WO2010010253A1 - Platen and method for measuring a cutting force - Google Patents

Platen and method for measuring a cutting force Download PDF

Info

Publication number
WO2010010253A1
WO2010010253A1 PCT/FR2009/000907 FR2009000907W WO2010010253A1 WO 2010010253 A1 WO2010010253 A1 WO 2010010253A1 FR 2009000907 W FR2009000907 W FR 2009000907W WO 2010010253 A1 WO2010010253 A1 WO 2010010253A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
force
platen
sensors
upper plate
Prior art date
Application number
PCT/FR2009/000907
Other languages
French (fr)
Inventor
Arnaud Larue
François LAPUJOULADE
Original Assignee
Arts.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arts. filed Critical Arts.
Publication of WO2010010253A1 publication Critical patent/WO2010010253A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0076Force sensors associated with manufacturing machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0966Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring a force on parts of the machine other than a motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/167Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using piezoelectric means

Definitions

  • the present invention relates to a platen for measuring cutting forces for a machine tool and the method it allows to implement.
  • measurement sensors differing on the one hand by the number of components of the effort they are able to measure (at most six components: resultant and moment of effort projected in the three directions of space), and secondly, by their architecture (stationary or rotary dynamometers).
  • the measuring sensors of the rotary dynamometers are directly connected to the rotating tool, while the stationary dynamometers are connected to the cutting forces by the fact that they belong to a fixed element forming the support of the tool or the workpiece.
  • Three-component dynamometers comprise, in known manner, between two parallelepipedic plates, four three-component sensors, each sensor comprising two shear quartz and one compression quartz. The two plates are clamped one on the other with prestressing.
  • These known sensors are analyzed as elastic systems with a rigid plate mounted on springs that are piezoelectric sensors: they have a very pronounced resonance frequency and a high sensitivity to the movements of their support which make them poorly suited to measurement of cutting forces during transient operating conditions of the machine.
  • a dynamometer subjected to variable forces is the seat of movements that induce inertial forces that are superimposed on the forces to be measured. This results in a deterioration of the measured signal which can go as far as complete denaturation if the inertial forces become of the same order of magnitude or are greater than the forces to be measured. This effect is particularly important when the excitation frequency is close to the own frequencies of the dynamometer.
  • the resonant frequencies of the known sensors extend over a range generally between 0.5 kHz and 5 kHs. These frequencies are different from one measurement axis to another (the different directions of the components of the measured effort).
  • These sensors are suitable, for example, for a grooving operation in which the cutting force signals are mainly constituted by the harmonic corresponding to the frequency of passage of the teeth of the tool because in this case, the cutting excitation usually does not exceed the self-frequency values of the sensor.
  • the cutting force signals are mainly constituted by the harmonic corresponding to the frequency of passage of the teeth of the tool because in this case, the cutting excitation usually does not exceed the self-frequency values of the sensor.
  • a four-tooth tool that grooves a workpiece at 15,000 rpm gives an excitation frequency of 1 kHz, which is less than the value of the natural frequency of some dynamometers. Measurement cutting forces are then possible. However, the error increases when the rotational speed rises.
  • the present invention firstly relates to an inertial compensation force measuring plate comprising a base plate, an upper plate and force sensors clamped between each of the plates, in which the upper plate intended to cooperate rigidly with a workpiece or a machining tool is indeformable so that its natural frequencies are located at a level greater than 10 kHz, in that the number of force sensors is at least three and in that it comprises a set of at least six unidirectional accelerometers .
  • the upper plate is of triangular shape, the number of sensors being equal to three and three accelerometers are oriented in the direction of the thickness of the plate while the other three are housed in the plane of the plate, with two of them perpendicular to one of its sides and the last parallel to it.
  • a very simple calibration procedure makes it possible to determine the mass and the position of the center of inertia of the assembly formed by the upper plate and the object attached thereto.
  • the second object of the invention is a method for measuring cutting forces, especially in the transient period or for high cutting speeds by using the plate above, characterized in that it comprises a stage of identification of the plate. before it is put into operation, in order to know the mass (m) of the assembly and the position of its center of inertia and to process by calculation the value (Fmes) of the measurement signal of the plate to extract the value cutting force (Fapp).
  • This identification step is remarkable in that it comprises the application of a shock on the top plate of the plate by means of a non-instrumented hammer.
  • FIG. 1 is a diagram illustrating the theoretical foundation of the stage according to the invention
  • FIGS. 2 and 3 show, by two orthogonal schematic views, a measuring plate according to FIG.
  • the plate 1 comprises two parallel plates 2 and 3 between which a piezoelectric sensor 4 is clamped under prestressing.
  • the sensor is assimilated to a spring to put in equations the behaviors of the plate in dynamic operation.
  • the upper plate 2 of the plate is subjected to the action of the external force Fapp that one seeks to measure and the action of the sensor (spring) 1.
  • the lower plate 3 is secured to a support 5.
  • x G , y G , z G are the accelerations of the center of gravity of the upper part.
  • the fourth Tri-directional sensors provide the twelve measurement signals:
  • the acceleration values x G , y G , z G can be obtained from acceleration measurements at six points of the solid provided that the position of the center of gravity is known. In the same manner as above, it is possible to obtain the value of the mass and the three position parameters of the center of gravity by identification in the case of a zero applied force.
  • the plate according to the invention constitutes the particular apparatus which makes it possible to obtain in a simple manner, with widely acceptable approximations, the variables necessary for solving the above equations.
  • the architecture of the proposed apparatus is such that at least the upper plate 7 of the plate (see Figure 3), that is to say that which will be coupled to the part or the tool, sits cutting force to measure, is triangular.
  • the triangular shape of the upper plate has been determined because it is the most compatible with the presence of three force sensors and allows to get closer to the non - deformability condition which is the basis of the system. equations (4). In addition, with this device, a maximum deformability of the upper plate of the plate is obtained. The modes of bending, torsion of the upper plate are then reported beyond the target bandwidth of 1OkHz, which is not possible with a rectangular plate.
  • the plate has three accelerometers 10, 11, 12, oriented in the direction Z perpendicular to the platen plates, two accelerometers 13 and 14 oriented in the direction X parallel to the plane of the plates and perpendicular to one of the sides of the plate.
  • Az1, Az2, Az3, Ax4, Ax5, Ay6 denote the accelerations measured by the accelerometers 10, 11, 12, 13, 14 and 15, respectively.
  • the position x G , y G , z G of the center of gravity will be assumed to be known in a reference frame linked to the upper plate.
  • equation (5) By developing the vector product and the scalar product, equation (5) becomes:
  • Equation (6) is a linear system of 6 equations with 6 unknowns. It makes it possible to obtain the 6 components of the acceleration at the center of inertia if the system is not singular, that is to say if the positions and orientations of the accelerometers are well chosen. With the configuration described in FIG. 3, the system becomes simpler and becomes the system (7):
  • the previous system of equations has the distinction of being split into 3 subsystems.
  • the first, consisting of the first 3 lines, makes it possible to obtain z G , ⁇ X , ⁇ y .
  • the next two lines give x G , ⁇ z and the last line gives y G.
  • This separation is very useful during the calibration of the dynamometer because it allows to operate direction by direction. This is achieved thanks to the particular arrangement of the accelerometers.
  • the coordinates x G , y G , z G of the center of gravity are not known. They must be determined for each piece mounted. It is the same with the mass m.
  • the knowledge of these variables therefore passes through a procedure called the identification procedure of the characteristics of the sensor. This procedure is repeated whenever, due to the removal of material resulting from machining for example, the mass and the center of gravity of the plate / workpiece assembly has varied significantly.
  • This identification procedure is of the type corresponding to equation (2) above. A disturbance is exerted on the system and the measurements are carried out after its cessation when the force applied is zero. This will advantageously be a simple shock on the platen, given for example by a hammer un-instrumented.
  • the identification is normally made between two uses of the dynamometer. But in the case of intermittent machining, it is possible to proceed on periods where the cutting force is zero, to follow the changes in the mass and the position of the center of gravity.
  • the measuring plate according to the invention includes: the measurement of cutting forces for the dynamic identification of cutting laws in milling to great speed,
  • the invention is not limited to the embodiment described above.
  • the equilateral triangle shape of the top plate can suffer transformations to the isosceles form. It is also possible to increase the number of force sensors and change the shape of the upper plate while respecting the requirement of rigidity: it is it in fact that simplifies calculations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The invention relates to a platen for measuring force with inertial compensation and comprising a base plate (4), an upper plate (5) and piezoelectric force sensors bridged together by each of the plates (4, 5), characterised in that the lower plate (5), intended for rigid interaction with a part to be machined of a machining tool, is triangular and in that the number of sensors is at least three, and in that it further comprises a set of six single-axis accelerometers (10-15), three of which (10, 11, 12) are oriented in the direction of the platen body while the three others (13, 14, 15) are located in the plane of the platen, two of the latter accelerometers (13, 14) being perpendicular to one of the sides thereof while the last one (15) is parallel thereto. The measuring method that uses the platen comprises identifying the sensor by a least square method in order to define the mass (m) of the assembly and the position of the centre of gravity thereof, and processing by calculation the measuring signal value of the platen in order to derive the value of the cutting force by subtracting, from the measure value, the calculated value of the mass-type inertia forces multiplied by the acceleration.

Description

Platine et procédé de mesure d'un effort de coupe. Platinum and method for measuring a cutting force.
La présente invention concerne une platine de mesure d'efforts de coupe pour machine-outil d'usinage et le procédé qu'elle permet de mettre en oeuvre.The present invention relates to a platen for measuring cutting forces for a machine tool and the method it allows to implement.
ARRIERE PLAN DE L'INVENTIONBACKGROUND OF THE INVENTION
La mesure d'efforts de coupe est importante dans le domaine de l'usinage. Il est nécessaire de disposer d'une technologie permettant cette mesure. En effet, dans une machine d'usinage, des forces existent au cours de l'opération, entre la pièce en cours d'usinage et l'outil. Il existe bien entendu une corrélation entre la déformation et la force qui l'engendre. En outre, la mesure des forces en cours de processus est d'une grande importance pour les opérations d'usinage préprogrammées. Une divergence des valeurs mesurées par rapport à des valeurs de consigne permet d'apporter les corrections nécessaires .The measurement of cutting forces is important in the field of machining. It is necessary to have a technology that allows this measurement. Indeed, in a machining machine, forces exist during the operation between the part being machined and the tool. There is of course a correlation between the deformation and the force that generates it. In addition, the measurement of forces during the process is of great importance for pre-programmed machining operations. A divergence of the measured values with respect to the setpoints makes it possible to make the necessary corrections.
Par ailleurs, l'observation quantitative du phéno- mène de coupe, permet de le comprendre et de le modéliser pour fournir une assistance dans les choix concernant l'optimisation du processus de coupe.In addition, the quantitative observation of the cutting phenomenon makes it possible to understand and model it to provide assistance in the choices concerning the optimization of the cutting process.
On connaît plusieurs capteurs de mesure, se diffé- rentiant d'une part, par le nombre de composantes de l'effort qu'ils sont capables de mesurer (au maximum six composantes : résultante et moment de l'effort projetés dans les trois directions de l'espace), et d'autre part, par leur architecture (dynamomètres stationnaires ou rotatifs) . Les capteurs de mesure des dynamomètres rotatifs sont directement reliés à l'outil tournant, tandis que les dynamomètres stationnaires sont reliés aux efforts de coupe par le fait qu'ils appartiennent à un élément fixe formant le support de l'outil ou de la pièce.Several measurement sensors are known, differing on the one hand by the number of components of the effort they are able to measure (at most six components: resultant and moment of effort projected in the three directions of space), and secondly, by their architecture (stationary or rotary dynamometers). The measuring sensors of the rotary dynamometers are directly connected to the rotating tool, while the stationary dynamometers are connected to the cutting forces by the fact that they belong to a fixed element forming the support of the tool or the workpiece.
Des dynamomètres à trois composantes comporte, de manière connue, entre deux plaques parallélépipédiques, quatre capteurs à trois composantes, chaque capteur comportant deux quartz de cisaillement et un quartz de compression. Les deux plaques sont bridées l'une sur l'autre avec précontrainte . Ces capteurs connus s'analysent comme des systèmes élastiques avec une plaque rigide montée sur des ressorts que sont les capteurs piézo-électriques : ils présentent une fréquence de résonance très marquée et une grande sensibilité aux mouvements de leur support qui les rendent peu aptes à la mesure des efforts de coupe lors des régimes transitoires de fonctionnement de la machine.Three-component dynamometers comprise, in known manner, between two parallelepipedic plates, four three-component sensors, each sensor comprising two shear quartz and one compression quartz. The two plates are clamped one on the other with prestressing. These known sensors are analyzed as elastic systems with a rigid plate mounted on springs that are piezoelectric sensors: they have a very pronounced resonance frequency and a high sensitivity to the movements of their support which make them poorly suited to measurement of cutting forces during transient operating conditions of the machine.
En effet, un dynamomètre soumis à des forces variables est le siège de mouvements qui induisent des forces d'inertie qui se superposent aux forces à mesurer. Il en résulte une détérioration du signal mesuré qui peut aller jusqu'à une dénaturation complète si les forces d'inertie deviennent du même ordre de grandeur ou sont supérieures aux forces à mesurer. Cet effet est particulièrement important lorsque la fréquence d'excitation est voisine des fré- quences propres du dynamomètre.Indeed, a dynamometer subjected to variable forces is the seat of movements that induce inertial forces that are superimposed on the forces to be measured. This results in a deterioration of the measured signal which can go as far as complete denaturation if the inertial forces become of the same order of magnitude or are greater than the forces to be measured. This effect is particularly important when the excitation frequency is close to the own frequencies of the dynamometer.
Les fréquences de résonance des capteurs connus s'étendent sur une plage allant généralement entre 0.5kHz et 5kHs . Ces fréquences sont différentes d'un axe de mesure à l'autre (les différentes directions des composantes de l'effort mesuré) .The resonant frequencies of the known sensors extend over a range generally between 0.5 kHz and 5 kHs. These frequencies are different from one measurement axis to another (the different directions of the components of the measured effort).
Ces capteurs conviennent, par exemple, pour une opération de rainurage dans laquelle les signaux d'efforts de coupe sont principalement constitués de l'harmonique correspondant à la fréquence de passage des dents de l'outil car dans ce cas, l'excitation de coupe ne dépasse généralement pas les valeurs de fréquence propre du capteur. Ainsi par exemple, un outil à quatre dents qui rainure une pièce en tournant à 15 000 tr/min donne une fréquence d'excitation d'ikHz, qui est inférieur à la valeur de ka fréquence propre de certains dynamomètres. La mesure des efforts de coupe est alors possible. Cependant l'erreur croît lorsque la vitesse de rotation s'élève.These sensors are suitable, for example, for a grooving operation in which the cutting force signals are mainly constituted by the harmonic corresponding to the frequency of passage of the teeth of the tool because in this case, the cutting excitation usually does not exceed the self-frequency values of the sensor. For example, a four-tooth tool that grooves a workpiece at 15,000 rpm gives an excitation frequency of 1 kHz, which is less than the value of the natural frequency of some dynamometers. Measurement cutting forces are then possible. However, the error increases when the rotational speed rises.
En revanche, dans une opération d'usinage à grande vitesse ou une opération d'usinage du genre fraisage de profil sur une faible épaisseur, les efforts de coupe sont beaucoup plus discontinus. Leur spectre fréquentiel comporte alors des harmoniques très élevés susceptibles de provoquer la mise en résonance de la plaque supérieure des dynamomètres. Dans ces conditions, les mesures recueillies sont très perturbées.On the other hand, in a high-speed machining operation or a machining operation of the type milling profile on a small thickness, the cutting forces are much more discontinuous. Their frequency spectrum then comprises very high harmonics likely to cause resonance of the top plate of the dynamometers. Under these conditions, the measurements collected are very disturbed.
Il existe donc un besoin non satisfait d'une platine de mesure insensible aux vibrations des capteurs qui sont importantes notamment dans les régimes transitoires des opérations de coupe qui caractérise les opérations de coupe à grande vitesse, fortement discontinue, à faibles niveaux d'effort, ou les usinages de parois minces ou de profils polynomiaux.There is therefore an unmet need for a measuring plate that is insensitive to the vibrations of the sensors, which are important in particular in the transient regimes of cutting operations which characterizes high-speed, highly discontinuous cutting operations at low levels of effort. or the machining of thin walls or polynomial profiles.
En outre, la demande d'une mesure d'efforts de coupe fiable, quelles que soient les conditions de le coupe, est grande pour de multiples raisons. En effet, elle est de plus en plus utile pour ce qui concerne la préparation de processus de coupe (phase de réception machine, mise en place de couple outil/matière, ...), lorsqu'on fait de la recherche et du développement (mise au point, ana- lyse, optimisation de fonctionnement, détermination des lois gouvernant les opérations de coupe en dynamique, simulation... et lorsqu'on surveille en temps réel les processus de coupe .In addition, the demand for a reliable cutting force measurement, regardless of the cutting conditions, is great for many reasons. Indeed, it is more and more useful as regards the preparation of cutting processes (machine reception phase, implementation of tool / material pair, etc.), when doing research and development (development, analysis, optimization of operation, determination of laws governing dynamic cutting operations, simulation ... and when real-time monitoring of cutting processes.
OBJET DE L'INVENTION La présente invention a pour premier objet une platine de mesure d'efforts à compensation inertielle comportant une plaque de base, une plaque supérieure et des capteurs de force bridés entre chacune des plaques, dans laquelle la plaque supérieure destinée à coopérer de manière rigide avec une pièce à usiner ou un outil d'usinage est indéformable de manière que ses fréquences propres soient situées à un niveau supérieur à 10 kHz, en ce que le nombre des capteurs de force est au moins égal à trois et en ce qu'elle comprend un jeu d'au moins six accéléromêtres uni- axiaux.OBJECT OF THE INVENTION The present invention firstly relates to an inertial compensation force measuring plate comprising a base plate, an upper plate and force sensors clamped between each of the plates, in which the upper plate intended to cooperate rigidly with a workpiece or a machining tool is indeformable so that its natural frequencies are located at a level greater than 10 kHz, in that the number of force sensors is at least three and in that it comprises a set of at least six unidirectional accelerometers .
Par le moyen des accéléromêtres, il est possible de déterminer les six composantes de l'accélération de la plaque supérieure qui sont exploitées par le calcul pour soustraire des résultats de la mesure effectuée par les cap- teurs de forces, la composante inertielle qui vient s'y surimposer .By means of the accelerometers, it is possible to determine the six components of the acceleration of the upper plate which are exploited by the calculation to subtract the results of the measurement carried out by the force sensors, the inertial component which comes from to superimpose.
De manière préférée, la plaque supérieure est de forme triangulaire, le nombre de capteurs étant égal à trois et trois accéléromêtres sont orientés dans le sens de l'épaisseur de la platine tandis que les trois autres sont logés dans le plan de la platine, avec deux d'entre eux perpendiculaires à l'un de ses cotés et le dernier parallèle à ce dernier.Preferably, the upper plate is of triangular shape, the number of sensors being equal to three and three accelerometers are oriented in the direction of the thickness of the plate while the other three are housed in the plane of the plate, with two of them perpendicular to one of its sides and the last parallel to it.
Une procédure de calibration très simple permet de déterminer la masse et la position du centre d'inertie de l'ensemble formé par la plaque supérieure et l'objet qui y est fixé.A very simple calibration procedure makes it possible to determine the mass and the position of the center of inertia of the assembly formed by the upper plate and the object attached thereto.
L'invention a pour second objet un procédé de mesure d'efforts de coupe notamment en période transitoire ou pour de grandes vitesses de coupe en utilisant la platine ci-dessus, caractérisé en ce qu'il comprend une étape d' identification de la platine avant sa mise en fonctionnement, afin de connaître la masse (m) de l'ensemble et la position de son centre d'inertie et à traiter par le calcul la valeur (Fmes) du signal de mesure de la platine pour en extraire la valeur de l'effort de coupe (Fapp) .The second object of the invention is a method for measuring cutting forces, especially in the transient period or for high cutting speeds by using the plate above, characterized in that it comprises a stage of identification of the plate. before it is put into operation, in order to know the mass (m) of the assembly and the position of its center of inertia and to process by calculation the value (Fmes) of the measurement signal of the plate to extract the value cutting force (Fapp).
Cette étape d'identification est remarquable en ce qu'elle comprend l'application d'un choc sur la plaque supérieure de la platine au moyen d'un marteau non instrumen- té. D'autres caractéristiques et avantages de l'invention ressortiront de la description donnée ci-après d'un exemple de réalisation de l'invention.This identification step is remarkable in that it comprises the application of a shock on the top plate of the plate by means of a non-instrumented hammer. Other features and advantages of the invention will emerge from the description given below of an exemplary embodiment of the invention.
BREVE DESCRIPTION DES DESSINS II sera fait référence aux dessins annexés parmi lesquels :BRIEF DESCRIPTION OF THE DRAWINGS Reference will be made to the accompanying drawings in which:
- la figure 1 est un schéma illustrant le fondement théorique de la platine selon l'invention,FIG. 1 is a diagram illustrating the theoretical foundation of the stage according to the invention,
- la figure 2 et 3 représentent par deux vues sché- matiques orthogonales une platine de mesure conforme àFIGS. 2 and 3 show, by two orthogonal schematic views, a measuring plate according to FIG.
1 ' invention.The invention.
Le principe de base de la compensation est simple. Dans le cas d'une platine, théorique, comme illustrée par la figure 1, à un seul capteur, la platine 1 comporte deux plaques parallèles 2 et 3 entre lesquelles un capteur pié- zo-électrique 4 est bridé sous précontrainte. Le capteur est assimilé à un ressort pour mettre en équations les comportements de la platine en fonctionnement dynamique. La plaque supérieure 2 de la platine est soumise à l'action de la force extérieure Fapp qu'on cherche à mesurer et à l'action du capteur (ressort) 1. La plaque inférieure 3 est solidaire d'un support 5. En faisant l'hypothèse que la valeur mesurée Fmes correspond à la force exercée par la plaque supérieure 2 sur le capteur 1, on peut facilement écrire l'équation d'équilibre de la masse m correspondant à la plaque supérieure 2 :The basic principle of compensation is simple. In the case of a plate, theoretical, as illustrated in Figure 1, a single sensor, the plate 1 comprises two parallel plates 2 and 3 between which a piezoelectric sensor 4 is clamped under prestressing. The sensor is assimilated to a spring to put in equations the behaviors of the plate in dynamic operation. The upper plate 2 of the plate is subjected to the action of the external force Fapp that one seeks to measure and the action of the sensor (spring) 1. The lower plate 3 is secured to a support 5. By making the assumption that the measured value Fmes corresponds to the force exerted by the upper plate 2 on the sensor 1, it is easy to write the equation of equilibrium of the mass m corresponding to the upper plate 2:
m.x = Fmes + Fapp ,^ * mx = Fmes + Fapp, ^ *
La connaissance simultanée de la force mesurée Fmes et de l'accélération ("x) permet de déterminer la force appliquée si on connaît la masse m : Fapp = m.x — Fmes . On remarque que cette relation ne fait pas intervenir la plaque de base et son mouvement éventuel. La compensation iner- tielle donne la force exercée vraie même en présence d'un mouvement du support. Dans le cas particulier où aucune force extérieure n'est appliquée au dynamomètre, les mouvements de la base engendre une force d'inertie m.x qui se traduit par une force mesurée :Fmes = m.x. Le dynamomètre fonctionne alors comme un accéléromètre . La masse m est difficile à connaître à priori. Mais on la détermine par identification dans le cas d'une force appliquée connue. Un cas particulier remarquable est celui où cette force est nulle. Si la force mesurée et l'accélération sont connues à des instants ti (i = 1, . , . , . ,n) , alors la meilleure valeur de m est celle qui minimise la quantité : n ε = ^(m.x,. —FtHeS1)2 The simultaneous knowledge of the measured force Fmes and the acceleration ("x") makes it possible to determine the force applied if the mass m: Fapp = mx - Fmes is known.It is noted that this relation does not involve the baseplate and its eventual movement The inertial compensation gives the force exerted true even in the presence of a movement of the support. external force is applied to the dynamometer, the movements of the base generates a force of inertia mx which results in a measured force: Fmes = mx The dynamometer then functions as an accelerometer. The mass m is difficult to know a priori. But it is determined by identification in the case of a known applied force. A remarkable particular case is that in which this force is null. If the measured force and the acceleration are known at times ti (i = 1,.,.,., N), then the best value of m is the one that minimizes the quantity: n ε = ^ (mx, - FtHeS 1 ) 2
'=1 (2)' = 1 (2)
La même démarche est applicable au cas d'un dynamomètre comportant par exemple, quatre capteurs multidirec- tionnels ou multiaxiaux. Par construction, on doit être proche de la condition d' indéformabilité de la partie supérieure du dynamomètre. Il alors est possible d'écrire son équation d'équilibre dynamique qui est donnée sous sa forme complète par Chung et Spiewak. On se limitera aux équations qui font intervenir des trois composantes orthogonales de l'effort appliqué Fapp = [Fappx , Fappy f Fappz] sans envisager l'utilisation des équations de moment :The same approach is applicable to the case of a dynamometer comprising, for example, four multidirectional or multiaxial sensors. By construction, one must be close to the condition of indeformability of the upper part of the dynamometer. It is then possible to write its dynamic equilibrium equation which is given in its complete form by Chung and Spiewak. We will limit ourselves to the equations which involve the three orthogonal components of the applied force Fapp = [Fapp x , Fapp yf Fapp z ] without considering the use of moment equations:
m.xG = ∑FmesXj + Fαppx m.yG = ∑Fmesyj + Fαppy -/=1 J≈1 G x = Xj + ΣFmes Fαpp my G = x + yj ΣFmes Fαpp y - / = 1 J ≈1
m.zG = ∑FmesZj + Fαppz mz G = ΣForms Zj + Fαpp z
J=IJ = I
(3)(3)
Dans ces équations, xG,yG,zG sont les accélérations du centre de gravité de la partie supérieure. Les quatre capteurs tri -directionnels fournissent les douze signaux de mesure :In these equations, x G , y G , z G are the accelerations of the center of gravity of the upper part. The fourth Tri-directional sensors provide the twelve measurement signals:
FmesXj FmeSyj et FmesZj .FMES Xi FmeSy FMES j and Zi.
Les valeurs d'accélération xG,yG,zG peuvent s'obte- nir à partir de mesures d'accélération en six points du solide à condition de connaître la position du centre de gravité. De la même manière que précédemment, il est possible d'obtenir la valeur de la masse et des trois paramètres de position du centre de gravité par identification dans le cas d'un effort appliqué nul.The acceleration values x G , y G , z G can be obtained from acceleration measurements at six points of the solid provided that the position of the center of gravity is known. In the same manner as above, it is possible to obtain the value of the mass and the three position parameters of the center of gravity by identification in the case of a zero applied force.
La platine selon l'invention constitue l'appareil particulier qui permet d'obtenir de manière simple, avec des approximations largement acceptables, les variables nécessaires à la résolution des équations ci-dessus. L'appareil 6 proposé et représenté aux figures 2 etThe plate according to the invention constitutes the particular apparatus which makes it possible to obtain in a simple manner, with widely acceptable approximations, the variables necessary for solving the above equations. The apparatus 6 proposed and shown in FIGS.
3, possède trois capteurs d'efforts piézo-électriques tri- axiaux ou tri-directionnels, non représentés et bridés de manière classique sous précontrainte entre deux plaques parallèles comme dans la figure 1. Cette disposition assure l' isostatisme du système, ce qui est un avantage car cet isostatisme garantit une certaine indépendance vis-à-vis des déformations dues à des dilatations thermiques ce qui n'est pas vrai pour un système à 4 capteurs.3, has three triaxial or three-directional piezoelectric force sensors, not shown and conventionally clamped under prestressing between two parallel plates as in FIG. 1. This arrangement ensures the isostatism of the system, which is an advantage because this isostatism guarantees a certain independence vis-à-vis the deformations due to thermal expansions which is not true for a system with 4 sensors.
C'est ainsi que, pour cet appareil, le système d'équations (3) devient :Thus, for this apparatus, the system of equations (3) becomes:
m - xG = + Fappy
Figure imgf000009_0001
m - x G = + Fapp y
Figure imgf000009_0001
3 m - zG = -∑FmesZj + Fappz (4) J=ι3m - z G = -Female Zj + Fapp z (4) J = ι
D'une manière classique, les résultantes sur chaque direction sont obtenues par sommation des charges électriques (mise en parallèle) issues des trois capteurs. Cette technique permet de ramener le nombre d'amplificateurs de charges de neuf à trois, ce qui rend le système plus écono- mique .In a classic way, the results on each direction are obtained by summation of the electrical charges (paralleling) from the three sensors. This technique reduces the number of charge amplifiers from nine to three, making the system more economical.
L'architecture de l'appareil proposé est telle qu'au moins la plaque supérieure 7 de la platine (voir figure 3), c'est-à-dire celle qui sera attelée à la pièce ou à l'outil, siège de l'effort de coupe à mesurer, est de forme triangulaire.The architecture of the proposed apparatus is such that at least the upper plate 7 of the plate (see Figure 3), that is to say that which will be coupled to the part or the tool, sits cutting force to measure, is triangular.
La forme triangulaire de la plaque supérieure a été déterminée parce qu'elle est la plus compatible avec la présence de trois capteurs de force et qu'elle permet de se rapprocher le plus de la condition d' indéformabilité qui est la base du système d'équations (4) . En outre, avec ce dispositif, une indéformabilité maximale de la plaque supérieure de la platine est obtenue. Les modes propres de flexion, torsion de la plaque supérieure sont alors reportés au-delà de la bande passante visée de 1OkHz, ce qui n'est pas possible avec une plaque rectangulaire.The triangular shape of the upper plate has been determined because it is the most compatible with the presence of three force sensors and allows to get closer to the non - deformability condition which is the basis of the system. equations (4). In addition, with this device, a maximum deformability of the upper plate of the plate is obtained. The modes of bending, torsion of the upper plate are then reported beyond the target bandwidth of 1OkHz, which is not possible with a rectangular plate.
De plus, la platine possède trois accéléromètres 10, 11, 12, orientés selon la direction Z perpendiculaire aux plaques de la platine, deux accéléromètres 13 et 14 orientés selon la direction X parallèle au plan des plaques et perpendiculaire à l'un des côtés de la plaque supérieure et un accéléromètre 15 orienté selon la direction Y qui appartient au plan de la direction X et qui est perpendiculaire à cette direction. AzI, Az2, Az3 , Ax4 , Ax5 , Ay6 désignent les accélérations mesurées respectivement par les ac- céléromètres 10, 11, 12, 13, 14 et 15.In addition, the plate has three accelerometers 10, 11, 12, oriented in the direction Z perpendicular to the platen plates, two accelerometers 13 and 14 oriented in the direction X parallel to the plane of the plates and perpendicular to one of the sides of the plate. the upper plate and an accelerometer 15 oriented in the direction Y which belongs to the plane of the direction X and which is perpendicular to this direction. Az1, Az2, Az3, Ax4, Ax5, Ay6 denote the accelerations measured by the accelerometers 10, 11, 12, 13, 14 and 15, respectively.
On supposera connue la position xG,yG,zG du centre de gravité dans un repère lié à la plaque supérieure. Les six accéléromètres sont placés aux points [P1,P2,...,P6] , dans les directions ψι,d2,...,d6j . Avec l'approximation des petits déplacements, on obtient les valeurs des accélérations en fonction de celle du centre de gravité G :
Figure imgf000011_0001
avec : ,
Figure imgf000011_0002
= {x , ydj , z } .
The position x G , y G , z G of the center of gravity will be assumed to be known in a reference frame linked to the upper plate. The six accelerometers are placed at the points [P 1 , P 2 , ..., P 6 ], in the directions ψ ι , d 2 , ..., d 6 j. With the approximation of the small displacements, one obtains the values of the accelerations in according to that of the center of gravity G:
Figure imgf000011_0001
with:,
Figure imgf000011_0002
= {x , y dj , z }.
En développant le produit vectoriel et le produit scalaire, l'équation (5) devient :By developing the vector product and the scalar product, equation (5) becomes:
α, = (xG + θy.zGP/z.yGPι )xd + (yGx.zG/? + θt.xGPι )yd + (zG + θx.yGPιy.xGPj )zd ( 6 ) L'équation (6) constitue un système linéaire de 6 équations à 6 inconnues. Il permet d'obtenir les 6 composantes de l'accélération au centre d'inertie si le système n'est pas singulier, c'est-à-dire si les positions et les orientations des accéléromètres sont bien choisies. Avec la configuration décrite par la figure 3, le système se simplifie et devient le système (7) :α, = (x G + θ y .z GP /z .y GPι ) x d + (y Gx .z G / + + θ t .x GPι ) y d + (z G + θ x .y GPιy .x GPj ) z d (6) Equation (6) is a linear system of 6 equations with 6 unknowns. It makes it possible to obtain the 6 components of the acceleration at the center of inertia if the system is not singular, that is to say if the positions and orientations of the accelerometers are well chosen. With the configuration described in FIG. 3, the system becomes simpler and becomes the system (7):
Figure imgf000011_0004
Figure imgf000011_0003
Figure imgf000011_0004
Figure imgf000011_0003
Le système d'équations précédent possède la particularité de pouvoir être scindé en 3 sous-systèmes . Le premier, constitué des 3 premières lignes, permet d'obtenir zGXy . Ensuite, les deux lignes suivantes donnent xG , θz et la dernière ligne donne ensuite yG . Cette séparation est très utile lors de la calibration du dynamomètre car elle permet d'opérer direction par direction. Ceci est obtenu grâce à la disposition particulière des accéléromètres .The previous system of equations has the distinction of being split into 3 subsystems. The first, consisting of the first 3 lines, makes it possible to obtain z G , Θ X , θ y . Then the next two lines give x G , θ z and the last line gives y G. This separation is very useful during the calibration of the dynamometer because it allows to operate direction by direction. This is achieved thanks to the particular arrangement of the accelerometers.
L'exposé théorique ci-dessus démontre qu'en connaissant la masse m de la plaque supérieure et l'accélération de son centre de gravité, on peut parvenir, par le calcul, au résultat recherché, à savoir, la valeur de la force Fapp . Dans les applications d'usinage, une pièce (ou un outil) est fixée sur la plaque supérieure. La justesse des résultats implique que l'ensemble plaque et pièce soit un ensemble indéformable, ce qui impose des limites strictes tant à la forme de la pièce fixée sur la plaque que sur les moyens de fixation.The theoretical exposition above demonstrates that knowing the mass m of the upper plate and the acceleration of its center of gravity, one can achieve, by calculation, the desired result, namely, the value of the force Fapp. In machining applications, a part (or tool) is attached to the top plate. The accuracy of the results implies that the plate and workpiece assembly is an indeformable assembly, which imposes strict limits both to the shape of the workpiece fixed on the plate and on the fastening means.
Les coordonnées xG, yG, zG du centre de gravité ne sont pas connues. Il faut donc les déterminer pour chaque pièce montée. Il en est de même de la masse m.The coordinates x G , y G , z G of the center of gravity are not known. They must be determined for each piece mounted. It is the same with the mass m.
La connaissance de ces variables passe donc par une procédure dite procédure d'identification des caractéristiques du capteur. Cette procédure est répétée chaque fois que, du fait de l'enlèvement de matière résultant de l'usinage par exemple, la masse et le centre de gravité de l'ensemble plaque/pièce a varié de manière significative. Cette procédure d'identification est du type de celle répondant à l'équation (2) ci-dessus. Une perturbation est exercée sur le système et les mesures sont effectuées après sa cessation lorsque l'effort appliqué est nul. Il s'agira de manière avantageuse d'un simple choc sur la platine, donné par exemple par un coup de marteau non instrumenté .The knowledge of these variables therefore passes through a procedure called the identification procedure of the characteristics of the sensor. This procedure is repeated whenever, due to the removal of material resulting from machining for example, the mass and the center of gravity of the plate / workpiece assembly has varied significantly. This identification procedure is of the type corresponding to equation (2) above. A disturbance is exerted on the system and the measurements are carried out after its cessation when the force applied is zero. This will advantageously be a simple shock on the platen, given for example by a hammer un-instrumented.
L'identification est normalement faite entre deux utilisations du dynamomètre. Mais dans le cas d'un usinage intermittent, il est possible d'y procéder sur les périodes où l'effort de coupe est nul, pour suivre les évolutions de la masse et de la position du centre de gravité.The identification is normally made between two uses of the dynamometer. But in the case of intermittent machining, it is possible to proceed on periods where the cutting force is zero, to follow the changes in the mass and the position of the center of gravity.
Parmi les nombreux intérêts de la platine de mesure selon l'invention et son procédé d'utilisation, on citera : la mesure des efforts de coupe en vue de l'identification dynamique de lois de coupe en fraisage à grande vitesse,Among the many advantages of the measuring plate according to the invention and its method of use include: the measurement of cutting forces for the dynamic identification of cutting laws in milling to great speed,
- la possibilité de faire l'étude de cas d'usinage de parois usinées à grande vitesse,- the possibility of studying machining cases of machined walls at high speed,
-l'aide à l'étude et à la mémorisation de modèles d'efforts de coupe, l'appréhension des problèmes de coupe en régime transitoire (phénomènes de talonnage, ...) ,- help with the study and the memorization of models of cutting forces, the apprehension of the problems of cutting under transient regime (phenomena of tailgating, ...),
- enfin, l'appréhension des problèmes d'usinage récurrents (vibrations du système outil/porte/outil/broche monté dans la machine, ...)- finally, the apprehension of recurring machining problems (vibrations of the tool / door / tool / spindle system mounted in the machine, etc.)
L'invention n'est pas limitée au mode de réalisation décrit ci-dessus. En particulier, la forme en triangle équilatéral de la plaque supérieure peut souffrir des transformations vers la forme isocèle. II est possible également d'augmenter le nombre de capteurs de force et de changer la forme de la plaque supérieure tout en respectant l'exigence de rigidité : c'est elle en réalité qui permet de simplifier les calculs.The invention is not limited to the embodiment described above. In particular, the equilateral triangle shape of the top plate can suffer transformations to the isosceles form. It is also possible to increase the number of force sensors and change the shape of the upper plate while respecting the requirement of rigidity: it is it in fact that simplifies calculations.
L'application de l'invention illustrée à la mesure d'efforts de coupe n'est pas limitative. On peut utiliser la platine en effet pour mesurer les efforts et leur variations pour toute pièce fixée sur sa plaque supérieure quelle que soit l'origine de ces efforts. Par ailleurs, la pièce concernée par les revendications peut être une pièce en contact avec un outil ou un outil en contact avec une pièce . The application of the invention illustrated to the measurement of cutting forces is not limiting. Platinum can indeed be used to measure the forces and their variations for any part fixed on its upper plate regardless of the origin of these efforts. Furthermore, the part concerned by the claims may be a part in contact with a tool or a tool in contact with a workpiece.

Claims

REVENDICATIONS
1. Platine de mesure d'efforts auxquels est soumise une pièce indéformable selon trois axes, à compensation inertielle comportant une plaque de base (4) , une plaque supérieure (5) et des capteurs de force bridés entre chacune des plaques (4,5), caractérisée en ce que la plaque supérieure (5) est destinée à coopérer de manière rigide avec la pièce et est indéformable de manière que ses fréquences propres soient situées à un niveau supérieur à 10 kHz, en ce que le nombre des capteurs de force est au moins égal à trois et en ce qu'elle comprend un jeu d'au moins six accéléromètres uni-axiaux (10 à 15) .1. A force measuring plate subjected to a three-axis dimensionally stable piece with inertial compensation comprising a base plate (4), an upper plate (5) and clamped force sensors between each of the plates (4,5). ), characterized in that the upper plate (5) is intended to cooperate rigidly with the workpiece and is dimensionally stable so that its natural frequencies are located at a level greater than 10 kHz, in that the number of force sensors is at least three and in that it comprises a set of at least six uni-axial accelerometers (10 to 15).
2. Platine selon la revendication 1, caractérisée en ce que la plaque supérieure est de forme triangulaire, le nombre de capteurs étant égal à trois et en ce que trois accéléromètres (10,11,12) sont orientés dans le sens de l'épaisseur de la platine tandis que les trois autres (13,14,15) sont logés dans le plan de la platine, avec deux d'entre eux (13,14) perpendiculairement à l'un de ses cotés et le dernier (15) parallèlement à ce dernier.2. Platinum according to claim 1, characterized in that the upper plate is of triangular shape, the number of sensors being equal to three and in that three accelerometers (10,11,12) are oriented in the direction of the thickness. of the plate while the other three (13,14,15) are housed in the plane of the plate, with two of them (13,14) perpendicular to one of its sides and the last (15) parallel to the latter.
3. Procédé de mesure d'efforts de coupe notamment en période transitoire ou pour de grandes vitesses de coupe en utilisant la platine selon la revendication 1 ou la revendication 2, caractérisé en ce qu'il comprend une étape d'identification de la platine avant sa mise en fonctionnement, afin de connaître la masse (m) de l'ensemble et la position de son centre d'inertie et à traiter par le calcul la valeur (Fmes) du signal de mesure de la platine pour en extraire la valeur de l'effort de coupe (Fapp) . 3. A method of measuring cutting forces especially in transient period or for high cutting speeds using the plate according to claim 1 or claim 2, characterized in that it comprises a stage of identification of the front plate. its operation, in order to know the mass (m) of the assembly and the position of its center of inertia and to process by calculation the value (Fmes) of the measurement signal of the plate to extract the value of the cutting force (Fapp).
4. Procédé selon la revendication 3, caractérisé en ce que l'étape d'identification de la platine comprend l'application d'un choc sur la plaque supérieure de la platine au moyen d'un marteau non instrumenté. 4. Method according to claim 3, characterized in that the stage of identification of the plate comprises the application of a shock on the upper plate of the plate by means of a non-instrumented hammer.
PCT/FR2009/000907 2008-07-22 2009-07-22 Platen and method for measuring a cutting force WO2010010253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0804158A FR2934368B1 (en) 2008-07-22 2008-07-22 PLATINUM AND METHOD FOR MEASURING A CUTTING EFFORT
FR0804158 2008-07-22

Publications (1)

Publication Number Publication Date
WO2010010253A1 true WO2010010253A1 (en) 2010-01-28

Family

ID=40383866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000907 WO2010010253A1 (en) 2008-07-22 2009-07-22 Platen and method for measuring a cutting force

Country Status (2)

Country Link
FR (1) FR2934368B1 (en)
WO (1) WO2010010253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073436A1 (en) * 2011-11-15 2013-05-23 株式会社日立製作所 Cutting force detection device for machine tool, cutting force detection method, processing anomaly detection method, and processing condition control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109760074A (en) * 2019-02-22 2019-05-17 清华大学 The ATC slotting tool force detection system of wireless transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013959A1 (en) * 1968-07-30 1970-04-10 Kistler Instrumente Ag
US3640130A (en) * 1968-11-04 1972-02-08 Kistler Instrumente Ag Force and moment arrangements
DE3440670A1 (en) * 1984-11-07 1986-05-07 Prometec GmbH, 5100 Aachen Device for measuring the forces acting on machine components
EP0266452A1 (en) * 1986-11-07 1988-05-11 Kristal Instrumente AG Piezoelectric transducer
US5718617A (en) * 1994-09-02 1998-02-17 Bryant Grinder Corporation Grinding force measurement system for computer controlled grinding operations
US20070277609A1 (en) * 2004-09-29 2007-12-06 Schmitz Tony L Flexure-based dynamometer for determining cutting force

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013959A1 (en) * 1968-07-30 1970-04-10 Kistler Instrumente Ag
US3640130A (en) * 1968-11-04 1972-02-08 Kistler Instrumente Ag Force and moment arrangements
DE3440670A1 (en) * 1984-11-07 1986-05-07 Prometec GmbH, 5100 Aachen Device for measuring the forces acting on machine components
EP0266452A1 (en) * 1986-11-07 1988-05-11 Kristal Instrumente AG Piezoelectric transducer
US5718617A (en) * 1994-09-02 1998-02-17 Bryant Grinder Corporation Grinding force measurement system for computer controlled grinding operations
US20070277609A1 (en) * 2004-09-29 2007-12-06 Schmitz Tony L Flexure-based dynamometer for determining cutting force

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073436A1 (en) * 2011-11-15 2013-05-23 株式会社日立製作所 Cutting force detection device for machine tool, cutting force detection method, processing anomaly detection method, and processing condition control system
JPWO2013073436A1 (en) * 2011-11-15 2015-04-02 株式会社日立製作所 Machine tool cutting force detection device, cutting force detection method, machining abnormality detection method, and machining condition control system

Also Published As

Publication number Publication date
FR2934368A1 (en) 2010-01-29
FR2934368B1 (en) 2010-12-10

Similar Documents

Publication Publication Date Title
EP2992298B1 (en) Mems balanced inertial angular sensor and method for balancing such a sensor
EP2936056B1 (en) Gyroscope with simplified calibration and simplified calibration method for a gyroscope
EP2459966B1 (en) Method for estimating the direction of a moving solid
EP2211143B1 (en) Micromachined planar gyrometer with an out-of-plane detection by strain gauge
FR2983574A1 (en) BALANCED MEMS TYPE INERTIAL ANGULAR SENSOR AND METHOD FOR BALANCING SENSOR THEREOF
FR2894953A1 (en) Micro-electromechanical system for e.g. atomic force microscope, has stress detector connected to beam and comprising base portion and shunt portion, where electrical conductivity of shunt portion is greater than that of base portion
EP2367015A1 (en) Force sensor with reduced noise
EP2520940A1 (en) Inertial unit with a plurality of detection axes
EP0915323A1 (en) Micromechanical vibrating gyroscope
US20090114411A1 (en) Discontinous tightening wrench comprising means for measuring dynamic events caused by this tightening on the casing of the wrench
EP1976760B1 (en) System for and method of monitoring free play of aircraft control surfaces
FR2953024A1 (en) METHOD OF BALANCING AN ACCELERATION SENSOR AND SENSOR THUS BALANCED
EP3071976B1 (en) Sensor with moving sensitive element having mixed vibrating and pendular operation, and methods for controlling such a sensor
EP0274943B1 (en) Calibrating device for ultrasensitive accelerometers
EP2600104A2 (en) Inertial micro-sensor of rotational movements
WO2010010253A1 (en) Platen and method for measuring a cutting force
CN112287492B (en) Dynamic characteristic identification method for five-axis linkage machining center swinging turntable
EP2352051A1 (en) Method and system for testing an image satbilizing device, in particular for a camera
WO1991000521A1 (en) Shock detector and devices demonstrating its application
EP1127275A1 (en) Method and apparatus for measuring the load bearing capacity of a platform
EP3889617A1 (en) Sensor control method
FR2616908A1 (en) Method for measuring the elastic parameters of a material
FR2890737A1 (en) Power unit displacement estimating device for motor vehicle, has movement detection device permitting to evaluate relative displacement of power unit with respect to structure of motor vehicle
FR2890739A1 (en) Power unit torque model characterization method for motor vehicle, involves measuring torque transmitted by power unit, and modeling measured torque based on displacement of power unit with respect to power unit carrying structure
EP4295114A1 (en) Method for correcting the measurement from a vibrating angular inertial sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09784290

Country of ref document: EP

Kind code of ref document: A1