WO2010009655A1 - 一种触控式平板显示器 - Google Patents

一种触控式平板显示器 Download PDF

Info

Publication number
WO2010009655A1
WO2010009655A1 PCT/CN2009/072725 CN2009072725W WO2010009655A1 WO 2010009655 A1 WO2010009655 A1 WO 2010009655A1 CN 2009072725 W CN2009072725 W CN 2009072725W WO 2010009655 A1 WO2010009655 A1 WO 2010009655A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
display
detecting
signal
Prior art date
Application number
PCT/CN2009/072725
Other languages
English (en)
French (fr)
Inventor
陈其良
刘海平
陈梅英
Original Assignee
智点科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智点科技(深圳)有限公司 filed Critical 智点科技(深圳)有限公司
Priority to EP09799970A priority Critical patent/EP2336864A4/en
Priority to JP2011519014A priority patent/JP5453583B2/ja
Publication of WO2010009655A1 publication Critical patent/WO2010009655A1/zh
Priority to US13/005,203 priority patent/US8610680B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a touch screen and a flat panel display, and more particularly to a touch panel display. Background technique
  • the digital capacitive touch screen is composed of two layers of electrodes each having a plurality of parallel electrodes, and the two layers of electrodes are orthogonal to each other.
  • a touch excitation signal is applied to each electrode.
  • the finger forms a coupling capacitance with some electrodes on the touch screen, and a leakage current flows from the coupling capacitor.
  • the touch detection circuit determines the touch position by detecting the leakage current and determining two orthogonal electrodes on the two electrodes that form a coupling capacitance with the finger. This method is only suitable for coarse positioning. When careful positioning is required, it is costly to make a double-layered fine electrode.
  • the digital capacitive touch screen is placed in front of the display, the reflection generated by the sensing electrode causes the display to be uneven.
  • the analog capacitive touch screen can be divided into a single layer sensing electrode and a double layer sensing electrode.
  • the analog capacitive touch screen of the single-layer sensing electrode inputs a touch excitation current signal from the four corner electrodes of the single-layer electrode.
  • the finger and the electrode form a coupling capacitance, and the touch The leakage current from the excitation capacitor from the coupling capacitor.
  • the touch detection circuit calculates the touch position of the current flowing from the finger by detecting the magnitude of the current flowing to the electrodes at the four corners. This method can be meticulously positioned, but the calculation amount of the control circuit is large.
  • the ambient temperature and humidity change the environmental electric field changes, causing drift, resulting in inaccurate positioning.
  • the incomplete transmission of the touch screen sensing electrodes may reduce the brightness of the display screen, and the reflection generated by the sensing electrodes of the touch screen may cause a decrease in display contrast in a strong external light environment.
  • the analog capacitive touch screen of the double-layer sensing electrode is composed of two layers of electrodes each having a plurality of parallel electrodes, and the two layers of electrodes are orthogonal to each other.
  • a touch excitation signal is applied to each electrode.
  • the finger forms a coupling capacitance with some electrodes on the touch screen, and a leakage current flows from the coupling capacitor, and the touch detection circuit detects each
  • the magnitude of the current flowing out of the electrodes is calculated as a lateral or vertical touch position on the two mutually orthogonal electrodes. This method can be meticulously positioned, and the drift problem is also improved.
  • the double-layer sensing electrodes need to detect leakage current one by one, and the detection and calculation amount is large, and the time required for detection and calculation also increases as the screen becomes larger and the sensing electrodes increase.
  • the touch screen is placed in front of the display, and the reflection generated by the sensing electrodes of the touch screen causes uneven display and a decrease in contrast in a strong external light environment.
  • a method of using a sensor of a matrix flat panel display as a touch sensor is disclosed in the patent specification entitled CN1678980, entitled Touch Sensing, to enable the flat panel display to have the ability to sense touch.
  • the method is to connect the opposite end of the display terminal of the display driving circuit from the electrode of the flat panel display, and also connect the lead end to the touch detecting circuit, so that the display electrode is time-divisionally connected with the display driving circuit or the touch detecting circuit, and the display electrode is used as the touch electrode. Sensing the touch.
  • the method of connecting the display driving circuit and the touch detecting circuit from the both ends of the row electrode and the column electrode of the display greatly increases the density and complexity of the lead wire, which increases the cost and reduces the reliability.
  • the invention patent specification with the application number of 2006100948141 and the name of the touch panel display discloses a connection manner between the touch detection circuit and the display electrode, and the display electrode or the transmission display drive signal is transmitted through the analog switch, or is transmitted. And sensing touch signals, display driving and touch detection time division multiplexing display electrodes, display electrodes are used for both display driving and touch detection.
  • Application No. 2006101065583 discloses another connection manner between the touch detection circuit and the display electrode, and simultaneously transmits the display drive through the signal loading circuit The signal and the transmission and sensing of the touch signal, the display drive and the touch detection share the display electrode at the same time, and the display electrode is used for both the display drive and the touch detection.
  • the disclosed method makes the connection between the touch detection circuit and the display electrode reasonable, and even cleverly utilizes the selection and output circuit portions of the display drive circuit, so that the connection between the touch detection circuit and the display electrode is simple and feasible.
  • the invention is to control the flow direction of the touch signal between the grid electrodes of the display screen, and proposes a series of methods for applying touch excitation and detecting touch to the display electrode.
  • a touch panel display comprising a display screen, a display driving circuit, a touch detecting circuit, and a gate circuit or a signal loading circuit for using the display electrode for both display driving and touch detection;
  • the strobing circuit causes the display electrode or the display driving circuit to communicate with the display driving signal, or communicates with the touch detecting circuit to transmit the touch signal, and the display driving and the touch detecting time multiplex the display electrode;
  • the signal loading circuit enables The display electrode simultaneously transmits the display driving signal and the touch signal, and the display driving and the touch detection simultaneously
  • the display screen electrode is characterized in that: during the period in which the display electrode transmits the touch signal, at least one time simultaneously applies a touch signal to more than two display electrode lines, and the touch detection circuit selects at least one of the
  • the shielded display screen electrode line is a detecting electrode; the detecting electrode refers to detecting a change of a touch signal flowing through the detecting electrode while applying a touch signal; the shielded display screen electrode line is A display screen electrode line to
  • the display electrode line is a display electrode of a passive display screen, a column electrode line, and the like. , or all display electrodes such as row electrode lines and column electrode lines of the active display.
  • a touch signal is applied to the detecting electrode and a change in the touch signal passing through the detecting electrode is detected, and the intersecting with the detecting electrode is also performed.
  • the other display electrodes apply a touch signal; the other display electrodes that intersect the detection electrodes are all electrodes that intersect the detection electrodes or partial electrodes that intersect the detection electrodes.
  • a touch signal is applied to the detecting electrode and a change in the touch signal passing through the detecting electrode is detected, and the detecting electrode is also not intersected.
  • the other display electrodes apply touch signals; the other display electrodes that do not intersect the detection electrodes are all electrodes that do not intersect the detection electrodes or partial electrodes that do not intersect the detection electrodes.
  • a touch signal is applied to the detecting electrode and a change in the touch signal passing through the detecting electrode is detected, and the intersecting with the detecting electrode is also performed.
  • the other display electrode that intersects the detecting electrode and does not intersect the detecting electrode is all electrodes that intersect the detecting electrode and do not intersect the detecting electrode Or a partial electrode that intersects the detecting electrode and does not intersect the detecting electrode.
  • a touch signal in a period in which a touch signal is applied to the display electrode, a touch signal is applied to the detecting electrode and a change in the touch signal passing through the detecting electrode is detected, and the display is also common.
  • the electrodes apply a touch signal.
  • the touch signal may be an AC signal including a zero amplitude, or may be a DC signal including a zero potential.
  • the amplitude, phase, frequency or encoding of the touch signal applied to the electrode to which the touch signal is applied is the same.
  • at least one of amplitude, phase, frequency, or encoding of the touch signal applied to the electrode to which the touch signal is applied is different.
  • the touch detection circuit selects the detection electrode, and selects a part of the display electrode line as a group of detection electrodes at the same time.
  • the touch detection circuit selects the detection electrode, and selects two or more portions of the display electrode lines as two or more sets of detection electrodes at the same time, and simultaneously
  • the group detecting electrodes apply a touch signal, and respectively detect changes in the touch signals flowing through the detecting electrodes of the respective groups.
  • the touch detection circuit selects the detection electrode in a scanning manner, and selects different portions of the display electrode line as the detection electrode at different times.
  • the amplitude, phase, frequency or code of the touch signals applied to the respective sets of detection electrodes are the same.
  • At least one of amplitude, phase, frequency or encoding of the touch signals applied on the respective sets of detecting electrodes is different.
  • each set of detection electrodes is comprised of one or more display electrode lines.
  • the gating circuit causes the display electrode to communicate with the display driving circuit to transmit a display driving signal or communicate with the touch detecting circuit to transmit a touch signal.
  • the gating circuit may be a multi-channel analog switch, or may be another gating function. Circuit.
  • the row signal loading circuit combines the display driving signal generated by the display row driving circuit with the touch signal generated by the touch detecting circuit and the display driving signal to synthesize a driving signal having a touch recognition feature, and is applied to the display electrode.
  • the invention can improve the accuracy of the position determination of the contacts.
  • the touch panel display of the present invention controls the flow of the touch signal by reducing the flow of the touch signal between the detection electrodes and between the detection electrodes and the non-detection electrodes by simultaneously applying the touch signals to the detection electrodes and the non-detection electrodes. , improve the accuracy of the judgment of the touched electrode.
  • the invention simultaneously applies a touch signal to a plurality of sets of detecting electrodes, and respectively detects changes of a touch signal flowing through each group of detecting electrodes, which is equivalent to dividing the display screen into regions and simultaneously detecting touch.
  • the detection method of simultaneously scanning the plurality of detection electrode sections shortens the time for detecting the touch points on the entire display screen.
  • the amplitude, phase, frequency or code of the touch signal applied to each detecting electrode can also be adjusted to be different.
  • the amplitude, phase, frequency or code of the touch signal applied to the non-detecting electrode and the touch applied to the detecting electrode The amplitude, phase, frequency or code of the control signal can also be adjusted to be different to more precisely control the flow of the touch signal.
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold is detected as the touched electrode line, and the touch panel display is touched by a single touch.
  • the condition of the touched electrode line is determined, and only the electrode line that detects that the touch signal passing through exceeds a certain threshold is detected as the touched electrode line, so that the touch panel display of the present invention allows simultaneous multi-touch . This can make the touch panel display more touch-sensitive.
  • FIG. 1 is a schematic diagram of electrical connections according to a first embodiment and a second embodiment of the present invention
  • FIG. 2 is a schematic diagram of electrical connections according to a third embodiment of the present invention.
  • FIG. 3 is a schematic diagram of electrical connections according to Embodiment 4 and Mode 5 of the present invention.
  • FIG. 4 is a schematic diagram of electrical connections of a sixth embodiment, a seventh embodiment, and a sixth embodiment of the present invention
  • FIG. 5 is a schematic diagram of electrical connections according to a tenth embodiment of the present invention
  • Fig. 6 is a schematic view showing the electrical connection of the eleventh and twelfth embodiments of the present invention. detailed description
  • LCDs liquid crystal displays
  • Twists distortion
  • An active liquid crystal display such as a Thin Film Transistor (TFT) liquid crystal display (TFT-LCD) generally includes a TFT array on a substrate glass, a display pixel array, and a display scan electrode connected to the gate of the TFT.
  • TFT Thin Film Transistor
  • a line ie, a row electrode line
  • a display signal electrode line ie, a column electrode line
  • a color filter film and a common electrode on the other substrate glass.
  • Other flat panel displays such as plasma display (PDP), active and passive organic light emitting diode displays (OLEDs), also have display scan electrode lines and display signal electrode lines (ie, row and column electrode lines), and the present invention relies on the ranks of flat panel displays.
  • the electrode line performs touch detection, and the display drive and the touch detection multiplex display screen electrodes, so that the flat panel display realizes touch detection while displaying normally.
  • the touch detection effect may be affected by the presence of crosstalk or the like.
  • the inventors have discovered numerous methods for eliminating crosstalk, one of which is to apply a detection signal to the electrodes around the detection electrodes so that the crosstalk signals are absorbed or blocked by these additional detection signals. At this time, the electrodes around which the detection signals are applied are objectively shielded and protected from interference.
  • the electrodes to which the detection signals are applied around the detection electrodes may be detection electrodes or may not be detection electrodes.
  • One of the ways in which a detection signal is also applied to the electrodes around the detecting electrodes is to apply a detection signal to the electrode lines intersecting the detecting electrodes.
  • Still another way of applying a detection signal to the electrodes around the detecting electrodes is to apply a detection signal to at least one of the electrode lines that do not intersect the detecting electrodes on each side of the detecting electrode lines. This situation is suitable for detecting when the electrode line is in the middle.
  • Still another method of applying a detection signal to the electrode around the detecting electrode is to apply a detection signal to at least one electrode line that does not intersect the detecting electrode on the side of the detecting electrode line having the other electrode line. This is the case when the electrode line is detected at the edge of the display. Since the detection electrode line has only one electrode line on one side at this time, it is only necessary to apply a detection signal to the electrode line on this side.
  • the touch panel display 100 as shown in FIG. 1 includes a passive display 110, a display row driving circuit 121 and a display column driving circuit 122, a touch row detecting circuit 131 and a touch column detecting circuit 132, and a row strobe circuit. 161 and column strobe circuit 162 and the like.
  • the display screen 110 has a row electrode group 140 (having row electrode lines 141, 142, ...,
  • the row electrode group 140 of the display screen 110 is connected to the display row driving circuit 121 and the touch row detecting circuit 131.
  • the column electrode group 150 is connected to the display column driving circuit 122 and the touch column detecting circuit 132.
  • the row strobe circuit 161 and the column strobe circuit 162 in the touch panel display enable the display electrode or the display driving circuit to transmit the display driving signal or communicate with the touch detecting circuit to transmit the touch signal, the display driving and the touch Detect time division multiplexing display electrodes.
  • the above-mentioned touch-type flat panel display is characterized in that time-division multiplexing is adopted, a touch screen signal of a display screen electrode is selected at each moment to apply a touch signal, and a change of a touch signal flowing through the detecting electrode is detected, and other display electrode lines are only touched. Control signals without detection.
  • the operation is as follows: During the display period, the row strobe circuit 161 and the column strobe circuit 162 in the touch panel display 100 cause the display row electrode group 140 and the column electrode group 150 to communicate with the display row driving circuit 121 and the display, respectively.
  • Column drive circuit 122 transmits a display drive signal, display 110 In the display state.
  • the row strobe circuit 161 and the column strobe circuit 162 in the touch panel display 100 connect the display row electrode group 140 and the column electrode group 150 to the touch row detecting circuit 131 and the touch column detection respectively.
  • the circuit 132 transmits a touch signal; the touch line detecting circuit 131 selects one of the row electrode lines 141, 142, ..., 14M (where M is a natural number greater than 1) as a line in a scanning manner.
  • the detecting electrode applies a touch signal, and detects a change of the touch signal flowing through the electrode line.
  • the touch line detecting circuit 131 applies a touch applied to the detecting electrode to the row electrode lines of all the other non-detecting electrodes.
  • the touch row detecting circuit 132 applies a touch signal identical to the touch signal applied to the detecting electrode to all the column electrode lines, and the touch line detecting circuit 131 detects the flowing through.
  • the row electrode line whose touch signal changes the most and exceeds a certain set threshold is the touched electrode line; then, the touch column detecting circuit 132 selects each time in a scanning manner.
  • One of the electrode lines 151, 152, ..., 15N applies a touch signal as a column detecting electrode, and detects a change in a touch signal flowing through the electrode line
  • the touch column detecting circuit 132 applies the same touch signal to the column electrode lines of all the non-detecting electrodes
  • the touch line detecting circuit 131 applies to all the row electrode lines.
  • the touch signal is the same as the touch signal applied to the detecting electrode
  • the touch column detecting circuit 132 detects that the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold is the touched electrode. line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 100 is repeatedly switched between the display period and the touch period, the display driving and the touch detection time division multiplexing the display electrodes, and controlling the response time of the flat panel display every touch period, the flat panel display can be In the normal display state, touch detection can be performed to form a touch panel display that recognizes the mxn touch point.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the gate circuit for connecting the display electrode or the display driving circuit to transmit the display driving signal or communicating with the touch detecting circuit to transmit the touch signal may be a multi-channel analog switch or other strobing function Road.
  • the body line resistance of the display electrode line is preferably less than 50 ⁇ ⁇ , so that the difference of the touch signals is small enough when the touch object approaches or touches both ends of the display electrode line, which is advantageous for detection.
  • the touch panel display 100 as shown in FIG. 1 includes a passive display 110, a display row driving circuit 121 and a display column driving circuit 122, a touch row detecting circuit 131 and a touch column detecting circuit 132, and a row strobe circuit. 161 and column strobe circuit 162 and the like.
  • the display screen 110 has a row electrode group 140 (having row electrode lines 141, 142, ..., 14m, where m is a natural number greater than 1), and a column electrode group 150 (having column electrode lines 151, 152 15n, where ⁇ is A natural number greater than one).
  • the row electrode group 140 of the display screen 110 is connected to the display row driving circuit 121 and the touch row detecting circuit 131.
  • the column electrode group 150 is connected to the display column driving circuit 122 and the touch column detecting circuit 132.
  • the row strobe circuit 161 and the column strobe circuit 162 in the touch panel display enable the display electrode or the display driving circuit to transmit the display driving signal or communicate with the touch detecting circuit to transmit the touch signal, the display driving and the touch Detect time division multiplexing display electrodes.
  • the above-mentioned touch-type flat panel display is characterized in that time-division multiplexing is adopted, a touch screen signal of a display screen electrode is selected at each moment to apply a touch signal, and a change of a touch signal flowing through the detecting electrode is detected, and a display intersecting the detecting electrode is displayed.
  • the screen electrode line only applies the touch signal without detecting.
  • the operation is as follows: During the display period, the row strobe circuit 161 and the column strobe circuit 162 in the touch panel display 100 cause the display row electrode group 140 and the column electrode group 150 to communicate with the display row driving circuit 121 and the display, respectively.
  • the column drive circuit 122 transmits a display drive signal, and the display screen 110 is in a display state.
  • the row strobe circuit 161 and the column strobe circuit 162 in the touch panel display 100 connect the display row electrode group 140 and the column electrode group 150 to the touch row detecting circuit 131 and the touch column detection respectively.
  • the circuit 132 transmits a touch signal; the touch line detecting circuit 131 selects one of the row electrode lines 141, 142, ..., 14M (where ⁇ is a natural number greater than 1) as a line in a scanning manner.
  • the detecting electrode applies a touch signal, and detects a change of the touch signal flowing through the electrode line without applying a touch signal to the remaining row detecting electrodes.
  • the touch column detecting circuit 132 applies the same touch signal to the column electrode lines as the touch signal applied to the detecting electrodes, and the touch line detecting circuit 131 detects that the touch signal flowing through the touch signal has the largest change. And the row electrode line exceeding a certain threshold is the touched electrode line; then, the touch column detecting circuit 132 selects the column electrode lines 151, 152, ..., 15N at each time in a scanning manner (where ⁇ Applying a touch signal to the column detecting electrode for one of the electrode lines greater than 1 and detecting the touch signal flowing through the electrode line The touch signal is not applied to the remaining column detection electrodes.
  • the touch line detection circuit 131 applies the same touch signal to the touch electrodes applied to the detection electrodes for all the row electrode lines.
  • the column detecting circuit 132 detects that the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold value is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 100 is repeatedly switched between the display period and the touch period, the display driving and the touch detection time division multiplexing the display electrodes, and controlling the response time of the flat panel display every touch period, the flat panel display can be In the normal display state, touch detection can be performed to form a touch panel display that recognizes the mxn touch point.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the gate circuit for connecting the display electrode or the display driving circuit to transmit the display driving signal or the touch detecting circuit to transmit the touch signal may be a multi-channel analog switch or other strobing circuit.
  • the body line resistance of the display electrode line is preferably less than 50 ⁇ ⁇ , so that the difference of the touch signals is small enough when the touch object approaches or touches both ends of the display electrode line, which is advantageous for detection.
  • the touch panel display 200 shown in FIG. 2 includes a passive display 210 and a display line driving circuit.
  • the display screen 210 has a row electrode group 240 (having row electrode lines 241, 242, ..., 24m), and a column electrode group 250 (with column electrode lines 251, 252, ..., 25n).
  • the row electrode group 240 of the display screen 210 is connected to the display row driving circuit 221 and the touch row detecting circuit 231 through the row signal loading circuit 261.
  • the column electrode group 250 is connected to the display column driving circuit 222 and the touch column detecting circuit through the column signal loading circuit 262. 232.
  • the signal loading circuit in the touch panel display enables the display electrodes to be simultaneously transmitted The driving signal and the touch signal are displayed, and the display driving and the touch detection share the display electrode at the same time.
  • the above-mentioned touch-type flat panel display is characterized in that a touch signal is applied at the same time, and a display electrode line touch signal is applied at each moment to detect a change in the touch signal passing through the detection electrode, and other display electrode lines are only applied with touch. Signal is not detected.
  • the touch line detecting circuit 231 selects one of the row electrode lines 241, 242, ..., 24m as the detecting electrode at each time in a scanning manner, and the row signal loading circuit 261 displays the row driving.
  • the display driving signal generated by the circuit 221 and the touch signal generated by the touch line detecting circuit 231 different from the display driving signal feature are combined with a driving signal having a touch recognition feature, applied to the electrode line, and detected to flow through the strip.
  • the touch signal of the electrode line changes.
  • the row signal loading circuit 261 applies a composite signal of the display driving signal and the touch signal to the row electrode lines of all the non-detecting electrodes, wherein the amplitude, phase, and frequency of the touch signal.
  • the column signal loading circuit 262 applies the display driving signals generated by the display column driving circuit 222 and the synthesized signals of the touch signals generated by the touch column detecting circuit 232 to All of the column electrode lines, wherein the amplitude, phase, and frequency of the touch signal are applied to the detecting electrodes
  • the touch signal portion of the signal is completely identical, and the touch line detecting circuit 231 detects that the row electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold is the touched electrode line;
  • the column detecting circuit 232 selects one of the column electrode lines 251, 252, ..., 25n as the detecting electrode at each time in a scanning manner, and the column signal loading circuit 262 displays the display driving generated by the column driving circuit 222.
  • the touch signal generated by the signal and the touch column detecting circuit 232 is different from the display driving signal characteristic, and the driving signal having the touch recognition feature is synthesized, applied to the electrode line, and the touch signal flowing through the electrode line is detected.
  • the column signal loading circuit 262 applies a composite signal of the display driving signal and the touch signal to the column electrode lines of all the non-detecting electrodes, wherein the amplitude, phase, and frequency of the touch signal are applied to the detecting electrodes.
  • the touch signal portion of the signal is identical, and the row signal loading circuit 261 will display the display drive signal generated by the row driver circuit 221.
  • the composite signal of the touch signal generated by the touch line detecting circuit 231 is applied to all of the row electrode lines, wherein the amplitude, phase, and frequency of the touch signal are completely opposite to the touch signal portion of the signal applied to the detecting electrode.
  • the touch column detection circuit 232 detects that the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold value is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the display driver and the touch detection share the display electrode at the same time, and the display electrode is used for both the display driving and the touch detection.
  • the flat panel display performs touch detection while displaying normally, forming a touch panel for recognizing the mxn touch point. monitor.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the body line resistance of the display electrode line is preferably less than 50 ⁇ ⁇ , so that the difference of the touch signals is small enough when the touch object approaches or touches both ends of the display electrode line, which is advantageous for detection.
  • the touch panel display 300 shown in FIG. 3 includes a passive display screen 310, a display row driving circuit 321 and a display column driving circuit 322, a touch row detecting circuit 331 and a touch column detecting circuit 332, and a row strobe circuit. 361 and column strobe circuit 362 and the like.
  • the display screen 310 has a row electrode group 340 (having row electrode lines 341, 342, ..., 34i, 34i+1, ..., 34m, where i is a natural number greater than 1, m is a natural number greater than i), and Column electrode group 350 (having column electrode lines 351, 352, ..., 35j, 35j+1, ..., 35n, where j is a natural number greater than 1, and ⁇ is a natural number greater than j).
  • the row electrode group 340 of the display screen 310 is connected to both the display row driving circuit 321 and the touch row detecting circuit 331, and the column electrode group 350 is connected to the display column driving circuit 322 and the touch column detecting circuit 332.
  • the row strobe circuit 361 and the column strobe circuit 362 in the touch panel display enable the display electrode or the display driving circuit to transmit the display driving signal or communicate with the touch detecting circuit to transmit the touch signal, the display driving and the touch Detect time division multiplexing display electrodes.
  • the above-mentioned touch-type flat panel display is characterized in that time-division multiplexing is adopted, a set of display electrode line touch signals are selected to apply touch signals at each moment, and changes in touch signals passing through the detecting electrodes are detected, and other display electrode lines are applied only. Touch signal is not detected.
  • the operation is as follows: During the display period, the row strobe circuit 361 and the column strobe circuit 362 in the touch panel display 300 cause the display row electrode group 340 and the column electrode group 350 to communicate with the display row driving circuit 321 and the display, respectively.
  • the column drive circuit 322 transmits the display drive signal, and the display screen 310 is in the display state.
  • the row strobe circuit 361 and the column strobe circuit 362 in the touch panel display 300 connect the display row electrode group 340 and the column electrode group 350 to the touch line detecting circuit 331 and the touch column detection respectively.
  • the circuit 332 transmits a touch signal
  • the touch line detecting circuit 331 selects one of the row electrode lines 341, 342, ..., 34 ⁇ as a detecting electrode to apply a touch signal at each time in a scanning manner
  • the row electrode Selecting another electrode line among the lines 34i+1, ..., 34m also applies a touch signal as a detecting electrode, and detects the flow separately
  • the touch signal of the two electrode lines is changed.
  • the touch line detecting circuit 331 applies the touch signals with the same amplitude, phase and frequency to the row electrode lines of all the non-detecting electrodes.
  • the detecting circuit 332 also applies touch signals having the same amplitude, phase and frequency to all the column electrode lines, so that the touch line detecting circuit 331 is on all the row electrode lines 341, 342, ..., 34i, 34i+l , ..., 34m, detecting that the row electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold is the touched electrode line; then, the touch column detecting circuit 332 scans each At one time, one of the column electrode lines 351, 352, ..., 35j is selected as the detecting electrode to apply the touch signal, and the other electrode line is selected from the column electrode lines 35j+1, ..., 35n as the detection.
  • the electrodes apply touch signals, and respectively detect changes in the touch signals flowing through the two electrode lines.
  • the touch column detecting circuit 332 applies amplitude, phase, and frequency to the column lines of all the other non-detecting electrodes. Exactly the same
  • the touch signal detection circuit 331 also applies touch signals having the same amplitude, phase and frequency to all the row electrode lines, so that the touch column detection circuit 332 is on all the column electrode lines 351, 352, .. . . . , 35j, 35j+l, ..., 35 ⁇ detects that the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain set threshold is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 300 is repeatedly switched between the display period and the touch period, the display driving and the touch detection time division multiplexing the display electrodes, and controlling the response time of the flat panel display per touch period, the flat panel display can be In the normal display state, touch detection can be performed to form a touch panel display that recognizes the mxn touch point.
  • the touch line detecting circuit 331 selects two display electrode lines as the detecting electrodes at the same time during the touch period, the touch detection is performed by scanning the partitions simultaneously, thereby shortening the time for detecting the touch points on the entire display screen.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the gate circuit for connecting the display electrode or the display driving circuit to transmit the display driving signal or communicating with the touch detecting circuit to transmit the touch signal may be a multi-channel analog switch or other circuits functioning as a gate.
  • the touch panel display 300 shown in FIG. 3 includes a passive display screen 310, a display row driving circuit 321 and a display column driving circuit 322, a touch row detecting circuit 331 and a touch column detecting circuit 332, and a row strobe circuit. 361 and column strobe circuit 362 and the like.
  • the display screen 310 has row electrode groups 340 row electrode lines 341, 342, ..., 34i, 34i+1, ..., 34m, and column electrode groups 350 column electrode lines 351, 352, ..., 35j, 35j +l, ..., 35n.
  • the row electrode group 340 of the display screen 310 is connected to both the display row driving circuit 321 and the touch row detecting circuit 331, and the column electrode group 350 is connected to the display column driving circuit 322 and the touch column detecting circuit 332.
  • the row strobe circuit 361 and the column strobe circuit 362 in the touch panel display enable the display electrode or the display driving circuit to transmit the display driving signal or communicate with the touch detecting circuit to transmit the touch signal, the display driving and the touch Detect time division multiplexing display electrodes.
  • the above-mentioned touch-type flat panel display is characterized in that time-division multiplexing is adopted, a set of display electrode line touch signals are selected to apply touch signals at each moment, and changes in touch signals passing through the detecting electrodes are detected, and other display electrode lines are applied only.
  • the touch signal is not detected; the upper and lower partitions are simultaneously detected.
  • the operation is as follows: During the display period, the row strobe circuit 361 and the column strobe circuit 362 in the touch panel display 300 cause the display row electrode group 340 and the column electrode group 350 to communicate with the display row driving circuit 321 and the display, respectively.
  • the column drive circuit 322 transmits the display drive signal, and the display screen 310 is in the display state.
  • the row strobe circuit 361 and the column strobe circuit 362 in the touch panel display 300 connect the display row electrode group 340 and the column electrode group 350 to the touch line detecting circuit 331 and the touch column detection respectively.
  • the circuit 332 transmits a touch signal
  • the touch line detecting circuit 331 selects one of the row electrode lines 341, 342, ..., 34 ⁇ as a detecting electrode to apply a touch signal at each time in a scanning manner, and the row electrode
  • the other electrode line is selected from the line 34i+1, ..., 34m to apply a touch signal to the detecting electrode, and respectively detects the change of the touch signal flowing through the two electrode lines, and at the same time, the touch line detecting circuit 331 applies a touch signal with the same amplitude, phase, and frequency to the row electrode lines of all the other non-detection electrodes, and the touch column detection circuit 332 applies the same amplitude, phase, and frequency to all the column electrode lines.
  • the touch signal is detected by the touch line detecting circuit 331 in the row electrode lines 341, 342, ..., 34i, and the line electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold is detected.
  • Touch electrode The line which is also detected by the row electrode lines 34i+1, ..., 34m, the row electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold is the touched electrode line; then, the touch The column detecting circuit 332 selects one electrode line from the column electrode lines 351, 352, ..., 35j, 35j+1, ..., 35n as a detecting electrode to apply a touch signal in a scanning manner, and detects The change of the touch signal flowing through the electrode line, and at the same time, the touch column detecting circuit 332 charges all the other non-detecting electrodes.
  • the touch line also applies a touch signal having the same amplitude, phase, and frequency.
  • the touch line detecting circuit 331 also applies a touch signal having the same amplitude, phase, and frequency to all the row electrode lines.
  • the detecting circuit 332 detects, among all the column electrode lines 351, 352, ..., 35j, 35j+1, ..., 35n, the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold. To be touched the electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 300 is repeatedly switched between the display period and the touch period, the display driving and the touch detection time division multiplexing the display electrodes, and controlling the response time of the flat panel display per touch period, the flat panel display can be In normal display mode, touch detection is also possible.
  • a touch panel display is formed which defines the ixn touch point and the (m-i) xN touch point in the upper and lower half of the display screen 310 by dividing the row electrode line 34i.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the display electrode or the strobe circuit that communicates with the display driving circuit to transmit the display driving signal or communicate with the touch detecting circuit to transmit the touch signal may be a multi-channel analog switch or other strobing function.
  • the touch panel display 400 shown in FIG. 4 includes an active display screen 410, a row display driving circuit 421, a column display driving circuit 422, a common electrode display driving circuit 423, a row touch detecting circuit 431, and a column touch detecting.
  • a TFT array of the active display screen 410 a display pixel array, a display scan electrode group (ie, a row electrode group) 440 connected to the gate of the TFT, and a display signal electrode group (ie, a column) connected to the source or the drain of the TFT
  • the electrode group 450 is disposed on the upper substrate glass closer to the user, the color filter film and the common electrode 460 are disposed on the lower substrate glass; the row electrode group 440 has the row electrode lines 441, ..., 44h, ... 44i, ..., 44m, the column electrode group 450 has column electrode lines 451, ..., 45j, ..., 45k, ..., 45n.
  • the row electrode group 440 of the display screen 410 is connected to the row display driving circuit 421 and the row touch detecting circuit 431.
  • the column electrode group 450 is connected between the column display driving circuit 422 and the column touch detecting circuit 432, and the common electrode 460 is connected to the common
  • the electrode display driving circuit 423 is in turn connected to the common electrode touch circuit 433.
  • the row strobe circuit 471, the column strobe circuit 472 and the common electrode strobe circuit 473 in the touch panel display enable the display screen electrode to communicate with the display driving circuit to transmit the display driving signal in the display scanning frame, between the display scanning frames. Touch test
  • the measuring circuit is connected to transmit the touch signal, and the display driving and the touch detecting time-multiplexing the display electrode.
  • the above-mentioned touch-type flat panel display is characterized in that time-division multiplexing is adopted, a touch screen signal of a display screen electrode is selected at each moment to apply a touch signal, and a change of a touch signal flowing through the detecting electrode is detected, and an electrode line of the display screen is arranged. A touch signal is also applied to the common electrode.
  • the operation is as follows: in the display scan frame, that is, the display period, the row strobe circuit 471, the column strobe circuit 472, and the common electrode strobe circuit 473 in the touch panel display 400, so that the display row electrode group 440, the column The electrode group 450 and the common electrode 460 are respectively connected to the row display driving circuit 421, the column display driving circuit 422, and the common electrode display driving circuit 423 to transmit display driving signals, and the display screen 410 is in a display state.
  • the display row electrode group 440, the column electrode group 450, and The common electrode 460 is connected to the touch detection circuit 431, the column touch detection circuit 432, and the common electrode touch circuit 433 to transmit the touch signal.
  • the touch detection circuit 431 selects the row electrode group in turn by scanning.
  • One of the electrode lines of the 440 applies a touch signal as a row detecting electrode, and detects a change of the touch signal flowing through the electrode line; meanwhile, the touch sensing circuit 431 also applies the remaining row electrode lines outside the row detecting electrode.
  • the touch sensing signal 432 applies the phase of the touch signal applied to the detecting electrode to all the column lines of the column electrode group 450, and the touch signal having the same amplitude, phase, and frequency of the touch signal applied to the detecting electrode. a touch signal having the same frequency and different amplitudes, the common electrode touch circuit 433 also applies a touch signal to the common electrode 460; The 431 detects that the row electrode line that has the largest change of the touch signal and exceeds a certain threshold is the touched electrode line. Then, the column touch detection circuit 432 selects the column electrode group in turn by scanning.
  • One of the electrode lines 450 applies a touch signal as a column detecting electrode, and detects a change of the touch signal flowing through the electrode line.
  • the column touch detecting circuit 432 also applies the remaining column electrode lines outside the column detecting electrode.
  • the touch detection circuit 431 applies the same phase and frequency to the touch signal applied to the detection electrode as the touch signal applied to the detection electrode with the same amplitude, phase and frequency.
  • the common electrode touch circuit 433 also applies a touch signal to the common electrode 460.
  • the column touch detection circuit 432 detects the column that has the largest change in the touch signal flowing through and exceeds a certain threshold.
  • the electrode line is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 400 repeatedly switches between the display period in the display scan frame and the touch period between the display scan frames, and the display drive and the touch detection time division multiplex display screen electrodes, and the flat panel display can display the normal state, and Touch detection can be performed to form a touch panel display that recognizes mxn touch points.
  • the amplitude, phase, and phase of the touch signal applied to the non-detecting electrode can be adjusted to be different to more finely control the flow direction of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the gate circuit for connecting the display electrode or the display driving circuit to transmit the display driving signal or the touch detecting circuit to transmit the touch signal may be a multi-channel analog switch or other strobing circuit.
  • the body line resistance of the display electrode line is preferably less than 50 ⁇ ⁇ , so that the difference of the touch signals is small enough when the touch object approaches or touches both ends of the display electrode line, which is advantageous for detection.
  • the touch panel display 400 shown in FIG. 4 includes an active display screen 410 and a row display driving circuit.
  • a TFT array of the active display screen 410 a display pixel array, a display scan electrode group (ie, a row electrode group) 440 connected to the gate of the TFT, and a display signal electrode group (ie, a column) connected to the source or the drain of the TFT
  • the electrode group 450 is disposed on the upper substrate glass closer to the user, the color filter film and the common electrode 460 are disposed on the lower substrate glass; the row electrode group 440 has the row electrode lines 441, ..., 44h, ... 44i, ..., 44m, the column electrode group 450 has column electrode lines 451, ..., 45j, ..., 45k, ..., 45n.
  • the row electrode group 440 of the display screen 410 is connected to the row display driving circuit 421 and the row touch detecting circuit 431.
  • the column electrode group 450 is connected between the column display driving circuit 422 and the column touch detecting circuit 432, and the common electrode 460 is connected to the common
  • the electrode display driving circuit 423 is in turn connected to the common electrode touch circuit 433.
  • the row strobe circuit 471, the column strobe circuit 472 and the common electrode strobe circuit 473 in the touch panel display enable the display screen electrode to communicate with the display driving circuit to transmit the display driving signal in the display scanning frame, between the display scanning frames.
  • the touch detection signal is connected to the touch detection circuit to transmit the touch signal, and the display drive and the touch detection time division multiplex the display electrode.
  • the above-mentioned touch-type flat panel display is characterized in that time division multiplexing is used, a touch screen signal of a display screen electrode is selected at each moment to apply a touch signal, and a change of a touch signal flowing through the detecting electrode is detected, and the other is parallel to the detecting electrode.
  • the display electrode line does not apply a touch signal, the display electrode line intersecting the detection electrode, and the common The electrodes also apply a touch signal.
  • the operation is as follows: in the display scan frame, that is, the display period, the row strobe circuit 471, the column strobe circuit 472, and the common electrode strobe circuit 473 in the touch panel display 400, so that the display row electrode group 440, the column The electrode group 450 and the common electrode 460 are respectively connected to the row display driving circuit 421, the column display driving circuit 422, and the common electrode display driving circuit 423 to transmit display driving signals, and the display screen 410 is in a display state.
  • the display row electrode group 440, the column electrode group 450, and The common electrode 460 is connected to the touch detection circuit 431, the column touch detection circuit 432, and the common electrode touch circuit 433 to transmit the touch signal.
  • the touch detection circuit 431 scans the row electrode at each moment. One of the lines 441, 44h, 44i, and 44m applies a touch signal as a row detecting electrode, and detects a change of the touch signal flowing through the electrode line; meanwhile, the touch detecting circuit 431 does not face the detecting electrode. The remaining row electrode lines are applied with touch signals.
  • the column touch detection circuit 432 also applies touch signals with the same phase and frequency of the touch signals applied to the detecting electrodes to all the column lines of the column electrode group 450.
  • the common electrode touch circuit 433 also applies a touch signal to the common electrode 460.
  • the line touch detection circuit 431 detects that the touch signal that flows through changes the most. And the row electrode line exceeding a certain threshold is the touched electrode line; then, the column touch detection circuit 432 scans one of the column electrode lines 451, 45j, 45k and 45n in turn in a scanning manner.
  • the line applies a touch signal as a column detecting electrode, and detects a change of the touch signal flowing through the electrode line.
  • the column touch detecting circuit 432 does not apply a touch signal to the remaining column electrode lines outside the column detecting electrode.
  • the control detecting circuit 431 also applies a touch signal having the same phase and frequency as the touch signal applied to the detecting electrode to the common electrode lines, and the common electrode touch circuit 433 also applies the touch signal to the common electrode 460;
  • the column touch detection circuit 432 detects that the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold value is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 400 repeatedly switches between the display period in the display scan frame and the touch period between the display scan frames, and the display drive and the touch detection time division multiplex display screen electrodes, and the flat panel display can display the normal state, and Touch detection can be performed to form a touch panel display that recognizes 4x4 touch points.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so as to be more Finely control the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the gate circuit for connecting the display electrode or the display driving circuit to transmit the display driving signal or the touch detecting circuit to transmit the touch signal may be a multi-channel analog switch or other strobing circuit.
  • the body line resistance of the display electrode line is preferably less than 50 ⁇ ⁇ , so that the difference of the touch signals is small enough when the touch object approaches or touches both ends of the display electrode line, which is advantageous for detection.
  • the touch panel display 400 shown in FIG. 4 includes an active display screen 410, a row display driving circuit 421, a column display driving circuit 422, a common electrode display driving circuit 423, a row touch detecting circuit 431, and a column touch detecting.
  • a TFT array of the active display screen 410 a display pixel array, a display scan electrode group (ie, a row electrode group) 440 connected to the gate of the TFT, and a display signal electrode group (ie, a column) connected to the source or the drain of the TFT
  • the electrode group 450 is disposed on the upper substrate glass closer to the user, the color filter film and the common electrode 460 are disposed on the lower substrate glass; the row electrode group 440 has the row electrode lines 441, ..., 44h, ... 44i, ..., 44m, the column electrode group 450 has column electrode lines 451, ..., 45j, ..., 45k, ..., 45n.
  • the row electrode group 440 of the display screen 410 is connected to the display row driving circuit 421 and the touch row detecting circuit 431.
  • the column electrode group 450 is connected to the display column driving circuit 422 and the touch column detecting circuit 432.
  • the row strobe circuit 471 and the column strobe circuit 472 in the touch panel display enable the display screen electrode to communicate with the display driving circuit to transmit the display driving signal in the display scanning frame, and communicate with the touch detecting circuit during the display scanning frame. Touch signal, display drive and touch detection time division multiplexing display electrodes.
  • the above-mentioned touch-type flat panel display is characterized in that time division multiplexing is used, and only a plurality of display screen electrode line touch signals are simultaneously applied with touch signals, and changes in touch signals passing through the detection electrodes are detected, and the remaining display screens are used.
  • the row and column electrode lines do not apply a touch signal, and a touch signal is also applied to the common electrode.
  • the operation is as follows: In the display scan frame, that is, the display period, the line gate circuit 471, the column gate circuit 472, and the common electrode gate circuit 473 in the touch panel display 400, the display row electrode group 440, the column The electrode group 450 and the common electrode 460 are respectively connected to the row display driving circuit 421, the column display driving circuit 422, and the common electrode display driving circuit 423 to transmit display driving signals, and the display screen 410 is in a display state.
  • Row gating circuit 471 and column in touch panel display 400 during display scanning frame, that is, touch period The gate circuit 472 and the common electrode strobe circuit 473 respectively connect the display row electrode group 440 and the column electrode group 450 to the touch detection circuit 431, the column touch detection circuit 432, and the common electrode touch circuit 433;
  • the control detecting circuit 431 simultaneously selects the row electrode lines 441, 44h, 44i, and 44m as four row detecting electrodes, and simultaneously applies touch signals having the same amplitude, phase, frequency, or encoding to the four detecting electrodes, and simultaneously detects the flow through.
  • Each group of detecting electrodes changes the touch signal; and the touch column detecting circuit 432 simultaneously selects the column electrode lines 451, 45j, 45k, and 45n as the four column detecting electrodes, and simultaneously applies the line detecting electrode touch to the four detecting electrodes.
  • a touch signal having the same signal phase and frequency and different amplitudes, and simultaneously detecting changes of the touch signals flowing through the detection electrodes of the respective groups; and not applying touch signals to the row and column electrodes of all the non-detection electrodes;
  • the touch circuit 433 applies a touch signal to the common electrode 460; and the touch line detecting circuit 431 detects the electrodes 441, 44h, 44i in four rows.
  • the column electrode line that has the largest change in the touch signal and exceeds a certain threshold is detected as the touched electrode line, and the touch column detection circuit 432 detects the electrodes 451, 45j, 45k and 45n in the four columns.
  • the column electrode line that detects the largest change in the touch signal flowing through and exceeds a certain threshold is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 400 repeatedly switches between the display period in the display scan frame and the touch period between the display scan frames, and the display drive and the touch detection time division multiplex display screen electrodes, and the flat panel display can display the normal state, and Touch detection can be performed to form a touch panel display that recognizes 4x4 touch points.
  • the touch detection circuit 431 and the column touch detection circuit 432 respectively select four display screen electrode lines as the detection electrodes during the touch period, and simultaneously perform touch detection, the time for detecting the touch points on the entire display screen is shortened.
  • the amplitude, phase, frequency or encoding of the touch signal applied to each detecting electrode can be adjusted to be different, so as to more finely control the flow direction of the touch signal.
  • the difference in the application of the touch signal to the detecting electrode may be different in amplitude, phase, frequency or encoding, or may be only one or more of amplitude, phase, frequency or encoding.
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the gate circuit for connecting the display electrode or the display driving circuit to transmit the display driving signal or communicating with the touch detecting circuit to transmit the touch signal may be a multi-channel analog switch or other circuit functioning as a strobe.
  • the touch panel display 400 shown in FIG. 4 includes an active display screen 410, a row display driving circuit 421, a column display driving circuit 422, a common electrode display driving circuit 423, a row touch detecting circuit 431, and a column touch detecting.
  • a TFT array of the active display screen 410 a display pixel array, a display scan electrode group (ie, a row electrode group) 440 connected to the gate of the TFT, and a display signal electrode group (ie, a column) connected to the source or the drain of the TFT
  • the electrode group 450 is disposed on the upper substrate glass closer to the user, the color filter film and the common electrode 460 are disposed on the lower substrate glass; the row electrode group 440 has the row electrode lines 441, ..., 44h, ... 44i, ..., 44m, the column electrode group 450 has column electrode lines 451, ..., 45j, ..., 45k, ..., 45n.
  • the row electrode group 440 of the display screen 410 is connected to the display row driving circuit 421 and the touch row detecting circuit 431.
  • the column electrode group 450 is connected to both the display column driving circuit 422 and the touch column detecting circuit 432, and the common electrode 460 is connected to the common
  • the electrode display driving circuit 423 is in turn connected to the common electrode touch circuit 433.
  • the row strobe circuit 471 and the column strobe circuit 472 in the touch panel display enable the display screen electrode to communicate with the display driving circuit to transmit the display driving signal in the display scanning frame, and communicate with the touch detecting circuit during the display scanning frame. Touch signal, display drive and touch detection time division multiplexing display electrodes.
  • the above-mentioned touch-type flat panel display is characterized in that time-division multiplexing is adopted, and a fixed number of rows and adjacent arrays of display electrode line touch signals are simultaneously applied to each time to apply a touch signal and detect a change in a touch signal flowing through the detecting electrode.
  • the remaining display screen row electrode lines do not apply a touch signal, and apply a touch signal to the common electrode.
  • the operation is as follows: In the display scan frame, that is, the display period, the line gate circuit 471, the column gate circuit 472, and the common electrode gate circuit 473 in the touch panel display 400, the display row electrode group 440, the column The electrode group 450 and the common electrode 460 are respectively connected to the display row driving circuit 421, the display column driving circuit 422, and the common electrode display driving circuit 423 to transmit display driving signals, and the display screen 410 is in a display state.
  • the display scan frame that is, the touch period
  • the row strobe circuit 471 and the column strobe circuit 472 in the touch panel display 400 respectively connect the display row electrode group 440 and the column electrode group 450 to the touch detection circuit 431.
  • the line touch detection circuit 432; the line detection touch circuit 431 simultaneously selects the row electrode lines 441, 44h, 44i and 44m as four line detection electrodes, and applies the same amplitude, phase, frequency or code to the four detection electrodes at the same time.
  • the touch signals respectively detect the changes of the touch signals flowing through the detection electrodes of the respective groups;
  • the column touch detection circuit 432 simultaneously selects the column electrode lines 451, 45j, 45k, and 45n as the four column detection electrodes, and simultaneously detects the four columns.
  • the electrodes apply touch signals with the same phase and frequency as the touch detection signals of the line detection electrodes, and detect the changes of the touch signals flowing through the detection electrodes of the respective groups; and apply the row and column lines of all the non-detection electrodes.
  • the same touch signal is applied to the detecting electrode; the common electrode touch circuit 433 also applies a touch signal to the common electrode 460
  • the column electrode detecting line 431 detects, in the four row detecting electrodes 441, 44h, 44i, and 44m, the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold value is the touched electrode line.
  • the column touch detection circuit 432 detects, among the four column detection electrodes 451, 45j, 45k, and 45n, the column electrode line that has the largest change in the touch signal flowing through and exceeds a certain threshold value is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the touch panel display 400 repeatedly switches between the display period in the display scan frame and the touch period between the display scan frames, and the display drive and the touch detection time division multiplex display screen electrodes, and the flat panel display can display the normal state, and Touch detection can be performed to form a touch panel display that recognizes 4x4 touch points.
  • the touch detection circuit 431 and the column touch detection circuit 432 respectively select four display screen electrode lines as the detection electrodes during the touch period, and simultaneously perform touch detection, the time for detecting the touch points on the entire display screen is shortened.
  • the amplitude, phase, frequency or code of the touch signal applied to each detecting electrode can also be adjusted to be different to more finely control the flow direction of the touch signal.
  • the difference in the application of the touch signal to the detecting electrode may be that the amplitude, the phase, the frequency or the encoding are different, or may be only one or more of amplitude, phase, frequency or encoding.
  • the amplitude, phase, frequency or encoding of the touch signal applied to the non-detecting electrode and the amplitude, phase, frequency or encoding of the touch signal applied to the detecting electrode may be adjusted to Different, in order to control the flow of the touch signal more finely.
  • the difference of the touch signals applied to the electrodes may be different in amplitude, phase, frequency or coding, or may be only one or more of amplitude, phase, frequency or coding.
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the gate circuit for connecting the display electrode or the display driving circuit to transmit the display driving signal or the touch detecting circuit for transmitting the touch signal may be a multi-channel analog switch or other circuit functioning as a strobe.
  • the touch panel display 500 shown in FIG. 5 includes a passive display screen 510, a row display driving circuit 521 and a column display driving circuit 522, a row touch detecting circuit 531, a column touch detecting circuit 532, and a line signal loading circuit. 561 and column signal loading circuit 562 and the like.
  • the display screen 510 has a row electrode group 540 (with row electrode lines) 541, 542, ..., 54i, 54i+1, ..., 54m), and column electrode group 550 (with column electrode lines 551, 552, ..., 55j, 55j+l, ..., 55 ⁇ ) ).
  • the row electrode group 540 of the display screen 510 is connected to the row display driving circuit 521 and the row touch detecting circuit 531 through the row signal loading circuit 561.
  • the column electrode group 550 is connected to the column display driving circuit 522 and the column touch detecting circuit through the column signal loading circuit 562. 532.
  • the signal loading circuit in the touch panel display enables the display electrode to simultaneously transmit the display driving signal and the touch signal, and the display driving and the touch detection simultaneously share the display electrode.
  • the touch-type flat panel display is characterized in that a touch signal is applied at the same time, and a set of mutually spaced display screen electrode touch signals are applied at each time, and the change of the touch signal flowing through the detecting electrode is detected, and the remaining display electrode lines are used. Only touch signals are applied without detection.
  • the operation is as follows:
  • the line touch detection circuit 531 selects one of the row electrode lines 541, 542, ..., 54 ⁇ as the detection electrode at each time in a scanning manner, and the row electrode line 54i+1, .
  • the other electrode line of 54m is selected as the detecting electrode, and the signal loading circuit 561 displays the display driving signal generated by the line display driving circuit 521 and the touch signal generated by the line touch detecting circuit 531 different from the display driving signal.
  • the row electrode line also applies a composite signal of the display driving signal and the touch signal, wherein the amplitude, phase and frequency of the touch signal are exactly the same as the touch signal portion of the signal applied to the detecting electrode;
  • the column signal loading circuit 562 will The display driving signal generated by the column display driving circuit 522 and the composite signal application of the touch signal generated by the column touch detecting circuit 532 All of the column electrode lines, wherein the amplitude, phase, and frequency of the touch signal are exactly the same as the touch signal portion of the signal applied to the detecting electrode, so that the touch detecting circuit 531 is on all of the row electrode lines 541, 542.
  • the line electrode lines of the ..., 54i, 54i+l, ..., 54m that detect the largest change in the touch signal flowing through and exceed a certain threshold are the touched electrode
  • the column touch detection circuit 532 selects one of the column electrode lines 551, 552, ..., 55i as the detection electrode at each time in a scanning manner, from the column electrode lines 55i+1, ..., Another electrode line is selected as the detecting electrode in the 55m, and the column signal loading circuit 562 combines the display driving signal generated by the column display driving circuit 522 with the touch signal generated by the column touch detecting circuit 532 and different from the display driving signal characteristic.
  • a driving signal for controlling the identification feature is applied to the two electrode lines, and respectively detecting a change of the touch signal flowing through the two electrode lines, and at the same time, the column signal loading circuit 562 is for the column electrode lines of all the other non-detecting electrodes.
  • a composite signal of the display driving signal and the touch signal is also applied, wherein the amplitude, phase, and frequency of the touch signal are exactly the same as the touch signal portion of the signal applied to the detecting electrode, and the row signal loading circuit 561 drives the line display.
  • the display drive signal generated by the circuit 521 and the composite signal of the touch signal generated by the line touch detection circuit 531 The number is applied to all of the row electrode lines, wherein the amplitude, phase, and frequency of the touch signal are exactly the same as the touch signal portion of the signal applied to the detecting electrode; and the touch column detecting circuit 532 is on all the column electrode lines.
  • the column electrode lines of the 551, 552, ..., 55i, 55i+1, ..., 55m that detect the largest change in the touch signal flowing through and exceed a certain threshold are the touched electrode lines. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the display driver and the touch detection share the display electrode at the same time, and the display electrode is used for both the display driving and the touch detection.
  • the flat panel display performs touch detection while displaying normally, forming a touch panel for recognizing the mxn touch point. monitor.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the touch panel display 600 shown in FIG. 6 includes a passive display screen 610, a row display driving circuit 621 and a column display driving circuit 622, a row touch detecting circuit 631, a column touch detecting circuit 632, and a line signal loading circuit. 661 and column signal loading circuit 662 and the like.
  • the display screen 610 has a row electrode group 640 (having row electrode lines 641, ..., 64h, ..., 64i, ..., 64m), and a column electrode group 650 (column electrode lines 651, ..., 65j) , ..., 65k, ..., 65n).
  • the row electrode group 640 of the display screen 610 is connected to the row display driving circuit 621 and the row touch detecting circuit 631 through the row signal loading circuit 661.
  • the column electrode group 650 is connected to the column display driving circuit 622 and the column touch detecting circuit through the column signal loading circuit 662. 632.
  • the signal loading circuit in the touch panel display enables the display electrode to simultaneously transmit the display driving signal and the touch signal, and the display driving and the touch detection simultaneously share the display screen electrode.
  • the above-mentioned touch-type flat panel display is characterized in that a touch signal is applied at the same time, a set of display electrode line touch signals is applied at each time, and a change in the touch signal passing through the detection electrode is detected, and the remaining display electrode lines are only touched. Control signals without detection.
  • the operation is as follows: The line touch detection circuit 631 simultaneously selects the row electrode lines 641, 64h, 64i, and 64m as four row detecting electrodes, respectively, and the row signal loading circuit 661 displays the rows.
  • the display driving signal generated by the driving circuit 621 and the touch signal generated by the line touch detecting circuit 631 different from the display driving signal feature are combined with a driving signal having a touch recognition feature, applied to the four electrode lines, and respectively detected to flow through
  • the line signal loading circuit 661 also applies a composite signal of the display driving signal and the touch signal to the row electrode lines of all the non-detecting electrodes, wherein the amplitude, phase, and The frequency is exactly the same as the portion of the touch signal in the signal applied to the detecting electrode
  • the column signal loading circuit 662 applies the display driving signal generated by the column display driving circuit 622 and the combined signal of the touch signal generated by the column touch detecting circuit 632.
  • the touch detecting circuit 631 detects the electrode 641 in four rows.
  • 64h, 64i, and 64m the column that has the largest change in the touch signal and exceeds a certain threshold is detected.
  • the polar line is the struck electrode line.
  • the column touch detecting circuit 632 selects the column electrode lines 651, 65j, 65k, and 65n as the four column detecting electrodes, respectively, and the column signal loading circuit 662 displays the display driving signal generated by the column display driving circuit 622 and the column touch detecting circuit 632.
  • the column signal loading circuit 662 simultaneously applies a composite signal of the display driving signal and the touch signal to the column electrode lines of all the non-detecting electrodes, wherein the amplitude, the phase, and the frequency of the touch signal are the portions of the touch signal in the signal applied to the detecting electrode.
  • the row signal loading circuit 661 applies the display driving signal generated by the row display driving circuit 621 and the composite signal of the touch signal generated by the row touch detecting circuit 631 to all the row electrode lines, wherein the amplitude of the touch signal The phase, the frequency, and the touch signal in the signal applied to the column detection electrode are partially completed. All the same, the column touch detection circuit 632 detects that the column electrode line that has the largest change in the touch signal flowing through the four column detection electrodes 651, 65j, 65k, and 65n and exceeds a certain threshold is the touched electrode. line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the display driver and the touch detection share the display electrode at the same time, and the display electrode is used for both the display driving and the touch detection.
  • the flat panel display performs touch detection while displaying normally, forming a touch panel for recognizing the 4x4 touch point. monitor.
  • the amplitude, phase, frequency or code of the touch signal applied to each detecting electrode can also be adjusted to be different to more finely control the flow direction of the touch signal.
  • the difference in the application of the touch signal to the detecting electrode may be that the amplitude, the phase, the frequency or the encoding are different, or may be only one or more of amplitude, phase, frequency or encoding.
  • the amplitude, phase, and phase of the touch signal applied to the non-detecting electrode can also be adjusted to be different to more finely control the flow of the touch signal.
  • the difference of the touch signals applied to the electrodes may be different in amplitude, phase, frequency or coding, or may be only one or more of amplitude, phase, frequency or coding.
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.
  • the touch panel display 600 shown in FIG. 6 includes a passive display screen 610 and a row display driving circuit.
  • the display screen 610 has a row electrode group 640 (having row electrode lines 641, ..., 64h, ..., 64i, ..., 64m), and a column electrode group 650 (with column electrode lines 651, ..., 65j, ..., 65k, ..., 65n).
  • the row electrode group 640 of the display screen 610 is connected to the row display driving circuit 621 and the row touch detecting circuit 631 through the row signal loading circuit 661.
  • the column electrode group 650 is connected to the column display driving circuit 622 and the column touch detecting circuit through the column signal loading circuit 662. 632.
  • the signal loading circuit in the touch panel display enables the display electrode to simultaneously transmit the display driving signal and the touch signal, and the display driving and the touch detection simultaneously share the display screen electrode.
  • the above-mentioned touch-type flat panel display is characterized in that a touch signal is applied by using a display electrode line touch signal of a plurality of rows and columns at the same time, and a change of the touch signal passing through the detecting electrode is detected, and the remaining display electrode lines are used.
  • a display driving signal is applied without applying a touch signal.
  • the operation is as follows:
  • the line touch detection circuit 631 selects the row electrode lines 641, 64h, 64i, and 64m as the four row detecting electrodes, respectively, and the row signal loading circuit 661 displays the display driving signals and the line touch detection generated by the row display driving circuit 621.
  • the touch signal generated by the circuit 631 is different from the display driving signal feature, and the driving signal having the touch recognition feature is synthesized, and is simultaneously applied to the four electrode lines, and respectively detects the change of the touch signal flowing through the four electrode lines.
  • the signal loading circuit 661 simultaneously applies only the display driving signal to the row electrode lines of all the non-detecting electrodes, and does not apply the touch signal; meanwhile, the column touch detecting circuit 632 selects the column electrode lines 651, 65j, 65k, and 65n as four columns, respectively.
  • the detection electrode, the column signal loading circuit 662 synthesizes the display driving signal generated by the column display driving circuit 622 and the touch signal generated by the column touch detecting circuit 632 different from the display driving signal characteristic, and synthesizes the driving signal with the touch recognition feature, and simultaneously applies Go to the four electrode lines and detect the touch signals flowing through the four electrode lines Of, the column signal loading circuit 662 simultaneously to all column electrode lines of the remaining non-detection electrode is applied only significant The driving signal is not applied, and the touch sensing circuit 631 detects, in the four row detecting electrodes 641, 64h, 64i, and 64m, the column that changes the touch signal that has the largest change and exceeds a certain threshold.
  • the electrode line is a touched electrode line
  • the column touch detection circuit 632 detects, among the four column detection electrodes 651, 65j, 65k, and 65n, a column electrode that has the largest change in the touch signal flowing through and exceeds a certain threshold.
  • the line is the touched electrode line. From the detected intersection of the touched electrode line and the touched electrode line, the position of the contact is determined.
  • the display driver and the touch detection share the display electrode at the same time, and the display electrode is used for both the display driving and the touch detection.
  • the flat panel display performs touch detection while displaying normally, forming a touch panel for recognizing the 4x4 touch point. monitor.
  • the amplitude, phase, frequency or code of the touch signal applied to each detecting electrode can also be adjusted to be different to more finely control the flow direction of the touch signal.
  • the difference in the application of the touch signal to the detecting electrode may be that the amplitude, the phase, the frequency or the encoding are different, or may be only one or more of amplitude, phase, frequency or encoding.
  • the condition of the touched electrode line is determined, and the electrode line that has the largest change in the touch signal that has passed the detection and exceeds a certain threshold is not used as the touched electrode line, but only the detected touch signal changes.
  • the electrode line exceeding a certain threshold is the touched electrode line, allowing the touch panel display to allow simultaneous multi-touch.

Description

一种触控式平板显示器 技术领域
本发明涉及触控屏和平板显示器, 尤其涉及一种触控式平板显示器。 背景技术
目前的电容式触控屏可分为数字和模拟两种方式。 数字式电容触控屏是由每层 有多条平行电极的两层电极组成, 两层电极相互正交。 对各条电极上施加触控激励 信号, 当人的手指接触触控屏时, 手指与触控屏上的某些电极形成耦合电容, 并从 耦合电容流出漏电流。 触控探测电路通过检测漏电流, 确定两层电极上与手指形成 耦合电容的两条正交电极而确定触控位置。 此种方法只适合用于较粗的定位, 在要 求细致定位时, 要制做双层的细密电极, 成本太高。 并且, 数字式电容触控屏在置 于显示器前面时, 感测电极产生的反射又会使得显示不均勻。
模拟电容式触控屏可分为单层感测电极和双层感测电极两种方式。 单层感测电 极的模拟电容式触控屏是从单层面状电极的四个角向电极输入触控激励电流信号, 当人的手指接触触控屏时, 手指与电极形成耦合电容, 触控激励信号从耦合电容流 出的漏电流。 触控探测电路通过检测四个角分别流向电极电流的大小, 计算出从手 指流出电流的触控位置。 此种方法可以细致定位, 但控制电路的计算量大, 在环境 温度、 湿度改变时, 环境电场发生改变时, 会引起漂移, 造成定位不准确。 触控屏 在置于显示器前面时, 触控屏感测电极的不完全透射会使显示屏亮度降低, 触控屏 感测电极产生的反射又会使在强外界光环境下显示对比度的下降。
双层感测电极的模拟电容式触控屏是由每层有多条平行电极的两层电极组成, 两层电极相互正交。 对各条电极上施加触控激励信号, 当人的手指接触触控屏时, 手指与触控屏上的某些电极形成耦合电容, 并从耦合电容流出漏电流, 触控探测电 路通过检测各电极流出电流的大小, 分别在两层相互正交电极上计算出橫向或纵向 的触控位置。 此种方法可以细致定位, 对漂移问题也有改善, 但需对双层感测电极 逐条检测漏电流, 检测和计算量大, 检测和计算所需时间也随屏幕变大感测电极增 多而提高。 触控屏置于显示器前面, 触控屏感测电极产生的反射又会使得显示不均 勻, 和在强外界光环境下显示对比度的下降。 公开号为 CN1678980、 名称为触摸感测的发明专利说明书里揭示了一种以矩阵 平板显示器的电极作为触摸传感器的方法, 以使平板显示器具有感测触摸的能力。 但其方法是从平板显示器电极连接显示驱动电路引出端的对边, 也设置引出端连接 触摸探测电路, 让显示器电极分时或与显示驱动电路或与触摸探测电路连通, 以显 示器电极作为触控电极感测触摸。 从显示器行电极和列电极的两端都引出线分别连 接显示驱动电路和触摸探测电路的方法, 大大增加了引出线的密度和复杂性, 既加 重了成本更降低了可靠性。
申请号为 2006100948141、 名称为触控式平板显示器的发明专利说明书, 揭示 了一种触控探测电路与显示屏电极之间的连接方式, 通过模拟开关使显示屏电极或 传输显示驱动信号, 或传输并感测触控信号, 显示驱动和触控探测时分复用显示屏 电极, 显示屏电极既用于显示驱动又用于触控探测。 申请号为 2006101065583、 名 称为具有触控功能的平板显示器的发明专利说明书, 揭示了另一种触控探测电路与 显示屏电极之间的连接方式, 通过信号加载电路使显示屏电极同时传输显示驱动信 号和传输并感测触控信号, 显示驱动和触控探测同时共用显示屏电极, 显示屏电极 既用于显示驱动又用于触控探测。 所揭示的方式让触控探测电路与显示屏电极的连 接合理, 甚至还巧妙地利用了显示驱动电路中的选择和输出电路部分, 让触控探测 电路与显示屏电极的连接简单可行。
上述专利都是以扫描寻址的方式, 逐条对显示屏电极施加触控激励信号, 在行 列两个方向逐条电极探测触摸。 平板显示屏的行列电极交叉构成网格状, 对一条电 极施加的触控激励信号会在平板显示屏的网格状电极间串流, 从而影响到对被触电 极的判断。 发明内容
本发明就是为了控制触控信号在显示屏网格状电极间的流向, 提出了一系列对 显示屏电极施加触控激励和检测触控的方法。
本发明的技术问题通过以下的技术方案予以解决:
一种触控式平板显示器, 包括显示屏、 显示驱动电路、 触控探测电路, 以及用 于使显示屏电极既用于显示驱动又用于触控探测的选通电路或信号加载电路; 其中 所述选通电路使显示屏电极或与显示驱动电路连通传输显示驱动信号, 或与触控探 测电路连通传输触控信号, 显示驱动和触控探测时分复用显示屏电极; 所述信号加 载电路使显示屏电极同时传输显示驱动信号和触控信号, 显示驱动和触控探测同时 共用显示屏电极; 其特征在于: 在显示屏电极传输触控信号的时段中, 至少一时刻 对多于两条显示屏电极线同时施加有触控信号, 且触控探测电路选择其中至少一条 有屏蔽保护的显示屏电极线为检测电极; 所述检测电极是指在在施加有触控信号的 同时, 还检测流经检测电极触控信号的变化; 所述有屏蔽保护的显示屏电极线是指 在该电极线相邻或不相邻两侧的电极线上施加有检测信号的显示屏电极线, 或者在 与该电极线相交的电极线上施加有检测信号的显示屏电极线。
本发明的技术问题通过以下的优选或可选技术方案进一步予以解决: 根据本发明的一个具体方面, 所述显示屏电极线是无源显示屏的行电极线、 列 电极线等所有显示屏电极, 或是有源显示屏的行电极线、 列电极线等所有显示屏电 极。
根据本发明的另一个具体方面, 在对显示屏电极施加触控信号的时段中, 在对 检测电极施加触控信号并检测流经检测电极触控信号变化的同时, 也对与检测电极 相交的其他显示屏电极施加触控信号; 所述与检测电极相交的其他显示屏电极, 是 与检测电极相交的所有电极或与检测电极相交的部分电极。
根据本发明的另一个具体方面, 在对显示屏电极施加触控信号的时段中, 在对 检测电极施加触控信号并检测流经检测电极触控信号变化的同时, 也对与检测电极 不相交的其他显示屏电极施加触控信号;所述与检测电极不相交的其他显示屏电极, 是与检测电极不相交的所有电极或与检测电极不相交的部分电极。
根据本发明的另一个具体方面, 在对显示屏电极施加触控信号的时段中, 在对 检测电极施加触控信号并检测流经检测电极触控信号变化的同时, 也对与检测电极 相交的和与检测电极不相交的其他显示屏电极施加触控信号; 所述与检测电极相交 的和与检测电极不相交的其他显示屏电极, 是与检测电极相交的和与检测电极不相 交的所有电极, 或是与检测电极相交的和与检测电极不相交的部分电极。
根据本发明的另一个具体方面, 在对显示屏电极施加触控信号的时段中, 在对 检测电极施加触控信号并检测流经检测电极触控信号变化的同时, 也对与显示屏的 公共电极施加触控信号。 根据本发明的另一个具体方面, 所述触控信号可以是包括零幅值的交流信号, 也可以是包括零电位的直流信号。
根据本发明的另一个具体方面, 所述施加有触控信号的电极上所施加触控信号 的幅值、 相位、 频率或编码是相同的。 根据本发明的另一个具体方面, 所述施加有触控信号的电极上所施加触控信号 的幅值、 相位、 频率或编码中的至少一项是不同的。
根据本发明的另一个具体方面, 所述触控探测电路选择检测电极, 是同一时刻 选择一部分显示屏电极线作为一组检测电极。
根据本发明的另一个具体方面, 所述触控探测电路选择检测电极, 是同一时刻 选择两部分或多于两部分显示屏电极线分别作为两组或多于两组的检测电极, 同时 对各组检测电极施加触控信号, 并分别检测流经各组检测电极的触控信号的变化。
根据本发明的另一个具体方面, 所述触控探测电路选择检测电极是以扫描的方 式进行的, 不同时刻选择不同部分的显示屏电极线作为检测电极。 根据本发明的另一个具体方面,所述各组检测电极上所施加的触控信号的幅值、 相位、 频率或编码是相同的。
或者, 所述各组检测电极上所施加的触控信号的幅值、 相位、 频率或编码中的 至少一项是不同的。
根据本发明的另一个具体方面, 所述每一组检测电极是由一条或多条显示屏电 极线组成。
所述选通电路使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触 控探测电路连通传输触控信号, 选通电路可以是多路模拟开关, 也可以是其他起选 通作用的电路。
所述行信号加载电路将显示行驱动电路产生的显示驱动信号和触控探测电路产 生的与显示驱动信号特征不同的触控信号合成具有触控识别特征的驱动信号, 施加 到显示屏电极上。
本发明与现有技术对比的有益效果是:
本发明可以提高对触点位置判断的准确性。 本发明的触控式平板显示器通过对 检测电极和非检测电极同时施加触控信号, 减少触控信号在检测电极之间及检测电 极和非检测电极之间的流动, 控制了触控信号的流向, 提高了对被触电极判断的准 确性。
本发明通过对多组检测电极同时施加触控信号, 并分别检测流经各组检测电极 的触控信号的变化, 等于是将显示屏分成区域同时探测触控。 在以扫描的方式进行 触控探测时, 这种以多组检测电极分区同时扫描的探测方式, 缩短了探测整个显示 屏上触摸点的时间。 对各检测电极所施加触控信号的幅值、 相位、 频率或编码也可以调整为不同, 对非检测电极所施加触控信号的幅值、 相位、 频率或编码与对检测电极所施加的触 控信号的幅值、 相位、 频率或编码也可以调整为不同, 以便更精细地控制触控信号 的流向。
判断被触电极线的条件, 可以检测到流经的触控信号变化最大的、 并超过某设 定阈值的电极线为被触电极线, 触控式平板显示器以单点触控。 判断被触电极线的 条件,也可只以检测到流经的触控信号变化超过某设定阈值的电极线为被触电极线, 让本发明的触控式平板显示器允许同时多点触控。 这可以便于触控式平板显示器增 加更多的触控功能。 附图说明
图 1是本发明具体实施方式一和方式二的电气连接示意图;
图 2是本发明具体实施方式三的电气连接示意图;
图 3是本发明具体实施方式四和方式五的电气连接示意图;
图 4是本发明具体实施方式六、 方式七、 方式八和方式九的电气连接示意图; 图 5是本发明具体实施方式十的电气连接示意图;
图 6是本发明具体实施方式十一和方式十二的电气连接示意图。 具体实施方式
平板显示器有多种,以液晶显示器 (LCD)为例,无源液晶显示器,比如扭曲(Twist
Nematic, 简称 TN) 型液晶显示器 (TN-LCD) 和超扭曲 ( Super Twist Nematic, 简 称 STN) 型液晶显示器 (STN-LCD), —般下基板玻璃上具有显示扫描电极线或显 示信号电极线(即行电极线), 上基板玻璃上具有显示信号电极线或显示扫描电极线 (即列电极线), 交叉部分即为显示象素。 有源液晶显示器, 比如薄膜晶体管 (Thin Film Transistor, 简称 TFT) 液晶显示器 (TFT-LCD) —般包括位于一基板玻璃上的 TFT阵列、 显示象素阵列, 与 TFT的柵极相连的显示扫描电极线 (即行电极线), 与 TFT 的源极或漏极相连的显示信号电极线 (即列电极线); 和位于另一基板玻璃 上的彩色滤光膜以及公共电极。 而等离子显示器(PDP)、 有源和无源有机发光二极 管显示器(OLED)等其他平板显示器, 同样具有显示扫描电极线和显示信号电极线 (即行列电极线), 本发明就是依靠平板显示器的行列电极线进行触控探测, 显示驱 动和触控探测复用显示屏电极, 让平板显示器在正常显示的同时实现触控探测。 如前所述, 在依靠平板显示器的行列电极线进行触控探测时, 如果只对检测电 极施加检测信号, 则有时会因串扰等的存在, 影响触控检测效果。 本发明人业已发 现众多的消除串扰的方法, 其中之一是对检测电极周围的电极也施加检测信号, 以 使串扰信号被这些多加的检测信号吸收或阻隔。 此时, 检测电极周围的这些施加有 检测信号的电极客观上就起到屏蔽保护作用, 使被检测电极免受干扰。 检测电极周 围这些施加有检测信号的电极也可以是检测电极, 也可以不是检测电极。
对检测电极周围的电极也施加检测信号的方式之一, 是对与检测电极相交的电 极线施加检测信号。
对检测电极周围的电极也施加检测信号的方式之再一, 是在检测电极线的每一 侧,, 都对至少一条与检测电极不相交的电极线施加检测信号。此种情况适于检测电 极线位于中间的时刻。
对检测电极周围的电极也施加检测信号的方式之又一, 是在检测电极线的有其他电 极线的这一侧, 对至少一条与检测电极不相交的电极线施加检测信号。 此种情况适 于检测电极线位于显示屏边缘的时刻。 因为此时检测电极线只有一侧还有其他电极 线, 因此只能也只需对这一侧的电极线施加检测信号。 具体实施方式一
如图 1 所示的触控式平板显示器 100, 包括无源显示屏 110、 显示行驱动电路 121和显示列驱动电路 122、 触控行探测电路 131和触控列探测电路 132、 行选通电 路 161和列选通电路 162等。显示屏 110具有行电极组 140(有行电极线 141、142、...、
14m,其中 m为大于 1的自然数),和列电极组 150 (有列电极线 151、 152 15η, 其中 η为大于 1的自然数)。 显示屏 110的行电极组 140既连接显示行驱动电路 121 又连接触控行探测电路 131, 列电极组 150既连接显示列驱动电路 122又连接触控 列探测电路 132。 触控式平板显示器内的行选通电路 161和列选通电路 162使显示 屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连通传输触控 信号, 显示驱动和触控探测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每一时刻选择一条显示屏电极 线触控信号施加触控信号并检测流经检测电极触控信号的变化、 其它显示屏电极线 仅施加触控信号而不检测。 按如下方式工作: 在显示时段, 触控式平板显示器 100 内的行选通电路 161和列选通电路 162使显示屏行电极组 140和列电极组 150, 分 别连通显示行驱动电路 121和显示列驱动电路 122传输显示驱动信号, 显示屏 110 处于显示态。
在触控时段, 触控式平板显示器 100内的行选通电路 161和列选通电路 162使 显示屏行电极组 140和列电极组 150, 分别连通触控行探测电路 131和触控列探测 电路 132传输触控信号; 触控行探测电路 131以扫描的方式, 每一时刻选择行电极 线 141、 142、 ...、 14M (其中 M为大于 1的自然数)中的一条电极线作为行检测电极 施加触控信号, 并检测流经此条电极线的触控信号的变化, 同时, 触控行探测电路 131 对其余所有非检测电极的行电极线也施加与对检测电极施加的触控信号完全相 同的触控信号, 触控列探测电路 132对所有的列电极线也施加与对检测电极施加的 触控信号完全相同的触控信号, 以触控行探测电路 131检测到流经的触控信号变化 最大的、并超过某设定阈值的行电极线为被触行电极线; 然后,触控列探测电路 132 以扫描的方式, 每一时刻选择列电极线 151、 152、 ...、 15N (其中 N为大于 1的自然 数)中的一条电极线作为列检测电极施加触控信号, 并检测流经此条电极线的触控信 号的变化, 同时, 触控列探测电路 132对其余所有非检测电极的列电极线也施加与 对检测电极施加的触控信号完全相同的触控信号, 触控行探测电路 131对所有的行 电极线也施加与对检测电极施加的触控信号完全相同的触控信号, 以触控列探测电 路 132检测到流经的触控信号变化最大的、 并超过某设定阈值的列电极线为被触列 电极线。 由探测到的被触行电极线和被触列电极线的交叉点, 确定出被触点位置。
让触控式平板显示器 100反复在显示时段和触控时段间转换, 显示驱动和触控 探测时分复用显示屏电极, 并控制每次触控时段不超过平板显示器的响应时间, 平 板显示器既可正常显示态, 又可进行触控探测, 形成识别 mxn触控点的触控式平板 显示器。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便 更精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加 触控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频 率中的一项或两项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连 通传输触控信号的选通电路, 可以是多路模拟开关, 也可以是其他起选通作用的电 路。
上述显示屏电极线的体线电阻最好小于 50ΚΩ, 以便在触控物靠近或接触显示 屏电极线两端时触控信号的差别足够小, 有利于检测。 具体实施方式二
如图 1 所示的触控式平板显示器 100, 包括无源显示屏 110、 显示行驱动电路 121和显示列驱动电路 122、 触控行探测电路 131和触控列探测电路 132、 行选通电 路 161和列选通电路 162等。显示屏 110具有行电极组 140(有行电极线 141、142、...、 14m,其中 m为大于 1的自然数),和列电极组 150 (有列电极线 151、 152 15η, 其中 η为大于 1的自然数)。 显示屏 110的行电极组 140既连接显示行驱动电路 121 又连接触控行探测电路 131, 列电极组 150既连接显示列驱动电路 122又连接触控 列探测电路 132。 触控式平板显示器内的行选通电路 161和列选通电路 162使显示 屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连通传输触控 信号, 显示驱动和触控探测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每一时刻选择一条显示屏电极 线触控信号施加触控信号并检测流经检测电极触控信号的变化、 并对与检测电极相 交的显示屏电极线仅施加触控信号而不检测。 按如下方式工作: 在显示时段, 触控 式平板显示器 100内的行选通电路 161和列选通电路 162使显示屏行电极组 140和 列电极组 150, 分别连通显示行驱动电路 121和显示列驱动电路 122传输显示驱动 信号, 显示屏 110处于显示态。
在触控时段, 触控式平板显示器 100内的行选通电路 161和列选通电路 162使 显示屏行电极组 140和列电极组 150, 分别连通触控行探测电路 131和触控列探测 电路 132传输触控信号; 触控行探测电路 131以扫描的方式, 每一时刻选择行电极 线 141、 142、 ...、 14M (其中 Μ为大于 1的自然数)中的一条电极线作为行检测电极 施加触控信号, 并检测流经此条电极线的触控信号的变化, 而不对其余的行检测电 极施加触控信号,
同时, 触控列探测电路 132对所有的列电极线也施加与对检测电极施加的触控 信号完全相同的触控信号, 以触控行探测电路 131检测到流经的触控信号变化最大 的、 并超过某设定阈值的行电极线为被触行电极线; 然后, 触控列探测电路 132以 扫描的方式, 每一时刻选择列电极线 151、 152、 ...、 15N (其中 Ν为大于 1的自然数) 中的一条电极线作为列检测电极施加触控信号, 并检测流经此条电极线的触控信号 的变化, 而不对其余的列检测电极施加触控信号, 同时, 触控行探测电路 131对所 有的行电极线也施加与对检测电极施加的触控信号完全相同的触控信号, 以触控列 探测电路 132检测到流经的触控信号变化最大的、 并超过某设定阈值的列电极线为 被触列电极线。 由探测到的被触行电极线和被触列电极线的交叉点, 确定出被触点 位置。
让触控式平板显示器 100反复在显示时段和触控时段间转换, 显示驱动和触控 探测时分复用显示屏电极, 并控制每次触控时段不超过平板显示器的响应时间, 平 板显示器既可正常显示态, 又可进行触控探测, 形成识别 mxn触控点的触控式平板 显示器。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便 更精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加 触控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频 率中的一项或两项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连 通传输触控信号的选通电路, 可以是多路模拟开关, 也可以是其他起选通作用的电 路。
上述显示屏电极线的体线电阻最好小于 50ΚΩ, 以便在触控物靠近或接触显示 屏电极线两端时触控信号的差别足够小, 有利于检测。 具体实施方式三
如图 2所示的触控式平板显示器 200, 包括无源显示屏 210、 显示行驱动电路
221和显示列驱动电路 222、 触控行探测电路 231和触控列探测电路 232、 行信号加 载电路 261和列信号加载电路 262等。 显示屏 210具有行电极组 240 (有行电极线 241、 242、 ...、 24m), 和列电极组 250 (有列电极线 251、 252、 ...、 25n)。 显示屏 210的行电极组 240通过行信号加载电路 261连接显示行驱动电路 221和触控行探 测电路 231, 列电极组 250通过列信号加载电路 262连接显示列驱动电路 222和触 控列探测电路 232。 触控式平板显示器内的信号加载电路使显示屏电极同时传输显 示驱动信号和触控信号, 显示驱动和触控探测同时共用显示屏电极。
上述触控式平板显示器的特点是采用同时共用、 每一时刻选择一条显示屏电极 线触控信号施加触控信号并检测流经检测电极触控信号的变化、 其它显示屏电极线 仅施加触控信号而不检测。 按如下方式工作: 触控行探测电路 231 以扫描的方式, 每一时刻选择行电极线 241、 242、 ...、 24m中的一条电极线作为检测电极, 行信号 加载电路 261将显示行驱动电路 221产生的显示驱动信号和触控行探测电路 231产 生的与显示驱动信号特征不同的触控信号合成具有触控识别特征的驱动信号, 施加 到此条电极线上, 并检测流经此条电极线的触控信号的变化, 同时, 行信号加载电 路 261对其余所有非检测电极的行电极线也施加显示驱动信号和触控信号的合成信 号, 其中触控信号的幅值、 相位、 频率都与对检测电极施加的信号中的触控信号部 分完全相同; 列信号加载电路 262将显示列驱动电路 222产生的显示驱动信号和触 控列探测电路 232产生的触控信号的合成信号施加到所有的列电极线上, 其中触控 信号的幅值、 相位、 频率都与对检测电极施加的信号中的触控信号部分完全相同, 以触控行探测电路 231检测到流经的触控信号变化最大的、 并超过某设定阈值的行 电极线为被触行电极线; 然后, 触控列探测电路 232以扫描的方式, 每一时刻选择 列电极线 251、 252、 ...、 25η中的一条电极线作为检测电极, 列信号加载电路 262 将显示列驱动电路 222产生的显示驱动信号和触控列探测电路 232产生的与显示驱 动信号特征不同的触控信号合成具有触控识别特征的驱动信号, 施加到此条电极线 上, 并检测流经此条电极线的触控信号的变化, 同时, 列信号加载电路 262对其余 所有非检测电极的列电极线也施加显示驱动信号和触控信号的合成信号, 其中触控 信号的幅值、 相位、 频率都与对检测电极施加的信号中的触控信号部分完全相同, 行信号加载电路 261将显示行驱动电路 221产生的显示驱动信号和触控行探测电路 231 产生的触控信号的合成信号施加到所有的行电极线上, 其中触控信号的幅值、 相位、 频率都与对检测电极施加的信号中的触控信号部分完全相同, 以触控列探测 电路 232检测到流经的触控信号变化最大的、 并超过某设定阈值的列电极线为被触 列电极线。 由探测到的被触行电极线和被触列电极线的交叉点,确定出被触点位置。
显示驱动和触控探测同时共用显示屏电极, 显示屏电极既用于显示驱动又用于 触控探测, 平板显示器在正常显示的同时进行触控探测, 形成识别 mxn触控点的触 控式平板显示器。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便 更精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加 触控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频 率中的一项或两项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
上述显示屏电极线的体线电阻最好小于 50ΚΩ, 以便在触控物靠近或接触显示 屏电极线两端时触控信号的差别足够小, 有利于检测。 具体实施方式四
如图 3所示的触控式平板显示器 300, 包括无源显示屏 310、 显示行驱动电路 321和显示列驱动电路 322、 触控行探测电路 331和触控列探测电路 332、 行选通电 路 361和列选通电路 362等。显示屏 310具有行电极组 340(有行电极线 341、342、 ...、 34i、 34i+l、 ...、 34m, 其中 i为大于 1的自然数, m是大于 i的自然数), 和列电极 组 350 (有列电极线 351、 352、 ...、 35j、 35j+l、 ...、 35η, 其中 j为大于 1的自然 数 ,η是大于 j的自然数)。 显示屏 310的行电极组 340既连接显示行驱动电路 321又 连接触控行探测电路 331, 列电极组 350既连接显示列驱动电路 322又连接触控列 探测电路 332。 触控式平板显示器内的行选通电路 361和列选通电路 362使显示屏 电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连通传输触控信 号, 显示驱动和触控探测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每一时刻选择一组显示屏电极 线触控信号施加触控信号并检测流经检测电极触控信号的变化、 其它显示屏电极线 仅施加触控信号而不检测。 按如下方式工作: 在显示时段, 触控式平板显示器 300 内的行选通电路 361和列选通电路 362使显示屏行电极组 340和列电极组 350, 分 别连通显示行驱动电路 321和显示列驱动电路 322传输显示驱动信号, 显示屏 310 处于显示态。
在触控时段, 触控式平板显示器 300内的行选通电路 361和列选通电路 362使 显示屏行电极组 340和列电极组 350, 分别连通触控行探测电路 331和触控列探测 电路 332传输触控信号, 触控行探测电路 331以扫描的方式, 每一时刻从行电极线 341、 342、 ...、 34Ϊ 中选择一条电极线作为检测电极施加触控信号, 从行电极线 34i+l、 ...、 34m中选择另一条电极线也作为检测电极施加触控信号, 并分别检测流 经此两条电极线的触控信号的变化, 同时, 触控行探测电路 331对其余所有非检测 电极的行电极线也施加幅值、 相位、 频率都完全相同的触控信号, 触控列探测电路 332 对所有的列电极线也施加幅值、 相位、 频率都完全相同的触控信号, 以触控行 探测电路 331在所有行电极线 341、 342、 ...、 34i、 34i+l、 ...、 34m中检测到流经 的触控信号变化最大的、 并超过某设定阈值的行电极线为被触行电极线; 然后, 触 控列探测电路 332以扫描的方式, 每一时刻从列电极线 351、 352、 ...、 35j中选择 一条电极线作为检测电极施加触控信号, 从列电极线 35j+l、 ...、 35η中选择另一条 电极线也作为检测电极施加触控信号, 并分别检测流经此两条电极线的触控信号的 变化, 同时, 触控列探测电路 332对其余所有非检测电极的列电极线也施加幅值、 相位、 频率都完全相同的触控信号, 触控行探测电路 331对所有的行电极线也施加 幅值、 相位、 频率都完全相同的触控信号, 以触控列探测电路 332在所有列电极线 351、 352、 ...、 35j、 35j+l、 ...、 35η中检测到流经的触控信号变化最大的、 并超过 某设定阈值的列电极线为被触列电极线。 由探测到的被触行电极线和被触列电极线 的交叉点, 确定出被触点位置。
让触控式平板显示器 300反复在显示时段和触控时段间转换, 显示驱动和触控 探测时分复用显示屏电极, 并控制每次触控时段不超过平板显示器的响应时间, 平 板显示器既可正常显示态, 又可进行触控探测, 形成识别 mxn触控点的触控式平板 显示器。
由于在触控时段触控行探测电路 331 同时选择了两条显示屏电极线作为检测电 极, 以分区同时扫描的方式进行触控探测, 缩短了探测整个显示屏上触摸点的时间。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便 更精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加 触控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频 率中的一项或两项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连 通传输触控信号的选通电路, 可以是多路模拟开关, 也可以是其他起选通作用的电 路。 具体实施方式五
如图 3所示的触控式平板显示器 300, 包括无源显示屏 310、 显示行驱动电路 321和显示列驱动电路 322、 触控行探测电路 331和触控列探测电路 332、 行选通电 路 361和列选通电路 362等。显示屏 310具有行电极组 340行电极线 341、 342、 ...、 34i、 34i+l、 ...、 34m, 和列电极组 350列电极线 351、 352、 ...、 35j、 35j+l、 ...、 35n。显示屏 310的行电极组 340既连接显示行驱动电路 321又连接触控行探测电路 331, 列电极组 350既连接显示列驱动电路 322又连接触控列探测电路 332。 触控式 平板显示器内的行选通电路 361和列选通电路 362使显示屏电极或与显示驱动电路 连通传输显示驱动信号、 或与触控探测电路连通传输触控信号, 显示驱动和触控探 测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每一时刻选择一组显示屏电极 线触控信号施加触控信号并检测流经检测电极触控信号的变化、 其它显示屏电极线 仅施加触控信号而不检测; 上下分区进行同时检测。 按如下方式工作: 在显示时段, 触控式平板显示器 300内的行选通电路 361和列选通电路 362使显示屏行电极组 340 和列电极组 350, 分别连通显示行驱动电路 321和显示列驱动电路 322传输显示驱 动信号, 显示屏 310处于显示态。
在触控时段, 触控式平板显示器 300内的行选通电路 361和列选通电路 362使 显示屏行电极组 340和列电极组 350, 分别连通触控行探测电路 331和触控列探测 电路 332传输触控信号, 触控行探测电路 331以扫描的方式, 每一时刻从行电极线 341、 342、 ...、 34Ϊ 中选择一条电极线作为检测电极施加触控信号, 从行电极线 34i+l、 ...、 34m中选择另一条电极线作也为检测电极施加触控信号, 并分别检测流 经此两条电极线的触控信号的变化, 同时, 触控行探测电路 331对其余所有非检测 电极的行电极线也施加幅值、 相位、 频率都完全相同的触控信号, 触控列探测电路 332 对所有的列电极线也施加幅值、 相位、 频率都完全相同的触控信号, 以触控行 探测电路 331在行电极线 341、 342、 ...、 34i中检测到流经的触控信号变化最大的、 并超过某设定阈值的行电极线为被触行电极线, 也以行电极线 34i+l、 ...、 34m中检 测到流经的触控信号变化最大的、 并超过某设定阈值的行电极线为被触行电极线; 然后, 触控列探测电路 332以扫描的方式, 每一时刻从列电极线 351、 352、 ...、 35j、 35j+l、 ...、 35η中选择一条电极线作为检测电极施加触控信号, 并检测流经此条电 极线的触控信号的变化, 同时, 触控列探测电路 332对其余所有非检测电极的列电 极线也施加幅值、 相位、 频率都完全相同的触控信号, 触控行探测电路 331对所有 的行电极线也施加幅值、相位、频率都完全相同的触控信号, 以触控列探测电路 332 在所有列电极线 351、 352、 ...、 35j、 35j+l、 ...、 35η中检测到流经的触控信号变化 最大的、 并超过某设定阈值的列电极线为被触列电极线。 由探测到的被触行电极线 和被触列电极线的交叉点, 确定出被触点位置。
让触控式平板显示器 300反复在显示时段和触控时段间转换, 显示驱动和触控 探测时分复用显示屏电极, 并控制每次触控时段不超过平板显示器的响应时间, 平 板显示器既可正常显示态, 又可进行触控探测。 形成以行电极线 34i为分界, 分别 在显示屏 310上下半区识别 ixn触控点和 (m-i)xN触控点的触控式平板显示器。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便 更精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加 触控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频 率中的一项或两项不同。
显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连通 传输触控信号的选通电路, 可以是多路模拟开关, 也可以是其他起选通作用的电路。 具体实施方式六
如图 4所示的触控式平板显示器 400, 包括有源显示屏 410、 行显示驱动电路 421、 列显示驱动电路 422和公共电极显示驱动电路 423、 行触控探测电路 431、 列 触控探测电路 432和公共电极触控电路 433、行选通电路 471、列选通电路 472和公 共电极选通电路 473等。将有源显示屏 410的 TFT阵列、 显示象素阵列、 与 TFT的 柵极相连的显示扫描电极组 (即行电极组) 440、 与 TFT 的源极或漏极相连的显示 信号电极组 (即列电极组) 450 设置于更靠近使用者的上基板玻璃上, 彩色滤光膜 以及公共电极 460设置于下基板玻璃上;行电极组 440具有行电极线 441、 ...、44h、 ...、 44i、 ...、 44m, 列电极组 450具有列电极线 451、 ...、 45j、 ...、 45k、 ...、 45n。 显 示屏 410的行电极组 440既连接行显示驱动电路 421又连接行触控探测电路 431, 列电极组 450既连接列显示驱动电路 422又连接列触控探测电路 432,公共电极 460 既连接公共电极显示驱动电路 423又连接公共电极触控电路 433。 触控式平板显示 器内的行选通电路 471、 列选通电路 472和公共电极选通电路 473使显示屏电极, 在显示扫描帧内与显示驱动电路连通传输显示驱动信号, 在显示扫描帧间与触控探 测电路连通传输触控信号, 显示驱动和触控探测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每一时刻选择一条显示屏电极 线触控信号施加触控信号、 并检测流经检测电极触控信号的变化、 对其他显示屏行 列电极线和公共电极也施加触控信号。 按如下方式工作: 在显示扫描帧内即显示时 段, 触控式平板显示器 400内的行选通电路 471、 列选通电路 472和公共电极选通 电路 473, 使显示屏行电极组 440、 列电极组 450和公共电极 460, 分别连通行显示 驱动电路 421、 列显示驱动电路 422和公共电极显示驱动电路 423传输显示驱动信 号, 显示屏 410处于显示态。
在显示扫描帧间即触控时段, 触控式平板显示器 400 内的行选通电路 471、 列 选通电路 472和公共电极选通电路 473, 使显示屏行电极组 440、列电极组 450和公 共电极 460, 分别连通行触控探测电路 431、列触控探测电路 432和公共电极触控电 路 433传输触控信号; 行触控探测电路 431 以扫描的方式, 每次轮流选择行行电极 组 440中的一条电极线作为行检测电极施加触控信号, 并检测流经此条电极线的触 控信号的变化; 同时, 行触控探测电路 431也对行检测电极外的其余行电极线施加 与对检测电极施加的触控信号幅值、 相位、 频率都相同的触控信号, 列触控探测电 路 432对列电极组 450的所有列电极线也施加与对检测电极施加的触控信号相位、 频率相同而幅值不同的触控信号, 公共电极触控电路 433对公共电极 460也施加触 控信号; 以行触控探测电路 431检测到流经的触控信号变化最大的、 并超过某设定 阈值的行电极线为被触行电极线; 然后, 列触控探测电路 432以扫描的方式, 每次 轮流选择列电极组 450中的一条电极线作为列检测电极施加触控信号, 并检测流经 此条电极线的触控信号的变化, 同时, 列触控探测电路 432也对列检测电极外的其 余列电极线施加与对检测电极施加的触控信号幅值、相位、频率都相同的触控信号, 行触控探测电路 431对所有行电极线也施加与对检测电极施加的触控信号相位、 频 率相同而幅值不同的触控信号, 公共电极触控电路 433对公共电极 460也施加触控 信号; 以列触控探测电路 432检测到流经的触控信号变化最大的、 并超过某设定阈 值的列电极线为被触列电极线。由探测到的被触行电极线和被触列电极线的交叉点, 确定出被触点位置。
触控式平板显示器 400反复在显示扫描帧内的显示时段和在显示扫描帧间的触 控时段间转换, 显示驱动和触控探测时分复用显示屏电极, 平板显示器既可正常显 示态, 又可进行触控探测, 形成识别 mxn触控点的触控式平板显示器。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率可以调整为不同, 以便更 精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加触 控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频率 中的一项或两项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连 通传输触控信号的选通电路, 可以是多路模拟开关, 也可以是其他起选通作用的电 路。
上述显示屏电极线的体线电阻最好小于 50ΚΩ, 以便在触控物靠近或接触显示 屏电极线两端时触控信号的差别足够小, 有利于检测。 具体实施方式七
如图 4所示的触控式平板显示器 400, 包括有源显示屏 410、 行显示驱动电路
421、 列显示驱动电路 422和公共电极显示驱动电路 423、 行触控探测电路 431、 列 触控探测电路 432和公共电极触控电路 433、行选通电路 471、列选通电路 472和公 共电极选通电路 473等。将有源显示屏 410的 TFT阵列、 显示象素阵列、 与 TFT的 柵极相连的显示扫描电极组 (即行电极组) 440、 与 TFT 的源极或漏极相连的显示 信号电极组 (即列电极组) 450 设置于更靠近使用者的上基板玻璃上, 彩色滤光膜 以及公共电极 460设置于下基板玻璃上;行电极组 440具有行电极线 441、 ...、44h、 ...、 44i、 ...、 44m, 列电极组 450具有列电极线 451、 ...、 45j、 ...、 45k、 ...、 45n。 显 示屏 410的行电极组 440既连接行显示驱动电路 421又连接行触控探测电路 431, 列电极组 450既连接列显示驱动电路 422又连接列触控探测电路 432,公共电极 460 既连接公共电极显示驱动电路 423又连接公共电极触控电路 433。 触控式平板显示 器内的行选通电路 471、 列选通电路 472和公共电极选通电路 473使显示屏电极, 在显示扫描帧内与显示驱动电路连通传输显示驱动信号, 在显示扫描帧间与触控探 测电路连通传输触控信号, 显示驱动和触控探测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每一时刻选择一条显示屏电极 线触控信号施加触控信号、 并检测流经检测电极触控信号的变化、 对与检测电极平 行的其他显示屏电极线不施加触控信号、 对与检测电极相交的显示屏电极线和公共 电极也施加触控信号。 按如下方式工作: 在显示扫描帧内即显示时段, 触控式平板 显示器 400内的行选通电路 471、列选通电路 472和公共电极选通电路 473, 使显示 屏行电极组 440、 列电极组 450和公共电极 460, 分别连通行显示驱动电路 421、 列 显示驱动电路 422和公共电极显示驱动电路 423传输显示驱动信号, 显示屏 410处 于显示态。
在显示扫描帧间即触控时段, 触控式平板显示器 400 内的行选通电路 471、 列 选通电路 472和公共电极选通电路 473, 使显示屏行电极组 440、列电极组 450和公 共电极 460, 分别连通行触控探测电路 431、列触控探测电路 432和公共电极触控电 路 433传输触控信号; 行触控探测电路 431 以扫描的方式, 每一时刻只轮流选择行 电极线 441、 44h、 44i和 44m中的一条电极线作为行检测电极施加触控信号, 并检 测流经此条电极线的触控信号的变化; 同时, 行触控探测电路 431不对行检测电极 外的其余行电极线施加触控信号, 列触控探测电路 432对列电极组 450的所有列电 极线也施加与对检测电极施加的触控信号相位、 频率相同而幅值不同的触控信号, 公共电极触控电路 433对公共电极 460也施加触控信号; 以行触控探测电路 431检 测到流经的触控信号变化最大的、 并超过某设定阈值的行电极线为被触行电极线; 然后, 列触控探测电路 432以扫描的方式, 每一时刻只轮流选择列电极线 451、 45j、 45k和 45η中的一条电极线作为列检测电极施加触控信号, 并检测流经此条电极线 的触控信号的变化, 同时, 列触控探测电路 432不对列检测电极外的其余列电极线 施加触控信号, 行触控探测电路 431对所有行电极线也施加与对检测电极施加的触 控信号相位、 频率相同而幅值不同的触控信号, 公共电极触控电路 433对公共电极 460也施加触控信号; 以列触控探测电路 432检测到流经的触控信号变化最大的、 并超过某设定阈值的列电极线为被触列电极线。 由探测到的被触行电极线和被触列 电极线的交叉点, 确定出被触点位置。
触控式平板显示器 400反复在显示扫描帧内的显示时段和在显示扫描帧间的触 控时段间转换, 显示驱动和触控探测时分复用显示屏电极, 平板显示器既可正常显 示态, 又可进行触控探测, 形成识别 4x4触控点的触控式平板显示器。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率可以调整为不同, 以便更 精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加触 控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频率 中的一项或两项不同。 判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连 通传输触控信号的选通电路, 可以是多路模拟开关, 也可以是其他起选通作用的电 路。
上述显示屏电极线的体线电阻最好小于 50ΚΩ, 以便在触控物靠近或接触显示 屏电极线两端时触控信号的差别足够小, 有利于检测。 具体实施方式八
如图 4所示的触控式平板显示器 400, 包括有源显示屏 410、 行显示驱动电路 421、 列显示驱动电路 422和公共电极显示驱动电路 423、 行触控探测电路 431、 列 触控探测电路 432和公共电极触控电路 433、行选通电路 471、列选通电路 472和公 共电极选通电路 473等。将有源显示屏 410的 TFT阵列、 显示象素阵列、 与 TFT的 柵极相连的显示扫描电极组 (即行电极组) 440、 与 TFT 的源极或漏极相连的显示 信号电极组 (即列电极组) 450 设置于更靠近使用者的上基板玻璃上, 彩色滤光膜 以及公共电极 460设置于下基板玻璃上;行电极组 440具有行电极线 441、 ...、44h、 ...、 44i、 ...、 44m, 列电极组 450具有列电极线 451、 ...、 45j、 ...、 45k、 ...、 45n。 显 示屏 410的行电极组 440既连接显示行驱动电路 421又连接触控行探测电路 431, 列电极组 450既连接显示列驱动电路 422又连接触控列探测电路 432。 触控式平板 显示器内的行选通电路 471和列选通电路 472使显示屏电极, 在显示扫描帧内与显 示驱动电路连通传输显示驱动信号, 在显示扫描帧间与触控探测电路连通传输触控 信号, 显示驱动和触控探测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每一时刻只对选择数条显示屏 电极线触控信号同时施加触控信号、 并检测流经检测电极触控信号的变化、 其余显 示屏行列电极线不施加触控信号、 对公共电极也施加触控信号。 按如下方式工作: 在显示扫描帧内即显示时段, 触控式平板显示器 400 内的行选通电路 471、 列选通 电路 472和公共电极选通电路 473, 使显示屏行电极组 440、列电极组 450和公共电 极 460, 分别连通行显示驱动电路 421、列显示驱动电路 422和公共电极显示驱动电 路 423传输显示驱动信号, 显示屏 410处于显示态。
在显示扫描帧间即触控时段, 触控式平板显示器 400内的行选通电路 471和列 选通电路 472和公共电极选通电路 473, 使显示屏行电极组 440和列电极组 450, 分 别连通行触控探测电路 431、列触控探测电路 432和公共电极触控电路 433; 行触控 探测电路 431同时选择行电极线 441、 44h、 44i和 44m分别作为四条行检测电极, 同时对四条检测电极施加幅值、 相位、 频率或编码都完全相同的触控信号, 同时分 别检测流经各组检测电极的触控信号的变化; 并且, 触控列探测电路 432同时选择 列电极线 451、 45j、 45k和 45η分别作为四条列检测电极, 同时对四条检测电极施 加与行检测电极触控信号相位、 频率相同而幅值不同的触控信号, 同时分别检测流 经各组检测电极的触控信号的变化; 并对其余所有非检测电极的行列电极线都不施 加触控信号; 公共电极触控电路 433对公共电极 460施加触控信号; 以触控行探测 电路 431在四条行检测电极 441、 44h、 44i和 44m中检测到流经的触控信号变化最 大的、 并超过某设定阈值的列电极线为被触行电极线, 以触控列探测电路 432在四 条列检测电极 451、 45j、 45k和 45η中检测到流经的触控信号变化最大的、 并超过 某设定阈值的列电极线为被触列电极线。 由探测到的被触行电极线和被触列电极线 的交叉点, 确定出被触点位置。
触控式平板显示器 400反复在显示扫描帧内的显示时段和在显示扫描帧间的触 控时段间转换, 显示驱动和触控探测时分复用显示屏电极, 平板显示器既可正常显 示态, 又可进行触控探测, 形成识别 4x4触控点的触控式平板显示器。
由于在触控时段行触控探测电路 431和列触控探测电路 432分别选择了四条显 示屏电极线作为检测电极, 并同时进行触控探测, 缩短了探测整个显示屏上触摸点 的时间。
对检测电极施加触控信号的同时, 对各检测电极所施加触控信号的幅值、相位、 频率或编码可以调整为不同, 以便更精细地控制触控信号的流向。 对检测电极施加 触控信号的不同, 可以是幅值、 相位、 频率或编码都不相同, 也可以只是幅值、 相 位、 频率或编码中的一项或多项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连 通传输触控信号的选通电路, 可以是多路模拟开关, 也可以是起选通作用的其他电 路。 具体实施方式九
如图 4所示的触控式平板显示器 400, 包括有源显示屏 410、 行显示驱动电路 421、 列显示驱动电路 422和公共电极显示驱动电路 423、 行触控探测电路 431、 列 触控探测电路 432和公共电极触控电路 433、行选通电路 471、列选通电路 472和公 共电极选通电路 473等。将有源显示屏 410的 TFT阵列、 显示象素阵列、 与 TFT的 柵极相连的显示扫描电极组 (即行电极组) 440、 与 TFT 的源极或漏极相连的显示 信号电极组 (即列电极组) 450 设置于更靠近使用者的上基板玻璃上, 彩色滤光膜 以及公共电极 460设置于下基板玻璃上;行电极组 440具有行电极线 441、 ...、44h、 ...、 44i、 ...、 44m, 列电极组 450具有列电极线 451、 ...、 45j、 ...、 45k、 ...、 45n。 显 示屏 410的行电极组 440既连接显示行驱动电路 421又连接触控行探测电路 431, 列电极组 450既连接显示列驱动电路 422又连接触控列探测电路 432,公共电极 460 既连接公共电极显示驱动电路 423又连接公共电极触控电路 433。 触控式平板显示 器内的行选通电路 471和列选通电路 472使显示屏电极, 在显示扫描帧内与显示驱 动电路连通传输显示驱动信号,在显示扫描帧间与触控探测电路连通传输触控信号, 显示驱动和触控探测时分复用显示屏电极。
上述触控式平板显示器的特点是采用时分复用、 每次都同时选择固定的数行和 相邻数列显示屏电极线触控信号施加触控信号并检测流经检测电极触控信号的变化 对其余显示屏行列电极线不施加触控信号、 对公共电极施加触控信号。 按如下方式 工作: 在显示扫描帧内即显示时段, 触控式平板显示器 400 内的行选通电路 471、 列选通电路 472和公共电极选通电路 473, 使显示屏行电极组 440、列电极组 450和 公共电极 460, 分别连通显示行驱动电路 421、显示列驱动电路 422和公共电极显示 驱动电路 423传输显示驱动信号, 显示屏 410处于显示态。 在显示扫描帧间即触控 时段, 触控式平板显示器 400内的行选通电路 471和列选通电路 472使显示屏行电 极组 440和列电极组 450, 分别连通行触控探测电路 431和列触控探测电路 432; 行 探测触控电路 431同时选择行电极线 441、 44h、 44i和 44m分别作为四条行检测电 极, 同时对四条检测电极施加幅值、 相位、 频率或编码都完全相同的触控信号, 并 分别检测流经各组检测电极的触控信号的变化; 列触控探测电路 432同时选择列电 极线 451、 45j、 45k和 45η分别作为四条列检测电极, 同时对四条检测电极施加与 行检测电极触控信号相位、 频率相同而幅值不同的触控信号, 并分别检测流经各组 检测电极的触控信号的变化; 对其余所有非检测电极的行列电极线都施加与对检测 电极施加的相同的触控信号; 公共电极触控电路 433对公共电极 460也施加触控信 号; 以行触控探测电路 431在四条行检测电极 441、 44h、 44i和 44m中检测到流经 的触控信号变化最大的、 并超过某设定阈值的列电极线为被触行电极线, 以列触控 探测电路 432在四条列检测电极 451、 45j、 45k和 45η中检测到流经的触控信号变 化最大的、 并超过某设定阈值的列电极线为被触列电极线。 由探测到的被触行电极 线和被触列电极线的交叉点, 确定出被触点位置。
触控式平板显示器 400反复在显示扫描帧内的显示时段和在显示扫描帧间的触 控时段间转换, 显示驱动和触控探测时分复用显示屏电极, 平板显示器既可正常显 示态, 又可进行触控探测, 形成识别 4x4触控点的触控式平板显示器。
由于在触控时段行触控探测电路 431和列触控探测电路 432分别选择了四条显 示屏电极线作为检测电极, 并同时进行触控探测, 缩短了探测整个显示屏上触摸点 的时间。
对各检测电极所施加触控信号的幅值、 相位、 频率或编码也可以调整为不同, 以便更精细地控制触控信号的流向。对检测电极施加触控信号的不同, 可以是幅值、 相位、 频率或编码都不相同, 也可以只是幅值、 相位、 频率或编码中的一项或多项 不同。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率或编码与对检测电极所施加的触控信号的幅值、 相位、 频率或编码可以调整为 不同, 以便更精细地控制触控信号的流向。 对各电极所施加触控信号的不同, 可以 是幅值、 相位、 频率或编码都不相同, 也可以只是幅值、 相位、 频率或编码中的一 项或多项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
使显示屏电极或与显示驱动电路连通传输显示驱动信号、 或与触控探测电路连 通传输触控信号的选通电路, 可以是多路模拟开关, 也可以是起选通作用的其他电 路。 具体实施方式十
如图 5所示的触控式平板显示器 500, 包括无源显示屏 510、 行显示驱动电路 521和列显示驱动电路 522、 行触控探测电路 531和列触控探测电路 532、 行信号加 载电路 561和列信号加载电路 562等。 显示屏 510具有行电极组 540 (有行电极线 541、 542、 ...、 54i、 54i+l、 ...、 54m), 和列电极组 550 (有列电极线 551、 552、 ...、 55j、 55j+l、 ...、 55η)。 显示屏 510的行电极组 540通过行信号加载电路 561连接行 显示驱动电路 521和行触控探测电路 531, 列电极组 550通过列信号加载电路 562 连接列显示驱动电路 522和列触控探测电路 532。 触控式平板显示器内的信号加载 电路使显示屏电极同时传输显示驱动信号和触控信号, 显示驱动和触控探测同时共 用显示屏电极。
上述触控式平板显示器的特点是采用同时共用、 每一时刻选择一组相互间隔的 显示屏电极线触控信号施加触控信号并检测流经检测电极触控信号的变化、 其余显 示屏电极线仅施加触控信号而不检测。 按如下方式工作: 行触控探测电路 531 以扫 描的方式, 每一时刻从行电极线 541、 542、 ...、 54Ϊ 中选择一条电极线作为检测电 极, 从行电极线 54i+l、 ...、 54m中选择另一条电极线也作为检测电极, 行信号加载 电路 561将行显示驱动电路 521产生的显示驱动信号和行触控探测电路 531产生的 与显示驱动信号特征不同的触控信号合成具有触控识别特征的驱动信号, 施加到此 两条电极线上, 并分别检测流经此两条电极线的触控信号的变化, 同时, 行信号加 载电路 561对其余所有非检测电极的行电极线也施加显示驱动信号和触控信号的合 成信号, 其中触控信号的幅值、 相位、 频率都与对检测电极施加的信号中的触控信 号部分完全相同; 列信号加载电路 562将列显示驱动电路 522产生的显示驱动信号 和列触控探测电路 532产生的触控信号的合成信号施加到所有的列电极线上, 其中 触控信号的幅值、 相位、 频率都与对检测电极施加的信号中的触控信号部分完全相 同, 以行触控探测电路 531 在所有行电极线 541、 542、 ...、 54i、 54i+l、 ...、 54m 中检测到流经的触控信号变化最大的、 并超过某设定阈值的行电极线为被触行电极 线。
然后, 列触控探测电路 532以扫描的方式, 每一时刻从列电极线 551、 552、 ...、 55i中选择一条电极线作为检测电极, 从列电极线 55i+l、 ...、 55m中选择另一条电 极线也作为检测电极, 列信号加载电路 562将列显示驱动电路 522产生的显示驱动 信号和列触控探测电路 532产生的与显示驱动信号特征不同的触控信号合成具有触 控识别特征的驱动信号, 施加到此两条电极线上, 并分别检测流经此两条电极线的 触控信号的变化, 同时, 列信号加载电路 562对其余所有非检测电极的列电极线也 施加显示驱动信号和触控信号的合成信号, 其中触控信号的幅值、 相位、 频率都与 对检测电极施加的信号中的触控信号部分完全相同, 行信号加载电路 561将行显示 驱动电路 521产生的显示驱动信号和行触控探测电路 531产生的触控信号的合成信 号施加到所有的行电极线上, 其中触控信号的幅值、 相位、 频率都与对检测电极施 加的信号中的触控信号部分完全相同; 以触控列探测电路 532在所有列电极线 551、 552、 ...、 55i、 55i+l、 ...、 55m中检测到流经的触控信号变化最大的、 并超过某设 定阈值的列电极线为被触列电极线。 由探测到的被触行电极线和被触列电极线的交 叉点,确定出被触点位置。
显示驱动和触控探测同时共用显示屏电极, 显示屏电极既用于显示驱动又用于 触控探测, 平板显示器在正常显示的同时进行触控探测, 形成识别 mxn触控点的触 控式平板显示器。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便 更精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加 触控信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频 率中的一项或两项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。 具体实施方式 ^一
如图 6所示的触控式平板显示器 600, 包括无源显示屏 610、 行显示驱动电路 621和列显示驱动电路 622、 行触控探测电路 631和列触控探测电路 632、 行信号加 载电路 661和列信号加载电路 662等。 显示屏 610具有行电极组 640 (有行电极线 641、 ...、 64h、 ...、 64i、 ...、 64m), 和列电极组 650 (列电极线 651、 ...、 65j、 ...、 65k、 ...、 65n)。 显示屏 610的行电极组 640通过行信号加载电路 661连接行显示驱 动电路 621和行触控探测电路 631, 列电极组 650通过列信号加载电路 662连接列 显示驱动电路 622和列触控探测电路 632。 触控式平板显示器内的信号加载电路使 显示屏电极同时传输显示驱动信号和触控信号, 显示驱动和触控探测同时共用显示 屏电极。
上述触控式平板显示器的特点是采用同时共用、 每一时刻选择一组显示屏电极 线触控信号施加触控信号并检测流经检测电极触控信号的变化、 其余显示屏电极线 仅施加触控信号而不检测。 按如下方式工作: 行触控探测电路 631 同时选择行电极 线 641、 64h、 64i和 64m分别作为四条行检测电极, 行信号加载电路 661将行显示 驱动电路 621产生的显示驱动信号和行触控探测电路 631产生的与显示驱动信号特 征不同的触控信号合成具有触控识别特征的驱动信号, 施加到此四条电极线上, 并 分别检测流经此四条电极线的触控信号的变化, 行信号加载电路 661 同时对其余所 有非检测电极的行电极线也施加显示驱动信号和触控信号的合成信号, 其中触控信 号的幅值、 相位、 频率都与对检测电极施加的信号中的触控信号部分完全相同, 列 信号加载电路 662将列显示驱动电路 622产生的显示驱动信号和列触控探测电路 632 产生的触控信号的合成信号施加到所有的列电极线上, 其中触控信号的幅值、相位、 频率都与对行检测电极施加的信号中的触控信号部分完全相同, 以行触控探测电路 631在四条行检测电极 641、 64h、 64i和 64m中检测到流经的触控信号变化最大的、 并超过某设定阈值的列电极线为被触行电极线。
然后, 列触控探测电路 632同时选择列电极线 651、 65j、 65k和 65η分别作为 四条列检测电极, 列信号加载电路 662将列显示驱动电路 622产生的显示驱动信号 和列触控探测电路 632产生的与显示驱动信号特征不同的触控信号合成具有触控识 别特征的驱动信号, 施加到此四条电极线上, 并分别检测流经此四条电极线的触控 信号的变化, 列信号加载电路 662同时对其余所有非检测电极的列电极线也施加显 示驱动信号和触控信号的合成信号, 其中触控信号的幅值、 相位、 频率都与对检测 电极施加的信号中的触控信号部分完全相同, 行信号加载电路 661将行显示驱动电 路 621产生的显示驱动信号和行触控探测电路 631产生的触控信号的合成信号施加 到所有的行电极线上, 其中触控信号的幅值、 相位、 频率都与对列检测电极施加的 信号中的触控信号部分完全相同, 以列触控探测电路 632在四条列检测电极 651、 65j、 65k和 65η中检测到流经的触控信号变化最大的、 并超过某设定阈值的列电极 线为被触列电极线。 由探测到的被触行电极线和被触列电极线的交叉点, 确定出被 触点位置。
显示驱动和触控探测同时共用显示屏电极, 显示屏电极既用于显示驱动又用于 触控探测, 平板显示器在正常显示的同时进行触控探测, 形成识别 4x4触控点的触 控式平板显示器。
对各检测电极所施加触控信号的幅值、 相位、 频率或编码也可以调整为不同, 以便更精细地控制触控信号的流向。对检测电极施加触控信号的不同, 可以是幅值、 相位、 频率或编码都不相同, 也可以只是幅值、 相位、 频率或编码中的一项或多项 不同。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、相位、 频率或编码与对检测电极所施加的触控信号的幅值、 相位、 频率或编码也可以调整 为不同, 以便更精细地控制触控信号的流向。 对各电极所施加触控信号的不同, 可 以是幅值、 相位、 频率或编码都不相同, 也可以只是幅值、 相位、 频率或编码中的 一项或多项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。 具体实施方式十二
如图 6所示的触控式平板显示器 600, 包括无源显示屏 610、 行显示驱动电路
621和列显示驱动电路 622、 行触控探测电路 631和列触控探测电路 632、 行信号加 载电路 661和列信号加载电路 662等。 显示屏 610具有行电极组 640 (有行电极线 641、 ...、 64h、 ...、 64i、 ...、 64m) , 和列电极组 650 (有列电极线 651、 ...、 65j、 ...、 65k、 ...、 65n)。 显示屏 610的行电极组 640通过行信号加载电路 661连接行显示驱 动电路 621和行触控探测电路 631, 列电极组 650通过列信号加载电路 662连接列 显示驱动电路 622和列触控探测电路 632。 触控式平板显示器内的信号加载电路使 显示屏电极同时传输显示驱动信号和触控信号, 显示驱动和触控探测同时共用显示 屏电极。
上述触控式平板显示器的特点是采用同时共用、 每一时刻选择数行和数列的显 示屏电极线触控信号施加触控信号并检测流经检测电极触控信号的变化、 其余显示 屏电极线施加显示驱动信号而不施加触控信号。 按如下方式工作: 行触控探测电路 631选择行电极线 641、 64h、 64i和 64m分别作为四条行检测电极, 行信号加载电 路 661将行显示驱动电路 621产生的显示驱动信号和行触控探测电路 631产生的与 显示驱动信号特征不同的触控信号合成具有触控识别特征的驱动信号, 同时施加到 此四条电极线上, 并分别检测流经此四条电极线的触控信号的变化, 行信号加载电 路 661 同时对其余所有非检测电极的行电极线只施加显示驱动信号、 不施加触控信 号; 同时, 列触控探测电路 632选择列电极线 651、 65j、 65k和 65η分别作为四条 列检测电极, 列信号加载电路 662将列显示驱动电路 622产生的显示驱动信号和列 触控探测电路 632产生的与显示驱动信号特征不同的触控信号合成具有触控识别特 征的驱动信号, 同时施加到此四条电极线上, 并分别检测流经此四条电极线的触控 信号的变化, 列信号加载电路 662同时对其余所有非检测电极的列电极线只施加显 示驱动信号、不施加触控信号; 以行触控探测电路 631在四条行检测电极 641、 64h、 64i和 64m中检测到流经的触控信号变化最大的、 并超过某设定阈值的列电极线为 被触行电极线, 以列触控探测电路 632在四条列检测电极 651、 65j、 65k和 65η中 检测到流经的触控信号变化最大的、并超过某设定阈值的列电极线为被触列电极线。 由探测到的被触行电极线和被触列电极线的交叉点, 确定出被触点位置。
显示驱动和触控探测同时共用显示屏电极, 显示屏电极既用于显示驱动又用于 触控探测, 平板显示器在正常显示的同时进行触控探测, 形成识别 4x4触控点的触 控式平板显示器。
对各检测电极所施加触控信号的幅值、 相位、 频率或编码也可以调整为不同, 以便更精细地控制触控信号的流向。对检测电极施加触控信号的不同, 可以是幅值、 相位、 频率或编码都不相同, 也可以只是幅值、 相位、 频率或编码中的一项或多项 不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大的、 并超过 某设定阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定 阈值的电极线为被触电极线, 让触控式平板显示器允许同时多点触控。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员 来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视 为属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种触控式平板显示器, 包括显示屏、 显示驱动电路、 触控探测电路, 以及 用于使显示屏电极既用于显示驱动又用于触控探测的选通电路或信号加载电路; 其 中所述选通电路使显示屏电极或与显示驱动电路连通传输显示驱动信号, 或与触控 探测电路连通传输触控信号, 显示驱动和触控探测时分复用显示屏电极; 所述信号 加载电路使显示屏电极同时传输显示驱动信号和触控信号, 显示驱动和触控探测同 时共用显示屏电极; 其特征在于:
在显示屏电极传输触控信号的时段中, 至少一时刻对多于两条显示屏电极线同 时施加有触控信号, 且触控探测电路选择其中至少一条有屏蔽保护的显示屏电极线 为检测电极; 所述检测电极是指在对该电极施加有触控信号的同时, 还检测流经检 测该电极触控信号的变化; 所述有屏蔽保护的显示屏电极线是指在该电极线相邻或 不相邻两侧的电极线上施加有检测信号的显示屏电极线, 或者在与该电极线相交的 电极线上施加有检测信号的显示屏电极线。
2、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
所述显示屏电极线是无源显示屏的行电极线、 列电极线等所有显示屏电极, 或 是有源显示屏的行电极线、 列电极线等所有显示屏电极。
3、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
在显示屏电极施加触控信号的时段中, 在对检测电极施加触控信号并检测流经 检测电极触控信号变化的同时, 也对与检测电极相交的其他显示屏电极施加触控信 号; 所述与检测电极相交的其他显示屏电极, 是与检测电极相交的所有电极或与检 测电极相交的部分电极。
4、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
在显示屏电极施加触控信号的时段中, 在对检测电极施加触控信号并检测流经 检测电极触控信号变化的同时, 也对与检测电极不相交的其他显示屏电极施加触控 信号; 所述与检测电极不相交的其他显示屏电极, 是与检测电极不相交的所有电极 或与检测电极不相交的部分电极。
5、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
在显示屏电极施加触控信号的时段中, 在对检测电极施加触控信号并检测流经 检测电极触控信号变化的同时, 也对与检测电极相交的和与检测电极不相交的其他 显示屏电极施加触控信号; 所述与检测电极相交的和与检测电极不相交的其他显示 屏电极, 是与检测电极相交的和与检测电极不相交的所有电极, 或是与检测电极相 交的和与检测电极不相交的部分电极。
6、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
在显示屏电极传输触控信号的时段中, 在对检测电极施加触控信号并检测流经 检测电极触控信号变化的同时, 也对与显示屏的公共电极施加触控信号。
7、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
所述触控信号可以是包括零幅值的交流信号,也可以是包括零电位的直流信号。
8、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
所述施加有触控信号的电极上所施加触控信号的幅值、 相位、 频率或编码是相 同的。
9、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
所述施加有触控信号的电极上所施加触控信号的幅值、 相位、 频率或编码中的 至少一项是不同的。
10、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
所述触控探测电路选择检测电极, 是同一时刻选择一部分显示屏电极线作为一 组检测电极。
11、 根据权利要求 1所述的触控式平板显示器, 其特征在于:
所述触控探测电路选择检测电极, 是同一时刻选择两部分或多于两部分显示屏 电极线分别作为两组或多于两组的检测电极, 同时对各组检测电极施加触控信号, 并分别检测流经各组检测电极的触控信号的变化。
12、 根据权利要求 10或 11所述的触控式平板显示器, 其特征在于: 所述触控探测电路选择检测电极是以扫描的方式进行的, 不同时刻选择不同部 分的显示屏电极线作为检测电极。
13、 根据权利要求 11所述的触控式平板显示器, 其特征在于:
所述各组检测电极上所施加的触控信号的幅值、 相位、 频率或编码是相同的。
14、 根据权利要求 11所述的触控式平板显示器, 其特征在于:
所述各组检测电极上所施加的触控信号的幅值、 相位、 频率或编码中的至少一 项是不同的。
15、 根据权利要求 1或 11所述的触控式平板显示器, 其特征在于:
所述每一组检测电极是由一条或多条显示屏电极线组成。
PCT/CN2009/072725 2008-07-21 2009-07-10 一种触控式平板显示器 WO2010009655A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09799970A EP2336864A4 (en) 2008-07-21 2009-07-10 FLAT PANEL DISPLAY WITH TOUCH CONTROL
JP2011519014A JP5453583B2 (ja) 2008-07-21 2009-07-10 タッチ型フラットパネルディスプレイ
US13/005,203 US8610680B2 (en) 2008-07-21 2011-01-12 Touch screen flat panel display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810133417XA CN101634917B (zh) 2008-07-21 2008-07-21 一种触控式平板显示器
CN200810133417.X 2008-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/005,203 Continuation US8610680B2 (en) 2008-07-21 2011-01-12 Touch screen flat panel display

Publications (1)

Publication Number Publication Date
WO2010009655A1 true WO2010009655A1 (zh) 2010-01-28

Family

ID=41570016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072725 WO2010009655A1 (zh) 2008-07-21 2009-07-10 一种触控式平板显示器

Country Status (5)

Country Link
US (1) US8610680B2 (zh)
EP (1) EP2336864A4 (zh)
JP (1) JP5453583B2 (zh)
CN (1) CN101634917B (zh)
WO (1) WO2010009655A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169648A1 (en) * 2010-12-31 2012-07-05 Shenzhen Super Perfect Optics Limited Touch screen 2d/3d display system and method
RU2467757C1 (ru) * 2011-06-03 2012-11-27 Государственное образовательное учреждение высшего профессионального образования Военно-медицинская академия им. С.М. Кирова (ВМедА) Способ лечения больных детей сахарным диабетом в стадии декомпенсации
WO2012143126A3 (de) * 2011-04-18 2013-03-07 Microchip Technology Germany Gmbh & Co. Kg Oled-interface
JP2014500846A (ja) * 2010-11-30 2014-01-16 コーニング インコーポレイテッド タッチスクリーン基板として使用するためのガラス物品/材料
US8643624B2 (en) 2009-03-18 2014-02-04 Synaptics Incorporated Capacitive sensing using a segmented common voltage electrode of a display
JP2014525098A (ja) * 2011-07-19 2014-09-25 アップル インコーポレイテッド タッチ感知ディスプレイ
US8970547B2 (en) 2012-02-01 2015-03-03 Synaptics Incorporated Noise-adapting touch sensing window
US9007336B2 (en) 2011-09-07 2015-04-14 Synaptics Incorporated Capacitive sensing during non-display update times
US9298309B2 (en) 2014-04-29 2016-03-29 Synaptics Incorporated Source driver touch transmitter in parallel with display drive
US9418626B2 (en) 2010-02-26 2016-08-16 Synaptics Incorporated Sensing during non-display update times
US9442615B2 (en) 2013-10-02 2016-09-13 Synaptics Incorporated Frequency shifting for simultaneous active matrix display update and in-cell capacitive touch
US9582099B2 (en) 2014-03-31 2017-02-28 Synaptics Incorporated Serrated input sensing intervals
US9898121B2 (en) 2010-04-30 2018-02-20 Synaptics Incorporated Integrated capacitive sensing and displaying
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
US10073550B2 (en) 2012-09-20 2018-09-11 Synaptics Incorporated Concurrent input sensing and display updating
US10073568B2 (en) 2012-08-15 2018-09-11 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
US10275070B2 (en) 2015-01-05 2019-04-30 Synaptics Incorporated Time sharing of display and sensing data
US10394391B2 (en) 2015-01-05 2019-08-27 Synaptics Incorporated System and method for reducing display artifacts
US10592022B2 (en) 2015-12-29 2020-03-17 Synaptics Incorporated Display device with an integrated sensing device having multiple gate driver circuits
CN111599304A (zh) * 2019-02-21 2020-08-28 厦门凌阳华芯科技有限公司 一种led显示触控模组及设备
CN114327113A (zh) * 2020-09-30 2022-04-12 京东方科技集团股份有限公司 显示触摸装置和控制方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453710B2 (ja) * 2007-03-19 2010-04-21 セイコーエプソン株式会社 液晶装置、電子機器および位置検出方法
CN101666931B (zh) * 2008-09-05 2011-12-28 北京京东方光电科技有限公司 液晶显示器、薄膜晶体管液晶显示器的阵列基板及其制造方法
CN101887333A (zh) * 2009-05-11 2010-11-17 智点科技(深圳)有限公司 一种数字式电容触控屏
TWI428797B (zh) * 2010-04-02 2014-03-01 Novatek Microelectronics Corp 具有觸控功能的顯示裝置以及觸控面板的二維感測方法
TWI435140B (zh) * 2010-04-09 2014-04-21 Wintek Corp 觸控顯示面板
CN102262472A (zh) * 2010-05-27 2011-11-30 智点科技(深圳)有限公司 一种触控式干涉调制显示器
TWI433005B (zh) 2010-06-29 2014-04-01 Novatek Microelectronics Corp 驅動方法、驅動裝置及觸控顯示裝置
CN102339156B (zh) * 2010-07-16 2014-07-16 联咏科技股份有限公司 驱动方法、驱动装置及触控显示装置
JP5307110B2 (ja) * 2010-12-01 2013-10-02 株式会社ジャパンディスプレイ タッチパネル
US9134858B2 (en) * 2011-11-03 2015-09-15 Innolux Corporation Touch panel for electrostatic discharge protection and electronic device using the same
CN106249942A (zh) * 2011-12-22 2016-12-21 深圳市汇顶科技股份有限公司 部分地与lcd显示器集成的电容式触摸感应器
US9098153B2 (en) * 2012-02-01 2015-08-04 Qualcomm Technologies, Inc. Touch panel excitation using a drive signal having time-varying characteristics
KR101330320B1 (ko) 2012-02-20 2013-11-14 엘지디스플레이 주식회사 터치스크린 일체형 표시장치 및 그 구동 방법
KR101315227B1 (ko) 2012-05-30 2013-10-07 엘지디스플레이 주식회사 터치스크린 일체형 표시장치 및 그 구동 방법
TW201351225A (zh) * 2012-06-11 2013-12-16 Giantplus Technology Co Ltd 內嵌式觸控顯示器電路結構
KR101416003B1 (ko) * 2012-06-20 2014-07-08 엘지디스플레이 주식회사 터치스크린 일체형 표시장치 및 그 구동 방법
KR101607694B1 (ko) 2012-06-21 2016-03-30 엘지디스플레이 주식회사 영상표시장치 및 터치 드라이버
CN102768604A (zh) * 2012-06-29 2012-11-07 京东方科技集团股份有限公司 一种电容式内嵌触摸屏、其触摸定位方法及显示装置
CN203588234U (zh) * 2012-08-24 2014-05-07 新励科技(深圳)有限公司 一种数字式电容触控面板
KR102008779B1 (ko) * 2012-10-22 2019-08-09 엘지디스플레이 주식회사 터치 스크린 일체형 디스플레이 장치와 이의 구동방법
CN103838020B (zh) * 2012-11-22 2017-09-29 群康科技(深圳)有限公司 触控显示装置及其驱动方法
KR102004924B1 (ko) 2012-12-09 2019-10-01 엘지디스플레이 주식회사 디스플레이 장치 및 디스플레이 장치의 터치 인식 방법
TW201423710A (zh) * 2012-12-12 2014-06-16 Rich Ip Technology Inc 以顯示結構提供觸控功能的驅動電路及觸控顯示器
JP6027903B2 (ja) * 2013-01-30 2016-11-16 シナプティクス・ジャパン合同会社 半導体装置
US8890841B2 (en) * 2013-03-13 2014-11-18 3M Innovative Properties Company Capacitive-based touch apparatus and method therefor, with reduced interference
CN103279248B (zh) * 2013-06-06 2017-03-01 敦泰科技有限公司 集成触控有机发光二极管显示装置
CN103412675B (zh) * 2013-07-26 2016-07-27 北京京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏及显示装置
KR101641690B1 (ko) * 2013-09-25 2016-07-21 엘지디스플레이 주식회사 터치스크린 일체형 표시장치
CN103488342A (zh) * 2013-09-26 2014-01-01 北京京东方光电科技有限公司 触控显示装置及其驱动方法
TWI506510B (zh) * 2013-09-30 2015-11-01 OLED touch device
CN103618954A (zh) * 2013-11-05 2014-03-05 苏州三星电子电脑有限公司 显示系统控制装置及其控制方法
CN104678628A (zh) * 2013-11-26 2015-06-03 瀚宇彩晶股份有限公司 内嵌式触控显示面板及其驱动方法
TWI492126B (zh) * 2013-12-04 2015-07-11 TFT display touch device
KR101872987B1 (ko) * 2013-12-10 2018-07-31 엘지디스플레이 주식회사 분할 패널을 포함하는 표시장치 및 그 구동방법
KR101633654B1 (ko) * 2013-12-20 2016-06-27 엘지디스플레이 주식회사 터치스크린 패널 일체형 표시장치, 터치스크린 패널 일체형 표시패널, 데이터 구동 집적회로, 게이트 구동 집적회로 및 터치스크린 패널 일체형 표시장치의 구동 방법
US9098161B2 (en) 2013-12-20 2015-08-04 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of driving the same
CN103914180B (zh) * 2013-12-30 2017-01-04 上海中航光电子有限公司 一种触摸屏及在该触摸屏中定位触摸点的方法和驱动装置
US9569025B2 (en) * 2014-04-16 2017-02-14 Microchip Technology Incorporated LCD controller with capacitive touch interface
CN103955323B (zh) * 2014-04-29 2016-09-28 京东方科技集团股份有限公司 触摸显示面板、触摸显示装置和触摸检测方法
CN104240631B (zh) 2014-08-18 2016-09-28 京东方科技集团股份有限公司 Goa电路及其驱动方法、显示装置
KR102357768B1 (ko) * 2014-09-26 2022-02-04 엘지디스플레이 주식회사 터치 센싱 장치
US10620737B2 (en) * 2014-12-08 2020-04-14 Tactual Labs Co. Differential transmission for reduction of cross-talk in projective capacitive touch sensors
CN104834406B (zh) 2015-05-29 2018-09-18 京东方科技集团股份有限公司 一种集成触摸功能的显示装置及其驱动方法
US20170003776A1 (en) * 2015-06-30 2017-01-05 Synaptics Incorporated Dynamic estimation of ground condition in a capacitive sensing device
CN107710121B (zh) * 2015-07-07 2020-08-25 夏普株式会社 带传感器的显示装置、控制装置及控制方法
US20170090615A1 (en) * 2015-09-30 2017-03-30 Synaptics Incorporated Two-dimensional absolute capacitance sensing using electrode guarding techniques
CN105260076A (zh) 2015-11-25 2016-01-20 深圳市华星光电技术有限公司 触控面板及其驱动方法、触控显示器
CN107908319B (zh) * 2018-01-03 2021-08-06 京东方科技集团股份有限公司 触控基板和显示装置
KR102534689B1 (ko) * 2018-06-14 2023-05-19 엘지디스플레이 주식회사 터치표시장치, 데이터구동회로 및 구동방법
CN110209301A (zh) * 2019-05-29 2019-09-06 北京集创北方科技股份有限公司 触摸屏扫描方法、装置、存储介质、触控芯片及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678980A (zh) 2002-09-06 2005-10-05 皇家飞利浦电子股份有限公司 触摸感测
CN1716018A (zh) * 2005-07-14 2006-01-04 深圳市联思精密机器有限公司 具有触控功能的平板显示器
WO2007022259A2 (en) * 2005-08-18 2007-02-22 Eastman Kodak Company Touch controlled display device
CN2927238Y (zh) * 2005-06-30 2007-07-25 深圳市联思精密机器有限公司 触控式平板显示器
WO2008032476A1 (fr) * 2006-09-11 2008-03-20 Sharp Kabushiki Kaisha Écran tactile

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043691C (zh) * 1994-02-21 1999-06-16 松下电器产业株式会社 显示器整体型坐标输入装置
JP3186946B2 (ja) * 1994-05-31 2001-07-11 シャープ株式会社 座標検出装置
JP3296977B2 (ja) * 1996-10-15 2002-07-02 シャープ株式会社 タブレット装置
JP3394187B2 (ja) * 1997-08-08 2003-04-07 シャープ株式会社 座標入力装置および表示一体型座標入力装置
JP3987729B2 (ja) * 2001-09-11 2007-10-10 シャープ株式会社 入出力一体型表示装置
US6919882B2 (en) * 2003-01-02 2005-07-19 Holylite Microelectronics Corp. Position detection method and device
GB2398916A (en) * 2003-02-28 2004-09-01 Sharp Kk Display and sensor apparatus
GB0319909D0 (en) * 2003-08-23 2003-09-24 Koninkl Philips Electronics Nv Touch-input active matrix display device
CN101017419B (zh) 2005-06-30 2010-05-12 智点科技(深圳)有限公司 触控式平板显示器
CN1940842B (zh) 2005-07-14 2010-05-12 智点科技(深圳)有限公司 具有触控功能的平板显示器
JP2007200039A (ja) 2006-01-26 2007-08-09 Sharp Corp タッチパネル機構および表示装置
US8259078B2 (en) * 2006-06-09 2012-09-04 Apple Inc. Touch screen liquid crystal display
KR20110058895A (ko) * 2006-06-09 2011-06-01 애플 인크. 터치 스크린 액정 디스플레이
CN101122838B (zh) * 2006-08-13 2011-06-29 智点科技(深圳)有限公司 有源触控平板显示器
CN101187845B (zh) 2006-11-16 2013-12-04 新励科技(深圳)有限公司 数模结合的网格式触控屏
US8040326B2 (en) * 2007-06-13 2011-10-18 Apple Inc. Integrated in-plane switching display and touch sensor
KR100904960B1 (ko) * 2007-11-09 2009-06-26 엘지전자 주식회사 휴대 단말기
CN201285539Y (zh) 2008-06-13 2009-08-05 苹果公司 用于从触摸式传感器面板获得多个值的设备和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678980A (zh) 2002-09-06 2005-10-05 皇家飞利浦电子股份有限公司 触摸感测
CN2927238Y (zh) * 2005-06-30 2007-07-25 深圳市联思精密机器有限公司 触控式平板显示器
CN1716018A (zh) * 2005-07-14 2006-01-04 深圳市联思精密机器有限公司 具有触控功能的平板显示器
WO2007022259A2 (en) * 2005-08-18 2007-02-22 Eastman Kodak Company Touch controlled display device
WO2008032476A1 (fr) * 2006-09-11 2008-03-20 Sharp Kabushiki Kaisha Écran tactile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2336864A4

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8643624B2 (en) 2009-03-18 2014-02-04 Synaptics Incorporated Capacitive sensing using a segmented common voltage electrode of a display
US9418626B2 (en) 2010-02-26 2016-08-16 Synaptics Incorporated Sensing during non-display update times
US9922622B2 (en) 2010-02-26 2018-03-20 Synaptics Incorporated Shifting carrier frequency to avoid interference
US9805692B2 (en) 2010-02-26 2017-10-31 Synaptics Incorporated Varying demodulation to avoid interference
US9786254B2 (en) 2010-02-26 2017-10-10 Synaptics Incorporated Sensing during non-display update time to avoid interference
US9898121B2 (en) 2010-04-30 2018-02-20 Synaptics Incorporated Integrated capacitive sensing and displaying
JP2014500846A (ja) * 2010-11-30 2014-01-16 コーニング インコーポレイテッド タッチスクリーン基板として使用するためのガラス物品/材料
US20120169648A1 (en) * 2010-12-31 2012-07-05 Shenzhen Super Perfect Optics Limited Touch screen 2d/3d display system and method
US8587556B2 (en) * 2010-12-31 2013-11-19 Superd Co. Ltd. Touch screen 2D/3D display system and method
US10355057B2 (en) 2011-04-18 2019-07-16 Microchip Technology Germany Gmbh OLED interface
WO2012143126A3 (de) * 2011-04-18 2013-03-07 Microchip Technology Germany Gmbh & Co. Kg Oled-interface
RU2467757C1 (ru) * 2011-06-03 2012-11-27 Государственное образовательное учреждение высшего профессионального образования Военно-медицинская академия им. С.М. Кирова (ВМедА) Способ лечения больных детей сахарным диабетом в стадии декомпенсации
US9939978B2 (en) 2011-07-19 2018-04-10 Apple Inc Touch sensitive displays
US9400576B2 (en) 2011-07-19 2016-07-26 Apple Inc. Touch sensor arrangements for organic light-emitting diode displays
JP2014525098A (ja) * 2011-07-19 2014-09-25 アップル インコーポレイテッド タッチ感知ディスプレイ
US9576557B2 (en) 2011-09-07 2017-02-21 Synaptics Incorporated Distributed blanking for touch optimization
US9576558B2 (en) 2011-09-07 2017-02-21 Synaptics Incorporated Capacitive sensing during non-display update times
US9007336B2 (en) 2011-09-07 2015-04-14 Synaptics Incorporated Capacitive sensing during non-display update times
US9946423B2 (en) 2011-09-07 2018-04-17 Synaptics Incorporated Capacitive sensing during non-display update times
US9330632B2 (en) 2011-09-07 2016-05-03 Synaptics Incorporated Capacitive sensing during non-display update times
US9324301B2 (en) 2011-09-07 2016-04-26 Synaptics Incorporated Capacitive sensing during non-display update times
US9041685B2 (en) 2011-09-07 2015-05-26 Synaptics Incorpoated Distributed blanking for touch optimization
US8970547B2 (en) 2012-02-01 2015-03-03 Synaptics Incorporated Noise-adapting touch sensing window
US10073568B2 (en) 2012-08-15 2018-09-11 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
US10209845B2 (en) 2012-08-15 2019-02-19 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
US10073550B2 (en) 2012-09-20 2018-09-11 Synaptics Incorporated Concurrent input sensing and display updating
US9442615B2 (en) 2013-10-02 2016-09-13 Synaptics Incorporated Frequency shifting for simultaneous active matrix display update and in-cell capacitive touch
US9582099B2 (en) 2014-03-31 2017-02-28 Synaptics Incorporated Serrated input sensing intervals
US9298309B2 (en) 2014-04-29 2016-03-29 Synaptics Incorporated Source driver touch transmitter in parallel with display drive
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
US10275070B2 (en) 2015-01-05 2019-04-30 Synaptics Incorporated Time sharing of display and sensing data
US10394391B2 (en) 2015-01-05 2019-08-27 Synaptics Incorporated System and method for reducing display artifacts
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
US10592022B2 (en) 2015-12-29 2020-03-17 Synaptics Incorporated Display device with an integrated sensing device having multiple gate driver circuits
CN111599304A (zh) * 2019-02-21 2020-08-28 厦门凌阳华芯科技有限公司 一种led显示触控模组及设备
CN114327113A (zh) * 2020-09-30 2022-04-12 京东方科技集团股份有限公司 显示触摸装置和控制方法
CN114327113B (zh) * 2020-09-30 2024-05-07 京东方科技集团股份有限公司 显示触摸装置和控制方法

Also Published As

Publication number Publication date
EP2336864A4 (en) 2012-12-05
JP5453583B2 (ja) 2014-03-26
US8610680B2 (en) 2013-12-17
CN101634917A (zh) 2010-01-27
CN101634917B (zh) 2013-04-24
US20110102360A1 (en) 2011-05-05
EP2336864A1 (en) 2011-06-22
JP2011528828A (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2010009655A1 (zh) 一种触控式平板显示器
KR101641690B1 (ko) 터치스크린 일체형 표시장치
JP5933172B2 (ja) タッチスクリーンパネル一体型液晶表示装置
EP2447814B1 (en) Liquid crystal display with integrated touch screen panel and driving method thereof
TWI479384B (zh) 具有整合式觸控螢幕的顯示裝置及其驅動方法
JP5797897B2 (ja) タッチスクリーンパネル一体型液晶表示装置
KR101230146B1 (ko) 터치 스크린 패널 일체형 액정표시장치 및 그의 구동방법
TWI478029B (zh) 電容感應觸控方法
TWI546589B (zh) 具有整合的觸控螢幕面板的液晶顯示器
WO2013175726A1 (ja) 液晶表示装置
CN106527820B (zh) 内嵌触摸结构的阵列基板以及显示面板
TW201236127A (en) Touch sensor integrated display device
JP2012103658A (ja) タッチスクリーンパネル一体型液晶表示装置
WO2014153825A1 (zh) 触摸显示装置及其驱动方法
KR20140126287A (ko) 정전 용량 인셀 터치 패널 및 디스플레이 장치
US20150185935A1 (en) Touch system, touch panel, and display device
WO2014194829A1 (zh) 一种触控式平板显示器
KR101733728B1 (ko) 터치스크린 일체형 표시장치
WO2017000432A1 (zh) 一种内嵌式触控显示屏及其驱动方法、显示装置
KR102067419B1 (ko) 터치 표시장치의 구동방법
US8378990B2 (en) Display apparatus and touch detection method for the same
JP2011170784A (ja) タッチパネル付き表示装置
US20220283703A1 (en) Display device with built-in touch panel, and method for controlling display device with built-in touch panel
TW201351249A (zh) 用於減少電容性觸碰感測器中手指耦合雜訊之系統
KR101720997B1 (ko) 터치스크린 일체형 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009799970

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011519014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE