WO2010005437A1 - Dispositifs de coupe ou de prise réglables utilisant un composé - Google Patents

Dispositifs de coupe ou de prise réglables utilisant un composé Download PDF

Info

Publication number
WO2010005437A1
WO2010005437A1 PCT/US2008/069630 US2008069630W WO2010005437A1 WO 2010005437 A1 WO2010005437 A1 WO 2010005437A1 US 2008069630 W US2008069630 W US 2008069630W WO 2010005437 A1 WO2010005437 A1 WO 2010005437A1
Authority
WO
WIPO (PCT)
Prior art keywords
pivot point
force
handle
assembly
lever
Prior art date
Application number
PCT/US2008/069630
Other languages
English (en)
Inventor
Paul Caravello
Original Assignee
Paul Caravello
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Caravello filed Critical Paul Caravello
Priority to PCT/US2008/069630 priority Critical patent/WO2010005437A1/fr
Publication of WO2010005437A1 publication Critical patent/WO2010005437A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B17/00Hand cutting tools, i.e. with the cutting action actuated by muscle power with two jaws which come into abutting contact
    • B26B17/02Hand cutting tools, i.e. with the cutting action actuated by muscle power with two jaws which come into abutting contact with jaws operated indirectly by the handles, e.g. through cams or toggle levers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G3/00Cutting implements specially adapted for horticultural purposes; Delimbing standing trees
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01LSHOEING OF ANIMALS
    • A01L11/00Farriers' tools and appliances
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01LSHOEING OF ANIMALS
    • A01L15/00Apparatus or use of substances for the care of hoofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B7/00Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools
    • B25B7/02Jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B7/00Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools
    • B25B7/12Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools involving special transmission means between the handles and the jaws, e.g. toggle levers, gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B13/00Hand shears; Scissors
    • B26B13/26Hand shears; Scissors with intermediate links between the grips and the blades, e.g. for remote actuation

Definitions

  • This invention pertains to methods and tools for cutting, gripping or clamping a variety of materials.
  • This invention pertains to methods and tools for cutting, gripping or clamping a variety of materials.
  • An object of this invention is to provide a new and useful method for cutting or gripping a variety of materials while also providing a mechanical advantage for leverage with a minimal effort or gripping force.
  • This invention comprises a means for compounding the leverage and closing the jaws with successive squeezing of the hand levers and instantly releasing the jaws when the handles are released enabling one hand usage.
  • the compound force also remains relatively constant enabling a person with less grip strength to cut through or grip very hard materials.
  • FIG 1 illustrates parts of a tool according to one embodiment. Front and side views are illustrated depicting holes where pivot points may be located and layers of metal of the parts.
  • FIG 2 shows a three dimensional view of the parts of FIG 1 assembled into a tool.
  • FIG 3 illustrates a tool according to one embodiment in three different positions to show how the tool and its parts interact and move when being used according to one embodiment.
  • FIG 4 shows some ergonomic handles with straight or bypass cutters and return spring with tension arm hidden inside of handles according to one embodiment.
  • FIG 5 shows one embodiment of a rack system having two intermeshing racks for smoother adjustments according to one embodiment.
  • FIG 6,7,8,9 show various embodiments of jaws of a tool according to one embodiment.
  • the jaws of FIG 6 may be used for clamping
  • the jaws of FIG 7 may be used for griping
  • the jaws of FIG 8 may be used for flush cutting such as animal hooves
  • the ways of FIG 9 may be used for blade and anvil applications.
  • FIG 10 shows alternate embodiments of tools having a moveable rack according to one embodiment.
  • FIG 11 identifies the parts that make up another embodiment of a tool having two intermeshing slots for positioning and compounding force of a pivot point.
  • FIG 12 illustrates an assembled tool comprising the parts of FIG 11 .
  • the travel distance of the handles of the tool may greatly surpass the travel distance of the cutters or jaws. This results in a very small usable cutting or gripping opening size compared to the handle opening size. Ratcheting type mechanisms have been devised that help alleviate this problem but they have been cumbersome and not easily released if needed. Adjustable rack systems have also been devised but as the rack adjusts the mechanical leverage changes. Sliding fulcrums also experience the leverage change. This invention uses an adjustable rack system to change the shape of a triangle shape without changing the pivot points of the leverage system thus with no change in mechanical leverage.
  • FIG 1 shows the parts for this embodiment described as follows.
  • A1 One half of the jaws including pivot point P2 and Rack. Two layers of metal with an opening around pivot point P2 where Link
  • L1 fits between the two layers of metal.
  • A2 One half of the jaws including pivot points P2 and P3 and handle.
  • A1 fits between the two layers of metal.
  • L1 Single layer of metal with two holes that connect P2 and P5.
  • L2 Two layers of metal with added layers at one end to fit inside of A3 at P4 and the other end to allow L1 to fit inside while fitting inside of L3 at pivot point P5.
  • L3 Two layers of metal joined by a capping piece with two layers attached to it for the Tension Arm, T1 , to interact with at pivot point
  • A3 Two layers of metal with wider opening at P3 and P4 to encompass L2 and A2.
  • T1 is attached inside and allowed to move in one direction but not the other because of the shape of the handle and positioning or P7.
  • T1 Tension Arm for automatic adjustment, a single layer of metal with a hole for the spring and pivot point P7. A slot is also provided for
  • Pivot point P6 to attach to and slide in.
  • Reference FIG 3A from the points P1 to P2 to P5 a triangle is created that adjusts from an obtuse to an acute triangle. It is this adjusting triangle that allows a wide range of Jaw motion but retains the compound forced needed when there is resistance at the Jaws.
  • the triangle can change shape but the mechanical compounding force remains relatively unchanged. This compound force is relational and is mostly determined by the distance between P3 to P4 compared to the distance between P2 to P5. This ratio remains constant through all motions of the tool.
  • the compounding increases slightly as the handles are squeezed closer because the angle created by P3, P4, P5 becomes more obtuse thus increasing the mechanical leverage. In a cutting tool, this increase is available where most needed, the final stages of cutting through a material.
  • the Tension Arm, T1 is pivoted at point P7 inside the handle of A3 such that it can only pivot out of the assembly with tension from the spring creating a force applied to L3 to adjust to a smaller opening of the Jaws.
  • T1 Upon release of the handles T1 will excerpt an opening force on L3 to open the Jaws to their widest by moving P1 to the end of the Rack. This action creates the automatic adjustment for the tool.
  • FIG 3 shows a typical movement of parts as the tool would be used.
  • FIG 11 shows the parts for another embodiment described as follows
  • A1 One half of the jaws including pivot point P2, Rack and a slot for pivot point P5.
  • L3 Two separate identical layers of metal to be positioned on either side of A1 and joined by pivot point pins. The two layers are oriented such that a pin through pivot point P5 will also slide through the P5 slot on A1 and pivot point P1 will fit over the rack on A1 and the tension arm T1 a will be connected by the point P6.
  • A2 One half of the Jaws including pivot points P2, P3 and Handle. Two layers of metal with an opening around pivot point P2 where A1 fits between the two layers of metal. At pivot point P7 the tension arm T1 b is attached.
  • A3 Two layers of metal to encompass A2 and connect at pivot point P3.
  • a slot for P5 which is an arc and the center of such is where P4 would be on the other embodiment is used to apply a compounding force on pivot point P5 and replaces L2 in the previous embodiment.
  • the lower or handle part has a covering on it to allow the tension arm T1 b to slide up and down the handle but stay between the layers of metal in the handle.
  • T1 a and T1 b Tension Arm for automatic adjustment, two single layers of metal connected with a spring. T1 b sliding up and down the handle of A3 with the opening and closing of the handles and T1 a adjusting L3 where it is connected with pivot point P6.
  • T1 b will slide down the handle of A3 pulling on T1 a which is connected to L3 by P6 causing L3 to rotate and move P1 on the rack also causing A1 to rotate and close the jaws until resistance is met.
  • P1 will lock into the Rack and force will be applied at P5 by the slot on A3.
  • the same adjusting triangle from pivot points P1 , P2 and P5 will allow compounding force to overcome the resistance and a slight release will allow the pivot point P1 to advance on the rack. Releasing the handles all the way will make the tension arm slide back up and cause L3 to rotate back opening the jaws to their fullest.
  • a tool assembly comprises a lever and a linkage.
  • the linkage comprises: a first pivot point; a second pivot point movable relative to the first pivot point; a third pivot point, the first pivot point, the second pivot point, and the third pivot point together forming an adjustable triangular shape; and a positioning feature configured to selectively fix the second pivot point in one of a plurality of positions relative to the first pivot point.
  • the plurality of positions are different distances from the first pivot point relative to one another.
  • the linkage is configured to transmit a mechanical compounding force to the lever.
  • the mechanical compounding force is substantially the same regardless of the position of the plurality in which the second pivot point is fixed by the positioning feature.
  • the lever may be configured to pivot about the first pivot point.
  • the first pivot point and the third pivot point may be a fixed distance apart and the fixed distance may remain the same regardless of the position of the plurality in which the second pivot point is fixed.
  • the second pivot point may be fixed in a first one of the positions of the plurality, the first pivot point, the second pivot point, and the third pivot point may form an obtuse triangle and when the second pivot point is fixed in a second one of the positions of the plurality, the first pivot point, the second pivot point, and the third pivot point may form an acute triangle.
  • the linkage may be configured so that the adjustable triangular shape is manually adjustable.
  • the lever may comprise the positioning feature.
  • the feature may comprise a plurality of notches sized to receive the second pivot point.
  • the feature may comprise a first portion comprising a first plurality of teeth and a second portion comprising a second plurality of teeth sized to interlock with the first plurality of teeth, the second portion being attached to the second pivot point.
  • the assembly may further comprise a first handle, a second handle, and an adjustment device.
  • the first handle and the second handle may be joined by a fourth pivot point and may be configured to rotate in respectively opposite directions about the fourth pivot point when squeezed together.
  • the adjustment device may be configured to automatically move the second pivot point from a first position of the plurality to a second position of the plurality when the handles are released after being squeezed together.
  • the second position may be nearer the first pivot point than the first position.
  • the adjustment device may comprise a spring.
  • the lever may be referred to as a first lever and the assembly may further comprise a second lever.
  • the first lever and the second lever may both be configured to rotate about the first pivot point.
  • One end of the first lever may comprise a first surface.
  • One end of the second lever may comprise a second surface.
  • the first surface and the second surface may be configured to cut, grip, or clamp an object located between the first surface and the second surface when the first lever is rotated about the first pivot point in a first direction and the second lever is rotated about the first pivot point in a second direction opposite that of the first direction.
  • the other end of the second lever may comprise a first handle and the assembly may further comprise a second handle moveable relative to the first handle.
  • the second handle may be configured to transmit the mechanical compounding force to the linkage when the first handle and the second handle are squeezed together.
  • a tool assembly comprises two jaws configured to cut, grip, or clamp an object placed between the two jaws; two handles; a linkage comprising: a first pivot point; a second pivot point movable relative to the first pivot point; a third pivot point, the first pivot point, the second pivot point, and the third pivot point together forming a triangle; and a positioning feature configured to selectively fix the second pivot point in one of a plurality of positions relative to the first pivot point, the plurality of positions being different distances from the first pivot point relative to one another.
  • the linkage is configured to transmit a force from at least one of the handles to at least one of the jaws, the force being substantially the same regardless of the position of the plurality in which the second pivot point is fixed by the positioning feature.
  • the force may be a compound force and the assembly may further comprise a cam or gear assembly configured to create the compound force when the handles are squeezed together.
  • the two jaws may comprise bypass cutters or blade and anvil cutters.
  • the tool may be configured to open the jaws and thereby release the object when the force is removed from the at least one of the handles and to position the second pivot point in a position of the plurality in which the jaws are most fully opened compared with the other positions of the plurality.
  • a tool operation method comprises providing a tool comprising: a lever; a linkage comprising: a first pivot point; a second pivot point movable relative to the first pivot point; a third pivot point, the first pivot point, the second pivot point, and the third pivot point together forming an adjustable triangular shape; and a positioning feature configured to selectively fix the second pivot point in one of a plurality of positions relative to the first pivot point, the plurality of positions being different distances from the first pivot point relative to one another.
  • the linkage is configured to transmit a first mechanical compounding force to the lever, the first mechanical compounding force being substantially the same regardless of the position of the plurality in which the second pivot point is fixed by the positioning feature.
  • the method also includes applying a second force to the linkage while the second pivot point is in a first position of the plurality; subsequent to the applying of the second force, at least partially releasing the second force thereby moving the second pivot point into a second position of the plurality; and subsequent to the releasing of the second force, resuming the applying of the second force to the linkage while the second pivot point is in the second position of the plurality.
  • the first pivot point, the second pivot point, and the third pivot point may form an obtuse triangle and during the resuming of the applying of the second force the first pivot point, the second pivot point, and the third pivot point may form an acute triangle.
  • the tool may further comprise a first handle, a second handle, and an adjustment device, the first handle and the second handle being joined by a fourth pivot point and being configured to rotate in respectively opposite directions about the fourth pivot point when squeezed together.
  • the applying of the second force may comprise applying the second force to the linkage via at least one of the first handle and the second handle and the moving of the second pivot point may comprise moving the second pivot point using the adjustment device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Food-Manufacturing Devices (AREA)

Abstract

L’invention concerne un outil de coupe ou de prise capable de produire une force de levier importante en utilisant une liaison de composé et présentant une amplitude de mouvement importante au moyen d’un système de crémaillère réglable présentant une forme triangulaire réglable sans modifier la force du composé. L'outil est conçu de manière à pouvoir être actionné avec une main afin de couper un matériau en serrant successivement les poignées. Il comprend un réglage automatique ou manuel à une ouverture souhaitée avec une liaison qui amplifie la force mécanique des poignées. Il permet, de manière non exhaustive, de couper des sabots d'animaux, d'élaguer des branches, de saisir/couper des boulons et des objets de fixation.
PCT/US2008/069630 2008-07-10 2008-07-10 Dispositifs de coupe ou de prise réglables utilisant un composé WO2010005437A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2008/069630 WO2010005437A1 (fr) 2008-07-10 2008-07-10 Dispositifs de coupe ou de prise réglables utilisant un composé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/069630 WO2010005437A1 (fr) 2008-07-10 2008-07-10 Dispositifs de coupe ou de prise réglables utilisant un composé

Publications (1)

Publication Number Publication Date
WO2010005437A1 true WO2010005437A1 (fr) 2010-01-14

Family

ID=41507333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/069630 WO2010005437A1 (fr) 2008-07-10 2008-07-10 Dispositifs de coupe ou de prise réglables utilisant un composé

Country Status (1)

Country Link
WO (1) WO2010005437A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523248A (en) * 2014-01-28 2015-08-19 Hwei-Rung Chou Switch-free multi-cutting mode shearing tool
WO2017162809A1 (fr) * 2016-03-24 2017-09-28 Karl Klappenecker Gmbh & Co.Kg Instrument, en particulier instrument chirurgical

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420883A (en) * 1981-06-26 1983-12-20 Wallace Mfg. Corp. Pruning apparatus of the compound action hook and blade type
EP1031400A2 (fr) * 1999-02-25 2000-08-30 Kapman AB Coupe-boulon
KR20080034416A (ko) * 2006-10-16 2008-04-21 빅토리녹스 에이쥐 주머니 공구, 특히 주머니 칼

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420883A (en) * 1981-06-26 1983-12-20 Wallace Mfg. Corp. Pruning apparatus of the compound action hook and blade type
EP1031400A2 (fr) * 1999-02-25 2000-08-30 Kapman AB Coupe-boulon
US6226874B1 (en) * 1999-02-25 2001-05-08 Kapman Ab Tool for the cutting or coining of metal
KR20080034416A (ko) * 2006-10-16 2008-04-21 빅토리녹스 에이쥐 주머니 공구, 특히 주머니 칼

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523248A (en) * 2014-01-28 2015-08-19 Hwei-Rung Chou Switch-free multi-cutting mode shearing tool
WO2017162809A1 (fr) * 2016-03-24 2017-09-28 Karl Klappenecker Gmbh & Co.Kg Instrument, en particulier instrument chirurgical

Similar Documents

Publication Publication Date Title
US7434497B2 (en) Adjustable compound cutters or grippers
US7726217B2 (en) Self-adjusting locking pliers
US7472632B2 (en) Locking pliers
EP2083968B1 (fr) Pinces de verrouillage à ajustement automatique
US8245560B2 (en) Crimping pliers
US8776646B2 (en) Locking pliers
US20090056510A1 (en) Hand operated gripping tool
US9085066B2 (en) Tension locking tool
US8534656B2 (en) Clamp arrangement
US20150217430A1 (en) Locking Pliers
CN205734543U (zh) 手持工具
US20100018362A1 (en) Locking pliers
US20140265085A1 (en) Adjustable toggle action quick release locking bar clamp
US20210008692A1 (en) Adjustable locking pliers
TW201713462A (zh) 用於手操作工具之可選擇利益的連桿機構
WO2010005437A1 (fr) Dispositifs de coupe ou de prise réglables utilisant un composé
US20110197647A1 (en) Crimp tool with cam actuated crimp jaw
CA2707297A1 (fr) Outils de prehension manuels
RU2484942C2 (ru) Ручной инструмент для захвата
EP3616275A1 (fr) Outil à main à fonction de libération réglable
US10081093B2 (en) Drive mechanism for jaw actuated device
CZ2004680A3 (cs) Prestavitelný mechanismus rucního nástroje s rovnobezným pohybem pracovních cástí
GB2330108A (en) Wire stripping or crimping tool with cam adjuster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08817302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08817302

Country of ref document: EP

Kind code of ref document: A1