheets retained the cells, the desmosome structure between the cells, and the basement membrane-like protein between the cells and the substrate.
  • the bleed resistance was good, the detachment of the cell from the support was remarkably improved, and the tissue functionalization of the stacked cells could be expressed. It was found that this technology can greatly contribute to the progress of cell culture methods for complex tissues in the future.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The object aims to achieve the culture of multiple types of cells in a single layer and detach only cells from a base material evenly without disrupting the cells.  Disclosed is a cell culture support which is characterized by comprising a base material and two or more temperature-responsive polymers applied on different areas on the surface of the base material, wherein at least one of the temperature-responsive polymers comprises an acrylic resin.  Also disclosed is a cell culture method.

Description

細胞培養支持体および細胞培養方法Cell culture support and cell culture method
 本発明は、人や細胞培養、組織培養等の分野において利用される細胞の培養を生体外で行うための細胞培養支持体、この細胞培養支持体を用いた細胞培養方法に関する。 The present invention relates to a cell culture support for in vitro cell culture used in the fields of humans, cell culture, tissue culture and the like, and a cell culture method using this cell culture support.
 従来、動物細胞の一般的な培養法として広く用いられる単層細胞培養法は、生体内で有していた複雑系の細胞本来の培養環境下におかれないため、生存を継続する分化機能を維持することが困難であり、細胞は生存または増殖するものの、生体の複雑系を精密に再現していないため、分化機能の停止や制御困難を招くことがよく知られている。 Conventionally, the monolayer cell culture method, which is widely used as a general method for culturing animal cells, is not placed in the original culture environment of complex cells that have been in vivo, and therefore has a differentiation function that continues to survive. Although it is difficult to maintain and cells survive or proliferate, it is well known that the complex system of the living body is not accurately reproduced, resulting in termination of differentiation function and difficulty in control.
 例えば、初代培養細胞の中でも高度に生体の代謝機能が分化した初代肝細胞では、単層培養期間内にその機能が消失してしまい易い。例えば、マウス初代培養肝細胞は、シャーレ内で単層培養を行っても、肝細胞の重要な機能の一つであるアンモニア代謝能が、通常、培養開始から10代程度で失われてしまうことが知られている。 For example, among primary cultured cells, primary hepatocytes with highly differentiated metabolic functions in the body tend to lose their functions within a monolayer culture period. For example, even when mouse primary cultured hepatocytes are cultured in a monolayer in a petri dish, the ability to metabolize ammonia, which is one of the important functions of hepatocytes, is usually lost after about 10 generations from the start of culture. It has been known.
 肝細胞の長期培養化には、(生体の肝臓の構造を考えて)血管由来の細胞との共培養が有効であると考えられているが、通常の培養皿を用いる方法で、ただ単に肝細胞と線維芽細胞あるいは肝細胞と内皮細胞との混合等では安定に共培養することはできない。 For long-term culture of hepatocytes, co-culture with blood vessel-derived cells is considered effective (in view of the structure of the liver in the living body). It cannot be stably co-cultured by mixing cells and fibroblasts or hepatocytes and endothelial cells.
 肝実質細胞とラット血管内皮細胞との共培養の例が知られているが(例えば、特許文献1)、基材にパターニングされている温度応答性高分子が、N-n-プロピルメタクリルアミドモノマー重合体とN-イソプロピルアクリルアミドモノマー重合体とそれぞれの単独ポリマーで構成されている。2つの単独ポリマーは、温度応答性の性能に差があるため、細胞培養後の、低温にして剥離する際に均等に剥がれず、一部細胞が破損する。 An example of co-culture of liver parenchymal cells and rat vascular endothelial cells is known (for example, Patent Document 1), but the temperature-responsive polymer patterned on the substrate is Nn-propyl methacrylamide monomer It is composed of a polymer, an N-isopropylacrylamide monomer polymer, and respective homopolymers. Since the two single polymers have a difference in temperature-responsive performance, they do not peel evenly when peeling at a low temperature after cell culture, and some cells are damaged.
 また細胞培養基材への細胞接着層のパターニングには、例えば、特許文献2のようにインクジェット法により細胞接着材料で細胞接着層を基材にパターニングする方法があるが、1つのポリマーで基材に塗布し、一定の線幅を描いているだけであり、複数のポリマーを塗り分ける技術については言及されていない。 In addition, as a method for patterning a cell adhesion layer on a cell culture substrate, for example, as in Patent Document 2, there is a method of patterning a cell adhesion layer on a substrate with a cell adhesion material by an inkjet method. It is merely applied to the film and a certain line width is drawn, and a technique for separately coating a plurality of polymers is not mentioned.
 また、細胞接着材料としてポリエチレングリコール(PEG)を用いているため、細胞の剥離ができない。また、基材へPEGを固定する手段として超臨界二酸化炭素を使っており、プロセスが複雑な上に、装置が大型化してしまう。 Also, since polyethylene glycol (PEG) is used as a cell adhesion material, cells cannot be detached. In addition, supercritical carbon dioxide is used as a means for fixing PEG to the substrate, which makes the process complicated and increases the size of the apparatus.
国際公開第01/068799号パンフレットInternational Publication No. 01/068799 Pamphlet 特開2006-325791号公報JP 2006-325791 A
 多種類の細胞を同一層内で培養を可能にし、かつ細胞を破壊することなく、基材から細胞のみを均等に剥離することにある。 It is to enable culturing of many types of cells in the same layer and to peel only the cells evenly from the substrate without destroying the cells.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.基材上に2種類以上の温度応答性高分子により異なる領域に表面被覆を行った細胞培養支持体であって、該温度応答性高分子の少なくとも一つがアクリル系樹脂を含有することを特徴とする細胞培養支持体。 1. A cell culture support having a surface coated with two or more kinds of temperature-responsive polymers on a substrate, wherein at least one of the temperature-responsive polymers contains an acrylic resin. A cell culture support.
 2.前記アクリル系樹脂を含有する温度応答性高分子の少なくとも一つが下記一般式(1)で表されることを特徴とする前記1に記載の細胞培養支持体。 2. 2. The cell culture support according to 1, wherein at least one of the temperature-responsive polymers containing the acrylic resin is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(一般式(1)において、R、Rは水素原子、炭素原子数1~8のアルキル基、アリール基を表す。R、R、Rは水素原子またはメチル基を表し、Rは水素原子、炭素原子数1~30のアルキル基、シクロアルキル基、または、-(CHCHO)-(CHCH(CH)O)-Rで表されるポリオキシアルキレン基を表す。ここにおいてnは1~300、mは0~60の整数を表す。また、Rは、水素原子、炭素原子数1~30のアルキル基を表す。Rは炭素原子数3以上22以下のアルキル基を表す。また、x、y、zは各成分の質量%を表し、0≦x≦80、0≦y≦80、0≦x≦40、ここでx+y+z=100である。)
 3.前記温度応答性高分子の少なくとも一つがN-イソプロピルアクリルアミドのホモポリマーもしくは他のモノマー成分との共重合ポリマーであることを特徴とする前記1または2に記載の細胞培養支持体。
(In the general formula (1), R 1 and R 2 represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and an aryl group. R 5 , R 6 , and R 7 represent a hydrogen atom or a methyl group; 3 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, or a poly (oxyethylene) group represented by — (CH 2 CH 2 O) n — (CH 2 CH (CH 3 ) O) m —R 0. Represents an oxyalkylene group, wherein n represents 1 to 300, m represents an integer of 0 to 60, R 0 represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, and R 4 represents a carbon atom. Represents an alkyl group having a number of 3 or more and 22 or less, and x, y, and z represent mass% of each component, 0 ≦ x ≦ 80, 0 ≦ y ≦ 80, 0 ≦ x ≦ 40, where x + y + z = 100 .)
3. 3. The cell culture support according to 1 or 2 above, wherein at least one of the temperature-responsive polymers is a homopolymer of N-isopropylacrylamide or a copolymer with another monomer component.
 4.前記温度応答性高分子がインクジェット法によって基材上にパターニングされていることを特徴とする前記1~3のいずれか1項に記載の細胞培養支持体。 4. 4. The cell culture support according to any one of 1 to 3, wherein the temperature-responsive polymer is patterned on a substrate by an inkjet method.
 5.前記1~4のいずれか1項に記載の細胞培養支持体上で2種類以上の異なる細胞を培養することを特徴とする細胞培養方法。 5. 5. A cell culture method comprising culturing two or more different cells on the cell culture support according to any one of 1 to 4 above.
 6.前記5に記載の細胞培養方法であって、2種類以上の異なる細胞を温度応答性高分子の応答温度以下にして剥離することを特徴とする細胞培養方法。 6. 6. The cell culture method according to 5, wherein two or more kinds of different cells are detached at a temperature lower than the response temperature of the temperature-responsive polymer.
 7.前記6に記載の細胞培養方法で培養した細胞を重ね合わせることを特徴とする細胞培養方法。 7. 7. A cell culture method comprising superposing cells cultured by the cell culture method described in 6 above.
 本発明の細胞培養支持体により、多種類の細胞を同一層内で培養を可能にし、かつ細胞を破壊することなく、基材から細胞のみを剥離する技術が達成できた。 The cell culture support of the present invention has made it possible to cultivate many types of cells in the same layer, and to achieve a technique for peeling only the cells from the substrate without destroying the cells.
 以下本発明を実施するための最良の形態について詳しく説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
 (温度応答性高分子)
 本発明においては、温度応答性高分子を一般的な細胞培養基材の上に塗布することが好ましい。温度応答性高分子とは、親水性と疎水性とが温度変化により可逆的に変化する高分子材料のことである。また、好ましい温度応答性高分子として、アクリル系樹脂のモノマー及びアクリルアミドモノマーが共重合したポリマーがあげられる。更に好ましい温度応答性高分子としては前記一般式(1)で表される高分子があげられる。温度応答性高分子を表面に備えた細胞培養基材は、疎水性条件下では細胞と優れた接着性を示すため、細胞を好適に培養、増殖させることができ、また親水性条件下では、細胞との接着性を低下させることができるため、タンパク質加水分解酵素や化学薬品を使用せずに細胞を剥離できるため、細胞の破損や、基材の剥離混入を生じることなく、容易に細胞の回収が可能である。
(Temperature responsive polymer)
In the present invention, it is preferable to apply a temperature-responsive polymer on a general cell culture substrate. The temperature-responsive polymer is a polymer material in which hydrophilicity and hydrophobicity are reversibly changed by a temperature change. A preferred temperature-responsive polymer is a polymer obtained by copolymerizing an acrylic resin monomer and an acrylamide monomer. A more preferred temperature-responsive polymer is a polymer represented by the general formula (1). A cell culture substrate having a temperature-responsive polymer on the surface exhibits excellent adhesion to cells under hydrophobic conditions, so that the cells can be cultured and proliferated appropriately, and under hydrophilic conditions, Since cell adhesion can be reduced, cells can be detached without the use of proteolytic enzymes or chemicals, so that cells can be easily removed without causing cell damage or substrate contamination. Recovery is possible.
 さらに、疎水性から親水性あるいは親水性から疎水性への変化が迅速であるため、温度をはじめとする外部環境を変化させる際に細胞に与える影響が少ないので好ましい。温度応答性高分子の親水性と疎水性とが変化する温度を臨界温度といい、特に高温で疎水性、低温で親水性になる時の温度を下限臨界温度という。細胞培養に使用される細胞は、多くは恒温動物由来であるため、人間の体温付近の37度近辺で培養されることが多く、該温度で細胞が細胞培養支持体に接着しやすい方が良く、つまり、37度近辺で細胞培養支持体表面は疎水性の性質であることが好ましい、細胞の剥離時には、熱によるたんぱく質の変性を起こさないために低温で細胞培養支持体から剥離した方が好ましいい。つまり低温で細胞培養支持体表面は親水性の性質であることが好ましい。 Furthermore, since the change from hydrophobic to hydrophilic or from hydrophilic to hydrophobic is rapid, there is little influence on the cells when changing the external environment including temperature, which is preferable. The temperature at which the hydrophilicity and hydrophobicity of the temperature-responsive polymer changes is called the critical temperature, and the temperature at which it becomes hydrophobic at high temperatures and hydrophilic at low temperatures is called the lower critical temperature. Many of the cells used for cell culture are derived from constant temperature animals. Therefore, the cells are often cultured around 37 degrees near the human body temperature, and it is better that the cells adhere to the cell culture support at that temperature. In other words, it is preferable that the surface of the cell culture support is hydrophobic at around 37 degrees. When the cells are detached, it is preferable that the cell culture support is detached from the cell culture support at a low temperature so as not to cause protein denaturation due to heat. Better. That is, it is preferable that the cell culture support surface has a hydrophilic property at a low temperature.
 さらには、細胞を好適に培養・剥離できることから、該下限臨界温度が20℃以上40℃以下程度の温度範囲にあることが好ましい。 Furthermore, the lower critical temperature is preferably in the temperature range of about 20 ° C. or more and 40 ° C. or less because cells can be cultured and detached suitably.
 本発明においては、温度応答性高分子の少なくとも一つがアクリル系樹脂を含有することを特徴とする。 In the present invention, at least one of the temperature-responsive polymers contains an acrylic resin.
 本発明におけるアクリル系樹脂としては、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート等の一般的なアクリル樹脂でもよく、その誘導体でかまわない。また脂環式炭化水素骨格からなる多環式炭化水素系化合物であるアクリル樹脂でもよく、多環式炭化水素系化合物としては、脂肪族の多環構造を有し、3次元的な架橋構造を含むものでもよい、例えば、トリシクロデカンジメタノールジメタクリレート、トリシクロデカンジメタノールジアクリレートや、アダマンチルメタクリレート、アダマンチルアクリレート等や、イソボルニルメタクリレート、イソボルニルアクリレート、ビニルノルボルネン等が挙げられる。 The acrylic resin in the present invention may be a general acrylic resin such as acrylic acid, methacrylic acid, methyl acrylate or methyl methacrylate, or a derivative thereof. Further, an acrylic resin which is a polycyclic hydrocarbon compound composed of an alicyclic hydrocarbon skeleton may be used. The polycyclic hydrocarbon compound has an aliphatic polycyclic structure and a three-dimensional crosslinked structure. For example, tricyclodecane dimethanol dimethacrylate, tricyclodecane dimethanol diacrylate, adamantyl methacrylate, adamantyl acrylate, etc., isobornyl methacrylate, isobornyl acrylate, vinyl norbornene and the like may be included.
 アクリル系樹脂モノマーおよびアクリルアミドモノマーが共重合したポリマーを用いると細胞の剥離性がよくなる。その理由として、アミドは生体内たんぱく質のペプチド結合と化学的に同じ構造であるため、細胞とポリマーの親和性が強くなり、これが剥離時の細胞破損の原因になっていると考えられる。アクリルアミドモノマーとアクリル系樹脂モノマーを共重合したポリマーを細胞培養の支持体とすることで細胞剥離性と温度応答性の両方が満足できる素材が得られた。 Using a polymer in which an acrylic resin monomer and an acrylamide monomer are copolymerized improves cell detachability. The reason is that the amide has the same chemical structure as the peptide bond of the protein in the living body, and thus the affinity between the cell and the polymer is increased, which is considered to cause cell damage at the time of detachment. By using a polymer obtained by copolymerizing an acrylamide monomer and an acrylic resin monomer as a support for cell culture, a material satisfying both cell detachability and temperature responsiveness was obtained.
 温度応答性高分子としては、アクリルアミドポリマーがよく知られており、これはアクリルアミドモノマーを重合することにより得られる。 An acrylamide polymer is well known as a temperature-responsive polymer, and it can be obtained by polymerizing an acrylamide monomer.
 このような重合体を与えるアクリルアミドモノマーの例としては、N-置換アクリルアミド誘導体、N,N-ジ置換アクリルアミド誘導体、N-置換メタクリルアミド誘導体、N,N-ジ置換メタクリルアミド誘導体などを好ましく使用することができ、具体的にはN-イソプロピルアクリルアミド、N-イソプロピルメタクリルアミド、N-n-プロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-シクロプロピルアクリルアミド、N-シクロプロピルメタクリルアミド、N-エトキシエチルアクリルアミド、N-エトキシエチルメタクリルアミド、N-テトラヒドロフルフリルアクリルアミド、N-テトラヒドロフルフリルメタクリルアミド、N-エチルアクリルアミド、N-エチル-N-メチルアクリルアミド、N,N-ジエチルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-アクリロイルピペリディン、N-アクリロイルピロリジンが挙げられる。 Examples of acrylamide monomers that give such polymers are preferably N-substituted acrylamide derivatives, N, N-disubstituted acrylamide derivatives, N-substituted methacrylamide derivatives, N, N-disubstituted methacrylamide derivatives, and the like. Specifically, N-isopropylacrylamide, N-isopropylmethacrylamide, Nn-propylacrylamide, Nn-propylmethacrylamide, N-cyclopropylacrylamide, N-cyclopropylmethacrylamide, N-ethoxy Ethyl acrylamide, N-ethoxyethyl methacrylamide, N-tetrahydrofurfuryl acrylamide, N-tetrahydrofurfuryl methacrylamide, N-ethyl acrylamide, N-ethyl-N-methyl acrylamide, N, - diethyl acrylamide, N- methyl -N-n-propyl acrylamide, N- methyl -N- isopropylacrylamide, N- acryloyl Lupi Peri Dinh include N- acryloyl pyrrolidine.
 かかるアクリルアミドポリマーとしては、例えば、ポリ(N-イソプロピルアクリルアミド)、ポリ(N-n-プロピルアクリルアミド)、ポリ(N-シクロプロピルメタクリルアミド)、ポリ(N-イソプロピルメタクリルアミド)、ポリ(N-n-プロピルメタクリルアミド)、ポリ(N-エトキシエチルアクリルアミド)、ポリ(N-エトキシエチルメタクリルアミド)、ポリ(N-テトラヒドロフルフリルアクリルアミド)、ポリ(N-テトラフルフリルメタクリルアミド)、ポリ(N-エチルアクリルアミド)、ポリ(N,N-ジエチルアクリルアミド)、ポリ(N-アクリロイルピペリディン)、ポリ(N-アクリロイルピロリディン)が挙げられる。 Examples of such acrylamide polymers include poly (N-isopropylacrylamide), poly (Nn-propylacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (Nn). -Propylmethacrylamide), poly (N-ethoxyethylacrylamide), poly (N-ethoxyethylmethacrylamide), poly (N-tetrahydrofurfurylacrylamide), poly (N-tetrafurfurylmethacrylamide), poly (N- Ethyl acrylamide), poly (N, N-diethylacrylamide), poly (N-acryloylpiperidine), and poly (N-acryloylpyrrolidine).
 また水溶性アクリルアミドモノマーの重合体としては、以上のような単一水溶性アクリルアミドモノマーからの重合体の他、これらから選ばれる複数の異なる水溶性アクリルアミドモノマーを重合して得られる共重合体を用いることも有効である。 In addition to the polymer from the single water-soluble acrylamide monomer as described above, a copolymer obtained by polymerizing a plurality of different water-soluble acrylamide monomers selected from these is used as the polymer of the water-soluble acrylamide monomer. It is also effective.
 また上記水溶性アクリルアミドモノマーからなる重合体が好ましいが、上記水溶性アクリルアミドモノマーとそれ以外の水溶性アクリルアミドモノマーまたは有機溶媒可溶性アクリルアミドモノマーとの共重合体も、得られた重合体が親水性および疎水性の両方を示すものであれば使用することができる。共重合に用いられるアクリルアミドモノマーとしては、具体的にはN-アルキルアクリルアミド、N,N-ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N-アルキルメタクリルアミド、N,N-ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類が挙げられる。なお、より好ましくは、N-アルキルアクリルアミドまたはN,N-ジアルキルアクリルアミドが用いられる。アルキル基としては、炭素数が1~4のものが好ましく選択される。その他には、アクリロイルモルフォリン、N,N-ジメチルアミノプロピルアクリルアミド、N-アクリロイルメチルホモピペラディン、N-アクリロイルメチルピペラディン等も用いることができる。 A polymer comprising the water-soluble acrylamide monomer is preferred, but a copolymer of the water-soluble acrylamide monomer and another water-soluble acrylamide monomer or an organic solvent-soluble acrylamide monomer may also be a hydrophilic and hydrophobic polymer. Any material that exhibits both sexes can be used. Specific examples of acrylamide monomers used for copolymerization include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, and acrylamide, or N-alkylmethacrylamide, N, N-dialkylmethacrylamide, and methacrylamide. And other methacrylamides. More preferably, N-alkylacrylamide or N, N-dialkylacrylamide is used. As the alkyl group, one having 1 to 4 carbon atoms is preferably selected. In addition, acryloylmorpholine, N, N-dimethylaminopropylacrylamide, N-acryloylmethyl homopiperazine, N-acryloylmethylpiperazine, and the like can also be used.
 またアクリル系樹脂としては、アクリル樹脂モノマーを基本として他のモノマーと共重合してよく、本発明において、温度応答性高分子としては、好ましくは、下記一般式(1)で表される化合物である。 The acrylic resin may be copolymerized with other monomers based on an acrylic resin monomer. In the present invention, the temperature-responsive polymer is preferably a compound represented by the following general formula (1). is there.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ここにおいてR、Rは水素原子、炭素原子数1~8のアルキル基、アリール基を表す。R、R、Rは水素原子またはメチル基を表し、Rは水素原子、炭素原子数1~30のアルキル基、シクロアルキル基、または、-(CHCHO)-(CHCH(CH)O)-Rで表されるポリオキシアルキレン基を表す。ここにおいてnは1~300、mは0~60の整数を表す。また、Rは、水素原子、炭素原子数1~30のアルキル基を表す。Rは炭素原子数3以上22以下のアルキル基を表す。また、x、y、zは各成分の質量%を表し、0≦x≦80、0≦y≦80、0≦x≦40、ここでx+y+z=100である。 Here, R 1 and R 2 represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group. R 5 , R 6 and R 7 each represent a hydrogen atom or a methyl group, and R 3 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, or — (CH 2 CH 2 O) n — ( It represents a polyoxyalkylene group represented by CH 2 CH (CH 3 ) O) m —R 0 . Here, n represents an integer of 1 to 300, and m represents an integer of 0 to 60. R 0 represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms. R 4 represents an alkyl group having 3 to 22 carbon atoms. Moreover, x, y, z represents the mass% of each component, 0 <= x <= 80, 0 <= y <= 80, 0 <= x <= 40, and it is here x + y + z = 100.
 R、Rで表される炭素原子数1~8のアルキル基としては直鎖でもよく分岐してもよい。例えば、メチル基、エチル基、イソプロピル基、イソブチル基、ドデシル基等の基を表し、また、置換されていてもよい。置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基、また、アシル基等の基を含み、例えば、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。シクロアルキル基としてはシクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 The alkyl group having 1 to 8 carbon atoms represented by R 1 and R 2 may be linear or branched. For example, it represents a group such as a methyl group, an ethyl group, an isopropyl group, an isobutyl group, or a dodecyl group, and may be substituted. Examples of the substituent include groups such as a halogen atom, a hydroxy group, a carboxy group, and an acyl group, and examples thereof include a hydroxyethyl group and a hydroxypropyl group. Examples of the cycloalkyl group include a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group.
 R、Rで表されるアリール基としてはフェニル基、またトリル基等の置換フェニル基が挙げられる。また、R、Rの少なくとも一つは水素原子であることが好ましい。 Examples of the aryl group represented by R 1 and R 2 include a phenyl group and a substituted phenyl group such as a tolyl group. Moreover, it is preferable that at least one of R 1 and R 2 is a hydrogen atom.
 Rで表される炭素原子数1~30のアルキル基は、直鎖でもよく分岐してもよい、分岐してもよいアルキル基としては、例えば、メチル基、エチル基、イソプロピル基、イソブチル基、ドデシル基等の基を表す。無置換のアルキル基、置換アルキル基を含み、無置換のアルキル基としては、例えば、メチル基、エチル基、イソプロピル基、ドデシル基等の基を表す。また、置換アルキル基における置換基としてはハロゲン原子、ヒドロキシ基、カルボキシ基等の基を含み、例えば、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。シクロアルキル基としてはシクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられるが、置換シクロアルキル基でもよい、また、シクロアルキル基の骨格炭素がヘテロ原子で置換された例えばオキソラニル基、オキサニル基、ピラジニル基等のヘテロ原子を含む飽和炭化水素基でもよい。 The alkyl group having 1 to 30 carbon atoms represented by R 3 may be linear or branched. Examples of the branched alkyl group include a methyl group, an ethyl group, an isopropyl group, and an isobutyl group. Represents a group such as a dodecyl group. An unsubstituted alkyl group and a substituted alkyl group are included, and as an unsubstituted alkyl group, groups, such as a methyl group, an ethyl group, isopropyl group, a dodecyl group, are represented, for example. In addition, examples of the substituent in the substituted alkyl group include groups such as a halogen atom, a hydroxy group, and a carboxy group, and examples thereof include a hydroxyethyl group and a hydroxypropyl group. Examples of the cycloalkyl group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like, but may be a substituted cycloalkyl group. Also, for example, an oxolanyl group, an oxanyl group, a pyrazinyl group in which the skeleton carbon of the cycloalkyl group is substituted with a heteroatom. It may be a saturated hydrocarbon group containing a hetero atom such as a group.
 Rに含まれてもよい-(CHCHO)-(CHCH(CH)O)-Rで表されるポリオキシアルキレン基としては、オキシエチレン基の繰り返し単位(n)としては1~300が好ましく、より好ましいのは6~100の範囲が好ましく、さらに好ましいのは8~50の範囲である。また、またRに含まれてもよいオキシプロピレン基の繰り返し単位(m)としては0~60が好ましく、より好ましいのは0~30の範囲が好ましく、さらに好ましいのは0~15の範囲である。これらオキシエチレン基とオキシプロピレン基は混在してもよい。Rで表される炭素原子数1~30のアルキル基としては、メチル、エチル、プロピル、ブチル、オクチル、デシル、ドデシル、ステアリル等の基が挙げられる。 The polyoxyalkylene group represented by — (CH 2 CH 2 O) n — (CH 2 CH (CH 3 ) O) m —R 0, which may be contained in R 3 , includes an oxyethylene group repeating unit ( n) is preferably 1 to 300, more preferably 6 to 100, and still more preferably 8 to 50. Further, the repeating unit (m) of the oxypropylene group which may be contained in R 3 is preferably 0 to 60, more preferably 0 to 30, and still more preferably 0 to 15. is there. These oxyethylene groups and oxypropylene groups may be mixed. Examples of the alkyl group having 1 to 30 carbon atoms represented by R 0 include groups such as methyl, ethyl, propyl, butyl, octyl, decyl, dodecyl, stearyl.
 Rで表される炭素原子数3以上22以下のアルキル基としては、直鎖あるいは分岐アルキル基でもよく、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ヘキシル基、ドデシル基、ステアリル基等を表す。 The alkyl group having 3 to 22 carbon atoms represented by R 4 may be a linear or branched alkyl group, and is a propyl group, isopropyl group, butyl group, t-butyl group, hexyl group, dodecyl group, stearyl group. Etc.
 一般式(1)の共重合体の製造は、各成分モノマーの共重合により得ることができる。 The production of the copolymer of the general formula (1) can be obtained by copolymerization of each component monomer.
 下記に各成分モノマーの例を挙げるが、一般式(1)の条件を満たしていれば、これに限定されることはない。 Examples of the respective component monomers are given below, but are not limited to these as long as the condition of the general formula (1) is satisfied.
 一般式(1)において、R、R、Rで表される基を含むモノマーとしては、代表的にはダイアセトンアクリルアミド、アクリルアミド、N-イソプロピルアクリルアミド(NIPAM)、N-エチルアクリルアミド、N-ピロリジニルアクリルアミド、N-シクロプロピルアクリルアミド、N-ジエチルアクリルアミド、N-メチル、N-イソロプロピルアクリルアミド、N-プロピルアクリルアミド、N-メチル、N-イソロプロピルアクリルアミド、N-ピペリジニルアクリルアミド、N-プロピルアクリルアミド、N-シクロプロピルメタクリルアミド、N-エチルメタリルアミド、N-イソプロピルメタクリルアミド等のモノマーが挙げられる。 In the general formula (1), examples of the monomer containing a group represented by R 1 , R 2 , or R 5 typically include diacetone acrylamide, acrylamide, N-isopropyl acrylamide (NIPAM), N-ethyl acrylamide, N -Pyrrolidinyl acrylamide, N-cyclopropyl acrylamide, N-diethyl acrylamide, N-methyl, N-isopropyl acrylamide, N-propyl acrylamide, N-methyl, N-isopropyl acrylamide, N-piperidinyl acrylamide , N-propylacrylamide, N-cyclopropylmethacrylamide, N-ethylmethallylamide, N-isopropylmethacrylamide and the like.
 一般式(1)において、R、Rを含むモノマー、また、R、Rで表される基を含むモノマーとしては、下記の中から選択して用いることができる。 In the general formula (1), the monomer containing R 3 and R 6 and the monomer containing a group represented by R 4 and R 7 can be selected from the following.
 例えば、アクリル酸、メタクリル酸、メチルメタクリレート、ブチルメタクリレート等が挙げられる。 Examples include acrylic acid, methacrylic acid, methyl methacrylate, butyl methacrylate and the like.
 また、例えば(ポリオキシアルキレン)アクリレートおよびメタクリレートは、市販のヒドロキシポリ(オキシアルキレン)材料、例えば商品名“プルロニック”[Pluronic(旭電化工業(株)製)]、アデカポリエーテル(旭電化工業(株)製)、カルボワックス[Carbowax(グリコ・プロダクス)]、トリトン[Toriton(ローム・アンド・ハース(Rohm and Haas製))]およびP.E.G(第一工業製薬(株)製)として販売されているものを公知の方法でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリドまたは無水アクリル酸等と反応させることによって製造できる。 Further, for example, (polyoxyalkylene) acrylate and methacrylate are commercially available hydroxy poly (oxyalkylene) materials such as “Pluronic” (Pluronic (manufactured by Asahi Denka Kogyo Co., Ltd.)), Adeka polyether (Asahi Denka Kogyo ( Co., Ltd.), Carbowax [Carbowax (Glico Products)], Triton [Toriton (Rohm and Haas)] and P.I. E. What is marketed as G (made by Daiichi Kogyo Seiyaku Co., Ltd.) can be manufactured by making it react with acrylic acid, methacrylic acid, acrylic chloride, methacrylic chloride, acrylic anhydride, etc. by a well-known method.
 また、上市されているものとして、日本油脂株式会社製のポリアルキレングリコールモノ(メタ)アクリレートとしてブレンマーPE-90、ブレンマーPE-200、ブレンマーPE-350、ブレンマーAE-90、ブレンマーAE-200、ブレンマーAE-400、ブレンマーPP-1000、ブレンマーPP-500、ブレンマーPP-800、ブレンマーAP-150、ブレンマーAP-400、ブレンマーAP-550、ブレンマーAP-800、ブレンマー50PEP-300、ブレンマー70PEP-350B、ブレンマーAEPシリーズ、ブレンマー55PET-400、ブレンマー30PET-800、ブレンマー55PET-800、ブレンマーAETシリーズ、ブレンマー30PPT-800、ブレンマー50PPT-800、ブレンマー70PPT-800、ブレンマーAPTシリーズ、ブレンマー10PPB-500B、ブレンマー10APB-500Bなどがあげられる。同様に日本油脂株式会社製のアルキル末端ポリアルキレングリコールモノ(メタ)アクリレートとしてブレンマーPME-100、ブレンマーPME-200、ブレンマーPME-400、ブレンマーPME-1000、ブレンマーPME-4000、ブレンマーAME-400、ブレンマー50POEP-800B、ブレンマー50AOEP-800B、ブレンマーPLE-200、ブレンマーALE-200、ブレンマーALE-800、ブレンマーPSE-400、ブレンマーPSE-1300、ブレンマーASEPシリーズ、ブレンマーPKEPシリーズ、ブレンマーAKEPシリーズ、ブレンマーANE-300、ブレンマーANE-1300、ブレンマーPNEPシリーズ、ブレンマーPNPEシリーズ、ブレンマー43ANEP-500、ブレンマー70ANEP-550など、また共栄社化学株式会社製ライトエステルMC、ライトエステル130MA、ライトエステル041MA、ライトアクリレートBO-A、ライトアクリレートEC-A、ライトアクリレートMTG-A、ライトアクリレート130A、ライトアクリレートDPM-A、ライトアクリレートP-200A、ライトアクリレートNP-4EA、ライトアクリレートNP-8EAなどが挙げられ、これらの中から選択し用いることができる。 As commercially available products, Blenmer PE-90, Blemmer PE-200, Blemmer PE-350, Blemmer AE-90, Blemmer AE-200, Blemmer as poly (alkylene glycol mono (meth) acrylates manufactured by NOF Corporation. AE-400, Blemmer PP-1000, Blemmer PP-500, Blemmer PP-800, Blemmer AP-150, Blemmer AP-400, Blemmer AP-550, Blemmer AP-800, Blemmer 50 PEP-300, Blemmer 70PEP-350B, Blemmer AEP series, Blemmer 55PET-400, Blemmer 30PET-800, Blemmer 55PET-800, Blemmer AET series, Blemmer 30PPT-800, Blemmer 50 PT-800, Blemmer 70PPT-800, Blemmer APT series, Brenmer 10PPB-500B, such as Brenmer 10APB-500B and the like. Similarly, Blemmer PME-100, Blemmer PME-200, Blemmer PME-400, Blemmer PME-1000, Blemmer PME-4000, Blemmer AME-400, Blemmer as alkyl-terminated polyalkylene glycol mono (meth) acrylates manufactured by NOF Corporation. 50POEP-800B, Blemmer 50AOEP-800B, Blemmer PLE-200, Blemmer ALE-200, Blemmer ALE-800, Blemmer PSE-400, Blemmer PSE-1300, Blemmer ASE series, Blemmer PKEP series, Blemmer AKEP series, Blemmer AE-300 , Blemmer ANE-1300, Blemmer PNEP series, Blemmer PNPE series, Blemmer 43ANE -500, Bremer 70ANEP-550, etc., and Kyoeisha Chemical Co., Ltd. light ester MC, light ester 130MA, light ester 041MA, light acrylate BO-A, light acrylate EC-A, light acrylate MTG-A, light acrylate 130A, light Examples thereof include acrylate DPM-A, light acrylate P-200A, light acrylate NP-4EA, and light acrylate NP-8EA, which can be selected and used.
 これらの共重合体からなるポリマーは親水性と親油性を併せもち下限臨界温度によりその性質が可逆的に変化する。下限臨界温度を変化させるには、一般式(1)のx、y、zの共重合比を変えることで任意に決めることができる。 The polymers made of these copolymers have both hydrophilicity and lipophilicity, and their properties reversibly change depending on the lower critical temperature. In order to change the lower critical temperature, it can be arbitrarily determined by changing the copolymerization ratio of x, y, z in the general formula (1).
 例えば、オキシエチレン基の繰り返し単位を多くすることで下限臨界温度をあげることができる。またR、Rの置換基を疎水的にすることで下限臨界温度を下げることができる。 For example, the lower critical temperature can be increased by increasing the number of repeating units of the oxyethylene group. The lower critical temperature can be lowered by making the substituents of R 4 and R 7 hydrophobic.
 目的の下限臨界温度に応じた混合比率で、モノマーを混合し、例えば溶媒として各モノマー、また共重合体に対し溶解性のよい溶媒、例えばメチルエチルケトン等に溶解し、重合開始剤を加えて、室温あるいは加温、またはUV光で溶液重合させればよい。 Mixing the monomers at a mixing ratio according to the target lower critical temperature, for example, dissolving each monomer as a solvent, or a solvent having good solubility for the copolymer, such as methyl ethyl ketone, adding a polymerization initiator, Alternatively, solution polymerization may be performed by heating or UV light.
 共重合の形態としては、ランダム共重合でもよく、ブロック共重合でもよい。下限臨界温度の親水、疎水変化をシャープにするためには、ランダム共重合が好ましい。 The form of copolymerization may be random copolymerization or block copolymerization. Random copolymerization is preferred in order to sharpen the hydrophilic and hydrophobic changes at the lower critical temperature.
 これらの、また本発明に係るアクリル系樹脂を含有する温度応答性高分子においては、重合開始剤としては、アクリル系樹脂モノマーとアクリルアミドモノマーの重合であるため、ラジカルを発生する開始剤であることが好ましく、アゾ系開始剤、過酸化物系開始剤を用いることができる。 In these temperature-responsive polymers containing an acrylic resin according to the present invention, the polymerization initiator is a polymerization of an acrylic resin monomer and an acrylamide monomer, and is therefore an initiator that generates radicals. Are preferable, and azo initiators and peroxide initiators can be used.
 油溶性の過酸化物系あるいはアゾ系開始剤が好ましく、一例を挙げると、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系開始剤、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビス(2,3-ジメチルブチロニトリル)、2,2′-アゾビス(2-メメチルブチロニトリル)、2,2′-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2′-アゾビス(2-イソプロピルブチロニトリル)、1,1′-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2′-アゾビス(4-メチキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、4,4′-アゾビス(4-シアノバレリン酸)、ジメチル-2,2′-アゾビスイソブチレート等がある。 Oil-soluble peroxide-based or azo-based initiators are preferred. For example, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl Peroxide initiators such as peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 2,2′-azobisisobutyronitrile, 2,2 '-Azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,3-dimethylbutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2' -Azobis (2,3,3-trime Rubutyronitrile), 2,2'-azobis (2-isopropylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvalero) Nitrile), 2- (carbamoylazo) isobutyronitrile, 4,4′-azobis (4-cyanovaleric acid), dimethyl-2,2′-azobisisobutyrate and the like.
 特に、ターシャリイソブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイドなどの有機過酸化物類、過酸化水素等が好ましい。 In particular, organic peroxides such as tertiary isobutyl hydroperoxide, cumene hydroperoxide, paramentane hydroperoxide, hydrogen peroxide, and the like are preferable.
 またUV硬化性開始剤も同様に重合開始剤として好ましく、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4′-ジメトキシベンゾフェノン、4,4′-ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の光ラジカル開始剤等が挙げられる。 Similarly, UV curable initiators are also preferred as polymerization initiators, such as acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone. , Triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, Michler's ketone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- ( 4-Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one And the like of the photoradical initiator.
 これら重合開始剤は、モノマーに対して、0.01~20質量%、特に、0.1~10質量%使用されるのが好ましい。 These polymerization initiators are preferably used in an amount of 0.01 to 20% by mass, particularly 0.1 to 10% by mass, based on the monomer.
 本発明に係る共重合体の製造において反応の場としては、有機溶媒または水を使ってもよく、または使わなくてもよい。後工程で溶媒を除く必要があるため、好ましくは、溶媒を使用しない方がよい。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール類、酢酸エチル、酢酸メチル等のエステル類、メチルエチルケトン、アセトン等のケトン類、エーテル、イソプロピルエーテル等エーテル類、またテトラヒドロフラン、ジオキサン等の環状エーテル類、あるいは芳香族炭化水素であるトルエン等特に制限はないが、原料となるモノマーに対しまた生成する共重合体に対し、溶解性の高い溶媒を選択して用いることが好ましい。 In the production of the copolymer according to the present invention, an organic solvent or water may or may not be used as a reaction site. Since it is necessary to remove the solvent in a later step, it is preferable not to use a solvent. Examples of the organic solvent include alcohols such as methanol, ethanol and isopropyl alcohol, esters such as ethyl acetate and methyl acetate, ketones such as methyl ethyl ketone and acetone, ethers such as ether and isopropyl ether, and cyclic ethers such as tetrahydrofuran and dioxane. Although there is no particular limitation such as toluene, which is an aromatic hydrocarbon, or the like, it is preferable to select and use a highly soluble solvent for the monomer as a raw material and for the copolymer to be formed.
 重合温度が余り低くならない様に、溶媒の沸点としては50℃以上が好ましく、70℃以上がさらに好ましい。しかしながら、150℃以上と高くなると、その後の取り扱いに工数を要するので、150℃以下であることが好ましい。 In order to prevent the polymerization temperature from becoming too low, the boiling point of the solvent is preferably 50 ° C. or higher, more preferably 70 ° C. or higher. However, if it becomes as high as 150 ° C. or higher, man-hours are required for subsequent handling.
 前記共重合反応において、重合後、最終的には、固形分濃度が10質量%以上40質量%以下であることが好ましく、また、最終的な共重合体を含む溶液の粘度が固形分30質量%換算で10mPa・s以上500mPa・s以下となる重合度であることが好ましい。 In the copolymerization reaction, after polymerization, the solid content concentration is preferably 10% by mass or more and 40% by mass or less, and the viscosity of the final solution containing the copolymer is 30% by mass. The degree of polymerization is preferably 10 mPa · s or more and 500 mPa · s or less in terms of%.
 本発明に係る共重合反応においては、残モノマー量を1質量%以下とし、反応を終了させる。この測定は、ガスクロマトグラフにて行う。 In the copolymerization reaction according to the present invention, the residual monomer amount is set to 1% by mass or less, and the reaction is terminated. This measurement is performed with a gas chromatograph.
 共重合ポリマーを含有する反応液は、貧溶媒と混合し、析出させ、さらに、溶解、析出を繰り返し、固形分として、単離することができる。 The reaction liquid containing the copolymer can be mixed with a poor solvent and precipitated, and further dissolved and precipitated repeatedly to be isolated as a solid content.
 本発明に用いられる温度応答性高分子の具体例としては実施例中、No.E~L等で表されるポリマーが挙げられる。 As specific examples of the temperature-responsive polymer used in the present invention, No. 1 in the Examples is used. Examples thereof include polymers represented by E to L and the like.
 本発明の細胞培養基材に上記温度応答性高分子を塗布する際には、その特性を改良する目的で、重合時に公知慣用の有機架橋剤を使用してもよい。使用する有機架橋剤濃度は特に限定されず、目的に応じて選択できる。使用できる有機架橋剤としては、従来から公知のN,N′-メチレンビスアクリルアミド、N,N′-プロピレンビスアクリルアミド、ジ(アクリルアミドメチル)エーテル、1,2-ジアクリルアミドエチレングリコール、1,3-ジアクリロイルエチレンウレア、エチレンジアクリレート、N,N′-ジアリルタータルジアミド、N,N′-ビスアクリリルシスタミンなどの二官能性化合物や、トリアリルシアヌレート、トリアリルイソシアヌレートなどの三官能性化合物が例示できる。 When applying the above-mentioned temperature-responsive polymer to the cell culture substrate of the present invention, a known and commonly used organic crosslinking agent may be used during polymerization for the purpose of improving the characteristics. The concentration of the organic crosslinking agent to be used is not particularly limited and can be selected according to the purpose. Examples of organic crosslinking agents that can be used include conventionally known N, N′-methylenebisacrylamide, N, N′-propylenebisacrylamide, di (acrylamidomethyl) ether, 1,2-diacrylamide ethylene glycol, 1,3- Bifunctional compounds such as diacryloylethyleneurea, ethylene diacrylate, N, N'-diallyl tartaramide, N, N'-bisacrylylcystamine, and trifunctional compounds such as triallyl cyanurate and triallyl isocyanurate Can be exemplified.
 (細胞培養支持体について)
 本発明にかかわる細胞培養支持体の基材としては各種高分子材料、ガラス、改質ガラス、ウール布、コットン布、紙、金属(例えばアルミニウム)等が挙げられる。取り扱い上の観点より本発明の細胞培養支持体における基材としては、プラスチック材料(例えば、セルロースアセテート、ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリイミド、セルローストリアセテートまたはポリカーボネート、ポリスチレン、ポリメチルメタクリレート等)が好ましく、本発明においてはポリスチレンが特に好ましい。支持体の厚みとしては50~3000μm程度、好ましくは70~1800μmである。
(About cell culture supports)
Examples of the base material for the cell culture support according to the present invention include various polymer materials, glass, modified glass, wool cloth, cotton cloth, paper, metal (for example, aluminum) and the like. From the viewpoint of handling, as a substrate in the cell culture support of the present invention, a plastic material (for example, cellulose acetate, polyester, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, cellulose triacetate or polycarbonate, polystyrene, polymethyl methacrylate, etc. And polystyrene is particularly preferred in the present invention. The thickness of the support is about 50 to 3000 μm, preferably 70 to 1800 μm.
 細胞培養用の基材は、温度応答性高分子を付着し易くさせるため基材表面にグロー放電、コロナ放電、真空プラズマ処理、大気圧プラズマ処理またはシランカップリング処理などで表面処理を施されていてもよい。 The base material for cell culture is surface-treated by glow discharge, corona discharge, vacuum plasma treatment, atmospheric pressure plasma treatment or silane coupling treatment on the surface of the base material in order to make the temperature-responsive polymer easy to adhere. May be.
 (温度応答性高分子の被覆方法)
 本発明の温度応答性高分子を基材の表面に被覆する方法としては、基材にモノマーで塗布して、重合する方法と、あらかじめモノマーを重合して温度応答性高分子にしてから塗布する方法がある。どちらの方法でもよいが、パターニングの観点からモノマーで基材へ塗布後、重合する方が好ましい。
(Temperature-responsive polymer coating method)
As a method of coating the surface of the substrate with the temperature-responsive polymer of the present invention, a method in which the substrate is coated with a monomer and polymerized, and a method in which the monomer is polymerized in advance to form a temperature-responsive polymer are applied. There is a way. Either method may be used, but from the viewpoint of patterning, it is preferable to polymerize after coating on a substrate with a monomer.
 基材上に温度応答性高分子、またはそのモノマーを塗布する方法には特に制限はなく、例えばバーコーター法、カーテンコート法、浸漬法、エアーナイフ法、ホッパー塗布法、リバースロール塗布法、グラビア塗布法、エクストリュージョン塗布法、真空蒸着法(スパッタリング法)等の公知の方法を用いることができる。また2種類の温度応答性高分子を細胞培養基材の支持体上にパターニングする際には、リソグラフィー法、インクジェット方法、スーパーインクジェット方法で塗布することが好ましい。 There is no particular limitation on the method for applying the temperature-responsive polymer or its monomer on the substrate, for example, bar coater method, curtain coating method, dipping method, air knife method, hopper coating method, reverse roll coating method, gravure. Known methods such as a coating method, an extrusion coating method, and a vacuum deposition method (sputtering method) can be used. Moreover, when patterning two types of temperature-responsive polymers on the support of the cell culture substrate, it is preferable to apply them by a lithography method, an inkjet method, or a super inkjet method.
 温度応答性高分子を基材上へ固定化する技術としては、熱による硬化、またはUV照射による硬化のどちらを採用してもよい。 As the technique for immobilizing the temperature-responsive polymer on the substrate, either heat curing or UV irradiation curing may be employed.
 反応が早いという観点でUV照射による硬化が好ましく、UV光を用いる場合は、光源として、例えば、0.1kPa~1MPaまでの動作圧力を有する低圧、中圧、高圧水銀ランプ、メタルハライドランプや紫外域の発光波長を持つキセノンランプ、冷陰極管、熱陰極管、LED等従来公知のものが用いられる。 Curing by UV irradiation is preferable from the viewpoint of quick reaction. When UV light is used, the light source is, for example, a low pressure, medium pressure, high pressure mercury lamp, metal halide lamp or ultraviolet region having an operating pressure of 0.1 kPa to 1 MPa. Conventionally known lamps such as xenon lamps, cold cathode fluorescent lamps, hot cathode fluorescent lamps, and LEDs having a light emission wavelength of 2 are used.
 なお、本発明において、温度応答性高分子の塗布量は、細胞培養の目的に応じた適量を選ぶことが好ましいが、細胞を培養し、その後、細胞を基材から剥離するという目的の場合には、0.1μg/cm以上、5.0μg/cm以下が好ましく、0.5μg/cm以上、3.0μg/cm以下がより好ましい。 In the present invention, the application amount of the temperature-responsive polymer is preferably selected in accordance with the purpose of cell culture, but for the purpose of culturing cells and then peeling the cells from the substrate. is, 0.1 [mu] g / cm 2 or more, preferably 5.0 [mu] g / cm 2 or less, 0.5 [mu] g / cm 2 or more, 3.0 [mu] g / cm 2 or less being more preferred.
 (温度応答性高分子の細胞培養基材へのパターニングについて)
 本発明は、同一層内に異なる領域を被覆した2種類以上の温度応答性高分子上で2種類以上の細胞を異なる領域で培養できればよいが、細胞を積層する際には、各層間の細胞パターンが同じであった方が組織的な機能発現という点で好ましい。そのためには、温度応答性高分子が基材へパターニングされた細胞培養支持体の方が好ましい。
(Patterning of temperature-responsive polymer to cell culture substrate)
In the present invention, it is sufficient that two or more types of cells can be cultured in different regions on two or more types of temperature-responsive polymers in which different regions are coated in the same layer. The same pattern is preferable in terms of systematic function expression. For this purpose, a cell culture support in which a temperature-responsive polymer is patterned on a substrate is preferred.
 本発明に係る温度応答性高分子を基材の表面に所定パターンで付加する際には、温度応答性高分子を構成する材料を液状化して付加することが好ましい。液状化した温度応答性高分子を構成する材料を所定のパターンで付加する方法としては、スクリーン印刷法やインクジェット法などの印刷方法を用いることが好ましい。このような印刷方法を用いると、より簡単に温度応答性高分子を構成する材料を細胞培養する基材の表面に任意のパターンで付加することができる。また、所定のパターンに穿孔したマスクを作製し、これを基材表面上に設置した後、温度応答性高分子を構成する材料を含有した溶液をスプレー塗布する方法を採用することもできる。 When adding the temperature-responsive polymer according to the present invention to the surface of the base material in a predetermined pattern, it is preferable to add the material constituting the temperature-responsive polymer in a liquefied state. As a method for adding the material constituting the liquefied temperature-responsive polymer in a predetermined pattern, it is preferable to use a printing method such as a screen printing method or an ink jet method. By using such a printing method, the material constituting the temperature-responsive polymer can be more easily added in an arbitrary pattern to the surface of the substrate for cell culture. Alternatively, a method may be employed in which a mask perforated in a predetermined pattern is prepared and placed on the substrate surface, and then a solution containing a material constituting the temperature-responsive polymer is spray applied.
 なお、本発明の細胞培養支持体を用いて血管や神経系などの複雑で個体差のあるパターンを形成する場合、特に、個別対応性の高いインクジェット法が好ましい。それ以外の方法としては、スクリーン印刷方法、スプレー塗布方法でも可能であるが、複雑なパターンを形成しようとした場合、隣接する異種の温度応答性高分子間でにじみによる混合、重なり合い、境界線ですきまが開いてしまうなどの問題を起こしやすい。この観点からも解像度の高いインクジェット方法がより好ましい。 In addition, when forming a complicated and individual difference pattern such as a blood vessel or a nervous system using the cell culture support of the present invention, an inkjet method with high individual correspondence is particularly preferable. As other methods, screen printing method and spray coating method are also possible, but when complex patterns are to be formed, mixing, overlapping, and boundary lines due to blurring between adjacent different types of temperature-responsive polymers Prone to problems such as opening gaps. From this point of view, an inkjet method having a high resolution is more preferable.
 また、温度応答性高分子を構成する材料を液状にする方法としては、温度応答性高分子を構成する材料を加熱して軟化させる方法や、温度応答性高分子を構成する材料を所定の溶媒に溶解する方法などが挙げられるが、温度調整を行う必要のない点から溶媒に溶解する方法が好適である。 In addition, as a method for making the material constituting the temperature-responsive polymer into a liquid state, the material constituting the temperature-responsive polymer is heated and softened, or the material constituting the temperature-responsive polymer is changed to a predetermined solvent. Although the method etc. which melt | dissolve are mentioned, the method of melt | dissolving in a solvent from the point which does not need to perform temperature adjustment is suitable.
 またパターニングできる線幅としては、1μm以上1000μm以下が好ましく、さらに好ましくは、3μm以上100μm以下が好ましい。 The line width that can be patterned is preferably 1 μm or more and 1000 μm or less, more preferably 3 μm or more and 100 μm or less.
 (細胞培養支持体上で培養される細胞とその積層化について)
 本発明の細胞培養支持体上で培養される細胞は温度応答性高分子の下限臨界温度以下にし、支持体表面を親水化することで培養された細胞を剥離する。この剥離された細胞を重ね合わせるにあたり、細胞が概ね2~200層程度、特に5~100層程度重なり合った積層体が得られるように、細胞数を調整することが望ましい。積層体において細胞が多数重なりすぎている場合には積層体の中央層部の細胞が栄養不足、ガス交換不足になり、細胞の重なりが少なすぎる場合は細胞数が少なく十分な機能を発揮する積層体が形成され難い。上記範囲であればこのような問題は生じない。
(About cells cultured on cell culture supports and their lamination)
The cells cultured on the cell culture support of the present invention are brought to a temperature lower than the lower critical temperature of the temperature-responsive polymer, and the cultured cells are detached by hydrophilizing the support surface. In stacking the peeled cells, it is desirable to adjust the number of cells so that a laminate in which the cells are approximately 2 to 200 layers, particularly 5 to 100 layers, is obtained. If there are too many cells in the laminate, the cells in the central layer of the laminate will be undernutrition and gas exchange will be insufficient. The body is difficult to form. If it is the said range, such a problem will not arise.
 本発明の細胞培養支持体は、2種類以上の下限臨界温度をもった温度応答性高分子で表面を加工しているため、それに合わせる形で2種類以上の異なった細胞を同一層内に共培養できる。この細胞のうち少なくとも1つを血管内皮細胞等の血管再生能力を秘めた細胞にすることで、積層数を増やしても細胞が栄養不足、ガス交換不足になりにくく、本発明の目的である多種類の細胞の分化機能を精密且つ厳密に発現、さらに組織としての機能を維持するこのできる細胞の培養方法が確立できることとなった。 Since the surface of the cell culture support of the present invention is processed with a temperature-responsive polymer having two or more kinds of lower critical temperatures, two or more kinds of different cells are co-located in the same layer. Can be cultured. By making at least one of these cells a cell having an ability to regenerate blood vessels such as vascular endothelial cells, the cells are less likely to be insufficient in nutrients and gas exchange even if the number of layers is increased, which is the object of the present invention. It has become possible to establish a cell culture method capable of precisely and precisely expressing the differentiation function of various types of cells and maintaining the tissue function.
 積層体の細胞数は、例えば積層体の載った透過性膜を切り出し、これをホルマリン固定後、パラフィン包埋切片を作製して顕微鏡観察することにより確認することができる。 The number of cells in the laminate can be confirmed by, for example, cutting out a permeable membrane on which the laminate is mounted, fixing the formalin, preparing a paraffin-embedded section, and observing under a microscope.
 本発明方法の対象となる細胞としては、特に限定されるものではないが、接着性の動物細胞が好適である。細胞の由来も特に限定されず、ヒト、マウス、ラット等のいずれの動物由来のものも使用できる。また、接着性の動物細胞は、初代培養細胞および株化細胞の双方を対象とすることができる。 The cell to be subjected to the method of the present invention is not particularly limited, but an adherent animal cell is preferable. The origin of the cell is not particularly limited, and those derived from any animal such as human, mouse, rat and the like can be used. Adhesive animal cells can target both primary cultured cells and established cells.
 本発明方法は、特に、細胞の機能維持が困難な初代培養細胞の培養に適する。初代培養細胞は、軟骨、骨、皮膚、神経、口腔、消化管、肝臓、膵臓、腎臓、腺組織、副腎、心臓、筋肉、腱、脂肪組織、結合組織、生殖器、眼球、血管、骨髄または血液のいずれの組織に由来するものであってもよい。細胞培養支持体表面の温度応答性高分子の種類1つに対して1つの細胞を藩種することが適しており、細胞は、単一組織に由来する単一種類の細胞を用いることもできる。複数の温度応答性高分子が表面に存在している場合は、その数だけ異なる複数種の細胞を用いることもできる。 The method of the present invention is particularly suitable for culturing primary cultured cells in which it is difficult to maintain cell functions. Primary cultured cells are cartilage, bone, skin, nerve, oral cavity, digestive tract, liver, pancreas, kidney, glandular tissue, adrenal gland, heart, muscle, tendon, adipose tissue, connective tissue, genital organ, eyeball, blood vessel, bone marrow or blood It may be derived from any of these tissues. It is suitable to seed one cell for one kind of temperature-responsive polymer on the surface of the cell culture support, and a single kind of cell derived from a single tissue can be used as the cell. . When a plurality of temperature-responsive polymers are present on the surface, a plurality of different types of cells can be used.
 具体的には、例えば、軟骨細胞、骨芽細胞、表皮角化細胞、メラニン細胞、神経細胞、神経幹細胞、グリア細胞、肝細胞、腸上皮細胞、膵β細胞、膵外分泌細胞、腎糸球体内皮細胞、尿細管上皮細胞、乳腺細胞、甲状腺細胞、唾液腺細胞、副腎皮質細胞、副腎髄質細胞、心筋細胞、骨格筋細胞、平滑筋細胞、脂肪細胞、脂肪前駆細胞、水晶体細胞、角膜細胞、血管内皮細胞、骨髄間質細胞またはリンパ球などを使用できる。細胞は、一種を単独でまたは二種以上を組み合わせて用いることができる。 Specifically, for example, chondrocytes, osteoblasts, epidermal keratinocytes, melanocytes, neurons, neural stem cells, glial cells, hepatocytes, intestinal epithelial cells, pancreatic β cells, pancreatic exocrine cells, renal glomerular endothelium Cells, tubular epithelial cells, breast cells, thyroid cells, salivary gland cells, adrenal cortex cells, adrenal medullary cells, cardiomyocytes, skeletal muscle cells, smooth muscle cells, adipocytes, adipose precursor cells, lens cells, corneal cells, vascular endothelium Cells, bone marrow stromal cells or lymphocytes can be used. Cells can be used singly or in combination of two or more.
 このようにして得られた細胞培養物は、例えば医用生体材料用の細胞として使用できる。本発明において、再生医用生体材料とは、ヒト等の動物の組織の代替物として使用される材料をいう。再生医用生体材料としては、培養された細胞の種類に応じて、人工膵臓、人工脾臓、人工腎臓、人工心臓のような人工臓器、人工消化管、人工血管、人工皮膚、人工神経、人工骨、人工軟骨、人工内耳、人工水晶体、人工角膜など、またはこれらの一部分が挙げられる。 The cell culture thus obtained can be used as cells for medical biomaterials, for example. In the present invention, the regenerative medical biomaterial refers to a material used as a substitute for tissue of animals such as humans. Regenerative medical biomaterials include artificial pancreas, artificial spleen, artificial kidney, artificial organs like artificial heart, artificial digestive tract, artificial blood vessel, artificial skin, artificial nerve, artificial bone, depending on the type of cultured cells Examples include artificial cartilage, cochlear implant, artificial lens, artificial cornea, etc., or a part thereof.
 またヒト等の動物の組織の代替物として、実験用動物代替細胞、抗癌剤感受性試験、創薬支援等に使用される場合も再生医用生体材料に含まれる。 Also, as a substitute for tissue of animals such as humans, biomedical materials for regenerative medicine are also used for experimental animal substitute cells, anticancer drug sensitivity tests, drug discovery support, and the like.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。なお、特に断りない限り、実施例中の「%」は「質量%」を示す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, “%” in the examples represents “mass%”.
 (1)試料の作製
 (1.1)温度応答性高分子A~Lの合成(比較例、本発明)
 0.5リットルの四つ口セパラブルフラスコに滴下装置、温度計、窒素ガス導入管、攪拌装置および還流冷却管を付し、メチルエチルケトン(MEK)50g、および表1に記載の組成割合でNIPAM以外のモノマー(単位g)、を仕込み、80℃に加熱した。さらに表1に記載のNIPAMモノマー(単位g)をメチルエチルケトン43gに溶解しさらにラウリルパーオキサイド0.12gを溶解した液を、フラスコ中に2時間かけて滴下した。その後1時間かけて昇温し還流状態になった時点で、ラウリルパーオキサイド0.17gをメチルエチルケトン33gに溶解した液をフラスコ中に2時間かけて滴下し、同温度にてさらに3時間反応させた。その後メチルハイドロキノン0.33gをメチルエチルケトン107gに溶解した液を添加し冷却後、ポリマー含有量として30質量%のポリマー溶液A~Lをそれぞれ得た。分子量は、GPCでポリスチレン換算の重量平均分子量として求めた。
(1) Preparation of sample (1.1) Synthesis of temperature-responsive polymers A to L (comparative example, the present invention)
A 0.5 liter four-necked separable flask is equipped with a dropping device, a thermometer, a nitrogen gas inlet tube, a stirring device and a reflux condenser, and 50 g of methyl ethyl ketone (MEK) and other than NIPAM at the composition ratio shown in Table 1 The monomer (unit g) was charged and heated to 80 ° C. Further, a solution obtained by dissolving NIPAM monomer (unit g) shown in Table 1 in 43 g of methyl ethyl ketone and further dissolving 0.12 g of lauryl peroxide was dropped into the flask over 2 hours. Thereafter, when the temperature was raised over 1 hour to reach a reflux state, a solution obtained by dissolving 0.17 g of lauryl peroxide in 33 g of methyl ethyl ketone was dropped into the flask over 2 hours and reacted at the same temperature for further 3 hours. . Thereafter, a solution in which 0.33 g of methylhydroquinone was dissolved in 107 g of methyl ethyl ketone was added and cooled to obtain polymer solutions A to L having a polymer content of 30% by mass. Molecular weight was calculated | required as a weight average molecular weight of polystyrene conversion by GPC.
 以下において、
ブレンマーPME-400:-(EO)-CH(m≒9)を有するメタアクリレートブレンマーPSE-400:-(EO)-C1837(m≒9)を有するメタアクリレート
 (EO;エチレンオキシ基)
 上記はすべて日本油脂製。
NIPAM:N-イソプロピルアクリルアミド(興人製)
DEAA:N-ジエチルアクリルアミド(興人製)
DAAM:ダイアセトンアクリルアミド(協和発酵製)
BMA:ブチルメタクリレート(東京化成品)
 (1.2)温度応答性高分子A~Lの下限臨界温度評価
 上記(1.1)で作製されたポリマー/MEK溶液の300gを室温で蒸留水1000gに徐々に添加したのち(ポリマー溶液C及びD以外は均一溶液を構成している)、温度を45℃にあげると、析出するので、これを分離し、40℃の温水で充分に洗浄し、残モノマーを除いた。その後、単離したポリマーを25℃の純水に溶解させ10質量%濃度のポリマー溶液を作製した。その後溶液の温度を上げてゆき、ポリマーが析出した温度を下限臨界温度とした。結果を表1に記載した。ただし、ポリマー溶液C及びDは25℃の純水に溶解せず、既にポリマーが析出しているため、下限臨界温度はなしとした。
In the following,
Blemmer PME-400: methacrylate with-(EO) m -CH 3 (m≈9) Blemmer PSE-400: methacrylate with-(EO) m -C 18 H 37 (m≈9) (EO; Ethyleneoxy group)
The above are all made from Japanese fats and oils.
NIPAM: N-isopropylacrylamide (manufactured by Kojin)
DEAA: N-diethylacrylamide (manufactured by Kojin)
DAAM: Diacetone acrylamide (Kyowa Hakko)
BMA: Butyl methacrylate (Tokyo Chemicals)
(1.2) Evaluation of lower limit critical temperature of temperature-responsive polymers A to L After gradually adding 300 g of the polymer / MEK solution prepared in (1.1) above to 1000 g of distilled water at room temperature (polymer solution C A uniform solution is formed except for D and D), and when the temperature is raised to 45 ° C., it precipitates. This was separated and washed thoroughly with warm water of 40 ° C. to remove residual monomers. Thereafter, the isolated polymer was dissolved in pure water at 25 ° C. to prepare a polymer solution having a concentration of 10% by mass. Thereafter, the temperature of the solution was raised, and the temperature at which the polymer was precipitated was defined as the lower critical temperature. The results are shown in Table 1. However, since the polymer solutions C and D were not dissolved in pure water at 25 ° C. and the polymer had already precipitated, the lower critical temperature was set to none.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1より、アクリル樹脂の共重合組成比を変化させることで、細胞が培養しやすい体温付近で下限臨界温度を生じるポリマーの下限臨界温度を変化させることが達成できた。 From Table 1, by changing the copolymer composition ratio of the acrylic resin, it was possible to change the lower critical temperature of the polymer that generates the lower critical temperature near the body temperature at which cells are easily cultured.
 (1.3)モノマーのインクジェット塗布と重合方法
 上記(1.1)で作製したポリマー/MEK(30質量%溶液)と同じ組成になるように、各モノマーを以下表2記載の組成比にして同じく固形分30質量%になるようにMEK溶液に溶解させた。また、(1.1)記載のラウリルパーオキサイドの代わりにUV重合開始剤としてIRGACURE184(チバ・ジャパン製)をモノマーに対して1質量%含有させた。
(1.3) Inkjet Application of Monomers and Polymerization Method Each monomer is made to have the composition ratio shown in Table 2 below so as to have the same composition as the polymer / MEK (30% by mass solution) prepared in (1.1) above. Similarly, it was dissolved in the MEK solution so as to have a solid content of 30% by mass. Further, instead of lauryl peroxide described in (1.1), IRGACURE 184 (manufactured by Ciba Japan) as a UV polymerization initiator was contained in an amount of 1% by mass based on the monomer.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 さらに表3記載の種類のモノマー/MEK溶液(表2記載のM~X)をインクの代わりに表3記載のインクタンク-1、インクタンク-2に充填し、ノズル口径25μm、駆動周波数12kHz、ノズル数128、ノズル密度180dpi(本発明でいうdpiとは、2.54cm当たりのドット数を表す)であるピエゾ型記録ヘッドを用い、最大記録密度720×720dpiのオンデマンド型のインクジェットプリンタを使用し、市販のポリスチレン製細胞培養皿(ベクトン・ディッキンソン・ラブウェア(Becton Dickinson Labware)社製 ファルコン(FALCON)3001ペトリディッシュ(直径3.5cm))上に、表3記載のM~X溶液のうち片方が幅100μmの細線になるようそれぞれプリントした。 Further, a monomer / MEK solution of the type shown in Table 3 (M to X shown in Table 2) is filled in ink tank-1 and ink tank-2 shown in Table 3 instead of ink, and has a nozzle diameter of 25 μm, a driving frequency of 12 kHz, Using an on-demand type ink jet printer with a maximum recording density of 720 × 720 dpi using a piezo type recording head having 128 nozzles and a nozzle density of 180 dpi (dpi in the present invention represents the number of dots per 2.54 cm). On the commercially available polystyrene cell culture dish (Falcon 3001 Petri dish (diameter: 3.5 cm) manufactured by Becton Dickinson Labware) Each one is pudding so that one side becomes a thin line of 100μm width It was.
 各インクを連続吐出し、着弾した後0.1秒後に、120W/cmメタルハライドランプ(日本電池社製 MAL 400NL、電源電力3kW・hr)を照射し、モノマーを重合させた。 Each ink was continuously ejected, and 0.1 seconds after landing, a 120 W / cm metal halide lamp (manufactured by Nippon Battery Co., Ltd., MAL 400 NL, power supply power 3 kW · hr) was irradiated to polymerize the monomers.
 これにより温度応答性高分子をポリスチレン製細胞培養皿表面に吸着させた。 Thus, the temperature-responsive polymer was adsorbed on the surface of the polystyrene cell culture dish.
 その後、残モノマーと溶媒であるMEKを取り除くために、大量の水で洗浄し、細胞培養支持体とした。 Thereafter, in order to remove the residual monomer and MEK as a solvent, it was washed with a large amount of water to obtain a cell culture support.
 (1.4)コントロールの重合
 表3記載のNo.18は、コントロールとして、インクジェット塗布の代わりに、表2記載M溶液を0.1mlディッシュに滴下し、塗布液が水平になるのをまって(1.3)同様の方法で重合させた。
(1.4) Control polymerization No. As a control, instead of inkjet coating, the M solution described in Table 2 was dropped into a 0.1 ml dish, and the coating solution was leveled (1.3) and polymerized in the same manner.
 (1.5)重合済みポリマーをインクジェットで塗布
 表3記載のNo.19~25には、表1記載のポリマー/MEK溶液(表3記載の種類)を用いて、(1.3)のモノマー/MEK溶液に置き換えて用いた以外は同様の方法で吸着させた。
(1.5) Application of polymerized polymer by ink jet No. 1 in Table 3 Nos. 19 to 25 were adsorbed in the same manner except that the polymer / MEK solution shown in Table 1 (type shown in Table 3) was used instead of the monomer / MEK solution of (1.3).
 (1.6)スクリーン印刷方法による塗布、重合
 表3記載のNo.26~31には、(1.3)記載のインクジェット塗布と同様のパターンになるように幅100μmの細線のマスクを用いて、表3記載の種類のモノマー/MEK溶液(表2記載のM~Xで作成)を塗りわけ、(1.3)記載のインクジェット塗布と同様のパターンニングを行った。その後0.1秒後に、120W/cmメタルハライドランプ(日本電池社製 MAL 400NL、電源電力3kW・hr)を照射し、モノマーを重合させた。
(1.6) Application and polymerization by screen printing method Nos. 26 to 31 use a fine line mask with a width of 100 μm so as to form a pattern similar to that of the ink jet coating described in (1.3), and the monomer / MEK solution of the type described in Table 3 (M (Prepared with X), and the same patterning as the inkjet coating described in (1.3) was performed. 0.1 seconds later, a monomer was polymerized by irradiation with a 120 W / cm metal halide lamp (MAL 400NL, manufactured by Nippon Battery Co., Ltd., power supply power 3 kW · hr).
 これにより温度応答性高分子をポリスチレン製細胞培養皿表面に吸着させた。 Thus, the temperature-responsive polymer was adsorbed on the surface of the polystyrene cell culture dish.
 その後、残モノマーと溶媒であるMEKを取り除くために、大量の水で洗浄し、細胞培養支持体とした。 Thereafter, in order to remove the residual monomer and MEK as a solvent, it was washed with a large amount of water to obtain a cell culture support.
 (1.7)細胞の培養
 上記作製した細胞培養支持体に培養細胞を播種して細胞の培養を行った。培養する細胞は、パターニングされた温度応答性高分子表面の下限臨界温度違いを利用して、表3記載の細胞をパターニングさせた。培養は、ウシ胎児血清(ICN製)を10%含有するミニマム・エッセンシャル・イーグル培地(SIGMA製)(ピルビン酸(ICN製)および非必須アミノ酸(ICN製)を添加剤として含有)使用し、5%炭酸ガス充填37℃恒温器内で行った。
(1.7) Cell Culture The cultured cells were seeded on the cell culture support prepared above, and the cells were cultured. The cells to be cultured were patterned using the difference in the lower critical temperature on the surface of the patterned temperature-responsive polymer surface. The culture is performed using a minimum essential eagle medium (manufactured by SIGMA) containing 10% fetal bovine serum (manufactured by ICN) (containing pyruvic acid (manufactured by ICN) and non-essential amino acids (manufactured by ICN) as additives). It was performed in a 37 ° C. incubator filled with% carbon dioxide gas.
 播種してから1週間後、この細胞培養アレイを、20℃恒温槽内に5分間静置してから、表面を光学顕微鏡にて観察したところ、細胞が細胞培養アレイ上にパターニングされて接着して、また十分に増殖していたことが確認された。この取り出した細胞についてトリプシン-EDTA処理を行い、各細胞を個々の状態に分離した後、トリパンブルー染色を行うことによって、生細胞数を計測したところ、表3記載No.18の培養開始時には8.2×10個であった細胞数が、培養後は5.3×10個に増加したことが確認された。この細胞培養後の値を100%として、以下の結果を表3に記載した。本発明は、比較に対して培養効率がよいことが確認できた。 One week after seeding, the cell culture array was allowed to stand in a 20 ° C. constant temperature bath for 5 minutes and then the surface was observed with an optical microscope. As a result, the cells were patterned on the cell culture array and adhered. In addition, it was confirmed that the cells had proliferated sufficiently. The extracted cells were treated with trypsin-EDTA, and each cell was separated into individual states, followed by trypan blue staining to measure the number of viable cells. It was confirmed that the number of cells, which was 8.2 × 10 2 at the start of 18 cultures, increased to 5.3 × 10 3 after the culture. The following results are shown in Table 3 with the value after the cell culture as 100%. In the present invention, it was confirmed that the culture efficiency was good for comparison.
 (1.8)ブリード耐性
 上記細胞を目視観察し、下記の基準に従って細胞のブリード耐性の評価を行った。
◎:細線とベタの境界線がはっきりしている
○:わずかに境界がにじんでいる箇所があるが、実用上問題のない品質である
△:境界部ににじみが認められるが、実用上許容限界内の品質である
×:境界部で明らかなにじみの発生が認められ、線幅が1.5倍ほどとなり、実用上問題となる品質である
××:細線とベタ部の境界が不明瞭な品質であり、ブリード耐性が極めて乏しい
 (1.9)細胞の積層
 上記(1.7)で作成した細胞で培養14日後、培養した細胞の上に直径3.5cmのポリビニリデンジフルオライド(PVDF)膜をかぶせ、培地を静かに吸引し、細胞培養支持体材料ごと20℃で30分インキュベートし冷却することで、いずれの細胞培養支持体材料上の細胞もそのかぶせた膜と共に剥離させられた。かぶせた膜と細胞を同様に作製した細胞培養支持体材料上で正常に増殖した同一の培養細胞の上にかぶせて、5%炭酸ガス充填37℃恒温器内で2枚を接着させた。2枚の細胞シートが接着した後、PVDF膜を剥離した。同様の操作を繰り返すことで20層の細胞シートを作成した。
(1.8) Bleed resistance The cells were visually observed, and the bleed resistance of the cells was evaluated according to the following criteria.
◎: The boundary between the fine line and the solid is clear. ○: There is a part where the boundary is slightly blurred, but the quality has no problem in practical use. X: The occurrence of clear bleeding at the boundary is recognized, the line width is about 1.5 times, and this is a quality that is a problem in practice. XX: The boundary between the thin line and the solid part is unclear (1.9) Lamination of cells 14 days after culturing with the cells prepared in (1.7) above, the polyvinylidene difluoride (PVDF with a diameter of 3.5 cm) was cultured on the cultured cells. ) The membrane was covered, the medium was gently aspirated, and the cell culture support material was incubated at 20 ° C. for 30 minutes and cooled, so that the cells on any cell culture support material were detached together with the covered membrane. . The covered membrane and cells were placed on the same cultured cells that were normally grown on the same cell culture support material, and the two were adhered in a 37 ° C. incubator filled with 5% carbon dioxide gas. After the two cell sheets adhered, the PVDF membrane was peeled off. By repeating the same operation, a 20-layer cell sheet was prepared.
 かぶせた膜はいずれの細胞シートからも容易に剥がすことができた。20枚の積層された細胞シートは、細胞、細胞間のデスモソーム構造、および細胞、基材間の基底膜様蛋白質が保持されていた。 The covered membrane could be easily peeled from any cell sheet. The 20 stacked cell sheets retained the cells, the desmosome structure between the cells, and the basement membrane-like protein between the cells and the substrate.
 (1.10)細胞の剥離性の評価
 上記(1.9)で細胞培養支持体上から細胞剥離した際の細胞の状態を目視で観察し、下記の基準に従って、評価を行った。表3記載の結果は、1枚目から20層目重ね合わせるまでの平均をとった。
◎:問題なく完全に剥離できた
○:わずかに細胞が支持体に残るが、問題ないレベル
△:一部の細胞が支持体に残り、シートに穴が確認されるレベル
×:支持体から剥がれるが、シートがぼろぼろになる
××:支持体から細胞が剥がれない
 (1.11)積層された機能性の評価
 肝臓細胞で重要な機能はアンモニア代謝である。よってアンモニア代謝速度の評価を行った。ブタ生体内より採取した細胞を100%として比率で計算し表3に結果を記載した。本発明の方法は、比較例に対して、生体から直接採取したものと同等かそれ以上であった。
(1.10) Evaluation of cell detachability The cell state when the cells were detached from the cell culture support in (1.9) above was visually observed and evaluated according to the following criteria. The results shown in Table 3 were averaged from the first sheet to the 20th layer.
◎: Completely peeled without problems ○: Slightly cells remained on the support, but no problem level △: Level at which some cells remained on the support and holes were confirmed in the sheet ×: Peeled from the support However, the sheet is crumpled. XX: Cells are not peeled off from the support. (1.11) Evaluation of stacked functionality An important function in liver cells is ammonia metabolism. Therefore, the rate of ammonia metabolism was evaluated. The ratio of cells collected from the swine in vivo was calculated as 100%, and the results are shown in Table 3. The method of the present invention was equivalent to or better than that obtained directly from the living body with respect to the comparative example.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の細胞培養支持体を用いることによりブリード耐性が良好であり、細胞の支持体からの剥離が格段に向上し、かつ積層された細胞の組織機能化が発現できた。今後の複雑な組織の細胞培養方法の進展に大きく貢献できる技術であることがわかった。 Using the cell culture support of the present invention, the bleed resistance was good, the detachment of the cell from the support was remarkably improved, and the tissue functionalization of the stacked cells could be expressed. It was found that this technology can greatly contribute to the progress of cell culture methods for complex tissues in the future.

Claims (7)

  1. 基材上に2種類以上の温度応答性高分子により異なる領域に表面被覆を行った細胞培養支持体であって、該温度応答性高分子の少なくとも一つがアクリル系樹脂を含有することを特徴とする細胞培養支持体。 A cell culture support having a surface coated with two or more kinds of temperature-responsive polymers on a substrate, wherein at least one of the temperature-responsive polymers contains an acrylic resin. A cell culture support.
  2. 前記アクリル系樹脂を含有する温度応答性高分子の少なくとも一つが下記一般式(1)で表されることを特徴とする請求項1に記載の細胞培養支持体。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)において、R、Rは水素原子、炭素原子数1~8のアルキル基、アリール基を表す。R、R、Rは水素原子またはメチル基を表し、Rは水素原子、炭素原子数1~30のアルキル基、シクロアルキル基、または、-(CHCHO)-(CHCH(CH)O)-Rで表されるポリオキシアルキレン基を表す。ここにおいてnは1~300、mは0~60の整数を表す。また、Rは、水素原子、炭素原子数1~30のアルキル基を表す。Rは炭素原子数3以上22以下のアルキル基を表す。また、x、y、zは各成分の質量%を表し、0≦x≦80、0≦y≦80、0≦z≦40、ここでx+y+z=100である。)
    2. The cell culture support according to claim 1, wherein at least one of the temperature-responsive polymers containing the acrylic resin is represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), R 1 and R 2 represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and an aryl group. R 5 , R 6 , and R 7 represent a hydrogen atom or a methyl group; 3 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, or a poly (oxyethylene) group represented by — (CH 2 CH 2 O) n — (CH 2 CH (CH 3 ) O) m —R 0. Represents an oxyalkylene group, wherein n represents 1 to 300, m represents an integer of 0 to 60, R 0 represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, and R 4 represents a carbon atom. Represents an alkyl group having a number of 3 or more and 22 or less, and x, y, and z represent mass% of each component, 0 ≦ x ≦ 80, 0 ≦ y ≦ 80, 0 ≦ z ≦ 40, where x + y + z = 100 .)
  3. 前記温度応答性高分子の少なくとも一つがN-イソプロピルアクリルアミドのホモポリマーもしくは他のモノマー成分との共重合ポリマーであることを特徴とする請求項1または2に記載の細胞培養支持体。 3. The cell culture support according to claim 1, wherein at least one of the temperature-responsive polymers is a homopolymer of N-isopropylacrylamide or a copolymer with other monomer components.
  4. 前記温度応答性高分子がインクジェット法によって基材上にパターニングされていることを特徴とする請求項1~3のいずれか1項に記載の細胞培養支持体。 The cell culture support according to any one of claims 1 to 3, wherein the temperature-responsive polymer is patterned on a substrate by an inkjet method.
  5. 請求項1~4のいずれか1項に記載の細胞培養支持体上で2種類以上の異なる細胞を培養することを特徴とする細胞培養方法。 A cell culture method comprising culturing two or more different types of cells on the cell culture support according to any one of claims 1 to 4.
  6. 請求項5に記載の細胞培養方法であって、2種類以上の異なる細胞を温度応答性高分子の臨界温度以下にして剥離することを特徴とする細胞培養方法。 6. The cell culture method according to claim 5, wherein two or more kinds of different cells are exfoliated at a temperature lower than the critical temperature of the temperature-responsive polymer.
  7. 請求項6に記載の細胞培養方法で培養した細胞を重ね合わせることを特徴とする細胞培養方法。 A cell culture method comprising superposing cells cultured by the cell culture method according to claim 6.
PCT/JP2009/062873 2008-07-25 2009-07-16 Cell culture support and cell culture method WO2010010837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010521684A JPWO2010010837A1 (en) 2008-07-25 2009-07-16 Cell culture support and cell culture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008192041 2008-07-25
JP2008-192041 2008-07-25

Publications (1)

Publication Number Publication Date
WO2010010837A1 true WO2010010837A1 (en) 2010-01-28

Family

ID=41570302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062873 WO2010010837A1 (en) 2008-07-25 2009-07-16 Cell culture support and cell culture method

Country Status (2)

Country Link
JP (1) JPWO2010010837A1 (en)
WO (1) WO2010010837A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029882A1 (en) * 2010-08-31 2012-03-08 学校法人東京女子医科大学 Temperature-responsive substrate for cell culture and method for producing same
JP2013055898A (en) * 2011-09-07 2013-03-28 Dainippon Printing Co Ltd Dispensing liquid
EP2574664A1 (en) 2011-09-30 2013-04-03 Centrum Materialów Polimerowych i Weglowych PAN Method for preparation a thermosensitive coating substrate, the substrate with a thermosensitive coating and its application
JP2014097031A (en) * 2012-11-15 2014-05-29 Dainippon Printing Co Ltd Production method of cell culture substrate having temperature responsivity
JP2016194041A (en) * 2015-03-31 2016-11-17 東洋インキScホールディングス株式会社 Inkjet ink, printed matter, and inkjet recording method
JP2018052967A (en) * 2017-11-28 2018-04-05 株式会社ファンケル Release rate regulator of inclusion from lipid double membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266980A (en) * 1989-03-16 1991-11-27 W R Grace & Co Base material for cell culture and production of cell aggregate using same
US6103528A (en) * 1998-04-17 2000-08-15 Battelle Memorial Institute Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices
WO2001068799A1 (en) * 2000-03-16 2001-09-20 Cellseed Inc. Cell cultivation-support material, method of cocultivation of cells and cocultivated cell sheet obtained therefrom
JP2008035834A (en) * 2006-08-10 2008-02-21 Konica Minolta Medical & Graphic Inc Method for culturing cell, cell-culturing allay device, cell-cultured product and biomaterial for regenerating medical use
WO2008045904A2 (en) * 2006-10-10 2008-04-17 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Thermoresponsive, biodegradable, elastomeric material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475847B2 (en) * 2001-07-26 2010-06-09 株式会社セルシード Anterior segment-related cell sheet, three-dimensional structure, and production method thereof
WO2006093153A1 (en) * 2005-02-28 2006-09-08 Cellseed Inc. Cultured cell sheet, process for producing the same and method for restoring tissue using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266980A (en) * 1989-03-16 1991-11-27 W R Grace & Co Base material for cell culture and production of cell aggregate using same
US6103528A (en) * 1998-04-17 2000-08-15 Battelle Memorial Institute Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices
WO2001068799A1 (en) * 2000-03-16 2001-09-20 Cellseed Inc. Cell cultivation-support material, method of cocultivation of cells and cocultivated cell sheet obtained therefrom
JP2008035834A (en) * 2006-08-10 2008-02-21 Konica Minolta Medical & Graphic Inc Method for culturing cell, cell-culturing allay device, cell-cultured product and biomaterial for regenerating medical use
WO2008045904A2 (en) * 2006-10-10 2008-04-17 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Thermoresponsive, biodegradable, elastomeric material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AN, Y.H. ET AL.: "Regaining chondrocyte phenotype in thermosensitive gel culture", ANAT. REC., vol. 263, 2001, pages 336 - 341 *
AU, A. ET AL.: "Thermally reversible polymer gel for chondrocyte culture", J. BIOMED. MATER. RES. PT A, vol. 67A, no. 4, 2003, pages 1310 - 1319 *
VERNON, B.: "Thermally reversible polymer gels for biohybrid artifical pancreas", MACROMOL. SYMP., vol. 109, 1996, pages 155 - 167 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029882A1 (en) * 2010-08-31 2012-03-08 学校法人東京女子医科大学 Temperature-responsive substrate for cell culture and method for producing same
CN103080295A (en) * 2010-08-31 2013-05-01 学校法人东京女子医科大学 Temperature-responsive substrate for cell culture and method for producing same
CN103080295B (en) * 2010-08-31 2014-08-27 学校法人东京女子医科大学 Temperature-responsive substrate for cell culture and method for producing same
JP5846584B2 (en) * 2010-08-31 2016-01-20 学校法人東京女子医科大学 Temperature-responsive substrate for cell culture and method for producing the same
US9279102B2 (en) 2010-08-31 2016-03-08 Tokyo Women's Medical University Temperature-responsive substrate for cell culture and production method thereof
JP2013055898A (en) * 2011-09-07 2013-03-28 Dainippon Printing Co Ltd Dispensing liquid
EP2574664A1 (en) 2011-09-30 2013-04-03 Centrum Materialów Polimerowych i Weglowych PAN Method for preparation a thermosensitive coating substrate, the substrate with a thermosensitive coating and its application
JP2014097031A (en) * 2012-11-15 2014-05-29 Dainippon Printing Co Ltd Production method of cell culture substrate having temperature responsivity
JP2016194041A (en) * 2015-03-31 2016-11-17 東洋インキScホールディングス株式会社 Inkjet ink, printed matter, and inkjet recording method
JP2018052967A (en) * 2017-11-28 2018-04-05 株式会社ファンケル Release rate regulator of inclusion from lipid double membrane

Also Published As

Publication number Publication date
JPWO2010010837A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5080848B2 (en) Cell culture support and production method thereof
US8557583B2 (en) Cell culture support and manufacture thereof
WO2010010837A1 (en) Cell culture support and cell culture method
EP2330182A1 (en) Spheroid composite, spheroid-containing hydrogel and processes for production of same
JP6497677B2 (en) Block copolymer, surface treatment agent, membrane thereof, and cell culture substrate coated with the same
KR101960203B1 (en) Medical equipment, cell culture method, fluorine-containing cyclic olefin polymer, fluorine-containing cyclic olefin polymer composition, and cultured cells
CA2012309A1 (en) Cell culture substrate, cell sheet, cell cluster and preparations thereof
CN107429210B (en) Medical device, fluorine-containing cyclic olefin polymer composition, and cell culture method
WO2020080364A1 (en) Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids
JP2010057439A (en) Cell culture support, method for producing the same, and cell culture method
WO2017213226A1 (en) Polymer compound and method for manipulating cell using same
JP2010098973A (en) Cell-culturing and supporting body and cell-culturing method
JP2010088316A (en) Cell culture substrate and cell culture method
Schmaljohann Thermo-responsive polymers and hydrogels in tissue engineering
JP5388092B2 (en) Spheroid-containing hydrogel, method for producing the same, and spheroid-containing hydrogel laminate
JP4430123B1 (en) Cell culture substrate and method for producing the same
WO2019035436A1 (en) Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell
JPH03266980A (en) Base material for cell culture and production of cell aggregate using same
JPWO2009072590A1 (en) Branched polyalkylene glycol derivative, photosensitive composition, crosslinked product and substrate
JP2021151210A (en) Microcarrier, and culture method of cell using the same
JP2019033742A (en) Culture base for pluripotent stem cells and method for producing pluripotent stem cells
JP6123247B2 (en) Method for producing cell culture substrate having temperature responsiveness
WO2024135798A1 (en) Cell culture substrate, production method for cell culture substrate, and production method for spheroids
JP6314458B2 (en) Temperature-responsive cell culture substrate and method for producing the same
JP7183612B2 (en) Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521684

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800351

Country of ref document: EP

Kind code of ref document: A1