WO2010004967A1 - Ultrasonographic device - Google Patents

Ultrasonographic device Download PDF

Info

Publication number
WO2010004967A1
WO2010004967A1 PCT/JP2009/062322 JP2009062322W WO2010004967A1 WO 2010004967 A1 WO2010004967 A1 WO 2010004967A1 JP 2009062322 W JP2009062322 W JP 2009062322W WO 2010004967 A1 WO2010004967 A1 WO 2010004967A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
charge
analog
ultrasonic
signal
Prior art date
Application number
PCT/JP2009/062322
Other languages
French (fr)
Japanese (ja)
Inventor
雅文 中原
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2010519773A priority Critical patent/JP5299427B2/en
Publication of WO2010004967A1 publication Critical patent/WO2010004967A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target

Definitions

  • the first ultrasonic signal is transmitted into the subject, the second ultrasonic signal coming from the subject based on the first ultrasonic signal is received, and the second ultrasonic signal based on the second ultrasonic signal is received.
  • the present invention relates to an ultrasonic diagnostic apparatus that forms an image in a subject, and in particular, forms an image in the subject based on a harmonic component of a second ultrasonic signal when the frequency of the first ultrasonic signal is a fundamental frequency.
  • the present invention relates to an ultrasonic diagnostic apparatus.
  • Ultrasonic waves usually mean sound waves of 16000 Hz or higher and are applied to various fields such as defect inspection and disease diagnosis because they can be examined non-destructively, harmlessly and in real time.
  • an ultrasound that scans the inside of the subject with ultrasound and images the internal state of the subject based on a reception signal generated from the reflected wave (echo) of the ultrasound coming from inside the subject.
  • echo reflected wave
  • This ultrasonic diagnostic apparatus is smaller and less expensive for medical use than other medical imaging apparatuses, has no radiation exposure such as X-rays, is highly safe, and has a blood flow utilizing the Doppler effect. It has various features such as display capability.
  • an ultrasonic diagnostic apparatus includes a circulatory system (for example, coronary artery of the heart), a digestive system (for example, gastrointestinal), an internal system (for example, liver, pancreas and spleen), and a urinary system (for example, kidney and bladder). Widely used in obstetrics and gynecology.
  • a circulatory system for example, coronary artery of the heart
  • a digestive system for example, gastrointestinal
  • an internal system for example, liver, pancreas and spleen
  • a urinary system for example, kidney and bladder
  • harmonic frequency component harmonic component
  • fundamental frequency component fundamental frequency component
  • S / N ratio signal to noise ratio
  • contrast resolution is improved
  • the frequency is high.
  • the beam width is narrowed and the lateral resolution is improved, the sound pressure is small and the fluctuation of the sound pressure is small at a short distance, so that multiple reflections are suppressed, and attenuation beyond the focal point is fundamental.
  • the fundamental wave is a high frequency
  • it has various advantages such as a greater depth speed.
  • This harmonic imaging technology can be broadly divided into two methods: a filter method and a phase inversion method (pulse inversion method).
  • This filter method is a method of separating a fundamental wave component and a harmonic component by a harmonic detection filter, extracting only the harmonic component, and generating an ultrasonic image from the harmonic component.
  • this phase inversion method transmits first and second transmission signals whose phases are successively inverted in the same direction, and first and second reception signals corresponding to the first and second transmission signals are transmitted.
  • a harmonic component is extracted by addition and an ultrasonic image is generated from the harmonic component.
  • the fundamental wave components in the first and second received signals are inverted in phase
  • the second harmonic component of the harmonic for example, is in phase, so this can be achieved by adding the first and second received signals.
  • Second harmonic components are extracted (see, for example, Patent Document 1 (D1)).
  • an ultrasonic diagnostic apparatus that forms an image of an internal state in a subject using harmonic frequency components
  • the ultrasonic diagnostic apparatus disclosed in Patent Document 2 in view of the fact that the harmonic component is generated according to the amplitude of the ultrasonic wave transmitted from the ultrasonic probe into the subject, the ultrasonic wave having a relatively large amplitude.
  • the second harmonic component is extracted by subtracting the reflected wave of the ultrasonic wave (reflected wave not including the harmonic component) from the same wave after making the amplitudes of the reflected waves equal to each other.
  • An ultrasonic image is formed based on the second harmonic component.
  • the harmonic component in the ultrasonic signal from within the subject has a weak signal level compared to the signal level of the fundamental component, so the output of the ultrasonic probe is directly converted to analog / digital for harmonics.
  • the wave component is extracted, only a part of the resolution (the number of bits representing the output level) of the analog-digital converter is used, so that the gradation of the ultrasonic image is lowered.
  • Attenuation loss may occur due to propagation of an electric signal, or ringing may occur due to an increase in the cutoff characteristics of the filter. .
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an ultrasonic diagnostic apparatus capable of forming an ultrasonic image with higher gradation.
  • the image in the subject is based on the harmonic component contained in the second ultrasonic signal coming from within the subject based on the first ultrasonic signal transmitted into the subject.
  • the harmonic component is obtained by analog processing a plurality of analog signals obtained by sampling the output of the ultrasonic probe that has received the second ultrasonic signal at a predetermined time interval. Extracted. For this reason, the ultrasonic diagnostic apparatus according to the present invention can form an ultrasonic image with higher gradation.
  • FIG. 1 is a diagram illustrating an external configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of the ultrasonic diagnostic apparatus shown in FIG. 1. It is a block diagram which shows the basic composition which extracts the harmonic component in the ultrasonic diagnosing device shown in FIG.
  • FIG. 4 is a diagram for explaining an operation of dividing one charge into two equal charges in the basic configuration shown in FIG. 3.
  • FIG. 4 is a diagram for explaining an operation of integrating two charges into one charge in the basic configuration shown in FIG. 3. It is a figure which shows the structure of the receiving part in the ultrasonic diagnosing device shown in FIG. It is a time chart which shows a part of operation
  • FIG. 1 is a diagram illustrating an external configuration of an ultrasonic diagnostic apparatus according to an embodiment.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the ultrasonic diagnostic apparatus according to the embodiment.
  • the ultrasonic diagnostic apparatus S transmits an ultrasonic wave (first ultrasonic signal) to a subject such as a living body (not shown) and reflects the ultrasonic wave reflected by the subject.
  • the ultrasonic probe 2 that receives the reflected wave (echo, second ultrasonic signal) is connected to the ultrasonic probe 2 via the cable 3 and connected to the ultrasonic probe 2 via the cable 3.
  • the ultrasonic probe 2 transmits the first ultrasonic signal to the subject, and the second received from the subject received by the ultrasonic probe 2.
  • an ultrasonic diagnostic apparatus main body 1 that images the internal state of the subject as an ultrasonic image based on the received signal of the electrical signal generated by the ultrasonic probe 2 in accordance with the ultrasonic signal.
  • the ultrasonic diagnostic apparatus main body 1 includes an operation input unit 11, a transmission unit 12, a reception unit 13, an image processing unit 14, a display unit 15, and a control unit 16. Configured.
  • the operation input unit 11 receives, for example, an input of a command instructing the start of diagnosis and an input of data such as personal information of a subject, and is, for example, an operation panel or a keyboard provided with a plurality of input switches.
  • the transmission unit 12 is a circuit that supplies a transmission signal of an electrical signal to the ultrasonic probe 2 via the cable 3 under the control of the control unit 16 and causes the ultrasonic probe 2 to generate a first ultrasonic signal. is there.
  • the transmission unit 12 includes, for example, a high voltage pulse generator that generates a high voltage pulse.
  • the reception unit 13 is a circuit that receives a reception signal of an electrical signal from the ultrasound probe 2 via the cable 3 under the control of the control unit 16 and extracts a harmonic component from the received reception signal by analog processing. Yes, the harmonic component of the received signal extracted by this analog processing is converted into a digital signal and output to the image processing unit 14.
  • the receiving unit 13, for example, an amplifier (preamplifier) that amplifies the reception signal with a predetermined amplification factor set in advance, and a harmonic component from the reception signal amplified by the amplifier by analog product-sum operation processing based on the CCD principle.
  • a harmonic component extraction circuit for extraction and an analog-digital converter for converting the extracted harmonic component from an analog signal to a digital signal are configured. The receiving unit 13 will be described in detail later.
  • the image processing unit 14 is a circuit that generates an image (ultrasonic image) of the internal state in the subject by known signal processing based on the harmonic component of the received signal extracted by the receiving unit 13 under the control of the control unit 16. It is.
  • the display unit 15 is a device that displays an ultrasonic image of the subject generated by the image processing unit 14 under the control of the control unit 16.
  • the display unit 15 is, for example, a display device such as a CRT display, LCD, organic EL display, or plasma display, or a printing device such as a printer.
  • the control unit 16 includes, for example, a microprocessor, a storage element, and peripheral circuits thereof.
  • the operation input unit 11, the transmission unit 12, the reception unit 13, the image processing unit 14, and the display unit 15 are configured according to the function. These are the circuits that perform overall control of the ultrasound diagnostic apparatus S by controlling each of them.
  • the ultrasonic probe (ultrasonic probe) 2 is a device that transmits a first ultrasonic signal into a subject and receives a second ultrasonic signal coming from within the subject based on the first ultrasonic signal.
  • the ultrasonic probe 2 includes, for example, a piezoelectric material, and includes a plurality of piezoelectric elements that can mutually convert signals between an electric signal and an ultrasonic signal by using a piezoelectric phenomenon.
  • the plurality of piezoelectric elements are arranged in, for example, a line (one-dimensional array) or a two-dimensional matrix (two-dimensional array).
  • the piezoelectric element uses the electrical phenomenon of transmission input from the transmission unit 12 of the ultrasonic diagnostic apparatus main body 1 via the cable 3 using the piezoelectric phenomenon. Is converted into a first ultrasonic signal, and the first ultrasonic signal is transmitted into the subject.
  • the piezoelectric element receives the second ultrasonic signal coming from within the subject, the piezoelectric element is used to convert the received second ultrasonic signal into an electric signal, and the received signal is converted into a cable. 3 to the receiving unit 13 of the ultrasonic diagnostic apparatus main body 1.
  • the ultrasonic probe 2 By applying the ultrasonic probe 2 to the subject, the first ultrasonic signal generated by the piezoelectric element is transmitted into the subject, and the second ultrasonic signal from within the subject is received by the piezoelectric element.
  • the second ultrasonic signal coming from within the subject is not only a reflected wave (echo) reflected by the first ultrasonic signal in the subject due to mismatch of acoustic impedance in the subject, but also, for example, microbubbles (micro).
  • an ultrasonic contrast agent contrast agent
  • ultrasonic waves generated by the microbubbles of the ultrasonic contrast agent based on the first ultrasonic signal transmitted into the subject are also used. is there.
  • an ultrasonic contrast agent is irradiated with ultrasonic waves, the microbubbles of the ultrasonic contrast agent resonate or resonate, and further collapse or disappear at a sound pressure above a certain threshold.
  • ultrasonic waves are generated by resonance of microbubbles or by collapse or disappearance of microbubbles.
  • the piezoelectric element may include, for example, a first piezoelectric element for transmission and a second piezoelectric element for reception stacked on the first piezoelectric element in the sound axis direction.
  • the first piezoelectric element for transmission uses, for example, an inorganic piezoelectric material as its piezoelectric material.
  • the inorganic piezoelectric material include so-called PZT, quartz, lithium niobate (LiNbO 3 ), potassium niobate tantalate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), lithium tantalate (LiTaO 3). And strontium titanate (SrTiO 3 ).
  • the second piezoelectric element for reception uses, for example, an organic piezoelectric material as the piezoelectric material.
  • an organic piezoelectric material for example, a polymer of vinylidene fluoride can be used.
  • a vinylidene fluoride (VDF) copolymer can be used as the organic piezoelectric material.
  • This vinylidene fluoride copolymer is a copolymer (copolymer) of vinylidene fluoride and other monomers.
  • Examples of the other monomers include ethylene trifluoride, tetrafluoroethylene, perfluoroalkyl vinyl ether ( PFA), perfluoroalkoxyethylene (PAE), perfluorohexaethylene, and the like can be used.
  • the electromechanical coupling constant (piezoelectric effect) in the thickness direction varies depending on the copolymerization ratio. For example, an appropriate copolymerization ratio is adopted according to the specifications of the ultrasonic probe, etc. .
  • the copolymerization ratio of vinylidene fluoride is preferably 60 mol% to 99 mol%, and in the case of a composite element in which an organic piezoelectric element is laminated on an inorganic piezoelectric element, The copolymerization ratio of vinylidene is more preferably 85 mol% to 99 mol%.
  • other monomers are preferably perfluoroalkyl vinyl ether (PFA), perfluoroalkoxyethylene (PAE), and perfluorohexaethylene.
  • PFA perfluoroalkyl vinyl ether
  • PAE perfluoroalkoxyethylene
  • polyurea can be used for the organic piezoelectric material.
  • this polyurea it is preferable to produce a piezoelectric body by vapor deposition polymerization.
  • a monomer for polyurea there can be mentioned a general formula, H 2 N—R—NH 2 structure.
  • R may include an alkylene group, a phenylene group, a divalent heterocyclic group, or a heterocyclic group which may be substituted with any substituent.
  • the polyurea may be a copolymer of a urea derivative and another monomer.
  • Preferred polyureas include aromatic polyureas using 4,4′-diaminodiphenylmethane (MDA) and 4,4′-diphenylmethane diisocyanate (MDI).
  • an organic piezoelectric element having such a characteristic that ultrasonic waves can be received over a relatively wide frequency is used for the second piezoelectric portion 223.
  • the frequency band can be widened with a relatively simple structure, and the harmonic component of the received signal can be received.
  • a transmission signal of an electrical signal is generated by the transmission unit 12 under the control of the control unit 16.
  • the generated electrical signal transmission signal is supplied to the ultrasonic probe 2 via the cable 3. More specifically, the transmission signal of the electric signal is supplied to each of the plurality of piezoelectric elements in the ultrasonic probe 2.
  • the electric signal transmission signal is, for example, a voltage pulse repeated at a predetermined cycle.
  • Each of the plurality of piezoelectric elements expands and contracts in the thickness direction when a transmission signal of the electric signal is supplied, and ultrasonically vibrates according to the transmission signal of the electric signal.
  • the ultrasonic probe 2 radiates an ultrasonic wave (first ultrasonic signal).
  • first ultrasonic signal is transmitted from the ultrasonic probe 2 to the subject.
  • the ultrasound probe 2 may be used in contact with the surface of the subject, or may be used by being inserted into the subject, for example, being inserted into a body cavity of a living body. .
  • the first ultrasonic signal transmitted to the subject is reflected by one or a plurality of boundary surfaces having different acoustic impedances inside the subject, and becomes an ultrasonic reflected wave (second ultrasonic signal).
  • the first ultrasonic signal generates a second ultrasonic signal by an ultrasonic contrast agent.
  • the second ultrasonic signal includes not only the frequency (fundamental fundamental frequency) component of the transmitted first ultrasonic signal but also a harmonic frequency component that is an integral multiple of the fundamental frequency. For example, second harmonic components such as twice, three times, and four times the fundamental frequency, third harmonic components, fourth harmonic components, and the like are also included. This second ultrasonic signal is received by the ultrasonic probe 2.
  • the second ultrasonic signal is received by each of the plurality of piezoelectric elements, and mechanical vibrations are converted into electric signals by the piezoelectric elements and are extracted as received signals.
  • the received electric signal is received by the receiving unit 13 controlled by the control unit 16 via the cable 3.
  • the receiving unit 13 performs reception processing on the input reception signal, more specifically, for example, after amplification, extracts a harmonic component by analog product-sum operation processing based on the CCD principle, and converts the harmonic component to an analog signal. To a digital signal and output to the image processing unit 14.
  • the first ultrasonic signal is sequentially transmitted from each piezoelectric element toward the subject, and the second ultrasonic signal reflected by the subject is received by each piezoelectric element.
  • the image processing unit 14 controls the subject by performing known signal processing based on the harmonic component of the reception signal extracted by the reception unit 13 based on the harmonic component of the reception signal extracted from the reception unit 13 under the control of the control unit 16.
  • An internal state image (ultrasonic image) is generated, and the display unit 15 displays the ultrasonic image in the subject generated by the image processing unit 14 under the control of the control unit 16.
  • FIG. 3 is a block diagram showing a basic configuration for extracting harmonic components.
  • FIG. 4 is a diagram for explaining an operation of dividing one charge into two equal parts.
  • FIG. 5 is a diagram for explaining an operation of integrating two charges into one charge.
  • the received signal f (t) including the harmonic component can be generally expressed by Equation 1.
  • a 0 is a constant term (a DC component)
  • a n is the amplitude of the sin component at the n-th harmonic (sine component)
  • b n is cos component in the n-th harmonic ( Cosine component)
  • is the angular frequency
  • t is time.
  • Equation 4 When the differential equation of Equation 4 is rewritten as a difference equation, Equation 4 is rewritten as Equation 5.
  • the harmonic component can be expressed by a functional expression of the fundamental wave, and this expression 7 can be realized by the circuit shown in FIG. 3, for example. That is, in FIG. 3, the harmonic extraction unit H performs analog processing on a plurality of analog signals obtained by sampling the output of the ultrasonic probe 2 that has received the second ultrasonic signal at predetermined time intervals.
  • a circuit for extracting harmonic components when the frequency of the first ultrasonic signal is the fundamental frequency is extracted from the second ultrasonic signal, for example, a plurality of charge holding units 21 (21-1 to 21-3).
  • a plurality of analog multipliers 22 (22-1 to 22-3) provided corresponding to each of the plurality of charge holding units 21, an analog adder 23, and a timing generator 24. Is done.
  • the timing generator 24 is a circuit that generates operation timings of the charge holding unit 21, the analog multiplier 22, and the analog adder 23, and outputs the generated operation timings to these units.
  • the charge holding unit 21 is a circuit that holds the output of the ultrasound probe 2 at a predetermined time with charges. That is, the charge holding unit 21 is a circuit that holds a charge amount corresponding to the output value of the ultrasonic probe 2 at a predetermined time.
  • the expression representing the harmonic component of the received signal is a second-order difference equation such as Expression 6 and Expression 7, in order to obtain a solution of the second-order difference equation, time t and time (t ⁇ Since each output from the three ultrasonic probes 2 at (t) and time (t-2 ⁇ t) is necessary, three charge holding units 21 (21-1 to 21-3) are provided. It is done. The plurality of charge holding units 21 (21-1 to 21-3) are obtained by sampling the output of the ultrasonic probe 2 that has received the second ultrasonic signal at predetermined time intervals.
  • Each of the plurality of analog signals at a plurality of predetermined times is held, operates in response to the operation timing output from the timing generation unit 24, and own charge holding unit 21 at a timing according to the operation timing from the timing generation unit 24.
  • a plurality of charge holding portions 21 include, for example, a semiconductor, an insulator layer formed on the semiconductor, and a plurality of electrodes (gate electrodes) formed on the insulator layer so as to be continuously arranged.
  • a charge transfer device charge coupled device that sequentially transfers charges accumulated in a potential well under a certain electrode to a potential well under a subsequent electrode by applying a driving voltage of a predetermined pattern to each of the electrodes.
  • CCD Charge-Coupled Devices
  • a plurality of analog multipliers 22 are provided corresponding to the charge holding units 21 (21-1 to 21-3), and the analog signals held in the charge holding units 21 are weighted M (0 ⁇ M) by analog processing.
  • This is a circuit that performs ⁇ 1) and performs multiplication.
  • each of these charges is a binary representation m 1 , m 2 , m of weighting (multiplier) M 3 ,..., M n , and the picked up charges are integrated into one, and M ⁇ Q multiplication is performed by analog processing.
  • Such an analog multiplier 22 can be configured using a charge transfer device (charge coupled device).
  • a charge transfer device charge coupled device
  • the charge dividing unit CD that divides the charge Q into two charges is divided into a semiconductor 31, an insulator layer 32 formed on the semiconductor 31, and an insulator layer 32.
  • FIG. 4 shows a first divided portion CD1 including the electrodes 33-1 to 33-3 and a second divided portion CD2 including the electrodes 33-4 to 33-6.
  • signal lines P1 to P3 for applying a voltage to the electrode 33 are connected to the electrodes 33 (33-1 to 33-6).
  • a potential well PW is formed in the semiconductor 31 under the electrode 33 by applying a voltage to the electrode 33 from the outside.
  • the depth of the potential well PW is controlled by the potential applied to the corresponding electrode 33 from the outside.
  • a first pattern driving voltage is applied to the electrodes 33-1 to 33-3; 33-4 to 33-6 in the first and second dividing units CD1 and CD2, thereby providing a first pattern.
  • the first state of the first divided portion CD1 formed by applying a voltage to the third electrode 33-3 of the first divided portion CD1 as an initial state (before being divided into two equal parts and before being divided).
  • a charge Q is held in the potential well PW3.
  • a voltage is applied to each of the second and third electrodes 33-2 and 33-3 of the first division unit CD1 and the first electrode 33-4 of the second division unit CD2.
  • the first potential well PW3 of the first division part CD1 is not only under the third electrode 33-3 but also under the second electrode 33-2 of the first division part CD1 and the first electrode 33-4 of the second division part CD2.
  • the charge Q is held in the potential well PW234 formed under these electrodes 33-2 to 33-4.
  • the voltage applied to the third electrode 33-3 of the first division unit CD1 is eliminated, and the second electrode 33-2 and the second division unit of the first division unit CD1 are removed.
  • a voltage to the first electrode 33-4 of CD2 a charge Q is formed below the second electrode 33-2 of the first divided portion CD1, and the first electrode of the second divided portion CD2 Each of them is divided and held in a potential well PW4 formed under 33-4.
  • the charge Q accumulated in one potential well PW3 in this way is divided into two equal parts to potential wells PW2 and PW4 adjacent to the potential well PW3 by applying a drive voltage of a predetermined pattern to the electrode 33. Retained.
  • the first division unit CD1 applies a voltage to the first and second electrodes 33-1 and 33-2, so that the first division unit CD1.
  • the voltage applied to the second electrode 33-2 of the first division unit CD1 is canceled and the first electrode 33 of the first division unit CD1 is released.
  • ⁇ 1 is applied with a voltage, the charge Q1 divided in half is held in the first potential well of the first divided portion CD1 formed under the first electrode 33-1 of the first divided portion CD1. .
  • the voltage applied to the first electrode 33-4 of the second division unit CD2 is eliminated, and the voltage is applied to the second electrode 33-5 of the second division unit CD2.
  • the charge Q2 divided into two equal parts is held in the second potential well of the second divided portion CD2 formed under the second electrode 33-5 of the second divided portion CD2.
  • the charge dividing unit D applies the driving voltage of a predetermined pattern to each electrode 33, thereby dividing the charge Q held in the third potential well PW3 of the first dividing unit CD1 into two equal parts,
  • the second potential well PW2 first potential well PW1
  • the second potential well PW5 third potential well PW6
  • the charge integration part SD that integrates a plurality of charges into one charge has a semiconductor 41 and an insulator layer 42 formed on the semiconductor 41 as shown in FIG. And a plurality of electrodes (gate electrodes) 43 (43-1 to 43-6) continuously formed on the insulator layer 42, and one electrode including one set of three electrodes 43.
  • FIG. 5 illustrates a first integration unit SD1 including electrodes 43-1 to 43-3 and a second integration unit SD2 including electrodes 43-4 to 43-6. Yes.
  • signal lines P1 to P3 for applying a voltage to the electrode 43 are connected to the electrodes 43 (43-1 to 43-6).
  • a potential well PW is formed in the semiconductor 41 under the electrode 43 by applying a voltage to the electrode 43 from the outside.
  • the depth of the potential well PW is controlled by the potential applied to the corresponding electrode 43 from the outside.
  • a first pattern drive voltage is applied to the electrodes 43-1 to 43-3; 43-4 to 43-6 in the first and second integration units SD1 and SD2, thereby providing a first pattern.
  • the voltage is applied to the first potential well PW1 of the first integration unit SD1 formed by applying a voltage to the first electrode 43-1 of the first integration unit SD1.
  • the first charge Q1 is held, and the second charge Q2 is held in the second potential well PW5 of the second integration part SD2 formed by applying a voltage to the second electrode 43-5 of the second integration part SD2. ing.
  • the first integration unit SD1 applies a voltage to the first and second electrodes 43-1 and 43-2 of the first integration unit SD1, thereby causing the first integration unit SD1 to
  • the first potential well PW1 extends not only under the first electrode 43-1 but also under the second electrode 43-2, and a first charge Q1 is formed under the first and second electrodes 43-1 and 43-2. Held in the potential well PW12.
  • a voltage is applied to the first and second electrodes 43-4 and 43-5 of the second integration unit SD2, so that the second potential well PW5 of the second integration unit SD2 Not only under the two electrodes 43-5 but also under the first electrode 43-4, the second charge Q2 is held in the potential well PW45 formed under the first and second electrodes 43-4 and 43-5.
  • the voltage applied to the first electrode 43-1 of the first integration unit SD1 is eliminated, and the voltage is applied to the second electrode 43-2.
  • the first charge Q1 held in the potential well PW12 formed under the first and second electrodes 43-1 and 43-2 becomes the first integration formed under the second electrode 43-2.
  • the first charge Q1 of the first integration unit SD1 approaches the second integration unit SD2, and the second charge Q2 of the second integration unit SD2 approaches the first integration unit SD1, and the first integration unit SD1
  • the first charge 43-1 and the second charge 43-2 of the second integration part SD2 are arranged with one electrode (the third electrode 43-3 of the first integration part) 43 therebetween.
  • the third electrode 43-3 of the first integration unit SD1 that separates the first charge Q1 of the first integration unit SD1 from the second charge Q2 of the second integration unit SD2.
  • the same voltage as that applied to the second electrode 43-2 of the first integration unit SD1 and the first electrode 43-4 of the second integration unit SD2 is applied to the first integration unit SD1.
  • the second potential well PW2 extends not only under the second electrode 43-2 but also under the third electrode 43-3, and the first potential well PW4 of the second integration part SD2 is not only under the first electrode 43-4.
  • the second and third electrodes 43-2 and 43-3 of the first integration part SD1 and the first electrode 43-3 of the second integration part SD are also obtained.
  • Potential well PW over 4 34 is formed, a first charge Q1 of the first integrated portion SD1 and the second charge Q2 of the second integration section SD2 is integrated. Then, at time t25 of the next operation timing, the voltage applied to the second electrode 43-2 of the first integration unit SD1 is canceled and applied to the first electrode 43-4 of the second integration unit SD2.
  • the voltage is applied to the third electrode 43-3 of the first integration unit SD1, thereby the first charge Q1 of the integrated first integration unit CD1 and the second integration unit SD2.
  • the second charge Q2 is held in the third potential well PW3 of the first integration part SD1 formed under the third electrode 43-3 of the first integration part SD1, and the first charge Q1 and the first charge Q1 of the first integration part SD1 2
  • the charge integration unit SD applies the drive voltage of a predetermined pattern to each electrode, thereby causing the first charge Q1 held in the potential well PW of the first integration unit SD1 and the potential well of the second integration unit SD2.
  • the second charge Q2 held in PW is guided to and integrated with one potential well PW, whereby the first charge Q1 of the first integration unit SD1 and the second charge Q2 of the second integration unit SD2 are combined. Can be added as is. That is, the charge integration unit SD can add the first charge Q1 of the first integration unit SD1 and the second charge Q2 of the second integration unit SD2 in an analog manner.
  • the analog multiplying unit 22 includes, for example, a plurality of charge dividing units CD connected in series and a charge integrating unit SD, and the charge dividing unit CD sets the charge amount Q corresponding to the output value of the charge holding unit 21 to 2. Divide into two equal parts by the charge dividing unit CD and repeat this to obtain a plurality of charges of 2 ⁇ 1 Q, 2 ⁇ 2 Q, 2 ⁇ 3 Q,..., 2 ⁇ n Q .., And divide these charges according to the binary representations m 1 , m 2 , m 3 ,..., M n of weighting M, and integrate the picked-up charges in the charge integration unit SD.
  • XQ multiplication can be performed in analog.
  • Such an analog multiplier 22 is, for example, disclosed in Japanese Patent Application Laid-Open No. 06-237173 (Japanese Patent No. 2599679), Japanese Patent Application Laid-Open No. 06-350453 (Japanese Patent No. 2955734), and Japanese Patent Application Laid-Open No. 07-335866 (Patent Document). No. 2665726) and JP-A-08-050546 can also be referred to.
  • the weight M of the analog multiplier 22 is set based on a coefficient of a functional expression that expresses the harmonic component with the fundamental wave of the first ultrasonic signal.
  • the second harmonic component is expressed by the functional expression of Expression 7, and therefore the weight M of the term of f (t ⁇ t) is 0.5.
  • the analog adder 23 is a circuit that adds the outputs (multiplication results) of the plurality of analog multipliers 22 by analog processing. For example, the charges held as the multiplication results of the analog multipliers 22 are integrated into one. By doing so, each multiplication result of the plurality of analog multipliers 22 can be added by analog processing.
  • the analog adder 23 is configured by, for example, a charge integration unit SD shown in FIG. 5 and is configured using a charge transfer element (charge coupled element).
  • the charge holding unit 21, the analog multiplication unit 22, and the analog addition unit 23 can be configured using charge transfer elements (charge coupled devices) based on the CCD principle.
  • FIG. 6 is a diagram illustrating a configuration of a receiving unit in the ultrasonic diagnostic apparatus according to the embodiment.
  • FIG. 7 is a time chart showing a part of the operation of the receiving unit.
  • the reception unit 13 includes a preamplifier unit 51, an absolute value conversion unit 52, a sample hold unit (SH unit) 53, a charge storage unit 54, an analog multiplication unit 55, and an analog addition.
  • a unit 56, an analog-digital conversion unit 57, and a timing generation unit 58 are provided.
  • the harmonic extraction unit H corresponds to the charge holding unit 54, the analog multiplication unit 55, and the analog addition unit 56.
  • the preamplifier unit 51 is an amplification circuit that is connected to the ultrasound probe 2 and linearly amplifies the output of the ultrasound probe 2 based on the second ultrasound signal coming from within the subject with a predetermined amplification factor. . Note that the preamplifier unit 51 can be omitted when a signal having a level sufficient to execute subsequent signal processing is output from the ultrasonic probe 2.
  • the absolute value converting unit 52 is connected to the preamplifier unit 51, outputs the absolute value of the output of the preamplifier unit 51 (output of the ultrasonic probe 2), and the positive and negative signs (code bit string) in the output of the preamplifier unit 51. It is a circuit to output. Since the charges processed by the charge holding unit 21, the analog multiplication unit 22, and the analog addition unit 23 configured using a charge transfer element (charge coupled device) based on the CCD principle are positive values, the reception is performed. In order for the unit 13 to process both positive and negative, it is necessary to divide the output of the ultrasound probe 2 into its size and sign.
  • the output of the preamplifier unit 51 is converted into an absolute value by the absolute value converting unit 52 and output, and the sign thereof is output.
  • This code (code bit string) is subsequently propagated through each part of the SH unit 53, the charge holding unit 54, the analog multiplication unit 55, and the analog addition unit 56 in accordance with the output of the ultrasonic probe 2 converted into an absolute value. .
  • the SH unit 53 is connected to the absolute value converting unit 52 and outputs the output of the absolute value converting unit 52 (the ultrasonic probe 2 converted into an absolute value) at a sampling period ⁇ t according to the operation timing from the timing generating unit 58. Of the output).
  • the SH unit 53 outputs the charge corresponding to the held output of the absolute value unit 52 to the charge holding unit 54 at a timing according to the operation timing.
  • the charge holding unit 54 is connected to the SH unit 53 and corresponds to the charge holding unit 21 described above, and is a circuit that holds a charge amount corresponding to the output value of the ultrasonic probe 2 at a predetermined time.
  • the charge holding unit 54 includes at least three charge holding units 54-1, 54-2, and 54-3 in order to extract the second harmonic component from the output of the ultrasound probe 2. .
  • Each of these charge holding units 54-1, 54-2, 54-3 is connected in series, and the charge held in its own charge holding unit 54 at a timing according to the operation timing from the timing generation unit 58.
  • a plurality (three in this example) of charge holding units 54 constitutes a charge transfer element (charge coupled element).
  • each of the charge holding units 54-1, 54-2, and 54-3 has the three ultrasonic probes 2 at time (t + ⁇ t), time t, and time (t ⁇ t).
  • the output values f (t + ⁇ t), f (t), and f (t ⁇ t) are held.
  • the analog multiplication unit 55 corresponds to the analog multiplication unit 22 described above, divides the charge amount Q corresponding to the output value of the charge holding unit 21 into two equal parts, further divides one into two equal parts, and repeats this to obtain 2 ⁇ 1 Q, 2 ⁇ 2 Q, 2 ⁇ 3 Q,..., 2 ⁇ n Q generate a plurality of charges, and each of these charges is expressed as a binary of weight (multiplier) M (0 ⁇ M ⁇ 1) expression m 1, m 2, m 3 , and sifting., according to m n, by integrating the picked charges, a circuit for multiplying the M ⁇ Q by analog processing.
  • a plurality (three in this example) of analog multipliers 55 are provided corresponding to the charge holding units 21 (21-1 to 21-3). These analog multipliers 55-1 to 55-3 are connected to the corresponding charge holding units 21-1 to 21-3, respectively.
  • each of the charge holding units 54-1, 54-2, and 54-3 includes the three ultrasonic probes 2 at time (t + ⁇ t), time t, and time (t ⁇ t). Since the output values f (t + ⁇ t), f (t), and f (t ⁇ t) are held, the analog calculation unit 55-1 connected to the charge holding unit 54-1 has 0.5 ⁇ An analog calculation unit 55-2 that calculates f (t + ⁇ t) and is connected to the charge holding unit 54-2 calculates a ⁇ f (t) and is connected to the charge holding unit 54-3.
  • the analog calculation unit 55-3 needs to calculate 0.5 ⁇ f (t ⁇ t).
  • the multiplier a is determined based on the sampling period ⁇ t and the fundamental wave period T, as can be seen from Equation 6. More specifically, the multiplier a is proportional to the square of the sampling period ⁇ t and inversely proportional to the square of the period T of the fundamental wave.
  • the analog multiplier 55-1 can be configured by a circuit that bisects the charge amount Q corresponding to the output value of the charge holding unit 54-1, that is, a circuit that realizes 1 ⁇ 2 ⁇ 1 Q. .
  • the analog multiplication unit 55-2 sets the charge amount Q corresponding to the output value of the charge holding unit 54-2 to 1 ⁇ 2 ⁇ 1 Q + 1 ⁇ 2 ⁇ 2 Q + 1 ⁇ 2 ⁇ 3 Q + 1 ⁇ 2 ⁇ 4 Q + 1 ⁇ 2 ⁇ 5 Q + 1 ⁇ 2 ⁇ 6 Q + 1 ⁇ 2 ⁇ 7 Q + 1 ⁇ 2 ⁇ 8 Q + 1 ⁇ 2 ⁇ 9 Q
  • the analog multiplier 55-3 can be configured by a circuit that bisects the charge amount Q corresponding to the output value of the charge holding unit 54-3, that is, a circuit that realizes 1 ⁇ 2 ⁇ 1 Q.
  • the analog multiplication unit 55-1 transfers the charge amount Q of the charge holding unit 54-1 through the sensing floating gate 541-1, and the charge equal to the charge amount Q of the charge holding unit 54-1.
  • the sensing floating gate 541-1 is a detection floating gate that detects the charge amount Q of the charge holding unit 54-1 in a non-destructive manner.
  • the sensing floating gate 541-1 is connected to the semiconductor in an electrode provided on the semiconductor via an insulator layer. By detecting the potential, the amount of charge accumulated in the semiconductor is detected nondestructively, and the same applies to sensing floating gates 541-2 and 541-3 described later.
  • the charge dividing unit 621-1 includes the first and second dividing units, and the charge Q2 held in one of the dividing units, for example, the second dividing unit, is divided into eight stages. Are transferred by the charge transfer units 631-1 to 638-1.
  • the eight-stage charge transfer units 631-1 to 638-1 of the analog multiplier 55-1 are required to synchronize the output of the analog multiplier 55-1 and the output of the analog multiplier 55-2. It is.
  • the analog multiplying unit 55-2 transfers the charge amount Q of the charge holding unit 54-2 via the sensing floating gate 541-2, and holds the charge amount Q equal to the charge amount Q of the charge holding unit 54-2.
  • the charge dividing units 621-2 to 629-2 include first and second dividing units, and the charge held in one of the divided units, for example, the second dividing unit.
  • Q2 is further divided into two equal parts by the next-stage charge dividing units 622-2 to 628-2, and the charge Q1 held in the other divided part, for example, the first divided part is changed to the next-stage charge adding parts 642 to It is added at 649.
  • the charge addition units 642 to 649 include first and second addition units, and one of them, for example, the second addition unit is the charge division units 621-2 to 629-2 in the preceding stage.
  • the other division unit (first division unit) is also used, and the other, for example, the first addition unit is connected in series with the first addition unit in the next stage, and the timing generation unit 58 The charges held in the first adder of its own are sequentially transferred to the first adder in the next stage at a timing according to the operation timing.
  • the analog multiplying unit 55-3 transfers the charge amount Q of the charge holding unit 54-3 via the sensing floating gate 541-3, and holds the charge amount Q equal to the charge amount Q of the charge holding unit 54-3.
  • the charge division unit 621-3 that divides the charge amount Q of the charge transfer unit 61-3 into two equal parts and the charge division unit 621-3 into two equal parts
  • the charge dividing unit 621-3 includes the first and second dividing units similarly to the above-described charge dividing unit CD, and the charge Q1 held in one of the dividing units, for example, the first dividing unit, is 8 stages. Are transferred by the charge transfer units 631-3 to 638-3.
  • the eight-stage charge transfer units 631-3 to 638-3 of the analog multiplier 55-3 are also necessary for synchronizing the output of the analog multiplier 55-3 and the output of the analog multiplier 55-2. It is.
  • the analog adder 56 corresponds to the analog adder 23 described above, and is a circuit that adds the multiplication results of the plurality of analog multipliers 55 (55-1 to 55-3) by analog processing.
  • each analog multiplier By integrating the charges held as the multiplication results of the unit 55 (55-1 to 55-3) into one, the multiplication results of the plurality of analog multiplication units 55 (55-1 to 55-3) are converted into analog It is a circuit for adding in processing. More specifically, the analog adder 56, when the sign in the output of the ultrasound probe 2 calculated by the analog multiplier 55 is positive (+), each analog multiplier 55-1 to 55. ⁇ 3 when the sign of the output of the ultrasound probe 2 calculated by the charge integrating unit 71 and the analog multiplying unit 55 is negative ( ⁇ ).
  • a charge integration unit 72 that integrates each charge, which is a multiplication result of the units 55-1 to 55-3, and an analog subtraction circuit 73 are provided.
  • the charge integration units 71 and 72 are configured in the same manner as the above-described charge integration unit SD, and integrate three charges.
  • the output of the charge integration unit 71 is connected to the positive input terminal (+) of the analog subtraction circuit, and the output of the charge integration unit 72 is connected to the negative input terminal ( ⁇ ) of the analog subtraction circuit. Therefore, when the sign of the output of the ultrasound probe 2 calculated by the analog multiplier 55 is positive (+), the output value of the charge integrating section 71 having a plus sign is the analog subtractor circuit 73. When the sign of the output of the ultrasound probe 2 outputted from the signal and the analog multiplier 55 is negative ( ⁇ ), the output value of the charge integrating unit 72 having a minus sign is analog subtracted. Output from the circuit 73.
  • the analog-digital converter 57 is a circuit that is connected to the analog adder 56 and converts the output value of the analog adder 56 from an analog signal to a digital signal.
  • the output of the analog-digital conversion unit 57 is the output of the reception unit 13 and is output to the image processing unit 14.
  • Each of the analog adder 56 and the analog-digital converter 57 is supplied with an operation clock from the timing generator 58 and operates at a predetermined operation timing.
  • the charge division units 621-1, 621-2 to 629-2, 621-3, the charge transfer units 631-1 to 638-1, 631-3 to 638-3, and the charge addition unit 642 to 649 are also operated at the predetermined operation timing.
  • the second ultrasonic signal coming from within the subject based on the first ultrasonic signal transmitted into the subject is received by the ultrasonic probe 2, and the output of the ultrasonic probe 2 is sent to the preamplifier unit 51. Entered.
  • the output of the ultrasound probe 2 is linearly amplified by the preamplifier unit 51 at a predetermined amplification factor and input to the absolute value unit 52.
  • the output of the preamplifier unit 51 is shown, for example, in the uppermost stage of FIG. In FIG. 7, the output from the preamplifier unit 51 (first stage), the output from the absolute value unit 52 (second stage), and the SH unit 53 in order from the first stage at the top to the seventh stage at the bottom.
  • Output (third stage), charge holding section 54-1 (fourth stage), charge holding section 54-2 (fifth stage), charge holding section 54-3 (sixth stage) and charge holding section 54-4 (Seventh stage) is shown.
  • the output of the preamplifier unit 51 is converted into an absolute value by the absolute value converting unit 52 (negative is turned around on the axis to be positive) and input to the SH unit 53 as shown in the second stage of FIG.
  • the output of the absolute value converting unit 52 is sampled by the SH unit 53 at the predetermined operation timing (sampling period) ⁇ t, and the charge amount and sign are stored in the charge holding unit 54-1. Is input.
  • the output of the SH unit 53 is held by the charge holding unit 54-1, as shown in the fourth stage of FIG.
  • the own charge holding unit 54 at a timing corresponding to the predetermined operation timing ⁇ t. are sequentially transferred to the subsequent charge holding unit 54 together with the sign (+ or ⁇ ).
  • the charge holding unit 54-1 sequentially stores the charges held in its own charge holding unit 54-1 at the timing according to the predetermined operation timing ⁇ t together with the sign thereof. Forward to.
  • the data is sequentially transferred to the unit 638-1 at a timing corresponding to the predetermined operation timing ⁇ t.
  • the output (the output of the charge transfer unit 638-1) is input to the charge integrating part 71 of the analog adder 56, and the sign is negative. In this case, the output (the output of the charge transfer unit 638-1) is input to the charge integration unit 72 of the analog addition unit 56.
  • the charge Q (t) of the charge holding unit 54-2 is transferred to the charge transfer unit 61-2 together with the sign thereof, and the charge Q (t) is transferred to the first-stage charge dividing unit.
  • the output (the output of the charge adder 649) is input to the charge integrating part 71 of the analog adder 56, and when the sign is negative.
  • the output (the output of the charge adding unit 649) is input to the charge integrating unit 72 of the analog adding unit 56.
  • the charge Q (t ⁇ t) of the charge holding unit 54-3 is transferred to the charge transfer unit 61-3 together with its sign, and the charge Q (t ⁇ t) is transferred to the charge transfer unit 61-3.
  • the data is sequentially transferred to the unit 638-3 together with the code at a timing corresponding to the predetermined operation timing ⁇ t.
  • the output when the sign is positive, the output (the output of the charge transfer unit 638-3) is input to the charge integrating unit 71 of the analog adder 56, and the sign is negative. In this case, the output (the output of the charge transfer unit 638-3) is input to the charge integration unit 72 of the analog addition unit 56.
  • the analog adder 56 when the sign of the charge to be processed is positive, the outputs of the analog multipliers 55-1 to 55-3 are integrated and added by the charge integrator 71, and an analog subtractor circuit is added. 73 is input to the positive input terminal (+). On the other hand, when the sign of the charge to be processed is negative, the outputs of the analog multipliers 55-1 to 55-3 are integrated and added by the charge integration unit 72, and the negative input terminal of the analog subtraction circuit 73 is added. Input to (-).
  • the output value of the charge integration unit 71 having a plus sign is output from the analog subtraction circuit 73, and the sign of the charge to be processed is negative ( In the case of ⁇ ), the output value of the charge integration unit 72 having a minus sign is output from the analog subtraction circuit 73.
  • the output of the analog subtraction circuit 73 is the output of the analog addition unit 56 and is input to the analog-digital conversion unit 57.
  • the output of the analog addition unit 56 is converted from an analog signal to a digital signal and used as the output of the reception unit 13.
  • the receiving unit 13 performs harmonic processing from the second ultrasonic signal by performing analog processing (signal processing as analog) on the output (second ultrasonic signal) of the ultrasonic probe 2.
  • analog processing signal processing as analog
  • the component is extracted, and the harmonic component of the second ultrasonic signal extracted by the analog processing is converted into a digital signal and output to the image processing unit 14.
  • a plurality of analog signals having a predetermined time difference in the ultrasonic probe 2 are analog-processed, that is, the plurality of analog signals are analog signals.
  • a harmonic component of the second ultrasonic signal is extracted, and an ultrasonic image of the subject is formed based on the harmonic component. Therefore, the ultrasonic diagnostic apparatus S does not need to transmit / receive twice in one place in the subject, and extracts harmonic components from the second ultrasonic signal with higher resolution by analog processing.
  • An ultrasonic image with higher gradation can be formed without lowering. Further, since the harmonic component is not extracted by the filter, no attenuation loss occurs due to propagation of the electric signal, and no ringing occurs.
  • the harmonic component is expressed as a function by the fundamental wave of the first ultrasonic signal
  • the harmonic extraction unit H is simply configured by a circuit that performs analog processing.
  • harmonic extraction units H is configured more simply, and the harmonic extraction unit H can be made into an IC chip.
  • the harmonic extraction unit H includes It is configured more simply. Further, since the analog signal is analog-processed by the charge division and integration, the harmonic extraction unit H can execute analog arithmetic processing with relatively high accuracy, and can generate harmonic components with relatively high accuracy. Can be extracted.
  • FIG. 8 is a diagram showing the received wave of the ultrasonic probe and the harmonic components included in the received wave.
  • FIG. 9 is a fundamental wave extracted from the received wave of the ultrasonic probe shown in FIG. It is a figure which shows a component (1st), a 2nd harmonic component (2nd), and a 3rd harmonic component (3rd).
  • the horizontal axis represents time
  • the left vertical axis represents the amplitude level of the received wave
  • the right vertical axis represents the amplitude level of the harmonic component.
  • a solid line indicates a received wave
  • a broken line indicates a harmonic component.
  • the horizontal axis represents frequency
  • the left vertical axis represents the amplitude level of the fundamental wave component (1st)
  • the right vertical axis represents the amplitude level of the harmonic component (2nd, 3rd).
  • the solid line indicates the fundamental wave component (1st)
  • the broken line indicates the second harmonic component (2nd) and the third harmonic component (3rd). 8 and 9 show the results obtained by simulation.
  • the harmonic component contained in the received wave has an amplitude level that is significantly smaller than the amplitude level of the received wave, but as can be seen from FIG.
  • the fundamental wave component is almost completely suppressed. Therefore, when converting a harmonic component from an analog signal to a digital signal, the entire dynamic range of the analog-to-digital converter can be used, and the harmonic component is converted with high resolution. Tonality is improved.
  • An ultrasonic diagnostic apparatus forms an image in the subject based on a second ultrasonic signal coming from the subject based on a first ultrasonic signal transmitted into the subject.
  • An apparatus that performs analog processing on a plurality of analog signals obtained by sampling the output of the ultrasonic probe that has received the second ultrasonic signal at a predetermined time interval, thereby enabling the second ultrasonic wave to be processed.
  • a harmonic extraction unit that extracts a harmonic component in the case where the frequency of the first ultrasonic signal is a fundamental frequency from a signal, and the inside of the subject based on the harmonic component extracted by the harmonic extraction unit
  • An image processing unit for forming an image.
  • an ultrasonic diagnostic apparatus is based on a transmission unit for transmitting a first ultrasonic signal into a subject via an ultrasonic probe, and the first ultrasonic signal.
  • a transmission unit for transmitting a first ultrasonic signal into a subject via an ultrasonic probe, and the first ultrasonic signal.
  • the second A receiving unit that extracts a harmonic component when the frequency of the first ultrasonic signal is a fundamental frequency from an ultrasonic signal, and an image in the subject based on the harmonic component extracted by the receiving unit.
  • an image processing unit to be formed.
  • the harmonic extraction unit performs analog processing on a plurality of analog signals having a predetermined time difference in the ultrasonic probe, that is, the plurality of analog signals are analog signals.
  • the harmonic component of the second ultrasonic signal is extracted, and the image processing unit forms an image in the subject based on the harmonic component. Therefore, the ultrasonic diagnostic apparatus having such a configuration does not require transmission / reception twice for one place in the subject, and extracts a harmonic component from the second ultrasonic signal by analog processing. An ultrasonic image with higher gradation can be formed without lowering.
  • the reception unit corresponds to each of the plurality of charge holding units that hold the plurality of analog signals and the plurality of charge holding units.
  • a harmonic extraction unit including a plurality of analog multiplication units provided and an analog addition unit that adds the outputs of the plurality of analog multiplication units by analog processing, and the analog multiplication unit is held in the charge holding unit
  • the analog signal is weighted by analog processing, and the weighting is set based on a coefficient of a functional expression in which the harmonic component is expressed by a fundamental wave of the first ultrasonic signal.
  • the harmonic component is expressed as a function by the fundamental wave of the first ultrasonic signal, and the harmonic extraction unit can be easily configured with a circuit that performs analog processing.
  • the plurality of charge holding units are connected in series and receive analog signals held by their own charge holding units in response to a predetermined operation timing.
  • the analog multiplying unit is a multiplier using a charge transfer element
  • the analog adder is an adder using a charge transfer element.
  • the harmonic extraction unit can be configured more easily,
  • the extraction unit can be made into an IC chip.
  • the analog multiplying unit divides the electric charge into two equal parts and respectively holds them in the first and second dividing units, and a plurality of electric charges connected in series.
  • a division unit and a charge integration unit that integrates a plurality of charges into one charge, and the charge division unit divides the charge amount Q corresponding to the analog signal held by the charge holding unit into two equal parts, One of the two is divided into two equal parts in the subsequent charge dividing unit, and by repeating this, a plurality of n charges of 2 ⁇ 1 Q, 2 ⁇ 2 Q, 2 ⁇ 3 Q,..., 2 ⁇ n Q are generated. These charges are discarded according to the binary expression m 1 , m 2 , m 3 ,..., M n of the weight M, and the taken-up charges are integrated by the charge integration unit.
  • the harmonic extraction unit can be configured more easily. Become.
  • the harmonic extraction unit can execute analog calculation processing with relatively high accuracy and extract harmonic components with relatively high accuracy. can do.
  • an ultrasonic diagnostic apparatus that can form an ultrasonic image with higher gradation without reducing the frame rate.

Abstract

An ultrasonographic device S includes: an image processing unit (14) which forms an image in an examinee according to a higher harmonic component contained in a second ultrasonic signal coming from the examinee and based on a first ultrasonic signal transmitted into the examinee; and a reception unit (13) which analog-processes a plurality of analog signals obtained by sampling, at a predetermined time interval, an output of an ultrasonic probe (2) which has received the second ultrasonic signal upon formation of the image by the image processing unit (14), thereby extracting the higher harmonic component.

Description

超音波診断装置Ultrasonic diagnostic equipment
 本発明は、被検体内に第1超音波信号を送信し前記第1超音波信号に基づく前記被検体内から来た第2超音波信号を受信して、前記第2超音波信号に基づく前記被検体内の画像を形成する超音波診断装置に関し、特に、第1超音波信号の周波数を基本周波数とした場合に第2超音波信号の高調波成分に基づいて前記被検体内の画像を形成する超音波診断装置に関する。 In the present invention, the first ultrasonic signal is transmitted into the subject, the second ultrasonic signal coming from the subject based on the first ultrasonic signal is received, and the second ultrasonic signal based on the second ultrasonic signal is received. The present invention relates to an ultrasonic diagnostic apparatus that forms an image in a subject, and in particular, forms an image in the subject based on a harmonic component of a second ultrasonic signal when the frequency of the first ultrasonic signal is a fundamental frequency. The present invention relates to an ultrasonic diagnostic apparatus.
 超音波は、通常、16000Hz以上の音波をいい、非破壊、無害および略リアルタイムでその内部を調べることが可能なことから、欠陥の検査や疾患の診断等の様々な分野に応用されている。その一つに、被検体内を超音波で走査し、被検体内から来た超音波の反射波(エコー)から生成した受信信号に基づいて当該被検体内の内部状態を画像化する超音波診断装置がある。この超音波診断装置は、医療用では、他の医療用画像装置に較べて小型で安価であり、そしてX線等の放射線被爆が無く安全性が高いこと、また、ドップラ効果を応用した血流表示が可能であること等の様々な特長を有している。このため、超音波診断装置は、循環器系(例えば心臓の冠動脈等)、消化器系(例えば胃腸等)、内科系(例えば肝臓、膵臓および脾臓等)、泌尿器系(例えば腎臓および膀胱等)および産婦人科系等で広く利用されている。 Ultrasonic waves usually mean sound waves of 16000 Hz or higher and are applied to various fields such as defect inspection and disease diagnosis because they can be examined non-destructively, harmlessly and in real time. For example, an ultrasound that scans the inside of the subject with ultrasound and images the internal state of the subject based on a reception signal generated from the reflected wave (echo) of the ultrasound coming from inside the subject. There is a diagnostic device. This ultrasonic diagnostic apparatus is smaller and less expensive for medical use than other medical imaging apparatuses, has no radiation exposure such as X-rays, is highly safe, and has a blood flow utilizing the Doppler effect. It has various features such as display capability. For this reason, an ultrasonic diagnostic apparatus includes a circulatory system (for example, coronary artery of the heart), a digestive system (for example, gastrointestinal), an internal system (for example, liver, pancreas and spleen), and a urinary system (for example, kidney and bladder). Widely used in obstetrics and gynecology.
 また、近年では、超音波探触子から被検体内へ送信された超音波の周波数(基本周波数)成分ではなく、その高調波周波数成分(高調波成分)によって被検体内の内部状態の画像を形成するハーモニックイメージング(Harmonic Imaging)技術が研究、開発されている。このハーモニックイメージング技術は、基本周波数成分(基本波成分)のレベルに比較してサイドローブレベルが小さく、S/N比(signal to noise ratio)が良くなってコントラスト分解能が向上すること、周波数が高くなることによってビーム幅が細くなって横方向分解能が向上すること、近距離では音圧が小さくて音圧の変動が少ないために多重反射が抑制されること、および、焦点以遠の減衰が基本波並みであり高周波を基本波とする場合に較べて深速度を大きく取れること等の様々な利点を有している。 Further, in recent years, an image of the internal state in the subject is not represented by the harmonic frequency component (harmonic component), but by the frequency (fundamental frequency component) of the ultrasonic wave transmitted from the ultrasonic probe into the subject. Harmonic Imaging technology is being researched and developed. In this harmonic imaging technology, the side lobe level is small compared to the level of the fundamental frequency component (fundamental wave component), the S / N ratio (signal to noise ratio) is improved, the contrast resolution is improved, and the frequency is high. As a result, the beam width is narrowed and the lateral resolution is improved, the sound pressure is small and the fluctuation of the sound pressure is small at a short distance, so that multiple reflections are suppressed, and attenuation beyond the focal point is fundamental. Compared with the case where the fundamental wave is a high frequency, it has various advantages such as a greater depth speed.
 このハーモニックイメージング技術には、大別すると、フィルタ法と位相反転法(パルスインバージョン法)との2つの方法がある。このフィルタ法は、高調波検出フィルタにより基本波成分と高調波成分とを分離し、高調波成分だけを抽出し、この高調波成分から超音波画像を生成する方法である。また、この位相反転法は、同一方向に続けて互いに位相が反転している第1および第2送信信号を送信し、これら第1および第2送信信号に対応する第1および第2受信信号を加算することによって高調波成分を抽出し、この高調波成分から超音波画像を生成する方法である。第1および第2受信信号における基本波成分は、位相が反転しているが、高調波の例えば2次高調波成分は、同相となるため、第1および第2受信信号を加算することによってこの2次高調波成分が抽出される(例えば、特許文献1(D1)参照)。 This harmonic imaging technology can be broadly divided into two methods: a filter method and a phase inversion method (pulse inversion method). This filter method is a method of separating a fundamental wave component and a harmonic component by a harmonic detection filter, extracting only the harmonic component, and generating an ultrasonic image from the harmonic component. Further, this phase inversion method transmits first and second transmission signals whose phases are successively inverted in the same direction, and first and second reception signals corresponding to the first and second transmission signals are transmitted. In this method, a harmonic component is extracted by addition and an ultrasonic image is generated from the harmonic component. Although the fundamental wave components in the first and second received signals are inverted in phase, the second harmonic component of the harmonic, for example, is in phase, so this can be achieved by adding the first and second received signals. Second harmonic components are extracted (see, for example, Patent Document 1 (D1)).
 また、高調波周波数成分によって被検体内の内部状態の画像を形成する超音波診断装置として、例えば、特許文献2(D2)に開示の超音波診断装置もある。この特許文献2に開示の超音波診断装置では、高調波成分が超音波探触子から被検体内へ送信された超音波の振幅に応じて発生することに鑑み、振幅が比較的大きな超音波を被検体内へ送信することによって被検体内から来た超音波の反射波(高調波成分を含む反射波)から、振幅が比較的小さな超音波を被検体内へ送信することによって被検体内から来た超音波の反射波(高調波成分を含まない反射波)を、それら反射波の振幅の大きさを互いに等しく揃えてから減算することによって、2次高調波成分が抽出され、この抽出した2次高調波成分に基づいて超音波画像が形成される。 Further, as an ultrasonic diagnostic apparatus that forms an image of an internal state in a subject using harmonic frequency components, for example, there is also an ultrasonic diagnostic apparatus disclosed in Patent Document 2 (D2). In the ultrasonic diagnostic apparatus disclosed in Patent Document 2, in view of the fact that the harmonic component is generated according to the amplitude of the ultrasonic wave transmitted from the ultrasonic probe into the subject, the ultrasonic wave having a relatively large amplitude. By transmitting an ultrasonic wave having a relatively small amplitude from a reflected wave of an ultrasonic wave (a reflected wave including a harmonic component) coming from within the object by transmitting the signal into the object. The second harmonic component is extracted by subtracting the reflected wave of the ultrasonic wave (reflected wave not including the harmonic component) from the same wave after making the amplitudes of the reflected waves equal to each other. An ultrasonic image is formed based on the second harmonic component.
 ここで、通常、超音波画像を形成する際に各種の画像処理がデジタル信号で実行されるため、超音波探触子の出力をアナログ/デジタル変換によってデジタル信号に変換する必要がある。しかしながら、被検体内からの超音波信号における高調波成分は、その信号レベルが基本波成分の信号レベルに較べて微弱であるため、超音波探触子の出力をそのままアナログ/デジタル変換して高調波成分を抽出すると、アナログ-デジタル変換器の分解能(出力レベルを表現するビット数)の一部分しか使われないため、超音波画像の階調が低下してしまう。 Here, since various kinds of image processing are usually performed with digital signals when forming an ultrasonic image, it is necessary to convert the output of the ultrasonic probe into a digital signal by analog / digital conversion. However, the harmonic component in the ultrasonic signal from within the subject has a weak signal level compared to the signal level of the fundamental component, so the output of the ultrasonic probe is directly converted to analog / digital for harmonics. When the wave component is extracted, only a part of the resolution (the number of bits representing the output level) of the analog-digital converter is used, so that the gradation of the ultrasonic image is lowered.
 一方、これを避けるため、前記特許文献1の位相反転法や前記特許文献2に開示の手法を用いると、被検体内の一箇所に対し2回の送受信が必要となるため、フレームレートが低下してしまう。 On the other hand, in order to avoid this, the use of the phase inversion method of Patent Document 1 or the method disclosed in Patent Document 2 requires two transmissions / receptions to one place in the subject, so the frame rate decreases. Resulting in.
 また、これを避けるため、前記特許文献1のフィルタ法を用いると、電気信号の伝播によって減衰損失が発生してしまったり、フィルタの遮断特性を高めることによってリンギングが発生してしまったりしてしまう。 In order to avoid this, if the filter method of Patent Document 1 is used, attenuation loss may occur due to propagation of an electric signal, or ringing may occur due to an increase in the cutoff characteristics of the filter. .
特開2001-286472号公報JP 2001-286472 A 特開2000-093430号公報JP 2000-093430 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、より階調性の高い超音波画像を形成することができる超音波診断装置を提供することである。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an ultrasonic diagnostic apparatus capable of forming an ultrasonic image with higher gradation.
 本発明にかかる超音波診断装置では、被検体内に送信した第1超音波信号に基づく前記被検体内から来た第2超音波信号に含まれる高調波成分に基づいて前記被検体内の画像を形成する際に、前記第2超音波信号を受信した超音波探触子の出力を所定の時間間隔でサンプリングすることで得られた複数のアナログ信号をアナログ処理することによって前記高調波成分が抽出される。このため、本発明にかかる超音波診断装置は、より階調性の高い超音波画像を形成することができる。 In the ultrasonic diagnostic apparatus according to the present invention, the image in the subject is based on the harmonic component contained in the second ultrasonic signal coming from within the subject based on the first ultrasonic signal transmitted into the subject. The harmonic component is obtained by analog processing a plurality of analog signals obtained by sampling the output of the ultrasonic probe that has received the second ultrasonic signal at a predetermined time interval. Extracted. For this reason, the ultrasonic diagnostic apparatus according to the present invention can form an ultrasonic image with higher gradation.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の一実施形態における超音波診断装置の外観構成を示す図である。1 is a diagram illustrating an external configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. 図1に示す超音波診断装置の電気的な構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the ultrasonic diagnostic apparatus shown in FIG. 1. 図1に示す超音波診断装置における高調波成分を抽出する基本構成を示すブロック図である。It is a block diagram which shows the basic composition which extracts the harmonic component in the ultrasonic diagnosing device shown in FIG. 図3に示す基本構成において、1個の電荷を2個の電荷に2等分する動作を説明するための図である。FIG. 4 is a diagram for explaining an operation of dividing one charge into two equal charges in the basic configuration shown in FIG. 3. 図3に示す基本構成において、2個の電荷を1個の電荷に統合する動作を説明するための図である。FIG. 4 is a diagram for explaining an operation of integrating two charges into one charge in the basic configuration shown in FIG. 3. 図2に示す超音波診断装置における受信部の構成を示す図である。It is a figure which shows the structure of the receiving part in the ultrasonic diagnosing device shown in FIG. 図6に示す受信部の一部の動作を示すタイムチャートである。It is a time chart which shows a part of operation | movement of the receiving part shown in FIG. 図1に示す超音波診断装置における超音波探触子の受信波およびこの受信波に含まれる高調波成分を示す図である。It is a figure which shows the harmonic component contained in the received wave of this ultrasonic probe in this ultrasonic diagnostic apparatus shown in FIG. 1, and this received wave. 図8に示した超音波探触子の受信波から抽出した基本波成分(1st)、第2次高調波成分(2nd)および第3次高調波成分(3rd)を示す図である。It is a figure which shows the fundamental wave component (1st) extracted from the received wave of the ultrasonic probe shown in FIG. 8, a 2nd harmonic component (2nd), and a 3rd harmonic component (3rd).
 以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。また、本明細書において、適宜、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted. Further, in this specification, as appropriate, a generic reference is used to indicate a reference numeral without a suffix, and an individual configuration is indicated by a reference numeral with a suffix.
 図1は、実施形態における超音波診断装置の外観構成を示す図である。図2は、実施形態における超音波診断装置の電気的な構成を示すブロック図である。 FIG. 1 is a diagram illustrating an external configuration of an ultrasonic diagnostic apparatus according to an embodiment. FIG. 2 is a block diagram illustrating an electrical configuration of the ultrasonic diagnostic apparatus according to the embodiment.
 超音波診断装置Sは、図1および図2に示すように、図略の生体等の被検体に対して超音波(第1超音波信号)を送信すると共に、この被検体で反射した超音波の反射波(エコー、第2超音波信号)を受信する超音波探触子2と、超音波探触子2とケーブル3を介して接続され、超音波探触子2へケーブル3を介して電気信号の送信信号を送信することによって超音波探触子2に被検体に対して第1超音波信号を送信させると共に、超音波探触子2で受信された被検体内から来た第2超音波信号に応じて超音波探触子2で生成された電気信号の受信信号に基づいて被検体内の内部状態を超音波画像として画像化する超音波診断装置本体1とを備えて構成される。 As shown in FIGS. 1 and 2, the ultrasonic diagnostic apparatus S transmits an ultrasonic wave (first ultrasonic signal) to a subject such as a living body (not shown) and reflects the ultrasonic wave reflected by the subject. The ultrasonic probe 2 that receives the reflected wave (echo, second ultrasonic signal) is connected to the ultrasonic probe 2 via the cable 3 and connected to the ultrasonic probe 2 via the cable 3. By transmitting the transmission signal of the electrical signal, the ultrasonic probe 2 transmits the first ultrasonic signal to the subject, and the second received from the subject received by the ultrasonic probe 2. And an ultrasonic diagnostic apparatus main body 1 that images the internal state of the subject as an ultrasonic image based on the received signal of the electrical signal generated by the ultrasonic probe 2 in accordance with the ultrasonic signal. The
 超音波診断装置本体1は、例えば、図2に示すように、操作入力部11と、送信部12と、受信部13と、画像処理部14と、表示部15と、制御部16とを備えて構成されている。 For example, as shown in FIG. 2, the ultrasonic diagnostic apparatus main body 1 includes an operation input unit 11, a transmission unit 12, a reception unit 13, an image processing unit 14, a display unit 15, and a control unit 16. Configured.
 操作入力部11は、例えば、診断開始を指示するコマンドの入力や被検体の個人情報等のデータの入力を受け付けるものであり、例えば、複数の入力スイッチを備えた操作パネルやキーボード等である。 The operation input unit 11 receives, for example, an input of a command instructing the start of diagnosis and an input of data such as personal information of a subject, and is, for example, an operation panel or a keyboard provided with a plurality of input switches.
 送信部12は、制御部16の制御に従って、超音波探触子2へケーブル3を介して電気信号の送信信号を供給して超音波探触子2に第1超音波信号を発生させる回路である。送信部12は、例えば、高電圧のパルスを生成する高圧パルス発生器等を備えて構成される。 The transmission unit 12 is a circuit that supplies a transmission signal of an electrical signal to the ultrasonic probe 2 via the cable 3 under the control of the control unit 16 and causes the ultrasonic probe 2 to generate a first ultrasonic signal. is there. The transmission unit 12 includes, for example, a high voltage pulse generator that generates a high voltage pulse.
 受信部13は、制御部16の制御に従って、超音波探触子2からケーブル3を介して電気信号の受信信号を受信し、この受信した受信信号からアナログ処理によって高調波成分を抽出する回路であり、このアナログ処理によって抽出した受信信号の高調波成分をデジタル信号化して画像処理部14へ出力する。受信部13は、例えば、受信信号を予め設定された所定の増幅率で増幅する増幅器(プリアンプ)と、この増幅器で増幅された受信信号からCCD原理に基づくアナログ積和演算処理によって高調波成分を抽出する高調波成分抽出回路と、この抽出した高調波成分をアナログ信号からデジタル信号へ変換するアナログ-デジタル変換器等を備えて構成される。受信部13については、後に、さらに詳述する。 The reception unit 13 is a circuit that receives a reception signal of an electrical signal from the ultrasound probe 2 via the cable 3 under the control of the control unit 16 and extracts a harmonic component from the received reception signal by analog processing. Yes, the harmonic component of the received signal extracted by this analog processing is converted into a digital signal and output to the image processing unit 14. The receiving unit 13, for example, an amplifier (preamplifier) that amplifies the reception signal with a predetermined amplification factor set in advance, and a harmonic component from the reception signal amplified by the amplifier by analog product-sum operation processing based on the CCD principle. A harmonic component extraction circuit for extraction and an analog-digital converter for converting the extracted harmonic component from an analog signal to a digital signal are configured. The receiving unit 13 will be described in detail later.
 画像処理部14は、制御部16の制御に従って、受信部13で抽出した受信信号の高調波成分に基づいて公知の信号処理によって被検体内の内部状態の画像(超音波画像)を生成する回路である。 The image processing unit 14 is a circuit that generates an image (ultrasonic image) of the internal state in the subject by known signal processing based on the harmonic component of the received signal extracted by the receiving unit 13 under the control of the control unit 16. It is.
 表示部15は、制御部16の制御に従って、画像処理部14で生成された被検体の超音波画像を表示する装置である。表示部15は、例えば、CRTディスプレイ、LCD、有機ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。 The display unit 15 is a device that displays an ultrasonic image of the subject generated by the image processing unit 14 under the control of the control unit 16. The display unit 15 is, for example, a display device such as a CRT display, LCD, organic EL display, or plasma display, or a printing device such as a printer.
 制御部16は、例えば、マイクロプロセッサ、記憶素子およびその周辺回路等を備えて構成され、これら操作入力部11、送信部12、受信部13、画像処理部14および表示部15を当該機能に応じてそれぞれ制御することによって超音波診断装置Sの全体制御を行う回路である。 The control unit 16 includes, for example, a microprocessor, a storage element, and peripheral circuits thereof. The operation input unit 11, the transmission unit 12, the reception unit 13, the image processing unit 14, and the display unit 15 are configured according to the function. These are the circuits that perform overall control of the ultrasound diagnostic apparatus S by controlling each of them.
 超音波探触子(超音波プローブ)2は、被検体内に第1超音波信号を送信しこの第1超音波信号に基づく被検体内から来た第2超音波信号を受信する装置である。超音波探触子2は、例えば、圧電材料を備えて成り、圧電現象を利用することによって電気信号と超音波信号との間で相互に信号を変換することができる複数の圧電素子を備えて構成されており、これら複数の圧電素子は、例えば、ライン状(1次元アレイ状)に、あるいは2次元マトリックス状(2次元アレイ状)に配列される。圧電素子は、被検体内へ第1超音波信号を送信する場合では、超音波診断装置本体1の送信部12からケーブル3を介して入力された送信の電気信号を、圧電現象を利用することによって第1超音波信号に変換して、被検体内にこの第1超音波信号を送信する。そして、圧電素子は、被検体内から来た第2超音波信号を受信する場合では、圧電現象を利用することによってこの受信した第2超音波信号を電気信号に変換して受信信号を、ケーブル3を介して超音波診断装置本体1の受信部13へ出力する。超音波探触子2が被検体に当てられることによって、圧電素子で生成された第1超音波信号が被検体内へ送信され、被検体内からの第2超音波信号が圧電素子で受信される。 The ultrasonic probe (ultrasonic probe) 2 is a device that transmits a first ultrasonic signal into a subject and receives a second ultrasonic signal coming from within the subject based on the first ultrasonic signal. . The ultrasonic probe 2 includes, for example, a piezoelectric material, and includes a plurality of piezoelectric elements that can mutually convert signals between an electric signal and an ultrasonic signal by using a piezoelectric phenomenon. The plurality of piezoelectric elements are arranged in, for example, a line (one-dimensional array) or a two-dimensional matrix (two-dimensional array). In the case where the piezoelectric element transmits the first ultrasonic signal into the subject, the piezoelectric element uses the electrical phenomenon of transmission input from the transmission unit 12 of the ultrasonic diagnostic apparatus main body 1 via the cable 3 using the piezoelectric phenomenon. Is converted into a first ultrasonic signal, and the first ultrasonic signal is transmitted into the subject. When the piezoelectric element receives the second ultrasonic signal coming from within the subject, the piezoelectric element is used to convert the received second ultrasonic signal into an electric signal, and the received signal is converted into a cable. 3 to the receiving unit 13 of the ultrasonic diagnostic apparatus main body 1. By applying the ultrasonic probe 2 to the subject, the first ultrasonic signal generated by the piezoelectric element is transmitted into the subject, and the second ultrasonic signal from within the subject is received by the piezoelectric element. The
 この被検体内から来た第2超音波信号は、被検体内における音響インピーダンスの不整合によって被検体内で第1超音波信号が反射した反射波(エコー)だけでなく、例えば微小気泡(マイクロバブル)等の超音波造影剤(コントラスト剤)が用いられている場合には、被検体内へ送信された第1超音波信号に基づいて超音波造影剤の微小気泡で生成される超音波もある。超音波造影剤では、超音波の照射を受けると、超音波造影剤の微小気泡は、共振もしくは共鳴し、さらに一定の閾値以上の音圧では崩壊、消失する。超音波造影剤では、微小気泡の共振によって、あるいは微小気泡の崩壊、消失によって、超音波が生じている。 The second ultrasonic signal coming from within the subject is not only a reflected wave (echo) reflected by the first ultrasonic signal in the subject due to mismatch of acoustic impedance in the subject, but also, for example, microbubbles (micro When an ultrasonic contrast agent (contrast agent) such as a bubble is used, ultrasonic waves generated by the microbubbles of the ultrasonic contrast agent based on the first ultrasonic signal transmitted into the subject are also used. is there. When an ultrasonic contrast agent is irradiated with ultrasonic waves, the microbubbles of the ultrasonic contrast agent resonate or resonate, and further collapse or disappear at a sound pressure above a certain threshold. In the ultrasonic contrast agent, ultrasonic waves are generated by resonance of microbubbles or by collapse or disappearance of microbubbles.
 圧電素子は、例えば、送信用の第1圧電素子と、音軸方向において第1圧電素子に積層された受信用の第2圧電素子とを備えて構成されてよい。 The piezoelectric element may include, for example, a first piezoelectric element for transmission and a second piezoelectric element for reception stacked on the first piezoelectric element in the sound axis direction.
 送信用の第1圧電素子は、その圧電材料に例えば無機圧電材料が用いられる。無機圧電材料は、例えば、いわゆるPZT、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム(K(Ta,Nb)O)、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)およびチタン酸ストロンチウム(SrTiO)等である。このように第1圧電素子に無機圧電材料を用いることによって、送信パワーを比較的簡単な構造で大きくすることが可能となり、高調波のエコーを得るために、比較的大きなパワーで基本波の超音波信号を送信することが可能となる。 The first piezoelectric element for transmission uses, for example, an inorganic piezoelectric material as its piezoelectric material. Examples of the inorganic piezoelectric material include so-called PZT, quartz, lithium niobate (LiNbO 3 ), potassium niobate tantalate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), lithium tantalate (LiTaO 3). And strontium titanate (SrTiO 3 ). By using an inorganic piezoelectric material for the first piezoelectric element in this way, it becomes possible to increase the transmission power with a relatively simple structure. A sound wave signal can be transmitted.
 受信用の第2圧電素子は、その圧電材料に例えば有機圧電材料が用いられる。有機圧電材料は、例えば、フッ化ビニリデンの重合体を用いることができる。また例えば、有機圧電材料は、フッ化ビニリデン(VDF)系コポリマを用いることができる。このフッ化ビニリデン系コポリマは、フッ化ビニリデンと他の単量体との共重合体(コポリマ)であり、他の単量体としては、3フッ化エチレン、テトラフルオロエチレン、パーフルオロアルキルビニルエーテル(PFA)、パーフルオロアルコキシエチレン(PAE)およびパーフルオロヘキサエチレン等を用いることができる。フッ化ビニリデン系コポリマは、その共重合比によって厚み方向の電気機械結合定数(圧電効果)が変化するので、例えば、超音波探触子の仕様等に応じて適宜な共重合比が採用される。例えば、フッ化ビニリデン/3フッ化エチレンのコポリマの場合では、フッ化ビニリデンの共重合比が60mol%~99mol%が好ましく、有機圧電素子を無機圧電素子に積層する複合素子の場合では、フッ化ビニリデンの共重合比が85mol%~99mol%がより好ましい。また、このような複合素子の場合では、他の単量体は、パーフルオロアルキルビニルエーテル(PFA)、パーフルオロアルコキシエチレン(PAE)およびパーフルオロヘキサエチレンが好ましい。また例えば、有機圧電材料は、ポリ尿素を用いることができる。このポリ尿素の場合では、蒸着重合法で圧電体を作成することが好ましい。ポリ尿素用のモノマとして、一般式、HN-R-NH構造を挙げることができる。ここで、Rは、任意の置換基で置換されてもよいアルキレン基、フェニレン基、2価のヘテロ環基、ヘテロ環基を含んでもよい。ポリ尿素は、尿素誘導体と他の単量体との共重合体であってもよい。好ましいポリ尿素として、4,4’-ジアミノジフェニルメタン(MDA)と4,4’-ジフェニルメタンジイソシアナート(MDI)を用いる芳香族ポリ尿素を挙げることができる。本実施形態では、このように超音波を比較的広い周波数に亘って受信可能な特性を持つ有機圧電素子が第2圧電部223に用いられている。このように第2圧電素子に有機圧電材料を用いることによって、周波数帯域を比較的簡単な構造で広帯域にすることが可能であり、受信信号の高調波成分を受信することが可能となる。 The second piezoelectric element for reception uses, for example, an organic piezoelectric material as the piezoelectric material. As the organic piezoelectric material, for example, a polymer of vinylidene fluoride can be used. Further, for example, a vinylidene fluoride (VDF) copolymer can be used as the organic piezoelectric material. This vinylidene fluoride copolymer is a copolymer (copolymer) of vinylidene fluoride and other monomers. Examples of the other monomers include ethylene trifluoride, tetrafluoroethylene, perfluoroalkyl vinyl ether ( PFA), perfluoroalkoxyethylene (PAE), perfluorohexaethylene, and the like can be used. In the vinylidene fluoride copolymer, the electromechanical coupling constant (piezoelectric effect) in the thickness direction varies depending on the copolymerization ratio. For example, an appropriate copolymerization ratio is adopted according to the specifications of the ultrasonic probe, etc. . For example, in the case of a vinylidene fluoride / ethylene trifluoride copolymer, the copolymerization ratio of vinylidene fluoride is preferably 60 mol% to 99 mol%, and in the case of a composite element in which an organic piezoelectric element is laminated on an inorganic piezoelectric element, The copolymerization ratio of vinylidene is more preferably 85 mol% to 99 mol%. In the case of such a composite element, other monomers are preferably perfluoroalkyl vinyl ether (PFA), perfluoroalkoxyethylene (PAE), and perfluorohexaethylene. For example, polyurea can be used for the organic piezoelectric material. In the case of this polyurea, it is preferable to produce a piezoelectric body by vapor deposition polymerization. As a monomer for polyurea, there can be mentioned a general formula, H 2 N—R—NH 2 structure. Here, R may include an alkylene group, a phenylene group, a divalent heterocyclic group, or a heterocyclic group which may be substituted with any substituent. The polyurea may be a copolymer of a urea derivative and another monomer. Preferred polyureas include aromatic polyureas using 4,4′-diaminodiphenylmethane (MDA) and 4,4′-diphenylmethane diisocyanate (MDI). In the present embodiment, an organic piezoelectric element having such a characteristic that ultrasonic waves can be received over a relatively wide frequency is used for the second piezoelectric portion 223. Thus, by using an organic piezoelectric material for the second piezoelectric element, the frequency band can be widened with a relatively simple structure, and the harmonic component of the received signal can be received.
 このような構成の超音波診断装置Sでは、例えば、操作入力部11から診断開始の指示が入力されると、制御部16の制御によって送信部12で電気信号の送信信号が生成される。この生成された電気信号の送信信号は、ケーブル3を介して超音波探触子2へ供給される。より具体的には、この電気信号の送信信号は、超音波探触子2における複数の圧電素子へそれぞれ供給される。この電気信号の送信信号は、例えば、所定の周期で繰り返される電圧パルスである。複数の圧電素子は、それぞれ、この電気信号の送信信号が供給されることによってその厚み方向に伸縮し、この電気信号の送信信号に応じて超音波振動する。この超音波振動によって、超音波探触子2は、超音波(第1超音波信号)を放射する。超音波探触子2が被検体に例えば当接されていると、これによって超音波探触子2から被検体に対して第1超音波信号が送信される。 In the ultrasonic diagnostic apparatus S having such a configuration, for example, when an instruction to start diagnosis is input from the operation input unit 11, a transmission signal of an electrical signal is generated by the transmission unit 12 under the control of the control unit 16. The generated electrical signal transmission signal is supplied to the ultrasonic probe 2 via the cable 3. More specifically, the transmission signal of the electric signal is supplied to each of the plurality of piezoelectric elements in the ultrasonic probe 2. The electric signal transmission signal is, for example, a voltage pulse repeated at a predetermined cycle. Each of the plurality of piezoelectric elements expands and contracts in the thickness direction when a transmission signal of the electric signal is supplied, and ultrasonically vibrates according to the transmission signal of the electric signal. By this ultrasonic vibration, the ultrasonic probe 2 radiates an ultrasonic wave (first ultrasonic signal). For example, when the ultrasonic probe 2 is in contact with the subject, the first ultrasonic signal is transmitted from the ultrasonic probe 2 to the subject.
 なお、超音波探触子2は、被検体の表面上に当接して用いられてもよいし、被検体の内部に挿入して、例えば、生体の体腔内に挿入して用いられてもよい。 Note that the ultrasound probe 2 may be used in contact with the surface of the subject, or may be used by being inserted into the subject, for example, being inserted into a body cavity of a living body. .
 この被検体に対して送信された第1超音波信号は、被検体内部における音響インピーダンスが異なる1または複数の境界面で反射され、超音波の反射波(第2超音波信号)となる。あるいは、第1超音波信号は、超音波造影剤によって第2超音波信号を生じさせる。この第2超音波信号には、送信された第1超音波信号の周波数(基本波の基本周波数)成分だけでなく、基本周波数の整数倍の高調波の周波数成分も含まれる。例えば、基本周波数の2倍、3倍および4倍などの第2次高調波成分、第3次高調波成分および第4次高調波成分等も含まれる。この第2超音波信号は、超音波探触子2で受信される。より具体的には、この第2超音波信号は、複数の圧電素子にそれぞれで受信され、圧電素子で機械的な振動が電気信号に変換されて受信信号として取り出される。この取り出された電気信号の受信信号は、ケーブル3を介して制御部16で制御される受信部13で受信される。受信部13は、この入力された受信信号を受信処理し、より具体的には、例えば増幅した後にCCD原理に基づくアナログ積和演算処理によって高調波成分を抽出し、この高調波成分をアナログ信号からデジタル信号へ変換し、画像処理部14へ出力する。 The first ultrasonic signal transmitted to the subject is reflected by one or a plurality of boundary surfaces having different acoustic impedances inside the subject, and becomes an ultrasonic reflected wave (second ultrasonic signal). Alternatively, the first ultrasonic signal generates a second ultrasonic signal by an ultrasonic contrast agent. The second ultrasonic signal includes not only the frequency (fundamental fundamental frequency) component of the transmitted first ultrasonic signal but also a harmonic frequency component that is an integral multiple of the fundamental frequency. For example, second harmonic components such as twice, three times, and four times the fundamental frequency, third harmonic components, fourth harmonic components, and the like are also included. This second ultrasonic signal is received by the ultrasonic probe 2. More specifically, the second ultrasonic signal is received by each of the plurality of piezoelectric elements, and mechanical vibrations are converted into electric signals by the piezoelectric elements and are extracted as received signals. The received electric signal is received by the receiving unit 13 controlled by the control unit 16 via the cable 3. The receiving unit 13 performs reception processing on the input reception signal, more specifically, for example, after amplification, extracts a harmonic component by analog product-sum operation processing based on the CCD principle, and converts the harmonic component to an analog signal. To a digital signal and output to the image processing unit 14.
 ここで、上述において、各圧電素子から順次に第1超音波信号が被検体に向けて送信され、被検体で反射した第2超音波信号が各圧電素子で受信される。 Here, in the above description, the first ultrasonic signal is sequentially transmitted from each piezoelectric element toward the subject, and the second ultrasonic signal reflected by the subject is received by each piezoelectric element.
 そして、画像処理部14は、制御部16の制御によって、受信部13で抽出された受信信号の高調波成分に基づいて、送信から受信までの時間や受信強度などから公知の信号処理によって被検体内の内部状態の画像(超音波画像)を生成し、表示部15は、制御部16の制御によって、画像処理部14で生成された被検体内の超音波画像を表示する。 Then, the image processing unit 14 controls the subject by performing known signal processing based on the harmonic component of the reception signal extracted by the reception unit 13 based on the harmonic component of the reception signal extracted from the reception unit 13 under the control of the control unit 16. An internal state image (ultrasonic image) is generated, and the display unit 15 displays the ultrasonic image in the subject generated by the image processing unit 14 under the control of the control unit 16.
 次に、受信部についてさらに詳述する。図3は、高調波成分を抽出する基本構成を示すブロック図である。図4は、1個の電荷を2個の電荷に2等分する動作を説明するための図である。図5は、2個の電荷を1個の電荷に統合する動作を説明するための図である。 Next, the receiving unit will be described in further detail. FIG. 3 is a block diagram showing a basic configuration for extracting harmonic components. FIG. 4 is a diagram for explaining an operation of dividing one charge into two equal parts. FIG. 5 is a diagram for explaining an operation of integrating two charges into one charge.
 まず、高調波成分の抽出原理について説明する。高調波成分を含む受信信号f(t)は、一般に、式1で表すことができる。
Figure JPOXMLDOC01-appb-I000001
ここで、aは、定数項(直流成分)であり、aは、第n次高調波におけるsin成分(サイン成分)の振幅であり、bは、第n次高調波におけるcos成分(コサイン成分)の振幅であり、ωは、角周波数であり、そして、tは、時間である。nは、1から始まる整数(n=1、2、3、・・・)であり、Σは、n=1からn=∞までの和である。
First, the principle of extracting harmonic components will be described. The received signal f (t) including the harmonic component can be generally expressed by Equation 1.
Figure JPOXMLDOC01-appb-I000001
Here, a 0 is a constant term (a DC component), a n is the amplitude of the sin component at the n-th harmonic (sine component), b n is cos component in the n-th harmonic ( Cosine component), ω is the angular frequency, and t is time. n is an integer starting from 1 (n = 1, 2, 3,...), and Σ is the sum from n = 1 to n = ∞.
 この式1の2階微分は、式2のように表され、基本波(n=1)を抑圧する場合、例えば、式3の演算g(t)が考え得る。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
The second-order differentiation of Expression 1 is expressed as Expression 2, and when suppressing the fundamental wave (n = 1), for example, the operation g (t) of Expression 3 can be considered.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 ここで、発振周波数は、超音波診断装置Sの稼動の際には決まっているので、ωは、1以上の定数とすることができるから、式3は、式4のように書き換えられる。
Figure JPOXMLDOC01-appb-I000004
ここで、cは、0から1までの定数である(0<c<1)。
Here, since the oscillation frequency is determined when the ultrasonic diagnostic apparatus S is in operation, ω 2 can be set to a constant equal to or greater than 1. Therefore, Expression 3 can be rewritten as Expression 4.
Figure JPOXMLDOC01-appb-I000004
Here, c is a constant from 0 to 1 (0 <c <1).
 この式4の微分方程式を差分方程式に書き換えると、式4は、式5のように書き換えられる。
Figure JPOXMLDOC01-appb-I000005
ここで、Tは、基本波(n=1)の周期であり(ωT=2π)、△tは、サンプリング周期に相当する。
When the differential equation of Equation 4 is rewritten as a difference equation, Equation 4 is rewritten as Equation 5.
Figure JPOXMLDOC01-appb-I000005
Here, T is the period of the fundamental wave (n = 1) (ωT = 2π), and Δt corresponds to the sampling period.
 そして、サンプリング周期△tによってサンプリングされた波形がサンプリング前の原波形を維持するためには、サンプリング周期△tは、基本波の周期Tよりも充分に小さいことが必要である。したがって、式5は、式6となり、倍率を除くと、式7となる。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
In order for the waveform sampled by the sampling period Δt to maintain the original waveform before sampling, the sampling period Δt needs to be sufficiently smaller than the period T of the fundamental wave. Therefore, Expression 5 becomes Expression 6, and becomes Expression 7 excluding the magnification.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
 このように高調波成分は、基本波の関数式で表現することができ、この式7は、例えば、図3に示す回路によって実現され得る。すなわち、図3において、高調波抽出部Hは、第2超音波信号を受信した超音波探触子2の出力を所定の時間間隔でサンプリングすることで得られた複数のアナログ信号をアナログ処理することによって、第2超音波信号から、第1超音波信号の周波数を基本周波数とした場合における高調波成分を抽出する回路であり、例えば、複数の電荷保持部21(21-1~21-3)と、複数の電荷保持部21のそれぞれに対応して設けられた複数のアナログ乗算部22(22-1~22-3)と、アナログ加算部23と、タイミング発生部24とを備えて構成される。 Thus, the harmonic component can be expressed by a functional expression of the fundamental wave, and this expression 7 can be realized by the circuit shown in FIG. 3, for example. That is, in FIG. 3, the harmonic extraction unit H performs analog processing on a plurality of analog signals obtained by sampling the output of the ultrasonic probe 2 that has received the second ultrasonic signal at predetermined time intervals. Thus, a circuit for extracting harmonic components when the frequency of the first ultrasonic signal is the fundamental frequency is extracted from the second ultrasonic signal, for example, a plurality of charge holding units 21 (21-1 to 21-3). ), A plurality of analog multipliers 22 (22-1 to 22-3) provided corresponding to each of the plurality of charge holding units 21, an analog adder 23, and a timing generator 24. Is done.
 タイミング発生部24は、電荷保持部21、アナログ乗算部22およびアナログ加算部23の各部の動作タイミングを生成し、この生成した動作タイミングをこれら各部へ出力する回路である。 The timing generator 24 is a circuit that generates operation timings of the charge holding unit 21, the analog multiplier 22, and the analog adder 23, and outputs the generated operation timings to these units.
 電荷保持部21は、所定時刻の超音波探触子2の出力を電荷で保持する回路である。すなわち、電荷保持部21は、所定時刻の超音波探触子2の出力値に対応する電荷量を保持する回路である。電荷保持部21は、受信信号の高調波成分を表す式の階数に応じた個数(=階数+1)が設けられ、これら複数の電荷保持部21は、直列に接続される。例えば、式6および式7のように受信信号の高調波成分を表す式が2階の差分方程式である場合では、この2階の差分方程式の解を得るために、時刻t、時刻(t-△t)および時刻(t-2△t)の3個の超音波探触子2における各出力が必要であることから、3個の電荷保持部21(21-1~21-3)が設けられる。そして、これら複数の電荷保持部21(21-1~21-3)は、第2超音波信号を受信した超音波探触子2の出力を所定の時間間隔でサンプリングすることによって得られた、複数の所定時刻における複数のアナログ信号をそれぞれ保持し、タイミング発生部24から出力される動作タイミングに応答して動作し、タイミング発生部24からの動作タイミングに応じたタイミングで自己の電荷保持部21で保持している電荷を順次に後段の電荷保持部21へ転送する。このような複数の電荷保持部21は、例えば、半導体と、半導体上に形成された絶縁体層と、連続的に配置されるように絶縁体層上に形成された複数の電極(ゲート電極)とを備え、これら各電極に所定パターンの駆動電圧を印加することによって或る電極下のポテンシャル井戸に蓄積された電荷を順次に後段の電極下のポテンシャル井戸へ転送する電荷転送素子(電荷結合素子、Charge-Coupled Devices、CCD)によって構成することができる。 The charge holding unit 21 is a circuit that holds the output of the ultrasound probe 2 at a predetermined time with charges. That is, the charge holding unit 21 is a circuit that holds a charge amount corresponding to the output value of the ultrasonic probe 2 at a predetermined time. The charge holding units 21 are provided in a number (= rank + 1) corresponding to the rank of the expression representing the harmonic component of the received signal, and the plurality of charge holding units 21 are connected in series. For example, when the expression representing the harmonic component of the received signal is a second-order difference equation such as Expression 6 and Expression 7, in order to obtain a solution of the second-order difference equation, time t and time (t− Since each output from the three ultrasonic probes 2 at (t) and time (t-2Δt) is necessary, three charge holding units 21 (21-1 to 21-3) are provided. It is done. The plurality of charge holding units 21 (21-1 to 21-3) are obtained by sampling the output of the ultrasonic probe 2 that has received the second ultrasonic signal at predetermined time intervals. Each of the plurality of analog signals at a plurality of predetermined times is held, operates in response to the operation timing output from the timing generation unit 24, and own charge holding unit 21 at a timing according to the operation timing from the timing generation unit 24. Are sequentially transferred to the subsequent charge holding unit 21. Such a plurality of charge holding portions 21 include, for example, a semiconductor, an insulator layer formed on the semiconductor, and a plurality of electrodes (gate electrodes) formed on the insulator layer so as to be continuously arranged. A charge transfer device (charge coupled device) that sequentially transfers charges accumulated in a potential well under a certain electrode to a potential well under a subsequent electrode by applying a driving voltage of a predetermined pattern to each of the electrodes. , Charge-Coupled Devices, CCD).
 アナログ乗算部22は、各電荷保持部21(21-1~21-3)に対応して複数個設けられ、電荷保持部21に保持されているアナログ信号にアナログ処理によって重み付けM(0≦M<1)を行って乗算を行う回路である。より具体的には、M×Q=m×2-1Q+m×2-2Q+m×2-3Q+・・・+m×2-nQと表現することができることから、アナログ乗算部22では、電荷保持部21の出力値(電荷保持部21に保持されているアナログ信号)に対応する電荷量Qが2等分され、一方がさらに2等分され、これが繰り返されることで、2-1Q、2-2Q、2-3Q、・・・、2-nQの複数の電荷が生成され、これら各電荷が重み付け(乗数)Mの2進表現m、m、m、・・・、mに従って取捨され、この取り上げられた電荷が1個に統合され、M×Qの乗算がアナログ処理で行われる。 A plurality of analog multipliers 22 are provided corresponding to the charge holding units 21 (21-1 to 21-3), and the analog signals held in the charge holding units 21 are weighted M (0 ≦ M) by analog processing. This is a circuit that performs <1) and performs multiplication. More specifically, the analog multiplier can be expressed as M × Q = m 1 × 2 −1 Q + m 2 × 2 −2 Q + m 3 × 2 −3 Q +... + M n × 2 −n Q 22, the charge amount Q corresponding to the output value of the charge holding unit 21 (analog signal held in the charge holding unit 21) is divided into two equal parts, and one is further divided into two equal parts. −1 Q, 2 −2 Q, 2 −3 Q,..., 2 −n Q are generated, and each of these charges is a binary representation m 1 , m 2 , m of weighting (multiplier) M 3 ,..., M n , and the picked up charges are integrated into one, and M × Q multiplication is performed by analog processing.
 このようなアナログ乗算部22は、電荷転送素子(電荷結合素子)を用いて構成することができる。例えば、電荷Qを2個の電荷に2等分する電荷分割部CDは、図4に示すように、半導体31と、半導体31上に形成された絶縁体層32と、絶縁体層32上に連続的に形成された複数の電極(ゲート電極)33(33-1~33-6)とを備えて構成され、3個1組の電極33を含んで1個の分割部CDkが構成され、図4には、電極33-1~33-3を含む第1分割部CD1と、電極33-4~33-6を含む第2分割部CD2とが図示されている。また、各電極33(33-1~33-6)には、電極33に電圧を印加するための信号線P1~P3が接続されている。このような電荷分割部CDでは、電極33に外部から電圧を印加することによって電極33下の半導体31内にポテンシャル井戸PWが形成される。ポテンシャル井戸PWは、その対応する電極33に外部から印加される電位によってその深さが制御される。このような電荷分割部CDでは、第1および第2分割部CD1、CD2における各電極33-1~33-3;33-4~33-6に所定パターンの駆動電圧を印加することによって、第1分割部CD1に保持されている電荷Qが2個の電荷Q1、Q2(Q1=Q2=Q/2)に2等分され、各電荷Q1、Q2がそれぞれ第1および第2分割部CD1、CD2に保持される。例えば、時刻t11において、初期状態(2等分前、分割前)として、第1分割部CD1の第3電極33-3に電圧が印加されることによって形成された第1分割部CD1の第1ポテンシャル井戸PW3に電荷Qが保持されている。次の動作タイミングの時刻t12において、第1分割部CD1の第2および第3電極33-2、33-3ならびに第2分割部CD2の第1電極33-4のそれぞれに電圧が印加されることによって、第1分割部CD1の第1ポテンシャル井戸PW3が第3電極33-3下だけでなく第1分割部CD1の第2電極33-2下および第2分割部CD2の第1電極33-4にも拡がり、電荷Qがこれら各電極33-2~33-4下に形成されたポテンシャル井戸PW234に保持される。次の動作タイミングの時刻t13において、第1分割部CD1の第3電極33-3に印加されていた電圧が解消され、そして、第1分割部CD1の第2電極33-2および第2分割部CD2の第1電極33-4に電圧が印加されることによって、電荷Qが第1分割部CD1の第2電極33-2下に形成されたポテンシャル井戸PW2および第2分割部CD2の第1電極33-4下に形成されたポテンシャル井戸PW4にそれぞれ分割されて保持される。このように1個のポテンシャル井戸PW3に蓄積されていた電荷Qが、電極33に所定パターンの駆動電圧を印加することによって、このポテンシャル井戸PW3に隣接するポテンシャル井戸PW2、PW4へ2等分されて保持される。続いて、図4では、次の動作タイミングの時刻t14において、第1分割部CD1では、第1および第2電極33-1、33-2に電圧が印加されることによって、第1分割部CD1の第2ポテンシャル井戸PW2が第2電極33-2下だけでなく第1電極33-1下にも拡がり、電荷Q1(=Q/2)がこの第1および第2電極33-1、33-2下に形成されたポテンシャル井戸PW12に保持される。そして、第2分割部CD2では、第1および第2電極33-4、33-5に電圧が印加されることによって、第2分割部CD2の第1ポテンシャル井戸PW4が第1電極33-4下だけでなく第2電極33-5下にも拡がり、電荷Q2(=Q/2)がこの第1および第2電極33-4、33-5下に形成されたポテンシャル井戸PW45に保持される。次の動作タイミングの時刻t15において、第1分割部CD1では、第1分割部CD1の第2電極33-2に印加されていた電圧が解消されるとともに、第1分割部CD1の第1電極33-1に電圧が印加されることによって、2等分された電荷Q1が第1分割部CD1の第1電極33-1下に形成された第1分割部CD1の第1ポテンシャル井戸に保持される。そして、第2分割部CD2では、第2分割部CD2の第1電極33-4に印加されていた電圧が解消されるとともに、第2分割部CD2の第2電極33-5に電圧が印加されることによって、2等分された電荷Q2が第2分割部CD2の第2電極33-5下に形成された第2分割部CD2の第2ポテンシャル井戸に保持される。このように電荷分割部Dは、所定パターンの駆動電圧を各電極33に印加することによって、第1分割部CD1の第3ポテンシャル井戸PW3に保持されている電荷Qを2等分し、第1分割部CD1の第2ポテンシャル井戸PW2(第1ポテンシャル井戸PW1)および第2分割部CD2の第2ポテンシャル井戸PW5(第3ポテンシャル井戸PW6)のそれぞれへ導き保持することによって、電荷Qを2個の電荷に2等分することができる。 Such an analog multiplier 22 can be configured using a charge transfer device (charge coupled device). For example, as shown in FIG. 4, the charge dividing unit CD that divides the charge Q into two charges is divided into a semiconductor 31, an insulator layer 32 formed on the semiconductor 31, and an insulator layer 32. A plurality of continuously formed electrodes (gate electrodes) 33 (33-1 to 33-6), and one divided portion CDk is formed including a set of three electrodes 33; FIG. 4 shows a first divided portion CD1 including the electrodes 33-1 to 33-3 and a second divided portion CD2 including the electrodes 33-4 to 33-6. Further, signal lines P1 to P3 for applying a voltage to the electrode 33 are connected to the electrodes 33 (33-1 to 33-6). In such a charge dividing section CD, a potential well PW is formed in the semiconductor 31 under the electrode 33 by applying a voltage to the electrode 33 from the outside. The depth of the potential well PW is controlled by the potential applied to the corresponding electrode 33 from the outside. In such a charge dividing unit CD, a first pattern driving voltage is applied to the electrodes 33-1 to 33-3; 33-4 to 33-6 in the first and second dividing units CD1 and CD2, thereby providing a first pattern. The charge Q held in one divided part CD1 is divided into two equal parts, Q1 and Q2 (Q1 = Q2 = Q / 2), and each charge Q1 and Q2 is divided into the first and second divided parts CD1, It is held on CD2. For example, at time t11, the first state of the first divided portion CD1 formed by applying a voltage to the third electrode 33-3 of the first divided portion CD1 as an initial state (before being divided into two equal parts and before being divided). A charge Q is held in the potential well PW3. At time t12 of the next operation timing, a voltage is applied to each of the second and third electrodes 33-2 and 33-3 of the first division unit CD1 and the first electrode 33-4 of the second division unit CD2. As a result, the first potential well PW3 of the first division part CD1 is not only under the third electrode 33-3 but also under the second electrode 33-2 of the first division part CD1 and the first electrode 33-4 of the second division part CD2. The charge Q is held in the potential well PW234 formed under these electrodes 33-2 to 33-4. At time t13 of the next operation timing, the voltage applied to the third electrode 33-3 of the first division unit CD1 is eliminated, and the second electrode 33-2 and the second division unit of the first division unit CD1 are removed. By applying a voltage to the first electrode 33-4 of CD2, a charge Q is formed below the second electrode 33-2 of the first divided portion CD1, and the first electrode of the second divided portion CD2 Each of them is divided and held in a potential well PW4 formed under 33-4. The charge Q accumulated in one potential well PW3 in this way is divided into two equal parts to potential wells PW2 and PW4 adjacent to the potential well PW3 by applying a drive voltage of a predetermined pattern to the electrode 33. Retained. Subsequently, in FIG. 4, at the time t14 of the next operation timing, the first division unit CD1 applies a voltage to the first and second electrodes 33-1 and 33-2, so that the first division unit CD1. The second potential well PW2 extends not only under the second electrode 33-2 but also under the first electrode 33-1, and the charge Q1 (= Q / 2) is transferred to the first and second electrodes 33-1 and 33-. 2 is held in the potential well PW12 formed below. In the second divided portion CD2, a voltage is applied to the first and second electrodes 33-4 and 33-5, so that the first potential well PW4 of the second divided portion CD2 is below the first electrode 33-4. In addition to this, it spreads under the second electrode 33-5, and the charge Q2 (= Q / 2) is held in the potential well PW45 formed under the first and second electrodes 33-4 and 33-5. At time t15 of the next operation timing, in the first division unit CD1, the voltage applied to the second electrode 33-2 of the first division unit CD1 is canceled and the first electrode 33 of the first division unit CD1 is released. −1 is applied with a voltage, the charge Q1 divided in half is held in the first potential well of the first divided portion CD1 formed under the first electrode 33-1 of the first divided portion CD1. . In the second division unit CD2, the voltage applied to the first electrode 33-4 of the second division unit CD2 is eliminated, and the voltage is applied to the second electrode 33-5 of the second division unit CD2. As a result, the charge Q2 divided into two equal parts is held in the second potential well of the second divided portion CD2 formed under the second electrode 33-5 of the second divided portion CD2. In this way, the charge dividing unit D applies the driving voltage of a predetermined pattern to each electrode 33, thereby dividing the charge Q held in the third potential well PW3 of the first dividing unit CD1 into two equal parts, By guiding and holding each of the second potential well PW2 (first potential well PW1) of the divided portion CD1 and the second potential well PW5 (third potential well PW6) of the second divided portion CD2, two charges Q are stored. The charge can be divided into two equal parts.
 また例えば、複数の電荷を1個の電荷に統合する電荷統合部SDは、電荷分割部CDと同様に、図5に示すように、半導体41と、半導体41上に形成された絶縁体層42と、絶縁体層42上に連続的に形成された複数の電極(ゲート電極)43(43-1~43-6)とを備えて構成され、3個1組の電極43を含んで1個の分割部SDkが構成され、図5には、電極43-1~43-3を含む第1統合部SD1と、電極43-4~43-6を含む第2統合部SD2とが図示されている。また、各電極43(43-1~43-6)には、電極43に電圧を印加するための信号線P1~P3が接続されている。このような電荷統合部SDでは、電極43に外部から電圧を印加することによって電極43下の半導体41内にポテンシャル井戸PWが形成される。ポテンシャル井戸PWは、その対応する電極43に外部から印加される電位によってその深さが制御される。このような電荷統合部SDでは、第1および第2統合部SD1、SD2における各電極43-1~43-3;43-4~43-6に所定パターンの駆動電圧を印加することによって、第1統合部SD1に保持されている第1電荷Q1と第2統合部SD2に保持されている第2電荷Q2とが合わせられて1個の電荷Q(Q=Q1+Q2)に統合され、この電荷Qが第1統合部SD1(第2統合部SD2)に保持される。例えば、時刻t21において、初期状態(加算処理前)として、第1統合部SD1の第1電極43-1に電圧が印加されることによって形成された第1統合部SD1の第1ポテンシャル井戸PW1に第1電荷Q1が保持され、第2統合部SD2の第2電極43-5に電圧が印加されることによって形成された第2統合部SD2の第2ポテンシャル井戸PW5に第2電荷Q2が保持されている。次の動作タイミングの時刻t22において、第1統合部SD1では、第1統合部SD1の第1および第2電極43-1、43-2に電圧が印加されることによって、第1統合部SD1の第1ポテンシャル井戸PW1が第1電極43-1下だけでなく第2電極43-2下にも拡がり、第1電荷Q1がこの第1および第2電極43-1、43-2下に形成されたポテンシャル井戸PW12に保持される。そして、第2統合部SD2では、第2統合部SD2の第1および第2電極43-4、43-5に電圧が印加されることによって、第2統合部SD2の第2ポテンシャル井戸PW5が第2電極43-5下だけでなく第1電極43-4下にも拡がり、第2電荷Q2がこの第1および第2電極43-4、43-5下に形成されたポテンシャル井戸PW45に保持される。次の動作タイミングの時刻t23において、第1統合部SD1では、第1統合部SD1の第1電極43-1に印加されていた電圧が解消され、そして、第2電極43-2に電圧が印加されることによって、第1および第2電極43-1、43-2下に形成されたポテンシャル井戸PW12に保持されていた第1電荷Q1が第2電極43-2下に形成された第1統合部SD1の第2ポテンシャル井戸PW2に移動して保持される。そして、第2統合部SD2では、第2統合部SD2の第2電極43-5に印加されていた電圧が解消され、そして、第1電極43-4に電圧が印加されることによって、第1および第2電極43-4、43-5下に形成されたポテンシャル井戸PW45に保持されていた第2電荷Q2が第1電極43-4下に形成された第2統合部の第1ポテンシャル井戸PW4に移動して保持される。このような動作によって第1統合部SD1の第1電荷Q1が第2統合部SD2へ寄るとともに、第2統合部SD2の第2電荷Q2が第1統合部SD1へ寄り、第1統合部SD1の第1電荷43-1と第2統合部SD2の第2電荷43-2とが1個の電極(第1統合部の第3電極43-3)43を隔てて配置される。そして、次の動作タイミングの時刻t24において、第1統合部SD1の第1電荷Q1と第2統合部SD2の第2電荷Q2とを隔てているこの第1統合部SD1の第3電極43-3に、第1統合部SD1の第2電極43-2および第2統合部SD2の第1電極43-4にそれぞれ印加されている電圧と同じ電圧が印加されることによって、第1統合部SD1の第2ポテンシャル井戸PW2が第2電極43-2下だけでなく第3電極43-3下にも拡がるとともに、第2統合部SD2の第1ポテンシャル井戸PW4が第1電極43-4下だけでなく第1統合部SD1の第3電極43-3下にも拡がる結果、第1統合部SD1の第2および第3電極43-2、43-3下ならびに第2統合部SDの第1電極43-4下に亘るポテンシャル井戸PW234が形成され、第1統合部SD1の第1電荷Q1と第2統合部SD2の第2電荷Q2とが統合される。そして、次の動作タイミングの時刻t25において、第1統合部SD1の第2電極43-2に印加されていた電圧が解消されるとともに第2統合部SD2の第1電極43-4に印加されていた電圧が解消され、そして、第1統合部SD1の第3電極43-3に電圧が印加されることによって、この統合された第1統合部CD1の第1電荷Q1と第2統合部SD2の第2電荷Q2とが第1統合部SD1の第3電極43-3下に形成された第1統合部SD1の第3ポテンシャル井戸PW3に保持され、第1統合部SD1の第1電荷Q1と第2統合部SD2の第2電荷Q2と加算結果Q(=Q1+Q2)となる。このように電荷統合部SDは、所定パターンの駆動電圧を各電極に印加することによって、第1統合部SD1のポテンシャル井戸PWに保持されている第1電荷Q1と第2統合部SD2のポテンシャル井戸PWに保持されている第2電荷Q2とを1個のポテンシャル井戸PWへ導き統合することによって、第1統合部SD1の第1電荷Q1と第2統合部SD2の第2電荷Q2とを電荷のままで加算することができる。すなわち、電荷統合部SDは、第1統合部SD1の第1電荷Q1と第2統合部SD2の第2電荷Q2とをアナログで加算することができる。 Further, for example, the charge integration part SD that integrates a plurality of charges into one charge has a semiconductor 41 and an insulator layer 42 formed on the semiconductor 41 as shown in FIG. And a plurality of electrodes (gate electrodes) 43 (43-1 to 43-6) continuously formed on the insulator layer 42, and one electrode including one set of three electrodes 43. FIG. 5 illustrates a first integration unit SD1 including electrodes 43-1 to 43-3 and a second integration unit SD2 including electrodes 43-4 to 43-6. Yes. Further, signal lines P1 to P3 for applying a voltage to the electrode 43 are connected to the electrodes 43 (43-1 to 43-6). In such a charge integration part SD, a potential well PW is formed in the semiconductor 41 under the electrode 43 by applying a voltage to the electrode 43 from the outside. The depth of the potential well PW is controlled by the potential applied to the corresponding electrode 43 from the outside. In such a charge integration unit SD, a first pattern drive voltage is applied to the electrodes 43-1 to 43-3; 43-4 to 43-6 in the first and second integration units SD1 and SD2, thereby providing a first pattern. The first charge Q1 held in one integration unit SD1 and the second charge Q2 held in the second integration unit SD2 are combined and integrated into one charge Q (Q = Q1 + Q2). Is held in the first integration unit SD1 (second integration unit SD2). For example, at time t21, as an initial state (before the addition process), the voltage is applied to the first potential well PW1 of the first integration unit SD1 formed by applying a voltage to the first electrode 43-1 of the first integration unit SD1. The first charge Q1 is held, and the second charge Q2 is held in the second potential well PW5 of the second integration part SD2 formed by applying a voltage to the second electrode 43-5 of the second integration part SD2. ing. At time t22 of the next operation timing, the first integration unit SD1 applies a voltage to the first and second electrodes 43-1 and 43-2 of the first integration unit SD1, thereby causing the first integration unit SD1 to The first potential well PW1 extends not only under the first electrode 43-1 but also under the second electrode 43-2, and a first charge Q1 is formed under the first and second electrodes 43-1 and 43-2. Held in the potential well PW12. In the second integration unit SD2, a voltage is applied to the first and second electrodes 43-4 and 43-5 of the second integration unit SD2, so that the second potential well PW5 of the second integration unit SD2 Not only under the two electrodes 43-5 but also under the first electrode 43-4, the second charge Q2 is held in the potential well PW45 formed under the first and second electrodes 43-4 and 43-5. The At time t23 of the next operation timing, in the first integration unit SD1, the voltage applied to the first electrode 43-1 of the first integration unit SD1 is eliminated, and the voltage is applied to the second electrode 43-2. As a result, the first charge Q1 held in the potential well PW12 formed under the first and second electrodes 43-1 and 43-2 becomes the first integration formed under the second electrode 43-2. It is moved and held in the second potential well PW2 of the part SD1. In the second integration unit SD2, the voltage applied to the second electrode 43-5 of the second integration unit SD2 is eliminated, and the voltage is applied to the first electrode 43-4, whereby the first integration unit SD2 The second charge Q2 held in the potential well PW45 formed under the second electrodes 43-4 and 43-5 is the first potential well PW4 of the second integrated portion formed under the first electrode 43-4. Moved to and held. By such an operation, the first charge Q1 of the first integration unit SD1 approaches the second integration unit SD2, and the second charge Q2 of the second integration unit SD2 approaches the first integration unit SD1, and the first integration unit SD1 The first charge 43-1 and the second charge 43-2 of the second integration part SD2 are arranged with one electrode (the third electrode 43-3 of the first integration part) 43 therebetween. Then, at the time t24 of the next operation timing, the third electrode 43-3 of the first integration unit SD1 that separates the first charge Q1 of the first integration unit SD1 from the second charge Q2 of the second integration unit SD2. The same voltage as that applied to the second electrode 43-2 of the first integration unit SD1 and the first electrode 43-4 of the second integration unit SD2 is applied to the first integration unit SD1. The second potential well PW2 extends not only under the second electrode 43-2 but also under the third electrode 43-3, and the first potential well PW4 of the second integration part SD2 is not only under the first electrode 43-4. As a result of extending below the third electrode 43-3 of the first integration part SD1, the second and third electrodes 43-2 and 43-3 of the first integration part SD1 and the first electrode 43-3 of the second integration part SD are also obtained. Potential well PW over 4 34 is formed, a first charge Q1 of the first integrated portion SD1 and the second charge Q2 of the second integration section SD2 is integrated. Then, at time t25 of the next operation timing, the voltage applied to the second electrode 43-2 of the first integration unit SD1 is canceled and applied to the first electrode 43-4 of the second integration unit SD2. And the voltage is applied to the third electrode 43-3 of the first integration unit SD1, thereby the first charge Q1 of the integrated first integration unit CD1 and the second integration unit SD2. The second charge Q2 is held in the third potential well PW3 of the first integration part SD1 formed under the third electrode 43-3 of the first integration part SD1, and the first charge Q1 and the first charge Q1 of the first integration part SD1 2 The second charge Q2 of the integration unit SD2 and the addition result Q (= Q1 + Q2). In this way, the charge integration unit SD applies the drive voltage of a predetermined pattern to each electrode, thereby causing the first charge Q1 held in the potential well PW of the first integration unit SD1 and the potential well of the second integration unit SD2. The second charge Q2 held in PW is guided to and integrated with one potential well PW, whereby the first charge Q1 of the first integration unit SD1 and the second charge Q2 of the second integration unit SD2 are combined. Can be added as is. That is, the charge integration unit SD can add the first charge Q1 of the first integration unit SD1 and the second charge Q2 of the second integration unit SD2 in an analog manner.
 アナログ乗算部22は、例えば、直列に接続されている複数の電荷分割部CDと、電荷統合部SDとを備え、電荷保持部21の出力値に対応する電荷量Qを電荷分割部CDで2等分し、その一方を電荷分割部CDで2等分し、これを繰り返すことで、2-1Q、2-2Q、2-3Q、・・・、2-nQの複数の電荷を生成し、これら各電荷を、重み付けMの2進表現m、m、m、・・・、mに従って取捨し、この取り上げた電荷を電荷統合部SDで統合することで、M×Qの乗算をアナログで行うことができる。 The analog multiplying unit 22 includes, for example, a plurality of charge dividing units CD connected in series and a charge integrating unit SD, and the charge dividing unit CD sets the charge amount Q corresponding to the output value of the charge holding unit 21 to 2. Divide into two equal parts by the charge dividing unit CD and repeat this to obtain a plurality of charges of 2 −1 Q, 2 −2 Q, 2 −3 Q,..., 2 −n Q .., And divide these charges according to the binary representations m 1 , m 2 , m 3 ,..., M n of weighting M, and integrate the picked-up charges in the charge integration unit SD. XQ multiplication can be performed in analog.
 このようなアナログ乗算部22は、例えば、特開平06-237173号公報(特許第2599679号公報)、特開平06-350453号公報(特許第2955734号公報)、特開平07-335866号公報(特許第2665726号公報)および特開平08-050546号公報も参照することができる。 Such an analog multiplier 22 is, for example, disclosed in Japanese Patent Application Laid-Open No. 06-237173 (Japanese Patent No. 2599679), Japanese Patent Application Laid-Open No. 06-350453 (Japanese Patent No. 2955734), and Japanese Patent Application Laid-Open No. 07-335866 (Patent Document). No. 2665726) and JP-A-08-050546 can also be referred to.
 そして、アナログ乗算部22の重み付けMは、高調波成分を第1超音波信号の基本波で表現した関数式の係数に基づいて設定される。例えば、第2次高調波成分を抽出する場合では、第2次高調波成分が式7の関数式で表現されるので、f(t-△t)の項は、その重み付けMが0.5であり、f(t)の項は、その重み付けMがa(=1-2×((π×△t)/T))であり、そして、f(t+△t)の項は、その重み付けMが0.5である。 The weight M of the analog multiplier 22 is set based on a coefficient of a functional expression that expresses the harmonic component with the fundamental wave of the first ultrasonic signal. For example, in the case of extracting the second harmonic component, the second harmonic component is expressed by the functional expression of Expression 7, and therefore the weight M of the term of f (t−Δt) is 0.5. And the term of f (t) is such that its weight M is a (= 1−2 × ((π × Δt) / T) 2 ), and the term of f (t + Δt) is The weight M is 0.5.
 アナログ加算部23は、複数のアナログ乗算部22の各出力(乗算結果)をアナログ処理によって加算する回路であり、例えば、各アナログ乗算部22の乗算結果として保持されている電荷を1個に統合することによって、複数のアナログ乗算部22の各乗算結果をアナログ処理で加算することができる。アナログ加算部23は、例えば、図5に示す電荷統合部SDによって構成され、電荷転送素子(電荷結合素子)を用いて構成される。 The analog adder 23 is a circuit that adds the outputs (multiplication results) of the plurality of analog multipliers 22 by analog processing. For example, the charges held as the multiplication results of the analog multipliers 22 are integrated into one. By doing so, each multiplication result of the plurality of analog multipliers 22 can be added by analog processing. The analog adder 23 is configured by, for example, a charge integration unit SD shown in FIG. 5 and is configured using a charge transfer element (charge coupled element).
 このように電荷保持部21、アナログ乗算部22およびアナログ加算部23は、CCD原理に基づく電荷転送素子(電荷結合素子)を用いて構成可能である。 Thus, the charge holding unit 21, the analog multiplication unit 22, and the analog addition unit 23 can be configured using charge transfer elements (charge coupled devices) based on the CCD principle.
 次に、受信部13のより具体的な構成について説明する。図6は、実施形態の超音波診断装置における受信部の構成を示す図である。図7は、受信部の一部の動作を示すタイムチャートである。 Next, a more specific configuration of the receiving unit 13 will be described. FIG. 6 is a diagram illustrating a configuration of a receiving unit in the ultrasonic diagnostic apparatus according to the embodiment. FIG. 7 is a time chart showing a part of the operation of the receiving unit.
 受信部13は、例えば、図6に示すように、プリアンプ部51と、絶対値化部52と、サンプルホールド部(SH部)53と、電荷保持部54と、アナログ乗算部55と、アナログ加算部56と、アナログ-デジタル変換部57と、タイミング発生部58とを備えて構成されている。前記高調波抽出部Hは、電荷保持部54、アナログ乗算部55およびアナログ加算部56が相当する。 For example, as illustrated in FIG. 6, the reception unit 13 includes a preamplifier unit 51, an absolute value conversion unit 52, a sample hold unit (SH unit) 53, a charge storage unit 54, an analog multiplication unit 55, and an analog addition. A unit 56, an analog-digital conversion unit 57, and a timing generation unit 58 are provided. The harmonic extraction unit H corresponds to the charge holding unit 54, the analog multiplication unit 55, and the analog addition unit 56.
 プリアンプ部51は、超音波探触子2に接続され、被検体内から来た第2超音波信号に基づく超音波探触子2の出力を所定の増幅率で線形に増幅する増幅回路である。なお、プリアンプ部51は、以後の信号処理を実行する上で充分なレベルの信号が超音波探触子2から出力される場合には、省略可能である。 The preamplifier unit 51 is an amplification circuit that is connected to the ultrasound probe 2 and linearly amplifies the output of the ultrasound probe 2 based on the second ultrasound signal coming from within the subject with a predetermined amplification factor. . Note that the preamplifier unit 51 can be omitted when a signal having a level sufficient to execute subsequent signal processing is output from the ultrasonic probe 2.
 絶対値化部52は、プリアンプ部51に接続され、プリアンプ部51の出力(超音波探触子2の出力)の絶対値を出力するとともにプリアンプ部51の出力における正負の符号(符号ビット列)を出力する回路である。CCD原理に基づく電荷転送素子(電荷結合素子)を用いて構成される上述の電荷保持部21、アナログ乗算部22およびアナログ加算部23で処理される電荷は、正の値であることから、受信部13で正負の両方を処理可能とするために、超音波探触子2の出力をその大きさと符号とに分ける必要がある。このため、プリアンプ部51の出力が絶対値化部52によって絶対値化されて出力されるとともにその符号が出力される。この符号(符号ビット列)は、以後、絶対値化された超音波探触子2の出力に伴って、SH部53、電荷保持部54、アナログ乗算部55およびアナログ加算部56の各部を伝播する。 The absolute value converting unit 52 is connected to the preamplifier unit 51, outputs the absolute value of the output of the preamplifier unit 51 (output of the ultrasonic probe 2), and the positive and negative signs (code bit string) in the output of the preamplifier unit 51. It is a circuit to output. Since the charges processed by the charge holding unit 21, the analog multiplication unit 22, and the analog addition unit 23 configured using a charge transfer element (charge coupled device) based on the CCD principle are positive values, the reception is performed. In order for the unit 13 to process both positive and negative, it is necessary to divide the output of the ultrasound probe 2 into its size and sign. For this reason, the output of the preamplifier unit 51 is converted into an absolute value by the absolute value converting unit 52 and output, and the sign thereof is output. This code (code bit string) is subsequently propagated through each part of the SH unit 53, the charge holding unit 54, the analog multiplication unit 55, and the analog addition unit 56 in accordance with the output of the ultrasonic probe 2 converted into an absolute value. .
 SH部53は、絶対値化部52に接続され、タイミング発生部58からの動作タイミングに応じたサンプリング周期△tで、絶対値化部52の出力(絶対値化された超音波探触子2の出力)を保持する回路である。SH部53は、動作タイミングに応じたタイミングで、この保持した絶対値化部52の出力に対応する電荷を電荷保持部54へ出力する。 The SH unit 53 is connected to the absolute value converting unit 52 and outputs the output of the absolute value converting unit 52 (the ultrasonic probe 2 converted into an absolute value) at a sampling period Δt according to the operation timing from the timing generating unit 58. Of the output). The SH unit 53 outputs the charge corresponding to the held output of the absolute value unit 52 to the charge holding unit 54 at a timing according to the operation timing.
 電荷保持部54は、SH部53に接続され、上述した電荷保持部21に対応し、所定時刻の超音波探触子2の出力値に対応する電荷量を保持する回路である。この電荷保持部54は、超音波探触子2の出力から第2高調波成分を抽出すべく、少なくとも3個の電荷保持部54-1、54-2、54-3を備えて構成される。これら各電荷保持部54-1、54-2、54-3は、直列に接続されており、タイミング発生部58からの動作タイミングに応じたタイミングで自己の電荷保持部54で保持している電荷を順次に後段の電荷保持部54へ転送する。すなわち、複数(この例では3個)の電荷保持部54は、電荷転送素子(電荷結合素子)を構成している。この構成によって、各電荷保持部54-1、54-2、54-3は、時刻(t+△t)、時刻tおよび時刻(t-△t)の3個の超音波探触子2における各出力値f(t+△t)、f(t)、f(t-△t)が保持される。 The charge holding unit 54 is connected to the SH unit 53 and corresponds to the charge holding unit 21 described above, and is a circuit that holds a charge amount corresponding to the output value of the ultrasonic probe 2 at a predetermined time. The charge holding unit 54 includes at least three charge holding units 54-1, 54-2, and 54-3 in order to extract the second harmonic component from the output of the ultrasound probe 2. . Each of these charge holding units 54-1, 54-2, 54-3 is connected in series, and the charge held in its own charge holding unit 54 at a timing according to the operation timing from the timing generation unit 58. Are sequentially transferred to the charge holding unit 54 in the subsequent stage. That is, a plurality (three in this example) of charge holding units 54 constitutes a charge transfer element (charge coupled element). With this configuration, each of the charge holding units 54-1, 54-2, and 54-3 has the three ultrasonic probes 2 at time (t + Δt), time t, and time (t−Δt). The output values f (t + Δt), f (t), and f (t−Δt) are held.
 アナログ乗算部55は、上述したアナログ乗算部22に対応し、電荷保持部21の出力値に対応する電荷量Qを2等分し、その一方をさらに2等分し、これを繰り返すことで2-1Q、2-2Q、2-3Q、・・・、2-nQの複数の電荷を生成し、これら各電荷を、重み付け(乗数)M(0≦M<1)の2進表現m、m、m、・・・、mに従って取捨し、この取り上げた電荷を統合することで、M×Qの乗算をアナログ処理で行う回路である。このアナログ乗算部55(55-1~55-3)は、各電荷保持部21(21-1~21-3)に対応して複数(この例では3個)設けられる。これら各アナログ乗算部55-1~55-3は、その対応する各電荷保持部21-1~21-3にそれぞれ接続される。 The analog multiplication unit 55 corresponds to the analog multiplication unit 22 described above, divides the charge amount Q corresponding to the output value of the charge holding unit 21 into two equal parts, further divides one into two equal parts, and repeats this to obtain 2 −1 Q, 2 −2 Q, 2 −3 Q,..., 2 −n Q generate a plurality of charges, and each of these charges is expressed as a binary of weight (multiplier) M (0 ≦ M <1) expression m 1, m 2, m 3 , and sifting., according to m n, by integrating the picked charges, a circuit for multiplying the M × Q by analog processing. A plurality (three in this example) of analog multipliers 55 (55-1 to 55-3) are provided corresponding to the charge holding units 21 (21-1 to 21-3). These analog multipliers 55-1 to 55-3 are connected to the corresponding charge holding units 21-1 to 21-3, respectively.
 図6に示す例では第2高調波成分を抽出することから、上述した式6または式7を演算する必要がある。各電荷保持部54-1、54-2、54-3は、上述したように、時刻(t+△t)、時刻tおよび時刻(t-△t)の3個の超音波探触子2における各出力値f(t+△t)、f(t)、f(t-△t)を保持することから、電荷保持部54-1に接続されるアナログ演算部55-1は、0.5×f(t+△t)を演算し、電荷保持部54-2に接続されるアナログ演算部55-2は、a×f(t)を演算し、そして、電荷保持部54-3に接続されるアナログ演算部55-3は、0.5×f(t-△t)を演算する必要がある。また、乗数aは、式6から分かるように、サンプリング周期△tおよび基本波の周期Tに基づいて決定される。より具体的には、乗数aは、サンプリング周期△tの二乗に比例すると共に基本波の周期Tの二乗に反比例する。ここで、送信周波数(基本波の周波数1/T)を4MHzとし、基本波の1波長に対するサンプリング数を100.5ポイント(個)、すなわち、サンプリング周波数(1/△t)を402MHzとすると、乗数a=1-2×((π×1/402M)/(1/4M))≒1-2-9=511/512となる。したがって、アナログ乗算部55-1は、電荷保持部54-1の出力値に対応する電荷量Qを2等分する回路、すなわち、1×2-1Qを実現する回路で構成することができる。アナログ乗算部55-2は、電荷保持部54-2の出力値に対応する電荷量Qを、1×2-1Q+1×2-2Q+1×2-3Q+1×2-4Q+1×2-5Q+1×2-6Q+1×2-7Q+1×2-8Q+1×2-9Qとする回路で構成することができる。アナログ乗算部55-3は、電荷保持部54-3の出力値に対応する電荷量Qを2等分する回路、すなわち、1×2-1Qを実現する回路で構成することができる。 In the example shown in FIG. 6, since the second harmonic component is extracted, it is necessary to calculate Equation 6 or Equation 7 described above. As described above, each of the charge holding units 54-1, 54-2, and 54-3 includes the three ultrasonic probes 2 at time (t + Δt), time t, and time (t−Δt). Since the output values f (t + Δt), f (t), and f (t−Δt) are held, the analog calculation unit 55-1 connected to the charge holding unit 54-1 has 0.5 × An analog calculation unit 55-2 that calculates f (t + Δt) and is connected to the charge holding unit 54-2 calculates a × f (t) and is connected to the charge holding unit 54-3. The analog calculation unit 55-3 needs to calculate 0.5 × f (t−Δt). The multiplier a is determined based on the sampling period Δt and the fundamental wave period T, as can be seen from Equation 6. More specifically, the multiplier a is proportional to the square of the sampling period Δt and inversely proportional to the square of the period T of the fundamental wave. Here, if the transmission frequency (frequency 1 / T of the fundamental wave) is 4 MHz, the number of samplings for one wavelength of the fundamental wave is 100.5 points (pieces), that is, the sampling frequency (1 / Δt) is 402 MHz, Multiplier a = 1−2 × ((π × 1 / 402M) / (1 / 4M)) 2 ≈1-2 −9 = 511/512. Therefore, the analog multiplier 55-1 can be configured by a circuit that bisects the charge amount Q corresponding to the output value of the charge holding unit 54-1, that is, a circuit that realizes 1 × 2 −1 Q. . The analog multiplication unit 55-2 sets the charge amount Q corresponding to the output value of the charge holding unit 54-2 to 1 × 2 −1 Q + 1 × 2 −2 Q + 1 × 2 −3 Q + 1 × 2 −4 Q + 1 × 2 −5 Q + 1 × 2 −6 Q + 1 × 2 −7 Q + 1 × 2 −8 Q + 1 × 2 −9 Q The analog multiplier 55-3 can be configured by a circuit that bisects the charge amount Q corresponding to the output value of the charge holding unit 54-3, that is, a circuit that realizes 1 × 2 −1 Q.
 より具体的には、アナログ乗算部55-1は、電荷保持部54-1の電荷量Qをセンシングフローティングゲート541-1を介して転写し、電荷保持部54-1の電荷量Qと等しい電荷量Qを保持する電荷移送部61-1と、上述した電荷分割部CDのように、電荷移送部61-1の電荷量Qを2等分する電荷分割部621-1と、電荷分割部621-1で2等分された一方の電荷Q2(=Q/2)をタイミング発生部58からの動作タイミングに従って順次に転送する8段の電荷転送部631-1~638-1とを備えて構成される。センシングフローティングゲート541-1は、電荷保持部54-1の電荷量Qを非破壊で検出する検出用のフローティングゲートであり、例えば、半導体に絶縁体層を介して設けられた電極における前記半導体に対する電位を検出することによって前記半導体に蓄積された電荷量を非破壊で検出するものであり、後述のセンシングフローティングゲート541-2、541-3も同様である。電荷分割部621-1は、上述した電荷分割部CDと同様に、第1および第2分割部を備え、そのうちの一方の分割部、例えば、第2分割部に保持された電荷Q2が8段の電荷転送部631-1~638-1によって転送される。アナログ乗算部55-1の8段の電荷転送部631-1~638-1は、アナログ乗算部55-1の出力とアナログ乗算部55-2の出力とを同期させるために必要となった構成である。 More specifically, the analog multiplication unit 55-1 transfers the charge amount Q of the charge holding unit 54-1 through the sensing floating gate 541-1, and the charge equal to the charge amount Q of the charge holding unit 54-1. A charge transfer unit 61-1 for holding the quantity Q, a charge split unit 621-1 for dividing the charge amount Q of the charge transfer unit 61-1 into two equal parts, such as the charge split unit CD described above, and a charge split unit 621 And 8-stage charge transfer units 631-1 to 638-1 for sequentially transferring one charge Q2 (= Q / 2) equally divided by -1 in accordance with the operation timing from the timing generation unit 58. Is done. The sensing floating gate 541-1 is a detection floating gate that detects the charge amount Q of the charge holding unit 54-1 in a non-destructive manner. For example, the sensing floating gate 541-1 is connected to the semiconductor in an electrode provided on the semiconductor via an insulator layer. By detecting the potential, the amount of charge accumulated in the semiconductor is detected nondestructively, and the same applies to sensing floating gates 541-2 and 541-3 described later. Similarly to the charge dividing unit CD described above, the charge dividing unit 621-1 includes the first and second dividing units, and the charge Q2 held in one of the dividing units, for example, the second dividing unit, is divided into eight stages. Are transferred by the charge transfer units 631-1 to 638-1. The eight-stage charge transfer units 631-1 to 638-1 of the analog multiplier 55-1 are required to synchronize the output of the analog multiplier 55-1 and the output of the analog multiplier 55-2. It is.
 アナログ乗算部55-2は、電荷保持部54-2の電荷量Qをセンシングフローティングゲート541-2を介して転写し、電荷保持部54-2の電荷量Qと等しい電荷量Qを保持する電荷移送部61-2と、上述した電荷分割部CDのように、電荷移送部61-1の電荷量Qを順次に2等分する9段の電荷分割部621-2~629-2と、各電荷分割部621-2~629-2で2等分された一方の電荷Q1(=2-kQ、k=1~9)をそれぞれ加算しながらタイミング発生部58からの動作タイミングに従って順次に転送する8段の電荷加算部642~649とを備えて構成される。電荷分割部621-2~629-2は、上述した電荷分割部CDと同様に、第1および第2分割部を備え、そのうちの一方の分割部、例えば、第2分割部に保持された電荷Q2が次段の電荷分割部622-2~628-2でさらに2等分され、そのうちの他方の分割部、例えば、第1分割部に保持された電荷Q1が次段の電荷加算部642~649で加算される。電荷加算部642~649は、電荷加算部SDと同様に、第1および第2加算部を備え、そのうちの一方、例えば、第2加算部が前段の前記電荷分割部621-2~629-2における他方の分割部(第1分割部)と兼用されており、また、そのうちの他方、例えば、第1加算部が次段の第1加算部と直列に接続されており、タイミング発生部58からの動作タイミングに応じたタイミングで自己の第1加算部で保持している電荷を順次に次段の第1加算部へ転送する。 The analog multiplying unit 55-2 transfers the charge amount Q of the charge holding unit 54-2 via the sensing floating gate 541-2, and holds the charge amount Q equal to the charge amount Q of the charge holding unit 54-2. The transfer unit 61-2, the charge division units 621-2 to 629-2 that sequentially divide the charge amount Q of the charge transfer unit 61-1 into two equal parts, such as the charge division unit CD described above, Transfer sequentially according to the operation timing from the timing generator 58 while adding one charge Q1 (= 2− k Q, k = 1 to 9) divided in half by the charge dividing units 621-2 to 629-2. And eight stages of charge addition units 642 to 649. Similarly to the above-described charge dividing unit CD, the charge dividing units 621-2 to 629-2 include first and second dividing units, and the charge held in one of the divided units, for example, the second dividing unit. Q2 is further divided into two equal parts by the next-stage charge dividing units 622-2 to 628-2, and the charge Q1 held in the other divided part, for example, the first divided part is changed to the next-stage charge adding parts 642 to It is added at 649. Similarly to the charge addition unit SD, the charge addition units 642 to 649 include first and second addition units, and one of them, for example, the second addition unit is the charge division units 621-2 to 629-2 in the preceding stage. The other division unit (first division unit) is also used, and the other, for example, the first addition unit is connected in series with the first addition unit in the next stage, and the timing generation unit 58 The charges held in the first adder of its own are sequentially transferred to the first adder in the next stage at a timing according to the operation timing.
 アナログ乗算部55-3は、電荷保持部54-3の電荷量Qをセンシングフローティングゲート541-3を介して転写し、電荷保持部54-3の電荷量Qと等しい電荷量Qを保持する電荷移送部61-3と、上述した電荷分割部CDのように、電荷移送部61-3の電荷量Qを2等分する電荷分割部621-3と、電荷分割部621-3で2等分された一方の電荷Q1(=Q/2)をタイミング発生部58からの動作タイミングに従って順次に転送する8段の電荷転送部631-3~638-3とを備えて構成される。電荷分割部621-3は、上述した電荷分割部CDと同様に、第1および第2分割部を備え、そのうちの一方の分割部、例えば、第1分割部に保持された電荷Q1が8段の電荷転送部631-3~638-3によって転送される。アナログ乗算部55-3の8段の電荷転送部631-3~638-3も、アナログ乗算部55-3の出力とアナログ乗算部55-2の出力とを同期させるために必要となった構成である。 The analog multiplying unit 55-3 transfers the charge amount Q of the charge holding unit 54-3 via the sensing floating gate 541-3, and holds the charge amount Q equal to the charge amount Q of the charge holding unit 54-3. Like the transfer unit 61-3 and the charge division unit CD described above, the charge division unit 621-3 that divides the charge amount Q of the charge transfer unit 61-3 into two equal parts and the charge division unit 621-3 into two equal parts And eight stages of charge transfer units 631-3 to 638-3 that sequentially transfer one of the charges Q1 (= Q / 2) according to the operation timing from the timing generation unit 58. The charge dividing unit 621-3 includes the first and second dividing units similarly to the above-described charge dividing unit CD, and the charge Q1 held in one of the dividing units, for example, the first dividing unit, is 8 stages. Are transferred by the charge transfer units 631-3 to 638-3. The eight-stage charge transfer units 631-3 to 638-3 of the analog multiplier 55-3 are also necessary for synchronizing the output of the analog multiplier 55-3 and the output of the analog multiplier 55-2. It is.
 アナログ加算部56は、上述したアナログ加算部23に対応し、複数のアナログ乗算部55(55-1~55-3)の各乗算結果をアナログ処理で加算する回路であり、例えば、各アナログ乗算部55(55-1~55-3)の乗算結果として保持されている電荷を1個に統合することによって、複数のアナログ乗算部55(55-1~55-3)の各乗算結果をアナログ処理で加算する回路である。より具体的には、アナログ加算部56は、アナログ乗算部55で演算されている超音波探触子2の出力における符号が正(+)である場合に、各アナログ乗算部55-1~55-3の乗算結果である各電荷を統合する電荷統合部71と、アナログ乗算部55で演算されている超音波探触子2の出力における符号が負(-)である場合に、各アナログ乗算部55-1~55-3の乗算結果である各電荷を統合する電荷統合部72と、アナログ減算回路73とを備えて構成されている。電荷統合部71、72は、上述した電荷統合部SDと同様に構成され、3個の電荷を統合する。アナログ減算回路の正の入力端子(+)には、電荷統合部71の出力が接続され、アナログ減算回路の負の入力端子(-)には、電荷統合部72の出力が接続される。したがって、アナログ乗算部55で演算されている超音波探触子2の出力における符号が正(+)である場合には、プラスの符号を持った電荷統合部71の出力値がアナログ減算回路73から出力され、アナログ乗算部55で演算されている超音波探触子2の出力における符号が負(-)である場合には、マイナスの符号を持った電荷統合部72の出力値がアナログ減算回路73から出力される。 The analog adder 56 corresponds to the analog adder 23 described above, and is a circuit that adds the multiplication results of the plurality of analog multipliers 55 (55-1 to 55-3) by analog processing. For example, each analog multiplier By integrating the charges held as the multiplication results of the unit 55 (55-1 to 55-3) into one, the multiplication results of the plurality of analog multiplication units 55 (55-1 to 55-3) are converted into analog It is a circuit for adding in processing. More specifically, the analog adder 56, when the sign in the output of the ultrasound probe 2 calculated by the analog multiplier 55 is positive (+), each analog multiplier 55-1 to 55. −3 when the sign of the output of the ultrasound probe 2 calculated by the charge integrating unit 71 and the analog multiplying unit 55 is negative (−). A charge integration unit 72 that integrates each charge, which is a multiplication result of the units 55-1 to 55-3, and an analog subtraction circuit 73 are provided. The charge integration units 71 and 72 are configured in the same manner as the above-described charge integration unit SD, and integrate three charges. The output of the charge integration unit 71 is connected to the positive input terminal (+) of the analog subtraction circuit, and the output of the charge integration unit 72 is connected to the negative input terminal (−) of the analog subtraction circuit. Therefore, when the sign of the output of the ultrasound probe 2 calculated by the analog multiplier 55 is positive (+), the output value of the charge integrating section 71 having a plus sign is the analog subtractor circuit 73. When the sign of the output of the ultrasound probe 2 outputted from the signal and the analog multiplier 55 is negative (−), the output value of the charge integrating unit 72 having a minus sign is analog subtracted. Output from the circuit 73.
 そして、アナログ-デジタル変換部57は、アナログ加算部56に接続され、アナログ加算部56の出力値をアナログ信号からデジタル信号に変換する回路である。アナログ-デジタル変換部57の出力は、受信部13の出力とされ、画像処理部14へ出力される。 The analog-digital converter 57 is a circuit that is connected to the analog adder 56 and converts the output value of the analog adder 56 from an analog signal to a digital signal. The output of the analog-digital conversion unit 57 is the output of the reception unit 13 and is output to the image processing unit 14.
 このような受信部13では、プリアンプ部51、絶対値化部52、SH部53、電荷保持部54(54-1~54-4)、アナログ乗算部55(55-1~55-3)、アナログ加算部56およびアナログ-デジタル変換部57の各部は、タイミング発生部58から動作クロックがそれぞれ供給され、所定の動作タイミングで動作している。さらに、アナログ乗算部55では、その電荷分割部621-1、621-2~629-2、621-3、電荷転送部631-1~638-1、631-3~638-3および電荷加算部642~649も前記所定の動作タイミングで動作している。 In such a receiving unit 13, the preamplifier unit 51, the absolute value converting unit 52, the SH unit 53, the charge holding unit 54 (54-1 to 54-4), the analog multiplication unit 55 (55-1 to 55-3), Each of the analog adder 56 and the analog-digital converter 57 is supplied with an operation clock from the timing generator 58 and operates at a predetermined operation timing. Further, in the analog multiplication unit 55, the charge division units 621-1, 621-2 to 629-2, 621-3, the charge transfer units 631-1 to 638-1, 631-3 to 638-3, and the charge addition unit 642 to 649 are also operated at the predetermined operation timing.
 そして、被検体内に送信した第1超音波信号に基づく被検体内から来た第2超音波信号が超音波探触子2で受信され、超音波探触子2の出力がプリアンプ部51に入力される。この超音波探触子2の出力は、プリアンプ部51で所定の増幅率で線形に増幅され、絶対値化部52に入力される。このプリアンプ部51の出力は、例えば、図7の最上段に示される。図7には、最上段の第1段から最下段の第7段に向けて順に、プリアンプ部51の出力(第1段)、絶対値化部52の出力(第2段)、SH部53の出力(第3段)、電荷保持部54-1(第4段)、電荷保持部54-2(第5段)、電荷保持部54-3(第6段)および電荷保持部54-4(第7段)がそれぞれ示されている。 Then, the second ultrasonic signal coming from within the subject based on the first ultrasonic signal transmitted into the subject is received by the ultrasonic probe 2, and the output of the ultrasonic probe 2 is sent to the preamplifier unit 51. Entered. The output of the ultrasound probe 2 is linearly amplified by the preamplifier unit 51 at a predetermined amplification factor and input to the absolute value unit 52. The output of the preamplifier unit 51 is shown, for example, in the uppermost stage of FIG. In FIG. 7, the output from the preamplifier unit 51 (first stage), the output from the absolute value unit 52 (second stage), and the SH unit 53 in order from the first stage at the top to the seventh stage at the bottom. Output (third stage), charge holding section 54-1 (fourth stage), charge holding section 54-2 (fifth stage), charge holding section 54-3 (sixth stage) and charge holding section 54-4 (Seventh stage) is shown.
 このプリアンプ部51の出力は、図7の第2段に示すように、絶対値化部52で絶対値とされ(負が軸で折り返されて正とされ)、SH部53に入力される。絶対値化部52の出力は、図7の第3段に示すように、SH部53で前記所定の動作タイミング(サンプリング周期)△tでサンプリングされ、電荷量および符号が電荷保持部54-1に入力される。SH部53の出力は、図7の第4段に示すように、電荷保持部54-1で保持される。 The output of the preamplifier unit 51 is converted into an absolute value by the absolute value converting unit 52 (negative is turned around on the axis to be positive) and input to the SH unit 53 as shown in the second stage of FIG. As shown in the third stage of FIG. 7, the output of the absolute value converting unit 52 is sampled by the SH unit 53 at the predetermined operation timing (sampling period) Δt, and the charge amount and sign are stored in the charge holding unit 54-1. Is input. The output of the SH unit 53 is held by the charge holding unit 54-1, as shown in the fourth stage of FIG.
 そして、4個の電荷保持部54-1~54-4では、図7の第4段ないし第7段に示すように、前記所定の動作タイミング△tに応じたタイミングで自己の電荷保持部54で保持している電荷をその符号(+または-)とともに順次に後段の電荷保持部54へ転送する。例えば、電荷保持部54-1は、前記所定の動作タイミング△tに応じたタイミングで自己の電荷保持部54-1で保持している電荷をその符号とともに順次に後段の電荷保持部54-2へ転送する。 Then, in the four charge holding units 54-1 to 54-4, as shown in the fourth to seventh stages in FIG. 7, the own charge holding unit 54 at a timing corresponding to the predetermined operation timing Δt. Are sequentially transferred to the subsequent charge holding unit 54 together with the sign (+ or −). For example, the charge holding unit 54-1 sequentially stores the charges held in its own charge holding unit 54-1 at the timing according to the predetermined operation timing Δt together with the sign thereof. Forward to.
 また、アナログ乗算部55-1では、電荷保持部54-1の電荷Q(t+△t)がその符号とともに電荷移送部61-1へ移送され、その電荷Q(t+△t)が電荷分割部621-1で2等分され、その一方の電荷Q2(=0.5×Q(t+△t))がその符号とともに第1段目の電荷転送部631-1から第8段目の電荷転送部638-1へ前記所定の動作タイミング△tに応じたタイミングで順次に転送される。そして、アナログ乗算部55-1では、その符号が正の場合には、その出力(電荷転送部638-1の出力)がアナログ加算部56の電荷統合部71へ入力され、その符号が負の場合には、その出力(電荷転送部638-1の出力)がアナログ加算部56の電荷統合部72へ入力される。 In the analog multiplier 55-1, the charge Q (t + Δt) of the charge holding unit 54-1 is transferred to the charge transfer unit 61-1 along with its sign, and the charge Q (t + Δt) is transferred to the charge dividing unit. 621-1 is divided into two equal parts, and one charge Q2 (= 0.5 × Q (t + Δt)) is transferred from the first-stage charge transfer section 631-1 to the eighth-stage charge transfer together with its sign. The data is sequentially transferred to the unit 638-1 at a timing corresponding to the predetermined operation timing Δt. In the analog multiplier 55-1, when the sign is positive, the output (the output of the charge transfer unit 638-1) is input to the charge integrating part 71 of the analog adder 56, and the sign is negative. In this case, the output (the output of the charge transfer unit 638-1) is input to the charge integration unit 72 of the analog addition unit 56.
 また、アナログ乗算部55-2では、電荷保持部54-2の電荷Q(t)がその符号とともに電荷移送部61-2へ移送され、その電荷Q(t)が第1段目の電荷分割部621-2で2等分され、前記所定の動作タイミング△tに応じたタイミングで、その一方の電荷Q1(=2-1×Q(t))がその符号とともに第1段目の電荷加算部642へ転送されるとともに、その他方の電荷Q2(=2-1×Q(t))が第2段目の電荷分割部622-2へ転送される。そして、第2段目の電荷分割部622-2では、この電荷2-1×Q(t)が2等分され、前記所定の動作タイミング△tに応じたタイミングで、その一方の電荷Q1(=2-2×Q(t))が第2段目の電荷加算部643へ転送されるともに、その他方の電荷Q2(=2-2×Q(t))が第3段目の電荷分割部623-2へ転送され、そして、第1段目の電荷加算部642の電荷2-1×Q(t)がその符号とともに第2段目の電荷加算部643へ転送される。第2段目の電荷加算部643では、それぞれ転送された電荷2-1×Q(t)と電荷2-2×Q(t)とが加算され(2-1×Q(t)+2-2×Q(t))、第3段目の電荷分割部623-2では、この電荷2-2×Q(t)が2等分される。そして、前記所定の動作タイミング△tに応じたタイミングで、第3段目の電荷分割部623-2における一方の電荷Q1(=2-3×Q(t))が第3段目の電荷加算部644へ転送されるともに、その他方の電荷Q2(=2-3×Q(t))が第4段目の電荷分割部624-2へ転送され、そして、第2段目の電荷加算部643の電荷2-1×Q(t)+2-2×Q(t)がその符号とともに第3段目の電荷加算部644へ転送される。以後、前記所定の動作タイミング△tに応じたタイミングごとに、同様に動作し、第9段目の電荷分割部629-2には、電荷2-9×Q(t)=(1/512)×Q(t)が保持され、第8段目の電荷加算部649には、電荷2-1×Q(t)+2-2×Q(t)+2-3×Q(t)+2-4×Q(t)+2-5×Q(t)+2-6×Q(t)+2-7×Q(t)+2-8×Q(t)+2-9×Q(t)=(511/512)×Q(t)がその符号とともに保持される。 In the analog multiplier 55-2, the charge Q (t) of the charge holding unit 54-2 is transferred to the charge transfer unit 61-2 together with the sign thereof, and the charge Q (t) is transferred to the first-stage charge dividing unit. The first charge Q1 (= 2 −1 × Q (t)) is divided into two equal parts by the unit 621-2, and at the timing corresponding to the predetermined operation timing Δt, the first stage charge addition is performed together with the sign thereof. The charge Q2 (= 2 −1 × Q (t)) on the other side is transferred to the charge division unit 622-2 in the second stage. In the second-stage charge dividing unit 622-2, this charge 2 −1 × Q (t) is divided into two equal parts, and one charge Q1 ( = 2 −2 × Q (t)) is transferred to the second-stage charge adding unit 643, and the other charge Q2 (= 2 −2 × Q (t)) is transferred to the third-stage charge division. Then, the charge 2 −1 × Q (t) of the first stage charge adder 642 is transferred to the second stage charge adder 643 together with its sign. In the second stage charge adding unit 643, the transferred charges 2 −1 × Q (t) and charges 2 −2 × Q (t) are added (2 −1 × Q (t) +2 −2 ). × Q (t)), and the charge division unit 623-2 in the third stage divides this charge 2 −2 × Q (t) into two equal parts. Then, at the timing according to the predetermined operation timing Δt, one charge Q1 (= 2 −3 × Q (t)) in the third-stage charge dividing unit 623-2 is added to the third-stage charge. And the other charge Q2 (= 2 −3 × Q (t)) is transferred to the fourth-stage charge dividing unit 624-2, and the second-stage charge addition unit The charge 2 −1 × Q (t) +2 −2 × Q (t) of 643 is transferred to the charge addition unit 644 at the third stage together with its sign. Thereafter, the same operation is performed at each timing according to the predetermined operation timing Δt, and the charge division unit 629-2 in the ninth stage has a charge of 2 −9 × Q (t) = (1/512). × Q (t) is held, and the charge addition unit 649 in the eighth stage stores the charge 2 −1 × Q (t) +2 −2 × Q (t) +2 −3 × Q (t) +2 −4 × Q (t) +2 −5 × Q (t) +2 −6 × Q (t) +2 −7 × Q (t) +2 −8 × Q (t) +2 −9 × Q (t) = (511/512) XQ (t) is retained along with its sign.
 そして、アナログ乗算部55-2では、その符号が正の場合には、その出力(電荷加算部649の出力)がアナログ加算部56の電荷統合部71へ入力され、その符号が負の場合には、その出力(電荷加算部649の出力)がアナログ加算部56の電荷統合部72へ入力される。 In the analog multiplier 55-2, when the sign is positive, the output (the output of the charge adder 649) is input to the charge integrating part 71 of the analog adder 56, and when the sign is negative. The output (the output of the charge adding unit 649) is input to the charge integrating unit 72 of the analog adding unit 56.
 また、アナログ乗算部55-3では、電荷保持部54-3の電荷Q(t-△t)がその符号とともに電荷移送部61-3へ移送され、その電荷Q(t-△t)が電荷分割部621-3で2等分され、その一方の電荷Q1(=0.5×Q(t-△t))が第1段目の電荷転送部631-3から第8段目の電荷転送部638-3へ前記所定の動作タイミング△tに応じたタイミングでその符号とともに順次に転送される。そして、アナログ乗算部55-3では、その符号が正の場合には、その出力(電荷転送部638-3の出力)がアナログ加算部56の電荷統合部71へ入力され、その符号が負の場合には、その出力(電荷転送部638-3の出力)がアナログ加算部56の電荷統合部72へ入力される。 In the analog multiplier 55-3, the charge Q (t−Δt) of the charge holding unit 54-3 is transferred to the charge transfer unit 61-3 together with its sign, and the charge Q (t−Δt) is transferred to the charge transfer unit 61-3. The electric charge Q1 (= 0.5 × Q (t−Δt)) is divided into two equal parts by the division unit 621-3, and the charge transfer unit 631-3 at the first stage transfers the charge at the eighth stage. The data is sequentially transferred to the unit 638-3 together with the code at a timing corresponding to the predetermined operation timing Δt. In the analog multiplier 55-3, when the sign is positive, the output (the output of the charge transfer unit 638-3) is input to the charge integrating unit 71 of the analog adder 56, and the sign is negative. In this case, the output (the output of the charge transfer unit 638-3) is input to the charge integration unit 72 of the analog addition unit 56.
 そして、アナログ加算部56では、処理すべき電荷の符号が正の場合には、電荷統合部71で各アナログ乗算部55-1~55-3の各出力が統合されて加算され、アナログ減算回路73の正の入力端子(+)へ入力される。一方、処理すべき電荷の符号が負の場合には、電荷統合部72で各アナログ乗算部55-1~55-3の各出力が統合されて加算され、アナログ減算回路73の負の入力端子(-)へ入力される。そして、処理すべき電荷の符号が正(+)である場合には、プラスの符号を持った電荷統合部71の出力値がアナログ減算回路73から出力され、処理すべき電荷の符号が負(-)である場合には、マイナスの符号を持った電荷統合部72の出力値がアナログ減算回路73から出力される。アナログ減算回路73の出力は、アナログ加算部56の出力であり、アナログ-デジタル変換部57に入力される。 Then, in the analog adder 56, when the sign of the charge to be processed is positive, the outputs of the analog multipliers 55-1 to 55-3 are integrated and added by the charge integrator 71, and an analog subtractor circuit is added. 73 is input to the positive input terminal (+). On the other hand, when the sign of the charge to be processed is negative, the outputs of the analog multipliers 55-1 to 55-3 are integrated and added by the charge integration unit 72, and the negative input terminal of the analog subtraction circuit 73 is added. Input to (-). When the sign of the charge to be processed is positive (+), the output value of the charge integration unit 71 having a plus sign is output from the analog subtraction circuit 73, and the sign of the charge to be processed is negative ( In the case of −), the output value of the charge integration unit 72 having a minus sign is output from the analog subtraction circuit 73. The output of the analog subtraction circuit 73 is the output of the analog addition unit 56 and is input to the analog-digital conversion unit 57.
 そして、アナログ-デジタル変換部では、アナログ加算部56の出力がアナログ信号からデジタル信号へ変換され、受信部13の出力とされる。 Then, in the analog-digital conversion unit, the output of the analog addition unit 56 is converted from an analog signal to a digital signal and used as the output of the reception unit 13.
 このように動作することによって、受信部13は、超音波探触子2の出力(第2超音波信号)をアナログ処理(アナログのままで信号処理)することによって第2超音波信号から高調波成分を抽出し、このアナログ処理によって抽出した第2超音波信号の高調波成分をデジタル信号化して画像処理部14へ出力する。 By operating in this manner, the receiving unit 13 performs harmonic processing from the second ultrasonic signal by performing analog processing (signal processing as analog) on the output (second ultrasonic signal) of the ultrasonic probe 2. The component is extracted, and the harmonic component of the second ultrasonic signal extracted by the analog processing is converted into a digital signal and output to the image processing unit 14.
 なお、上述では、高調波成分として第2次高調波成分の場合について説明したが、同様に、第3次高調波成分や第4次高調波成分等の高次高調波成分の場合についても同様に説明することができる。 In the above description, the case of the second harmonic component as the harmonic component has been described. Similarly, the case of the higher harmonic component such as the third harmonic component and the fourth harmonic component is similarly applied. Can be explained.
 このように本実施形態の超音波診断装置Sでは、超音波探触子2における所定の時間差のある複数のアナログ信号をアナログ処理することによって、すなわち、前記複数のアナログ信号をアナログのままで信号処理することによって、第2超音波信号の高調波成分が抽出され、この高調波成分に基づいて被検体の超音波画像が形成される。したがって、超音波診断装置Sは、被検体内の一箇所に対し2回の送受信が必要ではなく、アナログ処理によって第2超音波信号から高調波成分をより高い分解能で抽出するので、フレームレートを低下させることなく、より階調性の高い超音波画像を形成することができる。また、高調波成分は、フィルタによって抽出されるわけではないので、電気信号の伝播によって減衰損失が発生することもなく、またリンギングも発生しない。 As described above, in the ultrasonic diagnostic apparatus S of the present embodiment, a plurality of analog signals having a predetermined time difference in the ultrasonic probe 2 are analog-processed, that is, the plurality of analog signals are analog signals. By processing, a harmonic component of the second ultrasonic signal is extracted, and an ultrasonic image of the subject is formed based on the harmonic component. Therefore, the ultrasonic diagnostic apparatus S does not need to transmit / receive twice in one place in the subject, and extracts harmonic components from the second ultrasonic signal with higher resolution by analog processing. An ultrasonic image with higher gradation can be formed without lowering. Further, since the harmonic component is not extracted by the filter, no attenuation loss occurs due to propagation of the electric signal, and no ringing occurs.
 また、超音波診断装置Sでは、上述したように、高調波成分が第1超音波信号の基本波によって関数表現され、高調波抽出部Hがアナログ処理を行う回路で簡易に構成される。 Also, in the ultrasonic diagnostic apparatus S, as described above, the harmonic component is expressed as a function by the fundamental wave of the first ultrasonic signal, and the harmonic extraction unit H is simply configured by a circuit that performs analog processing.
 また、超音波診断装置Sでは、電荷保持部21、54、アナログ乗算部22、55およびアナログ加算部23、56が電荷転送素子(電荷結合素子)を用いて構成されるので、高調波抽出部Hがより簡易に構成され、また、高調波抽出部HのICチップ化が可能である。 Further, in the ultrasonic diagnostic apparatus S, since the charge holding units 21 and 54, the analog multiplication units 22 and 55, and the analog addition units 23 and 56 are configured using charge transfer elements (charge coupled devices), harmonic extraction units H is configured more simply, and the harmonic extraction unit H can be made into an IC chip.
 また、超音波診断装置Sでは、電荷を2等分する電荷分割部CDと、2個の電荷を1個に統合する電荷統合部SDとを用いて構成されるので、高調波抽出部Hがより簡易に構成される。また、電荷の分割と統合とで前記アナログ信号がアナログ処理されるので、高調波抽出部Hは、比較的高精度にアナログ演算処理を実行することができ、比較的高精度に高調波成分を抽出することができる。 Further, since the ultrasonic diagnostic apparatus S is configured using the charge dividing unit CD that divides the charge into two equal parts and the charge integration unit SD that integrates the two charges into one, the harmonic extraction unit H includes It is configured more simply. Further, since the analog signal is analog-processed by the charge division and integration, the harmonic extraction unit H can execute analog arithmetic processing with relatively high accuracy, and can generate harmonic components with relatively high accuracy. Can be extracted.
 図8は、超音波探触子の受信波およびこの受信波に含まれる高調波成分を示す図であり、図9は、図8に示した超音波探触子の受信波から抽出した基本波成分(1st)、第2次高調波成分(2nd)および第3次高調波成分(3rd)を示す図である。図8の横軸は、時間であり、その左縦軸は、受信波の振幅レベルを示し、その右縦軸は、高調波成分の振幅レベルを示す。実線は、受信波を示し、そして、破線は、高調波成分を示す。図9の横軸は、周波数であり、その左縦軸は、基本波成分(1st)の振幅レベルを示し、その右縦軸は、高調波成分(2nd、3rd)の振幅レベルを示す。実線は、基本波成分(1st)を示し、そして、破線は、第2次高調波成分(2nd)、第3次高調波成分(3rd)を示す。図8および図9は、シミュレーションによって得られた結果である。 FIG. 8 is a diagram showing the received wave of the ultrasonic probe and the harmonic components included in the received wave. FIG. 9 is a fundamental wave extracted from the received wave of the ultrasonic probe shown in FIG. It is a figure which shows a component (1st), a 2nd harmonic component (2nd), and a 3rd harmonic component (3rd). In FIG. 8, the horizontal axis represents time, the left vertical axis represents the amplitude level of the received wave, and the right vertical axis represents the amplitude level of the harmonic component. A solid line indicates a received wave, and a broken line indicates a harmonic component. In FIG. 9, the horizontal axis represents frequency, the left vertical axis represents the amplitude level of the fundamental wave component (1st), and the right vertical axis represents the amplitude level of the harmonic component (2nd, 3rd). The solid line indicates the fundamental wave component (1st), and the broken line indicates the second harmonic component (2nd) and the third harmonic component (3rd). 8 and 9 show the results obtained by simulation.
 図8から分かるように、受信波に含まれる高調波成分は、その振幅レベルが受信波の振幅レベルに較べて著しく小さいが、図9から分かるように、本実施形態の高調波抽出部Hによって、ほぼ完全に基本波成分が抑圧されている。したがって、高調波成分をアナログ信号からデジタル信号へ変換する際に、アナログ-デジタル変換器のダイナミックレンジを全体に亘って利用することが可能となり、高調波成分が高分解能で変換され、超音波画像の階調性が向上する。 As can be seen from FIG. 8, the harmonic component contained in the received wave has an amplitude level that is significantly smaller than the amplitude level of the received wave, but as can be seen from FIG. The fundamental wave component is almost completely suppressed. Therefore, when converting a harmonic component from an analog signal to a digital signal, the entire dynamic range of the analog-to-digital converter can be used, and the harmonic component is converted with high resolution. Tonality is improved.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる超音波診断装置は、被検体内に送信した第1超音波信号に基づく前記被検体内から来た第2超音波信号に基づいて前記被検体内の画像を形成する超音波診断装置であって、前記第2超音波信号を受信した超音波探触子の出力を所定の時間間隔でサンプリングすることで得られた複数のアナログ信号をアナログ処理することによって、前記第2超音波信号から、前記第1超音波信号の周波数を基本周波数とした場合における高調波成分を抽出する高調波抽出部と、前記高調波抽出部で抽出した前記高調波成分に基づいて前記被検体内の画像を形成する画像処理部とを備える。より具体的には、一態様にかかる超音波診断装置は、超音波探触子を介して被検体内へ第1超音波信号を送信するための送信部と、前記第1超音波信号に基づく前記被検体内から来た第2超音波信号を受信した前記超音波探触子の出力を所定の時間間隔でサンプリングすることで得られた複数のアナログ信号をアナログ処理することによって、前記第2超音波信号から、前記第1超音波信号の周波数を基本周波数とした場合における高調波成分を抽出する受信部と、前記受信部で抽出した前記高調波成分に基づいて前記被検体内の画像を形成する画像処理部とを備える。 An ultrasonic diagnostic apparatus according to an aspect forms an image in the subject based on a second ultrasonic signal coming from the subject based on a first ultrasonic signal transmitted into the subject. An apparatus that performs analog processing on a plurality of analog signals obtained by sampling the output of the ultrasonic probe that has received the second ultrasonic signal at a predetermined time interval, thereby enabling the second ultrasonic wave to be processed. A harmonic extraction unit that extracts a harmonic component in the case where the frequency of the first ultrasonic signal is a fundamental frequency from a signal, and the inside of the subject based on the harmonic component extracted by the harmonic extraction unit An image processing unit for forming an image. More specifically, an ultrasonic diagnostic apparatus according to one aspect is based on a transmission unit for transmitting a first ultrasonic signal into a subject via an ultrasonic probe, and the first ultrasonic signal. By analog processing a plurality of analog signals obtained by sampling the output of the ultrasonic probe that has received the second ultrasonic signal coming from within the subject at a predetermined time interval, the second A receiving unit that extracts a harmonic component when the frequency of the first ultrasonic signal is a fundamental frequency from an ultrasonic signal, and an image in the subject based on the harmonic component extracted by the receiving unit. And an image processing unit to be formed.
 このような構成の超音波診断装置では、高調波抽出部が超音波探触子における所定の時間差のある複数のアナログ信号をアナログ処理することによって、すなわち、複数のアナログ信号をアナログのままで信号処理することによって、第2超音波信号の高調波成分を抽出し、画像処理部がこの高調波成分に基づいて被検体内の画像を形成する。したがって、このような構成の超音波診断装置は、被検体内の一箇所に対し2回の送受信が必要ではなく、アナログ処理によって第2超音波信号から高調波成分を抽出するので、フレームレートを低下させることなく、より階調性の高い超音波画像を形成することができる。 In the ultrasonic diagnostic apparatus having such a configuration, the harmonic extraction unit performs analog processing on a plurality of analog signals having a predetermined time difference in the ultrasonic probe, that is, the plurality of analog signals are analog signals. By processing, the harmonic component of the second ultrasonic signal is extracted, and the image processing unit forms an image in the subject based on the harmonic component. Therefore, the ultrasonic diagnostic apparatus having such a configuration does not require transmission / reception twice for one place in the subject, and extracts a harmonic component from the second ultrasonic signal by analog processing. An ultrasonic image with higher gradation can be formed without lowering.
 また、他の一態様では、上述の超音波診断装置において、前記受信部は、前記複数のアナログ信号のそれぞれを保持する複数の電荷保持部と、前記複数の電荷保持部のそれぞれに対応して設けられる複数のアナログ乗算部と、前記複数のアナログ乗算部の各出力をアナログ処理によって加算するアナログ加算部とを備える高調波抽出部を備え、前記アナログ乗算部は、前記電荷保持部に保持されているアナログ信号にアナログ処理によって重み付けを行い、前記重み付けは、前記高調波成分を前記第1超音波信号の基本波で表現した関数式の係数に基づいて設定される。 According to another aspect, in the above-described ultrasonic diagnostic apparatus, the reception unit corresponds to each of the plurality of charge holding units that hold the plurality of analog signals and the plurality of charge holding units. A harmonic extraction unit including a plurality of analog multiplication units provided and an analog addition unit that adds the outputs of the plurality of analog multiplication units by analog processing, and the analog multiplication unit is held in the charge holding unit The analog signal is weighted by analog processing, and the weighting is set based on a coefficient of a functional expression in which the harmonic component is expressed by a fundamental wave of the first ultrasonic signal.
 この構成によれば、高調波成分が第1超音波信号の基本波によって関数表現され、高調波抽出部がアナログ処理を行う回路で簡易に構成可能となる。 According to this configuration, the harmonic component is expressed as a function by the fundamental wave of the first ultrasonic signal, and the harmonic extraction unit can be easily configured with a circuit that performs analog processing.
 また、他の一態様では、上述の超音波診断装置において、前記複数の電荷保持部は、直列に接続され、所定の動作タイミングに応答して自己の電荷保持部で保持しているアナログ信号を順次に後段の電荷保持部へ転送し、前記アナログ乗算部は、電荷転送素子を用いた乗算器であり、前記アナログ加算部は、電荷転送素子を用いた加算器である。 According to another aspect, in the above-described ultrasonic diagnostic apparatus, the plurality of charge holding units are connected in series and receive analog signals held by their own charge holding units in response to a predetermined operation timing. The analog multiplying unit is a multiplier using a charge transfer element, and the analog adder is an adder using a charge transfer element.
 この構成によれば、電荷保持部、アナログ乗算部およびアナログ加算部が電荷転送素子(電荷結合素子)を用いて構成されるので、高調波抽出部がより簡易に構成可能となり、また、高調波抽出部のICチップ化が可能となる。 According to this configuration, since the charge holding unit, the analog multiplication unit, and the analog addition unit are configured using the charge transfer element (charge coupled device), the harmonic extraction unit can be configured more easily, The extraction unit can be made into an IC chip.
 また、他の一態様では、上述の超音波診断装置において、前記アナログ乗算部は、電荷を2等分して第1および第2分割部にそれぞれ保持し、直列に接続されている複数の電荷分割部と、複数の電荷を1個の電荷に統合する電荷統合部とを備え、電荷保持部で保持しているアナログ信号に対応する電荷量Qを前記電荷分割部で2等分し、その一方を後段の電荷分割部で2等分し、これを繰り返すことで、2-1Q、2-2Q、2-3Q、・・・、2-nQの複数nの電荷を生成し、これら各電荷を、前記重み付けMの2進表現m、m、m、・・・、mに従って取捨し、この取り上げた電荷を前記電荷統合部で統合する。 According to another aspect, in the above-described ultrasonic diagnostic apparatus, the analog multiplying unit divides the electric charge into two equal parts and respectively holds them in the first and second dividing units, and a plurality of electric charges connected in series. A division unit and a charge integration unit that integrates a plurality of charges into one charge, and the charge division unit divides the charge amount Q corresponding to the analog signal held by the charge holding unit into two equal parts, One of the two is divided into two equal parts in the subsequent charge dividing unit, and by repeating this, a plurality of n charges of 2 −1 Q, 2 −2 Q, 2 −3 Q,..., 2 −n Q are generated. These charges are discarded according to the binary expression m 1 , m 2 , m 3 ,..., M n of the weight M, and the taken-up charges are integrated by the charge integration unit.
 この構成によれば、電荷を2等分する電荷分割部と、2個の電荷を1個に統合する電荷統合部とを用いて構成されるので、高調波抽出部がより簡易に構成可能となる。また、電荷の分割と統合とで前記アナログ信号がアナログ処理されるので、高調波抽出部は、比較的高精度にアナログ演算処理を実行することができ、比較的高精度に高調波成分を抽出することができる。 According to this configuration, since the charge dividing unit that divides the charge into two equal parts and the charge integration unit that integrates two charges into one, the harmonic extraction unit can be configured more easily. Become. In addition, since the analog signal is processed in analog by charge division and integration, the harmonic extraction unit can execute analog calculation processing with relatively high accuracy and extract harmonic components with relatively high accuracy. can do.
 この出願は、2008年7月10日に出願された日本国特許出願特願2008-179755を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2008-179755 filed on July 10, 2008, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、フレームレートを低下させることなく、より階調性の高い超音波画像を形成し得る超音波診断装置を提供することができる。 According to the present invention, it is possible to provide an ultrasonic diagnostic apparatus that can form an ultrasonic image with higher gradation without reducing the frame rate.

Claims (4)

  1.  超音波探触子を介して被検体内へ第1超音波信号を送信するための送信部と、
     前記第1超音波信号に基づく前記被検体内から来た第2超音波信号を受信した前記超音波探触子の出力を所定の時間間隔でサンプリングすることで得られた複数のアナログ信号をアナログ処理することによって、前記第2超音波信号から、前記第1超音波信号の周波数を基本周波数とした場合における高調波成分を抽出する受信部と、
     前記受信部で抽出した前記高調波成分に基づいて前記被検体内の画像を形成する画像処理部とを備えること
     を特徴とする超音波診断装置。
    A transmission unit for transmitting the first ultrasonic signal into the subject via the ultrasonic probe;
    A plurality of analog signals obtained by sampling the output of the ultrasonic probe that has received the second ultrasonic signal coming from within the subject based on the first ultrasonic signal at predetermined time intervals are analogized. A receiver that extracts a harmonic component when the frequency of the first ultrasonic signal is a fundamental frequency from the second ultrasonic signal by processing;
    An ultrasonic diagnostic apparatus comprising: an image processing unit that forms an image in the subject based on the harmonic component extracted by the receiving unit.
  2.  前記受信部は、前記複数のアナログ信号のそれぞれを保持する複数の電荷保持部と、前記複数の電荷保持部のそれぞれに対応して設けられる複数のアナログ乗算部と、前記複数のアナログ乗算部の各出力をアナログ処理によって加算するアナログ加算部とを備える高調波抽出部を備え、
     前記アナログ乗算部は、前記電荷保持部に保持されているアナログ信号にアナログ処理によって重み付けを行い、
     前記重み付けは、前記高調波成分を前記第1超音波信号の基本波で表現した関数式の係数に基づいて設定されること
     を特徴とする請求項1に記載の超音波診断装置。
    The receiving unit includes a plurality of charge holding units that hold the plurality of analog signals, a plurality of analog multiplication units provided corresponding to the plurality of charge holding units, and a plurality of analog multiplication units, A harmonic extraction unit including an analog addition unit that adds each output by analog processing,
    The analog multiplication unit weights the analog signal held in the charge holding unit by analog processing,
    2. The ultrasonic diagnostic apparatus according to claim 1, wherein the weighting is set based on a coefficient of a functional expression in which the harmonic component is expressed by a fundamental wave of the first ultrasonic signal.
  3.  前記複数の電荷保持部は、直列に接続され、所定の動作タイミングに応答して自己の電荷保持部で保持しているアナログ信号を順次に後段の電荷保持部へ転送し、
     前記アナログ乗算部は、電荷転送素子を用いた乗算器であり、
     前記アナログ加算部は、電荷転送素子を用いた加算器であること
     を特徴とする請求項2に記載の超音波診断装置。
    The plurality of charge holding units are connected in series and sequentially transfer analog signals held by the charge holding unit in response to a predetermined operation timing to the subsequent charge holding unit,
    The analog multiplier is a multiplier using a charge transfer element,
    The ultrasonic diagnostic apparatus according to claim 2, wherein the analog adder is an adder using a charge transfer element.
  4.  前記アナログ乗算部は、
     電荷を2等分して第1および第2分割部にそれぞれ保持し、直列に接続されている複数の電荷分割部と、
     複数の電荷を1個の電荷に統合する電荷統合部とを備え、
     電荷保持部で保持しているアナログ信号に対応する電荷量Qを前記電荷分割部で2等分し、その一方を後段の電荷分割部で2等分し、これを繰り返すことで、2-1Q、2-2Q、2-3Q、・・・、2-nQの複数nの電荷を生成し、これら各電荷を、前記重み付けMの2進表現m、m、m、・・・、mに従って取捨し、この取り上げた電荷を前記電荷統合部で統合すること
     を特徴とする請求項2または請求項3に記載の超音波診断装置。
    The analog multiplier is
    A plurality of charge dividers connected in series, each of which is divided into two equal parts and held in the first and second dividers;
    A charge integration unit that integrates a plurality of charges into one charge;
    The charge amount Q corresponding to the analog signal held in the charge holding portion bisected by the charge division unit, and bisecting the one in a subsequent charge division unit, by repeating this, 2 -1 Q, 2 −2 Q, 2 −3 Q,..., 2 −n Q, a plurality of n charges are generated, and each of these charges is represented by a binary expression m 1 , m 2 , m 3 , The ultrasonic diagnostic apparatus according to claim 2 or 3, wherein the ultrasonic diagnostic apparatus is arranged according to mn and the electric charges taken up are integrated by the electric charge integration unit.
PCT/JP2009/062322 2008-07-10 2009-07-06 Ultrasonographic device WO2010004967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519773A JP5299427B2 (en) 2008-07-10 2009-07-06 Ultrasonic diagnostic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008179755 2008-07-10
JP2008-179755 2008-07-10

Publications (1)

Publication Number Publication Date
WO2010004967A1 true WO2010004967A1 (en) 2010-01-14

Family

ID=41507080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062322 WO2010004967A1 (en) 2008-07-10 2009-07-06 Ultrasonographic device

Country Status (2)

Country Link
JP (1) JP5299427B2 (en)
WO (1) WO2010004967A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10179589A (en) * 1996-11-08 1998-07-07 Atl Ultrasound Inc Ultrasonic image processing method and device by higher harmonic wave
JP2001008933A (en) * 1999-07-01 2001-01-16 Matsushita Electric Ind Co Ltd Ultrasonic transmitting and receiving method and ultrasonograph
JP2003000596A (en) * 2001-06-26 2003-01-07 Hitachi Medical Corp Ultrasonic diagnostic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453847A (en) * 1977-10-05 1979-04-27 Matsushita Electric Ind Co Ltd Filter unit
JP3069637B2 (en) * 1996-10-16 2000-07-24 株式会社ジーデイーエス Charge signal parallel supply device and filtering AD converter using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10179589A (en) * 1996-11-08 1998-07-07 Atl Ultrasound Inc Ultrasonic image processing method and device by higher harmonic wave
JP2001008933A (en) * 1999-07-01 2001-01-16 Matsushita Electric Ind Co Ltd Ultrasonic transmitting and receiving method and ultrasonograph
JP2003000596A (en) * 2001-06-26 2003-01-07 Hitachi Medical Corp Ultrasonic diagnostic device

Also Published As

Publication number Publication date
JPWO2010004967A1 (en) 2012-01-05
JP5299427B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US10820888B2 (en) Miniature ultrasonic imaging system
JP5582139B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP4910999B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5299427B2 (en) Ultrasonic diagnostic equipment
Wu et al. An ultrasound imaging system with on-chip per-voxel RX beamfocusing for real-time drone applications
JP4911000B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5541182B2 (en) Ultrasonic diagnostic equipment
Sanchez et al. Flexible piezoelectric sensors for miniaturized sonomyography
JP2009297326A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2011010793A (en) Ultrasonography
JP6963677B2 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
JP5146101B2 (en) Ultrasonic diagnostic equipment
JP7302163B2 (en) ULTRASOUND DIAGNOSTIC APPARATUS AND ULTRASOUND IMAGE GENERATING METHOD
JP6198204B2 (en) Ultrasonic diagnostic apparatus and method of operating ultrasonic diagnostic apparatus
JP2010213965A (en) Ultrasonic image diagnostic equipment
JP5092890B2 (en) Ultrasonic diagnostic equipment
JP2009268807A (en) Ultrasonic diagnostic device
JP2009279034A (en) Ultrasonic diagnostic device
JP7235722B2 (en) ULTRASOUND DIAGNOSTIC SYSTEM AND CONTROL METHOD OF ULTRASOUND DIAGNOSTIC SYSTEM
WO2010106737A1 (en) Ultrasonic diagnostic device
JP5510087B2 (en) Ultrasonic diagnostic equipment
WO2010010822A1 (en) Ultrasonographic device
Peng Coded Signals for High Frequency Ultrasound Imaging
JP2010213903A (en) Ultrasonic diagnostic apparatus
Cerezo Sanchez et al. Flexible Piezoelectric Sensors for Miniaturized Sonomyography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519773

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794411

Country of ref document: EP

Kind code of ref document: A1