WO2010008065A1 - Method for manufacturing substituted ethynyl gold-nitrogen containing heterocyclic carbene complex - Google Patents

Method for manufacturing substituted ethynyl gold-nitrogen containing heterocyclic carbene complex Download PDF

Info

Publication number
WO2010008065A1
WO2010008065A1 PCT/JP2009/062951 JP2009062951W WO2010008065A1 WO 2010008065 A1 WO2010008065 A1 WO 2010008065A1 JP 2009062951 W JP2009062951 W JP 2009062951W WO 2010008065 A1 WO2010008065 A1 WO 2010008065A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gold
substituted
alkyl
containing heterocyclic
Prior art date
Application number
PCT/JP2009/062951
Other languages
French (fr)
Japanese (ja)
Inventor
整 藤村
貴志 本間
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2010520902A priority Critical patent/JP5594139B2/en
Publication of WO2010008065A1 publication Critical patent/WO2010008065A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table

Definitions

  • the present invention relates to a method for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex useful as a material for an electroluminescent element (organic electroluminescence element) or the like.
  • L represents a nitrogen-containing heterocyclic carbene ligand
  • R is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, arylaminocarbonyl group, arylalkylaminocarbonyl group, alkyl mercaptocarbonyl group, An arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R are a halogen atom, an alkyl group, a cycloalkyl group, Alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbon
  • Patent Document 1 International Publication No. 2006/080515 Pamphlet
  • An object of the present invention is to provide a production method in which a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex can be easily obtained without requiring a plurality of steps.
  • the subject of the present invention is general formula (1) in the presence of a base:
  • R is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, arylaminocarbonyl group, arylalkylaminocarbonyl group, alkyl mercaptocarbonyl group, An arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R may be substituted, When the atom is substituted, adjacent substituents may be bonded to form a ring, and substituted ethyne represented by the general formula (2):
  • L represents a nitrogen-containing heterocyclic carbene ligand, and is represented by reacting a gold (I) halide-nitrogen-containing heterocyclic carbene complex represented by the general formula (3):
  • R and L are solved by the method for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex represented by the same meaning as described above.
  • R is an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylaminocarbonyl group, an arylaminocarbonyl group, an arylalkylaminocarbonyl group, An alkylmercaptocarbonyl group, an arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R are a halogen atom or a nitro group Alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkyl
  • a plurality of hydrogen atoms on the carbon atom of R are alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto Group, aryl mercapto group, alkylsulfonyl group, arylsulfonyl group, formyl group, alkylaminocarbonyl group, arylaminocarbonyl group, alkoxycarbonyl group, aryloxy group
  • the above-mentioned substituted ethynyl gold-nitrogen-containing heterocyclic carbene may be bonded to each other to form a ring.
  • the present invention relates to a method for producing a complex.
  • one or more hydrogen atoms on the carbon atom of R are a halogen atom, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, An arylcarbonyl group, an alkylmercapto group, an arylmercapto group, an alkylsulfonyl group or an arylsulfonyl group, wherein a plurality of hydrogen atoms on the carbon atom of R are an alkyl group, an alkenyl group, an aryl group, an aralkyl group When substituted with an alkoxy group, aryloxy group, dialkylamino group, formyl group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto group, aryl mercapto group
  • L represents a nitrogen-containing heterocyclic carbene ligand (details will be described later).
  • R is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, arylaminocarbonyl group, arylalkylaminocarbonyl group, alkylmercaptocarbonyl.
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, such as a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, etc. Is mentioned.
  • alkyl having 1 to 6 carbon atoms is preferable. These groups include isomers thereof.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 12 carbon atoms.
  • a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a cyclodecyl group, An undecyl group, a cyclododecyl group, etc. are mentioned.
  • the aryl group is preferably an aryl group having 6 to 18 carbon atoms, such as a phenyl group, tolyl group, xylyl group, naphthyl group, dimethylnaphthyl group, anthracenyl group, phenanthrenyl group, chrycenyl group, tetraphenyl group, naphthacenyl. Group, biphenyl group and the like. In particular, aryl having 6 to 14 carbon atoms is preferred. These groups include isomers thereof.
  • the aralkyl group is preferably an aralkyl group having 7 to 20 carbon atoms, and examples thereof include a benzyl group, a naphthylmethyl group, an indenylmethyl group, and a biphenylmethyl group.
  • the heterocyclic group is preferably a saturated or unsaturated cyclic group consisting of 3 to 10 ring members containing at least one heteroatom selected from N, O or S.
  • a pyrrolyl group examples include a furanyl group, a thiophenyl group, an indolyl group, a benzofuranyl group, a benzothiophenyl group, a pyridyl group, a pyrazyl group, a pyrimidyl group, a pyridazyl group, a quinolyl group, an isoquinolyl group, a quinazolyl group, and a quinoxalyl group.
  • the alkoxycarbonyl group is preferably an alkoxycarbonyl group having 2 to 10 carbon atoms, such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, a pentoxycarbonyl group, an isopropoxycarbonyl group, an isobutoxy group. Examples thereof include a carbonyl group and a tert-butoxycarbonyl group.
  • the aryloxycarbonyl group is preferably an aryloxycarbonyl group having 7 to 11 carbon atoms, and examples thereof include a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group.
  • the alkylaminocarbonyl group is preferably an alkylaminocarbonyl group having 2 to 10 carbon atoms, and examples thereof include a dimethylaminocarbonyl group, a diethylaminocarbonyl group, and a dipropylaminocarbonyl group.
  • the amino moiety in the alkylaminocarbonyl group may be mono-substituted or di-substituted with an alkyl group (same as the above alkyl group).
  • the arylaminocarbonyl group is preferably an arylaminocarbonyl group having 7 to 18 carbon atoms, and examples thereof include a phenylaminocarbonyl group, a diphenylaminocarbonyl group, a ditolylaminocarbonyl group, and a naphthylaminocarbonyl group.
  • the amino moiety in the arylaminocarbonyl group may be mono-substituted or di-substituted with an aryl group (same as the aryl group).
  • the arylalkylaminocarbonyl group is preferably an arylalkylaminocarbonyl group having 8 to 18 carbon atoms, such as a phenylmethylaminocarbonyl group, a phenylethylaminocarbonyl group, a tolylmethylaminocarbonyl group, a tolylethylaminocarbonyl group, A naphthylmethylaminocarbonyl group, a naphthylethylaminocarbonyl group, etc. are mentioned.
  • the alkyl mercaptocarbonyl group is preferably an alkyl mercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a methyl mercaptocarbonyl group, an ethyl mercaptocarbonyl group, and a propyl mercaptocarbonyl group.
  • the arylmercaptocarbonyl group is preferably an arylmercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a phenylmercaptocarbonyl group, a tolylmercaptocarbonyl group, and a naphthyl mercaptocarbonyl group.
  • the alkylsulfonyl group is preferably an alkylsulfonyl group having 1 to 12 carbon atoms, and examples thereof include a methylsulfonyl group, an ethylsulfonyl group, and a propylsulfonyl group.
  • the arylsulfonyl group is preferably an arylsulfonyl group having 6 to 18 carbon atoms, and examples thereof include a phenylsulfonyl group, a tolylsulfonyl group, and a naphthylsulfonyl group.
  • the alkylcarbonyl group is particularly preferably an alkylcarbonyl group having 2 to 10 carbon atoms, and examples thereof include an acetyl group, a propanoyl group, and a butanoyl group. These groups include isomers thereof.
  • the arylcarbonyl group is particularly preferably an arylcarbonyl group having 7 to 11 carbon atoms, and examples thereof include a benzoyl group, a fluorobenzoyl group, and a naphthoyl group. These groups include isomers thereof.
  • one or more hydrogen atoms on the carbon atom of R may be substituted.
  • the substituents may be the same or different.
  • Substituents include halogen atoms, nitro groups, alkyl groups, cycloalkyl groups, alkenyl groups, aryl groups, aralkyl groups, alkoxy groups, aryloxy groups, dialkylamino groups, alkylcarbonyl groups, arylcarbonyl groups, alkyl mercapto groups, An arylmercapto group, alkylsulfonyl group, arylsulfonyl group, formyl group, alkylaminocarbonyl group, arylaminocarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylmercaptocarbonyl group or arylmercaptocarbonyl group may be substituted.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, particularly 1 to 12 carbon atoms, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl. Group, decyl group, undecyl group, dodecyl group and the like. These substituents include isomers thereof.
  • the cycloalkyl group is particularly preferably a cycloalkyl group having 3 to 7 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • the alkenyl group is preferably an alkenyl group having 2 to 20 carbon atoms, particularly 2 to 12 carbon atoms.
  • alkenyl group having 2 to 20 carbon atoms, particularly 2 to 12 carbon atoms.
  • vinyl group propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, particularly 6 to 16 carbon atoms, such as phenyl group, tolyl group, xylyl group, naphthyl group, dimethylnaphthyl group, anthryl group, phenanthryl group, fluorenyl group, Examples include a pyrenyl group and a biphenyl group. These substituents include isomers thereof.
  • the aralkyl group is preferably an aralkyl group having 7 to 20 carbon atoms, and examples thereof include a benzyl group, a naphthylmethyl group, an indenylmethyl group, and a biphenylmethyl group.
  • an alkoxy group having 1 to 10 carbon atoms is particularly preferable.
  • substituents include isomers thereof.
  • the aryloxy group is particularly preferably an aryloxy group having 6 to 14 carbon atoms, and examples thereof include a phenoxy group, a triloxy group, a xylyloxy group, a naphthoxy group, and a dimethylnaphthoxy group. These substituents include isomers thereof.
  • the dialkylamino group is particularly preferably a dialkylamino group having 2 to 10 carbon atoms, and examples thereof include a dimethylamino group, a diethylamino group, and a dipropylamino group. These substituents include isomers thereof.
  • the alkylcarbonyl group is particularly preferably an alkylcarbonyl group having 2 to 10 carbon atoms, and examples thereof include an acetyl group, a propanoyl group, and a butanoyl group. These substituents include isomers thereof.
  • the arylcarbonyl group is particularly preferably an arylcarbonyl group having 7 to 11 carbon atoms, and examples thereof include a benzoyl group, a fluorobenzoyl group, and a naphthoyl group. These substituents include isomers thereof.
  • the alkyl mercapto group is preferably an alkyl mercapto group having 1 to 6 carbon atoms, and examples thereof include a methyl mercapto group, an ethyl mercapto group, a propyl mercapto group, a butyl mercapto group, a pentyl mercapto group, and a hexyl mercapto group. These substituents include isomers thereof.
  • the aryl mercapto group is preferably an aryl mercapto group having 6 to 14 carbon atoms, and examples thereof include a phenyl mercapto group, a tolyl mercapto group, a xylyl mercapto group, and a naphthyl mercapto group. These substituents include isomers thereof.
  • the alkylsulfonyl group is preferably an alkylsulfonyl group having 1 to 12 carbon atoms, and examples thereof include a methylsulfonyl group, an ethylsulfonyl group, and a propylsulfonyl group.
  • the arylsulfonyl group is preferably an arylsulfonyl group having 6 to 18 carbon atoms, and examples thereof include a phenylsulfonyl group, a tolylsulfonyl group, and a naphthylsulfonyl group.
  • the alkylaminocarbonyl group is preferably an alkylaminocarbonyl group having 2 to 10 carbon atoms, and examples thereof include a dimethylaminocarbonyl group, a diethylaminocarbonyl group, and a dipropylaminocarbonyl group.
  • the amino moiety in the alkylaminocarbonyl group may be mono-substituted or di-substituted with an alkyl group (same as the above alkyl group).
  • the arylaminocarbonyl group is preferably an arylaminocarbonyl group having 7 to 18 carbon atoms, and examples thereof include a phenylaminocarbonyl group, a diphenylaminocarbonyl group, a ditolylaminocarbonyl group, and a naphthylaminocarbonyl group.
  • the amino moiety in the arylaminocarbonyl group may be mono-substituted or di-substituted with an aryl group (same as the aryl group).
  • the alkoxycarbonyl group is preferably an alkoxycarbonyl group having 2 to 10 carbon atoms, such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, a pentoxycarbonyl group, an isopropoxycarbonyl group, an isobutoxy group. Examples thereof include a carbonyl group and a tert-butoxycarbonyl group.
  • the aryloxycarbonyl group is preferably an aryloxycarbonyl group having 7 to 11 carbon atoms, and examples thereof include a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group.
  • the alkyl mercaptocarbonyl group is preferably an alkyl mercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a methyl mercaptocarbonyl group, an ethyl mercaptocarbonyl group, and a propyl mercaptocarbonyl group.
  • the arylmercaptocarbonyl group is preferably an arylmercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a phenylmercaptocarbonyl group, a tolylmercaptocarbonyl group, and a naphthyl mercaptocarbonyl group.
  • the substituent may be further substituted with a halogen atom, a nitro group, or the like.
  • a plurality of hydrogen atoms on the carbon atom of R are, for example, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl
  • Adjacent substituents may be bonded to form a ring.
  • Examples of the ring when the adjacent substituents are bonded to form a ring include, for example, a cyclopentene ring, cyclohexene ring, cycloheptene ring, benzene ring, naphthalene ring, tetrahydrofuran ring, benzopyran ring, and N-methylpyrrolidine ring. And N-methylpiperidine ring. These rings may be further substituted with a halogen atom, a nitro group or the like.
  • R is an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 18 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a heterocyclic group containing an N atom as a hetero atom, a carbon atom
  • An alkoxycarbonyl group having 2 to 7 carbon atoms, an arylcarbonyl group having 7 to 11 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, or an arylsulfonyl group having 6 to 10 carbon atoms is preferable.
  • One or more hydrogen atoms on the atom are a halogen atom (especially a fluorine atom), nitro group, methoxy group, benzoyl group, fluorobenzoyl group, acetyl group, diethylaminocarbonyl group, diphenylaminocarbonyl group, methyl mercapto group, methyl Sulfonyl group, methoxycarbonyl group, methyl mercaptocarbonyl group or phenyl merca It may be substituted by preparative carbonyl group.
  • a halogen atom especially a fluorine atom
  • the nitrogen-containing heterocyclic carbene ligand L is, for example, the general formula (1) or (2):
  • R 1 and R 2 may be the same or different and each represents an alkyl group, a cycloalkyl group, a polycycloalkyl group, or an aryl group;
  • R 3 , R 4 , R 5 and R 6 may be the same or different and each is a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, nitro group, A cyano group or a dialkylamino group, and adjacent groups may be bonded to form a ring;
  • R 1 to R 6 represent a group containing a carbon atom, one or more hydrogen atoms on the carbon atom are a halogen atom, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group or aryl It may be substituted with an oxy group.
  • R 1 and R 2 represent an alkyl group, a cycloalkyl group, a polycycloalkyl group or an aryl group, and the alkyl group, the cycloalkyl group and the aryl group are defined as substituents on the carbon atom of R.
  • the polycycloalkyl group is preferably a polycycloalkyl group having 6 to 10 carbon atoms, and includes a bicyclo- [2.1.1] -hexyl group, a bicyclo- [2.2.1] -heptyl group, and a bicyclo- [ 2.2.2] -octyl group, bicyclo- [3.3.0] -octyl group, bicyclo- [4.3.0] -nonyl group, bicyclo- [4.4.0] -octyl group, adamantyl Groups and the like.
  • R 3 , R 4 , R 5 and R 6 represent a halogen atom, alkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, nitro group, cyano group or dialkylamino group, , Are the same as those defined as the substituent on the carbon atom of R.
  • One or more hydrogen atoms on the carbon atoms of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are a halogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group.
  • An alkoxy group or an aryloxy group may be substituted, and these groups are also synonymous with those defined as the substituent on the carbon atom of R.
  • R 1 and R 2 a tert-butyl group, a 2,6-diisopropylphenyl group, a 2,4,6-trimethylphenyl group or an adamantyl group is preferable.
  • R 3 , R 4 , R 5 and R 6 Is preferably a hydrogen atom or a halogen atom, particularly a chlorine atom.
  • nitrogen-containing heterocyclic carbene ligand (L) in the present invention include, for example, formulas (6) to (15)
  • the gold halide (I) -nitrogen-containing heterocyclic carbene complex of the general formula (2) used in the present invention may be a commercially available product, or can be synthesized by a known method (for example, Organometallics, 2005, 24, 2411).
  • X in General formula (2) shows a halogen atom, and a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • the amount of the substituted ethyne is preferably 1 to 3 with respect to 1 mol of the gold (I) halide-nitrogen-containing heterocyclic carbene complex. Mol, more preferably 1 to 1.5 mol.
  • a solvent can be used.
  • the solvent to be used is not particularly limited as long as it does not inhibit the reaction.
  • alcohols such as methanol, ethanol, propanol and butanol; tetrahydrofuran, furan, dioxane, tetrahydropyran, diethyl ether, diisopropyl ether, dibutyl ether and the like Ethers; aliphatic hydrocarbons such as pentane, hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aliphatic hydrocarbons such as dichloromethane, dichloroethane and dichloropropane; chlorobenzene and the like The halogenated aromatic hydrocarbons are used.
  • an isomer may be used.
  • the amount of the solvent used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution, but is preferably 1 to 30 L, more preferably 1 mol per 1 mol of the gold halide (I) -nitrogen-containing heterocyclic carbene complex. 5 to 20 L.
  • the synthesis of the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention involves mixing a substituted ethyne, a gold halide (I) -nitrogen-containing heterocyclic carbene complex, a base and a solvent, and reacting with stirring. It can be done by the method.
  • the reaction temperature at that time is preferably 0 to 120 ° C., more preferably 20 to 100 ° C., and the reaction pressure is not particularly limited.
  • the synthesis of the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention is carried out in the presence of a base.
  • a metal alkoxide is preferable as the base.
  • Alkali metal alkoxides are particularly preferable. Specific examples include lithium methoxide, lithium ethoxide, lithium propoxide, lithium butoxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, potassium ethoxide, potassium propoxide, and potassium butoxide. It is done. Regarding the alkali metal propoxide and butoxide, isomers of alkoxy groups are also included.
  • the amount of the base to be used is preferably 1 to 3 mol, more preferably 1 to 1.5 mol, per 1 mol of the gold (I) halide-nitrogen-containing heterocyclic carbene complex.
  • the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention is isolated and produced by a known method such as neutralization, extraction, filtration, concentration, distillation, recrystallization, sublimation, and chromatography after completion of the reaction. .
  • the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex obtained by the production method of the present invention includes the following formulas (16) to (61)
  • the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex obtained by the production method of the present invention has CIE chromaticity coordinates (0.150, 0.060) to (0) in chloroform at a temperature of 77 K (Kelvin) under ultraviolet irradiation. .218, 0.385) blue light emission and (0.187, 0.452) to (0.324, 0.554) green light emission, and can be suitably used as an organic electroluminescence device. It was suggested.
  • Example 2 Synthesis of Au (IMes) (PE) [(phenylethynyl) [1,3-bis (2,4,6-trimethylphenyl) imidazol-2-ylidene] gold]) 1,3-bis (1,3,5-trimethylphenyl) imidazole-2-ylidene gold chloride (I) instead of 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene gold chloride (I) )
  • the same operation as in Example 1 was carried out except that [IMesAuCl: 80.5 mg, 0.15 mmol] was used to obtain 0.077 g of the desired product as a white solid (yield 85%).
  • Example 4 Synthesis of Au (ItBu) (PE) [(phenylethynyl) [1,3-di-tert-butylimidazol-2-ylidene] gold] Instead of 1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene chloride (I), 1,3-di-tert-butylimidazol-2-ylidene chloride (I) [ItBuAuCl: 93. The same operation as in Example 1 was performed except that 5 mg, 0.15 mmol] was used, to obtain 0.064 g of the target product as a white solid (yield 89%).
  • Example 5 Synthesis of Au (IPr) (4F-PE) [(4-fluorophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • the white solid obtained was recrystallized from the n-hexane-diethyl ether-methylene chloride system after the same operation as in Example 1 except that 4-fluorophenylethine (19 mg, 0.158 mmol) was used instead of phenylethine. Operation was performed to obtain 0.093 g of the target product as a white solid (yield 88%).
  • Example 6 Synthesis of Au (IMes) (4F-PE) [(4-fluorophenylethynyl) [1,3-bis (2,4,6-trimethylphenyl) imidazol-2-ylidene] gold]) 1,3-bis (1,3,5-trimethylphenyl) imidazole-2-ylidene gold chloride (I) instead of 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene gold chloride (I) ) Except that [IMesAuCl: 80.5 mg, 0.15 mmol] was used, the same operation as in Example 5 was performed to obtain 0.086 g of the target product as a white solid (yield 92%).
  • Example 7 Synthesis of Au (IPr) (4MeO-PE) [(4-methoxyphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • IPr 4MeO-PE
  • 4-methoxyphenylethyne 21 mg, 0.158 mmol
  • the obtained white solid was recrystallized in an n-hexane-diethyl ether-methylene chloride system. The operation was performed to obtain 0.087 g of the desired product as a white solid (yield 81%).
  • Example 8 Synthesis of Au (IMes) (4MeO-PE) [(4-methoxyphenylethynyl) [1,3-bis (2,4,6-trimethylphenyl) imidazol-2-ylidene] gold]) 1,3-bis (1,3,5-trimethylphenyl) imidazole-2-ylidene gold chloride (I) instead of 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene gold chloride (I) ) Except that [IMesAuCl: 80.5 mg, 0.15 mmol] was used, the same operation as in Example 7 was performed to obtain 0.081 g of the target product as a white solid (yield 85%).
  • Example 9 Synthesis of Au (IPr) (2PyE) [(2-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 2-ethynylpyridine (16 mg, 0.158 mmol) was used instead of phenylethine
  • the obtained white solid was recrystallized in an n-hexane-ethyl acetate system, 0.086 g of the target product was obtained as a white solid (yield 83%).
  • Example 10 Synthesis of Au (IPr) (3PyE) [(3-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • IPr IPr
  • 3-ethynylpyridine 16 mg, 0.158 mmol
  • 2-ethynylpyridine the obtained white solid was recrystallized in an n-hexane-methylene chloride system. This yielded 0.094 g of the desired product as a white solid (yield 91%).
  • Example 11 Synthesis of Au (IPr) (5F-2PyE) [(5-Fluoro-2-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 2-ethynyl-5-fluoropyridine (19 mg, 0.158 mmol) was used instead of phenylethine
  • Example 12 Synthesis of Au (IPr) (6F-3PyE) [(6-Fluoro-3-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • IPr IPr
  • 6F-3PyE 3-ethynyl-6-fluoropyridine (19 mg, 0.158 mmol) was used instead of phenylethine
  • the resulting precipitate was filtered to obtain 0.098 g of the target product as a yellow solid (yield 93%).
  • Example 13 Synthesis of Au (IPr) (4Ph-PE) [(4-phenylphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • IPr 4Ph-PE
  • 4-phenylphenylethine 28 mg, 0.158 mmol
  • 0.11 g of the target product as a white solid was obtained (yield 96%).
  • Example 14 (Au (IPr) (4NO 2 -PE) [(4- nitro-phenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold] Synthesis of) After the same operation as in Example 1 except that 4-nitrophenylethine (16 mg, 0.158 mmol) was used in place of phenylethine, the obtained white solid was recrystallized in an n-hexane-ethyl acetate system. As a result, 0.11 g of the target product was obtained as a white solid (yield 98%).
  • Example 15 Synthesis of (Au (IPr) (2,4F 2 -PE) [(2,4-difluorophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold) )
  • 2,4-difluoro-phenylethyne 22 mg, 0.158 mmol
  • the obtained white solid was recrystallized in an n-hexane-ethyl acetate system. Operation was performed to obtain 0.10 g of the desired product as a white solid (yield 94%).
  • Example 16 Synthesis of Au (IPr) (1NpE) [(1-naphthylethynyl) [1,3-bis (2,6-diisopropylphenyl) -imidazol-2-ylidene] gold]
  • IPr IPr
  • 1NpE 1-ethynylnaphthalene
  • phenylethine 1-ethynylnaphthalene
  • Example 17 (Synthesis of 3-benzoylphenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3BzPE)])
  • 3-benzoylphenylethine 33 mg, 0.158 mmol
  • Example 18 (3- (4′-fluorobenzoyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) [3 (4′FBz) PE] ]
  • 3- (4′-fluorobenzoyl) phenylethyne 35 mg, 0.158 mmol
  • the obtained white solid was subjected to column chromatography using silica gel.
  • Example 19 (Synthesis of 3-acetylphenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3AcPE)])
  • 3-acetylphenylethine 23 mg, 0.158 mmol
  • Example 20 (Synthesis of 3- (diethylaminocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3DEACPE)])
  • 3- (diethylaminocarbonyl) phenylethyne 32 mg, 0.158 mmol
  • Example 21 (Synthesis of 3- (diphenylaminocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3DPACPE)])
  • 3- (diphenylaminocarbonyl) phenylethyne 47 mg, 0.158 mmol
  • Example 22 (Synthesis of 3- (methoxycarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3MCPE)])
  • 3- (methoxycarbonyl) phenylethyne 25 mg, 0.158 mmol
  • Example 23 (Synthesis of 3- (phenoxycarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3PCPE)])
  • 3- (phenoxycarbonyl) phenylethyne 35 mg, 0.158 mmol
  • Example 24 (Synthesis of 3- (methylmercaptocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3MMCPE)])
  • 3- (methylmercaptocarbonyl) phenylethyne 28 mg, 0.158 mmol
  • Example 25 (Synthesis of 3- (phenylmercaptocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3PMCPE)])
  • 3- (phenylmercaptocarbonyl) phenylethyne 27 mg, 0.158 mmol
  • Example 26 (Synthesis of 2-benzoylphenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (2BzPE)])
  • 2-benzoylphenylethyne 33 mg, 0.158 mmol
  • Example 27 Synthesis of Au (IPr) (3MMPE) [(3-Methylmercaptophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 3-methylmercaptophenylethine 23 mg, 0.158 mmol
  • Example 28 Synthesis of Au (IPr) (4MMPE) [(4-methylmercaptophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • IPr IPr
  • 4MMPE (4MMPE) [(4-methylmercaptophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold
  • 4-methylmercaptophenylethine 23 mg, 0.158 mmol
  • Example 29 Synthesis of cyclohexylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (CyE)]
  • ethynylcyclohexane 17.1 mg, 0.158 mmol
  • phenylethine the obtained white solid was dissolved in ethyl acetate and reprecipitated with hexane to obtain a white solid. 0.088 g of a certain target product was obtained (yield 85%).
  • Example 30 (Synthesis of n-butylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (n-BuE)]) After the same operation as in Example 1 except that 1-hexyne (13 mg, 0.158 mmol) was used in place of phenylethine, the obtained solid was washed with hexane to obtain the target product as a white solid in an amount of 0.00. 088 g was obtained (yield 88%).
  • Example 31 Synthesis of cyclopentylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (CpE)]
  • ethynylcyclopentane 15 mg, 0.158 mmol
  • the obtained white solid was dissolved in ethyl acetate and reprecipitated with hexane to obtain a white solid. 0.091 g of the target product was obtained (89% yield).
  • Example 32 (Synthesis of t-butylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (t-BuE)]) After the same operation as in Example 1 except that 3,3-dimethyl-1-butyne (13 mg, 0.158 mmol) was used instead of phenylethine, the obtained solid was washed with hexane to give a white solid. 0.086g of a certain target product was obtained (yield 86%).
  • Example 33 Synthesis of cyclopropylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (cPrE)]
  • ethynylcyclopropane 10 mg, 0.158 mmol
  • the product was washed with hexane and filtered to obtain 0.087 g of the desired product as a white solid (yield 89%).
  • Example 34 Synthesis of methoxycarbonylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (MCE)]
  • methoxycarbonylethine 27 mg, 0.158 mmol
  • Example 35 (Synthesis of p-tolylsulfonylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (pTsE)])
  • p-tolylsulfonylethine 28 mg, 0.158 mmol
  • Example 36 (Synthesis of acetylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (AcE)])
  • Example 37 Synthesis of benzoylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (BzE)]
  • the product was washed with hexane and filtered to obtain 0.098 g of the desired product as a white solid (yield 91%).
  • Example 38 Synthesis of Au (IPr) (4MSFPE) [(4-methylsulfonylphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 4-methylsulfonylphenylethine 28 mg, 0.158 mmol
  • Example 39 (Au (H 2 -IPr) (4F-1NpE) [(4-Fluoro-1-naphthylethynyl) [1,3-bis (2,6-diisopropylphenyl) -4,5-dihydroimidazole-2 -Synthesis of iridene] gold] 1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene Instead of gold (I) chloride, 1,3-bis (2,6-diisopropylphenyl) -4,5-dihydroimidazol-2-ylidene Example 1 except that gold (I) chloride [H 2 -IPrAuCl: 93.4 mg, 0.15 mmol] was used and 4-fluoro-1-ethynylnaphthalene (27 mg, 0.158 mmol) was used instead of phenylethine.
  • Example 41 Synthesis of Au (IPr) (9AntE) [(9-anthrylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • IPr 9AntE
  • 9-ethynylanthracene 32 mg, 0.158 mmol
  • the solid obtained was dissolved in ethyl acetate and reprecipitated with hexane.
  • the resulting precipitate was filtered to obtain 0.11 g of the target product as a yellow solid (yield 92%).
  • Example 42 Synthesis of Au (IPr) (9PhenE) [(9-phenanthrylylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
  • 9-ethynylphenanthrene 32 mg, 0.158 mmol
  • Example 43 Synthesis of Au (IPr) (1PyrenE) [(1-pyrenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 1-ethynyl-pyrene 36 mg, 0.158 mmol
  • Example 44 Synthesis of Au (IPr) (2FluorE) [(2-fluorenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 2-ethynylfluorene 30 mg, 0.158 mmol
  • the resulting solid was dissolved in ethyl acetate and reprecipitated with hexane.
  • the resulting precipitate was filtered to obtain 0.11 g of the desired product as a yellow solid (yield 95%).
  • Example 45 Synthesis of Au (IPr) (4Bz-PE) [(4-benzoylphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 4-benzoylphenylethine 33 mg, 0.158 mmol
  • Example 46 Synthesis of Au (IPr) (PzE) [(pyrazylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold]
  • 2-ethynylpyrazine (16 mg, 0.158 mmol
  • the present invention relates to a method for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex.
  • a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex can be easily obtained without requiring a plurality of steps.
  • the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex obtained by the present invention is a useful compound as a material for an electroluminescence device (organic electroluminescence device).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a method for manufacturing substituted ethynyl gold-nitrogen containing heterocyclic carbene complexes represented by general formula (3) that is characterized in that substituted ethylene represented by general formula (1) and a halogenated gold (I)-nitrogen containing heterocyclic carbene complex represented by general formula (2) are reacted in the presence of a base.  A substituted ethynyl gold-nitrogen containing heterocyclic carbene complex can be obtained easily without requiring multiple steps.

Description

置換エチニル金-含窒素へテロ環カルベン錯体の製造法Process for the preparation of substituted ethynylgold-nitrogen-containing heterocyclic carbene complexes
 本発明は、電界発光素子(有機エレクトロルミネッセンス素子)用材料等として有用な置換エチニル金-含窒素へテロ環カルベン錯体の製造法に関する。 The present invention relates to a method for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex useful as a material for an electroluminescent element (organic electroluminescence element) or the like.
 従来、置換エチニル金-含窒素へテロ環カルベン錯体の製造法としては、例えば、下記の反応工程式(1)で示されるように、置換エチニル金ホスフィン錯体と含窒素へテロ環カルベン配位子(L)とを反応させることによって製造する方法が知られていた(特許文献1参照)。しかしながら、この方法では、複数工程を経て原料である置換エチニル金ホスフィン錯体を製造する必要があり、製造法の更なる改良が求められていた。 Conventionally, as a method for producing a substituted ethynylgold-nitrogen-containing heterocyclic carbene complex, for example, as shown in the following reaction process formula (1), a substituted ethynylgold-phosphine complex and a nitrogen-containing heterocyclic carbene ligand are used. A method of producing by reacting with (L) has been known (see Patent Document 1). However, in this method, it is necessary to produce a substituted ethynylgold phosphine complex as a raw material through a plurality of steps, and further improvement of the production method has been demanded.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、
 Lは、含窒素へテロ環カルベン配位子を示し、
 Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロ環基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アリールアルキルアミノカルボニル基、アルキルメルカプトカルボニル基、アリールメルカプトカルボニル基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルカルボニル基又はアリールカルボニル基を示し、Rの炭素原子上のひとつ又は複数の水素原子が、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、又はアリールスルホニル基で置換されていてもよく、Rの炭素原子上の複数の水素原子が、アルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、ホルミル基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、又はアリールスルホニル基で置換されている場合、隣接している基同士が結合して環を形成してもよく、
 Pは、単座ホスフィン配位子を示す。
Where
L represents a nitrogen-containing heterocyclic carbene ligand;
R is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, arylaminocarbonyl group, arylalkylaminocarbonyl group, alkyl mercaptocarbonyl group, An arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R are a halogen atom, an alkyl group, a cycloalkyl group, Alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto group, aryl mercapto group, alkyl Optionally substituted with a sulfonyl group or an arylsulfonyl group, and a plurality of hydrogen atoms on the carbon atom of R are an alkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, a dialkylamino group, When substituted by a formyl group, an alkylcarbonyl group, an arylcarbonyl group, an alkyl mercapto group, an aryl mercapto group, an alkylsulfonyl group, or an arylsulfonyl group, adjacent groups may be bonded to form a ring. Often,
P represents a monodentate phosphine ligand.
 特許文献1:国際公開第2006/080515号パンフレット Patent Document 1: International Publication No. 2006/080515 Pamphlet
 本発明の課題は、即ち、複数の工程を必要とすることなく、簡便に、置換エチニル金-含窒素へテロ環カルベン錯体が得られる製造法を提供することである。 An object of the present invention is to provide a production method in which a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex can be easily obtained without requiring a plurality of steps.
 本発明の課題は、塩基の存在下、一般式(1): The subject of the present invention is general formula (1) in the presence of a base:
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、
 Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロ環基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アリールアルキルアミノカルボニル基、アルキルメルカプトカルボニル基、アリールメルカプトカルボニル基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルカルボニル基又はアリールカルボニル基を示し、Rの炭素原子上のひとつ又は複数の水素原子は、置換されていてもよく、複数の水素原子が置換されている場合、隣接する置換基同士は結合して環を形成してもよい
で示される置換エチン及び一般式(2):
Where
R is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, arylaminocarbonyl group, arylalkylaminocarbonyl group, alkyl mercaptocarbonyl group, An arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R may be substituted, When the atom is substituted, adjacent substituents may be bonded to form a ring, and substituted ethyne represented by the general formula (2):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、
 Xは、ハロゲン原子を示し、
 Lは、含窒素へテロ環カルベン配位子を示す
で示されるハロゲン化金(I)-含窒素へテロ環カルベン錯体を反応させることを特徴とする、一般式(3):
Where
X represents a halogen atom,
L represents a nitrogen-containing heterocyclic carbene ligand, and is represented by reacting a gold (I) halide-nitrogen-containing heterocyclic carbene complex represented by the general formula (3):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、R及びLは、前記と同義である
で示される置換エチニル金-含窒素へテロ環カルベン錯体の製造法によって解決される。
In the formula, R and L are solved by the method for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex represented by the same meaning as described above.
 本発明はまた、Rが、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロ環基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アリールアルキルアミノカルボニル基、アルキルメルカプトカルボニル基、アリールメルカプトカルボニル基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルカルボニル基又はアリールカルボニル基を示し、Rの炭素原子上のひとつ又は複数の水素原子が、ハロゲン原子、ニトロ基、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルメルカプトカルボニル基又はアリールメルカプトカルボニル基で置換されていてもよく、Rの炭素原子上の複数の水素原子が、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルメルカプトカルボニル基又はアリールメルカプトカルボニル基で置換されている場合、隣接している置換基同士が結合して環を形成してもよい、上記の置換エチニル金-含窒素へテロ環カルベン錯体の製造法に関する。例えば、Rの炭素原子上のひとつ又は複数の水素原子は、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基又はアリールスルホニル基で置換されていてもよく、Rの炭素原子上の複数の水素原子が、アルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、ホルミル基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基又はアリールスルホニル基で置換されている場合、隣接している置換基同士が結合して環を形成してもよい。 The present invention also provides that R is an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylaminocarbonyl group, an arylaminocarbonyl group, an arylalkylaminocarbonyl group, An alkylmercaptocarbonyl group, an arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R are a halogen atom or a nitro group Alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto group, Rumercapto group, alkylsulfonyl group, arylsulfonyl group, formyl group, alkylaminocarbonyl group, arylaminocarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylmercaptocarbonyl group or arylmercaptocarbonyl group may be substituted. A plurality of hydrogen atoms on the carbon atom of R are alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto Group, aryl mercapto group, alkylsulfonyl group, arylsulfonyl group, formyl group, alkylaminocarbonyl group, arylaminocarbonyl group, alkoxycarbonyl group, aryloxy group When substituted with a bonyl group, an alkyl mercaptocarbonyl group or an aryl mercaptocarbonyl group, the above-mentioned substituted ethynyl gold-nitrogen-containing heterocyclic carbene may be bonded to each other to form a ring. The present invention relates to a method for producing a complex. For example, one or more hydrogen atoms on the carbon atom of R are a halogen atom, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, An arylcarbonyl group, an alkylmercapto group, an arylmercapto group, an alkylsulfonyl group or an arylsulfonyl group, wherein a plurality of hydrogen atoms on the carbon atom of R are an alkyl group, an alkenyl group, an aryl group, an aralkyl group When substituted with an alkoxy group, aryloxy group, dialkylamino group, formyl group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto group, aryl mercapto group, alkylsulfonyl group or arylsulfonyl group, adjacent substitution Base Judges may combine with each other to form a ring.
 本発明により、複数の工程を必要とすることなく、簡便に、置換エチニル金-含窒素へテロ環カルベン錯体が得られる製造法を提供することができる。 According to the present invention, it is possible to provide a production method in which a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex can be easily obtained without requiring a plurality of steps.
 本発明で製造される、前記一般式(3)の置換エチニル金-含窒素へテロ環カルベン錯体において、Lは、含窒素へテロ環カルベン配位子を示す(詳細は後述する)。また、Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロ環基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アリールアルキルアミノカルボニル基、アルキルメルカプトカルボニル基、アリールメルカプトカルボニル基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルカルボニル基又はアリールカルボニル基を示す。 In the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the general formula (3) produced by the present invention, L represents a nitrogen-containing heterocyclic carbene ligand (details will be described later). R is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, arylaminocarbonyl group, arylalkylaminocarbonyl group, alkylmercaptocarbonyl. A group, an arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group;
 前記アルキル基としては、炭素原子数1~10のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。特に、炭素原子数1~6のアルキルが好ましい。なお、これらの基は、その異性体も含む。 The alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, such as a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, etc. Is mentioned. In particular, alkyl having 1 to 6 carbon atoms is preferable. These groups include isomers thereof.
 前記シクロアルキル基としては、炭素原子数3~12のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基等が挙げられる。 The cycloalkyl group is preferably a cycloalkyl group having 3 to 12 carbon atoms. For example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a cyclodecyl group, An undecyl group, a cyclododecyl group, etc. are mentioned.
 前記アリール基としては、炭素原子数6~18のアリール基が好ましく、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基、アントラセニル基、フェナントレニル基、クリセニル基、テトラフェニル基、ナフタセニル基、ビフェニル基等が挙げられる。特に、炭素原子数6~14のアリールが好ましい。なお、これらの基は、その異性体も含む。 The aryl group is preferably an aryl group having 6 to 18 carbon atoms, such as a phenyl group, tolyl group, xylyl group, naphthyl group, dimethylnaphthyl group, anthracenyl group, phenanthrenyl group, chrycenyl group, tetraphenyl group, naphthacenyl. Group, biphenyl group and the like. In particular, aryl having 6 to 14 carbon atoms is preferred. These groups include isomers thereof.
 前記アラルキル基としては、炭素原子数7~20のアラルキル基が好ましく、例えば、ベンジル基、ナフチルメチル基、インデニルメチル基、ビフェニルメチル基等が挙げられる。 The aralkyl group is preferably an aralkyl group having 7 to 20 carbon atoms, and examples thereof include a benzyl group, a naphthylmethyl group, an indenylmethyl group, and a biphenylmethyl group.
 前記ヘテロ環基としては、N、O又はSから選択される少なくとも1個のヘテロ原子を含む、3~10の環員からなる、飽和又は不飽和の環式基が好ましく、例えば、ピロリル基、フラニル基、チオフェニル基、インドリル基、ベンゾフラニル基、ベンゾチオフェニル基、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、キノリル基、イソキノリル基、キナゾリル基、キノキサリル基等が挙げられる。 The heterocyclic group is preferably a saturated or unsaturated cyclic group consisting of 3 to 10 ring members containing at least one heteroatom selected from N, O or S. For example, a pyrrolyl group, Examples include a furanyl group, a thiophenyl group, an indolyl group, a benzofuranyl group, a benzothiophenyl group, a pyridyl group, a pyrazyl group, a pyrimidyl group, a pyridazyl group, a quinolyl group, an isoquinolyl group, a quinazolyl group, and a quinoxalyl group.
 前記アルコキシカルボニル基としては、炭素原子数2~10のアルコキシカルボニル基が好ましく、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペントキシカルボニル基、イソプロポキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。 The alkoxycarbonyl group is preferably an alkoxycarbonyl group having 2 to 10 carbon atoms, such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, a pentoxycarbonyl group, an isopropoxycarbonyl group, an isobutoxy group. Examples thereof include a carbonyl group and a tert-butoxycarbonyl group.
 前記アリールオキシカルボニル基としては、炭素原子数7~11のアリールオキシカルボニル基が好ましく、例えば、フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等が挙げられる。 The aryloxycarbonyl group is preferably an aryloxycarbonyl group having 7 to 11 carbon atoms, and examples thereof include a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group.
 前記アルキルアミノカルボニル基としては、炭素原子数2~10のアルキルアミノカルボニル基が好ましく、例えば、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、ジプロピルアミノカルボニル基等が挙げられる。アルキルアミノカルボニル基におけるアミノ部分は、アルキル基(前記アルキル基と同様である)でモノ置換されていても、ジ置換されていてもよい。 The alkylaminocarbonyl group is preferably an alkylaminocarbonyl group having 2 to 10 carbon atoms, and examples thereof include a dimethylaminocarbonyl group, a diethylaminocarbonyl group, and a dipropylaminocarbonyl group. The amino moiety in the alkylaminocarbonyl group may be mono-substituted or di-substituted with an alkyl group (same as the above alkyl group).
 前記アリールアミノカルボニル基としては、炭素原子数7~18のアリールアミノカルボニル基が好ましく、例えば、フェニルアミノカルボニル基、ジフェニルアミノカルボニル基、ジトリルアミノカルボニル基、ナフチルアミノカルボニル基等が挙げられる。アリールアミノカルボニル基におけるアミノ部分は、アリール基(前記アリール基と同様である)でモノ置換されていても、ジ置換されていてもよい。 The arylaminocarbonyl group is preferably an arylaminocarbonyl group having 7 to 18 carbon atoms, and examples thereof include a phenylaminocarbonyl group, a diphenylaminocarbonyl group, a ditolylaminocarbonyl group, and a naphthylaminocarbonyl group. The amino moiety in the arylaminocarbonyl group may be mono-substituted or di-substituted with an aryl group (same as the aryl group).
 前記アリールアルキルアミノカルボニル基としては、炭素原子数8~18のアリールアルキルアミノカルボニル基が好ましく、例えば、フェニルメチルアミノカルボニル基、フェニルエチルアミノカルボニル基、トリルメチルアミノカルボニル基、トリルエチルアミノカルボニル基、ナフチルメチルアミノカルボニル基、ナフチルエチルアミノカルボニル基等が挙げられる。 The arylalkylaminocarbonyl group is preferably an arylalkylaminocarbonyl group having 8 to 18 carbon atoms, such as a phenylmethylaminocarbonyl group, a phenylethylaminocarbonyl group, a tolylmethylaminocarbonyl group, a tolylethylaminocarbonyl group, A naphthylmethylaminocarbonyl group, a naphthylethylaminocarbonyl group, etc. are mentioned.
 前記アルキルメルカプトカルボニル基としては、炭素原子数2~18のアルキルメルカプトカルボニル基が好ましく、例えば、メチルメルカプトカルボニル基、エチルメルカプトカルボニル基、プロピルメルカプトカルボニル基等が挙げられる。 The alkyl mercaptocarbonyl group is preferably an alkyl mercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a methyl mercaptocarbonyl group, an ethyl mercaptocarbonyl group, and a propyl mercaptocarbonyl group.
 前記アリールメルカプトカルボニル基としては、炭素原子数2~18のアリールメルカプトカルボニル基が好ましく、例えば、フェニルメルカプトカルボニル基、トリルメルカプトカルボニル基、ナフチルメルカプトカルボニル基等が挙げられる。 The arylmercaptocarbonyl group is preferably an arylmercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a phenylmercaptocarbonyl group, a tolylmercaptocarbonyl group, and a naphthyl mercaptocarbonyl group.
 前記アルキルスルホニル基としては、炭素原子数1~12のアルキルスルホニル基が好ましく、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基等が挙げられる。 The alkylsulfonyl group is preferably an alkylsulfonyl group having 1 to 12 carbon atoms, and examples thereof include a methylsulfonyl group, an ethylsulfonyl group, and a propylsulfonyl group.
 前記アリールスルホニル基としては、炭素原子数6~18のアリールスルホニル基が好ましく、例えば、フェニルスルホニル基、トリルスルホニル基、ナフチルスルホニル基等が挙げられる。 The arylsulfonyl group is preferably an arylsulfonyl group having 6 to 18 carbon atoms, and examples thereof include a phenylsulfonyl group, a tolylsulfonyl group, and a naphthylsulfonyl group.
 前記アルキルカルボニル基としては、特に炭素原子数2~10のアルキルカルボニル基が好ましく、アセチル基、プロパノイル基、ブタノイル基等が挙げられる。なお、これらの基は、その異性体を含む。 The alkylcarbonyl group is particularly preferably an alkylcarbonyl group having 2 to 10 carbon atoms, and examples thereof include an acetyl group, a propanoyl group, and a butanoyl group. These groups include isomers thereof.
 前記アリールカルボニル基としては、特に炭素原子数7~11のアリールカルボニル基が好ましく、ベンゾイル基、フルオロベンゾイル基、ナフトイル基等が挙げられる。なお、これらの基は、その異性体を含む。 The arylcarbonyl group is particularly preferably an arylcarbonyl group having 7 to 11 carbon atoms, and examples thereof include a benzoyl group, a fluorobenzoyl group, and a naphthoyl group. These groups include isomers thereof.
 なお、Rの炭素原子上のひとつ又は複数の水素原子は、置換されていてもよい。複数の水素原子が置換されている場合、置換基は同一であっても、異なっていてもよい。置換基としては、ハロゲン原子、ニトロ基、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルメルカプトカルボニル基又はアリールメルカプトカルボニル基で置換されていてもよい。また、Rの炭素原子上の複数の水素原子が置換されている場合、隣接している置換基同士が結合して環を形成してもよく、例えば、Rの炭素原子上の複数の水素原子が、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、ホルミル基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アルコキシカルボニル基、アリールカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルメルカプトカルボニル基又はアリールメルカプトカルボニル基で置換されている場合、隣接している置換基同士が結合して環を形成してもよい。 Note that one or more hydrogen atoms on the carbon atom of R may be substituted. When a plurality of hydrogen atoms are substituted, the substituents may be the same or different. Substituents include halogen atoms, nitro groups, alkyl groups, cycloalkyl groups, alkenyl groups, aryl groups, aralkyl groups, alkoxy groups, aryloxy groups, dialkylamino groups, alkylcarbonyl groups, arylcarbonyl groups, alkyl mercapto groups, An arylmercapto group, alkylsulfonyl group, arylsulfonyl group, formyl group, alkylaminocarbonyl group, arylaminocarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylmercaptocarbonyl group or arylmercaptocarbonyl group may be substituted. . When a plurality of hydrogen atoms on the R carbon atom are substituted, adjacent substituents may be bonded to form a ring, for example, a plurality of hydrogen atoms on the R carbon atom. Is an alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, formyl group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto group, aryl mercapto group, alkylsulfonyl Group, arylsulfonyl group, formyl group, alkylaminocarbonyl group, arylaminocarbonyl group, alkoxycarbonyl group, arylcarbonyl group, alkyloxycarbonyl group, aryloxycarbonyl group, alkylmercaptocarbonyl group or arylmercaptocarbonyl group. If, by bonding a substituent each other adjacent may form a ring.
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記アルキル基としては、炭素原子数1~20、特に1~12のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, particularly 1 to 12 carbon atoms, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl. Group, decyl group, undecyl group, dodecyl group and the like. These substituents include isomers thereof.
 前記シクロアルキル基としては、特に炭素原子数3~7のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。 The cycloalkyl group is particularly preferably a cycloalkyl group having 3 to 7 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
 前記アルケニル基としては、炭素原子数2~20、特に2~12のアルケニル基が好ましく、例えば、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The alkenyl group is preferably an alkenyl group having 2 to 20 carbon atoms, particularly 2 to 12 carbon atoms. For example, vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group. Group, undecenyl group, dodecenyl group and the like. These substituents include isomers thereof.
 前記アリール基としては、炭素原子数6~20、特に6~16のアリール基が好ましく、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、ビフェニル基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The aryl group is preferably an aryl group having 6 to 20 carbon atoms, particularly 6 to 16 carbon atoms, such as phenyl group, tolyl group, xylyl group, naphthyl group, dimethylnaphthyl group, anthryl group, phenanthryl group, fluorenyl group, Examples include a pyrenyl group and a biphenyl group. These substituents include isomers thereof.
 前記アラルキル基としては、炭素原子数7~20のアラルキル基が好ましく、例えばベンジル基、ナフチルメチル基、インデニルメチル基、ビフェニルメチル基等が挙げられる。 The aralkyl group is preferably an aralkyl group having 7 to 20 carbon atoms, and examples thereof include a benzyl group, a naphthylmethyl group, an indenylmethyl group, and a biphenylmethyl group.
 前記アルコキシ基としては、特に炭素原子数1~10のアルコキシ基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンタノキシ基、ヘキサノキシ基、ヘプタノキシ基、オクタノキシ基、ノナノキシ基、デカノキシ基等が挙げられる。なお、これらの置換基は、その異性体を含む。 As the alkoxy group, an alkoxy group having 1 to 10 carbon atoms is particularly preferable. For example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentanoxy group, a hexanoxy group, a heptanoxy group, an octanoxy group, a nonanoxy group, a decanoxy group Etc. These substituents include isomers thereof.
 前記アリールオキシ基としては、特に炭素原子数6~14のアリールオキシ基が好ましく、フェノキシ基、トリロキシ基、キシリロキシ基、ナフトキシ基、ジメチルナフトキシ基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The aryloxy group is particularly preferably an aryloxy group having 6 to 14 carbon atoms, and examples thereof include a phenoxy group, a triloxy group, a xylyloxy group, a naphthoxy group, and a dimethylnaphthoxy group. These substituents include isomers thereof.
 前記ジアルキルアミノ基としては、特に炭素原子数2~10のジアルキルアミノ基が好ましく、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The dialkylamino group is particularly preferably a dialkylamino group having 2 to 10 carbon atoms, and examples thereof include a dimethylamino group, a diethylamino group, and a dipropylamino group. These substituents include isomers thereof.
 前記アルキルカルボニル基としては、特に炭素原子数2~10のアルキルカルボニル基が好ましく、アセチル基、プロパノイル基、ブタノイル基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The alkylcarbonyl group is particularly preferably an alkylcarbonyl group having 2 to 10 carbon atoms, and examples thereof include an acetyl group, a propanoyl group, and a butanoyl group. These substituents include isomers thereof.
 前記アリールカルボニル基としては、特に炭素原子数7~11のアリールカルボニル基が好ましく、ベンゾイル基、フルオロベンゾイル基、ナフトイル基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The arylcarbonyl group is particularly preferably an arylcarbonyl group having 7 to 11 carbon atoms, and examples thereof include a benzoyl group, a fluorobenzoyl group, and a naphthoyl group. These substituents include isomers thereof.
 前記アルキルメルカプト基としては、炭素原子数1~6のアルキルメルカプト基が好ましく、例えば、メチルメルカプト基、エチルメルカプト基、プロピルメルカプト基、ブチルメルカプト基、ペンチルメルカプト基、ヘキシルメルカプト基が挙げられる。なお、これらの置換基は、その異性体を含む。 The alkyl mercapto group is preferably an alkyl mercapto group having 1 to 6 carbon atoms, and examples thereof include a methyl mercapto group, an ethyl mercapto group, a propyl mercapto group, a butyl mercapto group, a pentyl mercapto group, and a hexyl mercapto group. These substituents include isomers thereof.
 前記アリールメルカプト基としては炭素原子数6~14のアリールメルカプト基が好ましく、例えば、フェニルメルカプト基、トリルメルカプト基、キシリルメルカプト基、ナフチルメルカプト基等が挙げられる。なお、これらの置換基は、その異性体を含む。 The aryl mercapto group is preferably an aryl mercapto group having 6 to 14 carbon atoms, and examples thereof include a phenyl mercapto group, a tolyl mercapto group, a xylyl mercapto group, and a naphthyl mercapto group. These substituents include isomers thereof.
 前記アルキルスルホニル基としては炭素原子数1~12のアルキルスルホニル基が好ましく、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基等が挙げられる。 The alkylsulfonyl group is preferably an alkylsulfonyl group having 1 to 12 carbon atoms, and examples thereof include a methylsulfonyl group, an ethylsulfonyl group, and a propylsulfonyl group.
 前記アリールスルホニル基としては炭素原子数6~18のアリールスルホニル基が好ましく、例えば、フェニルスルホニル基、トリルスルホニル基、ナフチルスルホニル基等が挙げられる。 The arylsulfonyl group is preferably an arylsulfonyl group having 6 to 18 carbon atoms, and examples thereof include a phenylsulfonyl group, a tolylsulfonyl group, and a naphthylsulfonyl group.
 前記アルキルアミノカルボニル基としては、炭素原子数2~10のアルキルアミノカルボニル基が好ましく、例えば、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、ジプロピルアミノカルボニル基等が挙げられる。アルキルアミノカルボニル基におけるアミノ部分は、アルキル基(前記アルキル基と同様である)でモノ置換されていても、ジ置換されていてもよい。 The alkylaminocarbonyl group is preferably an alkylaminocarbonyl group having 2 to 10 carbon atoms, and examples thereof include a dimethylaminocarbonyl group, a diethylaminocarbonyl group, and a dipropylaminocarbonyl group. The amino moiety in the alkylaminocarbonyl group may be mono-substituted or di-substituted with an alkyl group (same as the above alkyl group).
 前記アリールアミノカルボニル基としては、炭素原子数7~18のアリールアミノカルボニル基が好ましく、例えば、フェニルアミノカルボニル基、ジフェニルアミノカルボニル基、ジトリルアミノカルボニル基、ナフチルアミノカルボニル基等が挙げられる。アリールアミノカルボニル基におけるアミノ部分は、アリール基(前記アリール基と同様である)でモノ置換されていても、ジ置換されていてもよい。 The arylaminocarbonyl group is preferably an arylaminocarbonyl group having 7 to 18 carbon atoms, and examples thereof include a phenylaminocarbonyl group, a diphenylaminocarbonyl group, a ditolylaminocarbonyl group, and a naphthylaminocarbonyl group. The amino moiety in the arylaminocarbonyl group may be mono-substituted or di-substituted with an aryl group (same as the aryl group).
 前記アルコキシカルボニル基としては、炭素原子数2~10のアルコキシカルボニル基が好ましく、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペントキシカルボニル基、イソプロポキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。 The alkoxycarbonyl group is preferably an alkoxycarbonyl group having 2 to 10 carbon atoms, such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, a pentoxycarbonyl group, an isopropoxycarbonyl group, an isobutoxy group. Examples thereof include a carbonyl group and a tert-butoxycarbonyl group.
 前記アリールオキシカルボニル基としては、炭素原子数7~11のアリールオキシカルボニル基が好ましく、例えば、フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等が挙げられる。 The aryloxycarbonyl group is preferably an aryloxycarbonyl group having 7 to 11 carbon atoms, and examples thereof include a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group.
 前記アルキルメルカプトカルボニル基としては、炭素原子数2~18のアルキルメルカプトカルボニル基が好ましく、例えば、メチルメルカプトカルボニル基、エチルメルカプトカルボニル基、プロピルメルカプトカルボニル基等が挙げられる。 The alkyl mercaptocarbonyl group is preferably an alkyl mercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a methyl mercaptocarbonyl group, an ethyl mercaptocarbonyl group, and a propyl mercaptocarbonyl group.
 前記アリールメルカプトカルボニル基としては、炭素原子数2~18のアリールメルカプトカルボニル基が好ましく、例えば、フェニルメルカプトカルボニル基、トリルメルカプトカルボニル基、ナフチルメルカプトカルボニル基等が挙げられる。 The arylmercaptocarbonyl group is preferably an arylmercaptocarbonyl group having 2 to 18 carbon atoms, and examples thereof include a phenylmercaptocarbonyl group, a tolylmercaptocarbonyl group, and a naphthyl mercaptocarbonyl group.
 前記置換基は、ハロゲン原子、ニトロ基等で、更に置換されていてもよい。 The substituent may be further substituted with a halogen atom, a nitro group, or the like.
 Rの炭素原子上の複数の水素原子が、例えば、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、アリールスルホニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルメルカプトカルボニル基又はアリールメルカプトカルボニル基で置換されている場合、隣接している置換基同士が結合して環を形成してもよい。 A plurality of hydrogen atoms on the carbon atom of R are, for example, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl When substituted with a mercapto group, an aryl mercapto group, an alkylsulfonyl group, an arylsulfonyl group, an alkylaminocarbonyl group, an arylaminocarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkyl mercaptocarbonyl group or an aryl mercaptocarbonyl group, Adjacent substituents may be bonded to form a ring.
 前記隣接している置換基同士が結合して環を形成する場合の環としては、例えば、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、ベンゼン環、ナフタレン環、テトラヒドロフラン環、ベンゾピラン環、N-メチルピロリジン環、N-メチルピペリジン環等が挙げられる。これらの環は、ハロゲン原子、ニトロ基等で、更に置換されていてもよい。 Examples of the ring when the adjacent substituents are bonded to form a ring include, for example, a cyclopentene ring, cyclohexene ring, cycloheptene ring, benzene ring, naphthalene ring, tetrahydrofuran ring, benzopyran ring, and N-methylpyrrolidine ring. And N-methylpiperidine ring. These rings may be further substituted with a halogen atom, a nitro group or the like.
 中でも、Rとしては、炭素原子数1~6のアルキル基、炭素原子数6~18のアリール基、炭素原子数3~6のシクロアルキル基、N原子をヘテロ原子として含むヘテロ環基、炭素原子数2~7のアルコキシカルボニル基、炭素原子数7~11のアリールカルボニル基、炭素原子数1~6のアルキルスルホニル基又は炭素原子数6~10のアリールスルホニル基が好ましく、これらは、さらに、炭素原子上のひとつ又は複数の水素原子が、ハロゲン原子(特に、フッ素原子)、ニトロ基、メトキシ基、ベンゾイル基、フルオロベンゾイル基、アセチル基、ジエチルアミノカルボニル基、ジフェニルアミノカルボニル基、メチルメルカプト基、メチルスルホニル基、メトキシカルボニル基、メチルメルカプトカルボニル基又はフェニルメルカプトカルボニル基等で置換されていてもよい。 Among them, R is an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 18 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a heterocyclic group containing an N atom as a hetero atom, a carbon atom An alkoxycarbonyl group having 2 to 7 carbon atoms, an arylcarbonyl group having 7 to 11 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, or an arylsulfonyl group having 6 to 10 carbon atoms is preferable. One or more hydrogen atoms on the atom are a halogen atom (especially a fluorine atom), nitro group, methoxy group, benzoyl group, fluorobenzoyl group, acetyl group, diethylaminocarbonyl group, diphenylaminocarbonyl group, methyl mercapto group, methyl Sulfonyl group, methoxycarbonyl group, methyl mercaptocarbonyl group or phenyl merca It may be substituted by preparative carbonyl group.
 含窒素へテロ環カルベン配位子Lは、例えば、一般式(1)又は(2): The nitrogen-containing heterocyclic carbene ligand L is, for example, the general formula (1) or (2):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、
 R及びRは、それぞれ同一又は異なっていてもよく、アルキル基、シクロアルキル基、ポリシクロアルキル基又はアリール基を示し、
 R3、R4、R5及びR6は、それぞれ同一又は異なっていてもよく、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ニトロ基、シアノ基又はジアルキルアミノ基を示し、隣接している基同士が結合して環を形成していてもよく、
 R1~R6が炭素原子を含む基を示す場合、炭素原子上のひとつ又は複数の水素原子は、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基又はアリールオキシ基で置換されていてもよい
で示される。
Where
R 1 and R 2 may be the same or different and each represents an alkyl group, a cycloalkyl group, a polycycloalkyl group, or an aryl group;
R 3 , R 4 , R 5 and R 6 may be the same or different and each is a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, nitro group, A cyano group or a dialkylamino group, and adjacent groups may be bonded to form a ring;
When R 1 to R 6 represent a group containing a carbon atom, one or more hydrogen atoms on the carbon atom are a halogen atom, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group or aryl It may be substituted with an oxy group.
 ここで、R及びRは、アルキル基、シクロアルキル基、ポリシクロアルキル基又はアリール基を示すが、アルキル基、シクロアルキル基、アリール基は、前記Rの炭素原子上の置換基として定義したものと同義である。 Here, R 1 and R 2 represent an alkyl group, a cycloalkyl group, a polycycloalkyl group or an aryl group, and the alkyl group, the cycloalkyl group and the aryl group are defined as substituents on the carbon atom of R. Synonymous with
 前記ポリシクロアルキル基としては、炭素原子数6~10のポリシクロアルキルが好ましく、ビシクロ-[2.1.1]-ヘキシル基、ビシクロ-[2.2.1]-ヘプチル基、ビシクロ-[2.2.2]-オクチル基、ビシクロ-[3.3.0]-オクチル基、ビシクロ-[4.3.0]-ノニル基、ビシクロ-[4.4.0]-オクチル基、アダマンチル基等が挙げられる。 The polycycloalkyl group is preferably a polycycloalkyl group having 6 to 10 carbon atoms, and includes a bicyclo- [2.1.1] -hexyl group, a bicyclo- [2.2.1] -heptyl group, and a bicyclo- [ 2.2.2] -octyl group, bicyclo- [3.3.0] -octyl group, bicyclo- [4.3.0] -nonyl group, bicyclo- [4.4.0] -octyl group, adamantyl Groups and the like.
 R3、R4、R5及びR6は、ハロゲン原子、アルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ニトロ基、シアノ基又はジアルキルアミノ基を示すが、これらは、前記Rの炭素原子上の置換基として定義したものと同義である。 R 3 , R 4 , R 5 and R 6 represent a halogen atom, alkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, nitro group, cyano group or dialkylamino group, , Are the same as those defined as the substituent on the carbon atom of R.
 なお、R、R、R3、R4、R5及びR6の炭素原子上のひとつ又は複数の水素原子は、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基又はアリールオキシ基で置換されてもよく、これらの基も前記Rの炭素原子上の置換基として定義したものと同義である。 One or more hydrogen atoms on the carbon atoms of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are a halogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group. , An alkoxy group or an aryloxy group may be substituted, and these groups are also synonymous with those defined as the substituent on the carbon atom of R.
 中でも、R及びRとしては、tert-ブチル基、2,6-ジイソプロピルフェニル基、2,4,6-トリメチルフェニル基又はアダマンチル基が好ましく、R、R、R及びRとしては、水素原子又はハロゲン原子、特に塩素原子が好ましい。 Among these, as R 1 and R 2 , a tert-butyl group, a 2,6-diisopropylphenyl group, a 2,4,6-trimethylphenyl group or an adamantyl group is preferable. As R 3 , R 4 , R 5 and R 6 Is preferably a hydrogen atom or a halogen atom, particularly a chlorine atom.
 本発明における含窒素へテロ環カルベン配位子(L)の具体的としては、例えば、式(6)~(15) Specific examples of the nitrogen-containing heterocyclic carbene ligand (L) in the present invention include, for example, formulas (6) to (15)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
で示される配位子が挙げられる。 The ligand shown by these is mentioned.
 本発明で用いられる、前記一般式(2)のハロゲン化金(I)-含窒素へテロ環カルベン錯体は、市販品を用いてもよいし、公知の方法で合成することもできる(例えば、Organometallics,2005年,24巻,2411参照)。一般式(2)におけるXは、ハロゲン原子を示し、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 The gold halide (I) -nitrogen-containing heterocyclic carbene complex of the general formula (2) used in the present invention may be a commercially available product, or can be synthesized by a known method (for example, Organometallics, 2005, 24, 2411). X in General formula (2) shows a halogen atom, and a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
 前記一般式(1)の置換エチンは、市販品をそのまま用いることができる。 Commercially available products can be used as they are for the substituted ethyne of the general formula (1).
 本発明の置換エチニル金-含窒素へテロ環カルベン錯体の合成において、置換エチンの使用量は、ハロゲン化金(I)-含窒素へテロ環カルベン錯体1モルに対して、好ましくは1~3モル、更に好ましくは1~1.5モルである。 In the synthesis of the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention, the amount of the substituted ethyne is preferably 1 to 3 with respect to 1 mol of the gold (I) halide-nitrogen-containing heterocyclic carbene complex. Mol, more preferably 1 to 1.5 mol.
 本発明の置換エチニル金-含窒素へテロ環カルベン錯体の合成においては、溶媒を使用することができる。使用する溶媒としては、反応を阻害しないものならば特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類;テトラヒドロフラン、フラン、ジオキサン、テトラヒドロピラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等のエーテル類;ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、ジクロロエタン、ジクロロプロパン等のハロゲン化脂肪族炭化水素類;クロロベンゼン等のハロゲン化芳香族炭化水素類が使用される。なお、これらの溶媒は異性体を用いてもよく、単独又は二種以上を混合して使用してもよい。 In the synthesis of the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention, a solvent can be used. The solvent to be used is not particularly limited as long as it does not inhibit the reaction. For example, alcohols such as methanol, ethanol, propanol and butanol; tetrahydrofuran, furan, dioxane, tetrahydropyran, diethyl ether, diisopropyl ether, dibutyl ether and the like Ethers; aliphatic hydrocarbons such as pentane, hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aliphatic hydrocarbons such as dichloromethane, dichloroethane and dichloropropane; chlorobenzene and the like The halogenated aromatic hydrocarbons are used. In addition, an isomer may be used for these solvents, and they may be used alone or in combination of two or more.
 前記溶媒の使用量は、反応液の均一性や攪拌性により適宜調節するが、ハロゲン化金(I)-含窒素へテロ環カルベン錯体1モルに対して、好ましくは1~30L、更に好ましくは5~20Lである。 The amount of the solvent used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution, but is preferably 1 to 30 L, more preferably 1 mol per 1 mol of the gold halide (I) -nitrogen-containing heterocyclic carbene complex. 5 to 20 L.
 本発明の置換エチニル金-含窒素へテロ環カルベン錯体の合成は、置換エチン、ハロゲン化金(I)-含窒素ヘテロ環カルベン錯体、塩基及び溶媒を混合して、攪拌しながら反応させる等の方法によって行うことができる。その際の反応温度は、好ましくは0~120℃、更に好ましくは20~100℃であり、反応圧力は特に制限されない。 The synthesis of the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention involves mixing a substituted ethyne, a gold halide (I) -nitrogen-containing heterocyclic carbene complex, a base and a solvent, and reacting with stirring. It can be done by the method. The reaction temperature at that time is preferably 0 to 120 ° C., more preferably 20 to 100 ° C., and the reaction pressure is not particularly limited.
 本発明の置換エチニル金-含窒素へテロ環カルベン錯体の合成は、塩基の存在下に行われる。塩基としては金属アルコキシドが好ましい。特にアルカリ金属アルコキシドが好ましい。具体的にはリチウムメトキシド、リチウムエトキシド、リチウムプロポキシド、リチウムブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムプロポキシド、カリウムブトキシドがあげられる。上記のアルカリ金属プロポキシド、ブトキシドに関してはアルコキシ基の異性体も含まれる。塩基の使用量は、ハロゲン化金(I)-含窒素へテロ環カルベン錯体1モルに対して、好ましくは1~3モル、更に好ましくは1~1.5モルである。 The synthesis of the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention is carried out in the presence of a base. A metal alkoxide is preferable as the base. Alkali metal alkoxides are particularly preferable. Specific examples include lithium methoxide, lithium ethoxide, lithium propoxide, lithium butoxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, potassium ethoxide, potassium propoxide, and potassium butoxide. It is done. Regarding the alkali metal propoxide and butoxide, isomers of alkoxy groups are also included. The amount of the base to be used is preferably 1 to 3 mol, more preferably 1 to 1.5 mol, per 1 mol of the gold (I) halide-nitrogen-containing heterocyclic carbene complex.
 本発明の置換エチニル金-含窒素へテロ環カルベン錯体は、反応終了後、中和、抽出、濾過、濃縮、蒸留、再結晶、昇華、クロマトグラフィー等の公知の方法によって単離・生成される。 The substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex of the present invention is isolated and produced by a known method such as neutralization, extraction, filtration, concentration, distillation, recrystallization, sublimation, and chromatography after completion of the reaction. .
 本発明の製造法により得られる置換エチニル金-含窒素へテロ環カルベン錯体としては、式(16)~(61) The substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex obtained by the production method of the present invention includes the following formulas (16) to (61)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
等が挙げられる。 Etc.
 本発明の製造法により得られる置換エチニル金-含窒素へテロ環カルベン錯体は、クロロホルム中、温度77K(ケルビン)において紫外線照射下にCIE色度座標(0.150,0.060)~(0.218,0.385)の青色の発光、及び(0.187,0.452)~(0.324,0.554)の緑色の発光を示し、有機エレクトロルミネッセンス素子として好適に用いられることが示唆された。 The substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex obtained by the production method of the present invention has CIE chromaticity coordinates (0.150, 0.060) to (0) in chloroform at a temperature of 77 K (Kelvin) under ultraviolet irradiation. .218, 0.385) blue light emission and (0.187, 0.452) to (0.324, 0.554) green light emission, and can be suitably used as an organic electroluminescence device. It was suggested.
 次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.
実施例1(Au(IPr)(PE)[(フェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 アルゴン雰囲気下、15mLシュレンク管に1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン塩化金(I)[IPrAuCl:93.2mg,0.15mmol]、フェニルエチン(16mg,0.158mmol)、エタノール(3mL)を加えた後、ナトリウムエトキシド(62μL,0.158mmol:濃度2.55mol/L(リットル)のエタノール溶液)を滴下した。室温で19時間攪拌した後、エタノールを減圧留去し塩化メチレンを加え水洗し、硫酸ナトリウムで乾燥後、エバポレーターで溶媒を減圧留去した。得られた固体をn-ヘキサン-塩化メチレン系で再結晶操作を行い、白色固体である目的物を0.093g得た(収率90%)。
Example 1 (Synthesis of Au (IPr) (PE) [(phenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
In a 15 mL Schlenk tube under an argon atmosphere, 1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene gold chloride (I) [IPrAuCl: 93.2 mg, 0.15 mmol], phenylethyne (16 mg,. 158 mmol) and ethanol (3 mL) were added, and then sodium ethoxide (62 μL, 0.158 mmol: ethanol solution having a concentration of 2.55 mol / L (liter)) was added dropwise. After stirring at room temperature for 19 hours, ethanol was distilled off under reduced pressure, methylene chloride was added and the mixture was washed with water, dried over sodium sulfate, and the solvent was distilled off under reduced pressure using an evaporator. The obtained solid was recrystallized from an n-hexane-methylene chloride system to obtain 0.093 g of the desired product as a white solid (yield 90%).
H-NMR(300MHz,CDCl)δ(ppm):7.49(dd,2H),7.31-7.28(m,6H),7.12(s,2H),7.10-7.00(m,3H),2.61(sept,4H),1.38(d,12H),1.21(d,12H)
FAB-MS(M/Z):687(M+H)
発光分析(CHCl,77K,Ex250nm)λ(nm):414(max),434,454
元素分析 観測値 C:60.95,H:5.92,N:4.02
     理論値 C:61.22,H:6.02,N:4.08
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.49 (dd, 2H), 7.31-7.28 (m, 6H), 7.12 (s, 2H), 7.10- 7.00 (m, 3H), 2.61 (sept, 4H), 1.38 (d, 12H), 1.21 (d, 12H)
FAB-MS (M / Z): 687 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 250 nm) λ (nm): 414 (max), 434, 454
Elemental analysis Observation C: 60.95, H: 5.92, N: 4.02
Theoretical value C: 61.22, H: 6.02, N: 4.08
実施例2(Au(IMes)(PE)[(フェニルエチニル)[1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-イリデン]金]の合成)
 1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン塩化金(I)に換えて1,3-ビス(1,3,5-トリメチルフェニル)イミダゾール-2-イリデン塩化金(I)[IMesAuCl:80.5mg,0.15mmol]を用いるほかは実施例1と同様の操作を行い、白色固体である目的物を0.077g得た(収率85%)。
Example 2 (Synthesis of Au (IMes) (PE) [(phenylethynyl) [1,3-bis (2,4,6-trimethylphenyl) imidazol-2-ylidene] gold])
1,3-bis (1,3,5-trimethylphenyl) imidazole-2-ylidene gold chloride (I) instead of 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene gold chloride (I) ) The same operation as in Example 1 was carried out except that [IMesAuCl: 80.5 mg, 0.15 mmol] was used to obtain 0.077 g of the desired product as a white solid (yield 85%).
H-NMR(300MHz,CDCl)δ(ppm):7.35-7.32(m,2H)7.15-7.07(m,3H),7.06(s,2H),6.99(s,4H)2.35(s,6H),2.12(s,12H)
FAB-MS(M/Z):603(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):414(max),434,453
元素分析 観測値 C:57.65,H:4.74,N:4.48
     理論値 C:57.81,H:4.85,N:4.65
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.35-7.32 (m, 2H) 7.15-7.07 (m, 3H), 7.06 (s, 2H), 6 .99 (s, 4H) 2.35 (s, 6H), 2.12 (s, 12H)
FAB-MS (M / Z): 603 (M + H) +
Luminescent analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 414 (max), 434, 453
Elemental analysis Observation C: 57.65, H: 4.74, N: 4.48
Theoretical value C: 57.81, H: 4.85, N: 4.65
実施例3(Au(IAd)(PE)[(フェニルエチニル)[1,3-ジアダマンチルイミダゾール-2-イリデン]金]の合成)
 1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン塩化金(I)に換えて1,3-ジアダマンチルイミダゾール-2-イリデン塩化金(I)[IAdAuCl:85.3mg,0.15mmol]を用いるほかは実施例1と同様の操作を行い、白色固体である目的物を0.080g得た(収率84%)。
Example 3 Synthesis of Au (IAd) (PE) [(phenylethynyl) [1,3-diadamantylimidazol-2-ylidene] gold]
1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene gold chloride (I) instead of 1,3-diadamantylimidazol-2-ylidene gold chloride (I) [IAdAuCl: 85.3 mg, 0 .15 mmol] was used in the same manner as in Example 1 to obtain 0.080 g of the target product as a white solid (yield 84%).
H-NMR(300MHz,CDCl)δ(ppm):7.53-7.49(m,2H),7.25-7.08(m,3H),7.07(s,2H),2.58-2.56(m,12H),2.34-2.28(m,6H),1.85-1.72(m,12H)
FAB-MS(M/Z):635(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):415(max),435,455
元素分析 観測値 C:58.71,H:5.76,N:4.44
     理論値 C:58.67,H:5.88,N:4.41
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.53-7.49 (m, 2H), 7.25-7.08 (m, 3H), 7.07 (s, 2H), 2.58-1.56 (m, 12H), 2.34-2.28 (m, 6H), 1.85-1.72 (m, 12H)
FAB-MS (M / Z): 635 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 415 (max), 435, 455
Elemental analysis Observation C: 58.71, H: 5.76, N: 4.44
Theoretical value C: 58.67, H: 5.88, N: 4.41
実施例4(Au(ItBu)(PE)[(フェニルエチニル)[1,3-ジ-tert-ブチルイミダゾール-2-イリデン]金]の合成)
 1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン塩化金(I)に換えて1,3-ジ-tert-ブチルイミダゾール-2-イリデン塩化金(I)[ItBuAuCl:93.5mg,0.15mmol]を用いるほかは実施例1と同様の操作を行い、白色固体である目的物を0.064g得た(収率89%)。
Example 4 Synthesis of Au (ItBu) (PE) [(phenylethynyl) [1,3-di-tert-butylimidazol-2-ylidene] gold]
Instead of 1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene chloride (I), 1,3-di-tert-butylimidazol-2-ylidene chloride (I) [ItBuAuCl: 93. The same operation as in Example 1 was performed except that 5 mg, 0.15 mmol] was used, to obtain 0.064 g of the target product as a white solid (yield 89%).
H-NMR(300MHz,CDCl)δ(ppm):7.53-7.49(m,2H),7.29-7.06(m,3H),7.03(s,2H),1.89(s,18H)
FAB-MS(M/Z):479(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):414(max)434、454
元素分析 観測値 C:47.30,H:5.11,N:5.76
     理論値 C:47.70,H:5.27,N:5.86
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.53-7.49 (m, 2H), 7.29-7.06 (m, 3H), 7.03 (s, 2H), 1.89 (s, 18H)
FAB-MS (M / Z): 479 (M + H) +
Emission analysis (CHCl 3, 77K, Ex240nm) λ (nm): 414 (max) 434,454
Elemental analysis Observation C: 47.30, H: 5.11, N: 5.76
Theoretical value C: 47.70, H: 5.27, N: 5.86
実施例5(Au(IPr)(4F-PE)[(4-フルオロフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-フルオロフェニルエチン(19mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をn-ヘキサン-ジエチルエーテル-塩化メチレン系で再結晶操作を行い、白色固体である目的物を0.093g得た(収率88%)。
Example 5 (Synthesis of Au (IPr) (4F-PE) [(4-fluorophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
The white solid obtained was recrystallized from the n-hexane-diethyl ether-methylene chloride system after the same operation as in Example 1 except that 4-fluorophenylethine (19 mg, 0.158 mmol) was used instead of phenylethine. Operation was performed to obtain 0.093 g of the target product as a white solid (yield 88%).
H-NMR(300MHz,CDCl)δ(ppm):7.49(dd,2H),7.30-7.22(m,8H),7.12(s,2H),6.82-6.75(m,2H),2.60(sept,4H),1.38(d,12H),1.21(d,12H)
FAB-MS(M/Z):705(M+H)
発光分析(CHCl,77K,Ex250nm)λ(nm):412(max),430,451
元素分析 観測値 C:59.32,H:5.68,N:3.95
     理論値 C:59.66,H:5.72,N:3.98
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.49 (dd, 2H), 7.30-7.22 (m, 8H), 7.12 (s, 2H), 6.82- 6.75 (m, 2H), 2.60 (sept, 4H), 1.38 (d, 12H), 1.21 (d, 12H)
FAB-MS (M / Z): 705 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 250 nm) λ (nm): 412 (max), 430, 451
Elemental analysis Observation C: 59.32, H: 5.68, N: 3.95
Theoretical value C: 59.66, H: 5.72, N: 3.98
実施例6(Au(IMes)(4F-PE)[(4-フルオロフェニルエチニル)[1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-イリデン]金]の合成)
 1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン塩化金(I)に換えて1,3-ビス(1,3,5-トリメチルフェニル)イミダゾール-2-イリデン塩化金(I)[IMesAuCl:80.5mg,0.15mmol]を用いるほかは実施例5と同様の操作を行い白色固体である目的物を0.086g得た(収率92%)。
Example 6 (Synthesis of Au (IMes) (4F-PE) [(4-fluorophenylethynyl) [1,3-bis (2,4,6-trimethylphenyl) imidazol-2-ylidene] gold])
1,3-bis (1,3,5-trimethylphenyl) imidazole-2-ylidene gold chloride (I) instead of 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene gold chloride (I) ) Except that [IMesAuCl: 80.5 mg, 0.15 mmol] was used, the same operation as in Example 5 was performed to obtain 0.086 g of the target product as a white solid (yield 92%).
H-NMR(300MHz,CDCl)δ(ppm):7.32-7.26(m,2H)7.06(s,2H),6.99(s,4H)6.81-6.78(m,2H)、2.35(s,6H),2.12(s,12H)
FAB-MS(M/Z):621(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):411(max),430,450
元素分析 観測値 C:55.85,H:4.52,N:4.60
     理論値 C:56.13,H:4.55,N:4.51
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.32-7.26 (m, 2H) 7.06 (s, 2H), 6.99 (s, 4H) 6.81-6. 78 (m, 2H), 2.35 (s, 6H), 2.12 (s, 12H)
FAB-MS (M / Z): 621 (M + H) +
Emission analysis (CHCl 3, 77K, Ex240nm) λ (nm): 411 (max), 430,450
Elemental analysis Observation C: 55.85, H: 4.52, N: 4.60
Theoretical value C: 56.13, H: 4.55, N: 4.51
実施例7(Au(IPr)(4MeO-PE)[(4-メトキシフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-メトキシフェニルエチン(21mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をn-ヘキサン-ジエチルエーテル-塩化メチレン系で再結晶操作を行い、白色固体である目的物を0.087g得た(収率81%)。
Example 7 (Synthesis of Au (IPr) (4MeO-PE) [(4-methoxyphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 4-methoxyphenylethyne (21 mg, 0.158 mmol) was used in place of phenylethine, the obtained white solid was recrystallized in an n-hexane-diethyl ether-methylene chloride system. The operation was performed to obtain 0.087 g of the desired product as a white solid (yield 81%).
H-NMR(300MHz,CDCl)δ(ppm):7.49(dd,2H),7.30-7.22(m,6H),7.11(s,2H),6.67-6.62(m,2H),3.71(s,3H)、2.61(sept,4H),1.38(d,12H),1.21(d,12H)
FAB-MS(M/Z):716(M+H)
発光分析(CHCl,77K,Ex250nm)λ(nm):420(max),440
元素分析 観測値 C:59.98,H:6.01,N:3.87
     理論値 C:60.33,H:6.05,N:3.91
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.49 (dd, 2H), 7.30-7.22 (m, 6H), 7.11 (s, 2H), 6.67- 6.62 (m, 2H), 3.71 (s, 3H), 2.61 (sept, 4H), 1.38 (d, 12H), 1.21 (d, 12H)
FAB-MS (M / Z): 716 (M + H) +
Luminescence analysis (CHCl 3 , 77K, Ex 250 nm) λ (nm): 420 (max), 440
Elemental analysis Observation C: 59.98, H: 6.01, N: 3.87
Theoretical value C: 60.33, H: 6.05, N: 3.91
実施例8(Au(IMes)(4MeO-PE)[(4-メトキシフェニルエチニル)[1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-イリデン]金]の合成)
 1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン塩化金(I)に換えて1,3-ビス(1,3,5-トリメチルフェニル)イミダゾール-2-イリデン塩化金(I)[IMesAuCl:80.5mg,0.15mmol]を用いるほかは実施例7と同様の操作を行い白色固体である目的物を0.081g得た(収率85%)。
Example 8 (Synthesis of Au (IMes) (4MeO-PE) [(4-methoxyphenylethynyl) [1,3-bis (2,4,6-trimethylphenyl) imidazol-2-ylidene] gold])
1,3-bis (1,3,5-trimethylphenyl) imidazole-2-ylidene gold chloride (I) instead of 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene gold chloride (I) ) Except that [IMesAuCl: 80.5 mg, 0.15 mmol] was used, the same operation as in Example 7 was performed to obtain 0.081 g of the target product as a white solid (yield 85%).
H-NMR(300MHz,CDCl)δ(ppm):7.31-7.25(m,2H)7.05(s,2H),6.99(s,4H)6.69-6.64(m,2H)、3.72(s,3H),2.34(s,6H),2.12(s,12H)
FAB-MS(M/Z):633(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):419(max),440,459
元素分析 観測値 C:55.75,H:4.92,N:4.29
     理論値 C:56.96,H:4.94,N:4.43
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.31-7.25 (m, 2H) 7.05 (s, 2H), 6.99 (s, 4H) 6.69-6. 64 (m, 2H), 3.72 (s, 3H), 2.34 (s, 6H), 2.12 (s, 12H)
FAB-MS (M / Z): 633 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 419 (max), 440, 459
Elemental analysis Observation C: 55.75, H: 4.92, N: 4.29
Theoretical value C: 56.96, H: 4.94, N: 4.43
実施例9(Au(IPr)(2PyE)[(2-ピリジルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて2-エチニルピリジン(16mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をn-ヘキサン-酢酸エチル系で再結晶操作を行い、白色固体である目的物を0.086g得た(収率83%)。
Example 9 (Synthesis of Au (IPr) (2PyE) [(2-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 2-ethynylpyridine (16 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was recrystallized in an n-hexane-ethyl acetate system, 0.086 g of the target product was obtained as a white solid (yield 83%).
H-NMR(300MHz,CDCl)δ(ppm):8.38-8.36(m,1H),7.52-7.37(m,3H),7.30-7.20(m,5H),7.12(s,2H),6.96-6.91(m,1H),2.63-2.54(sept,4H),1.37(d,12H),1.21(d,12H)
FAB-MS(M/Z):688(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):417,445,457
元素分析 観測値 C:59.32,H:5.82,N:6.05
     理論値 C:59.38,H:5.86,N:6.11
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.38-8.36 (m, 1H), 7.52-7.37 (m, 3H), 7.30-7.20 (m , 5H), 7.12 (s, 2H), 6.96-6.91 (m, 1H), 2.63-2.54 (sept, 4H), 1.37 (d, 12H), 1. 21 (d, 12H)
FAB-MS (M / Z): 688 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 417, 445, 457
Elemental analysis Observation C: 59.32, H: 5.82, N: 6.05
Theoretical value C: 59.38, H: 5.86, N: 6.11
実施例10(Au(IPr)(3PyE)[(3-ピリジルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 2-エチニルピリジンに換えて3-エチニルピリジン(16mg,0.158mmol)を用いるほかは実施例9と同様の操作の後、得られた白色固体をn-ヘキサン-塩化メチレン系で再結晶操作を行い、白色固体である目的物を0.094g得た(収率91%)。
Example 10 (Synthesis of Au (IPr) (3PyE) [(3-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 9 except that 3-ethynylpyridine (16 mg, 0.158 mmol) was used in place of 2-ethynylpyridine, the obtained white solid was recrystallized in an n-hexane-methylene chloride system. This yielded 0.094 g of the desired product as a white solid (yield 91%).
H-NMR(300MHz,CDCl)δ(ppm):8.52-8.51 (m, 1H), 8.27-8.25 (m, 1H), 7.58-7.48 (m 3H), 7.31-7.27 (m, 4H), 7.14 (s, 2H), 7.04-7.00(m, 1H), 2.65-2.56 (sept, 4H), 1.38 (d, 12H), 1.22 (d,12H)
FAB-MS(M/Z): 688(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 443, 450, 462
元素分析 観測値 C:59.44,H:5.82,N:6.16
     理論値 C:59.38,H:5.86,N:6.11
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.52-8.51 (m, 1H), 8.27-8.25 (m, 1H), 7.58-7.48 (m 3H), 7.31-7.27 (m, 4H), 7.14 (s, 2H), 7.04-7.00 (m, 1H), 2.65-2.56 (sept, 4H) , 1.38 (d, 12H), 1.22 (d, 12H)
FAB-MS (M / Z): 688 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 443, 450, 462
Elemental analysis Observation C: 59.44, H: 5.82, N: 6.16
Theoretical value C: 59.38, H: 5.86, N: 6.11
実施例11(Au(IPr)(5F-2PyE)[(5-フルオロ-2-ピリジルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて2-エチニル-5-フルオロピリジン(19mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt= 3/ 1)によって精製し、黄色固体である目的物を0.094g得た(収率89%)。
Example 11 (Synthesis of Au (IPr) (5F-2PyE) [(5-Fluoro-2-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 2-ethynyl-5-fluoropyridine (19 mg, 0.158 mmol) was used instead of phenylethine, the resulting white solid was subjected to column chromatography using silica gel (Hexane / Purification by AcOEt = 3/1) yielded 0.094 g of the desired product as a yellow solid (89% yield).
H-NMR(300MHz,CDCl)δ(ppm):8.22 (d, 1H), 7.49 (t, 2H), 7.19-7.29 (m, 6H), 7.12 (s, 2H), 2.54-2.63 (sept, 4H), 1.36 (d, 12H), 1.22 (d,12H)
FAB-MS(M/Z):706(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 419, 436, 448, 460
元素分析 観測値 C:57.62,H:5.30,N:5.91
     理論値 C:57.87,H:5.57,N:5.95
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.22 (d, 1H), 7.49 (t, 2H), 7.19-7.29 (m, 6H), 7.12 ( s, 2H), 2.54-2.63 (sept, 4H), 1.36 (d, 12H), 1.22 (d, 12H)
FAB-MS (M / Z): 706 (M + H) +
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 419, 436, 448, 460
Elemental analysis Observation C: 57.62, H: 5.30, N: 5.91
Theoretical value C: 57.87, H: 5.57, N: 5.95
実施例12(Au(IPr)(6F-3PyE)[(6-フルオロ-3-ピリジルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて3-エチニル-6-フルオロピリジン(19mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/ AcOEt= 3/ 1)によって精製し、得られた固体を酢酸エチルに溶解してヘキサンで再沈殿した。得られた沈殿物を濾過し、黄色固体である目的物を0.098g得た(収率93%)。
Example 12 (Synthesis of Au (IPr) (6F-3PyE) [(6-Fluoro-3-pyridylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 3-ethynyl-6-fluoropyridine (19 mg, 0.158 mmol) was used instead of phenylethine, the resulting white solid was subjected to column chromatography (Hexane / Purified by AcOEt = 3/1), the obtained solid was dissolved in ethyl acetate and reprecipitated with hexane. The resulting precipitate was filtered to obtain 0.098 g of the target product as a yellow solid (yield 93%).
H-NMR(300MHz,CDCl)δ(ppm):8.11 (s, 1H), 7.61-7.67 (m, 1H), 7.48-7.53 (m, 2H), 7.26-7.31 (m, 4H), 7.14 (s, 1H), 6.64-6.68 (m, 1H), 2.55-2.64 (sept, 4H), 1.36 (d, 12H), 1.22 (d,12H)
FAB-MS(M/Z): 706(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 410, 428, 438, 449
元素分析 観測値 C:57.11,H:5.48,N:5.87
     理論値 C:57.87,H:5.57,N:5.95
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.11 (s, 1H), 7.61-7.67 (m, 1H), 7.48-7.53 (m, 2H), 7.26-7.31 (m, 4H), 7.14 (s, 1H), 6.64-6.68 (m, 1H), 2.55-2.64 (sept, 4H), 36 (d, 12H), 1.22 (d, 12H)
FAB-MS (M / Z): 706 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 410, 428, 438, 449
Elemental analysis Observation C: 57.11, H: 5.48, N: 5.87
Theoretical value C: 57.87, H: 5.57, N: 5.95
実施例13(Au(IPr)(4Ph-PE)[(4-フェニルフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-フェニルフェニルエチン(28mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、白色固体である目的物を0.11g得た(収率96%)。
Example 13 (Synthesis of Au (IPr) (4Ph-PE) [(4-phenylphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 4-phenylphenylethine (28 mg, 0.158 mmol) was used in place of phenylethine, 0.11 g of the target product as a white solid was obtained (yield 96%).
H-NMR(300MHz,CDCl)δ(ppm):7.54-7.47 (m, 1H), 7.39-7.23 (m, 11H), 7.13 (s, 2H), 6.96-6.91(m, 1H), 2.67-2.57 (sept, 4H), 1.39 (d, 12H), 1.22 (d,12H)
FAB-MS(M/Z): 763(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 485, 517
元素分析 観測値 C:64.26,H:5.76,N:3.62
     理論値 C:64.56,H:5.95,N:3.67
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.54-7.47 (m, 1H), 7.39-7.23 (m, 11H), 7.13 (s, 2H), 6.96-6.91 (m, 1H), 2.67-2.57 (sept, 4H), 1.39 (d, 12H), 1.22 (d, 12H)
FAB-MS (M / Z): 763 (M + H) +
Luminescent analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 485, 517
Elemental analysis Observation C: 64.26, H: 5.76, N: 3.62
Theoretical value C: 64.56, H: 5.95, N: 3.67
実施例14(Au(IPr)(4NO-PE)[(4-ニトロフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-ニトロフェニルエチン(16mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をn-ヘキサン-酢酸エチル系で再結晶操作を行い、白色固体である目的物を0.11g得た(収率98%)。
Example 14 (Au (IPr) (4NO 2 -PE) [(4- nitro-phenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold] Synthesis of)
After the same operation as in Example 1 except that 4-nitrophenylethine (16 mg, 0.158 mmol) was used in place of phenylethine, the obtained white solid was recrystallized in an n-hexane-ethyl acetate system. As a result, 0.11 g of the target product was obtained as a white solid (yield 98%).
H-NMR(300MHz,CDCl)δ(ppm):7.99-7.96 (m, 2H), 7.53-7.48 (m, 2H), 7.39-7.29(m, 6H), 7.15 (s, 2H), 6.96-6.91(m, 1H), 2.62-2.57 (sept, 4H), 1.38 (d, 12H), 1.23 (d,12H)
FAB-MS(M/Z): 730(M-H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 494, 523
元素分析 観測値 C:64.35,H:5.46,N:5.74
     理論値 C:57.45,H:5.51,N:5.74
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.9-7.96 (m, 2H), 7.53-7.48 (m, 2H), 7.39-7.29 (m , 6H), 7.15 (s, 2H), 6.96-6.91 (m, 1H), 2.62-2.57 (sept, 4H), 1.38 (d, 12H), 23 (d, 12H)
FAB-MS (M / Z): 730 (M−H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 494, 523
Elemental analysis Observation C: 64.35, H: 5.46, N: 5.74
Theoretical value C: 57.45, H: 5.51, N: 5.74
実施例15(Au(IPr)(2,4F-PE)[(2,4-ジフルオロフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて2,4-ジフルオロ-フェニルエチン(22mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をn-ヘキサン-酢酸エチル系で再結晶操作を行い、白色固体である目的物0.10gを得た(収率94%)。
Example 15 Synthesis of (Au (IPr) (2,4F 2 -PE) [(2,4-difluorophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold) )
After the same operation as in Example 1 except that 2,4-difluoro-phenylethyne (22 mg, 0.158 mmol) was used in place of phenylethine, the obtained white solid was recrystallized in an n-hexane-ethyl acetate system. Operation was performed to obtain 0.10 g of the desired product as a white solid (yield 94%).
H-NMR(300MHz,CDCl)δ(ppm):7.52-7.47 (m, 2H), 7.34-7.22 (m, 5H), 7.12 (s, 2H), 6.67-6.58(m, 2H), 2.65-2.56 (sept, 4H), 1.37 (d, 12H), 1.21 (d,12H)
FAB-MS(M/Z): 723(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 414, 426, 442, 454, 468
元素分析 観測値 C:57.93,H:5.25,N:3.91
     理論値 C:58.17,H:5.44,N:3.88
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.52-7.47 (m, 2H), 7.34-7.22 (m, 5H), 7.12 (s, 2H), 6.67-6.58 (m, 2H), 2.65-2.56 (sept, 4H), 1.37 (d, 12H), 1.21 (d, 12H)
FAB-MS (M / Z): 723 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 414, 426, 442, 454, 468
Elemental analysis Observation C: 57.93, H: 5.25, N: 3.91
Theoretical value C: 58.17, H: 5.44, N: 3.88
実施例16(Au(IPr)(1NpE)[(1-ナフチルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)-イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて1-エチニルナフタレン(24mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt = 100/ 0→1/4)によって精製することで、白色固体である目的化合物0.11gを得た(収率98%)。
Example 16 (Synthesis of Au (IPr) (1NpE) [(1-naphthylethynyl) [1,3-bis (2,6-diisopropylphenyl) -imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 1-ethynylnaphthalene (24 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 100 / (0 → 1/4) to obtain 0.11 g of the target compound as a white solid (yield 98%).
H-NMR(300MHz,CDCl)δ(ppm):8.40- 8.37 (m, 1H) , 7.71-7.68 (m, 1H) , 7.57-7.46 (m, 5H) , 7.40 -7.30 (m, 6H) , 7.16 (s, 2H) , 2.65 (sept,4H) , 1.44 (d, 12H), 1.23 (d, 12H)
MS EI (m/z) : 736 (M+),  CI (m/z) : 737 (MH+)
発光分析(CHCl,77K,Ex240nm)λ(nm): 530nm
元素分析 観測値 C:63.40,H:6.05,N:3.63
     理論値 C:63.58,H:5.88,N:3.80
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.40-8.37 (m, 1H), 7.71-7.68 (m, 1H), 7.57-7.46 (m 5H), 7.40-7.30 (m, 6H), 7.16 (s, 2H), 2.65 (sept, 4H), 1.44 (d, 12H), 1.23 (d, 12H)
MS EI (m / z): 736 (M +), CI (m / z): 737 (MH +)
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 530 nm
Elemental analysis Observation C: 63.40, H: 6.05, N: 3.63
Theoretical value C: 63.58, H: 5.88, N: 3.80
実施例17(3-ベンゾイルフェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3BzPE)]の合成)
 フェニルエチンに換えて3-ベンゾイルフェニルエチン(33mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1~3/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.10g得た(収率88%)。
Example 17 (Synthesis of 3-benzoylphenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3BzPE)])
After the same operation as in Example 1 except that 3-benzoylphenylethine (33 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 5). / 1 to 3/1), and the obtained solid was washed with hexane and filtered to obtain 0.10 g of the desired product as a white solid (yield 88%).
H-NMR(300MHz,CDCl)δ(ppm):7.74-7.12(m,17H),2.64-2.55(sept,4H),1.37(d,12H),1.21(d,12H)
EI-MS(M/Z):790(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):446(max)
熱分析:融点:224℃
元素分析 観測値 C:63.74,H:5.58,N:3.68
     理論値 C:63.79,H:5.74,N:3.54
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.74-7.12 (m, 17H), 2.64-2.55 (sept, 4H), 1.37 (d, 12H), 1.21 (d, 12H)
EI-MS (M / Z): 790 (M) +
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 446 (max)
Thermal analysis: Melting point: 224 ° C
Elemental analysis Observation C: 63.74, H: 5.58, N: 3.68
Theoretical value C: 63.79, H: 5.74, N: 3.54
実施例18(3-(4’-フルオロベンゾイル)フェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)[3(4’FBz)PE]]の合成)
 フェニルエチンに換えて3-(4’-フルオロベンゾイル)フェニルエチン(35mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.10g得た(収率85%)。
Example 18 (3- (4′-fluorobenzoyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) [3 (4′FBz) PE] ]
After the same operation as in Example 1 except that 3- (4′-fluorobenzoyl) phenylethyne (35 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel. The product was purified by (Hexane / AcOEt = 5/1), and the obtained solid was washed and filtered with hexane to obtain 0.10 g of the desired product as a white solid (yield 85%).
H-NMR(300MHz,CDCl)δ(ppm):7.76-7.07(m,16H),2.62-2.56(sept,4H),1.37(d,12H),1.21(d,12H)
EI-MS(M/Z):808(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):442(max)
熱分析:融点:224℃
元素分析 観測値 C:62.35,H:5.44,N:3.44
     理論値 C:62.37,H:5.48,N:3.46
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.76-7.07 (m, 16H), 2.62-2.56 (sept, 4H), 1.37 (d, 12H), 1.21 (d, 12H)
EI-MS (M / Z): 808 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 442 (max)
Thermal analysis: Melting point: 224 ° C
Elemental analysis Observation C: 62.35, H: 5.44, N: 3.44
Theoretical value C: 62.37, H: 5.48, N: 3.46
実施例19(3-アセチルフェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3AcPE)]の合成)
 フェニルエチンに換えて3-アセチルフェニルエチン(23mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1~3/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.10g得た(収率95%)。
Example 19 (Synthesis of 3-acetylphenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3AcPE)])
After the same operation as in Example 1 except that 3-acetylphenylethine (23 mg, 0.158 mmol) was used instead of phenylethine, the white solid obtained was subjected to column chromatography using silica gel (Hexane / AcOEt = 5). / 1 to 3/1), and the resulting solid was washed with hexane and filtered to obtain 0.10 g of the desired product as a white solid (yield 95%).
H-NMR(300MHz,CDCl)δ(ppm):7.88-7.13(m,12H),2.65-2.49(sept,4H),2.49(s,3H),1.44(d,12H),1.21(d,12H)
EI-MS(M/Z):728(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):440(max)
熱分析:融点:224℃
元素分析 観測値 C:60.73,H:5.95,N:3.97
     理論値 C:60.98,H:5.95,N:3.84
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.88-7.13 (m, 12H), 2.65-2.49 (sept, 4H), 2.49 (s, 3H), 1.44 (d, 12H), 1.21 (d, 12H)
EI-MS (M / Z): 728 (M) +
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 440 (max)
Thermal analysis: Melting point: 224 ° C
Elemental analysis Observation C: 60.73, H: 5.95, N: 3.97
Theoretical value C: 60.98, H: 5.95, N: 3.84
実施例20(3-(ジエチルアミノカルボニル)フェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3DEACPE)]の合成)
 フェニルエチンに換えて3-(ジエチルアミノカルボニル)フェニルエチン(32mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1~1/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.11g得た(収率93%)。
Example 20 (Synthesis of 3- (diethylaminocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3DEACPE)])
After the same operation as in Example 1 except that 3- (diethylaminocarbonyl) phenylethyne (32 mg, 0.158 mmol) was used instead of phenylethine, the resulting white solid was subjected to column chromatography (Hexane / AcOEt = 5/1 to 1/1), and the obtained solid was washed and filtered with hexane to obtain 0.11 g of the desired product as a white solid (yield 93%).
H-NMR(300MHz,CDCl)δ(ppm):7.52-7.03(m,12H),3.31(m,4H),2.65-2.54(sept,4H),1.44(d,12H),1.21(d,12H),1.09(m,6H)
EI-MS(M/Z):785(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):421(max)
熱分析:融点:218℃
元素分析 観測値 C:61.02,H:6.30,N:5.32
     理論値 C:61.14,H:6.41,N:5.35
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.52-7.03 (m, 12H), 3.31 (m, 4H), 2.65-2.54 (sept, 4H), 1.44 (d, 12H), 1.21 (d, 12H), 1.09 (m, 6H)
EI-MS (M / Z): 785 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 421 (max)
Thermal analysis: Melting point: 218 ° C
Elemental analysis Observation C: 61.02, H: 6.30, N: 5.32
Theoretical value C: 61.14, H: 6.41, N: 5.35
実施例21(3-(ジフェニルアミノカルボニル)フェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3DPACPE)]の合成)
 フェニルエチンに換えて3-(ジフェニルアミノカルボニル)フェニルエチン(47mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.13g得た(収率95%)。
Example 21 (Synthesis of 3- (diphenylaminocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3DPACPE)])
After the same operation as in Example 1 except that 3- (diphenylaminocarbonyl) phenylethyne (47 mg, 0.158 mmol) was used instead of phenylethine, the resulting white solid was subjected to column chromatography (Hexane / AcOEt = 5/1), and the obtained solid was washed with hexane and filtered to obtain 0.13 g of the desired product as a white solid (yield 95%).
H-NMR(300MHz,CDCl)δ(ppm):7.54-6.83(m,22H),2.62-2.55(sept,4H),1.37(d,12H),1.21(d,12H)
EI-MS(M/Z):881(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):427(max)
熱分析:融点:260℃
元素分析 観測値 C:65.23,H:5.62,N:4.87
     理論値 C:65.37,H:5.71,N:4.76
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.54-6.83 (m, 22H), 2.62-2.55 (sept, 4H), 1.37 (d, 12H), 1.21 (d, 12H)
EI-MS (M / Z): 881 (M) +
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 427 (max)
Thermal analysis: Melting point: 260 ° C
Elemental analysis Observation C: 65.23, H: 5.62, N: 4.87
Theoretical value C: 65.37, H: 5.71, N: 4.76
実施例22(3-(メトキシカルボニル)フェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3MCPE)]の合成)
 フェニルエチンに換えて3-(メトキシカルボニル)フェニルエチン(25mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.098g得た(収率88%)。
Example 22 (Synthesis of 3- (methoxycarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3MCPE)])
After the same operation as in Example 1 except that 3- (methoxycarbonyl) phenylethyne (25 mg, 0.158 mmol) was used in place of phenylethine, the white solid obtained was subjected to column chromatography (Hexane / AcOEt = 5/1) and the obtained solid was washed with hexane and filtered to obtain 0.098 g of the desired product as a white solid (yield 88%).
H-NMR(300MHz,CDCl)δ(ppm):7.98-7.12(m,12H),3.83(s,3H),2.67-2.54(sept,4H),1.38(d,12H),1.23(d,12H)
EI-MS(M/Z):744(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):426(max)
熱分析:融点:205℃
元素分析 観測値 C:59.75,H:5.69,N:3.77
     理論値 C:59.67,H:5.82,N:3.76
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.98-7.12 (m, 12H), 3.83 (s, 3H), 2.67-2.54 (sept, 4H), 1.38 (d, 12H), 1.23 (d, 12H)
EI-MS (M / Z): 744 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 426 (max)
Thermal analysis: Melting point: 205 ° C
Elemental analysis Observation C: 59.75, H: 5.69, N: 3.77
Theoretical value C: 59.67, H: 5.82, N: 3.76
実施例23(3-(フェノキシカルボニル)フェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3PCPE)]の合成)
 フェニルエチンに換えて3-(フェノキシカルボニル)フェニルエチン(35mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.11g得た(収率92%)。
Example 23 (Synthesis of 3- (phenoxycarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3PCPE)])
After the same operation as in Example 1 except that 3- (phenoxycarbonyl) phenylethyne (35 mg, 0.158 mmol) was used instead of phenylethine, the resulting white solid was subjected to column chromatography (Hexane / AcOEt = 5/1) and the obtained solid was washed with hexane and filtered to obtain 0.11 g of the desired product as a white solid (yield 92%).
H-NMR(300MHz,CDCl)δ(ppm):8.16-7.13(m,17H),2.63-2.56(sept,4H),1.38(d,12H),1.22(d,12H)
EI-MS(M/Z):806(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):427(max)
熱分析:融点:224℃
元素分析 観測値 C:62.17,H:5.52,N:3.48
     理論値 C:62.53,H:5.62,N:3.47
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.16-7.13 (m, 17H), 2.63-2.56 (sept, 4H), 1.38 (d, 12H), 1.22 (d, 12H)
EI-MS (M / Z): 806 (M) +
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 427 (max)
Thermal analysis: Melting point: 224 ° C
Elemental analysis Observation C: 62.17, H: 5.52, N: 3.48
Theoretical value C: 62.53, H: 5.62, N: 3.47
実施例24(3-(メチルメルカプトカルボニル)フェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3MMCPE)]の合成)
 フェニルエチンに換えて3-(メチルメルカプトカルボニル)フェニルエチン(28mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.11g得た(収率93%)。
Example 24 (Synthesis of 3- (methylmercaptocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3MMCPE)])
After the same operation as in Example 1 except that 3- (methylmercaptocarbonyl) phenylethyne (28 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography (Hexane / AcOEt = 5/1), and the obtained solid was washed with hexane and filtered to obtain 0.11 g of the desired product as a white solid (yield 93%).
H-NMR(300MHz,CDCl)δ(ppm):7.91-7.13(m,12H),2.67-2.54(sept,4H),2.40(s,3H),1.38(d,12H),1.22(d,12H)
EI-MS(M/Z):760(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):434(max)
熱分析:融点:212℃
元素分析 観測値 C:58.15,H:5.70,N:3.80
     理論値 C:58.41,H:5.70,N:3.68
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.91-7.13 (m, 12H), 2.67-2.54 (sept, 4H), 2.40 (s, 3H), 1.38 (d, 12H), 1.22 (d, 12H)
EI-MS (M / Z): 760 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 434 (max)
Thermal analysis: Melting point: 212 ° C
Elemental analysis Observation C: 58.15, H: 5.70, N: 3.80
Theoretical value C: 58.41, H: 5.70, N: 3.68
実施例25(3-(フェニルメルカプトカルボニル)フェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(3PMCPE)]の合成)
 フェニルエチンに換えて3-(フェニルメルカプトカルボニル)フェニルエチン(27mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.11g得た(収率86%)。
Example 25 (Synthesis of 3- (phenylmercaptocarbonyl) phenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (3PMCPE)])
After the same operation as in Example 1 except that 3- (phenylmercaptocarbonyl) phenylethyne (27 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography (Hexane / AcOEt = 5/1), and the obtained solid was washed with hexane and filtered to obtain 0.11 g of the desired product as a white solid (yield 86%).
H-NMR(300MHz,CDCl)δ(ppm):7.99-7.13(m,17H),2.63-2.56(sept,4H),1.39(d,12H),1.22(d,12H)
EI-MS(M/Z):822(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):435(max)
熱分析:融点:223℃
元素分析 観測値 C:60.94,H:5.49,N:3.50
     理論値 C:61.30,H:5.51,N:3.40
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.9-7.13 (m, 17H), 2.63-2.56 (sept, 4H), 1.39 (d, 12H), 1.22 (d, 12H)
EI-MS (M / Z): 822 (M) +
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 435 (max)
Thermal analysis: Melting point: 223 ° C
Elemental analysis Observation C: 60.94, H: 5.49, N: 3.50
Theoretical value C: 61.30, H: 5.51, N: 3.40
実施例26(2-ベンゾイルフェニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(2BzPE)]の合成)
 フェニルエチンに換えて2-ベンゾイルフェニルエチン(33mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.11g得た(収率93%)。
Example 26 (Synthesis of 2-benzoylphenylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (2BzPE)])
After the same operation as in Example 1 except that 2-benzoylphenylethyne (33 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 5). / 1), and the obtained solid was washed with hexane and filtered to obtain 0.11 g of the desired product as a white solid (yield 93%).
H-NMR(300MHz,CDCl)δ(ppm):7.67-7.06(m,17H),2.53-2.44(sept,4H),1.23(d,12H),1.18(d,12H)
EI-MS(M/Z):790(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):457(max)
熱分析:融点:242℃
元素分析 観測値 C:63.77,H:5.51,N:3.54
     理論値 C:63.79,H:5.74,N:3.54
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.67-7.06 (m, 17H), 2.53-2.44 (sept, 4H), 1.23 (d, 12H), 1.18 (d, 12H)
EI-MS (M / Z): 790 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 457 (max)
Thermal analysis: Melting point: 242 ° C
Elemental analysis Observation C: 63.77, H: 5.51, N: 3.54
Theoretical value C: 63.79, H: 5.74, N: 3.54
実施例27(Au(IPr)(3MMPE)[(3-メチルメルカプトフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて3-メチルメルカプトフェニルエチン(23mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.089g得た(収率81%)。
Example 27 (Synthesis of Au (IPr) (3MMPE) [(3-Methylmercaptophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 3-methylmercaptophenylethine (23 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 5/1) and the resulting solid was washed with hexane and filtered to obtain 0.089 g of the desired product as a white solid (yield 81%).
H-NMR(300MHz,CDCl)δ(ppm):7.47-7.52(m,2H),7.19-7.31(m,4H),6.91-7.12(m,6H),2.54-2.68(sept,4H),2.38(s,3H),1.37(d,12H),1.21(d,12H)
EI-MS(M/Z):732(M+),CI(m/z):733(MH+)
発光分析(CHCl,77K,Ex250nm)λ(nm):431(max)
熱分析:融点:330℃
元素分析 観測値 C:58.76,H:5.88,N:3.75
     理論値 C:59.01,H:5.91,N:3.82
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.47-7.52 (m, 2H), 7.19-7.31 (m, 4H), 6.91-7.12 (m , 6H), 2.54-2.68 (sept, 4H), 2.38 (s, 3H), 1.37 (d, 12H), 1.21 (d, 12H)
EI-MS (M / Z): 732 (M +), CI (m / z): 733 (MH +)
Luminescence analysis (CHCl 3 , 77K, Ex 250 nm) λ (nm): 431 (max)
Thermal analysis: Melting point: 330 ° C
Elemental analysis Observation C: 58.76, H: 5.88, N: 3.75
Theoretical value C: 59.01, H: 5.91, N: 3.82
実施例28(Au(IPr)(4MMPE)[(4-メチルメルカプトフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-メチルメルカプトフェニルエチン(23mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.095g得た(収率86%)。
Example 28 (Synthesis of Au (IPr) (4MMPE) [(4-methylmercaptophenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 4-methylmercaptophenylethine (23 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 5/1), and the obtained solid was washed with hexane and filtered to obtain 0.095 g of the desired product as a white solid (yield 86%).
H-NMR(300MHz,CDCl)δ(ppm):7.44-7.52(m,2H),7.19-7.30(m,8H),6.99(d,2H),2.56-2.67(sept,4H),2.39(s,3H),1.37(d,12H),1.21(d,12H)
EI-MS(M/Z):732(M+),CI(m/z):733(MH+)
発光分析(CHCl,77K,Ex250nm)λ(nm):450(max)
熱分析:融点:355℃
元素分析 観測値 C:58.65,H:5.81,N:3.76
     理論値 C:59.01,H:5.91,N:3.82
1 H-NMR (300MHz, CDCl 3) δ (ppm): 7.44-7.52 (m, 2H), 7.19-7.30 (m, 8H), 6.99 (d, 2H), 2.56-2.67 (sept, 4H), 2.39 (s, 3H), 1.37 (d, 12H), 1.21 (d, 12H)
EI-MS (M / Z): 732 (M +), CI (m / z): 733 (MH +)
Luminescence analysis (CHCl 3 , 77K, Ex 250 nm) λ (nm): 450 (max)
Thermal analysis: Melting point: 355 ° C
Elemental analysis Observation C: 58.65, H: 5.81, N: 3.76
Theoretical value C: 59.01, H: 5.91, N: 3.82
実施例29(シクロヘキシルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(CyE)]の合成)
 フェニルエチンに換えてエチニルシクロヘキサン(17mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体を酢酸エチルに溶解しヘキサンで再沈殿することにより、白色固体である目的物を0.088g得た(収率85%)。
Example 29 (Synthesis of cyclohexylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (CyE)])
After the same operation as in Example 1 except that ethynylcyclohexane (17 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was dissolved in ethyl acetate and reprecipitated with hexane to obtain a white solid. 0.088 g of a certain target product was obtained (yield 85%).
H-NMR(300MHz,CDCl)δ(ppm):7.49-7.44(m,2H),7.28-7.25(m,4H),7.06(d,2H),2.65-2.60(sept,4H),2.32-2.25(m,1H),1.79-1.10(m,34H)
EI-MS(M/Z):692(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):374(max)
熱分析:融点:214℃
元素分析 観測値 C:61.21,H:6.95,N:3.98
     理論値 C:60.68,H:6.84,N:4.04
1 H-NMR (300MHz, CDCl 3) δ (ppm): 7.49-7.44 (m, 2H), 7.28-7.25 (m, 4H), 7.06 (d, 2H), 2.65-2.60 (sept, 4H), 2.32-2.25 (m, 1H), 1.79-1.10 (m, 34H)
EI-MS (M / Z): 692 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 374 (max)
Thermal analysis: Melting point: 214 ° C
Elemental analysis Observation C: 61.21, H: 6.95, N: 3.98
Theoretical value C: 60.68, H: 6.84, N: 4.04
実施例30(n-ブチルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(n-BuE)]の合成)
 フェニルエチンに換えて1-ヘキシン(13mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた固体をヘキサンで洗浄することにより、白色固体である目的物を0.088g得た(収率88%)。
Example 30 (Synthesis of n-butylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (n-BuE)])
After the same operation as in Example 1 except that 1-hexyne (13 mg, 0.158 mmol) was used in place of phenylethine, the obtained solid was washed with hexane to obtain the target product as a white solid in an amount of 0.00. 088 g was obtained (yield 88%).
H-NMR(300MHz,CDCl)δ(ppm):7.49-7.44(m,2H),7.28-7.25(m,4H),7.07(d,2H),2.66-2.52(sept,4H),2.21-2.16(m,2H),1.45-1.13(m,28H),0.82-0.77(m,3H)
EI-MS(M/Z):666(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):374(max)
熱分析:融点:215℃
元素分析 観測値 C:59.18,H:6.59,N:3.21
     理論値 C:59.45,H:6.80,N:4.20
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.49-7.44 (m, 2H), 7.28-7.25 (m, 4H), 7.07 (d, 2H), 2.66-2.52 (sept, 4H), 2.21-2.16 (m, 2H), 1.45-1.13 (m, 28H), 0.82-0.77 (m, 3H) )
EI-MS (M / Z): 666 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 374 (max)
Thermal analysis: Melting point: 215 ° C
Elemental analysis Observation C: 59.18, H: 6.59, N: 3.21
Theoretical value C: 59.45, H: 6.80, N: 4.20
実施例31(シクロペンチルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(CpE)]の合成)
 フェニルエチンに換えてエチニルシクロペンタン(15mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体を酢酸エチルに溶解しヘキサンで再沈殿することにより、白色固体である目的物を0.091g得た(収率89%)。
Example 31 (Synthesis of cyclopentylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (CpE)])
After the same operation as in Example 1 except that ethynylcyclopentane (15 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was dissolved in ethyl acetate and reprecipitated with hexane to obtain a white solid. 0.091 g of the target product was obtained (89% yield).
H-NMR(300MHz,CDCl)δ(ppm):7.50-7.45(m,2H),7.28-7.26(m,4H),7.06(d,2H),2.65-2.60(m,5H),1.84-1.81(m,2H),1.60-1.16(m,28H),0.90-0.86(m,2H)
EI-MS(M/Z):678(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):374(max)
熱分析:融点:244℃
元素分析 観測値 C:60.22,H:6.47,N:4.19
     理論値 C:60.17,H:6.68,N:4.13
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.50-7.45 (m, 2H), 7.28-7.26 (m, 4H), 7.06 (d, 2H), 2.65-2.60 (m, 5H), 1.84-1.81 (m, 2H), 1.60-1.16 (m, 28H), 0.90-0.86 (m, 2H) )
EI-MS (M / Z): 678 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 374 (max)
Thermal analysis: Melting point: 244 ° C
Elemental analysis Observation C: 60.22, H: 6.47, N: 4.19
Theoretical value C: 60.17, H: 6.68, N: 4.13
実施例32(t-ブチルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(t-BuE)]の合成)
 フェニルエチンに換えて3,3-ジメチル-1-ブチン(13mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた固体をヘキサンで洗浄することにより、白色固体である目的物を0.086g得た(収率86%)。
Example 32 (Synthesis of t-butylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (t-BuE)])
After the same operation as in Example 1 except that 3,3-dimethyl-1-butyne (13 mg, 0.158 mmol) was used instead of phenylethine, the obtained solid was washed with hexane to give a white solid. 0.086g of a certain target product was obtained (yield 86%).
H-NMR(300MHz,CDCl)δ(ppm):7.50-7.45(m,2H),7.29-7.25(m,4H),7.06(d,2H),2.67-2.55(sept,4H),1.34(d,12H),1.18(d,12H),1.11(s,9H)
EI-MS(M/Z):666(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):374(max)
熱分析:融点:201℃
元素分析 観測値 C:59.16,H:6.72,N:4.18
     理論値 C:59.45,H:6.80,N:4.20
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.50-7.45 (m, 2H), 7.29-7.25 (m, 4H), 7.06 (d, 2H), 2.67-2.55 (sept, 4H), 1.34 (d, 12H), 1.18 (d, 12H), 1.11 (s, 9H)
EI-MS (M / Z): 666 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 374 (max)
Thermal analysis: Melting point: 201 ° C
Elemental analysis Observation C: 59.16, H: 6.72, N: 4.18
Theoretical value C: 59.45, H: 6.80, N: 4.20
実施例33(シクロプロピルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(cPrE)]の合成)
 フェニルエチンに換えてエチニルシクロプロパン(10mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製した後、ヘキサンで洗浄濾過することにより、白色固体である目的物を0.087g得た(収率89%)。
Example 33 (Synthesis of cyclopropylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (cPrE)])
After the same operation as in Example 1 except that ethynylcyclopropane (10 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography (Hexane / AcOEt = 5/1) using silica gel. The product was washed with hexane and filtered to obtain 0.087 g of the desired product as a white solid (yield 89%).
H-NMR(300MHz,CDCl)δ(ppm):7.49-7.44(m,2H),7.27-7.25(m,4H),7.06(d,2H),2.65-2.51(sept,4H),1.34(d,12H),1.20-1.18(m,13H),0.54-0.51(m,4H)
EI-MS(M/Z):650(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):374(max)
熱分析:融点:265℃
元素分析 観測値 C:58.79,H:6.12,N:4.35
     理論値 C:59.07,H:6.35,N:4.31
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.49-7.44 (m, 2H), 7.27-7.25 (m, 4H), 7.06 (d, 2H), 2.65-2.51 (sept, 4H), 1.34 (d, 12H), 1.20-1.18 (m, 13H), 0.54-0.51 (m, 4H)
EI-MS (M / Z): 650 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 374 (max)
Thermal analysis: Melting point: 265 ° C
Elemental analysis Observation C: 58.79, H: 6.12, N: 4.35
Theoretical value C: 59.07, H: 6.35, N: 4.31
実施例34(メトキシカルボニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(MCE)]の合成)
 フェニルエチンに換えてメトキシカルボニルエチン(27mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1)によって精製した後、ヘキサンで洗浄濾過することにより、白色固体である目的物を0.096g得た(収率96%)。
Example 34 (Synthesis of methoxycarbonylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (MCE)])
After the same operation as in Example 1 except that methoxycarbonylethine (27 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 5/1). The product was washed with hexane and filtered to obtain 0.096 g of the desired product as a white solid (yield 96%).
H-NMR(300MHz,CDCl)δ(ppm):7.61-7.47(m,2H),7.29-7.26(m,4H),7.13(d,2H),3.59(s,3H),2.57-2.45(sept,4H),1.42(d,12H),1.20(d,12H)
EI-MS(M/Z):668(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):374(max)
熱分析:融点:303℃
元素分析 観測値 C:55.02,H:5.63,N:4.14
     理論値 C:55.69,H:5.88,N:4.19
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.61-7.47 (m, 2H), 7.29-7.26 (m, 4H), 7.13 (d, 2H), 3.59 (s, 3H), 2.57-2.45 (sept, 4H), 1.42 (d, 12H), 1.20 (d, 12H)
EI-MS (M / Z): 668 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 374 (max)
Thermal analysis: Melting point: 303 ° C
Elemental analysis Observation C: 55.02, H: 5.63, N: 4.14
Theoretical value C: 55.69, H: 5.88, N: 4.19
実施例35(p-トリルスルホニルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(pTsE)]の合成)
 フェニルエチンに換えてp-トリルスルホニルエチン(28mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をカラムクロマトグラフィー(Hexane/AcOEt=5/1~3/1)によって精製した後、ヘキサンで洗浄濾過することにより、白色固体である目的物を0.095g得た(収率83%)。
Example 35 (Synthesis of p-tolylsulfonylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (pTsE)])
After the same operation as in Example 1 except that p-tolylsulfonylethine (28 mg, 0.158 mmol) was used instead of phenylethine, the resulting white solid was subjected to column chromatography (Hexane / AcOEt = 5/1 to 3). After purification by 1), the product was washed with hexane and filtered to obtain 0.095 g of the desired product as a white solid (yield 83%).
H-NMR(300MHz,CDCl)δ(ppm):7.80-7.76(m,2H),7.54-7.48(m,2H),7.30-7.19(m,6H),7.13(d,2H),2.54-2.42(sept,4H),2.37(s,3H),1.30-1.28(m,12H),1.21-1.19(m,12H)
EI-MS(M/Z):764(M)
発光分析(CHCl,77K,Ex240nm)λ(nm):364(max)
熱分析:融点:268℃
元素分析 観測値 C:56.55,H:5.56,N:3.59
     理論値 C:56.54,H:5.67,N:3.66
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.80-7.76 (m, 2H), 7.54-7.48 (m, 2H), 7.30-7.19 (m 6H), 7.13 (d, 2H), 2.54-2.42 (sept, 4H), 2.37 (s, 3H), 1.30-1.28 (m, 12H), 1. 21-1.19 (m, 12H)
EI-MS (M / Z): 764 (M) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 364 (max)
Thermal analysis: Melting point: 268 ° C
Elemental analysis Observation C: 56.55, H: 5.56, N: 3.59
Theoretical value C: 56.54, H: 5.67, N: 3.66
実施例36(アセチルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(AcE)]の合成)
 フェニルエチンに換えてアセチルエチン(11mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をカラムクロマトグラフィー(Hexane/AcOEt=5/1~3/1)によって精製した後、ヘキサンで洗浄濾過することにより、白色固体である目的物を0.093g得た(収率95%)。
Example 36 (Synthesis of acetylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (AcE)])
The obtained white solid was subjected to column chromatography (Hexane / AcOEt = 5/1 to 3/1) after the same operation as in Example 1 except that acetylethine (11 mg, 0.158 mmol) was used instead of phenylethine. After purification by filtration, the product was washed with hexane and filtered to obtain 0.093 g of the target product as a white solid (yield 95%).
H-NMR(300MHz,CDCl)δ(ppm):7.53-7.45(m,2H),7.30-7.26(m,4H),7.14(s,2H),2.61-2.47(sept,4H),2.15(s,3H),1.33(d,12H),1.21(d,12H)
CI-MS(M/Z):653(MH)
発光分析(CHCl,77K,Ex240nm)λ(nm):424(max)
熱分析:融点:269℃
元素分析 観測値 C:56.63,H:5.90,N:4.20
     理論値 C:57.05,H:6.02,N:4.29
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.53-7.45 (m, 2H), 7.30-7.26 (m, 4H), 7.14 (s, 2H), 2.61-2.47 (sept, 4H), 2.15 (s, 3H), 1.33 (d, 12H), 1.21 (d, 12H)
CI-MS (M / Z): 653 (MH) +
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 424 (max)
Thermal analysis: Melting point: 269 ° C
Elemental analysis Observation C: 56.63, H: 5.90, N: 4.20
Theoretical value C: 57.05, H: 6.02, N: 4.29
実施例37(ベンゾイルエチニル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金 [Au(IPr)(BzE)]の合成)
 フェニルエチンに換えてベンゾイルエチン(21mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をカラムクロマトグラフィー(Hexane/AcOEt=5/1~3/1)によって精製した後、ヘキサンで洗浄濾過することにより、白色固体である目的物を0.098g得た(収率91%)。
Example 37 (Synthesis of benzoylethynyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold [Au (IPr) (BzE)])
The obtained white solid was subjected to column chromatography (Hexane / AcOEt = 5/1 to 3/1) after the same operations as in Example 1 except that benzoylethine (21 mg, 0.158 mmol) was used instead of phenylethine. Then, the product was washed with hexane and filtered to obtain 0.098 g of the desired product as a white solid (yield 91%).
H-NMR(300MHz,CDCl)δ(ppm):δ7.71-7.25 (m, 11H),  7.14 (s, 2H), 2.65-2.50 (sept, 4H), 1.33 (d, 12H), 1.22 (d, 12H)
CI-MS(M/Z):715(MH)
発光分析(CHCl,77K,Ex240nm)λ(nm):474
熱分析:融点:280℃
元素分析 観測値 C:60.63,H:5.80,N:3.90
     理論値 C:60.50,H:5.78,N:3.92
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): δ 7.71-7.25 (m, 11H), 7.14 (s, 2H), 2.65-2.50 (sept, 4H), 1.33 (d, 12H), 1.22 (d, 12H)
CI-MS (M / Z): 715 (MH) +
Emission analysis (CHCl 3, 77K, Ex240nm) λ (nm): 474
Thermal analysis: Melting point: 280 ° C
Elemental analysis Observation C: 60.63, H: 5.80, N: 3.90
Theoretical value C: 60.50, H: 5.78, N: 3.92
実施例38(Au(IPr)(4MSFPE)[(4-メチルスルホニルフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-メチルスルホニルフェニルエチン(28mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー(Hexane/AcOEt=5/1~3/1)によって精製し、得られた固体をヘキサンで洗浄濾過することにより、白色固体である目的物を0.10g得た(収率88%)。
Example 38 (Synthesis of Au (IPr) (4MSFPE) [(4-methylsulfonylphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 4-methylsulfonylphenylethine (28 mg, 0.158 mmol) was used instead of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = The solid obtained was washed with hexane and filtered to obtain 0.10 g of the desired product as a white solid (yield 88%).
H-NMR(300MHz,CDCl)δ(ppm):7.67-7.60(m,4H),7.53-7.40(m,4H),7.32-7.23(m,2H),7.14(d,2H),2.95(s,3H),2.67-2.53(sept,4H),1.37(d,12H),1.21(d,12H)
EI-MS(M/Z):764(M+),CI(m/z):765(MH+)
発光分析(CHCl,77K,Ex250nm)λ(nm):435(max)
熱分析:融点:295℃
元素分析 観測値 C:56.32,H:5.41,N:3.65
     理論値 C:56.54,H:5.67,N:3.66
1 H-NMR (300MHz, CDCl 3) δ (ppm): 7.67-7.60 (m, 4H), 7.53-7.40 (m, 4H), 7.32-7.23 (m , 2H), 7.14 (d, 2H), 2.95 (s, 3H), 2.67-2.53 (sept, 4H), 1.37 (d, 12H), 1.21 (d, 12H)
EI-MS (M / Z): 764 (M +), CI (m / z): 765 (MH +)
Luminescence analysis (CHCl 3 , 77 K, Ex 250 nm) λ (nm): 435 (max)
Thermal analysis: Melting point: 295 ° C
Elemental analysis Observation C: 56.32, H: 5.41, N: 3.65
Theoretical value C: 56.54, H: 5.67, N: 3.66
実施例39(Au(H-IPr)(4F-1NpE)[(4-フルオロ-1-ナフチルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン]金]の合成)
 1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン塩化金(I)に換えて1,3-ビス(2,6-ジイソプロピルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン塩化金(I)[H-IPrAuCl:93.4mg,0.15mmol]を用い、フェニルエチンに換えて4-フルオロ-1-エチニルナフタレン(27mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt = 100/ 0→1/4)によって精製することで、白色固体である目的化合物 0.10gを得た(収率89%)。
Example 39 (Au (H 2 -IPr) (4F-1NpE) [(4-Fluoro-1-naphthylethynyl) [1,3-bis (2,6-diisopropylphenyl) -4,5-dihydroimidazole-2 -Synthesis of iridene] gold]
1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene Instead of gold (I) chloride, 1,3-bis (2,6-diisopropylphenyl) -4,5-dihydroimidazol-2-ylidene Example 1 except that gold (I) chloride [H 2 -IPrAuCl: 93.4 mg, 0.15 mmol] was used and 4-fluoro-1-ethynylnaphthalene (27 mg, 0.158 mmol) was used instead of phenylethine. After the same operation, the obtained white solid was purified by column chromatography (Hexane / AcOEt = 100/0 → 1/4) using silica gel to obtain 0.10 g of the target compound as a white solid. (Yield 89%).
H-NMR(300MHz,CDCl)δ(ppm):8.32-8.29 (m, 1H) , 7.97-7.94 (m, 1H), 7.44-6.92 (m, 9H), 6.92-6.86 (m, 1H) , 4.03 (s,4H) , 3.13 (sept,4H) , 1.50 (d, 12H) , 1.35 (d, 12H)
MS EI (m/z) : 756(M+), CI (m/z) : 757 (MH+)
発光分析(CHCl,77K,Ex240nm)λ(nm): 530nm
元素分析 観測値 C:61.40,H:5.91,N:3.50
     理論値 C:61.90,H:5.86,N:3.70
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.32-8.29 (m, 1H), 7.97-7.94 (m, 1H), 7.44-6.92 (m , 9H), 6.92-6.86 (m, 1H), 4.03 (s, 4H), 3.13 (sept, 4H), 1.50 (d, 12H), 1.35 (d, 12H)
MS EI (m / z): 756 (M +), CI (m / z): 757 (MH +)
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 530 nm
Elemental analysis Observation C: 61.40, H: 5.91, N: 3.50
Theoretical value C: 61.90, H: 5.86, N: 3.70
実施例40(Au(IPr)(4F-1NpE)[(4-フルオロ-1-ナフチルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)-イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-フルオロ-1-エチニルナフタレン(27mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt = 100/ 0→1/4)によって精製することで、白色固体である目的化合物 0.11gを得た(収率95%)。
Example 40 Synthesis of Au (IPr) (4F-1NpE) [(4-Fluoro-1-naphthylethynyl) [1,3-bis (2,6-diisopropylphenyl) -imidazol-2-ylidene] gold]
After the same operation as in Example 1 except that 4-fluoro-1-ethynylnaphthalene (27 mg, 0.158 mmol) was used instead of phenylethine, the resulting white solid was subjected to column chromatography using silica gel (Hexane / Purification by AcOEt = 100/0 → 1/4) gave 0.11 g of the target compound as a white solid (yield 95%).
H-NMR(300MHz,CDCl)δ(ppm):8.37-8.36 (m, 1H) , 7.98-7.95 (m, 1H) , 7.52-7.30 (m, 10H) , 7.16 (s,2H) , 2.64 (sept,4H) , 1.42 (d,12H) , 1.23 (d,12H) 
MS EI (m/z) :754(M+), CI (m/z) :755 (MH+)
発光分析(CHCl,77K,Ex240nm)λ(nm):529nm
元素分析 観測値 C:62.01,H:5.44,N:3.53
     理論値 C:62.06,H:5.61,N:3.71
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.37-8.36 (m, 1H), 7.98-7.95 (m, 1H), 7.52-7.30 (m , 10H), 7.16 (s, 2H), 2.64 (sept, 4H), 1.42 (d, 12H), 1.23 (d, 12H)
MS EI (m / z): 754 (M +), CI (m / z): 755 (MH +)
Luminescence analysis (CHCl 3 , 77K, Ex 240 nm) λ (nm): 529 nm
Elemental analysis Observation C: 62.01, H: 5.44, N: 3.53
Theoretical value C: 62.06, H: 5.61, N: 3.71
実施例41(Au(IPr)(9AntE)[(9-アントリルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて9-エチニルアントラセン(32mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt= 3/ 1)によって精製し、得られた固体を酢酸エチルに溶解してヘキサンで再沈殿した。得られた沈殿物を濾過し、黄色固体である目的物を0.11g得た(収率92%)。
Example 41 (Synthesis of Au (IPr) (9AntE) [(9-anthrylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 9-ethynylanthracene (32 mg, 0.158 mmol) was used instead of phenylethine, the obtained solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 3/1). The solid obtained was dissolved in ethyl acetate and reprecipitated with hexane. The resulting precipitate was filtered to obtain 0.11 g of the target product as a yellow solid (yield 92%).
H-NMR(300MHz,CDCl)δ(ppm):8.63-8.58 (m, 2H), 8.14 (s, 1H), 7.88-7.83 (m, 2H), 7.54-7.49 (m, 2H), 7.39-7.23 (m, 8H), 7.17 (s, 2H), 2.73-2.64 (sept, 4H), 1.48 (d, 12H), 1.24 (d,12H)
FAB-MS(M/Z):787(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):409, 432, 453, 481
元素分析 観測値 C:65.65,H:5.66,N:3.58
     理論値 C:65.64,H:5.76,N:3.56
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.63-8.58 (m, 2H), 8.14 (s, 1H), 7.88-7.83 (m, 2H), 7.54-7.49 (m, 2H), 7.39-7.23 (m, 8H), 7.17 (s, 2H), 2.73-2.64 (sept, 4H), 48 (d, 12H), 1.24 (d, 12H)
FAB-MS (M / Z): 787 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 409, 432, 453, 481
Elemental analysis Observation C: 65.65, H: 5.66, N: 3.58
Theoretical value C: 65.64, H: 5.76, N: 3.56
実施例42(Au(IPr)(9PhenE)[(9-フェナントリルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて9-エチニルフェナントレン(32mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた固体ををシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt= 3/ 1)によって精製し、得られた固体を酢酸エチルに溶解してヘキサンで再沈殿した。得られた沈殿物を濾過し、黄色固体である目的物を0.11g得た(収率89%)。
Example 42 (Synthesis of Au (IPr) (9PhenE) [(9-phenanthrylylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 9-ethynylphenanthrene (32 mg, 0.158 mmol) was used instead of phenylethine, the obtained solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 3 / Purified by 1), the resulting solid was dissolved in ethyl acetate and reprecipitated with hexane. The resulting precipitate was filtered to obtain 0.11 g of the target product as a yellow solid (89% yield).
H-NMR(300MHz,CDCl)δ(ppm):8.58-8.51 (m, 3H), 7.79 (s, 1H), 7.70-7.67 (m, 1H), 7.59-7.29 (m, 10H), 7.15 (s, 2H), 2.70-2.61 (sept, 4H), 1.43 (d, 12H), 1.25 (d, 12H)
FAB-MS(M/Z):786(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm):524, 534, 569
元素分析 観測値 C:65.55,H:5.61,N:3.55
     理論値 C:65.64,H:5.76,N:3.56
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.58-8.51 (m, 3H), 7.79 (s, 1H), 7.70-7.67 (m, 1H), 7.59-7.29 (m, 10H), 7.15 (s, 2H), 2.70-2.61 (sept, 4H), 1.43 (d, 12H), 1.25 (d, 12H)
FAB-MS (M / Z): 786 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 524, 534, 569
Elemental analysis Observation C: 65.55, H: 5.61, N: 3.55
Theoretical value C: 65.64, H: 5.76, N: 3.56
実施例43(Au(IPr)(1PyrenE)[(1-ピレニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて1-エチニル-ピレン(36mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた黄色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt= 3/ 1)によって精製し、得られた固体を酢酸エチルに溶解してヘキサンで再沈殿した。得られた沈殿物を濾過し、薄黄色固体である目的物を0.11g得た(収率91%)。
Example 43 (Synthesis of Au (IPr) (1PyrenE) [(1-pyrenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 1-ethynyl-pyrene (36 mg, 0.158 mmol) was used in place of phenylethine, the obtained yellow solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 3). / 1), the solid obtained was dissolved in ethyl acetate and reprecipitated with hexane. The resulting precipitate was filtered to obtain 0.11 g of the desired product as a pale yellow solid (yield 91%).
H-NMR(300MHz,CDCl)δ(ppm):8.60-8.58 (d, 2H), 8.10-7.89 (m, 8H), 7.55-7.50 (m, 2H), 7.39-7.21 (m, 4H), 7.16 (s, 2H), 2.72-2.63 (sept, 4H), 1.48 (d, 12H), 1.24 (d, 12H)
FAB-MS(M/Z): 810(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 397, 413
元素分析 観測値 C:65.65,H:5.66,N:3.58
     理論値 C:66.39,H:5.58,N:3.38
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.60-8.58 (d, 2H), 8.10-7.89 (m, 8H), 7.55-7.50 (m , 2H), 7.39-7.21 (m, 4H), 7.16 (s, 2H), 2.72-2.63 (sept, 4H), 1.48 (d, 12H), 24 (d, 12H)
FAB-MS (M / Z): 810 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 397, 413
Elemental analysis Observation C: 65.65, H: 5.66, N: 3.58
Theoretical value C: 66.39, H: 5.58, N: 3.38
実施例44(Au(IPr)(2FluorE)[(2-フルオレニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて2-エチニルフルオレン(30mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた黄色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt= 5/1~3/ 1)によって精製し、得られた固体を酢酸エチルに溶解してヘキサンで再沈殿した。得られた沈殿物を濾過し、黄色固体である目的物を0.11g得た(収率95%)。
Example 44 (Synthesis of Au (IPr) (2FluorE) [(2-fluorenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 2-ethynylfluorene (30 mg, 0.158 mmol) was used instead of phenylethine, the obtained yellow solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 5 / The resulting solid was dissolved in ethyl acetate and reprecipitated with hexane. The resulting precipitate was filtered to obtain 0.11 g of the desired product as a yellow solid (yield 95%).
H-NMR(300MHz,CDCl)δ(ppm):7.67-7.64 (d, 2H), 7.54-7.44 (m, 5H), 7.34-7.18 (m, 7H), 7.18 (s, 2H), 3.74 (s, 2H), 2.66-2.57 (sept, 4H), 1.39 (d, 12H), 1.24 (d,12H)
FAB-MS(M/Z): 775(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 481, 500, 511, 520
元素分析 観測値 C:64.85,H:5.87,N:3.60
     理論値 C:65.11,H:5.85,N:3.62
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.67-7.64 (d, 2H), 7.54-7.44 (m, 5H), 7.34-7.18 (m 7H), 7.18 (s, 2H), 3.74 (s, 2H), 2.66-2.57 (sept, 4H), 1.39 (d, 12H), 1.24 (d, 12H)
FAB-MS (M / Z): 775 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 481, 500, 511, 520
Elemental analysis Observation C: 64.85, H: 5.87, N: 3.60
Theoretical value C: 65.11, H: 5.85, N: 3.62
実施例45(Au(IPr)(4Bz-PE)[(4-ベンゾイルフェニルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて4-ベンゾイルフェニルエチン(33mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた白色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt= 3/ 1)によって精製し、得られた固体を酢酸エチルに溶解してヘキサンで再沈殿した。得られた沈殿物を濾過し、白色固体である目的物を0.11g得た(収率93%)。
Example 45 (Synthesis of Au (IPr) (4Bz-PE) [(4-benzoylphenylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 4-benzoylphenylethine (33 mg, 0.158 mmol) was used in place of phenylethine, the obtained white solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 3). / 1), the solid obtained was dissolved in ethyl acetate and reprecipitated with hexane. The resulting precipitate was filtered to obtain 0.11 g of the target product as a white solid (yield 93%).
H-NMR(300MHz,CDCl)δ(ppm):7.71-7.26 (m, 15H),  7.14 (s, 2H), 2.65-2.56 (sept, 4H), 1.48 (d, 12H), 1.24 (d, 12H)
FAB-MS(M/Z): 791(M+H)
発光分析(CHCl,77K,Ex240nm)λ(nm): 474, 507
元素分析 観測値 C:63.56,H:5.47,N:3.47
     理論値 C:63.79,H:5.74,N:3.54
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.71-7.26 (m, 15H), 7.14 (s, 2H), 2.65-2.56 (sept, 4H), 1.48 (d, 12H), 1.24 (d, 12H)
FAB-MS (M / Z): 791 (M + H) +
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 474, 507
Elemental analysis Observation C: 63.56, H: 5.47, N: 3.47
Theoretical value C: 63.79, H: 5.74, N: 3.54
実施例46(Au(IPr)(PzE)[(ピラジルエチニル)[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金]の合成)
 フェニルエチンに換えて2-エチニルピラジン(16mg,0.158mmol)を用いるほかは実施例1と同様の操作の後、得られた黄色固体をシリカゲルをもちいたカラムクロマトグラフィー (Hexane/ AcOEt= 3/ 1)によって精製し、得られた固体を酢酸エチルに溶解してヘキサンで再沈殿した。得られた沈殿物を濾過し、黄色固体である目的物を0.10g得た(収率99%)。
Example 46 (Synthesis of Au (IPr) (PzE) [(pyrazylethynyl) [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] gold])
After the same operation as in Example 1 except that 2-ethynylpyrazine (16 mg, 0.158 mmol) was used instead of phenylethine, the resulting yellow solid was subjected to column chromatography using silica gel (Hexane / AcOEt = 3 / Purified by 1), the resulting solid was dissolved in ethyl acetate and reprecipitated with hexane. The resulting precipitate was filtered to obtain 0.10 g of the desired product as a yellow solid (yield 99%).
H-NMR(300MHz,CDCl)δ(ppm):8.45 (d, 1H), 8.30 (dd, 1H), 8.17 (d, 1H), 7.52-7.49 (m, 2H), 7.31-7.29 (m, 4H), 2.61-2.55 (sept, 4H), 1.36 (d, 12H), 1.22 (d,12H)
FAB-MS(M/Z): 689(MH+)
発光分析(CHCl,77K,Ex240nm)λ(nm): 445, 463, 475, 491
元素分析 観測値 C:57.41,H:5.49,N:8.06
     理論値 C:57.55,H:5.71,N:8.14
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 8.45 (d, 1H), 8.30 (dd, 1H), 8.17 (d, 1H), 7.52-7.49 ( m, 2H), 7.31-7.29 (m, 4H), 2.61-2.55 (sept, 4H), 1.36 (d, 12H), 1.22 (d, 12H)
FAB-MS (M / Z): 689 (MH +)
Luminescence analysis (CHCl 3 , 77 K, Ex 240 nm) λ (nm): 445, 463, 475, 491
Elemental analysis Observation C: 57.41, H: 5.49, N: 8.06
Theoretical value C: 57.55, H: 5.71, N: 8.14
 本発明は、置換エチニル金-含窒素へテロ環カルベン錯体の製造法に関する。本発明によれば、複数の工程を必要とすることなく、簡便に、置換エチニル金-含窒素へテロ環カルベン錯体が得られる。本発明によって得られる、置換エチニル金-含窒素へテロ環カルベン錯体は、電界発光素子(有機エレクトロルミネッセンス素子)用材料等として有用な化合物である。 The present invention relates to a method for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex. According to the present invention, a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex can be easily obtained without requiring a plurality of steps. The substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex obtained by the present invention is a useful compound as a material for an electroluminescence device (organic electroluminescence device).

Claims (5)

  1.  塩基の存在下、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
     式中、
     Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロ環基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アリールアルキルアミノカルボニル基、アルキルメルカプトカルボニル基、アリールメルカプトカルボニル基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルカルボニル基又はアリールカルボニル基を示し、Rの炭素原子上のひとつ又は複数の水素原子は、置換されていてもよく、置換されている場合、隣接する置換基同士は結合して環を形成してもよい
    で示される置換エチン及び一般式(2):
    Figure JPOXMLDOC01-appb-C000002
     式中、
     Xは、ハロゲン原子を示し、
     Lは、含窒素へテロ環カルベン配位子を示す
    で示されるハロゲン化金(I)-含窒素へテロ環カルベン錯体を反応させることを特徴とする、一般式(3):
    Figure JPOXMLDOC01-appb-C000003
     式中、
     R及びLは、前記と同義である
    で示される置換エチニル金-含窒素へテロ環カルベン錯体の製造法。
    In the presence of a base, general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    Where
    R is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, arylaminocarbonyl group, arylalkylaminocarbonyl group, alkyl mercaptocarbonyl group, An arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R may be substituted or substituted. The adjacent substituents may be bonded to form a ring, and the substituted ethyne represented by the general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    Where
    X represents a halogen atom,
    L represents a nitrogen-containing heterocyclic carbene ligand, and represents a reaction of a gold (I) halide-nitrogen-containing heterocyclic carbene complex represented by the general formula (3):
    Figure JPOXMLDOC01-appb-C000003
    Where
    A method for producing a substituted ethynylgold-nitrogen-containing heterocyclic carbene complex, wherein R and L are as defined above.
  2.  Rが、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロ環基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アリールアルキルアミノカルボニル基、アルキルメルカプトカルボニル基、アリールメルカプトカルボニル基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルカルボニル基又はアリールカルボニル基を示し、Rの炭素原子上のひとつ又は複数の水素原子が、ハロゲン原子、ニトロ基、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、アリールスルホニル基、ホルミル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルメルカプトカルボニル基又はアリールメルカプトカルボニル基で置換されていてもよく、Rの炭素原子上の複数の水素原子が、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、アルキルカルボニル基、アリールカルボニル基、アルキルメルカプト基、アリールメルカプト基、アルキルスルホニル基、アリールスルホニル、ホルミル、アルキルアミノカルボニル、アリールアミノカルボニル、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルメルカプトカルボニル基又はアリールメルカプトカルボニル基で置換されている場合、隣接している置換基同士が結合して環を形成してもよい、請求項1記載の置換エチニル金-含窒素へテロ環カルベン錯体の製造法。 R is an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylaminocarbonyl group, an arylaminocarbonyl group, an arylalkylaminocarbonyl group, an alkyl mercaptocarbonyl group, An arylmercaptocarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylcarbonyl group or an arylcarbonyl group, wherein one or more hydrogen atoms on the carbon atom of R are a halogen atom, a nitro group, an alkyl group, a cyclo Alkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto group, aryl mercapto group , An alkylsulfonyl group, an arylsulfonyl group, a formyl group, an alkylaminocarbonyl group, an arylaminocarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylmercaptocarbonyl group or an arylmercaptocarbonyl group, A plurality of hydrogen atoms on a carbon atom is an alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, dialkylamino group, alkylcarbonyl group, arylcarbonyl group, alkyl mercapto group, aryl Mercapto group, alkylsulfonyl group, arylsulfonyl, formyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl group, aryloxycarbonyl group, alkylme The substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex according to claim 1, wherein when substituted with a captocarbonyl group or an arylmercaptocarbonyl group, adjacent substituents may be bonded to form a ring. Manufacturing method.
  3.  塩基が、アルカリ金属のアルコラートである、請求項1又は2記載の置換エチニル金-含窒素へテロ環カルベン錯体の製造法。 The process for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex according to claim 1 or 2, wherein the base is an alkali metal alcoholate.
  4.  反応を有機溶媒中で行う、請求項1~3のいずれか1項記載の置換エチニル金-含窒素へテロ環カルベン錯体の製造法。 The process for producing a substituted ethynylgold-nitrogen-containing heterocyclic carbene complex according to any one of claims 1 to 3, wherein the reaction is carried out in an organic solvent.
  5.  有機溶媒がアルコール類である、請求項4記載の置換エチニル金-含窒素へテロ環カルベン錯体の製造法。 The method for producing a substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex according to claim 4, wherein the organic solvent is an alcohol.
PCT/JP2009/062951 2008-07-18 2009-07-17 Method for manufacturing substituted ethynyl gold-nitrogen containing heterocyclic carbene complex WO2010008065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010520902A JP5594139B2 (en) 2008-07-18 2009-07-17 Process for the preparation of substituted ethynylgold-nitrogen-containing heterocyclic carbene complexes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-187437 2008-07-18
JP2008187437 2008-07-18

Publications (1)

Publication Number Publication Date
WO2010008065A1 true WO2010008065A1 (en) 2010-01-21

Family

ID=41550465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062951 WO2010008065A1 (en) 2008-07-18 2009-07-17 Method for manufacturing substituted ethynyl gold-nitrogen containing heterocyclic carbene complex

Country Status (2)

Country Link
JP (1) JP5594139B2 (en)
WO (1) WO2010008065A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046769A1 (en) * 2010-10-08 2012-04-12 宇部興産株式会社 Gold carbene complex and organic electroluminescent elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050733A1 (en) * 2006-10-24 2008-05-02 Ube Industries, Ltd. Gold complex, method for production of the gold complex, and organic ultraviolet electroluminescent element using the gold complex

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228609B1 (en) * 2005-01-31 2013-02-01 우베 고산 가부시키가이샤 Substituted ethynyl gold-nitrogenated heterocyclic carbene complex and organic electroluminescent device using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050733A1 (en) * 2006-10-24 2008-05-02 Ube Industries, Ltd. Gold complex, method for production of the gold complex, and organic ultraviolet electroluminescent element using the gold complex

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SINGH, S. ET AL.: "A facile one-step synthesis of a lipophilic gold(I) carbene complex - X-ray crystal structures of LAuCl and LAuC=CH (L = 1,3-di-tert-butylimidazol-2-ylidene)", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, no. 15, 2005, pages 3057 - 3062 *
WANG, H.M. ET AL.: "Synthesis, Structure, and Spectroscopic Properties of Gold(I)-Carbene Complexes", ORGANOMETALLICS, vol. 18, no. 7, 1999, pages 1216 - 1223 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046769A1 (en) * 2010-10-08 2012-04-12 宇部興産株式会社 Gold carbene complex and organic electroluminescent elements

Also Published As

Publication number Publication date
JP5594139B2 (en) 2014-09-24
JPWO2010008065A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
KR20230035022A (en) Phosphorescent tetradentate metal complexes having modified emission spectra
JP2009524701A (en) Electroluminescent compound containing fluorene group and organic electroluminescent device using the same as luminescent material
CN111793094A (en) Platinum (II) emitters for OLED applications
KR101566961B1 (en) Bianthracene compounds substituted by aromatic ring and their uses for luminescence materials
TWI553003B (en) Synthesis method of the 2,6 - bis [3 '- (n- carbazolyl) phenyl] pyridine compounds
EP2042506B1 (en) Substituted phenylethynyl gold-nitrogenated heterocyclic carbene complex
JP5594139B2 (en) Process for the preparation of substituted ethynylgold-nitrogen-containing heterocyclic carbene complexes
JP4273236B2 (en) Organic boron π-electron compounds and synthetic intermediates thereof
JP6380997B2 (en) Method for producing triarylmethane compound
JP2012176928A (en) Pyrene derivative, production method of pyrene derivative, complex, catalyst, electronic material, light-emitting material and pigment
CN102093334B (en) Method for synthesizing condensed ring thiophene compounds
US8283855B2 (en) Method for synthesis of anthracene derivative
JP2010037244A (en) Substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex
JP2009280515A (en) Heterocyclic oligomer compound having pentafluorosulfanyl group
JP2014114224A (en) Boron-containing heterocyclic compound
WO2022253221A1 (en) Thermally activated delayed fluorescent palladium (ii) complexes for oled applications
JP6682115B2 (en) Fluorene compound, method for producing fluorene compound, and organic light emitting device
JP5181480B2 (en) Substituted phenylethynyl gold-nitrogen-containing heterocyclic carbene complex
JP5178470B2 (en) Method for producing fluorene derivative
KR101306893B1 (en) Naphthoacridine compounds having luminescence property
KR101840518B1 (en) New Carbazoles and Preparation method thereof
WO2016093175A1 (en) Method for producing tri(hetero)arylacetonitrile compound
JP5765371B2 (en) Heterocyclic oligomer compound having a pentafluorosulfanyl group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520902

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797989

Country of ref document: EP

Kind code of ref document: A1