WO2010008023A1 - Bone elongation promoter - Google Patents

Bone elongation promoter Download PDF

Info

Publication number
WO2010008023A1
WO2010008023A1 PCT/JP2009/062816 JP2009062816W WO2010008023A1 WO 2010008023 A1 WO2010008023 A1 WO 2010008023A1 JP 2009062816 W JP2009062816 W JP 2009062816W WO 2010008023 A1 WO2010008023 A1 WO 2010008023A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
bone
protein
hgf
seq
Prior art date
Application number
PCT/JP2009/062816
Other languages
French (fr)
Japanese (ja)
Inventor
勝郎 富田
弘行 土屋
秀憲 松原
邦夫 松本
敬吾 花田
Original Assignee
クリングルファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリングルファーマ株式会社 filed Critical クリングルファーマ株式会社
Publication of WO2010008023A1 publication Critical patent/WO2010008023A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1833Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease

Definitions

  • the present invention relates to a bone elongation promoter. Specifically, the present invention relates to a drug that can achieve bone extension from at least one bone section to the opposite bone section in a gap formed between bone sections in a shorter period of time. More specifically, the present invention enables shortening of the treatment period after osteotomy, bone extension or fracture by promoting bone extension in the bone gap caused by osteotomy, bone extension or fracture. It is related to the drug.
  • Bone extension is a treatment method in which after extending a bone to be extended, a special instrument, for example, an external fixator, is attached and gradually extended to a target length over time.
  • Fracture is a disorder that can occur due to an accident or the like, and its healing often requires a relatively long period of time.
  • complex fractures, fractures, and the like have bone defects and may cause short limbs or deformation, for example.
  • bFGF basic fibroblast growth factor
  • BMP bone morphogenetic protein
  • HGF hepatocyte growth factor
  • Patent Document 3 HGF is a protein that was first identified as a powerful mitogen for mature hepatocytes, and its gene was cloned in 1989 (see Non-Patent Documents 1 and 2). ). Thereafter, it has been reported that various tissues have various effects such as angiogenesis, cell differentiation, proliferation, and anti-apoptosis.
  • HGF is exemplified as one of drugs that improve recovery of the sternum after sternotomy.
  • the sternotomy is a procedure in which the incision surface of the sternum is closed by suturing, and it is usually recognized that there is almost no gap between the cut surfaces of the sternum. That is, Patent Document 3 only describes the effect when the cut surface and the cut surface of the sternum are fused, and what is the effect when there is a gap between the cut surface and the cut surface? Is also not described.
  • the present invention relates to a bone elongation promoting agent, and more specifically, in a gap formed in a bone cutting part (hereinafter also referred to as “bone cutting gap” or “bone gap”), at least one bone cross section and the other facing it.
  • An object of the present invention is to provide a drug that promotes bone extension to a bone cross section (hereinafter referred to as “bone extension in a bone cutting gap (or bone gap)”).
  • the present invention provides a drug that is effectively used to promote bone extension in a bone cutting gap in a treatment process such as osteotomy, bone extension, or osteopathy after fracture.
  • Another object of the present invention is to shorten the treatment period of osteotomy or osteogenesis or the treatment period after fracture by using this drug.
  • HGF protein hepatocyte growth factor
  • Bone elongation promoter containing HGF protein as an active ingredient (I-1) Bone comprising at least one of the following (1-a) to (1-c) as an active ingredient Bone elongation promoter in the cutting gap: (1-a) HGF protein, (1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation, (1-c) A salt of (1-a) or (1-b).
  • (I-2) The bone elongation promoter according to (I-1), wherein the HGF protein is the following (1-d) or (1-e): (1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2, (1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Having protein.
  • (I-3) The bone elongation promoter described in (I-1), wherein the HGF protein is the following (1-f) or (1-g): (1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4, (1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
  • the protein described in (1-d) or (1-g) above is a protein consisting of the amino acid sequence represented by SEQ ID NO: 5 or 6, (I-2) or (I-3) The bone elongation promoter described in 1.
  • (I-6) The bone according to any one of (I-1) to (I-5), which has a dosage form for treating at least one of the opposing bone cross sections in a bone cutting gap exceeding 3 mm. Elongation promoter.
  • Bone elongation promoter containing DNA encoding HGF protein as an active ingredient (II-1) containing at least one of the following DNAs (2-a) to (2-c) as an active ingredient Bone elongation promoting agent in bone cutting gap characterized by: (2-a) DNA encoding HGF protein, (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action, (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode.
  • (II-2) The bone elongation promoter described in (II-1), wherein the DNA encoding the HGF protein is the following (2-d) or (2-e): (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2, (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
  • (II-3) selected from the group consisting of (2-a) to (2-c) described in (II-1) and (2-d) and (2-e) described in (II-2)
  • a bone elongation promoter wherein the DNA is incorporated into a type I herpes simplex virus (HSV-1) vector, Sendai virus envelope (HVJ-E) vector, adenovirus vector or adeno-associated virus vector.
  • HSV-1 vector herpes simplex virus
  • HVJ-E Sendai virus envelope
  • adenovirus vector or adeno-associated virus vector.
  • (II-5) The bone according to any one of (II-1) to (II-4), which has a dosage form for treating at least one of the opposing bone cross sections in a bone cutting gap exceeding 3 mm. Elongation promoter.
  • HGF protein for production of bone elongation promoter (III-1) Protein described in any of (1-a) to (1-g) below for production of bone elongation promoter Or use of peptides: (1-a) HGF protein, (1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation, (1-c) a salt of (1-a) or (1-b), (1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2, (1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Protein, (1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4, (1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ
  • (III-2) Use of the DNA described in any of (2-a) to (2-e) below for the production of a bone elongation promoter: (2-a) DNA encoding HGF protein, (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action, (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action.
  • DNA to encode (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2, (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
  • HGF protein or DNA for promoting bone elongation (IV) HGF protein or DNA for promoting bone elongation (IV-1)
  • (IV-2) Any of the following (2-a) to (2-e) to promote bone extension in the osteotomy or osteotomy patient, fracture patient, or osteotomy gap DNA described in: (2-a) DNA encoding HGF protein, (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action, (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action.
  • DNA to encode (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2, (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
  • (V) Bone elongation promotion method (V-1) A protein or peptide described in any of (1-a) to (1-g) below is treated with osteotomy or bone extension surgery patient, fracture patient or bone A method for promoting bone extension characterized by administering to an osteotomy patient at or near the bone cutting gap: (1-a) HGF protein, (1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation, (1-c) a salt of (1-a) or (1-b), (1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2, (1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Protein, (1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4, (1-g) A protein having a bone
  • V-2 A protein or peptide described in any of the following (2-a) to (2-e) is used in a patient who has undergone osteotomy or bone extension, a fracture patient, or a patient who has undergone osteoarthroplasty.
  • a method for promoting bone elongation comprising administering to a bone cutting gap site or its periphery: (2-a) DNA encoding HGF protein, (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action, (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action.
  • DNA to encode (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2, (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
  • the bone elongation promoting agent of the present invention has an effect of promoting bone elongation in a gap between a bone cross section and an opposing bone cross section, that is, a bone gap (bone cutting gap) between the bone cross sections facing each other in a bone cutting portion.
  • the bone elongation promoting agent of the present invention has a superior bone elongation effect in, for example, bone lengthening in osteotomy or bone lengthening for limbs shortened due to short stature or accident etc., or bone lengthening after osteopathy of fracture To demonstrate.
  • the length of bone extension that can be performed by one osteotomy is about 3 mm. For this reason, in order to extend the bone by about 3 cm, it is usually necessary to repeat 10 osteotomy operations.
  • the bone elongation promoting agent of the present invention the bone can be stretched to a length exceeding 3 mm by one osteotomy, so the number of osteotomy procedures can be reduced. For example, when the bone is elongated by about 5 mm by one osteotomy using the bone elongation promoter of the present invention, the number of repetitions of osteotomy necessary to finally extend the bone by about 3 cm is six times, The number of treatments can be greatly reduced. This greatly reduces the burden on the patient and shortens the treatment period.
  • the bone elongation promoter of the present invention it is possible to promote bone elongation in bone distraction surgery and accelerate the formation of bone tissue and bone regeneration, thereby shortening the treatment period.
  • bone extension it takes about six months to one year from the start of bone extension to the end of treatment, and an external fixator must be worn during that period.
  • an external fixator there is a possibility of re-fracture in the meantime, and the burden on the patient is great.
  • the treatment period can be shortened by the bone elongation promoter of the present invention, the burden on the patient will be greatly reduced.
  • the shortening of the treatment period can also reduce the risk of complications such as bacterial infection and neurovascular disorders in the external fixator screw or the steel wire insertion portion to be worn, and thus the risk can be reduced.
  • the bone elongation promoting agent of the present invention in the treatment of fracture, even when the bone is shortened or lost due to, for example, a complicated fracture or a fractured fracture, a gap is created between the bones. Since osteopathy can be performed, it is possible to avoid that the length of the limb is shortened or deformed after the operation. Further, since the bone extension in the bone gap can be promoted, the treatment period can be shortened.
  • the shortening of the treatment period not only reduces the physical burden on the patient, but also increases the cost of treatment for the patient and their family members.
  • the burden can be reduced and the national medical cost burden can be reduced.
  • FIG. A is a view showing a mounting mode of the one-side external fixator in Experimental Example 1.
  • FIG. B is a view showing a one-side external fixator attached to a rabbit foot.
  • FIG. C is a view showing an X-ray image of a rabbit foot to which a one-side external fixator is attached.
  • Fig. A shows a roentgenogram of the tibial cut from the control group immediately after the tibial cut (Op.) To 10 weeks after the operation (1w, 2w, 3w, 4w, 6w, 8w, 10w) in Experimental Example 1 It is a figure which shows an upper stage: a front image, a lower stage: a side image.
  • B shows X-ray images of the tibial section from the immediately after tibial amputation (Op.) To the fifth week after surgery (1w, 2w, 3w, 4w, 5w) in the HGF administration group (upper: It is a figure which shows a front image, a lower stage: a side image.
  • gene refers to a regulatory region, a coding region, an exon, and an intron without distinction unless otherwise specified.
  • gene in the present specification means not only DNA but also mRNA which is a transcript thereof.
  • DNA has double-stranded DNA including human genomic DNA, single-stranded DNA including cDNA and synthetic DNA (sense strand), and a sequence complementary to the sense strand, unless otherwise specified. Both single-stranded DNA (antisense strand) and fragments thereof are included.
  • bone extension or “bone extension in the bone cutting gap” refers to a bone gap formed by bone cutting (bone cutting gap) from one bone cross-section to the other bone cross-section facing this. Means stretching the bone.
  • the bone elongation occurs at least from one bone cross-section toward the other bone cross-section, but preferably both bone cross-sections, that is, both bone cross-sections face each other. This occurs toward the other bone cross section.
  • bone extension includes that the bone tissue is extended in a smooth state with the same thickness or thickness as the bones on both sides in the cut portion of the bone, and the bone is regenerated. Bone extension also includes callus formation in the bone gap.
  • the “bone cross section” refers to a surface (bone cut surface) from which bone has been cut.
  • bone cutting is not limited to crossing and longitudinal cutting, but includes all the states in which bones are cut off.
  • the cause of bone cutting is not particularly limited, and includes artificial bone cutting by surgery (for example, osteotomy and bone extension), or bone cutting caused by an accident such as a fracture.
  • the “bone cutting gap (or bone gap)” refers to a gap (gap, defect, gap) at the bone cutting portion.
  • the width of the gap is not limited, but is preferably a gap exceeding 3 mm. More preferably, the gap is more than 3 mm and within 10 mm.
  • the cause of the bone cutting gap is not particularly limited, and includes bone cutting gap after osteotomy, bone cutting gap in bone extension, bone cutting gap in fracture, bone cutting gap after osteopathy in fracture, etc. included.
  • the “osteotomy” means that after cutting a bone of a hand or a foot, the cut surface of the bone is fixed with a predetermined gap, and the bone is regenerated to extend the bone and join the cut surfaces.
  • the technique to do By repeating this treatment multiple times, the bone can be extended to the required length. For example, when the length of the left and right limbs is different due to short stature or trauma etc., there is a technique in which the bones of the limbs are cut and moved to a predetermined length and stretched.
  • the cut bone is extended from its cut surface by regeneration and is fixed by intramedullary nail fixation or the like until the bone gap is sufficiently or completely eliminated. That is, in the bone cutting gap formed by the above procedure, the bone is regenerated and extended from the cut surface of the bone, the cut surfaces of the extended bone are fused, the bone gap is filled, and the bone is reconstructed.
  • bone extension means that after cutting the bone, the bones on both sides of the cut are fixed with a movable fixing tool, and the bone cutting gap is gradually widened by pulling them apart about 0.5 to 1 mm every day. This is a procedure to extend the bone by repeating this until the required length.
  • Ilizarov method etc. can be illustrated as a treatment method.
  • the “bone extension promoting action” refers to an action of promoting bone extension in the osteotomy gap occurring in the above osteotomy or osteogenesis, or a fracture or osteopath. Evaluation of whether or not a test substance has an effect of promoting bone elongation is performed, for example, when a test substance is administered (test group) and when a test substance is not administered (control group) according to the method described in Experimental Example 1. This can be done by comparing the speed of bone extension in the bone cutting gap. When the test group has a faster bone elongation than the control group, it can be determined that the test substance has a bone elongation promoting effect.
  • HGF protein is a protein identified as a powerful mitogen for mature hepatocytes, as described above, and is called a hepatocyte growth factor. Yes (see Non-Patent Documents 1 and 2). In addition to HGF, SF (scatter factor), TCF (Tumor cytotoxic factor), etc. are used.
  • the HGF protein can be obtained by, for example, culturing primary cultured cells or established cells that produce HGF protein, separating and purifying from the culture supernatant and the like.
  • the gene encoding the HGF protein is incorporated into an appropriate vector by genetic engineering techniques, and this is inserted into an appropriate host cell for transformation, and the desired recombinant HGF protein is obtained from the culture supernatant of the transformant. It can also be obtained by separating. (See, for example, JP-A-5-111382, Biochem. Biophys. Res. Comm., 1989, 163, p. 967).
  • the host cell is not particularly limited, and various host cells conventionally used in genetic engineering techniques such as Escherichia coli, yeast or animal cells can be used.
  • the HGF protein is preferably a protein produced from a gene encoding human-derived HGF (hHGF).
  • hHGF human-derived HGF
  • a DNA having a base sequence represented by SEQ ID NO: 1 or 2 is preferable.
  • HGF protein specifically, the HGF protein of SEQ ID NO: 3 or 5 produced by a cell into which DNA comprising the nucleotide sequence shown in SEQ ID NO: 1 has been introduced by recombinant DNA technology, is also represented by SEQ ID NO: 2. Mention may be made of the HGF protein of SEQ ID NO: 4 or 6 produced by a cell into which DNA having the nucleotide sequence shown is introduced.
  • the HGF proteins shown in SEQ ID NOs: 3 to 6 are all human-derived natural HGF proteins and have mitogenic activity and motogenic activity as HGF.
  • Such HGF protein is registered in the NCBI database (NCBI-GenBank Flat File Release 164.0) or the like as, for example, Accession No.P14210 (SEQ ID NO: 3) or Accession No.NP 001010932 (SEQ ID NO: 4).
  • the HGF protein having the amino acid sequence represented by SEQ ID NO: 4 is a 5-amino acid deficient HGF from which 5 amino acid residues located at positions 161 to 165 of the amino acid sequence represented by SEQ ID NO: 3 have been deleted. It is a protein.
  • the natural HGF protein is a glycoprotein.
  • the HGF protein represented by Accession No.NP 001010932 (SEQ ID NO: 4) is Asn at position 289, Asn at position 397, Thr at position 471, Thr at position 561.
  • a sugar chain is added to Asn and Asn at position 648.
  • amino acid sequences shown in SEQ ID NOs: 5 and 6 are amino acid sequences of mature proteins obtained by cleaving the 31st amino acid region (signal sequence) from the N-terminus in SEQ ID NOs: 3 and 4.
  • one or a plurality for example, 2 to 35, preferably 2 to 20
  • Such HGF protein can be produced by well-known technical means such as genetic engineering techniques and site-directed mutagenesis.
  • the amino acid to be inserted, the amino acid to be substituted, and the amino acid to be added may be non-natural amino acids other than 20 kinds of natural amino acids.
  • the unnatural amino acid may be any compound as long as it has an amino group and a carboxyl group, and examples thereof include ⁇ -aminobutyric acid.
  • the amino acid sequence shown in SEQ ID NO: 4 is a 5-amino acid deficient HGF protein in which five amino acid residues are deleted from the amino acid sequence shown in SEQ ID NO: 3, as described above.
  • the HGF protein targeted in the present invention may have at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4 as long as it has a bone elongation promoting action.
  • Preferred is a protein having 90% or more, more preferably 95% or more identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
  • the amino acid sequence shown in SEQ ID NO: 5 has 96% and 95.6% identity with the amino acid sequence shown in SEQ ID NO: 3, respectively, and the amino acid sequence shown in SEQ ID NO: 6 is shown in SEQ ID NO: 4. It has 96% and 95.7% identity with the amino acid sequence shown, respectively.
  • identity means the degree of coincidence of amino acid residues constituting each sequence among the sequences by comparing the primary structures (amino acid sequences) of the proteins.
  • HGF protein comprising an amino acid sequence having high identity with the amino acid sequence shown in SEQ ID NO: 3 or 4
  • other humans such as Accession No. BAA14348 or Accession No. AAC71655 registered in the NCBI database. Derived HGF can be mentioned.
  • each of the amino acid sequences shown in SEQ ID NOs: 3 and 4 is replaced with a signal sequence consisting of the 1st to 31st amino acid regions, It may have a protein signal sequence.
  • signal sequences include signal sequences of human serum albumin, interferon, human amylase and the like.
  • the HGF protein targeted in the present invention is a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 as long as it has a bone elongation promoting action. It may be a protein produced from a cell having
  • stringent conditions include hybridization at about 65 ° C. in the presence of about 0.7 to 1 M sodium chloride, and then about 0.1 to 2 times the concentration of the SSC solution (the composition of the 1 time concentration of the SSC solution). Can be mentioned that is washed at about 65 ° C. using 150 mM sodium chloride and 15 mM sodium citrate).
  • a gene encoding an HGF protein specifically, a DNA comprising the base sequence shown in SEQ ID NO: 1 or 2, or a DNA that hybridizes with a DNA comprising a base sequence complementary to the DNA under stringent conditions
  • a method for producing the HGF protein of the present invention using cells for example, primary cultured cells or established cells having these DNAs are cultured, and the target HGF protein is isolated and purified from the obtained culture supernatant.
  • a method can be mentioned.
  • the above DNA is incorporated into an appropriate vector by genetic engineering techniques, transformed by inserting it into an appropriate host cell, and the desired HGF protein (recombinant protein) is obtained from the culture supernatant of this transformant. For example, see JP-A-5-111382, JP-A-11-1499, Biochem.chemBiophys. Res. Commun. 1989, Vol. 163, p.967. ).
  • the host cell is not particularly limited, and various host cells conventionally used in genetic engineering techniques such as E. coli, yeast or animal cells can be used. Since the natural HGF protein is a glycoprotein, animal cells are preferably used as host cells when producing glycoproteins in the same manner. Examples of animal cells include CHO cells, COS cells, mouse L cells, mouse C127 cells, mouse FM3A cells, and the like. Transfer of expression vectors into animal cells is performed by transfection, microinjection or the like, among which the calcium phosphate method is the most common. Culture of animal cells transformed by transfer can be carried out by suspension culture or adherent culture by a conventional method. As the medium, MEM, RPMI 1640, etc. are common.
  • the presence or absence of glycosylation and the number of glycosylation are not particularly limited. That is, the number of naturally occurring numbers (one to plural) may be HGF proteins that have been deleted, substituted, inserted or added.
  • HGF proteins in which sugar chains are deleted, substituted, inserted or added include those in which sugar chains added to natural HGF proteins are treated with enzymes or the like to delete sugar chains, and sugar chains are not added.
  • HGF protein specifically, for example, Accession No. NP_001010932 human HGF registered in the NCBI database, the 289-position Asn of the glycosylation site is Gln, and the 397-position Asn is Gln.
  • the C-terminus is any of a carboxyl group (—COOH), a carboxylate [—COOM (M represents a metal)], an amide (—CONH 2 ), or an ester (—COOR). May be.
  • R in the ester is, for example, a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl or n-butyl; for example, a C 3-8 cycloalkyl group such as cyclopentyl, cyclohexyl; C 6-12 aryl groups such as ⁇ -naphthyl; C 7- such as phenyl-C 1-2 alkyl groups such as benzyl and phenethyl or ⁇ -naphthyl-C 1-2 alkyl groups such as ⁇ -naphthylmethyl; A 14 aralkyl group and a C 2-6 alkanoylmethyl group such as acetyloxymethyl, pivaloyloxymethyl and the like are used.
  • a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl or n-butyl
  • the HGF protein targeted by the present invention includes a carboxyl group or carboxylate other than the C-terminus, and the carboxyl group or carboxylate further amidated or esterified.
  • the ester in this case include the aforementioned C-terminal ester.
  • the amino group of the N-terminal methionine residue is a protective group (for example, a C 1-6 such as a C 2-6 alkanoyl group such as formyl group, acetyl, etc.).
  • An amino group, an imidazolyl group, an indolyl group, a guanidino group, etc.) protected with an appropriate protecting group for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl.
  • a complex protein such as a so-called glycoprotein to which a sugar chain is bound.
  • HGF protein when it applies to a human, the above-mentioned thing derived from a human is used suitably, but mammals other than a human (for example, a monkey, a cow, a horse, a pig, a sheep, a dog, a cat, a rat, a mouse, Rabbit, hamster, guinea pig, chimpanzee, etc.) may be used.
  • HGF proteins include mouse-derived HGF proteins (eg, Accession No. AAB31855, NP_034557, BAA01065, BAA01064, etc.) registered in the NCBI database, etc., rat-derived HGF proteins (eg, Accession No.
  • NP_058713 Bovine-derived HGF protein (eg, Accession No.NP_001026921, BAD02475, etc.), cat-derived HGF protein (eg, Accession No.NP_001009830, BAC10545, BAB21499, etc.), dog-derived HGF protein (eg, Accession No.NP_001002964, BAC57560, etc.) or chimpanzee-derived HGF Examples thereof include, but are not limited to, proteins (for example, Accession No. XP 519174).
  • HGF proteins need only be purified to the extent that they can be used as pharmaceuticals when used as the active ingredient of the bone elongation promoter of the present invention, and so long as they are prepared by various methods. be able to.
  • the purification method is not limited, and examples thereof include column chromatography using heparin / sepharose or hydroxyapatite.
  • HGF protein can also be used in the form of a physiologically acceptable salt with acid or base.
  • physiologically acceptable acid addition salts include salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, etc.), or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, And salts with succinic acid, tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, and the like.
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, etc.
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid
  • succinic acid tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzen
  • the HGF protein may be used alone or as a mixed protein with various proteins as long as the bone elongation promoting action is not impaired.
  • HGF partial peptide The partial peptide of HGF protein targeted by the present invention (hereinafter also referred to as "HGF partial peptide”) is the above-mentioned partial peptide of HGF protein, and at least has a bone elongation promoting action. What is necessary is just to have.
  • the number of amino acids constituting the HGF partial peptide is at least about 20 or more, preferably about 50 or more, more preferably about 100 or more of the amino acids constituting the HGF protein.
  • a peptide having a sequence is preferred.
  • such an HGF partial peptide includes an amino acid sequence from the 32nd amino acid to the 210th amino acid of the amino acid sequence represented by SEQ ID NO: 3 (from the N-terminal hairpin loop of HGF to the first kringle domain).
  • the HGF partial peptide of the present invention has a peptide having at least about 80% identity, preferably a peptide having about 90% identity, more preferably about 95%, with the amino acid sequence of the HGF partial peptide.
  • Peptides having the above identity and having at least a bone elongation promoting action are also included.
  • the C-terminus is carboxyl group (—COOH), carboxylate [—COOM (M is as defined above)], amide (—CONH 2 ) or ester (—COOR; R is as defined above. Any of the above may be used.
  • the amino group of the methionine residue at the N-terminal is protected with a protecting group, and Gln produced by cleavage of the N-terminal side in vivo is pyroglutamine oxidized, as in the HGF protein.
  • a substituent on the side chain of an amino acid in the molecule is protected with an appropriate protecting group, or a complex peptide such as a so-called glycopeptide to which a sugar chain is bound.
  • the HGF partial peptide can be produced according to a known peptide synthesis method or by cleaving the HGF protein with an appropriate peptidase.
  • a peptide synthesis method for example, either a solid phase synthesis method or a liquid phase synthesis method may be used. That is, a partial peptide or amino acid that may have a protecting group capable of constituting an HGF protein is condensed with a remaining part that may have a protecting group, and when the product has a protecting group, The desired HGF peptide can be produced by removing the group.
  • Known condensation methods and elimination of protecting groups include, for example, M.
  • the HGF partial peptide can be purified and isolated by a combination of usual purification methods such as solvent extraction, distillation, column chromatography, liquid chromatography, crystallization or recrystallization.
  • the partial peptide obtained by the above method is a free form, it can be converted into an appropriate salt by a known method. Conversely, when it is obtained as a salt, it can be converted into a free form by a known method. Can do.
  • the salt of the HGF partial peptide include physiologically acceptable salts with an acid or a base, like the HGF protein.
  • DNA encoding HGF protein refers to DNA capable of expressing the aforementioned HGF protein.
  • DNA encoding the HGF protein include Nature, 342, 440 (1989); Japanese Patent No. 2777678; Japanese Patent Laid-Open No. 11-1499; Biochem. Biophys, Res. Commun., 1989, 163, p.967-973; Proc. Natl. Acad. Sci. USA, 1991, Vol. 88 (No. 16), p.7001-7005, etc., for example, Accession No. M60718 in GeneBank / EMBL / DDBJ, A preferred example is DNA encoding a human-derived HGF protein registered as M73240, AC004960, AY246560, M29145, M73240 or the like.
  • the DNA encoding the HGF protein used in the present invention is preferably the above-mentioned human-derived DNA when applied to humans, but mammals other than humans (for example, monkeys, cows, horses, pigs, sheep) DNA encoding HGF protein derived from dogs, cats, rats, mice, rabbits, hamsters, guinea pigs, chimpanzees, etc.).
  • DNA examples include, for example, DNA encoding mouse-derived HGF protein (for example, Accession No. S71816, NH_010427, D10213, D10212, etc.) registered in the NCBI database, etc., DNA encoding rat-derived HGF protein (Eg, Accession No.NM_017017), DNA encoding bovine-derived HGF protein (eg, Accession No.NM_001031751, AB110822, etc.), DNA encoding feline-derived HGF protein (eg, Accession No.NM_001009830, AB080187, AB04046610, etc.), dogs Examples include, but are not limited to, DNAs encoding HGF proteins derived from DNA (for example, Accession® No. NM_001002964, AB090353, etc.) or DNAs encoding HGF proteins derived from chimpanzees (for example, Accession® No. XM_519174, etc.).
  • DNA encoding the HGF protein for example, DNA consisting of the base sequence represented by SEQ ID NO: 1 or 2 is preferably mentioned.
  • the nucleotide sequence represented by SEQ ID NO: 1 corresponds to the nucleotide sequence located at positions 73 to 2259 of the nucleotide sequence of Accession No. M60718, and the DNA comprising the nucleotide sequence is the amino acid sequence represented by SEQ ID NO: 3.
  • the HGF protein (SEQ ID NO: 3) expressed and produced in the cell is cleaved from the signal sequence when secreted outside the cell, and matured from the amino acid sequence shown in SEQ ID NO: 5. It becomes HGF protein. Therefore, the DNA consisting of the base sequence shown in SEQ ID NO: 1 also corresponds to the DNA encoding (producing) the HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 5.
  • the base sequence represented by SEQ ID NO: 2 corresponds to the base sequence located at Nos. 66 to 2237 of the base sequence of Accession No.
  • the DNA corresponding to the base sequence is the amino acid sequence represented by SEQ ID NO: 4. It corresponds to DNA encoding the HGF protein consisting of Such a HGF protein (SEQ ID NO: 4) is also a mature HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 6 by cleaving the signal sequence when secreted outside the cell in the DNA recombination technique. Therefore, the DNA consisting of the base sequence shown in SEQ ID NO: 2 corresponds to the DNA encoding (producing) the HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 6.
  • the DNA encoding the HGF protein targeted by the present invention is not limited to those described above, and hybridizes with DNA comprising a base sequence complementary to the DNA under stringent conditions and has a bone elongation promoting action. Also included are DNA encoding proteins. Specifically, the above DNA hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence represented by SEQ ID NO: 1 or 2.
  • stringent conditions include hybridization at about 65 ° C. in the presence of about 0.7 to 1 M sodium chloride, and then about 0.1 to 2 times the concentration of the SSC solution (the composition of the 1 time concentration of the SSC solution). Can be mentioned that is washed at about 65 ° C. using 150 mM sodium chloride and 15 mM sodium citrate).
  • Such DNA is not limited, but is about 85% or more, preferably about 90% or more in the DNA encoding the HGF protein, preferably the DNA consisting of the base sequence shown in base number 1 or 2 and the base sequence. More preferably, DNA encoding a protein having a base sequence having a homology of about 95% or more and having at least a bone elongation promoting action is exemplified.
  • the DNA encoding the HGF protein can be easily obtained by using, for example, a normal hybridization method or PCR method using a cDNA library having the DNA. Specifically, the DNA can be obtained, for example, by molecular cloning (Molecular Cloning, A Laboratory Manual, Third Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001: It can be done with reference to basic documents such as “.
  • examples of the cDNA library having DNA encoding the HGF protein include human-derived liver cDNA library, spleen cDNA library, placenta cDNA library and the like. These libraries can be obtained commercially from Clontech.
  • a cDNA library prepared from a cell line expressing HGF protein and tissue material according to a conventional method can also be used. A ⁇ phage incorporating such a cDNA is cultured and infected with E. coli according to the method described in “Molecular Cloning 3rd Edition”, and the formed plaque is deduced from the partial amino acid sequence of the HGF protein.
  • DNA encoding the target HGF protein can be obtained by performing a plaque hybridization method using an oligonucleotide prepared from the base sequence as a probe, or by performing a PCR method.
  • the RNA encoding the HGF protein can also be used in the present invention as long as it can express the aforementioned HGF protein by reverse transcriptase.
  • the RNA include RNA obtained by preparing an mRNA fraction from cells or tissues and amplified by RT-PCR. The RNA can also be obtained by known means.
  • the DNA encoding the HGF protein is in the form of a recombinant expression vector in which the DNA is incorporated, and the bone gap site or its surrounding tissue.
  • expression vectors include naked plasmids, detoxified retroviruses, adenoviruses, adeno-associated viruses, herpes viruses (type I herpes simplex virus, etc.), vaccinia viruses, poxviruses, polioviruses, symbis viruses, Sendai viruses, SV40.
  • DNA viruses or RNA viruses, such as immunodeficiency virus (HIV) are mentioned.
  • type I herpes simplex virus (HSV-1) vector, Sendai virus envelope (HVJ-E) vector, adenovirus vector, adeno-associated virus (AAV) vector and the like are preferable.
  • DNA encoding a partial peptide of HGF protein As long as the DNA encoding the partial peptide (HGF partial peptide) of the HGF protein targeted by the present invention has a base sequence encoding the above-mentioned HGF partial peptide and encodes a peptide having an elongation promoting action, It can be anything. Specifically, as such DNA, for example, DNA having a partial base sequence of DNA having the base sequence represented by SEQ ID NO: 1 or 2, and encoding a peptide having a bone elongation promoting action Etc.
  • such DNA includes, for example, the 94th to 630th base sequences of the human HGF base sequence represented by SEQ ID NO: 1 (from the N-terminal hairpin loop of HGF to the first kringle. DNA having a peptide encoding a peptide up to the domain) and the 94th to 864th base sequences of the human HGF base sequence represented by SEQ ID NO: 1 (from the N-terminal hairpin loop of HGF to the second kringle domain) Preferred examples include DNA having a DNA encoding the above peptide).
  • the DNA encoding the HGF partial peptide targeted by the present invention includes a DNA comprising a base sequence complementary to the above-mentioned partial peptide of the HGF protein and encoding a peptide having a bone elongation promoting action, and a string. DNA that hybridizes under a gentle condition and that encodes a peptide having a bone elongation promoting action is included.
  • Such a DNA has a base sequence having a homology of about 85% or more, preferably about 90% or more, more preferably about 95% or more with a DNA encoding an HGF partial peptide, and has a bone elongation promoting action.
  • Examples include DNA encoding a peptide.
  • DNA specifically, for example, it hybridizes under stringent conditions with DNA having a base sequence complementary to DNA having a partial base sequence of DNA consisting of the base sequence represented by SEQ ID NO: 1 or 2. And DNA encoding a peptide having a bone elongation promoting action. More specifically, such DNA includes about 80% or more, preferably about 90% or more, more preferably about 90% or more of DNA encoding a partial base sequence of DNA having the base sequence represented by SEQ ID NO: 1 or 2. Examples thereof include DNA having a base sequence having a homology of 95% or more and having a DNA encoding a peptide having a bone elongation promoting action.
  • the DNA can be easily obtained by, for example, a normal hybridization method or PCR method, and the DNA is specifically obtained with reference to the basic document such as the Molecular Cloning 3rd Edition. Can do.
  • an RNA encoding a peptide that is a partial peptide of the HGF protein and has a bone elongation promoting action can be used in the present invention as long as it can express the HGF protein by reverse transcriptase.
  • the RNA include RNA obtained by preparing an mRNA fraction from a cell or tissue and amplified by RT-PCR, and are within the scope of the present invention.
  • the RNA can also be obtained by known means.
  • Bone elongation promoter of the present invention comprises, as shown below, (a) a bone elongation promoter comprising an HGF protein / partial peptide as an active ingredient, and (b) HGF, depending on the type of active ingredient. It can be classified as a bone elongation promoter containing a gene as an active ingredient.
  • Bone elongation promoter comprising HGF protein / partial peptide as active ingredient HGF protein described in (2) above, partial peptide of HGF protein (HGF partial peptide) described in (3), or at least one of these A bone elongation promoter containing salt as an active ingredient.
  • Bone elongation promoter containing HGF gene as active ingredient DNA containing HGF protein or HGF partial peptide described in (4) above (hereinafter collectively referred to as “HGF gene”) is contained as an active ingredient Bone elongation promoter.
  • the dosage form, administration method, dosage and the like of the bone elongation promoter of the present invention can be appropriately designed and changed according to the type of the active ingredient.
  • Bone elongation promoting agent comprising HGF protein / partial peptide as active ingredient
  • the bone elongation promoting agent of (a) can take various preparation forms such as liquids and solids, but generally HGF protein
  • the HGF partial peptide or a salt thereof is preferably formulated into a form of an injection, a propellant, a sustained-release preparation (for example, a depot) and the like together with a conventional carrier.
  • the injection or propellant may be either an aqueous preparation or an oily preparation.
  • an aqueous solvent water for injection, purified water, etc.
  • a pharmaceutically acceptable additive such as an isotonic agent (sodium chloride, potassium chloride, glycerin, mannitol, Sorbitol, boric acid, borax, glucose, propylene glycol, etc.), buffer (phosphate buffer, acetate buffer, borate buffer, carbonate buffer, citrate buffer, Tris buffer, glutamate buffer, epsilon) Aminocaproic acid buffer, etc.), preservative (methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, chlorobutanol, benzyl alcohol, benzalkonium chloride, sodium dehydroacetate, sodium edetate, boro Acid, borax, etc.), thickener (hydroxyethylcellulose) , Hydroxypropy
  • an isotonic agent sodium chloride, potassium chloride, glycerin,
  • a suitable solubilizing agent such as alcohol (ethanol etc.), polyalcohol (propylene glycol, polyethylene glycol etc.) or nonionic surfactant (polysorbate 80, polyoxyethylene hydrogenated castor oil 50 etc.) may be further blended.
  • alcohol ethanol etc.
  • polyalcohol propylene glycol, polyethylene glycol etc.
  • nonionic surfactant polysorbate 80, polyoxyethylene hydrogenated castor oil 50 etc.
  • polysorbate 80 polyoxyethylene hydrogenated castor oil 50 etc.
  • the HGF protein content in the injection is not limited, but is usually about 0.0002 to 0.5 w / v%, preferably about 0.001 to 0.2 w / v% with respect to 100 w / v% of the whole injection solution. Can be adjusted. It should be noted that liquid preparations such as injections are preferably stored after removing moisture by freeze storage or freeze drying. The freeze-dried preparation is used by adding distilled water for injection at the time of use and re-dissolving it.
  • Sprays can also be prepared using conventional means on formulations.
  • the additive blended in the spray may be any additive generally used in inhalation preparations, for example,
  • the above-mentioned solvent, preservative, stabilizer, tonicity agent, pH adjuster and the like can be blended.
  • the propellant include a liquefied gas propellant or a compressed gas.
  • the liquefied gas propellant include fluorinated hydrocarbons (alternative chlorofluorocarbons such as HCFC22, HCFC-123, HCFC-134a, and HCFC142), liquefied petroleum, dimethyl ether, and the like.
  • the compressed gas examples include soluble gas (carbon dioxide gas, nitrous oxide gas, etc.) or insoluble gas (nitrogen gas, etc.).
  • the content of the HGF protein or HGF partial peptide in the propellant can be usually adjusted to about 0.0002 to 5 w / v%, preferably about 0.001 to 2 w / v% based on the entire propellant.
  • the HGF protein or HGF partial peptide can be used as a sustained-release preparation (for example, a depot) together with a biodegradable polymer.
  • a sustained-release preparation for example, a depot
  • effects such as reduction in the number of administrations, sustained action and reduction in side effects can be expected.
  • the sustained-release preparation can be produced according to a known method.
  • the biodegradable polymer used in the sustained-release preparation can be appropriately selected from known biodegradable polymers.
  • biodegradable polymers for example, polysaccharides such as starch, dextran or chitosan; proteins such as collagen or gelatin
  • Polyamino acids such as polyglutamic acid, polylysine, polyleucine, polyalanine or polymethionine
  • polycaprolactone poly- ⁇ -hydroxybutyric acid, polymalic acid, polyanhydride
  • polyester such as fumaric acid / polyethylene glycol / vinyl pyrrolidone copolymer
  • polyorthoester or polyalkylcyanoacrylic acid such as polymethyl- ⁇ -cyanoacrylic acid
  • polycarbonate such as polyethylene carbonate or polypropylene carbonate It is done.
  • polyester polylactic acid or lactic acid-glycolic acid copolymer is preferable, and polylactic acid or lactic acid-glycolic acid copolymer is more preferable.
  • the composition ratio (lactic acid / glycolic acid) (mol%) varies depending on the sustained release period.
  • the sustained release period is about 2 to 3 months, preferably about 2 weeks. In the case of 1 month, about 100/0 to 50/50 is preferable.
  • the weight average molecular weight of the polylactic acid or lactic acid-glycolic acid copolymer is generally preferably about 5,000 to 20,000.
  • Polylactic acid or lactic acid-glycolic acid copolymer can be produced according to a known production method, for example, a production method described in JP-A No. 61-28521.
  • the mixing ratio of the biodegradable polymer and the HGF protein is not particularly limited.
  • the HGF protein is usually about 0.001 to 50 w / v%, about 0.01 to 30 w / v with respect to the biodegradable polymer. % Is preferred.
  • an injection or a spray is locally applied (direct injection or spraying) to the bone gap site or its peripheral site, or a sustained-release preparation (depot) is locally applied to the bone gap site or its peripheral site. It is preferable to apply (embed).
  • the dose is appropriately selected according to the dosage form, the degree of disease, age, etc.
  • the content of the HGF protein or HGF partial peptide contained in the bone elongation promoter of the present invention is usually 0. .1 ⁇ g to 500 mg, preferably 1 ⁇ g to 50 mg, more preferably 10 ⁇ g to 25 mg.
  • the number of administrations is appropriately selected depending on the dosage form, the degree of disease, age, etc., and can be administered once or continuously at a certain interval. In the case of continuous administration, the administration interval may be from once a day to once every several months. For example, in the case of administration using a sustained-release preparation (depot) or continuous administration using a sustained-release pump, once every several months. But you can.
  • HGF gene which is a bone elongation promoter containing the HGF gene as an active ingredient
  • conventional methods such as separate experimental medicine, basic techniques of gene therapy, Yodosha, 1996, separate experimental medicine, gene It is preferably carried out according to the method described in the introduction & expression analysis experiment method, Yodosha, 1997, gene therapy development research handbook edited by the Japanese Society for Gene Therapy, NTS, 1999 and the like.
  • Specific administration methods include, for example, a method in which a recombinant expression vector in which an HGF gene is incorporated is locally applied (local injection) to a bone gap site or a surrounding tissue (for example, bone, muscle, etc.). .
  • an expression vector a naked plasmid, a detoxified retrovirus, an adenovirus, an adeno-associated virus, a herpes virus (type I herpes simplex virus, etc.), a vaccinia virus, a pox virus, a poliovirus, a simbis virus, a Sendai virus
  • examples include, but are not limited to, DNA viruses or RNA viruses such as SV40 or immunodeficiency virus (HIV).
  • type I herpes simplex virus (HSV-1) vector, Sendai virus envelope (HVJ-E) vector, adenovirus vector, adeno-associated virus (AAV) vector and the like are preferable.
  • HSV-1 vectors include a non-replicating HSV-1 (HSV1764 / HSV1764 / HSV1764 / 4- / pR19) vector (Coffin RS, et al., GenJ.Gen.Virol. 1998, Vol. 79, p.3019-3026; Palmer JA et al., J. Virol., 2000, Vol. 74 , P. 5604-5618; Lilley CE, et al., J. Virol., 2001, Vol. 75, p.4343-4356).
  • the HVJ-E vector can be produced by the method described in USP 6913923, for example.
  • HVJ-E vector for example, GenomONE-Neo EX HVJ Envelope Transfection Kit (manufactured by Cosmo Bio Inc.) can be preferably used.
  • AAV vectors belong to non-pathogenic viruses, are highly safe, and can efficiently introduce genes into cells.
  • AAV-2, AAV-4, AAV-5 etc. are mentioned as an AAV vector.
  • These HSV-1 vectors, HVJ-E vectors or AAV vectors can safely express the target gene for a long period of time.
  • the vector used in the present invention is particularly preferably an HSV-1 vector, an HVJ-E vector or an AAV vector that enables safe and long-term expression.
  • Formulation forms for administering the HGF gene to a patient include various known preparation forms suitable for each of the above administration forms, such as injections, sprays, sustained-release preparations (depot preparations), microcapsules, etc. Can be taken. Injections, sprays and sustained-release preparations (depots) can be prepared in the same manner as in the case of the aforementioned HGF protein.
  • the gene transfer vector is usually about 1 ⁇ 10 5 to 1 ⁇ 10 12 pfu / mL, preferably about 1 ⁇ 10 6 to 1 ⁇ 10. Can be adjusted to 11 pfu / mL.
  • a host cell into which an expression plasmid containing an HGF gene is introduced as a core substance is used as a coating substance according to a known method (for example, a coacervation method, an interfacial polymerization method or a double nozzle method).
  • the microcapsules can be produced as fine particles having a diameter of about 1 to 500, preferably about 100 to 400 ⁇ m.
  • the coating material examples include carboxymethylcellulose, cellulose acetate phthalate, ethylcellulose, alginic acid or a salt thereof, gelatin, gelatin gum arabic, nitrocellulose, polyvinyl alcohol, hydroxypropylcellulose, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer And film-forming polymers such as chitosan-alginate, cellulose sulfate-poly (dimethyldiallyl) ammonium chloride, hydroxyethyl methacrylate-methyl methacrylate, chitosan-carboxymethylcellulose, alginate-polylysine-alginate, and the like.
  • the content and dosage of the HGF gene in these preparations can be appropriately adjusted depending on the disease to be treated, the age, weight, etc. of the patient.
  • the dose varies depending on the type of HGF gene transfer vector, but is usually 1 ⁇ 10 6 pfu to 1 ⁇ 10 12 pfu, preferably 1 ⁇ 10 7 pfu to 2 ⁇ 10 11 pfu in terms of HGF gene transfer vector. More preferably, 1.5 ⁇ 10 7 pfu to 1.5 ⁇ 10 11 pfu is preferably administered once every several days to several months.
  • Such a bone elongation promoting agent of the present invention can be used, for example, at a postoperative bone cutting gap site or its peripheral part when osteotomy, osteotomy or osteopathy in a fracture is performed. Then, according to the bone elongation promoting agent of the present invention, as shown in Experimental Examples 1 and 2, it is possible to effectively promote bone elongation in the postoperative bone cutting gap.
  • the length that can be extended by one treatment is usually about 3 mm, and the bone can be stretched to the required length by repeating the treatment several times.
  • the length that can be extended by one treatment is equal to the length of the bone cutting gap (the length between the bone cross section after the osteotomy and the bone cross section).
  • the bone elongation promoting agent of the present invention it is possible to promote the elongation of bone in the bone cutting gap, so that the bone cutting gap that can be formed by a single treatment can have a length exceeding about 3 mm (that is, The length exceeding about 3 mm can be extended by one treatment.)
  • the upper limit of the bone cutting gap (length that can be extended by one treatment) can be 10 mm.
  • the thickness is preferably 9 mm, more preferably 8 mm, still more preferably 7 mm, still more preferably 6 mm, and particularly preferably 5 mm.
  • osteogenesis include Ilizarov method.
  • the bones on both sides thereof are separated by about 0.5 to 1 mm every day, and this can be repeated to the required length to extend the bone.
  • the cut bone and the bone are connected with a special external fixator.
  • Bone separation can be performed using a device such as an external fixator.
  • the external fixator is preferably completely fixed when the bone is pulled away to the required length.
  • a bone gap is formed in a portion (extended portion) from which the bone is separated.
  • the bone is extended from the cut surface of the bone to the bone gap, the extended bone cut surfaces are fused, the bone gap is filled, and the bone is reconstructed.
  • the external fixator is removed and treatment is considered complete.
  • the final length between bone cross sections produced by bone distraction may correspond to the total length that causes the bone to extend.
  • the bone extension the bone can be extended to a total of about 10 cm.
  • the gap when forming a bone cutting gap after osteopathy in a fracture, when using the bone elongation promoter of the present invention in combination, the gap can be set in a range exceeding 3 mm for the above reasons.
  • the upper limit of the length is about 10 mm, preferably 9 mm, more preferably 8 mm, still more preferably 7 mm, even more preferably 6 mm, and particularly preferably 5 mm.
  • the bone cross section after osteopathy may be left in a fractured state, or the bone at the fractured part may be further trimmed by osteotomy or the like. Fractures include simple fractures, complex fractures, fractured fractures and the like. As described above, in the bone cutting gap formed in this way, the bone is extended from the cut surface of the bone, the cut surfaces of the extended bone are fused, the bone gap is filled, and the bone is reconstructed.
  • the bone elongation promoter of the present invention can be applied not only to humans but also to mammals other than humans (eg monkeys, cows, horses, pigs, sheep, dogs, cats, rats, mice, rabbits, hamsters, guinea pigs, chimpanzees, etc.) Applicable.
  • mammals other than humans eg monkeys, cows, horses, pigs, sheep, dogs, cats, rats, mice, rabbits, hamsters, guinea pigs, chimpanzees, etc.
  • the bone elongation promoting agent of the present invention can be used at a post-operative bone gap site or its peripheral part when, for example, osteotomy, osteogenesis, or osteopathy in a fracture is applied. . Then, the bone elongation promoting agent of the present invention promotes bone elongation from at least one, preferably both bone sections, toward the bone gap between the bone sections generated from one bone section and the opposite bone section.
  • the bone cut surfaces can be fused with each other in a shorter time and effectively, the bone gap can be filled, and the bone can be reconstructed. Examples of the application of the bone elongation promoter of the present invention include the following.
  • osteotomy or osteogenesis When osteotomy or osteogenesis is performed, for example, when the limb bones such as short stature, poor height increase, dwarfism, etc. are stretched; patients with large leg length differences due to congenital malformations, accidents, or surgery, etc. When the limb of the limb is shortened; When the bone of a patient who has suffered from bone deformation due to an accident or the like has been deformed; and when the bone used for autologous or allogeneic transplantation is extracted Restoration; craniofacial bone lengthening in cases such as micromaxillary disease (small mandibular disorder), microcephaly, cruzon disease, or maxillary undergrowth due to cleft lip and palate, etc. is indicated. Examples of fractures include various traumatic fractures; fatigue fractures; osteopathy that requires correction or correction of bone length, shape, etc. in fractures associated with osteoporosis, osteomalacia, osteogenesis imperfecta, marble disease, etc. Is applied.
  • the cut tibia was pulled apart at an interval of 5 mm to create a 5 mm bone gap (gap) in the tibia.
  • two short pins made by Stryker
  • each having a diameter of 2 mm are provided on each of the separated tibias so as to be perpendicular (perforation is made in the direction perpendicular to the bones) (total amount).
  • HGF protein is dissolved in 10 ⁇ L of physiological saline in the bone gap (gap between the cut tibias).
  • the prepared HGF-containing aqueous solution was injected transcutaneously (HGF administration group).
  • HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 6 was used as the HGF protein.
  • physiological saline containing no HGF protein was used instead of the HGF-containing aqueous solution, and the same was injected into the bone gap (control group).
  • the condition of the bone gap was 10 weeks after surgery and every other week (11 times in total) for the control group.
  • X-rays were taken and evaluated with X-ray images (total 6 times).
  • FIG. Fig. A shows an X-ray image of the bone gap of the control group (the upper part is a front image, the lower part is a side image), and Fig. B shows an X-ray image of the bone gap part of the HGF administration group (the upper part is a front image and the lower part is a side image).
  • the control group to which no HGF protein was administered bone extension and fusion in the bone gap were incomplete, and the bone formed in the bone gap was greatly deformed (FIG. A)
  • HGF administration In the group bones were normally formed from the tibias on both sides in the bone gap and bone formation was promoted, and bone fusion was promoted and bone fusion was promoted at the bone cut surface.
  • any of the HGF proteins having the amino acid sequences shown in SEQ ID NOs: 3 to 6 can be used as the HGF protein.
  • the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove the residual solvent, vacuum-dried at 40 ° C. for 3 days to obtain sustained-release microcapsules containing HGF protein (HGF-to-biodegradable polymer content ratio: 5.3 w) / W%).
  • the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove the residual solvent, vacuum-dried at 40 ° C. for 3 days to obtain sustained-release microcapsules containing HGF protein (HGF-to-biodegradable polymer blending ratio: 5.3 w / w%).
  • the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove residual solvent, vacuum drying is performed at 40 ° C. for 3 days to obtain a sustained-release microcapsule containing HGF protein (HGF blending ratio with respect to biodegradable polymer: 17.6 w) / W%).
  • the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove the residual solvent, vacuum drying is performed at 40 ° C. for 3 days to obtain a sustained release microcapsule containing HGF protein (HGF blending ratio with respect to biodegradable polymer: 17.8 w) / W%).
  • the resulting emulsion was further stirred at room temperature for 3 hours to evaporate the methylene chloride, and then the microspheres produced by centrifugation (about 2,000 rpm) were collected and preheated to 40 ° C. Washing 5 times with distilled water, and then drying under reduced pressure at room temperature to obtain microspheres containing HGF (HGF content relative to biodegradable polymer: 0.05 w / w%).
  • the resulting emulsion is stirred at room temperature for an additional 3 hours to evaporate methylene chloride and ethanol, and then centrifuged (approximately 2,000 rpm) to collect the resulting microspheres.
  • the collected microspheres are washed 5 times with distilled water preheated to 40 ° C. and dried under reduced pressure at room temperature to obtain microspheres containing HGF protein (HGF against biodegradable polymer).
  • the mixing ratio 0.025 w / w%).
  • HGF-containing aqueous solution can be prepared by the method described in Experimental Example 1.
  • the obtained freeze-dried product is pulverized at low temperature using liquid nitrogen, and then compression-molded in a mold to obtain a cylindrical HGF-containing sustained release preparation (formulation of HGF with biodegradable polymer) (Ratio: 10 w / w%).
  • HGF protein 1 mg is dissolved in 2 mL of 2 w / v% atelocollagen solution and then freeze-dried.
  • the obtained freeze-dried product is pulverized and then compression-molded into a cylindrical shape to obtain a sustained-release preparation containing HGF protein (HGF content relative to biodegradable polymer: 2.5% by mass).
  • [Formulation Example 12] 0.58 g of sodium salt of hyaluronan (intrinsic viscosity 45000 cc / g) is mixed with 20 mL of water and swollen. Next, 2 mL of 2N sodium hydroxide is added to the mixture and stirred to obtain a homogeneous solution. To this, a solution prepared by adding 0.10 g of divinylsulfone to 2.4 mL of water and stirring is added to form a mixture. The mixture is allowed to stand for 70 minutes, and the resulting gel is put into a biotris buffer (phosphate buffer). Of 0.15 M NaCl, pH about 7.2) and swell for 3 hours.
  • phosphate buffer phosphate buffer
  • the bone elongation-promoting agent of the present invention is useful as a medical drug that promotes bone elongation and bone formation after osteotomy or osteogenesis, or after fracture or osteoarthroplasty.

Abstract

The object aims to promote the bone elongation in an interbone gap after osteotomy or in bone lengthening.  Disclosed is a bone elongation promoter characterized by comprising, as an active ingredient: HGF protein, a partial peptide thereof having substantially the same bone elongation promoting activity as that of HGF protein, or a salt of HGF protein or the partial peptide thereof; or DNA comprising DNA which encodes HGF protein, DNA comprising DNA which encodes a partial peptide of HGF protein having substantially the same bone elongation promoting activity as that of HGF protein, or DNA comprising DNA which can hybridize with DNA comprising a nucleotide sequence complementary to any one of the foregoing two DNA molecules under stringent conditions and encodes a protein or peptide having substantially the same bone elongation promoting activity as that of HGF protein.

Description

骨延長促進剤Bone elongation promoter
 本発明は、骨延長促進剤に関する。詳しくは、骨断面間に形成された間隙において、少なくとも一方の骨断面からそれに対向する他方骨断面への骨延長をより短期間で達成し得る薬剤に関する。さらに詳しくは、本発明は、骨切り術、骨延長術または骨折によって生じる骨間隙における骨延長を促進することで、骨切り術、骨延長術または骨折後の治療期間を短縮することを可能にする薬剤に関するものである。 The present invention relates to a bone elongation promoter. Specifically, the present invention relates to a drug that can achieve bone extension from at least one bone section to the opposite bone section in a gap formed between bone sections in a shorter period of time. More specifically, the present invention enables shortening of the treatment period after osteotomy, bone extension or fracture by promoting bone extension in the bone gap caused by osteotomy, bone extension or fracture. It is related to the drug.
 低身長や小人症等の短肢症患者、あるいは事故や手術等によって上肢または下肢の長さの差が大きい患者等に対して、その補正または矯正を目的として、骨切り術や骨延長術が行われる。しかし、骨切り術では、一度の手術で骨を延長できる長さは限られており、必要な長さまで骨を延長させるためには、繰り返しの骨切り術が必要となる。このため、患者の負担は非常に大きい。骨延長術は、延長する骨を切断した後、特殊な器具、例えば創外固定器を装着して目的とする長さまで時間をかけて徐々に延長を行う施術方法である。この場合、骨延長開始から治療終了まで半年ないし一年程度を有し、その間、創外固定器を装着し続けなければならないだけでなく、再骨折の可能性も高いため、患者への負担が大きい。骨折は、事故等により生じうる障害であり、その治癒には比較的長期間を要することが多い。特に、複雑骨折や破砕骨折等は、骨が欠損し、例えば、短肢や変形をきたす場合がある。 For short stature patients such as short stature and dwarfism, or for patients with large difference in length of upper limbs or lower limbs due to accidents or surgery etc., osteotomy or bone extension for the purpose of correction or correction Is done. However, in osteotomy, the length of bone that can be extended by a single operation is limited, and repeated osteotomy is required to extend the bone to the required length. For this reason, the burden on the patient is very large. Bone extension is a treatment method in which after extending a bone to be extended, a special instrument, for example, an external fixator, is attached and gradually extended to a target length over time. In this case, it takes about half a year to one year from the start of bone extension to the end of treatment, and during that time, not only must the external fixator be kept on, but the possibility of re-fracture is also high. large. Fracture is a disorder that can occur due to an accident or the like, and its healing often requires a relatively long period of time. In particular, complex fractures, fractures, and the like have bone defects and may cause short limbs or deformation, for example.
 このような理由から、整形外科の分野では、骨切り術や骨延長術、また骨折の治療において、骨の延長を促進するための薬剤が強く求められている。骨の癒合を促進する薬剤として、例えば塩基性繊維芽細胞増殖因子(bFGF)や骨形成タンパク質(BMP)等が知られている(例えば、特許文献1、2参照等)。 For these reasons, in the field of orthopedics, there is a strong demand for drugs for promoting bone extension in osteotomy, bone extension and fracture treatment. As agents that promote bone healing, for example, basic fibroblast growth factor (bFGF), bone morphogenetic protein (BMP), and the like are known (for example, see Patent Documents 1 and 2).
 一方、肝細胞増殖因子(Hepatocyte Growth Factor:HGF)は、最初に成熟肝細胞に対する強力なマイトゲンとして同定された蛋白質であり、1989年にその遺伝子のクローニングがなされた(非特許文献1、2参照)。その後、様々な組織において、血管新生や細胞の分化、増殖、抗アポトーシス等の様々な作用をもつことが報告されている。また、特許文献3において、HGFは胸骨切開術後の胸骨の回復を向上させる薬剤の一つとして例示されている。しかし、その効果は何ら実証されていない。また、胸骨切開術は、胸骨の切開面を縫合により閉鎖する施術であり、通常、胸骨の切断面と切断面の間には間隙は殆どないと認められる。すなわち、特許文献3には、胸骨の切断面と切断面とを融合する場合の効果が記載されているに過ぎず、切断面と切断面との間に間隙がある場合の効果については、何も記載されていない。 On the other hand, hepatocyte growth factor (HGF) is a protein that was first identified as a powerful mitogen for mature hepatocytes, and its gene was cloned in 1989 (see Non-Patent Documents 1 and 2). ). Thereafter, it has been reported that various tissues have various effects such as angiogenesis, cell differentiation, proliferation, and anti-apoptosis. In Patent Document 3, HGF is exemplified as one of drugs that improve recovery of the sternum after sternotomy. However, no effect has been demonstrated. The sternotomy is a procedure in which the incision surface of the sternum is closed by suturing, and it is usually recognized that there is almost no gap between the cut surfaces of the sternum. That is, Patent Document 3 only describes the effect when the cut surface and the cut surface of the sternum are fused, and what is the effect when there is a gap between the cut surface and the cut surface? Is also not described.
特開平5-124975号公報(対応する米国特許第6833354号)Japanese Patent Laid-Open No. 5-124975 (corresponding US Pat. No. 6,833,354) 特表2000-502336号公報(対応する米国特許第5854207号、他)JP-T 2000-502336 (corresponding US Pat. No. 5,854,207, etc.) 特表2003-510289号公報(対応する米国特許第6732738号)JP-T 2003-510289 (corresponding US Pat. No. 6732738)
 本発明は、骨延長促進剤、詳しくは、骨切断部に形成された間隙(以下、これを「骨切断間隙」または「骨間隙」ともいう)において、少なくとも一方の骨断面からそれに対向する他方骨断面への骨延長(以下、これを「骨切断間隙(又は骨間隙)における骨延長」という)を促進する薬剤を提供することを目的とする。具体的には、本発明は、骨切り術や骨延長術、あるいは骨折後の整骨術等の治療過程において、骨切断間隙における骨延長を促進するために有効に用いられる薬剤を提供することを目的とする。また、本発明は、この薬剤を用いることにより、骨切り術または骨延長術の施術期間、あるいは骨折後の治療期間を短縮することを目的とする。 The present invention relates to a bone elongation promoting agent, and more specifically, in a gap formed in a bone cutting part (hereinafter also referred to as “bone cutting gap” or “bone gap”), at least one bone cross section and the other facing it. An object of the present invention is to provide a drug that promotes bone extension to a bone cross section (hereinafter referred to as “bone extension in a bone cutting gap (or bone gap)”). Specifically, the present invention provides a drug that is effectively used to promote bone extension in a bone cutting gap in a treatment process such as osteotomy, bone extension, or osteopathy after fracture. Objective. Another object of the present invention is to shorten the treatment period of osteotomy or osteogenesis or the treatment period after fracture by using this drug.
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、後述する実験例に示すように、肝細胞増殖因子(Hepatocyte Growth Factor)(以下、当該蛋白質を「HGF蛋白質」、当該蛋白質の遺伝子を「HGF遺伝子」ともいう)が、上記骨切断間隙における骨延長を促進する作用を有することを見い出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors, as shown in the experimental examples to be described later, have a hepatocyte growth factor (hereinafter referred to as “HGF protein”, the protein) This gene is also referred to as “HGF gene”), and has been found to have an effect of promoting bone elongation in the above-mentioned osteotomy gap, thereby completing the present invention.
 すなわち、本発明は以下に記載する実施形態を有するものである。
(I)HGF蛋白質を有効成分とする骨延長促進剤
(I-1)下記(1-a)~(1-c)のいずれか少なくとも1種を有効成分として含有することを特徴とする、骨切断間隙における骨延長促進剤:
(1-a)HGF蛋白質、
(1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
(1-c)(1-a)又は(1-b)の塩。
That is, the present invention has the embodiments described below.
(I) Bone elongation promoter containing HGF protein as an active ingredient (I-1) Bone comprising at least one of the following (1-a) to (1-c) as an active ingredient Bone elongation promoter in the cutting gap:
(1-a) HGF protein,
(1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
(1-c) A salt of (1-a) or (1-b).
 (I-2)HGF蛋白質が、下記(1-d)または(1-e)であることを特徴とする、(I-1)に記載する骨延長促進剤:
(1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
(1-e)配列番号1又は2に示される塩基配列に対して相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質。
(I-2) The bone elongation promoter according to (I-1), wherein the HGF protein is the following (1-d) or (1-e):
(1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
(1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Having protein.
 (I-3)HGF蛋白質が、下記(1-f)または(1-g)であることを特徴とする、(I-1)に記載する骨延長促進剤:
(1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
(1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
(I-3) The bone elongation promoter described in (I-1), wherein the HGF protein is the following (1-f) or (1-g):
(1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
(1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (I-4)上記(1-d)または(1-g)に記載する蛋白質が、配列番号5または6で示されるアミノ酸配列からなる蛋白質である、(I-2)または(I-3)に記載する骨延長促進剤。 (I-4) The protein described in (1-d) or (1-g) above is a protein consisting of the amino acid sequence represented by SEQ ID NO: 5 or 6, (I-2) or (I-3) The bone elongation promoter described in 1.
 (I-5)局所投与形態を有する(I-1)乃至(I-4)のいずれかに記載する骨延長促進剤。 (I-5) The bone elongation promoter described in any of (I-1) to (I-4) having a local administration form.
 (I-6)3mmを超える骨切断間隙における対向するいずれか少なくとも一方の骨断面部を処置するための投与形態を有する、(I-1)乃至(I-5)のいずれかに記載する骨延長促進剤。 (I-6) The bone according to any one of (I-1) to (I-5), which has a dosage form for treating at least one of the opposing bone cross sections in a bone cutting gap exceeding 3 mm. Elongation promoter.
 (II)HGF蛋白質をコードするDNAを有効成分とする骨延長促進剤
(II-1)下記(2-a)~(2-c)のいずれか少なくとも1種のDNAを有効成分として含有することを特徴とする、骨切断間隙における骨延長促進剤:、
(2-a)HGF蛋白質をコードするDNA、
(2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
(2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA。
(II) Bone elongation promoter containing DNA encoding HGF protein as an active ingredient (II-1) containing at least one of the following DNAs (2-a) to (2-c) as an active ingredient Bone elongation promoting agent in bone cutting gap characterized by:
(2-a) DNA encoding HGF protein,
(2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
(2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode.
 (II-2)HGF蛋白質をコードするDNAが、下記(2-d)又は(2-e)であることを特徴とする(II-1)に記載する骨延長促進剤:
(2-d)配列番号1または2に示される塩基配列からなるDNA、
(2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
(II-2) The bone elongation promoter described in (II-1), wherein the DNA encoding the HGF protein is the following (2-d) or (2-e):
(2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
(2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
 (II-3)(II-1)に記載する(2-a)~(2-c)並びに(II-2)に記載する(2-d)及び(2-e)からなる群から選択されるDNAが、I型単純ヘルペスウイルス(HSV-1)ベクター、センダイウイルス・エンベロープ(HVJ-E)ベクター、アデノウイルスベクターまたはアデノ随伴ウイルスベクターに組み込まれてなる、骨延長促進剤。 (II-3) selected from the group consisting of (2-a) to (2-c) described in (II-1) and (2-d) and (2-e) described in (II-2) A bone elongation promoter, wherein the DNA is incorporated into a type I herpes simplex virus (HSV-1) vector, Sendai virus envelope (HVJ-E) vector, adenovirus vector or adeno-associated virus vector.
 (II-4)局所投与形態を有する(II-1)乃至(II-3)のいずれかに記載する骨延長促進剤。 (II-4) The bone elongation promoter described in any of (II-1) to (II-3) having a local administration form.
 (II-5)3mmを超える骨切断間隙における対向するいずれか少なくとも一方の骨断面部を処置するための投与形態を有する、(II-1)乃至(II-4)のいずれかに記載する骨延長促進剤。 (II-5) The bone according to any one of (II-1) to (II-4), which has a dosage form for treating at least one of the opposing bone cross sections in a bone cutting gap exceeding 3 mm. Elongation promoter.
 (III)骨延長促進剤の製造の為のHGF蛋白質の使用
(III-1)骨延長促進剤の製造の為の、下記(1-a)~(1-g)のいずれかに記載する蛋白質またはペプチドの使用:
(1-a)HGF蛋白質、
(1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
(1-c)(1-a)又は(1-b)の塩、
(1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
(1-e)配列番号1又は2に示される塩基配列に対して相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質、
(1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
(1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
(III) Use of HGF protein for production of bone elongation promoter (III-1) Protein described in any of (1-a) to (1-g) below for production of bone elongation promoter Or use of peptides:
(1-a) HGF protein,
(1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
(1-c) a salt of (1-a) or (1-b),
(1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
(1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Protein,
(1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
(1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (III-2)骨延長促進剤の製造の為の、下記(2-a)~(2-e)のいずれかに記載するDNAの使用:
(2-a)HGF蛋白質をコードするDNA、
(2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
(2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA、
(2-d)配列番号1または2に示される塩基配列からなるDNA、
(2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
(III-2) Use of the DNA described in any of (2-a) to (2-e) below for the production of a bone elongation promoter:
(2-a) DNA encoding HGF protein,
(2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
(2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode,
(2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
(2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
 (IV)骨延長を促進する為のHGF蛋白質またはDNA
(IV-1)骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の施術患者の骨切断間隙における骨延長を促進するための、下記(1-a)~(1-g)のいずれかに記載する蛋白質またはペプチド:
(1-a)HGF蛋白質、
(1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
(1-c)(1-a)又は(1-b)の塩、
(1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
(1-e)配列番号1又は2に示される塩基配列に対して相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質、
(1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
(1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
(IV) HGF protein or DNA for promoting bone elongation
(IV-1) The following (1-a) to (1-g) to promote bone extension in the osteotomy gap of patients undergoing osteotomy or osteotomy, fracture patients, or patients undergoing osteoplasty Or a protein or peptide according to any one of
(1-a) HGF protein,
(1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
(1-c) a salt of (1-a) or (1-b),
(1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
(1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Protein,
(1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
(1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (IV-2)骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の骨切断間隙における骨延長を促進するための、下記(2-a)~(2-e)のいずれかに記載するDNA:
(2-a)HGF蛋白質をコードするDNA、
(2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
(2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA、
(2-d)配列番号1または2に示される塩基配列からなるDNA、
(2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
(IV-2) Any of the following (2-a) to (2-e) to promote bone extension in the osteotomy or osteotomy patient, fracture patient, or osteotomy gap DNA described in:
(2-a) DNA encoding HGF protein,
(2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
(2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode,
(2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
(2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
 (V)骨延長促進方法
(V-1)下記(1-a)~(1-g)のいずれかに記載する蛋白質またはペプチドを、骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の施術患者の、骨切断間隙部位またはその周辺部に投与することを特徴とする骨延長促進方法:
(1-a)HGF蛋白質、
(1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
(1-c)(1-a)又は(1-b)の塩、
(1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
(1-e)配列番号1又は2に示される塩基配列に対して相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質、
(1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
(1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
(V) Bone elongation promotion method (V-1) A protein or peptide described in any of (1-a) to (1-g) below is treated with osteotomy or bone extension surgery patient, fracture patient or bone A method for promoting bone extension characterized by administering to an osteotomy patient at or near the bone cutting gap:
(1-a) HGF protein,
(1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
(1-c) a salt of (1-a) or (1-b),
(1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
(1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Protein,
(1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
(1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (V-2)下記(2-a)~(2-e)のいずれかに記載する蛋白質またはペプチドを、骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の施術患者の、骨切断間隙部位またはその周辺部に投与することを特徴とする骨延長促進方法:
(2-a)HGF蛋白質をコードするDNA、
(2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
(2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA、
(2-d)配列番号1または2に示される塩基配列からなるDNA、
(2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
(V-2) A protein or peptide described in any of the following (2-a) to (2-e) is used in a patient who has undergone osteotomy or bone extension, a fracture patient, or a patient who has undergone osteoarthroplasty. A method for promoting bone elongation, comprising administering to a bone cutting gap site or its periphery:
(2-a) DNA encoding HGF protein,
(2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
(2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode,
(2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
(2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
 本発明の骨延長促進剤は、骨切断部において、骨断面からそれに対向する骨断面との間の間隙、すなわち互いに対向する骨断面間における骨間隙(骨切断間隙)における骨延長を促進する効果を発揮するものである。本発明の骨延長促進剤は、例えば低身長や事故等で短くなった肢体等の骨切り術や骨延長術における骨延長、または骨折の整骨術後の骨延長において、より優れた骨延長効果を発揮するものである。 The bone elongation promoting agent of the present invention has an effect of promoting bone elongation in a gap between a bone cross section and an opposing bone cross section, that is, a bone gap (bone cutting gap) between the bone cross sections facing each other in a bone cutting portion. To demonstrate. The bone elongation promoting agent of the present invention has a superior bone elongation effect in, for example, bone lengthening in osteotomy or bone lengthening for limbs shortened due to short stature or accident etc., or bone lengthening after osteopathy of fracture To demonstrate.
 より、具体的な効果としては、以下が挙げられる。 More specific effects include the following.
 一回の骨切り術で可能な骨延長の長さは3mm程度であるといわれている。このため、骨を約3cm延長させるためには、通常は10回の骨切り術を繰り返して行う必要がある。しかし本発明の骨延長促進剤によれば、一回の骨切り術で3mmを超える長さまで骨を伸ばすことができるので、骨切り術の施術回数を減らすことができる。例えば本発明の骨延長促進剤を用いて一度の骨切り術で骨が5mm程度延長した場合、骨を最終的に約3cm延長するために必要な骨切り術の繰り返し回数は6回であり、施術回数を大きく減少させることができる。このことは、患者にとって負担の大きな減少となり、また治療期間を短くすることができる。 】 It is said that the length of bone extension that can be performed by one osteotomy is about 3 mm. For this reason, in order to extend the bone by about 3 cm, it is usually necessary to repeat 10 osteotomy operations. However, according to the bone elongation promoting agent of the present invention, the bone can be stretched to a length exceeding 3 mm by one osteotomy, so the number of osteotomy procedures can be reduced. For example, when the bone is elongated by about 5 mm by one osteotomy using the bone elongation promoter of the present invention, the number of repetitions of osteotomy necessary to finally extend the bone by about 3 cm is six times, The number of treatments can be greatly reduced. This greatly reduces the burden on the patient and shortens the treatment period.
 また、本発明の骨延長促進剤によれば、骨延長術における骨延長を促進し、骨組織の形成、骨再生を早めることができるので、治療期間を短くすることができる。通常、骨延長術において、骨延長開始から治療終了までは半年ないし一年程度を有し、その期間中、創外固定器を装着しなければならない。また、その間に再骨折の可能性もあり、患者への負担が大きい。本発明の骨延長促進剤により治療期間を短縮することができれば、患者にとって負担の大きな減少となる。さらに、治療期間を短くできることは、装着する創外固定器のスクリューあるいは鋼線刺入部における細菌感染や神経血管障害などの合併症が起こり得る期間も短くできるので、そのリスクも軽減できる。 Further, according to the bone elongation promoter of the present invention, it is possible to promote bone elongation in bone distraction surgery and accelerate the formation of bone tissue and bone regeneration, thereby shortening the treatment period. Usually, in bone extension, it takes about six months to one year from the start of bone extension to the end of treatment, and an external fixator must be worn during that period. In addition, there is a possibility of re-fracture in the meantime, and the burden on the patient is great. If the treatment period can be shortened by the bone elongation promoter of the present invention, the burden on the patient will be greatly reduced. Furthermore, the shortening of the treatment period can also reduce the risk of complications such as bacterial infection and neurovascular disorders in the external fixator screw or the steel wire insertion portion to be worn, and thus the risk can be reduced.
 また、本発明の骨延長促進剤によれば、骨折の治療において、例えば、複雑骨折や、破砕骨折などにより、骨が短縮または欠損した場合においても、骨と骨との間に間隙をつくって整骨できるので、術後に肢体の長さが短くなったり、変形したりすることを回避することができる。また、骨間隙における骨延長を促進できるため治療期間を短縮できる。 Further, according to the bone elongation promoting agent of the present invention, in the treatment of fracture, even when the bone is shortened or lost due to, for example, a complicated fracture or a fractured fracture, a gap is created between the bones. Since osteopathy can be performed, it is possible to avoid that the length of the limb is shortened or deformed after the operation. Further, since the bone extension in the bone gap can be promoted, the treatment period can be shortened.
 上記骨切り術、骨延長術および骨折の治療において、その治療期間が短縮できることは、患者の肉体的負担が軽減できることは勿論、治療費の高額化による患者やその家族の精神的あるいは物質的な負担をも軽減でき、ひいては国家的な医療費負担を軽減することができる。 In the above osteotomy, osteogenesis and fracture treatment, the shortening of the treatment period not only reduces the physical burden on the patient, but also increases the cost of treatment for the patient and their family members. The burden can be reduced and the national medical cost burden can be reduced.
図Aは、実験例1における片側型創外固定器の装着態様を示す図である。図Bは、ウサギの足に片側型創外固定器を装着させたところを示す図である。図Cは、片側型創外固定器を装着させたウサギの足のレントゲン像を示す図である。FIG. A is a view showing a mounting mode of the one-side external fixator in Experimental Example 1. FIG. B is a view showing a one-side external fixator attached to a rabbit foot. FIG. C is a view showing an X-ray image of a rabbit foot to which a one-side external fixator is attached. 図Aは、コントロール群について、実験例1における脛骨切断術直後(Op.)から術後10週目(1w、2w、3w、4w、6w、8w、10w)までの脛骨切断部のレントゲン像(上段:正面像、下段:側面像)を示す図である。図Bは、HGF投与群について、実験例1における脛骨切断術直後(Op.)から術後第5週目(1w、2w、3w、4w、5w)までの脛骨切断部のレントゲン像(上段:正面像、下段:側面像)を示す図である。Fig. A shows a roentgenogram of the tibial cut from the control group immediately after the tibial cut (Op.) To 10 weeks after the operation (1w, 2w, 3w, 4w, 6w, 8w, 10w) in Experimental Example 1 It is a figure which shows an upper stage: a front image, a lower stage: a side image. FIG. B shows X-ray images of the tibial section from the immediately after tibial amputation (Op.) To the fifth week after surgery (1w, 2w, 3w, 4w, 5w) in the HGF administration group (upper: It is a figure which shows a front image, a lower stage: a side image.
(1)用語の説明
 本明細書における塩基配列(ヌクレオチド配列)、核酸などの略号による表示は、IUPAC-IUBの規定〔IUPAc-IUB communication on Biological Nomenclature, Eur. J. Biochem., 138; 9 (1984)〕、「塩基配列又はアミノ酸配列を含む明細書等の作製のためのガイドライン」(特許庁編)及び当該分野における慣用記号に従うものとする。
(1) Explanation of terms The abbreviations such as base sequences (nucleotide sequences) and nucleic acids in the present specification are defined by IUPAC-IUB [IUPAc-IUB communication on Biological Nomenclature, Eur. J. Biochem., 138; 9 ( 1984)], “Guidelines for the preparation of specifications including base sequences or amino acid sequences” (edited by the Patent Office) and conventional symbols in the field.
 本明細書で「遺伝子」とは、特に言及しない限り、調節領域、コード領域、エクソン、及びイントロンを区別することなく示すものとする。また本明細書で「遺伝子」という場合、DNAのみならずその転写物であるmRNAをも意味する。 In this specification, “gene” refers to a regulatory region, a coding region, an exon, and an intron without distinction unless otherwise specified. In addition, the term “gene” in the present specification means not only DNA but also mRNA which is a transcript thereof.
 本明細書において「DNA」は、特に言及しない限り、ヒトゲノムDNAを含む2本鎖DNA、及びcDNAや合成DNAを含む1本鎖DNA(センス鎖)、並びに当該センス鎖と相補的な配列を有する1本鎖DNA(アンチセンス鎖)、及びそれらの断片のいずれもが含まれる。 In this specification, “DNA” has double-stranded DNA including human genomic DNA, single-stranded DNA including cDNA and synthetic DNA (sense strand), and a sequence complementary to the sense strand, unless otherwise specified. Both single-stranded DNA (antisense strand) and fragments thereof are included.
 本発明において「骨延長」または「骨切断間隙における骨延長」とは、骨切断によって形成された骨間隙(骨切断間隙)において、一方の骨断面からこれに対向する他方の骨断面に向けて骨を伸長させることを意味する。なお、ここで骨の伸長は、少なくとも一方の骨断面から他方の骨断面に向けて生じるものであればよいが、好ましくは両方の骨断面からの伸長、すなわち両方の骨断面からこれらにそれぞれ対向する他方の骨断面に向けて生じるものである。なお、「骨延長」は、骨の切断部分における両側の骨と同様な太さ、または厚みで平滑な状態で骨組織が延長し、骨が再生されることを含む。また、骨延長には、骨間隙部における仮骨形成も包含される。 In the present invention, the term “bone extension” or “bone extension in the bone cutting gap” refers to a bone gap formed by bone cutting (bone cutting gap) from one bone cross-section to the other bone cross-section facing this. Means stretching the bone. Here, it is sufficient that the bone elongation occurs at least from one bone cross-section toward the other bone cross-section, but preferably both bone cross-sections, that is, both bone cross-sections face each other. This occurs toward the other bone cross section. Note that “bone extension” includes that the bone tissue is extended in a smooth state with the same thickness or thickness as the bones on both sides in the cut portion of the bone, and the bone is regenerated. Bone extension also includes callus formation in the bone gap.
 本発明において「骨断面」は、骨が切断された面(骨切断面)をいう。なお、「骨切断」は、横断、縦断に限定されず、骨が断ち切られた状態の全てを含む。また骨切断の原因は、特に限定されず、手術(例えば、骨切り術、骨延長術)による人為的な骨の切断、または骨折などのように事故によって生じる骨の切断が含まれる。 In the present invention, the “bone cross section” refers to a surface (bone cut surface) from which bone has been cut. In addition, “bone cutting” is not limited to crossing and longitudinal cutting, but includes all the states in which bones are cut off. The cause of bone cutting is not particularly limited, and includes artificial bone cutting by surgery (for example, osteotomy and bone extension), or bone cutting caused by an accident such as a fracture.
 本発明における「骨切断間隙(または骨間隙)」は、骨切断部における間隙(隙間、欠損、空隙)をいう。間隙の幅は、制限されないが、3mmを越える間隙であることが好ましい。より好ましくは3mmを超え10mm以内の間隙である。また、骨切断間隙の発生原因は、特に限定されず、骨切り術後の骨切断間隙、骨延長術における骨切断間隙、骨折における骨切断間隙、および骨折における整骨術後の骨切断間隙等が含まれる。 In the present invention, the “bone cutting gap (or bone gap)” refers to a gap (gap, defect, gap) at the bone cutting portion. The width of the gap is not limited, but is preferably a gap exceeding 3 mm. More preferably, the gap is more than 3 mm and within 10 mm. The cause of the bone cutting gap is not particularly limited, and includes bone cutting gap after osteotomy, bone cutting gap in bone extension, bone cutting gap in fracture, bone cutting gap after osteopathy in fracture, etc. included.
 本発明において「骨切り術」とは、手または足の骨を切断した後、骨の切断面を所定の間隙を離した状態で固定し、骨の再生により骨を延長させて切断面を接合する術式をいう。この施術を複数回繰り返すことで骨を必要な長さに延長することができる。例えば、低身長や、外傷等による左右の四肢の長さが異なる場合に、手足の骨を切って所定の長さまで移動させ、伸ばしてゆく術式が挙げられる。切った骨は、再生によりその切断面から延長し、骨間隙が十分にまたは完全になくなるまで、髄内釘固定等によって固定される。すなわち、前記処置にて形成された骨切断間隙において、骨の切断面から骨が再生延長され、延長された骨の切断面同士が癒合し、骨の間隙は埋まり、骨が再構築される。 In the present invention, the “osteotomy” means that after cutting a bone of a hand or a foot, the cut surface of the bone is fixed with a predetermined gap, and the bone is regenerated to extend the bone and join the cut surfaces. The technique to do. By repeating this treatment multiple times, the bone can be extended to the required length. For example, when the length of the left and right limbs is different due to short stature or trauma etc., there is a technique in which the bones of the limbs are cut and moved to a predetermined length and stretched. The cut bone is extended from its cut surface by regeneration and is fixed by intramedullary nail fixation or the like until the bone gap is sufficiently or completely eliminated. That is, in the bone cutting gap formed by the above procedure, the bone is regenerated and extended from the cut surface of the bone, the cut surfaces of the extended bone are fused, the bone gap is filled, and the bone is reconstructed.
 また「骨延長術」とは、骨を切断した後、切断された両側の骨を可動式の固定具で固定しながら、毎日約0.5~1mm程度ずつ引き離して徐々に骨切断間隙を広げていき、必要とする長さまでこれを繰り返して骨を延長する施術である。例えば施術法としてはイリザロフ法等を例示することができる。 Also, “bone extension” means that after cutting the bone, the bones on both sides of the cut are fixed with a movable fixing tool, and the bone cutting gap is gradually widened by pulling them apart about 0.5 to 1 mm every day. This is a procedure to extend the bone by repeating this until the required length. For example, Ilizarov method etc. can be illustrated as a treatment method.
 本発明において「骨延長促進作用」とは、上記骨切り術若しくは骨延長術、または骨折若しくはその整骨術において生じる骨切断間隙における骨延長を促進させる作用をいう。被験物質が骨延長促進作用を有するか否かの評価は、例えば、実験例1に記載する方法に従って、被験物質を投与する場合(被験群)と被験物質を投与しない場合(コントロール群)とで、骨切断間隙のおける骨延長の速さを対比することで行うことができる。被験群がコントロール群に比して骨延長が速い場合、被験物質について骨延長促進作用を有すると判断することができる。 In the present invention, the “bone extension promoting action” refers to an action of promoting bone extension in the osteotomy gap occurring in the above osteotomy or osteogenesis, or a fracture or osteopath. Evaluation of whether or not a test substance has an effect of promoting bone elongation is performed, for example, when a test substance is administered (test group) and when a test substance is not administered (control group) according to the method described in Experimental Example 1. This can be done by comparing the speed of bone extension in the bone cutting gap. When the test group has a faster bone elongation than the control group, it can be determined that the test substance has a bone elongation promoting effect.
 (2)HGF蛋白質
 「HGF蛋白質」は、前述するように、成熟肝細胞に対する強力なマイトゲン(mytogen)として同定された蛋白質であり、肝細胞増殖因子(Hepatocyte growth factor)と称されているものである(非特許文献1、2など参照)。その名称はHGF以外にSF(scatter factor)、TCF(Tumor cytotoxic factor)等が使用されている。
(2) HGF protein “HGF protein” is a protein identified as a powerful mitogen for mature hepatocytes, as described above, and is called a hepatocyte growth factor. Yes (see Non-Patent Documents 1 and 2). In addition to HGF, SF (scatter factor), TCF (Tumor cytotoxic factor), etc. are used.
 HGF蛋白質は、例えばHGF蛋白質を産生する初代培養細胞や株化細胞を培養し、培養上清などから分離、精製して該HGF蛋白質を得ることができる。あるいは遺伝子工学的手法によりHGF蛋白質をコードする遺伝子を適切なベクターに組み込み、これを適当な宿主細胞に挿入して形質転換し、この形質転換体の培養上清液から目的とする組換えHGF蛋白質を分離することなどにより得ることもできる。(例えば、特開平5-111382号公報、Biochem. Biophys. Res. Commun.,1989年、第163巻,p.967などを参照)。前記の宿主細胞は特に限定されず、従来から遺伝子工学的手法で用いられている各種の宿主細胞、例えば大腸菌、酵母または動物細胞等を用いることができる。 The HGF protein can be obtained by, for example, culturing primary cultured cells or established cells that produce HGF protein, separating and purifying from the culture supernatant and the like. Alternatively, the gene encoding the HGF protein is incorporated into an appropriate vector by genetic engineering techniques, and this is inserted into an appropriate host cell for transformation, and the desired recombinant HGF protein is obtained from the culture supernatant of the transformant. It can also be obtained by separating. (See, for example, JP-A-5-111382, Biochem. Biophys. Res. Comm., 1989, 163, p. 967). The host cell is not particularly limited, and various host cells conventionally used in genetic engineering techniques such as Escherichia coli, yeast or animal cells can be used.
 本発明において、HGF蛋白質として好ましくは、ヒト由来のHGF(hHGF)をコードする遺伝子から産生される蛋白質を挙げることができる。かかるhHGFをコードする遺伝子として、好ましくは配列番号1または2に示される塩基配列からなるDNAを挙げることができる。 In the present invention, the HGF protein is preferably a protein produced from a gene encoding human-derived HGF (hHGF). As such a gene encoding hHGF, a DNA having a base sequence represented by SEQ ID NO: 1 or 2 is preferable.
 かかるHGF蛋白質として、具体的には、組換えDNA技術により、配列番号1に示される塩基配列からなるDNAを導入した細胞によって生産される配列番号3または5のHGF蛋白質を、また配列番号2に示される塩基配列からなるDNAを導入した細胞によって生産される配列番号4または6のHGF蛋白質を挙げることができる。 As such an HGF protein, specifically, the HGF protein of SEQ ID NO: 3 or 5 produced by a cell into which DNA comprising the nucleotide sequence shown in SEQ ID NO: 1 has been introduced by recombinant DNA technology, is also represented by SEQ ID NO: 2. Mention may be made of the HGF protein of SEQ ID NO: 4 or 6 produced by a cell into which DNA having the nucleotide sequence shown is introduced.
 配列番号3~6で示されるHGF蛋白質は、いずれもヒト由来の天然HGF蛋白質であって、HGFとしてのマイトゲン活性およびモートゲン活性を有している。かかるHGF蛋白質は、NCBIのデータベース(NCBI-GenBank Flat File Release 164.0)等に、例えばAccession No.P14210(配列番号3)またはAccession No.NP 001010932(配列番号4)として登録されている。なお、配列番号4で示されるアミノ酸配列を有するHGF蛋白質は、配列番号3で示されるアミノ酸配列の第161~165番目に位置する5個のアミノ酸残基が欠失している5アミノ酸欠損型HGF蛋白質である。ちなみに、上記天然HGF蛋白質は、糖蛋白質であり、例えば、Accession No.NP 001010932(配列番号4)で示されるHGF蛋白質は、289位のAsn、397位のAsn、471位のThr、561位のAsnおよび648位のAsnに糖鎖が付加されている。 The HGF proteins shown in SEQ ID NOs: 3 to 6 are all human-derived natural HGF proteins and have mitogenic activity and motogenic activity as HGF. Such HGF protein is registered in the NCBI database (NCBI-GenBank Flat File Release 164.0) or the like as, for example, Accession No.P14210 (SEQ ID NO: 3) or Accession No.NP 001010932 (SEQ ID NO: 4). The HGF protein having the amino acid sequence represented by SEQ ID NO: 4 is a 5-amino acid deficient HGF from which 5 amino acid residues located at positions 161 to 165 of the amino acid sequence represented by SEQ ID NO: 3 have been deleted. It is a protein. Incidentally, the natural HGF protein is a glycoprotein. For example, the HGF protein represented by Accession No.NP 001010932 (SEQ ID NO: 4) is Asn at position 289, Asn at position 397, Thr at position 471, Thr at position 561. A sugar chain is added to Asn and Asn at position 648.
 配列番号5および6に示すアミノ酸配列は、配列番号3および4において、N末端から31番目のアミノ酸領域(シグナル配列)が切断されてなる成熟蛋白質のアミノ酸配列である。 The amino acid sequences shown in SEQ ID NOs: 5 and 6 are amino acid sequences of mature proteins obtained by cleaving the 31st amino acid region (signal sequence) from the N-terminus in SEQ ID NOs: 3 and 4.
 また、本発明で対象とするHGF蛋白質は、骨延長促進作用を有する限り、上記配列番号3または4に示されるアミノ酸配列において1若しくは複数個(例えば、2~35個、好ましくは2~20個、より好ましくは2~10個)のアミノ酸が欠失、置換、挿入若しくは付加されていてもよい。かかるHGF蛋白質は、遺伝子工学的手法、部位特異的突然変異誘発法等の周知の技術的手段により製造することができる。挿入されるアミノ酸、置換されるアミノ酸、さらに付加されるアミノ酸は、20種類の天然アミノ酸以外の非天然アミノ酸であってもよい。非天然アミノ酸は、アミノ基とカルボキシル基を有する限りどのような化合物でもよいが、例えばγ-アミノ酪酸等が挙げられる。なお、配列番号4に示されるアミノ酸配列は、前述するように、配列番号3に示されるアミノ酸配列において5つのアミノ酸残基が欠失してなる5アミノ酸欠損型HGF蛋白質である。 In addition, as long as the HGF protein targeted in the present invention has a bone elongation promoting action, one or a plurality (for example, 2 to 35, preferably 2 to 20) of the amino acid sequence shown in SEQ ID NO: 3 or 4 above. More preferably 2 to 10 amino acids) may be deleted, substituted, inserted or added. Such HGF protein can be produced by well-known technical means such as genetic engineering techniques and site-directed mutagenesis. The amino acid to be inserted, the amino acid to be substituted, and the amino acid to be added may be non-natural amino acids other than 20 kinds of natural amino acids. The unnatural amino acid may be any compound as long as it has an amino group and a carboxyl group, and examples thereof include γ-aminobutyric acid. The amino acid sequence shown in SEQ ID NO: 4 is a 5-amino acid deficient HGF protein in which five amino acid residues are deleted from the amino acid sequence shown in SEQ ID NO: 3, as described above.
 さらに、本発明で対象とするHGF蛋白質は、骨延長促進作用を有する限り、上記配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有するものであってもよい。好ましくは配列番号3または4に示されるアミノ酸配列と90%以上、より好ましくは95%以上の同一性を有する蛋白質である。なお、前述する配列番号5に示すアミノ酸配列は、配列番号3に示すアミノ酸配列とそれぞれ96%および95.6%の同一性を有し、また配列番号6に示すアミノ酸配列は、配列番号4に示すアミノ酸配列とそれぞれ96%および95.7%の同一性を有している。ここで、「同一性」とは、蛋白質の一次構造(アミノ酸配列)を比較し、配列間において各々の配列を構成するアミノ酸残基の一致の程度を意味する。 Furthermore, the HGF protein targeted in the present invention may have at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4 as long as it has a bone elongation promoting action. Preferred is a protein having 90% or more, more preferably 95% or more identity with the amino acid sequence shown in SEQ ID NO: 3 or 4. The amino acid sequence shown in SEQ ID NO: 5 has 96% and 95.6% identity with the amino acid sequence shown in SEQ ID NO: 3, respectively, and the amino acid sequence shown in SEQ ID NO: 6 is shown in SEQ ID NO: 4. It has 96% and 95.7% identity with the amino acid sequence shown, respectively. Here, “identity” means the degree of coincidence of amino acid residues constituting each sequence among the sequences by comparing the primary structures (amino acid sequences) of the proteins.
 また、配列番号3または4に示されるアミノ酸配列と高い同一性を有するアミノ酸配列からなるHGF蛋白質としては、他にNCBIのデータベースに登録されている、Accession No. BAA14348またはAccession No.AAC71655等のヒト由来HGFを挙げることができる。 In addition, as an HGF protein comprising an amino acid sequence having high identity with the amino acid sequence shown in SEQ ID NO: 3 or 4, other humans such as Accession No. BAA14348 or Accession No. AAC71655 registered in the NCBI database. Derived HGF can be mentioned.
 また、本発明で対象とするHGF蛋白質は、骨延長促進作用を有する限り、配列番号3および4に示すそれぞれのアミノ酸配列において、1~31番目のアミノ酸領域からなるシグナル配列に代えて、他の蛋白質のシグナル配列を有するものであってもよい。かかるシグナル配列としては、ヒト血清アルブミン、インターフェロン、ヒトアミラーゼなどのシグナル配列を挙げることができる。 In addition, as long as the HGF protein targeted in the present invention has a bone elongation promoting action, each of the amino acid sequences shown in SEQ ID NOs: 3 and 4 is replaced with a signal sequence consisting of the 1st to 31st amino acid regions, It may have a protein signal sequence. Examples of such signal sequences include signal sequences of human serum albumin, interferon, human amylase and the like.
 また、本発明で対象とするHGF蛋白質は、骨延長促進作用を有する限り、上記配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNAを有する細胞から生産される蛋白質であってもよい。 In addition, the HGF protein targeted in the present invention is a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 as long as it has a bone elongation promoting action. It may be a protein produced from a cell having
 ここでストリンジェントな条件としては、約0.7~1Mの塩化ナトリウム存在下、約65℃でハイブリダイゼーションした後、約0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる)を用いて、約65℃の条件で洗浄する条件を挙げることができる。 Here, stringent conditions include hybridization at about 65 ° C. in the presence of about 0.7 to 1 M sodium chloride, and then about 0.1 to 2 times the concentration of the SSC solution (the composition of the 1 time concentration of the SSC solution). Can be mentioned that is washed at about 65 ° C. using 150 mM sodium chloride and 15 mM sodium citrate).
 HGF蛋白質をコードする遺伝子、具体的には、配列番号1若しくは2に示される塩基配列からなるDNA、または当該DNAと相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNAを有する細胞を用いて本発明のHGF蛋白質を生産する方法としては、例えばこれらのDNAを有する初代培養細胞や株化細胞を培養し、得られた培養上清などから目的のHGF蛋白質を分離、精製する方法を挙げることができる。また、遺伝子工学的手法により、上記DNAを適切なベクターに組み込み、これを適当な宿主細胞に挿入して形質転換し、この形質転換体の培養上清などから目的とするHGF蛋白質(組換え蛋白質)を分離することなどにより得ることもできる(例えば、特開平5-111382号公報、特開平11-1499号公報、Biochem. Biophys. Res. Commun.1989年、第163巻,p.967など参照)。 A gene encoding an HGF protein, specifically, a DNA comprising the base sequence shown in SEQ ID NO: 1 or 2, or a DNA that hybridizes with a DNA comprising a base sequence complementary to the DNA under stringent conditions As a method for producing the HGF protein of the present invention using cells, for example, primary cultured cells or established cells having these DNAs are cultured, and the target HGF protein is isolated and purified from the obtained culture supernatant. A method can be mentioned. Further, the above DNA is incorporated into an appropriate vector by genetic engineering techniques, transformed by inserting it into an appropriate host cell, and the desired HGF protein (recombinant protein) is obtained from the culture supernatant of this transformant. For example, see JP-A-5-111382, JP-A-11-1499, Biochem.chemBiophys. Res. Commun. 1989, Vol. 163, p.967. ).
 前記の宿主細胞は特に限定されず、従来から遺伝子工学的手法で用いられている各種の宿主細胞、例えば大腸菌、酵母または動物細胞等を用いることができる。天然のHGF蛋白質は糖蛋白質であるので、これと同様に糖蛋白質を産生する場合は、宿主細胞として動物細胞を用いることが好ましい。動物細胞としては、例えばCHO細胞、 COS細胞、マウスL細胞、マウス C127細胞、マウスFM3A 細胞等が挙げられる。発現ベクターの動物細胞への移入はトランスフェクション法、マイクロインジェクション法等により行われるが、その中では、リン酸カルシウム法が最も一般的である。移入により形質転換された動物細胞の培養は、常法により浮遊培養または付着培養で行うことができる。培地としては、MEM、RPMI 1640などが一般的である。 The host cell is not particularly limited, and various host cells conventionally used in genetic engineering techniques such as E. coli, yeast or animal cells can be used. Since the natural HGF protein is a glycoprotein, animal cells are preferably used as host cells when producing glycoproteins in the same manner. Examples of animal cells include CHO cells, COS cells, mouse L cells, mouse C127 cells, mouse FM3A cells, and the like. Transfer of expression vectors into animal cells is performed by transfection, microinjection or the like, among which the calcium phosphate method is the most common. Culture of animal cells transformed by transfer can be carried out by suspension culture or adherent culture by a conventional method. As the medium, MEM, RPMI 1640, etc. are common.
 本発明が対象とするHGF蛋白質は、骨延長促進作用を有する限り、糖鎖付加の有無ならび糖鎖付加の数は特に制限されない。すなわち、天然に生じうる程度の数(1~複数個)が、欠失、置換、挿入もしくは付加等されているHGF蛋白質であってもよい。糖鎖が欠失、置換、挿入もしくは付加したHGF蛋白質としては、例えば天然のHGF蛋白質に付加している糖鎖を酵素等で処理し糖鎖を欠損させたもの、また糖鎖が付加しないように糖鎖付加部位のアミノ酸配列に変異を施したもの、あるいは天然の糖鎖付加部位とは異なる部位に糖鎖が付加するようアミノ酸配列に変異を施したもの等が挙げられる。このようなHGF蛋白質としては、具体的には、例えばNCBIのデータベースに登録されているAccession No. NP_001010932のヒトHGFに対し、糖鎖付加部位の289位AsnをGlnに、397位AsnをGlnに、471位ThrをGlyに、561位AsnをGlnに、648位AsnをGlnにそれぞれ置換することによって糖鎖が付加しないようにしたHGF蛋白質[Fukuta K et al., Biochemical Journal,388, 555-562(2005)]等を挙げることができる。 As long as the HGF protein targeted by the present invention has a bone elongation promoting action, the presence or absence of glycosylation and the number of glycosylation are not particularly limited. That is, the number of naturally occurring numbers (one to plural) may be HGF proteins that have been deleted, substituted, inserted or added. Examples of HGF proteins in which sugar chains are deleted, substituted, inserted or added include those in which sugar chains added to natural HGF proteins are treated with enzymes or the like to delete sugar chains, and sugar chains are not added. In addition, those in which the amino acid sequence at the sugar chain addition site is mutated, or those in which the amino acid sequence is mutated so that the sugar chain is added to a site different from the natural sugar chain addition site. As such HGF protein, specifically, for example, Accession No. NP_001010932 human HGF registered in the NCBI database, the 289-position Asn of the glycosylation site is Gln, and the 397-position Asn is Gln. HGF protein in which sugar chains are prevented from being added by replacing Thr at position 471 with Gly, Asn at position 561 with Gln, and Asn at position 648 with Gln [Fukuta K et al., Biochemical Journal, 388, 555- 562 (2005)].
 本発明が対象とするHGF蛋白質は、C末端がカルボキシル基(-COOH)、カルボキシラート[-COOM(Mは金属を示す)]、アミド(-CONH)またはエステル(-COOR)のいずれであってもよい。ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピルもしくはn-ブチル等のC1-6アルキル基;例えば、シクロペンチル、シクロヘキシル等のC3-8シクロアルキル基;例えば、フェニル、α-ナフチル等のC6-12アリール基;例えば、ベンジル、フェネチル等のフェニル-C1-2アルキル基もしくはα-ナフチルメチル等のα-ナフチル-C1-2アルキル基等のC7-14アラルキル基、並びにアセチルオキシメチル、ピバロイルオキシメチル等のC2-6アルカノイルメチル基等が用いられる。また、C末端以外にカルボキシル基またはカルボキシラートを有している場合であって、当該カルボキシル基またはカルボキシラートがさらにアミド化またはエステル化されているものも本発明が対象とするHGF蛋白質に含まれる。この場合のエステルとしては、例えば前述のC末端のエステル等を挙げることができる。 In the HGF protein targeted by the present invention, the C-terminus is any of a carboxyl group (—COOH), a carboxylate [—COOM (M represents a metal)], an amide (—CONH 2 ), or an ester (—COOR). May be. Here, R in the ester is, for example, a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl or n-butyl; for example, a C 3-8 cycloalkyl group such as cyclopentyl, cyclohexyl; C 6-12 aryl groups such as α-naphthyl; C 7- such as phenyl-C 1-2 alkyl groups such as benzyl and phenethyl or α-naphthyl-C 1-2 alkyl groups such as α-naphthylmethyl; A 14 aralkyl group and a C 2-6 alkanoylmethyl group such as acetyloxymethyl, pivaloyloxymethyl and the like are used. In addition, the HGF protein targeted by the present invention includes a carboxyl group or carboxylate other than the C-terminus, and the carboxyl group or carboxylate further amidated or esterified. . Examples of the ester in this case include the aforementioned C-terminal ester.
 さらに、本発明が対象とするHGF蛋白質には、前記蛋白質において、N末端のメチオニン残基のアミノ基が保護基(例えば、ホルミル基、アセチル等のC2-6アルカノイル基等のC1-6アシル基等)で保護されているもの、N末端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の反応性基(例えば、-OH、-SH、アミノ基、イミダゾリル基、インドリル基、グアニジノ基等)が適当な保護基(例えば、ホルミル基、アセチル等のC2-6アルカノイル基等のC1-6アシル基等)で保護されているもの、あるいは糖鎖が結合したいわゆる糖蛋白質等の複合蛋白質等も含まれる。 Furthermore, in the HGF protein targeted by the present invention, the amino group of the N-terminal methionine residue is a protective group (for example, a C 1-6 such as a C 2-6 alkanoyl group such as formyl group, acetyl, etc.). A group protected by an acyl group, the N-terminal side cleaved in vivo and a glutamyl group produced by pyroglutamine oxidation, a reactive group on the side chain of an amino acid in the molecule (eg, —OH, —SH) , An amino group, an imidazolyl group, an indolyl group, a guanidino group, etc.) protected with an appropriate protecting group (for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl). Or a complex protein such as a so-called glycoprotein to which a sugar chain is bound.
 なお、HGF蛋白質は、ヒトに適用する場合は前記したヒト由来のものが好適に用いられるが、ヒト以外の哺乳動物(例えばサル、ウシ、ウマ、ブタ、ヒツジ、イヌ、ネコ、ラット、マウス、ウサギ、ハムスター、モルモット、チンパンジー等)に由来するHGF蛋白質であってもよい。このようなHGF蛋白質としては、例えばNCBIのデータベース等に登録されているマウス由来HGF蛋白質(例えばAccession No.AAB31855、NP_034557、BAA01065、BAA01064等)、ラット由来HGF蛋白質(例えばAccession No.NP_058713等)、ウシ由来HGF蛋白質(例えばAccession No.NP_001026921、BAD02475等)、ネコ由来HGF蛋白質(例えばAccession No.NP_001009830、BAC10545,BAB21499等)、イヌ由来HGF蛋白質(例えばAccession No.NP_001002964、BAC57560等)またはチンパンジー由来HGF蛋白質(例えばAccession No.XP 519174等)等が例示されるが、これらに限定されない。 In addition, as for HGF protein, when it applies to a human, the above-mentioned thing derived from a human is used suitably, but mammals other than a human (for example, a monkey, a cow, a horse, a pig, a sheep, a dog, a cat, a rat, a mouse, Rabbit, hamster, guinea pig, chimpanzee, etc.) may be used. Examples of such HGF proteins include mouse-derived HGF proteins (eg, Accession No. AAB31855, NP_034557, BAA01065, BAA01064, etc.) registered in the NCBI database, etc., rat-derived HGF proteins (eg, Accession No. NP_058713, etc.), Bovine-derived HGF protein (eg, Accession No.NP_001026921, BAD02475, etc.), cat-derived HGF protein (eg, Accession No.NP_001009830, BAC10545, BAB21499, etc.), dog-derived HGF protein (eg, Accession No.NP_001002964, BAC57560, etc.) or chimpanzee-derived HGF Examples thereof include, but are not limited to, proteins (for example, Accession No. XP 519174).
 これらのHGF蛋白質は、本発明の骨延長促進剤の有効成分として使用する場合、医薬として使用できる程度に精製されたものであればよく、その限りにおいて、種々の方法で調製されたものを用いることができる。なお、精製方法としては、制限されないが、例えばヘパリン・セファローズやハイドロキシアパタイト等を用いたカラムクロマトグラフィーを挙げることができる。 These HGF proteins need only be purified to the extent that they can be used as pharmaceuticals when used as the active ingredient of the bone elongation promoter of the present invention, and so long as they are prepared by various methods. be able to. The purification method is not limited, and examples thereof include column chromatography using heparin / sepharose or hydroxyapatite.
 HGF蛋白質は、酸または塩基との生理学的に許容される塩の形態で用いることもできる。とりわけ生理学的に許容される酸付加塩が好ましい。このような塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸等)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸等)との塩を挙げることができる。 HGF protein can also be used in the form of a physiologically acceptable salt with acid or base. Particularly preferred are physiologically acceptable acid addition salts. Examples of such salts include salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, etc.), or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, And salts with succinic acid, tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, and the like.
 また、本発明の骨延長促進剤において、HGF蛋白質は単独で使用してもよいし、また骨延長促進作用を損なわない限り、種々の蛋白質との混合蛋白質として使用することができる。 Further, in the bone elongation promoter of the present invention, the HGF protein may be used alone or as a mixed protein with various proteins as long as the bone elongation promoting action is not impaired.
 (2)HGF蛋白質の部分ペプチド
 本発明が対象とするHGF蛋白質の部分ペプチド(以下、「HGF部分ペプチド」とも称する)としては、前述するHGF蛋白質の部分ペプチドであって、少なくとも骨延長促進作用を有するものであればよい。
(2) Partial peptide of HGF protein The partial peptide of HGF protein targeted by the present invention (hereinafter also referred to as "HGF partial peptide") is the above-mentioned partial peptide of HGF protein, and at least has a bone elongation promoting action. What is necessary is just to have.
 HGF部分ペプチドを構成するアミノ酸の数は、前記のHGF蛋白質の構成アミノ酸のうち少なくとも約20個以上、好ましくは約50個以上、より好ましくは約100個以上であり、かかる数のアミノ酸からなるアミノ酸配列を有するペプチドであることが好ましい。 The number of amino acids constituting the HGF partial peptide is at least about 20 or more, preferably about 50 or more, more preferably about 100 or more of the amino acids constituting the HGF protein. A peptide having a sequence is preferred.
 具体的には、このようなHGF部分ペプチドとしては、配列番号3で示されるアミノ酸配列の32番目のアミノ酸から210番目のアミノ酸までのアミノ酸配列(HGFのN末端ヘアピンループから第1クリングルドメインまでの配列)からなるペプチドや、配列番号3で示されるアミノ酸配列の32番目のアミノ酸から288番目のアミノ酸までのアミノ酸配列(HGFのN末端ヘアピンループから第2クリングルドメインまでの配列)からなるペプチドを好適に挙げることができる。また、本発明のHGF部分ペプチドには、上記HGF部分ペプチドのアミノ酸配列と少なくとも約80%以上の同一性を有するペプチド、好ましくは約90%以上の同一性を有するペプチド、より好ましくは約95%以上の同一性を有するペプチドであって、かつ少なくとも骨延長促進作用を有するペプチドも含まれる。 Specifically, such an HGF partial peptide includes an amino acid sequence from the 32nd amino acid to the 210th amino acid of the amino acid sequence represented by SEQ ID NO: 3 (from the N-terminal hairpin loop of HGF to the first kringle domain). A peptide consisting of the amino acid sequence from the 32nd amino acid to the 288th amino acid of the amino acid sequence represented by SEQ ID NO: 3 (sequence from the N-terminal hairpin loop of HGF to the second kringle domain). Can be listed. Further, the HGF partial peptide of the present invention has a peptide having at least about 80% identity, preferably a peptide having about 90% identity, more preferably about 95%, with the amino acid sequence of the HGF partial peptide. Peptides having the above identity and having at least a bone elongation promoting action are also included.
 本発明のHGF部分ペプチドにおいては、C末端がカルボキシル基(-COOH)、カルボキシラート[-COOM(Mは前記と同意義)]、アミド(-CONH)またはエステル(-COOR;Rは前記と同意義)のいずれであってもよい。さらに、HGF部分ペプチドには、前記HGF蛋白質と同様に、N末端のメチオニン残基のアミノ基が保護基で保護されているもの、N末端側が生体内で切断され生成したGlnがピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチド等の複合ペプチド等も含まれる。 In the HGF partial peptide of the present invention, the C-terminus is carboxyl group (—COOH), carboxylate [—COOM (M is as defined above)], amide (—CONH 2 ) or ester (—COOR; R is as defined above. Any of the above may be used. Furthermore, in the HGF partial peptide, the amino group of the methionine residue at the N-terminal is protected with a protecting group, and Gln produced by cleavage of the N-terminal side in vivo is pyroglutamine oxidized, as in the HGF protein. And those in which a substituent on the side chain of an amino acid in the molecule is protected with an appropriate protecting group, or a complex peptide such as a so-called glycopeptide to which a sugar chain is bound.
 HGF部分ペプチドは、公知のペプチドの合成法に従って、あるいはHGF蛋白質を適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれでも良い。すなわち、HGF蛋白質を構成し得る保護基を有していてもよい部分ペプチドまたはアミノ酸と、保護基を有していてもよい残余部分とを縮合させ、生成物が保護基を有する場合は、保護基を脱離することにより目的のHGFペプチドを製造することができる。公知の縮合方法や保護基の脱離としては、例えば、M. BodanszkyおよびM.A.Ondetti、ペプチド・シンセシス(Peptide Synthesis),Interscience Publishers, New York(1066年)、SchroederおよびLuebke、ザ・ペプチド(The Peptide),Academic Press,New York(1065年)等に記載された方法等が挙げられる。反応後は通常の精製方法、例えば、溶媒抽出、蒸留、カラムクロマトグラフィー、液体クロマトグラフィー、結晶化または再結晶等を組み合わせてHGF部分ペプチドを精製単離することができる。 The HGF partial peptide can be produced according to a known peptide synthesis method or by cleaving the HGF protein with an appropriate peptidase. As a peptide synthesis method, for example, either a solid phase synthesis method or a liquid phase synthesis method may be used. That is, a partial peptide or amino acid that may have a protecting group capable of constituting an HGF protein is condensed with a remaining part that may have a protecting group, and when the product has a protecting group, The desired HGF peptide can be produced by removing the group. Known condensation methods and elimination of protecting groups include, for example, M. Bodanszky and MAOndetti, Peptide Synthesis, Interscience Publishers, New York (1066), Schroeder and Luebke, The Peptide. ), Academic Press, New York (1065), and the like. After the reaction, the HGF partial peptide can be purified and isolated by a combination of usual purification methods such as solvent extraction, distillation, column chromatography, liquid chromatography, crystallization or recrystallization.
 前記方法で得られる部分ペプチドが遊離体である場合は、公知の方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によって遊離体に変換することができる。なお、ここでHGF部分ペプチドの塩としては、HGF蛋白質と同様に、酸または塩基との生理学的に許容される塩を挙げることができる。 When the partial peptide obtained by the above method is a free form, it can be converted into an appropriate salt by a known method. Conversely, when it is obtained as a salt, it can be converted into a free form by a known method. Can do. Here, examples of the salt of the HGF partial peptide include physiologically acceptable salts with an acid or a base, like the HGF protein.
 (3)HGF蛋白質をコードするDNA
 本発明において「HGF蛋白質をコードするDNA」とは、前述のHGF蛋白質を発現し得るDNAをいう。HGF蛋白質をコードするDNAとしては、例えば、Nature, 342, 440(1989);特許第2777678号公報;特開平11-1499号公報;Biochem. Biophys, Res. Commun., 1989年,第163巻,p.967-973;Proc. Natl. Acad. Sci. U.S.A.,1991年,第88巻(16号),p.7001-7005等に記載され、例えば、GeneBank/EMBL/DDBJにAccession No.M60718、M73240、AC004960、AY246560、M29145またはM73240等として登録されているヒト由来のHGF蛋白質をコードするDNAを好適に挙げることができる。
(3) DNA encoding HGF protein
In the present invention, “DNA encoding HGF protein” refers to DNA capable of expressing the aforementioned HGF protein. Examples of DNA encoding the HGF protein include Nature, 342, 440 (1989); Japanese Patent No. 2777678; Japanese Patent Laid-Open No. 11-1499; Biochem. Biophys, Res. Commun., 1989, 163, p.967-973; Proc. Natl. Acad. Sci. USA, 1991, Vol. 88 (No. 16), p.7001-7005, etc., for example, Accession No. M60718 in GeneBank / EMBL / DDBJ, A preferred example is DNA encoding a human-derived HGF protein registered as M73240, AC004960, AY246560, M29145, M73240 or the like.
 また、本発明で用いられるHGF蛋白質をコードするDNAは、ヒトに適用する場合は前記のヒト由来のものが好適に用いられるが、ヒト以外の哺乳動物(例えばサル、ウシ、ウマ、ブタ、ヒツジ、イヌ、ネコ、ラット、マウス、ウサギ、ハムスター、モルモット、チンパンジー等)に由来するHGF蛋白質をコードするDNAであってもよい。 The DNA encoding the HGF protein used in the present invention is preferably the above-mentioned human-derived DNA when applied to humans, but mammals other than humans (for example, monkeys, cows, horses, pigs, sheep) DNA encoding HGF protein derived from dogs, cats, rats, mice, rabbits, hamsters, guinea pigs, chimpanzees, etc.).
 このようなDNAとしては、例えばNCBIのデータベース等に登録されている例えば、マウス由来HGF蛋白質をコードするDNA(例えばAccession No.S71816、NH_010427、D10213、D10212等)、ラット由来HGF蛋白質をコードするDNA(例えばAccession No.NM_017017等)、ウシ由来HGF蛋白質をコードするDNA(例えばAccession No.NM_001031751、AB110822等)、ネコ由来HGF蛋白質をコードするDNA(例えばAccession No.NM_001009830、AB080187、AB0046610等)、イヌ由来HGF蛋白質をコードするDNA(例えばAccession No.NM_001002964、AB090353等)またはチンパンジー由来HGF蛋白質をコードするDNA(例えばAccession No.XM_519174等)が挙げられるが、これらに限定されない。 Examples of such DNA include, for example, DNA encoding mouse-derived HGF protein (for example, Accession No. S71816, NH_010427, D10213, D10212, etc.) registered in the NCBI database, etc., DNA encoding rat-derived HGF protein (Eg, Accession No.NM_017017), DNA encoding bovine-derived HGF protein (eg, Accession No.NM_001031751, AB110822, etc.), DNA encoding feline-derived HGF protein (eg, Accession No.NM_001009830, AB080187, AB04046610, etc.), dogs Examples include, but are not limited to, DNAs encoding HGF proteins derived from DNA (for example, Accession® No. NM_001002964, AB090353, etc.) or DNAs encoding HGF proteins derived from chimpanzees (for example, Accession® No. XM_519174, etc.).
 HGF蛋白質をコードするDNAの具体例としては、例えば、配列番号1または2で示される塩基配列からなるDNAが好適に挙げられる。ここで、配列番号1で示される塩基配列は、Accession No.M60718の塩基配列の第73~2259に位置する塩基配列に相当し、当該塩基配列からなるDNAは、配列番号3で示されるアミノ酸配列からなるHGF蛋白質をコードするDNAに相当する。また、DNA組換え技術において、細胞内で発現および産生されたHGF蛋白質(配列番号3)は、細胞外に分泌されるときにシグナル配列が切断されて、配列番号5で示すアミノ酸配列からなる成熟HGF蛋白質となる。従って、配列番号1で示される塩基配列からなるDNAは、配列番号5で示されるアミノ酸配列からなるHGF蛋白質をコード(産生)するDNAにも相当する。また、配列番号2で示される塩基配列は、Accession No.M73240の塩基配列の第66~2237に位置する塩基配列に相当し、当該塩基配列に相当するDNAは、配列番号4で示されるアミノ酸配列からなるHGF蛋白質をコードするDNAに相当する。かかるHGF蛋白質(配列番号4)も、DNA組換え技術において、細胞外に分泌されるときにシグナル配列が切断されて、配列番号6で示すアミノ酸配列からなる成熟HGF蛋白質となる。従って、配列番号2で示される塩基配列からなるDNAは、配列番号6で示されるアミノ酸配列からなるHGF蛋白質をコード(産生)するDNAに相当する。 As a specific example of DNA encoding the HGF protein, for example, DNA consisting of the base sequence represented by SEQ ID NO: 1 or 2 is preferably mentioned. Here, the nucleotide sequence represented by SEQ ID NO: 1 corresponds to the nucleotide sequence located at positions 73 to 2259 of the nucleotide sequence of Accession No. M60718, and the DNA comprising the nucleotide sequence is the amino acid sequence represented by SEQ ID NO: 3. It corresponds to DNA encoding the HGF protein consisting of In the DNA recombination technique, the HGF protein (SEQ ID NO: 3) expressed and produced in the cell is cleaved from the signal sequence when secreted outside the cell, and matured from the amino acid sequence shown in SEQ ID NO: 5. It becomes HGF protein. Therefore, the DNA consisting of the base sequence shown in SEQ ID NO: 1 also corresponds to the DNA encoding (producing) the HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 5. The base sequence represented by SEQ ID NO: 2 corresponds to the base sequence located at Nos. 66 to 2237 of the base sequence of Accession No. M73240, and the DNA corresponding to the base sequence is the amino acid sequence represented by SEQ ID NO: 4. It corresponds to DNA encoding the HGF protein consisting of Such a HGF protein (SEQ ID NO: 4) is also a mature HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 6 by cleaving the signal sequence when secreted outside the cell in the DNA recombination technique. Therefore, the DNA consisting of the base sequence shown in SEQ ID NO: 2 corresponds to the DNA encoding (producing) the HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 6.
 本発明が対象とするHGF蛋白質をコードするDNAは、前述のものに限定されず、当該DNAと相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、且つ骨延長促進作用を有する蛋白質をコードするDNAも包含される。具体的には、配列番号1または2で示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズする上記DNAである。ここでストリンジェントな条件としては、約0.7~1Mの塩化ナトリウム存在下、約65℃でハイブリダイゼーションした後、約0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる)を用いて、約65℃の条件で洗浄する条件を挙げることができる。 The DNA encoding the HGF protein targeted by the present invention is not limited to those described above, and hybridizes with DNA comprising a base sequence complementary to the DNA under stringent conditions and has a bone elongation promoting action. Also included are DNA encoding proteins. Specifically, the above DNA hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence represented by SEQ ID NO: 1 or 2. Here, stringent conditions include hybridization at about 65 ° C. in the presence of about 0.7 to 1 M sodium chloride, and then about 0.1 to 2 times the concentration of the SSC solution (the composition of the 1 time concentration of the SSC solution). Can be mentioned that is washed at about 65 ° C. using 150 mM sodium chloride and 15 mM sodium citrate).
 このようなDNAとしては、限定されないが、前記HGF蛋白質をコードするDNA、好ましくは塩基番号1または2に示される塩基配列からなるDNAと塩基配列において、約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を有し、且つ少なくとも骨延長促進作用を有する蛋白質をコードするDNAが例示される。 Such DNA is not limited, but is about 85% or more, preferably about 90% or more in the DNA encoding the HGF protein, preferably the DNA consisting of the base sequence shown in base number 1 or 2 and the base sequence. More preferably, DNA encoding a protein having a base sequence having a homology of about 95% or more and having at least a bone elongation promoting action is exemplified.
 HGF蛋白質をコードするDNAは、当該DNAを有するcDNAライブラリーを用いて、例えば通常のハイブリダイゼーション法やPCR法等を行うことで容易に得ることができる。当該DNAの取得は、具体的には例えばモレキュラー・クローニング(Molecular Cloning,A laboratory Manual, Third Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001:以下、「モレキュラー・クローニング第3版」と略す。)等の基本書等を参考にして行うことができる。 The DNA encoding the HGF protein can be easily obtained by using, for example, a normal hybridization method or PCR method using a cDNA library having the DNA. Specifically, the DNA can be obtained, for example, by molecular cloning (Molecular Cloning, A Laboratory Manual, Third Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001: It can be done with reference to basic documents such as “.
 ここでHGF蛋白質をコードするDNAを有するcDNAライブラリーとしては、例えばヒト由来の肝臓cDNAライブラリー、脾臓cDNAライブラリー、胎盤cDNAライブラリー等を挙げることができる。これらのライブラリーはクローンテック社などから商業的に入手することができる。その他 HGF蛋白質を発現している細胞株、及び組織材料から常法に従って 作成したcDNAライブラリーを用いることもできる。このようなcDNAが組み込まれたλファージを 、「モレキュラー・クローニング第3版」に記載された方法に従って大腸菌に感染させ培養し、形成されたプラークをHGF蛋白質の一部のアミノ酸配列から推定される塩基配列から作成したオリゴヌクレオチドをプローブとしてプラークハイブリダイゼーション法を行うか、またはPCR法を行うことで、目的とするHGF蛋白質をコードするDNAを取得することができる。 Here, examples of the cDNA library having DNA encoding the HGF protein include human-derived liver cDNA library, spleen cDNA library, placenta cDNA library and the like. These libraries can be obtained commercially from Clontech. In addition, a cDNA library prepared from a cell line expressing HGF protein and tissue material according to a conventional method can also be used. A λ phage incorporating such a cDNA is cultured and infected with E. coli according to the method described in “Molecular Cloning 3rd Edition”, and the formed plaque is deduced from the partial amino acid sequence of the HGF protein. DNA encoding the target HGF protein can be obtained by performing a plaque hybridization method using an oligonucleotide prepared from the base sequence as a probe, or by performing a PCR method.
 また、本発明ではHGF蛋白質をコードするRNAも、逆転写酵素により前述のHGF蛋白質を発現することができるものであれば、本発明に用いることができる。該RNAとしては、例えば細胞または組織よりmRNA画分を調製して、RT-PCR法によって増幅したRNA等が挙げられる。また当該RNAも公知の手段により得ることができる。 In the present invention, the RNA encoding the HGF protein can also be used in the present invention as long as it can express the aforementioned HGF protein by reverse transcriptase. Examples of the RNA include RNA obtained by preparing an mRNA fraction from cells or tissues and amplified by RT-PCR. The RNA can also be obtained by known means.
 なお、後述する(5)骨延長促進剤の(b)で説明するように、HGF蛋白質をコードするDNAは、当該DNAが組み込まれた組換え発現ベクターの形態で、骨間隙部位またはその周辺組織に投与される。かかる発現ベクターとしては、nakedプラスミド、無毒化したレトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス(I型単純ヘルペスウイルス等)、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス、センダイウイルス、SV40または免疫不全症ウイルス(HIV)等のDNAウイルスまたはRNAウイルス等が挙げられる。中でも、I型単純ヘルペスウイルス(HSV-1)ベクター、センダイウイルス・エンベロープ(HVJ-E)ベクター、アデノウイルスベクターまたはアデノ随伴ウイルス(AAV)ベクター等が好ましい。 As described in (b) of (5) Bone Elongation Promoter described later, the DNA encoding the HGF protein is in the form of a recombinant expression vector in which the DNA is incorporated, and the bone gap site or its surrounding tissue. To be administered. Such expression vectors include naked plasmids, detoxified retroviruses, adenoviruses, adeno-associated viruses, herpes viruses (type I herpes simplex virus, etc.), vaccinia viruses, poxviruses, polioviruses, symbis viruses, Sendai viruses, SV40. Or DNA viruses or RNA viruses, such as immunodeficiency virus (HIV), are mentioned. Among them, type I herpes simplex virus (HSV-1) vector, Sendai virus envelope (HVJ-E) vector, adenovirus vector, adeno-associated virus (AAV) vector and the like are preferable.
 (4)HGF蛋白質の部分ペプチドをコードするDNA
 本発明が対象とするHGF蛋白質の部分ペプチド(HGF部分ペプチド)をコードするDNAは、前述するHGF部分ペプチドをコードする塩基配列を有し、且つ延長促進作用を有するペプチドをコードするDNAであればいかなるものであってもよい。このようなDNAとしては、具体的には、例えば、配列番号1または2で示される塩基配列を有するDNAの部分塩基配列を有するDNAであって、かつ骨延長促進作用を有するペプチドをコードするDNA等が挙げられる。
(4) DNA encoding a partial peptide of HGF protein
As long as the DNA encoding the partial peptide (HGF partial peptide) of the HGF protein targeted by the present invention has a base sequence encoding the above-mentioned HGF partial peptide and encodes a peptide having an elongation promoting action, It can be anything. Specifically, as such DNA, for example, DNA having a partial base sequence of DNA having the base sequence represented by SEQ ID NO: 1 or 2, and encoding a peptide having a bone elongation promoting action Etc.
 このようなDNAとしては、より具体的には、例えば、配列番号1で表されるヒトHGFの塩基配列の第94番目から第630番目までの塩基配列(HGFのN末端ヘアピンループから第1クリングルドメインまでのペプチドをコードするDNA)を有するDNAや、配列番号1で表されるヒトHGFの塩基配列の第94番目から第864番目までの塩基配列(HGFのN末端ヘアピンループから第2クリングルドメインまでのペプチドをコードするDNA)を有するDNA等が好ましく挙げられる。 More specifically, such DNA includes, for example, the 94th to 630th base sequences of the human HGF base sequence represented by SEQ ID NO: 1 (from the N-terminal hairpin loop of HGF to the first kringle. DNA having a peptide encoding a peptide up to the domain) and the 94th to 864th base sequences of the human HGF base sequence represented by SEQ ID NO: 1 (from the N-terminal hairpin loop of HGF to the second kringle domain) Preferred examples include DNA having a DNA encoding the above peptide).
 また本発明が対象とするHGF部分ペプチドをコードするDNAには、前述のHGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNAと相補的な塩基配列からなるDNAと、ストリンジェントな条件下でハイブリダイズするDNAであって、骨延長促進作用を有するペプチドをコードするDNAが含まれる。 The DNA encoding the HGF partial peptide targeted by the present invention includes a DNA comprising a base sequence complementary to the above-mentioned partial peptide of the HGF protein and encoding a peptide having a bone elongation promoting action, and a string. DNA that hybridizes under a gentle condition and that encodes a peptide having a bone elongation promoting action is included.
 このようなDNAとしては、HGF部分ペプチドをコードするDNAと約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列し、かつ骨延長促進作用を有するペプチドをコードするDNAが挙げられる。 Such a DNA has a base sequence having a homology of about 85% or more, preferably about 90% or more, more preferably about 95% or more with a DNA encoding an HGF partial peptide, and has a bone elongation promoting action. Examples include DNA encoding a peptide.
 かかるDNAとしては、具体的には、例えば配列番号1または2で示される塩基配列からなるDNAの部分塩基配列を有するDNAと相補的な塩基配列からなるDNAと、ストリンジェントな条件下でハイブリダイズするDNAであって、かつ骨延長促進作用を有するペプチドをコードするDNAが例示される。さらに詳細には、このようなDNAとしては、配列番号1または2で表わされる塩基配列を有するDNAの部分塩基配列をコードするDNAと約80%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を有し、かつ骨延長促進作用を有するペプチドをコードするDNAを有するDNA等が挙げられる。 As such DNA, specifically, for example, it hybridizes under stringent conditions with DNA having a base sequence complementary to DNA having a partial base sequence of DNA consisting of the base sequence represented by SEQ ID NO: 1 or 2. And DNA encoding a peptide having a bone elongation promoting action. More specifically, such DNA includes about 80% or more, preferably about 90% or more, more preferably about 90% or more of DNA encoding a partial base sequence of DNA having the base sequence represented by SEQ ID NO: 1 or 2. Examples thereof include DNA having a base sequence having a homology of 95% or more and having a DNA encoding a peptide having a bone elongation promoting action.
 当該DNAは、例えば通常のハイブリダイゼーション法やPCR法等により容易に得ることができ、該DNAの取得は具体的には例えば前記モレキュラー・クローニング第3版等の基本書等を参考にして行うことができる。 The DNA can be easily obtained by, for example, a normal hybridization method or PCR method, and the DNA is specifically obtained with reference to the basic document such as the Molecular Cloning 3rd Edition. Can do.
 また、本発明では前記HGF蛋白質の部分ペプチドであって、骨延長促進作用を有するペプチドをコードするRNAも、逆転写酵素によりHGF蛋白質を発現することができるものであれば、本発明に用いることができる。該RNAとしては、例えば細胞または組織よりmRNA画分を調製して、RT-PCR法によって増幅したRNA等が挙げられ、本発明の範囲内である。また該RNAも公知の手段により得ることができる。 Further, in the present invention, an RNA encoding a peptide that is a partial peptide of the HGF protein and has a bone elongation promoting action can be used in the present invention as long as it can express the HGF protein by reverse transcriptase. Can do. Examples of the RNA include RNA obtained by preparing an mRNA fraction from a cell or tissue and amplified by RT-PCR, and are within the scope of the present invention. The RNA can also be obtained by known means.
 (5)骨延長促進剤
 本発明の骨延長促進剤は、下記に示すように有効成分の種類によって、(a)HGF蛋白質/部分ペプチドを有効成分とする骨延長促進剤と、(b)HGF遺伝子を有効成分とする骨延長促進剤に分類することができる。
(5) Bone elongation promoter The bone elongation promoter of the present invention comprises, as shown below, (a) a bone elongation promoter comprising an HGF protein / partial peptide as an active ingredient, and (b) HGF, depending on the type of active ingredient. It can be classified as a bone elongation promoter containing a gene as an active ingredient.
 (a)HGF蛋白質/部分ペプチドを有効成分とする骨延長促進剤
 上記(2)で説明するHGF蛋白質、(3)で説明するHGF蛋白質の部分ペプチド(HGF部分ペプチド)、またはこれらの少なくとも一方の塩を有効成分として含有する骨延長促進剤。
(A) Bone elongation promoter comprising HGF protein / partial peptide as active ingredient HGF protein described in (2) above, partial peptide of HGF protein (HGF partial peptide) described in (3), or at least one of these A bone elongation promoter containing salt as an active ingredient.
 (b)HGF遺伝子を有効成分とする骨延長促進剤
  上記(4)で説明するHGF蛋白質またはHGF部分ペプチドをコードするDNA(以下、これを「HGF遺伝子」と総称する)を有効成分として含有する骨延長促進剤。
(B) Bone elongation promoter containing HGF gene as active ingredient DNA containing HGF protein or HGF partial peptide described in (4) above (hereinafter collectively referred to as “HGF gene”) is contained as an active ingredient Bone elongation promoter.
 本発明の骨延長促進剤の投与形態、投与方法及び投与量等は、上記有効成分の種類に応じて適宜設計し、また変更することができる。 The dosage form, administration method, dosage and the like of the bone elongation promoter of the present invention can be appropriately designed and changed according to the type of the active ingredient.
 (a)HGF蛋白質/部分ペプチドを有効成分とする骨延長促進剤
 当該(a)の骨延長促進剤は、例えば液剤や固形剤等の種々の製剤形態をとりうるが、一般的にはHGF蛋白質、HGF部分ペプチド、またはそれらの塩を慣用の担体と共に注射剤、噴射剤、徐放性製剤(例えば、デポ剤)等の形態に製剤化されるのが好ましい。ここで注射剤や噴射剤は、水性製剤または油性製剤のいずれでもよい。
(A) Bone elongation promoting agent comprising HGF protein / partial peptide as active ingredient The bone elongation promoting agent of (a) can take various preparation forms such as liquids and solids, but generally HGF protein The HGF partial peptide or a salt thereof is preferably formulated into a form of an injection, a propellant, a sustained-release preparation (for example, a depot) and the like together with a conventional carrier. Here, the injection or propellant may be either an aqueous preparation or an oily preparation.
 水性注射剤とする場合、公知の方法に従って、例えば、水性溶媒(注射用水、精製水等)に、医薬上許容される添加剤、例えば等張化剤(塩化ナトリウム、塩化カリウム、グリセリン、マンニトール、ソルビトール、ホウ酸、ホウ砂、ブドウ糖、プロピレングリコール等)、緩衝剤(リン酸緩衝液、酢酸緩衝液、ホウ酸緩衝液、炭酸緩衝液、クエン酸緩衝液、トリス緩衝液、グルタミン酸緩衝液、イプシロンアミノカプロン酸緩衝液等)、保存剤(パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、クロロブタノール、ベンジルアルコール、塩化ベンザルコニウム、デヒドロ酢酸ナトリウム、エデト酸ナトリウム、ホウ酸、ホウ砂等)、増粘剤(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレングリコール等)、安定化剤(ショ糖、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、エデト酸ナトリウム、クエン酸ナトリウム、アスコルビン酸、ジブチルヒドロキシトルエン等)、またはpH調整剤(塩酸、水酸化ナトリウム、リン酸、酢酸等)等を適宜添加した溶液に、HGF蛋白質またはHGF部分ペプチドを溶解した後、フィルター等で濾過して滅菌し、次いで無菌的な容器に充填することにより調製することができる。 In the case of an aqueous injection, according to a known method, for example, an aqueous solvent (water for injection, purified water, etc.) is added to a pharmaceutically acceptable additive such as an isotonic agent (sodium chloride, potassium chloride, glycerin, mannitol, Sorbitol, boric acid, borax, glucose, propylene glycol, etc.), buffer (phosphate buffer, acetate buffer, borate buffer, carbonate buffer, citrate buffer, Tris buffer, glutamate buffer, epsilon) Aminocaproic acid buffer, etc.), preservative (methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, chlorobutanol, benzyl alcohol, benzalkonium chloride, sodium dehydroacetate, sodium edetate, boro Acid, borax, etc.), thickener (hydroxyethylcellulose) , Hydroxypropylcellulose, polyvinyl alcohol, polyethylene glycol, etc.), stabilizers (sucrose, sodium bisulfite, sodium thiosulfate, sodium edetate, sodium citrate, ascorbic acid, dibutylhydroxytoluene, etc.) or pH adjusters ( By dissolving HGF protein or HGF partial peptide in a solution to which hydrochloric acid, sodium hydroxide, phosphoric acid, acetic acid, etc.) are appropriately added, and then sterilizing by filtration with a filter, etc., and then filling in an aseptic container Can be prepared.
 また適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)または非イオン界面活性剤(ポリソルベート80、ポリオキシエチレン硬化ヒマシ油50等)等をさらに配合してもよい。油性注射剤とする場合、油性溶媒としては、例えば、ゴマ油または大豆油等が用いられ、溶解補助剤として安息香酸ベンジルまたはベンジルアルコール等を配合してもよい。調製された注射液は、通常、適当なアンプルまたはバイアル等に充填される。注射剤中のHGF蛋白質含量は制限されないが、注射液全体100w/v%に対して、通常約0.0002~0.5w/v%、好ましくは約0.001~0.2w/v%に調整され得る。なお、注射剤等の液状製剤は、凍結保存または凍結乾燥等により水分を除去して保存するのが望ましい。凍結乾燥製剤は、用時に注射用蒸留水等を加え、再溶解して使用される。 Further, a suitable solubilizing agent such as alcohol (ethanol etc.), polyalcohol (propylene glycol, polyethylene glycol etc.) or nonionic surfactant (polysorbate 80, polyoxyethylene hydrogenated castor oil 50 etc.) may be further blended. Good. In the case of an oily injection, for example, sesame oil or soybean oil is used as the oily solvent, and benzyl benzoate or benzyl alcohol may be blended as a solubilizing agent. The prepared injection solution is usually filled in an appropriate ampoule or vial. The HGF protein content in the injection is not limited, but is usually about 0.0002 to 0.5 w / v%, preferably about 0.001 to 0.2 w / v% with respect to 100 w / v% of the whole injection solution. Can be adjusted. It should be noted that liquid preparations such as injections are preferably stored after removing moisture by freeze storage or freeze drying. The freeze-dried preparation is used by adding distilled water for injection at the time of use and re-dissolving it.
 噴霧剤も、製剤上の常套手段を用いて調製することができる。HGF蛋白質またはHGF部分ペプチドを噴霧剤として製造する場合、その噴霧剤に配合される添加剤としては、一般に吸入用製剤に使用される添加剤であればいずれのものであってもよく、例えば、噴射剤の他、前記の溶剤、保存剤、安定化剤、等張化剤、pH調整剤等を配合し得る。噴射剤としては、液化ガス噴射剤または圧縮ガス等が挙げられる。液化ガス噴射剤としては、例えば、フッ化炭化水素(HCFC22、HCFC-123、HCFC-134a、HCFC142等の代替フロン類等)、液化石油、ジメチルエーテル等が挙げられる。圧縮ガスとしては、例えば、可溶性ガス(炭酸ガス、亜酸化窒素ガス等)または不溶性ガス(窒素ガス等)等が挙げられる。噴霧剤中のHGF蛋白質またはHGF部分ペプチドの含量は、噴霧剤全体に対して、通常約0.0002~5w/v%、好ましくは約0.001~2w/v%に調整され得る。 Sprays can also be prepared using conventional means on formulations. When the HGF protein or HGF partial peptide is produced as a spray, the additive blended in the spray may be any additive generally used in inhalation preparations, for example, In addition to the propellant, the above-mentioned solvent, preservative, stabilizer, tonicity agent, pH adjuster and the like can be blended. Examples of the propellant include a liquefied gas propellant or a compressed gas. Examples of the liquefied gas propellant include fluorinated hydrocarbons (alternative chlorofluorocarbons such as HCFC22, HCFC-123, HCFC-134a, and HCFC142), liquefied petroleum, dimethyl ether, and the like. Examples of the compressed gas include soluble gas (carbon dioxide gas, nitrous oxide gas, etc.) or insoluble gas (nitrogen gas, etc.). The content of the HGF protein or HGF partial peptide in the propellant can be usually adjusted to about 0.0002 to 5 w / v%, preferably about 0.001 to 2 w / v% based on the entire propellant.
 また、HGF蛋白質またはHGF部分ペプチドは、生体分解性高分子と共に、徐放性製剤(例えばデポ剤)とすることもできる。HGF蛋白質またはHGF部分ペプチドは、特にデポ剤とすることにより、投薬回数の低減、作用の持続性および副作用の軽減等の効果が期待できる。該徐放性製剤は公知の方法に従って製造することができる。 The HGF protein or HGF partial peptide can be used as a sustained-release preparation (for example, a depot) together with a biodegradable polymer. By using the HGF protein or HGF partial peptide as a depot, effects such as reduction in the number of administrations, sustained action and reduction in side effects can be expected. The sustained-release preparation can be produced according to a known method.
 本徐放性製剤に使用される生体内分解性高分子は、公知の生体内分解性高分子のなかから適宜選択できるが、例えばデンプン、デキストランまたはキトサン等の多糖類;コラーゲンまたはゼラチン等の蛋白質;ポリグルタミン酸、ポリリジン、ポリロイシン、ポリアラニンまたはポリメチオニン等のポリアミノ酸;ポリ乳酸、ポリグリコール酸、乳酸-グリコール酸共重合体;ポリカプロラクトン、ポリ-β-ヒドロキシ酪酸、ポリリンゴ酸、ポリ酸無水物またはフマル酸・ポリエチレングリコール・ビニルピロリドン共重合体等のポリエステル;ポリオルソエステルまたはポリメチル-α-シアノアクリル酸等のポリアルキルシアノアクリル酸;ポリエチレンカーボネートまたはポリプロピレンカーボネート等のポリカーボネート等が挙げられる。好ましくはポリエステル、ポリ乳酸または乳酸-グリコール酸共重合体であり、更に好ましくはポリ乳酸または乳酸-グリコール酸共重合体である。乳酸-グリコール酸共重合体を使用する場合、その組成比(乳酸/グリコール酸)(モル%)は徐放期間によって異なるが、例えば徐放期間が約2週間ないし3カ月、好ましくは約2週間ないし1カ月の場合には、約100/0乃至50/50が好ましい。該ポリ乳酸または乳酸-グリコール酸共重合体の重量平均分子量は、一般的には約5,000乃至20,000が好ましい。ポリ乳酸または乳酸-グリコール酸共重合体は、公知の製造法、例えば特開昭61-28521号公報に記載の製造法に従って製造できる。生体分解性高分子とHGF蛋白質の配合比率は特に限定はないが、例えば生体分解性高分子に対して、HGF蛋白質が通常約0.001~50w/v%、約0.01~30w/v%が好ましい。 The biodegradable polymer used in the sustained-release preparation can be appropriately selected from known biodegradable polymers. For example, polysaccharides such as starch, dextran or chitosan; proteins such as collagen or gelatin Polyamino acids such as polyglutamic acid, polylysine, polyleucine, polyalanine or polymethionine; polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer; polycaprolactone, poly-β-hydroxybutyric acid, polymalic acid, polyanhydride Or polyester such as fumaric acid / polyethylene glycol / vinyl pyrrolidone copolymer; polyorthoester or polyalkylcyanoacrylic acid such as polymethyl-α-cyanoacrylic acid; polycarbonate such as polyethylene carbonate or polypropylene carbonate It is done. Polyester, polylactic acid or lactic acid-glycolic acid copolymer is preferable, and polylactic acid or lactic acid-glycolic acid copolymer is more preferable. When a lactic acid-glycolic acid copolymer is used, the composition ratio (lactic acid / glycolic acid) (mol%) varies depending on the sustained release period. For example, the sustained release period is about 2 to 3 months, preferably about 2 weeks. In the case of 1 month, about 100/0 to 50/50 is preferable. The weight average molecular weight of the polylactic acid or lactic acid-glycolic acid copolymer is generally preferably about 5,000 to 20,000. Polylactic acid or lactic acid-glycolic acid copolymer can be produced according to a known production method, for example, a production method described in JP-A No. 61-28521. The mixing ratio of the biodegradable polymer and the HGF protein is not particularly limited. For example, the HGF protein is usually about 0.001 to 50 w / v%, about 0.01 to 30 w / v with respect to the biodegradable polymer. % Is preferred.
 投与方法としては、注射剤もしくは噴霧剤を、骨間隙部位またはその周辺部位に局所適用(直接注射もしくは噴霧)するか、あるいは徐放性製剤(デポ剤)を骨間隙部位またはその周辺部位に局所適用する(埋め込む)のが好ましい。また、投与量は、剤形、疾患の程度または年齢等に応じて適宜選択されるが、通常、1回当たり、本発明の骨延長促進剤に含有されるHGF蛋白質またはHGF部分ペプチドの含量0.1μg~500mg、好ましくは1μg~50mg、さらに好ましくは10μg~25mgである。また、投与回数も剤形、疾患の程度または年齢等に応じて適宜選択され、1回投与とするか、ある間隔をおいて持続投与とすることもできる。持続投与の場合、投与間隔は1日1回から数ヶ月に1回でよく、例えば、徐放性製剤(デポ剤)による投与や徐放性ポンプによる持続投与の場合は、数ヶ月に1回でもよい。 As an administration method, an injection or a spray is locally applied (direct injection or spraying) to the bone gap site or its peripheral site, or a sustained-release preparation (depot) is locally applied to the bone gap site or its peripheral site. It is preferable to apply (embed). The dose is appropriately selected according to the dosage form, the degree of disease, age, etc. Usually, the content of the HGF protein or HGF partial peptide contained in the bone elongation promoter of the present invention is usually 0. .1 μg to 500 mg, preferably 1 μg to 50 mg, more preferably 10 μg to 25 mg. In addition, the number of administrations is appropriately selected depending on the dosage form, the degree of disease, age, etc., and can be administered once or continuously at a certain interval. In the case of continuous administration, the administration interval may be from once a day to once every several months. For example, in the case of administration using a sustained-release preparation (depot) or continuous administration using a sustained-release pump, once every several months. But you can.
 (b)HGF遺伝子を有効成分とする骨延長促進剤
 HGF遺伝子を患者に投与する場合には、常法、例えば別冊実験医学,遺伝子治療の基礎技術,羊土社,1996、別冊実験医学,遺伝子導入&発現解析実験法,羊土社,1997、日本遺伝子治療学会編遺伝子治療開発研究ハンドブック、エヌ・ティー・エス,1999等に記載の方法に従って、行うことが好ましい。
(B) When the HGF gene, which is a bone elongation promoter containing the HGF gene as an active ingredient , is administered to a patient, conventional methods such as separate experimental medicine, basic techniques of gene therapy, Yodosha, 1996, separate experimental medicine, gene It is preferably carried out according to the method described in the introduction & expression analysis experiment method, Yodosha, 1997, gene therapy development research handbook edited by the Japanese Society for Gene Therapy, NTS, 1999 and the like.
 具体的な投与方法としては、例えば、HGF遺伝子が組み込まれた組換え発現ベクター等を骨間隙部位またはその周辺の組織(例えば骨、筋肉等)へ局所適用(局所注射)する方法等が挙げられる。 Specific administration methods include, for example, a method in which a recombinant expression vector in which an HGF gene is incorporated is locally applied (local injection) to a bone gap site or a surrounding tissue (for example, bone, muscle, etc.). .
 ここで発現ベクターとしては、nakedプラスミド、無毒化したレトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス(I型単純ヘルペスウイルス等)、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス、センダイウイルス、SV40または免疫不全症ウイルス(HIV)等のDNAウイルスまたはRNAウイルス等が挙げられるが、これらに限定されない。中でも、I型単純ヘルペスウイルス(HSV-1)ベクター、センダイウイルス・エンベロープ(HVJ-E)ベクター、アデノウイルスベクターまたはアデノ随伴ウイルス(AAV)ベクター等が好ましい。 Here, as an expression vector, a naked plasmid, a detoxified retrovirus, an adenovirus, an adeno-associated virus, a herpes virus (type I herpes simplex virus, etc.), a vaccinia virus, a pox virus, a poliovirus, a simbis virus, a Sendai virus, Examples include, but are not limited to, DNA viruses or RNA viruses such as SV40 or immunodeficiency virus (HIV). Among them, type I herpes simplex virus (HSV-1) vector, Sendai virus envelope (HVJ-E) vector, adenovirus vector, adeno-associated virus (AAV) vector and the like are preferable.
 HSV-1ベクターとしては、ウイルス複製のためのICR4,ICP34.5およびVP16(vmw65)をエンコードする3つの遺伝子の欠失により、重篤な障害状態にある複製能力のないHSV-1(HSV1764/4-/pR19)ベクター(Coffin RS,et al., J.Gen.Virol.1998年,第79巻,p.3019-3026;Palmer JA et al., J. Virol., 2000年,第74巻,p.5604-5618;Lilley CE,et al., J. Virol., 2001年,第75巻,p.4343-4356)等が挙げられる。HVJ-Eベクターは、例えばUSP6913923に記載の方法で製造できる。HVJ-Eベクターとしては、例えばGenomONE-Neo EX HVJ Envelope Transfection Kit(コスモ・バイオ株式会社製)等を好ましく使用できる。また、AAVベクターは、非病原性ウイルスに属し、安全性が高く、細胞に効率よく遺伝子導入できるベクターである。AAVベクターとしては、AAV-2、AAV-4、AAV-5等が挙げられる。これらHSV-1ベクターやHVJ-EベクターまたはAAVベクターは目的遺伝子を安全に長期間発現させ得る。本発明に使用されるベクターとしては、安全でかつ長期発現を可能とするHSV-1ベクター、HVJ-EベクターまたはAAVベクターがとりわけ好ましい。 HSV-1 vectors include a non-replicating HSV-1 (HSV1764 / HSV1764 / HSV1764 / 4- / pR19) vector (Coffin RS, et al., GenJ.Gen.Virol. 1998, Vol. 79, p.3019-3026; Palmer JA et al., J. Virol., 2000, Vol. 74 , P. 5604-5618; Lilley CE, et al., J. Virol., 2001, Vol. 75, p.4343-4356). The HVJ-E vector can be produced by the method described in USP 6913923, for example. As the HVJ-E vector, for example, GenomONE-Neo EX HVJ Envelope Transfection Kit (manufactured by Cosmo Bio Inc.) can be preferably used. AAV vectors belong to non-pathogenic viruses, are highly safe, and can efficiently introduce genes into cells. AAV-2, AAV-4, AAV-5 etc. are mentioned as an AAV vector. These HSV-1 vectors, HVJ-E vectors or AAV vectors can safely express the target gene for a long period of time. The vector used in the present invention is particularly preferably an HSV-1 vector, an HVJ-E vector or an AAV vector that enables safe and long-term expression.
 HGF遺伝子を患者に投与する場合の製剤形態としては、前記の各投与形態に合った種々の公知の製剤形態、例えば、注射剤、噴霧剤、徐放性製剤(デポ剤)、マイクロカプセル剤等をとり得ることができる。注射剤、噴霧剤、徐放性製剤(デポ剤)は、前述のHGF蛋白質の場合と同様にして調製できる。HGF遺伝子導入ベクターの種類により異なり、また制限されないが、例えば注射剤の場合、遺伝子導入ベクターは通常約1×105~1×1012pfu/mL、好ましくは約1×106~1×1011pfu/mLに調整され得る。 Formulation forms for administering the HGF gene to a patient include various known preparation forms suitable for each of the above administration forms, such as injections, sprays, sustained-release preparations (depot preparations), microcapsules, etc. Can be taken. Injections, sprays and sustained-release preparations (depots) can be prepared in the same manner as in the case of the aforementioned HGF protein. For example, in the case of an injection, the gene transfer vector is usually about 1 × 10 5 to 1 × 10 12 pfu / mL, preferably about 1 × 10 6 to 1 × 10. Can be adjusted to 11 pfu / mL.
 マイクロカプセル剤を製造する場合、例えばHGF遺伝子を含む発現プラスミドを導入した宿主細胞等を芯物質としてこれを公知の方法(例えばコアセルベーション法、界面重合法または二重ノズル法等)に従って被膜物質で覆うことにより直径約1~500、好ましくは約100~400μmの微粒子として、マイクロカプセル剤を製造することができる。被膜物質としては、カルボキシメチルセルロース、セルロースアセテートフタレート、エチルセルロース、アルギン酸またはその塩、ゼラチン、ゼラチン・アラビアゴム、ニトロセルロース、ポリビニルアルコール、ヒドロキシプロピルセルロース、ポリ乳酸、ポリグリコール酸、乳酸-グリコール酸共重合体、キトサン-アルギン酸塩、硫酸セルロース-ポリ(ジメチルジアリル)アンモニウムクロライド、ヒドロキシエチルメタクリレート-メチルメタクリレート、キトサン-カルボキシメチルセルロース、アルギン酸塩-ポリリジン-アルギン酸塩等の膜形成性高分子等が挙げられる。 In the case of producing a microcapsule, for example, a host cell into which an expression plasmid containing an HGF gene is introduced as a core substance is used as a coating substance according to a known method (for example, a coacervation method, an interfacial polymerization method or a double nozzle method). The microcapsules can be produced as fine particles having a diameter of about 1 to 500, preferably about 100 to 400 μm. Examples of the coating material include carboxymethylcellulose, cellulose acetate phthalate, ethylcellulose, alginic acid or a salt thereof, gelatin, gelatin gum arabic, nitrocellulose, polyvinyl alcohol, hydroxypropylcellulose, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer And film-forming polymers such as chitosan-alginate, cellulose sulfate-poly (dimethyldiallyl) ammonium chloride, hydroxyethyl methacrylate-methyl methacrylate, chitosan-carboxymethylcellulose, alginate-polylysine-alginate, and the like.
 これらの製剤中のHGF遺伝子の含量や投与量は、治療目的の疾患、患者の年齢、体重等により適宜調節することができる。また投与量は、HGF遺伝子導入ベクターの種類により異なるが、HGF遺伝子導入ベクターに換算して、通常1×106pfu~1×1012pfu、好ましくは1×107pfu~2×1011pfu、さらに好ましくは1.5×107pfu~1.5×1011pfuを数日ないし数ヶ月に1回投与するのが好ましい。 The content and dosage of the HGF gene in these preparations can be appropriately adjusted depending on the disease to be treated, the age, weight, etc. of the patient. The dose varies depending on the type of HGF gene transfer vector, but is usually 1 × 10 6 pfu to 1 × 10 12 pfu, preferably 1 × 10 7 pfu to 2 × 10 11 pfu in terms of HGF gene transfer vector. More preferably, 1.5 × 10 7 pfu to 1.5 × 10 11 pfu is preferably administered once every several days to several months.
 このような本発明の骨延長促進剤は、例えば、骨切り術、骨延長術または骨折における整骨術が実施される場合に、術後の骨切断間隙部位またはその周辺部に用いることができる。そして、本発明の骨延長促進剤によれば、実験例1および2に示すように、上記術後の骨切断間隙における骨延長を効果的に促進させることができる。 Such a bone elongation promoting agent of the present invention can be used, for example, at a postoperative bone cutting gap site or its peripheral part when osteotomy, osteotomy or osteopathy in a fracture is performed. Then, according to the bone elongation promoting agent of the present invention, as shown in Experimental Examples 1 and 2, it is possible to effectively promote bone elongation in the postoperative bone cutting gap.
 例えば、骨切り術は、通常、一回の施術で延長できる長さは3mm程度であり、施術を複数回繰り返すことで、必要とする長さまで骨を伸ばすことができる。なお、骨切り術において、一度の施術で伸ばすことができる長さは、骨切断間隙の長さ(骨切術後の骨断面と骨断面との間の長さ)と一致する。本発明の骨延長促進剤によれば、骨切断間隙における骨の延長を促進することができるため、一回の施術で形成できる骨切断間隙を3mm程度を超える長さとすることができる(すなわち、一回の施術で3mm程度を超える長さを延長することができる。)。当該骨切断間隙(一回の施術で延長できる長さ)の上限としては10mmを挙げることができる。好ましくは9mm、より好ましくは8mm、さらに好ましくは7mm、よりさらに好ましくは6mm、特に好ましくは5mmである。 For example, in osteotomy, the length that can be extended by one treatment is usually about 3 mm, and the bone can be stretched to the required length by repeating the treatment several times. In the osteotomy, the length that can be extended by one treatment is equal to the length of the bone cutting gap (the length between the bone cross section after the osteotomy and the bone cross section). According to the bone elongation promoting agent of the present invention, it is possible to promote the elongation of bone in the bone cutting gap, so that the bone cutting gap that can be formed by a single treatment can have a length exceeding about 3 mm (that is, The length exceeding about 3 mm can be extended by one treatment.) The upper limit of the bone cutting gap (length that can be extended by one treatment) can be 10 mm. The thickness is preferably 9 mm, more preferably 8 mm, still more preferably 7 mm, still more preferably 6 mm, and particularly preferably 5 mm.
 骨延長術としては、イリザロフ法等が好ましく挙げられる。当該骨延長術は、骨を切断後、その両側の骨を毎日約0.5~1mm程度ずつ引き離してゆき、必要とする長さまで、これを繰り返して骨を延長することができる。切断された骨と骨は特殊な創外固定器で連結される。骨の引き離しは、装着した創外固定器等器具を用い行うことができる。必要とする長さまで骨を引き離した時点で、創外固定器は、完全に固定されることが好ましい。骨を引き離した部分(延長部分)には骨間隙が形成される。その骨間隙へは、前述したように骨の切断面から骨が延長され、延長された骨の切断面同士が癒合し、骨の間隙は埋まり、骨が再構築される。骨が再構築された時点をもって創外固定器を除去し治療が完了したとみなされる。骨延長術により生じる骨断面と骨断面との間の最終的な長さは、骨を延長させる合計の長さに相当し得る。該骨延長術によれば、合計約10cm近くまで骨を延長させることができる。 Favorable examples of osteogenesis include Ilizarov method. In the bone extension, after cutting the bone, the bones on both sides thereof are separated by about 0.5 to 1 mm every day, and this can be repeated to the required length to extend the bone. The cut bone and the bone are connected with a special external fixator. Bone separation can be performed using a device such as an external fixator. The external fixator is preferably completely fixed when the bone is pulled away to the required length. A bone gap is formed in a portion (extended portion) from which the bone is separated. As described above, the bone is extended from the cut surface of the bone to the bone gap, the extended bone cut surfaces are fused, the bone gap is filled, and the bone is reconstructed. When the bone is reconstructed, the external fixator is removed and treatment is considered complete. The final length between bone cross sections produced by bone distraction may correspond to the total length that causes the bone to extend. According to the bone extension, the bone can be extended to a total of about 10 cm.
 骨折における整骨術後において骨切断間隙を形成する場合、本発明の骨延長促進剤を併用する場合は、上記の理由から、当該間隙を3mmを超える範囲に設定することができる。当該長さの上限は10mm程度であり、好ましくは9mm、より好ましくは8mm、さらに好ましくは7mm、さらにより好ましくは6mm、特に好ましくは5mmである。整骨術後の骨断面は、骨折した状態のままでもよく、骨折部の骨をさらに骨切り等により整えられてもよい。骨折は、単純骨折、複雑骨折あるいは破砕骨折等も包含される。前述したように、このように形成された骨切断間隙へは、骨の切断面から骨が延長され、延長された骨の切断面同士が癒合し、骨の間隙は埋まり、骨が再構築される。 When forming a bone cutting gap after osteopathy in a fracture, when using the bone elongation promoter of the present invention in combination, the gap can be set in a range exceeding 3 mm for the above reasons. The upper limit of the length is about 10 mm, preferably 9 mm, more preferably 8 mm, still more preferably 7 mm, even more preferably 6 mm, and particularly preferably 5 mm. The bone cross section after osteopathy may be left in a fractured state, or the bone at the fractured part may be further trimmed by osteotomy or the like. Fractures include simple fractures, complex fractures, fractured fractures and the like. As described above, in the bone cutting gap formed in this way, the bone is extended from the cut surface of the bone, the cut surfaces of the extended bone are fused, the bone gap is filled, and the bone is reconstructed. The
 本発明の骨延長促進剤は、ヒトのほか、ヒト以外の哺乳動物(例えば、サル、ウシ、ウマ、ブタ、ヒツジ、イヌ、ネコ、ラット、マウス、ウサギ、ハムスター、モルモット、チンパンジー等)にも適用できる。 The bone elongation promoter of the present invention can be applied not only to humans but also to mammals other than humans (eg monkeys, cows, horses, pigs, sheep, dogs, cats, rats, mice, rabbits, hamsters, guinea pigs, chimpanzees, etc.) Applicable.
 本発明の骨延長促進剤は、前述したように、例えば、骨切り術、骨延長術または骨折における整骨術が適応される場合に、術後の骨間隙部位またはその周辺部に用いることができる。そして、本発明の骨延長促進剤は、一方の骨断面とこれに対向する骨断面とから生じる骨断面間の骨間隙に向けて、少なくとも一方、好ましくは両方の骨断面からの骨延長を促進させることができ、より短時間かつ効果的に骨の切断面同士を癒合し、骨の間隙を埋め、骨を再構築させることができる。本発明の骨延長促進剤が適用される例としては、以下のものが挙げられる。 As described above, the bone elongation promoting agent of the present invention can be used at a post-operative bone gap site or its peripheral part when, for example, osteotomy, osteogenesis, or osteopathy in a fracture is applied. . Then, the bone elongation promoting agent of the present invention promotes bone elongation from at least one, preferably both bone sections, toward the bone gap between the bone sections generated from one bone section and the opposite bone section. The bone cut surfaces can be fused with each other in a shorter time and effectively, the bone gap can be filled, and the bone can be reconstructed. Examples of the application of the bone elongation promoter of the present invention include the following.
 骨切り術または骨延長術が施される場合としては、例えば、低身長や身長増加不良、小人症等の四肢骨を伸ばす場合;先天奇形や事故または手術により、例えば脚長差が大きい患者等の肢体が短くなった肢骨を伸ばす場合;事故等により骨の成長が著しく障害され骨変形をきたした患者の骨を伸ばす場合;自家および他家移植に用いる骨を採取した時に生じる骨間隙の修復;小顎症(小下顎症)、小頭症、クルーゾン病、または唇顎口蓋裂による上顎劣成長等における頭蓋顎顔面の骨延長術が適応される場合等が挙げられる。骨折としては、例えば、各種外傷性骨折;疲労骨折;骨粗鬆症、骨軟化症、骨形成不全症、大理石病等に伴う骨折において、骨の長さや形状等の補正や矯正等を必要とする整骨術が適応される場合等が挙げられる。 When osteotomy or osteogenesis is performed, for example, when the limb bones such as short stature, poor height increase, dwarfism, etc. are stretched; patients with large leg length differences due to congenital malformations, accidents, or surgery, etc. When the limb of the limb is shortened; When the bone of a patient who has suffered from bone deformation due to an accident or the like has been deformed; and when the bone used for autologous or allogeneic transplantation is extracted Restoration; craniofacial bone lengthening in cases such as micromaxillary disease (small mandibular disorder), microcephaly, cruzon disease, or maxillary undergrowth due to cleft lip and palate, etc. is indicated. Examples of fractures include various traumatic fractures; fatigue fractures; osteopathy that requires correction or correction of bone length, shape, etc. in fractures associated with osteoporosis, osteomalacia, osteogenesis imperfecta, marble disease, etc. Is applied.
 以下に実験例および製剤例を用いて本発明を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described using experimental examples and formulation examples, but the present invention is not limited thereto.
 〔実験例1〕
ウサギ骨切り術モデルにおける骨延長に対するHGF蛋白質の効果
(1)実験方法
 日本白色家兎(2.5~3.0kg)に、ケタミン塩酸塩(第一三共プロファーマ株式会社製;35mg/kg)及びキシラジン(バイエル薬品株式会社製;5mg/kg)を皮下投与し、次いでペントバルビタールナトリウム(アボット・ラボラトリーズ;40~50mg/kg)を静脈内注射することにより麻酔を施し、右脛骨の前中央部の皮膚を縦方向に切開した。次いで、骨膜周囲の軟組織と筋膜を取り除き、ウサギの脛骨を骨のこぎりで切断した。切断した頚骨を、5mmの間隔をあけて引き離し、脛骨に5mmの骨間隙(隙間)を作成した。次いで、図1に示すように、切り離した脛骨の両方に、垂直になるように(骨に垂直方向に孔をあけて)、直径2mmの短いピン(Stryker社製)をそれぞれ2本ずつ(合計4本)挿入して、片側型創外固定器で固定した。
[Experimental Example 1]
Effect of HGF protein on bone elongation in rabbit osteotomy model (1) Experimental method Nippon White Rabbit (2.5-3.0kg), Ketamine Hydrochloride (Daiichi Sankyo Propharma Co., Ltd .; 35mg / kg) and Xylazine (Bayer Yakuhin Co., Ltd .; 5 mg / kg) was administered subcutaneously, followed by intravenous anesthesia with pentobarbital sodium (Abbott Laboratories; 40-50 mg / kg), and the skin in the anterior center of the right tibia Was incised longitudinally. The soft tissue and fascia around the periosteum were then removed and the rabbit tibia was cut with a bone saw. The cut tibia was pulled apart at an interval of 5 mm to create a 5 mm bone gap (gap) in the tibia. Next, as shown in FIG. 1, two short pins (made by Stryker) each having a diameter of 2 mm are provided on each of the separated tibias so as to be perpendicular (perforation is made in the direction perpendicular to the bones) (total amount). 4) Inserted and fixed with a one-sided external fixator.
 創外固定器を装着した直後、及びその翌日から1日1回1週間(計8回)、骨間隙部(切断した脛骨の隙間)に、HGF蛋白質10μgを10μLの生理食塩水に溶解して調製したHGF含有水溶液を経皮的に注入した(HGF投与群)。なお、ここでHGF蛋白質として、配列番号6に示されるアミノ酸配列からなるHGF蛋白質を用いた。またコントロールとして、上記HGF含有水溶液の代わりにHGF蛋白質を含まない生理食塩水を用いて同様に骨間隙部に注入した(コントロール群)。 Immediately after mounting the external fixator and once a day from the next day for 1 week (total 8 times), 10 μg of HGF protein is dissolved in 10 μL of physiological saline in the bone gap (gap between the cut tibias). The prepared HGF-containing aqueous solution was injected transcutaneously (HGF administration group). Here, the HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 6 was used as the HGF protein. As a control, physiological saline containing no HGF protein was used instead of the HGF-containing aqueous solution, and the same was injected into the bone gap (control group).
 骨間隙部の状態は、コントロール群については、術後と術後から1週間おきに10週間(合計11回)まで、またHGF投与群については、術後と術後から1週間おきに5週間(合計6回)まで、レントゲンを撮りレントゲン像で評価した。 In the control group, the condition of the bone gap was 10 weeks after surgery and every other week (11 times in total) for the control group. X-rays were taken and evaluated with X-ray images (total 6 times).
 (2)実験結果
 結果を図2に示す。図Aはコントロール群の骨間隙部のレントゲン像(上段は正面像、下段は側面像)、図BはHGF投与群の骨間隙部のレントゲン像(上段は正面像、下段は側面像)を示す。HGF蛋白質を投与しなかったコントロール群は、骨間隙部における骨の延長および癒合が不完全で、骨間隙部に形成された骨が大きく変形しているのに対して(図A)、HGF投与群は、骨間隙部に両側の脛骨から正常に骨が延長して骨が形成されており、骨延長の促進と骨切断面における骨融合の促進が認められた。
(2) Experimental results The results are shown in FIG. Fig. A shows an X-ray image of the bone gap of the control group (the upper part is a front image, the lower part is a side image), and Fig. B shows an X-ray image of the bone gap part of the HGF administration group (the upper part is a front image and the lower part is a side image). . In the control group to which no HGF protein was administered, bone extension and fusion in the bone gap were incomplete, and the bone formed in the bone gap was greatly deformed (FIG. A), whereas HGF administration In the group, bones were normally formed from the tibias on both sides in the bone gap and bone formation was promoted, and bone fusion was promoted and bone fusion was promoted at the bone cut surface.
 〔実験例2〕
ウサギ骨切り術モデルにおける骨延長に対するHGF蛋白質の効果
 上記で使用したHGF蛋白質に代えて、配列番号4に示されるアミノ酸配列からなるHGF蛋白質を用いて、上記と同じ実験を行った。その結果、実験例1と同様に、HGF蛋白質に骨延長の促進と骨切断面における骨融合の促進が認められた。
[Experimental example 2]
Effect of HGF protein on bone elongation in rabbit osteotomy model The same experiment as described above was performed using the HGF protein consisting of the amino acid sequence shown in SEQ ID NO: 4 instead of the HGF protein used above. As a result, as in Experimental Example 1, the HGF protein was found to promote bone elongation and bone fusion at the bone cut surface.
 以下、本発明の骨延長促進剤の製剤例を記載する。当該製剤例において、HGF蛋白質として、配列番号3~6に示すアミノ酸配列からなるHGF蛋白質をいずれも使用することができる。 Hereinafter, formulation examples of the bone elongation promoter of the present invention will be described. In the preparation examples, any of the HGF proteins having the amino acid sequences shown in SEQ ID NOs: 3 to 6 can be used as the HGF protein.
 [製剤例1]
 生理食塩水100mL中に、HGF蛋白質lmg、マンニトール1g及びポリソルベー卜80を10mg含む溶液を無菌的に調製し、これを1mLずつバイアルに分注した後、凍結乾燥して密封することにより、凍結乾燥製剤の形態を有する骨延長促進剤を得た。
[Formulation Example 1]
A solution containing 1 mg of HGF protein, 1 g of mannitol and 10 mg of polysorbate 80 is aseptically prepared in 100 mL of physiological saline, dispensed 1 mL each into a vial, freeze-dried and sealed, and then freeze-dried. A bone elongation promoter having the form of the preparation was obtained.
 [製剤例2]
 0.02Mリン酸緩衝液(0.15M NaCl及び0.01%ポリソルベート80含有、pH7.4)100mL中に、HGF蛋白質(配列番号6)1mg及びヒト血清アルブミン100mgを含む水溶液を無菌的に調製し、これを1mLずつバイアルに分注した後、凍結乾燥して密封することにより、凍結乾燥製剤の形態を有する骨延長促進剤を得た。
[Formulation Example 2]
An aqueous solution containing 1 mg of HGF protein (SEQ ID NO: 6) and 100 mg of human serum albumin in 100 mL of 0.02 M phosphate buffer (containing 0.15 M NaCl and 0.01% polysorbate 80, pH 7.4) was prepared aseptically. Was dispensed into vials in an amount of 1 mL, and freeze-dried and sealed to obtain a bone elongation promoter having the form of a freeze-dried preparation.
 [製剤例3]
 乳酸-グリコール酸共重合体(乳酸/グリコール酸=50/50,重量平均分子量=10,000;和光純薬工業株式会社製)1.9gをジクロロメタン3.0mLに溶解する。この有機溶媒液に、HGF蛋白質の凍結乾燥粉末100mgを添加し、ミキサーミル(株式会社レッチェ)を用いて微粒化し、HGF分散液を調製する。この分散液を0.1w/v%ポリビニルアルコール水溶液800mLに添加し、ホモミキサーを用いて撹拌・乳化する。室温で3時間撹拌してジクロロメタンを揮散させた後、遠心分離(約2,000rpm)することによりマイクロカプセルを分取する。次いで蒸留水400mLを用いて2回洗浄後、D-マンニトール0.2gを添加し凍結乾燥する。凍結乾燥後、更に残留溶媒を除去するため、40℃下で3日間真空乾燥してHGF蛋白質を含有する徐放性マイクロカプセルを得る(生体内分解性高分子に対するHGFの配合比率:5.3w/w%)。
[Formulation Example 3]
1.9 g of lactic acid-glycolic acid copolymer (lactic acid / glycolic acid = 50/50, weight average molecular weight = 10,000; manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 3.0 mL of dichloromethane. To this organic solvent solution, 100 mg of lyophilized powder of HGF protein is added and atomized using a mixer mill (Lecce Inc.) to prepare an HGF dispersion. This dispersion is added to 800 mL of 0.1 w / v% polyvinyl alcohol aqueous solution, and stirred and emulsified using a homomixer. After stirring at room temperature for 3 hours to volatilize dichloromethane, the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove the residual solvent, vacuum-dried at 40 ° C. for 3 days to obtain sustained-release microcapsules containing HGF protein (HGF-to-biodegradable polymer content ratio: 5.3 w) / W%).
 [製剤例4]
 乳酸-グリコール酸共重合体(乳酸/グリコール酸=50/50,重量平均分子量=10,000;和光純薬工業株式会社製)1.89gと酸化亜鉛10mgとをジクロロメタン3.0mLに溶解する。この有機溶媒液に、HGF蛋白質の凍結乾燥粉末100mgを添加し、ミキサーミル(株式会社レッチェ)を用いて微粒化し、HGF分散液を調製する。この分散液を0.1w/v%ポリビニルアルコール水溶液800mLに添加し、ホモミキサーを用いて撹拌・乳化する。室温で3時間撹拌してジクロロメタンを揮散させた後、遠心分離(約2,000rpm)することによりマイクロカプセルを分取する。次いで蒸留水400mLを用いて2回洗浄後、D-マンニトール0.2gを添加し凍結乾燥する。凍結乾燥後、更に残留溶媒を除去するため、40℃で3日間真空乾燥してHGF蛋白質を含有する徐放性マイクロカプセルを得る(生体内分解性高分子に対するHGFの配合比率:5.3w/w%)。
[Formulation Example 4]
1.89 g of lactic acid-glycolic acid copolymer (lactic acid / glycolic acid = 50/50, weight average molecular weight = 10,000; manufactured by Wako Pure Chemical Industries, Ltd.) and 10 mg of zinc oxide are dissolved in 3.0 mL of dichloromethane. To this organic solvent solution, 100 mg of lyophilized powder of HGF protein is added and atomized using a mixer mill (Lecce Inc.) to prepare an HGF dispersion. This dispersion is added to 800 mL of 0.1 w / v% polyvinyl alcohol aqueous solution, and stirred and emulsified using a homomixer. After stirring at room temperature for 3 hours to volatilize dichloromethane, the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove the residual solvent, vacuum-dried at 40 ° C. for 3 days to obtain sustained-release microcapsules containing HGF protein (HGF-to-biodegradable polymer blending ratio: 5.3 w / w%).
 [製剤例5]
 乳酸-グリコール酸共重合体(乳酸/グリコール酸=75/25,重量平均分子量=15,000;和光純薬工業株式会社製)1.7gをジクロロメタン2.7mLに溶解する。この有機溶媒液に、HGF蛋白質の凍結乾燥粉末300mgを添加し、ミキサーミル(株式会社レッチェ)を用いて微粒化し、HGF分散液を調製する。この分散液を0.1w/v%ポリビニルアルコール水溶液800mLに添加し、ホモミキサーを用いて撹拌・乳化する。室温で3時間撹拌してジクロロメタンを揮散させた後、遠心分離(約2,000rpm)することによりマイクロカプセルを分取する。次いで蒸留水400mLを用いて2回洗浄後、D-マンニトール0.2gを添加し凍結乾燥する。凍結乾燥後、更に残留溶媒を除去するため、40℃で3日間真空乾燥して、HGF蛋白質を含有する徐放性マイクロカプセルを得る(生体内分解性高分子に対するHGFの配合比率:17.6w/w%)。
[Formulation Example 5]
1.7 g of lactic acid-glycolic acid copolymer (lactic acid / glycolic acid = 75/25, weight average molecular weight = 15,000; manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 2.7 mL of dichloromethane. To this organic solvent solution, 300 mg of lyophilized powder of HGF protein is added and atomized using a mixer mill (Lecce) to prepare an HGF dispersion. This dispersion is added to 800 mL of 0.1 w / v% polyvinyl alcohol aqueous solution, and stirred and emulsified using a homomixer. After stirring at room temperature for 3 hours to volatilize dichloromethane, the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove residual solvent, vacuum drying is performed at 40 ° C. for 3 days to obtain a sustained-release microcapsule containing HGF protein (HGF blending ratio with respect to biodegradable polymer: 17.6 w) / W%).
 [製剤例6]
 乳酸-グリコール酸共重合体(乳酸/グリコール酸=75/25,重量平均分子量=15,000;和光純薬工業株式会社製)1.69gと酸化亜鉛10mgとをジクロロメタン2.7mLに溶解する。この有機溶媒液に、HGF蛋白質の凍結乾燥粉末300mgを添加し、ミキサーミル(株式会社レッチェ)を用いて微粒化し、HGF分散液を調製する。この分散液を0.1w/v%ポリビニルアルコール水溶液800mLに添加し、ホモミキサーを用いて撹拌・乳化する。室温で3時間撹拌してジクロロメタンを揮散させた後、遠心分離(約2,000rpm)することによりマイクロカプセルを分取する。次いで蒸留水400mLを用いて2回洗浄後、D-マンニトール0.2gを添加し凍結乾燥する。凍結乾燥後、更に残留溶媒を除去するため、40℃で3日間真空乾燥して、HGF蛋白質を含有する徐放性マイクロカプセルを得る(生体内分解性高分子に対するHGFの配合比率:17.8w/w%)。
[Formulation Example 6]
1.69 g of lactic acid-glycolic acid copolymer (lactic acid / glycolic acid = 75/25, weight average molecular weight = 15,000; manufactured by Wako Pure Chemical Industries, Ltd.) and 10 mg of zinc oxide are dissolved in 2.7 mL of dichloromethane. To this organic solvent solution, 300 mg of lyophilized powder of HGF protein is added and atomized using a mixer mill (Lecce) to prepare an HGF dispersion. This dispersion is added to 800 mL of 0.1 w / v% polyvinyl alcohol aqueous solution, and stirred and emulsified using a homomixer. After stirring at room temperature for 3 hours to volatilize dichloromethane, the microcapsules are separated by centrifugation (about 2,000 rpm). Next, after washing twice with 400 mL of distilled water, 0.2 g of D-mannitol is added and freeze-dried. After lyophilization, in order to further remove the residual solvent, vacuum drying is performed at 40 ° C. for 3 days to obtain a sustained release microcapsule containing HGF protein (HGF blending ratio with respect to biodegradable polymer: 17.8 w) / W%).
 [製剤例7]
 DL-乳酸重合体(乳酸/グリコール酸=100/0,重量平均分子量=5,000;和光純薬工業株式会社製)5gを塩化メチレン50mLに溶解し、10w/v%の溶液を調製する。次いで、この溶液にHGF蛋白質の凍結乾燥粉末2.5mgを添加する。これを別に40℃に加温しておいた0.5w/v%キトサン水溶液に加え、ホモミキサーを用いて1000rpmの撹拌速度で撹拌し乳化する。得られる乳化液を室温で更に3時間撹拌して塩化メチレンを蒸散させ、次いで、遠心分離(約2,000rpm)して生成したマイクロスフィアを集め、これを予め40℃に加温しておいた蒸留水を用いて5回洗浄し、次いで室温で減圧乾燥し、HGFを含有するマイクロスフィアを得る(生体内分解性高分子に対するHGFの配合比率:0.05w/w%)。
[Formulation Example 7]
5 g of DL-lactic acid polymer (lactic acid / glycolic acid = 100/0, weight average molecular weight = 5,000; manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 50 mL of methylene chloride to prepare a 10 w / v% solution. Next, 2.5 mg of lyophilized powder of HGF protein is added to this solution. This is added to a 0.5 w / v% chitosan aqueous solution that has been heated to 40 ° C., and stirred and emulsified at a stirring speed of 1000 rpm using a homomixer. The resulting emulsion was further stirred at room temperature for 3 hours to evaporate the methylene chloride, and then the microspheres produced by centrifugation (about 2,000 rpm) were collected and preheated to 40 ° C. Washing 5 times with distilled water, and then drying under reduced pressure at room temperature to obtain microspheres containing HGF (HGF content relative to biodegradable polymer: 0.05 w / w%).
 [製剤例8]
 乳酸-グリコール酸共重合体(乳酸/グリコール酸=75/25,重量平均分子量=5,000;和光純薬工業株式会社製)10gを塩化メチレン:エタノール(4:1)200mLに溶解し、5w/v%の溶液を調製する。次いで、この溶液にHGF蛋白質の凍結乾燥粉末2.5mgを添加する。これを、別に40℃に加温しておいた1w/v%ゼラチン水溶液の中に、500rpmの速度でホモミキサーを用いて攪拌しながら、少量ずつ加え乳化する。得られる乳化液を室温で更に3時間撹拌して塩化メチレンとエタノールを蒸散させ、次いで、遠心分離(約2,000rpm)して生成したマイクロスフィアを集める。回収したマイクロスフィアを、予め40℃に加温しておいた蒸留水を用いて5回洗浄し、室温で減圧乾燥し、HGF蛋白質を含有するマイクロスフィアを得る(生体内分解性高分子に対するHGFの配合比率:0.025w/w%)。
[Formulation Example 8]
10 g of lactic acid-glycolic acid copolymer (lactic acid / glycolic acid = 75/25, weight average molecular weight = 5,000; manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 200 mL of methylene chloride: ethanol (4: 1), and 5 w / v. % Solution is prepared. Next, 2.5 mg of lyophilized powder of HGF protein is added to this solution. This is emulsified by adding little by little into a 1 w / v% gelatin aqueous solution heated to 40 ° C. while stirring with a homomixer at a speed of 500 rpm. The resulting emulsion is stirred at room temperature for an additional 3 hours to evaporate methylene chloride and ethanol, and then centrifuged (approximately 2,000 rpm) to collect the resulting microspheres. The collected microspheres are washed 5 times with distilled water preheated to 40 ° C. and dried under reduced pressure at room temperature to obtain microspheres containing HGF protein (HGF against biodegradable polymer). The mixing ratio: 0.025 w / w%).
 [製剤例9]
 2w/v%HGF含有水溶液0.2mLと2w/v%アテロコラーゲンのリン酸緩衝液溶液2mLを混合した後、凍結乾燥を行う。なお、ここでHGF含有水溶液は、実験例1に記載する方法で調製することができる。得られた凍結乾燥品は、液体窒素を用いて低温で粉砕した後、金型にいれて圧縮成型し、円柱状のHGF含有徐放性製剤を得る(生体内分解性高分子に対するHGFの配合比率:10w/w%)。
[Formulation Example 9]
After mixing 0.2 mL of an aqueous solution containing 2 w / v% HGF and 2 mL of a phosphate buffer solution of 2 w / v% atelocollagen, lyophilization is performed. Here, the HGF-containing aqueous solution can be prepared by the method described in Experimental Example 1. The obtained freeze-dried product is pulverized at low temperature using liquid nitrogen, and then compression-molded in a mold to obtain a cylindrical HGF-containing sustained release preparation (formulation of HGF with biodegradable polymer) (Ratio: 10 w / w%).
 [製剤例10]
 0.01w/v%HGF含有水溶液100mLと2w/v%コラーゲン水溶液50gを均一に混合攪拌し、凍結乾燥する。その後、液体窒素を用いて低温粉砕する。これを棒状に圧縮成型し、HGF蛋白質を含有する徐放性製剤を得る(生体内分解性高分子に対するHGFの配合比率:1w/w%)。
[Formulation Example 10]
100 mL of a 0.01 w / v% HGF-containing aqueous solution and 50 g of a 2 w / v% collagen aqueous solution are uniformly mixed and stirred, and lyophilized. Thereafter, it is pulverized at low temperature using liquid nitrogen. This is compression-molded into a rod shape to obtain a sustained-release preparation containing HGF protein (HGF compounding ratio with respect to biodegradable polymer: 1 w / w%).
 [製剤例11]
 HGF蛋白質1mgを、2w/v%アテロコラーゲン溶液2mLに溶解した後、凍結乾燥を行う。得られた凍結乾燥物を粉砕した後、円柱状に圧縮成型し、HGF蛋白質を含有する徐放性製剤を得る(生体内分解性高分子に対するHGFの配合比率:2.5質量%)。
[Formulation Example 11]
1 mg of HGF protein is dissolved in 2 mL of 2 w / v% atelocollagen solution and then freeze-dried. The obtained freeze-dried product is pulverized and then compression-molded into a cylindrical shape to obtain a sustained-release preparation containing HGF protein (HGF content relative to biodegradable polymer: 2.5% by mass).
 [製剤例12]
 ヒアルロナンのナトリウム塩(極限粘度数45000cc/g)0.58gを20mLの水と混合し、膨潤させる。次にこの混合物に、2N水酸化ナトリウム2mLを加え、撹拌して均一な溶液とする。これに、2.4mLの水に0.10gのジビニルスルホンを加えて撹拌して調製した溶液を加え混合物とし、その混合物を70分放置し、得られるゲルをバイオトリス緩衝液(リン酸塩緩衝の0.15M NaCl,pH約7.2)の223mL中に入れ、3時間膨潤させる。次に膨潤させたゲルに1mLの2N HClを加える。1時間後に、0.6mLの2N HClを加え、16時間放置した。0.35mLの2N HClを加え、膨潤ゲルを緩衝液中3日間ゆっくり撹拌する。均一な粘弾性の柔らかなゲルが得られ、これを0.15M NaClで5日間透析する。このゲルを、緩衝食塩水中の1w/v%HGFと混合して、HGF蛋白質の最終濃度を0.25w/v%とし、HGF含有製剤を得る(生体内分解性高分子に対するHGFの配合比率:約25w/v%)。
[Formulation Example 12]
0.58 g of sodium salt of hyaluronan (intrinsic viscosity 45000 cc / g) is mixed with 20 mL of water and swollen. Next, 2 mL of 2N sodium hydroxide is added to the mixture and stirred to obtain a homogeneous solution. To this, a solution prepared by adding 0.10 g of divinylsulfone to 2.4 mL of water and stirring is added to form a mixture. The mixture is allowed to stand for 70 minutes, and the resulting gel is put into a biotris buffer (phosphate buffer). Of 0.15 M NaCl, pH about 7.2) and swell for 3 hours. Next, 1 mL of 2N HCl is added to the swollen gel. After 1 hour, 0.6 mL of 2N HCl was added and left for 16 hours. Add 0.35 mL of 2N HCl and stir the swollen gel slowly in buffer for 3 days. A uniform viscoelastic soft gel is obtained, which is dialyzed against 0.15 M NaCl for 5 days. This gel is mixed with 1 w / v% HGF in buffered saline to obtain a final concentration of HGF protein of 0.25 w / v% to obtain an HGF-containing preparation (ratio of HGF to biodegradable polymer: About 25 w / v%).
 本発明の骨延長促進剤は、骨切り術や骨延術後、あるいは骨折後や骨整骨術後の骨延長、骨形成を促進する医療用薬剤として有用である。 The bone elongation-promoting agent of the present invention is useful as a medical drug that promotes bone elongation and bone formation after osteotomy or osteogenesis, or after fracture or osteoarthroplasty.

Claims (15)

  1.  下記(1-a)~(1-c)のいずれか少なくとも1種を有効成分として含有することを特徴とする、骨切断間隙における骨延長促進剤:
    (1-a)HGF(Hepatocyte Growth Factor)蛋白質、
    (1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
    (1-c)(1-a)又は(1-b)の塩。
    An agent for promoting bone elongation in a bone cutting gap, comprising at least one of the following (1-a) to (1-c) as an active ingredient:
    (1-a) HGF (Hepatocyte Growth Factor) protein,
    (1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
    (1-c) A salt of (1-a) or (1-b).
  2.  HGF蛋白質が、下記(1-d)または(1-e)であることを特徴とする、請求項1に記載する骨延長促進剤:
    (1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
    (1-e)配列番号1又は2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質。
    The bone elongation promoter according to claim 1, wherein the HGF protein is the following (1-d) or (1-e):
    (1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
    (1-e) a protein having a bone elongation-promoting action produced by a cell having a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 .
  3.  HGF蛋白質が、下記(1-f)または(1-g)であることを特徴とする、請求項1に記載する骨延長促進剤:
    (1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
    (1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
    The bone elongation promoter according to claim 1, wherein the HGF protein is the following (1-f) or (1-g):
    (1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
    (1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
  4.  上記(1-g)に記載する蛋白質が、配列番号5または6で表されるアミノ酸配列からなる蛋白質である、請求項3に記載する骨延長促進剤。 The bone elongation promoter according to claim 3, wherein the protein described in (1-g) above is a protein consisting of the amino acid sequence represented by SEQ ID NO: 5 or 6.
  5. 下記(2-a)~(2-c)のいずれか少なくとも1種のDNAを有効成分として含有することを特徴とする、骨切断間隙における骨延長促進剤:、
    (2-a)HGF蛋白質をコードするDNA、
    (2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
    (2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA。
    A bone elongation promoting agent in a bone cutting gap, comprising as an active ingredient at least one DNA of any one of the following (2-a) to (2-c):
    (2-a) DNA encoding HGF protein,
    (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
    (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode.
  6.  HGF蛋白質をコードするDNAが、下記(2-d)又は(2-e)であることを特徴とする請求項5に記載する骨延長促進剤:
    (2-d)配列番号1または2に示される塩基配列からなるDNA、
    (2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
    The bone elongation promoter according to claim 5, wherein the DNA encoding the HGF protein is the following (2-d) or (2-e):
    (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
    (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
  7.  請求項5に記載する(2-a)~(2-c)並びに請求項6に記載する(2-d)及び(2-e)からなる群から選択されるDNAが、I型単純ヘルペスウイルス(HSV-1)ベクター、センダイウイルス・エンベロープ(HVJ-E)ベクター、アデノウイルスベクターまたはアデノ随伴ウイルスベクターに組み込まれてなる、骨延長促進剤。 A DNA selected from the group consisting of (2-a) to (2-c) according to claim 5 and (2-d) and (2-e) according to claim 6 is a type I herpes simplex virus An agent for promoting bone elongation, which is incorporated into an (HSV-1) vector, Sendai virus envelope (HVJ-E) vector, adenovirus vector or adeno-associated virus vector.
  8.  局所投与形態を有する請求項1または5に記載する骨延長促進剤。 The bone elongation promoter according to claim 1 or 5, which has a local administration form.
  9.  3mmを超える骨切断間隙における対向するいずれか少なくとも一方の骨断面部を処置するための投与形態を有する、請求項1または5に記載する骨延長促進剤。 The bone elongation promoter according to claim 1 or 5, which has a dosage form for treating at least one of the opposing bone cross sections in a bone cutting gap exceeding 3 mm.
  10.  骨延長促進剤の製造の為の、下記(1-a)~(1-g)のいずれかに記載する蛋白質またはペプチドの使用:
    (1-a)HGF蛋白質、
    (1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
    (1-c)(1-a)又は(1-b)の塩、
    (1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
    (1-e)配列番号1又は2に示される塩基配列に対して相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質、
    (1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
    (1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
    Use of the protein or peptide described in any of (1-a) to (1-g) below for the production of a bone elongation promoter:
    (1-a) HGF protein,
    (1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
    (1-c) a salt of (1-a) or (1-b),
    (1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
    (1-e) a bone elongation-promoting action produced by cells having DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 Protein,
    (1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
    (1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
  11.  骨延長促進剤の製造の為の、下記(2-a)~(2-e)のいずれかに記載するDNAの使用:
    (2-a)HGF蛋白質をコードするDNA、
    (2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
    (2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA、
    (2-d)配列番号1または2に示される塩基配列からなるDNA、
    (2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
    Use of the DNA described in any of (2-a) to (2-e) below for the production of a bone elongation promoter:
    (2-a) DNA encoding HGF protein,
    (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
    (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode,
    (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
    (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
  12.  骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の施術患者の骨切断間隙における骨延長を促進するための、下記(1-a)~(1-g)のいずれかに記載する蛋白質またはペプチド:
    (1-a)HGF蛋白質、
    (1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
    (1-c)(1-a)又は(1-b)の塩、
    (1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
    (1-e)配列番号1又は2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質、
    (1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
    (1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
    Any one of the following (1-a) to (1-g) to promote bone extension in the bone cutting gap of patients who have undergone osteotomy or osteogenesis, fracture patients, or patients who have undergone osteoplasty Protein or peptide to:
    (1-a) HGF protein,
    (1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
    (1-c) a salt of (1-a) or (1-b),
    (1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
    (1-e) a protein having a bone elongation-promoting action produced by a cell having a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 ,
    (1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
    (1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
  13.  骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の施術患者の骨切断間隙における骨延長を促進するための、下記(2-a)~(2-e)のいずれかに記載するDNA:
    (2-a)HGF蛋白質をコードするDNA、
    (2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
    (2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA、
    (2-d)配列番号1または2に示される塩基配列からなるDNA、
    (2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
    Any of the following (2-a) to (2-e) for promoting bone extension in the bone cutting gap of a patient undergoing osteotomy or osteotomy, fracture patient, or osteoplasty patient DNA to:
    (2-a) DNA encoding HGF protein,
    (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
    (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode,
    (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
    (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
  14.  下記(1-a)~(1-g)のいずれかに記載する蛋白質またはペプチドを、骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の施術患者の、骨切断間隙部またはその周辺部に投与することを特徴とする骨延長促進方法:
    (1-a)HGF蛋白質、
    (1-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチド、
    (1-c)(1-a)又は(1-b)の塩、
    (1-d)配列番号1又は2に示される塩基配列からなるDNAを有する細胞によって生産される蛋白質、
    (1-e)配列番号1又は2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを有する細胞によって生産される、骨延長促進作用を有する蛋白質、
    (1-f)配列番号3または4に示されるアミノ酸配列からなる蛋白質、
    (1-g)配列番号3または4に示されるアミノ酸配列と少なくとも85%の同一性を有する、骨延長促進作用を有する蛋白質。
    The protein or peptide described in any one of the following (1-a) to (1-g) is added to a bone cutting gap or a bone cutting gap of an osteotomy or osteotomy patient, a fracture patient, or an osteoplasty patient. A method for promoting bone elongation, characterized by administration to the periphery thereof:
    (1-a) HGF protein,
    (1-b) a peptide that is a partial peptide of HGF protein and has an effect of promoting bone elongation,
    (1-c) a salt of (1-a) or (1-b),
    (1-d) a protein produced by a cell having a DNA comprising the base sequence represented by SEQ ID NO: 1 or 2,
    (1-e) a protein having a bone elongation-promoting action produced by a cell having a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 ,
    (1-f) a protein comprising the amino acid sequence shown in SEQ ID NO: 3 or 4,
    (1-g) A protein having a bone elongation promoting action, having at least 85% identity with the amino acid sequence shown in SEQ ID NO: 3 or 4.
  15.  下記(2-a)~(2-e)のいずれかに記載する蛋白質またはペプチドを、骨切り術若しくは骨延長術の施術患者、骨折患者または骨整形術の施術患者の、骨切断間隙部またはその周辺部に投与することを特徴とする骨延長促進方法:
    (2-a)HGF蛋白質をコードするDNA、
    (2-b)HGF蛋白質の部分ペプチドであって骨延長促進作用を有するペプチドをコードするDNA、
    (2-c)前記(2-a)又は(2-b)のDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質またはペプチドをコードするDNA、
    (2-d)配列番号1または2に示される塩基配列からなるDNA、
    (2-e)配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ骨延長促進作用を有する蛋白質をコードするDNA。
    The protein or peptide described in any one of the following (2-a) to (2-e) is added to a bone cutting gap or a bone cutting gap of an osteotomy or osteotomy patient, a fracture patient, or an osteoplasty patient. A method for promoting bone elongation, characterized by administration to the periphery thereof:
    (2-a) DNA encoding HGF protein,
    (2-b) DNA encoding a peptide that is a partial peptide of HGF protein and has a bone elongation promoting action,
    (2-c) a protein or peptide that hybridizes with a DNA comprising a base sequence complementary to the DNA of (2-a) or (2-b) under stringent conditions and has a bone elongation promoting action. DNA to encode,
    (2-d) DNA comprising the base sequence shown in SEQ ID NO: 1 or 2,
    (2-e) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having a bone elongation promoting action.
PCT/JP2009/062816 2008-07-18 2009-07-15 Bone elongation promoter WO2010008023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008063021 2008-07-18
JPPCT/JP2008/063021 2008-07-18

Publications (1)

Publication Number Publication Date
WO2010008023A1 true WO2010008023A1 (en) 2010-01-21

Family

ID=41550425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062816 WO2010008023A1 (en) 2008-07-18 2009-07-15 Bone elongation promoter

Country Status (1)

Country Link
WO (1) WO2010008023A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507123A (en) * 2014-01-27 2017-03-16 ベイジン ストマトロジー ホスピタル,キャピタル メディカル ユニバーシティ Use of odontogenic stem cells and genetically modified odontogenic stem cells
CN106714823A (en) * 2014-09-10 2017-05-24 克霖固鲁制药股份有限公司 Hgf preparation suitable for treatment of nervous diseases

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HIDENORI MATSUBARA ET AL.: "Usagi Kossetsu Model ni Taisuru Kan Saibo Zoshoku Inshi o Mochiita Kossetsu no Idenshi Chiryo", THE JOURNAL OF THE JAPANESE ORTHOPAEDIC ASSOCIATION, vol. 81, no. 8, 25 August 2007 (2007-08-25), pages S1140 *
IMAI Y. ET AL.: "Hepatocyte Growth Factor Contributes to Fracture Repair by Upregulating the Expression of BMP Receptors", JOURNAL OF BONE AND MINERAL RESEARCH, vol. 20, no. 10, 2005, pages 1723 - 1730 *
MASAHIRO YAEKASHIWA: "Hai Sen'isho no Idenshi no Kokoromi", THE LUNG PERSPECTIVES, vol. 7, no. 1, January 1999 (1999-01-01), pages 59 - 64 *
MOTOKUNI AOKI ET AL.: "Tonyobyo no Domyaku Koka ni Taisuru Hepatocyte Growth Factor ni yoru Idenshi Chiryo", THE JOURNAL OF THERAPY, vol. 81, 1999, pages 670 - 675 *
NUNOTANI Y. ET AL.: "Efficacy of rhBMP-2 during distraction osteogenesis", JOURNAL OF ORTHOPAEDIC SCIENCE, vol. 10, no. 5, September 2005 (2005-09-01), pages 529 - 533 *
TAKAHIRO UEKI ET AL.: "Post Genome Iryo no Tenbo: Kakuron -Idenshi Chiryogaku no Genjo to Shorai- Kankohensho", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 59, no. 1, January 2001 (2001-01-01), pages 152 - 156 *
YUKI IMAI ET AL.: "Kan Saibo Zoshoku Inshi ni yoru Hone Keisei Inshi Juyotai Idenshi Hatsugen Sokushin", THE JOURNAL OF THE JAPANESE ORTHOPAEDIC ASSOCIATION, vol. 78, no. 8, 25 August 2004 (2004-08-25), pages S1014 *
YUKI IMAI ET AL.: "Kossetsu Shufuku Shoki Katei ni Okeru Kan Saibo Zoshoku Inshi ni yoru Hone Keisei Inshi Juyotai Hatsugen Yudo", DAI 22 KAI JAPANESE SOCIETY FOR BONE AND MINERAL RESEARCH, pages 164 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507123A (en) * 2014-01-27 2017-03-16 ベイジン ストマトロジー ホスピタル,キャピタル メディカル ユニバーシティ Use of odontogenic stem cells and genetically modified odontogenic stem cells
US10000738B2 (en) 2014-01-27 2018-06-19 Beijing Stomatology Hospital, Capital Medical University Usage of odontogenic stem cells and genetically modified odontogenic stem cells
CN106714823A (en) * 2014-09-10 2017-05-24 克霖固鲁制药股份有限公司 Hgf preparation suitable for treatment of nervous diseases

Similar Documents

Publication Publication Date Title
JP4114952B2 (en) In vivo gene transfer method for wound healing
US20150307575A1 (en) Method of treating or ameliorating metabolic disorders using growth differentiation factor 15 (gdf-15)
US20060099186A1 (en) Compositions and methods for systemic administration of sequences encoding bone morphogenetic proteins
EP2099472B1 (en) Intra-vascular kidney gene therapy with plasmid encoding bmp-7
DE60123218T2 (en) PRODUCT FOR BIOLOGICAL BIND WEB ANCHORING OF BONE
US20120004170A1 (en) Formulation Comprising Bioactive Agents And Method Of Using Same
JP2003506086A (en) TGF-β family monomeric protein
US20020032153A1 (en) Methods and compositions for the treatment and prevention of erectile dysfunction
US20040209812A1 (en) Use of erythropoietin in stroke recovery
KR20090118078A (en) Therapeutic agent for spinal cord injury
WO2010008023A1 (en) Bone elongation promoter
JP2007238487A (en) Method for reconstructing neurological function by using hgf for olfactory mucosa graft to spinal cord injury
JP5637854B2 (en) Regeneration promoter for tendon bone transition tissue or ligament bone transition tissue
Hoane et al. Mammalian-cell-produced neurturin (NTN) is more potent than purified Escherichia coli-produced NTN
EP2351574B1 (en) Promoter for regeneration of tendon-bone junction tissue or ligament-bone junction tissue
JP5419045B2 (en) Spinal cord injury treatment drug
JP2007077125A (en) Spinal cord injury medicine
JP4668197B2 (en) Alveolar differentiation or regeneration inducer
AU2002305751B2 (en) Compositions and methods for systemic administration of sequences encoding bone morphogenetic proteins
JP2007284410A (en) Promoter of neurogenesis
KR20050019075A (en) Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
AU2002305751A1 (en) Compositions and methods for systemic administration of sequences encoding bone morphogenetic proteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09797948

Country of ref document: EP

Kind code of ref document: A1