WO2010004779A1 - Medical image system - Google Patents

Medical image system Download PDF

Info

Publication number
WO2010004779A1
WO2010004779A1 PCT/JP2009/054022 JP2009054022W WO2010004779A1 WO 2010004779 A1 WO2010004779 A1 WO 2010004779A1 JP 2009054022 W JP2009054022 W JP 2009054022W WO 2010004779 A1 WO2010004779 A1 WO 2010004779A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
divided
console
image
display
Prior art date
Application number
PCT/JP2009/054022
Other languages
French (fr)
Japanese (ja)
Inventor
久 米川
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008177681A external-priority patent/JP2010017213A/en
Priority claimed from JP2008179136A external-priority patent/JP2010017296A/en
Priority claimed from JP2008190653A external-priority patent/JP2010022752A/en
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2010004779A1 publication Critical patent/WO2010004779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • the present invention relates to a medical image system.
  • a radiographic image taken using radiation represented by an X-ray image
  • Such medical radiographic images were conventionally taken using a screen film, but in recent years, digitization of radiographic images has been realized.
  • a stimulable phosphor layer forms radiation transmitted through a subject.
  • the photostimulable phosphor sheet After being stored in the photostimulable phosphor sheet, the photostimulable phosphor sheet is scanned with laser light, and thereby the photostimulated light emitted from the photostimulable phosphor sheet is photoelectrically converted to image data.
  • a CR (Computed Radiography) apparatus for obtaining the above has been widely used.
  • a cassette-type FPD (hereinafter referred to as “FPD cassette”) configured to be portable like the cassette of the CR device is also used, and has a built-in battery and wireless communication.
  • FPD cassette makes use of its portability and enables imaging at any location, such as a patient's bedside, and transfers image data to a console, personal computer (PC), workstation (WS), etc. wirelessly.
  • a system capable of transmitting is also proposed (see, for example, Patent Document 3). In such a system, if necessary, all read image data (hereinafter referred to as “RAW image data”) or thinned image data with a reduced amount of data (thinned by compression) is reduced (compressed).
  • the diagnostic image (determined image) that is finally used for diagnosis is generated from the RAW image data, if it is not necessary to perform re-imaging after determining whether re-imaging is necessary based on the thinned-out image data, the RAW image is renewed.
  • the sequence is such that the image data is transmitted to the console or the like, and the thinned image data transmitted previously is deleted as unnecessary. In this way, the image data to be finally deleted is generated, and once sent to a console or the like to confirm the necessity of re-shooting, the RAW image data is sent again to generate the final image. Therefore, it takes a considerable time to generate a definite image.
  • the number of pixels of thinned image data (for example, thinned image data such as 1/8 compressed or 1/16 compressed raw data) transmitted to the console side
  • thinned image data such as 1/8 compressed or 1/16 compressed raw data
  • the present invention has been made in view of the circumstances as described above, and provides a medical image system that can quickly and surely determine the necessity of re-imaging without being influenced by the communication environment or the like. Objective.
  • the present invention reads radiation signals that are two-dimensionally arranged with a plurality of elements that convert radiation transmitted through a subject into electrical signals, and reads electrical signals acquired by the radiation detection units.
  • Reading means for generating image data of a subject, divided image data generating means for dividing the image data generated by the reading means into divided image data based on a predetermined division setting, and a transmission order of the divided image data are set
  • a radiological image detector comprising: a transmission management means for performing; and a detector communication means for transmitting the divided image data to the outside according to the transmission order;
  • a console having display means having a two-dimensional display area, console communication means for acquiring the divided image data from the radiation image detector, and display control means for controlling the display means; With The display control means divides the display area of the display means into a plurality of divided display areas based on imaging part information for identifying an imaging part, and outputs the divided image data acquired by the console communication means to a predetermined area. According to the allocation order, the image is
  • the transmission management means transmits a plurality of divided image data obtained by dividing one image data based on a predetermined division setting to the console in a predetermined order. Necessary image data can be transmitted to the console more quickly.
  • Image data necessary for checking whether or not re-shooting is necessary can be transmitted to the console more appropriately and quickly.
  • the display control means assigns and displays the divided image data acquired by the console communication means in a predetermined order in a predetermined divided display area on the display means based on the imaging part, it is earlier than the necessity of re-imaging. Confirmation is possible. As a result, even if only the RAW image data is transmitted without transmitting the thinned image data for re-photographing necessity confirmation, it is possible to quickly confirm the final diagnostic image data.
  • the reading means is in the reading order designated by the reading designation means. Since the reading / detecting device communication means transmits the image data to the outside in the reading order read by the reading means, the image data necessary for confirming whether or not re-photographing is necessary can be transmitted to the console earlier.
  • the display control means allocates and displays the image data acquired by the console communication means in a predetermined order in a predetermined divided display area on the display means based on the imaging region, it is possible to confirm whether or not re-imaging is necessary. Is possible. As a result, even if only the RAW image data is transmitted without transmitting the thinned image data for re-photographing necessity confirmation, the final diagnostic image data can be quickly confirmed as a result.
  • the divided image data generation means divides one image data into a plurality of divided image data based on a predetermined division setting, and also thins out the divided image data based on a predetermined image thinning rate.
  • the image data is generated, and the transmission management unit sets the transmission order of the divided thinned image data.
  • the detector communication means transmits the division setting, the transmission order, and the image thinning rate as supplementary data together with the divided thinned image data in the transmission order
  • the divided thinned image data is one image data (RAW image data).
  • the data amount of the divided thinned-out image data is smaller than the data amount of one image data (RAW image data). Therefore, the data transfer time is shortened, and the image data necessary for confirming whether or not re-shooting is necessary can be transmitted to the console more quickly.
  • the console communication means obtains incidental data and divided thinned image data.
  • the display control means assigns the divided thinned image data to a predetermined divided display area based on the division setting in the accompanying data in the transmission order in the accompanying data, and based on the image thinning rate in the accompanying data.
  • the display means is controlled to display on the display means. Therefore, it is possible to confirm earlier whether or not the most photographing is necessary.
  • FIG. 1 is a diagram illustrating an overall configuration of a medical image system according to a first embodiment. It is a perspective view which shows the principal part structure of a FPD cassette. It is an equivalent circuit diagram shown in the structure of the sensor panel part and reading part of FPD cassette. It is the perspective view which looked at the FPD cassette shown in FIG. 2 from the arrow A direction. It is a figure which shows the division area and division
  • the medical image system 1 is a system that assumes radiographic imaging performed in a hospital or clinic.
  • the imaging room R ⁇ b> 1 is a room that shields radiation
  • the imaging room R ⁇ b> 1 includes a radiation generator 4 that irradiates the examination target with radiation, and the radiation emitted from the radiation generator 4.
  • An FPD cassette 2 that generates image data
  • a holding device 7 that can be loaded with the FPD cassette 2, and a wireless access point 5 are arranged.
  • An operation device 6 for operating the radiation generation device 4 is disposed in the front chamber R2.
  • a separate room is provided with a console 3 for controlling the entire system. This console 3 can also be provided in the front chamber R2.
  • the medical image system 1 includes the FPD cassette 2, the console 3, the radiation generation device 4, the wireless access point 5, the operation device 6, and the holding device 7.
  • the image data acquired by the FPD cassette 2 is transmitted to the console 3 and the image is displayed on the display unit 33 after the transmission is completed.
  • the amount of image data to be transmitted is transmitted. It is preferable to adopt a display format (hereinafter referred to as “progressive display”) in which the resolution is sequentially increased as time increases (a configuration and processing technique for performing progressive display will be described later). In this case, progressive display can be performed in real time with image transmission.
  • progressive display a display format in which the resolution is sequentially increased as time increases
  • the radiation generator 4 includes a radiation tube (not shown) that generates radiation when a high voltage is applied from a voltage generation source.
  • a radiation squeezing device (not shown) for adjusting the radiation irradiation range is provided at the radiation irradiation port of the radiation tube.
  • the radiation generating device 4 is disposed at a position facing the FPD cassette 2 at the time of imaging, and irradiates the inspection target with radiation.
  • the holding device 7 loads the FPD cassette 2 and is connected to the network N.
  • the FPD cassette 2 has a function of transmitting and receiving data by a wireless method or a wired method via the holding device 7.
  • the FPD cassette 2 is a cassette-type radiological image detection apparatus that obtains radiographic image data (hereinafter simply referred to as “image data”).
  • image data radiographic image data
  • 8 inch ⁇ 10 inch, 10 inch ⁇ 12 inch, 11 inch ⁇ 14 inch, 14 inch ⁇ 14 inch, 14 inch ⁇ 17 inch, 17 inch ⁇ 17 inch, etc. are available. However, the size is not limited to those listed here.
  • FIG. 2 is a perspective view of the FPD cassette 2 in the present embodiment.
  • the FPD cassette 2 includes a casing 210 that protects the inside.
  • a scintillator layer 220 that converts irradiated radiation into light is formed in the casing 210.
  • the scintillator layer 220 for example, a layer formed using a phosphor in which a luminescent center substance is activated in a matrix such as CsI: Tl, Cd 2 O 2 S: Tb, or ZnS: Ag can be used.
  • a sensor panel portion 221 is provided on the surface of the scintillator layer 220 opposite to the surface on which radiation is incident.
  • the sensor panel unit 221 includes a plurality of two-dimensionally arranged radiation detection elements that convert radiation transmitted through a subject into electrical signals, and functions as radiation detection means.
  • the sensor panel unit 221 includes a plurality of photoelectric conversion elements 223 (see FIG. 3) such as photodiodes that convert light output from the scintillator layer 220 into electric signals as radiation detection elements.
  • Each photoelectric conversion element 223 in this case corresponds to one pixel as a minimum unit of image reading, and each photoelectric conversion element 223 has its position determined by, for example, a position x in the row direction and a position y in the column direction. It can be specified.
  • a reading unit 230 that reads the output value of each photoelectric conversion element 223 of the sensor panel unit 221 is provided on a portion around the sensor panel unit 221 or on the back surface side.
  • the reading unit 230 reads an electrical signal detected and output by the sensor panel unit 221 (an output value corresponding to the amount of radiation generated by the radiation generator 4 and transmitted through the subject), and generates image data based on the electrical signal. Functions as a reading means.
  • the reading unit 230 includes an FPD cassette control unit 200 made up of a microcomputer having a CPU (Central Processing Unit) (not shown) or the like, an FPD cassette made up of ROM (Read Only Memory) and RAM (Random Access Memory), flash memory, etc. (not shown).
  • the storage unit 201, the scanning drive circuit 202, the signal readout circuit 203, and the like are included.
  • each photoelectric conversion element 223 of the sensor panel unit 221 is connected to the source electrode of the TFT 222 which is a signal reading switch element.
  • a bias line Lb is connected to the other electrode of each photoelectric conversion element 223, and the bias line Lb is connected to a bias power supply 228, and a bias voltage is applied from the bias power supply 228 to each photoelectric conversion element 223. It has become so.
  • each TFT 222 is connected to a scanning line Ll extending from the scanning drive circuit 202, and the drain electrode of each TFT 222 is connected to a signal line Lr.
  • Each signal line Lr is connected to the amplifier circuit 224 in the signal readout circuit 203, and the output line of each amplifier circuit 224 is connected to the analog multiplexer 226 via the sample hold circuit 225, respectively.
  • the analog multiplexer 226 is connected to an A / D converter 227, and the signal readout circuit 203 is connected to the FPD cassette control unit 200 via the A / D converter 227.
  • An FPD cassette storage unit 201 is connected to the FPD cassette control unit 200.
  • the FPD cassette 2 in radiation image capturing for capturing a subject (not shown), when radiation transmitted through the subject is incident on the scintillator layer 220, light is irradiated from the scintillator layer 220 to the sensor panel unit 221 and the amount of light irradiation received. Accordingly, the characteristics of the photoelectric conversion element 223 change.
  • the FPD cassette 2 includes a battery 207, and the FPD cassette control unit 200 controls power supply from the battery 207 to each member.
  • the battery 207 for example, a rechargeable battery such as a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, a small sealed lead battery, or a lead storage battery can be used. Further, instead of the battery 207, a fuel cell or the like may be applied.
  • the FPD cassette 2 includes an image storage unit 204 that stores image data generated by the reading unit 230 based on an electrical signal detected by the sensor panel unit 221.
  • the image storage unit 204 is configured by a rewritable memory such as a flash memory, for example.
  • image data generated by the reading unit 230 is stored in an image storage unit in association with pixel size information, pixel number information, and position information of each pixel for each pixel corresponding to each photoelectric conversion element 223. The data is temporarily stored in the unit 204.
  • the image storage unit 204 may be a built-in memory or a removable memory such as a memory card.
  • the capacity of the image storage unit 204 is not particularly limited, but preferably has a capacity capable of storing a plurality of pieces of image data. By providing such an image storage unit 204, it is possible to continuously irradiate a subject with radiation, and to record and accumulate image data each time, so that continuous shooting and moving image shooting can be performed. It becomes possible.
  • a terminal 209 for charging is formed at one end of the casing 210 of the FPD cassette 2.
  • the FPD cassette 2 is attached to a charging device (not shown) such as a cradle connected to an external power source.
  • a terminal (not shown) on the charging device side and a terminal 209 on the housing 210 side are connected to charge the battery 207.
  • the FPD cassette 2 is provided with an FPD cassette communication unit 208 (see FIG. 1) that transmits and receives various signals to and from an external device such as the console 3.
  • the FPD cassette communication unit 208 is, for example, for transferring image data to the console 3 or receiving a photographing start signal transmitted from the console 3 or the like.
  • the image data generated by the reading unit 230 is divided into divided image data corresponding to a predetermined divided area based on the imaging region information, and externally according to a predetermined transmission order.
  • the FPD cassette communication unit 208 functions as a detection device communication unit that transmits the divided image data to the console 3 or the like according to the transmission order. Further, as will be described later, when the transmission order for transmitting the divided image data is changed by the FPD cassette control unit 200, the FPD cassette communication unit 208 transmits the divided image data to the console 3 together with the changed transmission order. To do.
  • an indicator 206 for displaying the charging status of the battery 207 and various operation statuses is provided at one end of the front surface of the casing 210 of the FPD cassette 2 so that the operator can check the charging status of the battery 207 of the FPD cassette 2 and the like. Can be visually confirmed.
  • an input operation unit 205 is provided outside the casing 210 of the FPD cassette 2 for an operator such as a radiologist to input and set various instructions.
  • the contents input from the input operation unit 205 include, for example, imaging conditions, patient identification information, selection setting of the operation state of the FPD cassette 2, etc., but the contents that can be input from the input operation unit 205 are: It is not limited to what was illustrated here.
  • an instruction signal for instructing the change of the transmission order is input by inputting an instruction from the input operation unit 205, and the FPD cassette control unit 200. May be output.
  • the FPD cassette control unit 200 changes the transmission order of the divided image data set as a default according to the instruction signal.
  • an antenna device 231 for performing wireless communication is embedded in the side surface portion of the casing 210 of the FPD cassette 2.
  • the antenna device 231 includes a pair of flat radiation plates 232 and 233 made of metal, and a power feeding unit 234 that connects the pair of radiation plates 232 and 233 and supplies power to the pair of radiation plates 232 and 233.
  • the antenna device 231 is not limited to being embedded in the housing 210, and may be attached to the outside or the inside of the housing 210.
  • the FPD cassette storage unit 201 stores various control programs and various data such as image data.
  • the various control programs include a transmission management program indicating the image data division method and transmission order associated with the imaging region.
  • the FPD cassette storage unit 201 stores a predetermined division method and transmission order as defaults. However, as described above, by inputting an instruction signal from the input operation unit 205, an engineer (user) or the like is arbitrarily selected. It is also possible to change the setting.
  • this transmission management program as a default, the division method and transmission order when the imaging region is the front of the chest, and the division method and transmission order when the imaging region is the side of the chest are set.
  • the method of defining the dividing method and the transmission order is not limited to this, and more patterns may be selectively applicable.
  • the FPD cassette control unit 200 performs overall control of each unit in the FPD cassette 2 according to a program stored in the FPD cassette storage unit 201 and performs predetermined calculations.
  • the FPD cassette control unit 200 uses the transmission management program stored in the FPD cassette storage unit 201 to obtain the image data generated by the reading unit 230 based on the imaging part information. It also functions as transmission management means for dividing the divided image data corresponding to the divided areas and setting the transmission order of the divided image data.
  • imaging part information for identifying an imaging part in the imaging is transmitted from the console 3 to the FPD cassette 2, and the imaging part information transmitted from the console 3 is transmitted to the FPD cassette communication unit 208.
  • the FPD cassette control unit 200 reads the transmission management program corresponding to the imaging part information from the FPD cassette storage unit 201. Then, based on the transmission management program, the FPD cassette control unit 200 displays one image data (image data obtained by the photographing) stored in the image storage unit 204, which will be described later, on the display unit 33 of the console 3.
  • the FPD cassette communication unit 208 transmits the plurality of divided image data to the console 3 in a predetermined transmission order.
  • the FPD cassette control unit 200 converts one piece of image data into three pieces (divided image data ⁇ , ⁇ ) in the vertical direction (row direction) as shown in FIG. , ⁇ ), and the divided image data ⁇ , ⁇ , ⁇ are transmitted to the console 3 in the order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”.
  • the divided image data ⁇ , ⁇ , and ⁇ correspond to the divided display areas A, B, and C of the display unit 33 of the console 3 in FIG.
  • the FPD cassette control unit 200 divides one image data into three in the horizontal direction (column direction) (divided image data ⁇ , ⁇ , ⁇ ) as shown in FIG.
  • the divided image data ⁇ , ⁇ , ⁇ are transmitted to the console 3 in the order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”.
  • the divided image data ⁇ , ⁇ , and ⁇ correspond to the divided display areas A, B, and C of the display unit 33 of the console 3 in FIG.
  • the transmission order information changed from the FPD cassette communication unit 208 of the FPD cassette 2 to the console 3 is transmitted together with the divided image data before transmitting the image data.
  • the reason why the divided transmission is performed as described above is that if the imaging region is the front of the chest as shown in FIG. 5, the neck image data that is the divided image data ⁇ and the waist image data that is the divided image data ⁇ are the first. If the image data ⁇ of the front of the chest is not transmitted to the console 3, the approximate position of the front of the chest that is the region of interest can be estimated from the positional relationship between the neck and the waist on the console 3 side.
  • the imaging region is the chest side surface as shown in FIG. 6, if the abdominal image data as the divided image data ⁇ and the back image data as the divided image data ⁇ are transmitted to the console 3, the image of the chest side surface is obtained. Even when the data ⁇ is not transmitted to the console 3, the approximate position of the side of the chest, which is the region of interest, can be estimated from the positional relationship between the abdomen and the back on the console 3, and whether the imaging position is appropriate, that is, the position of the subject This is because it is often possible to visually recognize whether or not the image exists at an appropriate position.
  • the FPD cassette control unit 200 determines the transmission order of each image data so that the divided image data is displayed in a progressive display in each divided display area of the display unit 33 of the console 3. Accordingly, the FDP cassette communication unit 208 can be controlled to transmit image data in units of pixels or in units of lines.
  • the data transfer amount to the console 3 when all image data is finally transmitted does not change, that is, the data transfer time does not change.
  • a low-resolution screen is first displayed, and a higher-resolution image is displayed as image data is received.
  • the console 3 includes a console control unit 30 composed of a CPU or the like (not shown), a console storage unit 31 composed of ROM, RAM, etc., a console communication unit 32, a display unit 33, an input An operation unit 34 and the like are provided, and each unit is connected by a bus 35.
  • a console control unit 30 composed of a CPU or the like (not shown)
  • a console storage unit 31 composed of ROM, RAM, etc.
  • a console communication unit 32 a display unit 33
  • an input An operation unit 34 and the like are provided, and each unit is connected by a bus 35.
  • the console storage unit 31 stores various control programs such as a program for performing image processing such as gradation processing and frequency processing based on automatic region recognition for detecting an affected part, and also imaging.
  • the image processing parameters for adjusting the image data of the image to an image quality suitable for diagnosis lookup table defining a gradation curve used for gradation processing, enhancement degree of frequency processing, etc.
  • the display area division method and assignment order associated with the imaging region display order in which the divided display areas from which the image data transmitted from the FPD cassette 2 are assigned in order are displayed
  • a display control program is included.
  • the console control unit 30 performs overall control of each unit in the console 3 according to a program stored in the console storage unit 31 and performs predetermined calculations.
  • the console control unit 30 also functions as a display control unit that controls the display unit 33 in accordance with a display control program stored in the console storage unit 31.
  • the console control unit 30 acquires imaging part information by input from the input operation unit 34, for example, the console control unit 30 reads a display control program corresponding to the imaging part information from the console storage unit 31. Then, the console control unit 30 divides the display area of the display unit 33 into a plurality of divided display areas based on the display control program, and assigns each divided image data acquired by the console communication unit 32 to a predetermined allocation. An image is assigned to each divided display area according to the order, and an image based on each divided image data is displayed in each divided display area.
  • the console control unit 30 divides one display region into three vertical display regions A, B, and C as shown in FIG. Each divided image data is assigned to the divided display areas A, B, and C in accordance with a predetermined assignment order, and an image based on each divided image data is displayed.
  • the FPD cassette control unit 200 divides one display area into three divided display areas A, B, and C in the horizontal direction as shown in FIG. Each divided image data is assigned to the display areas A, B, and C in accordance with a predetermined assignment order, and an image based on each divided image data is displayed.
  • the “predetermined allocation order (display order)” in this case is the order (transmission order) in which the console 3 acquires the divided image data. That is, as shown in FIGS. 5 and 6, the divided display areas A, B, and C are assigned the divided image data ⁇ , ⁇ , and ⁇ according to the transmission order, and the divided display areas A, B, and C are divided. An image based on the image data ⁇ , ⁇ , ⁇ is displayed.
  • the FPD cassette 2 transmits the changed transmission order information to the console 3 before transmitting the image data, and the console 3 displays each divided display based on the transmitted information.
  • the divided image data ⁇ , ⁇ , and ⁇ are assigned to the regions A, B, and C, and an image is displayed on the display unit 33.
  • the method of defining the “predetermined allocation order (display order)” is not particularly limited, and an allocation order other than those exemplified here may be defined (set) as the “predetermined allocation order”.
  • the display is divided in this way.
  • the imaging region is the front of the chest, in most cases, the neck image data that is the divided image data ⁇ and the waist image that is the divided image data ⁇ .
  • the front of the chest which is the attention area is determined from the positional relationship between the neck and the waist at the stage where the image based on the image data on the front of the chest is not displayed in the divided display area C. This is because the position of the subject can be estimated and it can be confirmed whether or not the photographing position is appropriate, that is, whether or not the position of the subject exists at an appropriate position.
  • FIG. 5 shows the photographing position is appropriate, that is, whether or not the position of the subject exists at an appropriate position.
  • the divided image data is progressively displayed on the display unit 33 of the console 3.
  • the images are sequentially displayed based on the acquired data even before the acquisition of the divided image data for each divided display area is completed, the contour of the subject is transmitted to the image data.
  • the images are sequentially displayed in real time from low resolution to high resolution images. For this reason, it is possible to determine the necessity of re-photographing earlier than in the above example.
  • the display unit 33 is a display unit having a two-dimensional display area, and includes a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display).
  • the display unit 33 has a configuration that can be divided into a plurality of divided display areas. For example, image data (divided image data) transmitted from the FPD cassette 2 is transmitted and divided into the divided display areas. When image data is assigned, an image based on the assigned divided image data is displayed in the divided display area.
  • the console communication unit 32 transmits / receives information to / from the FPD cassette 2 via the wireless access point 5 by a wireless method, or when the FPD cassette 2 is connected to the holding device 7, Information is transmitted and received through a wired system.
  • the console communication unit 32 is a console communication unit that acquires divided image data from the FPD cassette 2.
  • the console communication unit 32 is configured by a network interface or the like, and transmits / receives data to / from an external device connected to the network N via a switching hub.
  • the external devices connected to the console communication unit 32 of the console 3 via the network N include the HIS / RIS 8, the PACS server 9, the imager 10, and the like, but the external devices connected to the network N are It is not limited to what was illustrated here.
  • the PACS server 9 stores the image data output from the console 3.
  • the imager 10 records a radiographic image on an image recording medium such as a film based on the image data output from the console 3 and outputs the image.
  • a start signal for starting the FPD cassette 2 wirelessly from the console 3 is transmitted to the FPD cassette 2 (step S101).
  • the FPD cassette 2 receives the activation signal from the console 3 (step S102)
  • the FPD cassette 2 is awakened from the sleep state (step S103) and becomes ready for photographing.
  • the imaging order information including the imaging part information is transmitted from the console 3 to the FPD cassette 2 (step S104), and the FPD cassette receives the imaging order information including the imaging part information (step S105).
  • a control signal for controlling the radiation irradiation condition of the radiation generating device 4 is transmitted from the console 3 to the operating device 6, and the operating device 6 sends an exposure instruction signal to the radiation generating device 4 based on the control signal. Send.
  • the radiation generator 4 irradiates predetermined radiation at a predetermined timing according to the exposure instruction signal, and imaging is performed.
  • the reading means of the FPD cassette 2 reads the image data (step S106) and stores it in the image storage unit 204 (step S107).
  • the FPD cassette control unit 200 determines whether or not the divided transmission is performed by dividing the image data into predetermined divided image data based on the imaging part information (step S108), and when the divided transmission is not performed (step S108). : NO), the process proceeds to step S116.
  • the FPD cassette control unit 200 sets the transmission order of the divided image data according to the imaging part information of the divided image data (step S109). For example, when the imaging region information is “front of chest”, as shown in FIG. 5, the default settings are set so that the divided image data ⁇ , ⁇ , ⁇ are transmitted in the order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”.
  • the FPD cassette control unit 200 sets the order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ” as the transmission order of the divided image data.
  • the FPD cassette control unit 200 next determines whether or not the transmission order of the divided image data has been changed (step S110), and the transmission order has not been changed. If YES (step S110: NO), the process proceeds to step S116.
  • the transmission order is changed (step S110: YES)
  • the FPD cassette control unit 200 changes the transmission order from the default to the changed one (step S111), and the FPD cassette control unit 200 3, the transmission order information about the changed transmission order is transmitted (step S112).
  • the console 3 receives the transmission order information (step S113)
  • the console 3 transmits a reception completion signal of the transmission order information to the FPD cassette 2 (step S114).
  • the FPD cassette 2 receives the reception completion signal (step S115).
  • step S108: NO when the divisional transmission is not selected in step S108 (step S108: NO), the FPD cassette control unit 200 transmits the undivided image data to the console 3 and the divisional transmission is selected (step S108: NO).
  • step S108: YES the divided image data (divided image data) is transmitted to the console 3 in the transmission order set (or changed) (step S116). That is, for example, when the imaging region information is “chest front” and the transmission order is not changed as the default, the FPD cassette control unit 200 displays “ ⁇ ⁇ ⁇ ⁇ ⁇ ” as shown in FIG.
  • the transmission order of the divided image data is managed so that the divided image data ⁇ , ⁇ , and ⁇ are transmitted to the console 3 in the order of transmission.
  • the console 3 receives undivided image data or divided image data from the FPD cassette 2 (step S117)
  • the console 3 stores it in the console storage unit 31 (step S118).
  • the console control unit 30 When the console control unit 30 receives the image data from the FPD cassette 2, the console control unit 30 displays an image corresponding to each image data on the display unit 33 (step S119). That is, when the image data transmitted from the FPD cassette 2 is divided image data, for example, in the case of the front of the chest in FIG. 5, the console control unit 30 converts each divided image data ⁇ , ⁇ , ⁇ to “ ⁇ ⁇ Received from the FPD cassette 2 in the order of “ ⁇ ⁇ ⁇ ”, and the divided image data ⁇ , ⁇ , ⁇ are stored in the console storage unit 31.
  • the divided image data ⁇ , ⁇ , ⁇ is assigned to the divided display area A of the display unit 33, the divided image data ⁇ is assigned to the divided display area B, and the divided image data ⁇ is assigned to the divided display area C.
  • the console control unit 30 receives the divided image data in the order of ⁇ , ⁇ , ⁇ .
  • the divided image data ⁇ is assigned to the divided display area B, the divided image data ⁇ is assigned to the divided display area A, and the divided image data ⁇ is assigned to the divided display area C.
  • the areas are assigned in accordance with a predetermined assignment order, and an image based on each divided image data is displayed in each divided display area.
  • undivided image data is transmitted from the FPD cassette 2, it is displayed as it is in the display area of the display unit 33 without performing the above-described allocation process.
  • the console 3 transmits a reception completion signal to the FPD cassette 2 (step S120).
  • the FPD cassette control unit 200 of the FPD cassette 2 deletes the image data from the image storage unit 204 (step S122), and ends a series of processes.
  • the medical image system according to the second embodiment has substantially the same configuration as the medical image system according to the first embodiment except that the FPD cassette storage unit 201 has a reading designation program. Therefore, in the following, a different part from the first embodiment will be described in particular.
  • the medical image system 1 includes an FPD cassette 2 and a console 3 similar to those in the first embodiment.
  • the FPD cassette control unit 200 functions as a transmission management unit according to the transmission management program and stores in the FPD cassette storage unit 201 as in the first embodiment.
  • the reading designation unit 230 also functions as a reading designation unit that designates the reading order of the electrical signals from the sensor panel unit 221 based on the imaging region information.
  • the FPD cassette control unit 200 as a reading designation unit will be described in detail.
  • the FPD cassette communication unit 208 acquires imaging part information from the console 3
  • the FPD cassette control unit 200 reads a reading designation program corresponding to the imaging part information from the FPD cassette storage unit 201.
  • the FPD cassette control unit 200 divides the reading area in the sensor panel unit 221 into divided reading areas based on the reading designation program, and the reading unit 230 stores the image data of each divided reading area in a predetermined reading order. Let me read.
  • the FPD cassette control unit 200 divides one reading area into three divided reading areas a, b, and c in the vertical direction as shown in FIG. Then, the image data of the divided reading areas a, b, and c are read by the reading unit 230 in the order of “a ⁇ b ⁇ c”. Thereby, the divided image data ⁇ , ⁇ , and ⁇ are generated.
  • the FPD cassette control unit 200 divides one reading area into three vertical divided reading areas a, b, and c as shown in FIG.
  • the image data in the reading areas a, b, and c is read by the reading unit 230 in the order of “a ⁇ b ⁇ c”. Thereby, the divided image data ⁇ , ⁇ , and ⁇ are generated. 9 and 10, the divided image data ⁇ , ⁇ , and ⁇ generated by the reading unit 230 correspond to the divided display areas A, B, and C of the display unit 33 of the console 3, respectively.
  • the divided image data ⁇ , ⁇ , ⁇ are transmitted to the console 3, they are assigned to the corresponding divided display areas.
  • the FPD cassette 2 transmits the changed reading order information to the console 3 before transmitting the image data, and the console 3 displays an image on the display unit 33 based on the transmitted information.
  • the reason for performing the divided reading in this manner is that if the imaging region is the front of the chest as shown in FIG. 9, the image data of the neck as the divided image data ⁇ and the image data of the waist as the divided image data ⁇ are obtained. If it is transmitted to the console 3, even if the image data of the front of the chest is not transmitted to the console 3, the position of the front of the chest, which is the attention area, can be estimated from the positional relationship between the neck and the waist on the console 3 side. This is because it is often possible to confirm whether or not the subject is present at an appropriate position. If the imaging region is the chest side surface as shown in FIG.
  • the abdomen image data as the divided image data ⁇ and the back image data as the divided image data ⁇ are transmitted to the console 3, the image of the chest side surface is obtained.
  • the position of the chest side which is the region of interest, can be estimated from the positional relationship between the abdomen and the back on the console 3, and whether or not the imaging position is appropriate, that is, the subject position is appropriate This is because it is often possible to confirm whether or not it exists at a position.
  • the FPD cassette control unit 200 controls the reading unit 230 so that the divided image data is sequentially read from the image data in the image area necessary for the progressive display so that the divided image data is displayed in the progressive display on the display unit 33 of the console 3. can do. Further, in the present embodiment, the FPD cassette control unit 200 determines the reading order of each image data so that the divided image data is displayed in a progressive display on the display unit 33 of the console 3, and the image data is converted accordingly.
  • the reading unit 230 and the FPD cassette communication unit 208 can be controlled so that each image data is read in units of pixels or in units of lines and sequentially transmitted to the console 3.
  • the FPD cassette storage unit 201 corresponds to the imaging part in addition to the transmission management program indicating the image data division method and transmission order associated with the imaging part.
  • a reading designating program indicating the attached reading order is stored.
  • the transmission management program and the reading designation program as a default, a division method when the imaging region is the front of the chest, a transmission order and a reading order, and a division method when the imaging region is the side of the chest
  • the method of defining the dividing method, the transmission order, and the reading order is not limited to this, and more patterns can be selectively applied. It may be.
  • an instruction signal for instructing a change in reading order may be output to the FPD cassette control unit 200.
  • the FPD cassette control unit 200 indicates the transmission order of the divided image data and the reading order of the image data set as defaults. Change according to.
  • Steps S201 to S205 are the same as steps S101 to S105 when the FPD cassette control unit 200 manages the transmission order (FIG. 7A), and thus will not be described.
  • the FPD cassette control unit 200 determines whether or not the divided transmission is performed by dividing the image data into predetermined divided image data based on the imaging region information (step S206), and when the divided transmission is not performed (step S206). : NO), the process proceeds to step S214.
  • the FPD cassette control unit 200 sets the reading order of the image data by the reading unit 230 according to the imaging part information of the divided image data (step S207). For example, when the imaging part information is “front of chest”, as shown in FIG.
  • the reading area of the sensor panel is divided into divided reading areas a, b, and c, and the divided reading areas a, b,
  • the reading order is set by default so that c is read in the order of “a ⁇ b ⁇ c”, and the FPD cassette control unit 200 sets the order of “a ⁇ b ⁇ c” as the reading order of the image data. To do.
  • the FPD cassette control unit 200 next determines whether or not the predetermined reading order has been changed (step S208), and when the reading order has not been changed (step S208). In step S208: NO), the process proceeds to step S214.
  • step S208 when the reading order is changed (step S208: YES), the FPD cassette control unit 200 changes the reading order from the default to the changed one (step S209), and the FPD cassette control unit 200 3, the reading order information about the changed reading order is transmitted (step S210).
  • the console 3 receives the reading order information (step S211), and transmits the reception completion signal to the FPD cassette 2 when the reception is completed (step S212).
  • the FPD cassette 2 receives the reception completion signal (step S213).
  • the FPD cassette control unit 200 causes the reading unit 230 to read image data from the sensor panel unit 221 (step S214). That is, the FPD cassette control unit 200 reads the image data as it is by the reading unit 230 when the divided transmission is not selected in step S206 (step S206: NO). On the other hand, when divided transmission is selected (step S206: YES), for example, in the case of the front of the chest in FIG. 9, the divided reading areas a corresponding to the divided display areas A, B, and C of the display unit 33 of the console 3 are used. , B, and c, the image data is read by the reading unit 230 in the reading order of “a ⁇ b ⁇ c”.
  • step S208 the FPD cassette control unit 200 causes the reading unit 230 to read the divided image data in the changed reading order. Then, the read image data or divided image data (divided image data) is appropriately transmitted to the console 3 (step S215).
  • the console 3 receives the undivided image data or the divided image data (step S216) and stores it in the console storage unit 31 (step S217).
  • the console control unit 30 receives the image data from the FPD cassette 2
  • the console control unit 30 displays an image corresponding to each image data on the display unit 33 (step S218). That is, when the image data transmitted from the FPD cassette 2 is divided image data, for example, when it is the front of the chest in FIG. 9, the divided image data is read from the reading unit 230 in the order of “a ⁇ b ⁇ c”.
  • the generated divided image data ⁇ , ⁇ , ⁇ are transmitted to the console 3 at any time.
  • the console control unit 30 stores the divided image data ⁇ , ⁇ , ⁇ in the console storage unit 31 in the order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ” (step S216), and displays the display unit 33 as needed for each divided image data.
  • the divided image data ⁇ is assigned to the divided display area A
  • the divided image data ⁇ is assigned to the divided display area B
  • the divided image data ⁇ is assigned to the divided display area C. Assign according to order.
  • an image based on each divided image data is displayed in each divided display area.
  • the FPD cassette control unit 200 uses the reading unit 230 in the order of “b ⁇ a ⁇ c”.
  • the divided image data is read, and the divided image data ⁇ , ⁇ , and ⁇ are sequentially transmitted to the console 3 in the order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”.
  • the console control unit 30 receives the divided image data ⁇ , ⁇ , and ⁇ in the order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”, assigns the divided image data ⁇ to the divided display region B of the display unit 33, and divides the divided image data into the divided display region A.
  • the image data ⁇ is assigned and assigned to the divided display areas C in the order of the divided image data ⁇ in accordance with a predetermined assignment order. Then, an image based on each divided image data is displayed in each divided display area. On the other hand, when image data that has not been divided is transmitted from the FPD cassette 2, it is displayed on the display unit 33 as it is without performing processing such as dividing the display area.
  • the console 3 transmits a reception completion signal when the reception of the image data is completed (step S219).
  • the FPD cassette control unit 200 of the FPD cassette 2 ends the series of processes.
  • the embodiment of the present invention has been described above. However, according to the present invention, only the image data (RAW image data) is transmitted without transmitting the thinned image data or the like for confirming the necessity of re-shooting. Diagnosis image data can also be quickly confirmed. In addition, it is possible to reduce the anxiety of the operator and psychological anxiety such as poor communication.
  • the divided reading area, the divided image data, and the divided display are obtained by dividing in the vertical direction or the horizontal direction, but the divided shape is not limited to a rectangle. It is also possible to change the size of the divided areas and the number of divided areas.
  • the image data divided from the FPD cassette 2 to the console 3 is transmitted for each divided image data.
  • the divided image data can be transmitted in units of pixels or in units of lines. is there.
  • the transfer amount of the image data is not limited to this embodiment.
  • the shape of the divided image data is not limited to a rectangle as in this embodiment. Further, the number of divisions is not limited to this embodiment.
  • the FPD cassette storage unit 201 so that the FPD cassette control unit 200 performs thinning compression processing.
  • the divided image data is further divided into 8 pixels in the vertical direction and 8 pixels in the horizontal direction, and the density of 64 pixels that are one divided area is averaged. Then, image data is transmitted to the console 3 so as to correspond to one pixel.
  • the function as display control means of the console control unit 30 can also be controlled to display an image that has been thinned and compressed to 1/64 in a predetermined divided display area of the display unit 33.
  • the reading / transmission order is controlled on the FPD cassette 2 side based on the transmitted imaging part information, but the console 3 side determines the reading / transmission order in the part information. Is transmitted (transmitted) to the FPD cassette 2, and the FPD cassette 2 may perform reading and transmission according to the determined content.
  • FIG. 12 is a block diagram showing a schematic configuration of the medical image system 1 according to the present embodiment.
  • the medical image system 1 includes an FPD cassette 2 and a console 3 as in the first and second embodiments.
  • the FPD cassette 2 includes an FPD cassette control unit 200, an FPD cassette storage unit 201, a scanning drive circuit 202, a signal readout circuit 203, an image storage unit 204, an input operation unit 205, an indicator 206, a battery 207, an FPD cassette communication unit 208, and the like. It is prepared for.
  • an engineer wants to change at least one of the division setting, transmission order, and image thinning rate set as defaults, by inputting an instruction from the input operation unit 205 of the FPD cassette 2, A signal instructing change of division setting, transmission order, or image thinning rate may be output to the FPD cassette control unit 200.
  • the FPD cassette control unit 200 changes the division setting, transmission order, or image thinning rate set as default according to the instruction signal. .
  • a functional configuration of the FPD cassette 2 in the present embodiment will be described with reference to FIG.
  • a divided image data generation program for generating divided image data based on a predetermined division setting, and a predetermined image thinning rate
  • a divided thinned-out image data generation program for generating divided thinned-out image data on the basis of the data, a divided thinned-out image data based on a predetermined transmission order, and incidental data including a division setting, a transmission order, and an image thinning rate
  • the FPD cassette storage unit 201 stores a predetermined division setting, transmission order, and image thinning rate as defaults.
  • an engineer ( The user can arbitrarily change the setting.
  • the above-mentioned various programs include a parameter setting means program for setting the division setting and the image thinning rate changed by the engineer.
  • the transmission management program changes the setting of the transmission order reflected by the transmission management program.
  • the division setting and the thinning rate when the imaging region is the chest front and the chest side surface are the default, and the imaging region is the chest front and the chest side surface in the transmission management program. If the transmission order is set.
  • the method of defining the division setting, the transmission order, and the image thinning rate is not limited to this, and more patterns may be selectively applicable.
  • the FPD cassette control unit 200 performs overall control of each unit in the FPD cassette 2 or performs a predetermined calculation according to a program stored in the FPD cassette storage unit 201.
  • the FPD cassette control unit 200 converts the image data generated by the reading unit 230 according to a predetermined division setting according to the divided image data generation program stored in the FPD cassette storage unit 201.
  • the division thinning out function that generates divided image data by dividing the image data at a predetermined image thinning rate according to the divided thinned image data generation program. It also functions as image data generation means.
  • the FPD cassette control unit 200 also functions as a transmission management unit that sets the transmission order of the divided thinned image data in accordance with the transmission management program.
  • the FPD cassette control unit 200 also sets parameter setting means for setting the division setting and the image thinning rate based on a change instruction signal from the input operation unit 205 in accordance with a parameter setting program stored in the FPD cassette storage unit 201. Also works.
  • the division setting, the transmission order, and the image thinning rate are stored in advance in the FPD cassette storage unit 201, and the division setting, the transmission order, and the image thinning rate become default settings.
  • the engineer wants to change at least one of the division setting, the transmission order, and the image thinning rate set as defaults, by inputting an instruction from the input operation unit 205, the division setting, the transmission order, or the image thinning rate is changed. Is output to the FPD cassette control unit 200.
  • the FPD cassette control unit 200 sets the division setting and the image thinning rate set as default based on the parameter setting unit according to the change instruction signal, and is set as the default based on the transmission management unit.
  • the transmission order is set according to the change instruction signal.
  • the FPD cassette control unit 200 based on the divided image data generation unit, sets one piece of image data (image data obtained by the photographing) stored in the image storage unit 204 based on a predetermined division setting. Divided and divided image data is generated, and the divided thinned image data is generated by thinning the divided image data at a predetermined image thinning rate based on the divided thinned image data generating means. Further, based on the transmission management program, the FPD cassette control unit 200 transmits the division setting, the transmission order, and the image thinning rate as supplementary data together with the division thinned image data in a predetermined transmission order.
  • the FPD cassette control unit 200 divides one image data into three pieces of divided image data in the vertical direction (row direction) as shown in FIG.
  • the divided thinned-out image data ⁇ , ⁇ , ⁇ is generated at the image thinning rate of the divided thinned-out image data ⁇ , ⁇ , ⁇ in the transmission order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”, the division setting, the transmission order, and the image.
  • the data is transmitted to the console 3 together with incidental data including a thinning rate.
  • the FPD cassette control unit 200 divides one image data into three divided image data in the horizontal direction (column direction) as shown in FIG.
  • the divided thinned image data ⁇ , ⁇ , ⁇ are generated at a rate, and the divided thinned image data ⁇ , ⁇ , ⁇ are transmitted to the console 3 together with the auxiliary data in the transmission order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”.
  • the changed division setting, transmission order, and image thinning rate are included in the FPD cassette 2 as incidental data. Sent from the FPD cassette communication unit 208 to the console 3.
  • the imaging region is the front of the chest as shown in FIG. 13, the neck image data as the divided thinned image data ⁇ and the waist image data as the divided thinned image data ⁇ . Is transmitted to the console 3 first, the approximate position of the front of the chest, which is a region of interest, from the positional relationship between the neck and the waist on the console 3 side even when the divided thinned-out image data ⁇ on the front of the chest is not transmitted to the console 3. This is because it is possible to determine whether or not the shooting position is appropriate, that is, whether or not the position of the subject exists at an appropriate position. On the other hand, if the imaging region is the chest side surface as shown in FIG.
  • the abdominal image data that is the divided thinned image data ⁇ and the back image data that is the divided thinned image data ⁇ are transmitted to the console 3. Even when the divided thinned-out image data ⁇ is not transmitted to the console 3, the console 3 side can estimate the approximate position of the side of the chest that is the attention area from the positional relationship between the abdomen and the back, and whether the imaging position is appropriate, This is because it is possible to determine whether or not the position of the subject exists at an appropriate position.
  • half-cut image data (14 ⁇ 17 inches) read with a pixel size of 175 ⁇ m (the number of pixels is 2016 ⁇ 2400) is 1 in both vertical and horizontal directions.
  • the number of pixels of the thinned image data is 252 ⁇ 300.
  • the divided image data is thinned by extracting one pixel out of 64 pixels consisting of 8 pixels vertically and 8 pixels horizontally. The reason why the vertical and horizontal image thinning rates are the same is to maintain the same aspect ratio of the image as the original image (original image). Further, the image thinning rate and the thinning method are not limited to those exemplified here.
  • the console 3 includes a console control unit 30 composed of a CPU or the like (not shown), a console storage unit 31 composed of ROM, RAM, etc., a console communication unit 32, and a display unit. 33, an input operation unit 34, and the like.
  • the console storage unit 31 is based on the divided thinned image data transmitted from the FPD cassette 2 based on the divided setting, transmission order, and image thinning rate in the auxiliary data transmitted from the FPD cassette 2.
  • a display control program for controlling to display an image on the display unit 33 is stored.
  • the console control unit 30 performs overall control of each unit in the console 3 according to a program stored in the console storage unit 31 and performs predetermined calculations.
  • the console control unit 30 also functions as a display control unit that controls the display unit 33 according to the display control program stored in the console storage unit 31.
  • the console control unit 30 As the display control means, the console control unit 30 reads the display control program from the console storage unit 31.
  • the console control unit 30 divides the display area of the display unit 33 into a plurality of divided display areas based on the display control program and the incidental data, and each divided thinned image data acquired by the console communication unit 32. Are assigned to each divided display area in accordance with the transmission order in the accompanying data, and an image based on each divided thinned image data is displayed in each divided display area. Note that the division setting, transmission order, and image thinning rate in the incidental data transmitted from the FPD cassette 2 can be confirmed on the display unit 33 by input from the input operation unit 34.
  • the console control unit 30 divides one display area into three vertical divided display areas A, B, and C as shown in FIG.
  • Each divided thinned image data is assigned to the divided display areas A, B, and C according to a predetermined assignment order, and an image based on each divided thinned image data is displayed at a predetermined image thinning rate.
  • the FPD cassette control unit 200 divides one display area into three divided display areas A, B, and C in the horizontal direction as shown in FIG.
  • Each divided thinned image data is assigned to the display areas A, B, and C in accordance with a predetermined assignment order, and an image based on each divided thinned image data is displayed.
  • the “predetermined allocation order (display order)” in this case is the order (transmission order) in which the console 3 acquires the divided thinned image data. That is, as shown in FIGS. 13 and 14, divided thinned image data ⁇ , ⁇ , and ⁇ are assigned to the divided display areas A, B, and C in accordance with the transmission order, and the divided display areas A, B, and C are assigned to the divided display areas A, B, and C, respectively. An image based on the divided thinned image data ⁇ , ⁇ , ⁇ is displayed.
  • the reason why the division display is performed in this way is almost always the image data of the neck and / or the division thinned image data ⁇ that is the division thinned image data ⁇ . If an image based on the image data of a certain waist is displayed in the divided display areas A and B, the divided thinned image data ⁇ is obtained at the stage where the image based on the divided thinned image data in front of the chest is not displayed in the divided display area C.
  • the position of the front of the chest which is the region of interest, can be estimated from the positional relationship of the neck, or from the positional relationship of the neck and waist if the divided thinned image data ⁇ and the divided thinned image data ⁇ are acquired. This is because it is possible to determine whether or not it is appropriate, that is, whether or not the position of the subject exists at an appropriate position. If the division setting is the chest side surface as shown in FIG. 14, in most cases, an image based on the abdominal image data that is the divided thinned image data ⁇ and / or the back image data that is the divided thinned image data ⁇ is used.
  • the image based on the divided thinned image data of the chest side surface is not displayed in the divided display area C. If the divided thinned image data ⁇ is acquired, the positional relationship of the abdomen Alternatively, if the divided thinned-out image data ⁇ and the divided thinned-out image data ⁇ are acquired, the position of the chest side surface that is the attention area can be estimated from the positional relationship between the abdomen and the back, and whether or not the photographing position is appropriate, This is because it is possible to determine whether or not the position exists at an appropriate position and whether or not re-photographing is necessary.
  • the display unit 33 is a display unit having a two-dimensional display area, and includes a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display).
  • the display unit 33 has a configuration that can be divided into a plurality of divided display areas. For example, image data (divided thinned image data) transmitted from the FPD cassette 2 is transmitted to each divided display area. When divided thinned image data is assigned, an image based on the assigned divided thinned image data is displayed in the divided display area.
  • the console communication unit 32 transmits / receives information to / from the FPD cassette 2 via the wireless access point 5 by a wireless method, or when the FPD cassette 2 is connected to the holding device 7, Information is transmitted and received through a wired system.
  • the console communication unit 32 is a console communication unit that acquires divided thinned image data from the FPD cassette 2.
  • the console communication unit 32 includes a network interface or the like, and transmits and receives data to and from external devices such as the HIS / RIS 8, the PACS server 9, and the imager 10 connected to the network N via a switching hub.
  • the PACS server 9 stores the divided thinned image data and the like output from the console 3. Further, the imager 10 records a radiation image on an image recording medium such as a film based on the divided thinned image data output from the console 3 and outputs the image.
  • FIGS. 15A and 15B An example of the operation of the medical image system 1 according to the present embodiment will be described with reference to FIGS. 15A and 15B.
  • a start signal for starting the FPD cassette 2 wirelessly is transmitted from the console 3 to the FPD cassette 2 (step S301).
  • the FPD cassette 2 receives the activation signal from the console 3 (step S302)
  • the FPD cassette 2 is awakened from the sleep state (step S303) and becomes ready for photographing.
  • imaging order information including imaging region information is transmitted from the console 3 to the FPD cassette 2 (step S304), and the FPD cassette receives this imaging order information (step S305).
  • a control signal for controlling the radiation irradiation condition of the radiation generating device 4 is transmitted from the console 3 to the operating device 6, and the operating device 6 sends an exposure instruction signal to the radiation generating device 4 based on the control signal. Send.
  • the radiation generator 4 irradiates predetermined radiation at a predetermined timing according to the exposure instruction signal, and imaging is performed.
  • the reading means of the FPD cassette 2 reads the image data (step S306) and stores it in the image storage unit 204 (step S307).
  • the FPD cassette control unit 200 sets the division setting, transmission order, and image thinning rate stored in the FPD cassette storage unit 201 as defaults (step S308). Next, it is determined whether or not at least one of the division setting, the transmission order, and the image thinning rate has been changed (step S309). If none of the division setting, the transmission order, and the image thinning rate has been changed, step S311a is performed.
  • step S309 YES
  • the FPD cassette control unit 200 changes the division setting, the transmission order, and the image thinning rate from the default to the changed one (step S310).
  • the FPD cassette control unit 200 divides the image data stored in the image storage unit 204 into divided image data based on the changed division setting, and thins the divided image data based on the changed image thinning rate. Then, the divided thinned image data is generated (step S311).
  • step S310 the image data stored in the image storage unit 204 is divided into divided image data based on the default division setting. Based on the image thinning rate, the divided image data is thinned to generate divided thinned image data (step S311a).
  • step S311a the division setting, the transmission order, and the image thinning rate are transmitted as incidental data to the console 3 together with the divided thinned image data in the set (or changed setting) transmission order (step S312). That is, for example, when the imaging region information is “chest front” and the transmission order is not changed as the default, the FPD cassette control unit 200 displays “ ⁇ ⁇ ⁇ ⁇ ⁇ ” as shown in FIG.
  • the transmission order of the divided image data is managed so that the divided thinned-out image data ⁇ , ⁇ , ⁇ is transmitted to the console 3 in the transmission order of “.
  • the transmission order is changed from the default setting “ ⁇ ⁇ ⁇ ⁇ ⁇ ” to “ ⁇ ⁇ ⁇ ⁇ ⁇ ”, the divided thinned image data ⁇ , ⁇ , and ⁇ are set in the transmission order of “ ⁇ ⁇ ⁇ ⁇ ⁇ ”.
  • the transmission order of the divided image data is managed so as to be transmitted to the console 3.
  • the console 3 When the console 3 receives the incidental data and the divided thinned image data from the FPD cassette 2 (step S313), the console 3 stores them in the console storage unit 31 (step S314).
  • the console control unit 30 converts the divided thinned image data stored in the console storage unit 31 into the divided thinned images in the divided display areas of the display unit 33 based on the division setting of the auxiliary data, the transmission order, and the image thinning rate. Data is assigned, and an image based on each divided thinned image data is displayed on each divided display area on the display unit 33 (step S315).
  • the divided thinned image data is transmitted from the FPD cassette 2, and for example, in the case of the front of the chest in FIG.
  • the console control unit 30 converts each divided thinned image data ⁇ , ⁇ , ⁇ to “ ⁇ ⁇ Received from the FPD cassette 2 in the order of “ ⁇ ⁇ ⁇ ”, and the respective divided thinned image data ⁇ , ⁇ , ⁇ are stored in the console storage unit 31. Then, the console control unit 30 assigns the divided thinned image data ⁇ to the divided display area A of the display unit 33, assigns the divided thinned image data ⁇ to the divided display area B, and assigns the divided thinned image data ⁇ to the divided display area C.
  • the divided thinned image data is assigned to the respective divided display areas according to a predetermined assignment order (transmission order), and an image based on each divided thinned image data is displayed in each divided display area.
  • the console communication unit 32 receives the divided thinned image data in the order of ⁇ , ⁇ , ⁇ . Then, the console control unit 30 assigns the divided thinned image data ⁇ to the divided display area B of the display unit 33, assigns the divided thinned image data ⁇ to the divided display area A, and assigns the divided thinned image data ⁇ to the divided display area C.
  • the divided thinned image data is assigned to the respective divided display areas according to a predetermined assignment order (transmission order), and an image based on each divided thinned image data is displayed in each divided display area.
  • the console 3 transmits a reception completion signal to the FPD cassette 2 when reception of the incidental data and the divided thinned image data is completed (step S316).
  • the FPD cassette control unit 200 of the FPD cassette 2 receives the reception completion signal (step S317)
  • the FPD cassette communication unit 208 transmits the RAW image data stored in the image storage unit 204 to the console 3 (step S317).
  • the console 3 receives the RAW image data (step S319)
  • the console 3 transmits a RAW image data reception completion signal to the FPD cassette 2 (step S320).
  • the FPD cassette 2 deletes the divided thinned-out image data and the RAW image data (step S322), and ends the series of processes.
  • one piece of image data is divided to generate a plurality of pieces of divided image data. Therefore, the data amount of each piece of divided image data is smaller than the data amount of one piece of image data. Become. Further, since the divided image data is thinned to generate divided thinned image data, the data amount of the divided thinned image data is further smaller than the data amount of the divided image data. As described above, since the data amount of the divided thinned image data is significantly smaller than the data amount of the original one image data (RAW image data), data transfer when the divided thinned image data is transferred to the console 3 is performed. The time can be shorter than the data transfer time when one image data is transferred to the console 3.
  • the console communication unit 32 receives incidental data including the division setting, transmission order and image thinning rate transmitted from the FPD cassette 2 together with the divided thinned image data, and the console control unit 30 performs division setting in the auxiliary data. Then, the display unit 33 is controlled to display an image based on the transmission order and the image thinning rate. Therefore, an image based on the divided thinned image data can be appropriately displayed on the display unit 33 of the console 3.
  • the divided thinned image data and the divided display are obtained by dividing in the vertical direction or the horizontal direction, but the divided shapes are not limited. It is also possible to change the size of the divided areas and the number of divided areas.
  • the divided thinned image data is transmitted from the FPD cassette 2 to the console 3 for each divided thinned image data.
  • the divided thinned image data may be transmitted in units of pixels or in units of lines. .
  • the transfer amount of the divided thinned image data is not limited to this embodiment.
  • the shape of the divided thinned image data is not limited to a rectangle as in the present embodiment. Further, the number of divisions is not limited to this embodiment.
  • progressive display In this embodiment, the case has been described in which all divided thinned-out image data is acquired and displayed for each divided display area, but progressive display can also be employed.
  • progressive display a low-resolution screen is displayed first, and a higher-resolution image is displayed as image data is received. For this reason, even if the communication infrastructure is not enough (communication speed is slow), the engineer can recognize that communication is in progress by visually recognizing the display screen that changes over time. Just wait until a higher resolution image is displayed.
  • progressive display for example, in the case of the front of the chest, the outline of the neck from the divided thinned image data ⁇ , and in the case of the side of the chest, the outline of the abdomen from the divided thinned image data ⁇ . Are displayed with increasing resolution. As a result, it is possible to determine whether the position of the subject is appropriate or whether re-photographing is necessary earlier.
  • the FPD cassette 2 generates divided thinned image data and transmits the divided thinned image data to the console 3 has been described as an example.
  • the image data transmitted to the console 3 is subjected to thinning processing. It is not limited to what was done.
  • the divided image data may be transmitted to the console 3 without performing the thinning process, and an image based on the divided image data may be displayed on the display unit 33.
  • the FPD cassette 2 divides image data of one image into a plurality of stages, and sequentially for each pixel or for each row or column of two-dimensionally arranged elements.
  • the console 3 divides the display area of the display unit 33 into a plurality of divided areas stepwise according to an increase in the number of pixels of the image data received from the FPD cassette 2, and each pixel is divided into each divided area. And an image corresponding to the pixel value of the assigned pixel is displayed in each divided region.
  • a display method progressive display
  • the entire image is first displayed at a low resolution, and then the resolution is gradually increased and detailed display is performed as image data reception proceeds.
  • the FPD cassette control unit 200 divides the image data for one image into a plurality of stages (in this embodiment, seven stages as will be described later), for each pixel or for each reading line (two-dimensional).
  • the FPD cassette communication unit 208 is controlled so as to sequentially transmit the data to the console 3 for each of the elements arranged in the column.
  • the FPD cassette communication unit 208 uses the wireless access point 5 when the FPD cassette 2 is not held by the holding device 7 (for example, when the FPD cassette 2 is used as a single unit in the photographing room R1 without being loaded into a bucky device or the like).
  • a signal is transmitted to and received from an external device via a wireless method.
  • the FPD cassette communication unit 208 transmits / receives a signal to / from an external device by a wired method. .
  • the display unit 33 is divided into predetermined divided areas, each pixel is assigned to the divided area, and an image corresponding to the pixel value of the assigned pixel is displayed in the divided area.
  • a program or the like for performing display control processing is stored in the console storage unit 31.
  • the display unit 33 is configured to be able to divide the display region into a plurality of divided regions step by step as the number of pixels of the image data transmitted from the FPD cassette 2 increases.
  • a pixel included in the divided area is assigned to each divided area, an image corresponding to the pixel value of the assigned pixel is displayed in the divided area.
  • the console control unit 30 controls the display of the display unit 33 so as to display an image based on the image data sent from the FPD cassette 2. Specifically, the console control unit 30 divides the display region of the display unit 33 into a plurality of divided regions step by step in accordance with an increase in the number of pixels of the image data acquired by the console communication unit 32. A display control process is performed in which each pixel is assigned to each divided region and an image corresponding to the pixel value of the assigned pixel is displayed on the divided region.
  • FIG. 16 is an explanatory diagram for explaining how image data is divided in the present embodiment.
  • the FPD cassette control unit 200 when transmitting image data to the console, the FPD cassette control unit 200 divides one image data into seven stages within a range where the number of transfer lines of image data does not exceed 5, All the image data is transmitted from the FPD cassette communication unit 208 separately. It should be noted that there is no particular limitation on how the image data is divided and how many steps are transmitted.
  • the FPD cassette 2 divides the image data before transmitting the image data. Information indicating whether each transmission stage corresponds to which display layer on the console 3 side is notified to the console 3.
  • the FPD cassette 2 and the console 3 It is also possible to preliminarily determine a method of division at the time of image data transmission as a default, and perform processing according to this default. In this case, it is not necessary to notify the console 3 in advance from the FPD cassette 2 about how to divide the image data.
  • the FPD cassette 2 has four rows in the row direction (vertical direction in FIGS. 17 to 23, and so on).
  • the image data of the transfer lines (line 1 to line 4) (data of all pixels in the four transfer lines) is transmitted to the console 3.
  • the FPD cassette 2 transmits the image data of the four transfer lines (line 17 to line 20) in the row direction to the console 3.
  • the FPD cassette 2 transmits the image data of five transfer lines (line 9 to line 11, line 25, and line 26) in the row direction to the console 3. To do.
  • the image data is sequentially transmitted to the console 3 by the relatively small number of transfer lines of 5 or less, and the image data of all the transfer lines is transmitted by the seventh transmission (the seventh layer in FIG. 23). Is completed, and all image data for one image is transmitted to the console 3.
  • the FPD cassette control unit 200 determines which transfer line image data (which pixel image data) is to be transmitted at each stage, and at least the image data is an image in the transmitted image data.
  • the position information of each pixel indicating the position of the pixel (or line) in the whole is attached.
  • x which indicates that it is the image data of the upper left pixel of the entire image
  • the y coordinate (1, 1) is attached as position information.
  • the first pixel of the first transfer line (line 17) of the image data transmitted in the second stage has x and y coordinates (in this embodiment, (17, 1) as position information. Note that the information attached to the image data is not limited to this.
  • FIGS. 17 to 23 show examples of pixel assignment on the console 3 side in each transmission stage (from the first layer to the seventh layer) from the FPD cassette 2 to the console 3, and FIGS. 17 shows an example of an image actually displayed on the display unit 33 in each of the first layer shown in FIG. 17 to the seventh layer shown in FIG.
  • the display unit on the display unit 33 of the console 3 is the display unit block size in this embodiment (when the display area is subdivided into the minimum units).
  • the number of blocks to be displayed is one, and the divided area matches the display area (that is, the entire display area becomes one divided area).
  • the console control unit 30 selects any one of the image data transmitted from the FPD cassette 2 (for example, a pixel having x and y coordinates (1, 1) shown in FIG. 17 in the present embodiment). Is used as a representative value of the entire display block, and an image corresponding to this pixel value (representative value) is displayed in the display area (divided area) of the display unit 33.
  • the entire display area (divided area) of the display unit 33 has one luminance level (one density level) corresponding to the pixel value of the pixel at x, y coordinates (1, 1). Only the image is displayed.
  • the display unit on the display unit 33 of the console 3 is 16 pixels ⁇ 16 pixels, and the number of blocks to be displayed is 2 ⁇ 2 (4).
  • the console control unit 30 divides the display area of the display unit 33 into four divided areas. Then, the console control unit 30 assigns the pixel of the image data transmitted from the FPD cassette 2 to each divided region, and sets the pixel value of any one pixel included in each divided region as the representative value of the entire display block. Then, an image corresponding to the pixel value (representative value) is displayed in each divided area of the display unit 33. For example, in this embodiment, as shown in FIG.
  • each divided region of the display unit 33 has pixels of x, y coordinates (1, 1), (17, 1), (1, 17), and (17, 17), respectively. An image corresponding to the pixel value is displayed.
  • the display unit on the display unit 33 of the console 3 is 8 pixels ⁇ 8 pixels, and the number of blocks to be displayed is 4 ⁇ 4 (16).
  • the console control unit 30 divides the display area of the display unit 33 into 16 divided areas.
  • the console control unit 30 assigns the pixel of the image data to each divided area and displays the pixel value of any one pixel included in each divided area.
  • An image corresponding to this pixel value (representative value) is displayed in each divided area of the display unit 33 as a representative value of the entire block.
  • a mosaic image composed of 16 divided areas is displayed in the display area of the display unit 33.
  • FIG. 20 shows an example of pixel assignment on the console 3 side in the fourth transmission (fourth layer).
  • the display unit is 4 pixels ⁇ 4 pixels
  • the number of blocks to be displayed is 8 ⁇ 8 (64)
  • the console control unit 30 divides the display area of the display unit 33 into 64 divided areas. Then, an image corresponding to the pixel value (representative value) of one pixel among the pixels assigned to each divided area is displayed in each divided area.
  • a mosaic image composed of 64 divided areas is displayed in the display area of the display unit 33.
  • FIGS. 21 to 23 show examples of pixel allocation on the console 3 side in the fifth-stage transmission (fifth layer) to the seventh-stage transmission (seventh layer).
  • FIGS. The example of the image displayed on the display area of the display part 33 in each transmission stage is shown.
  • the display unit of the display area of the display unit 33 is displayed as 1 pixel ⁇ 1 pixel as shown in FIG.
  • the number of blocks is 32 ⁇ 32 (1024), and the image data can be subdivided into divided regions corresponding to each pixel of the image data to display a high-definition image (see FIG. 24G).
  • the transmission at the fourth stage (fourth layer shown in FIG. 20) is completed, and an image based on the image data transmitted to the console 3 is displayed at this stage, it is shown in FIG. 24D.
  • the outline of the subject image (the position of the subject's neck, the position of the lung, etc.) can be roughly grasped, and it can be said that the suitability of positioning and the necessity of re-photographing can be determined. Therefore, even if transfer of all the image data is completed, if re-shooting is necessary, it is possible to stop the data transfer at that time and start preparation for re-shooting. If the position is located in the approximate center of the display screen, the engineer can determine that re-shooting is unnecessary and can prepare for the next shooting.
  • the image displayed in each divided region is not limited to the pixel value (representative value) of any pixel among the pixels included in the divided region, and the entire image included in each divided region or An average value of pixel values of some pixels may be calculated as a pixel value of each divided region, and an image based on this pixel value (average value) may be displayed in the divided region.
  • FIG. 25 illustrates an example in which image data is acquired using a 14-inch ⁇ 17-inch half-cut FPD cassette 2 and is transmitted to the console 3 to be displayed on the display unit 33.
  • the pixel size for reading is set to 175 ⁇ m
  • the image data is 2010 ⁇ 2446 data (the number of columns (referred to as “C” in FIG. 25)). Is composed of 2010 and the number of lines (“L” in FIG. 25) is 2446).
  • the image data has a data configuration of 2016 ⁇ 2400 (the number of columns (C) is 2016 and the number of lines (L) is 2400), and the data amount of one line is about 3.9 KB.
  • the case where the image data amount of all the images is about 9.2 MB is taken as an example.
  • the amount of data transferred in the case of 75) is as follows. That is, the transfer data amount in each layer can be calculated by the number of transfer lines ⁇ the amount of data for one line ⁇ the number of columns (the transfer data amount for each block is the number of transfer lines ⁇ the data for one line). amount).
  • the transfer data amount for four lines is transferred in the same manner as in the example (see FIGS.
  • the display unit block size is 32 pixels ⁇ 32 pixels described above.
  • the transfer data amount is as follows. . That is, in the example shown in FIG. 25, when the image data for four lines is transferred in the same manner as in the example (see FIGS. 16 and 18) in which the display unit block size is 32 pixels ⁇ 32 pixels described above. 4 lines ⁇ 3.9 KB ⁇ 75 columns, and the transfer data amount in the second layer is 1.2 MB. That is, in the first layer of each block from 1 to 75 in the vertical direction (L), image data for four lines is further transferred, and the display unit block size is 32 pixels ⁇ 32 pixels for each block. Display processing similar to that shown in FIGS. 16 and 18 is performed. In this case, the number of displayed blocks is 126 ⁇ 150.
  • the seventh layer is composed of column direction (C) 2016 blocks ⁇ row direction (L) 2400 blocks, so the number of blocks to be displayed is 2016 ⁇ 2400, with a resolution equivalent to that at the time of reading. An image is displayed.
  • FIG. 26 shows the communication speed when information is transmitted and received between the FPD cassette 2 and the console 3 in a wireless manner.
  • the effective communication speed is 20 Mbps
  • the effective communication speed is 100 Mbps.
  • the communication speed between the FPD cassette 2 and the console 3 in the case of a wireless system varies greatly depending on the type of wireless.
  • the right column of FIG. 25 shows the time taken to transfer the image data in the communication environment of each communication speed shown in FIG. As shown in FIG. 25, for example, when the effective communication speed is 20 Mbps, it is understood that it takes 3.69 seconds to transfer all the image data. Therefore, when the console 3 receives all image data from the FPD cassette 2 and uses a normal display method in which the image is displayed on the display unit 33 after the reception is completed, the user (engineer) It is necessary to wait for approximately 4 seconds until the image is displayed, which hinders efficient medical care. In this regard, according to the display method of the present embodiment, as described above, if the fourth layer or at least the fifth layer stage is displayed, it is possible to determine whether positioning is appropriate and whether re-shooting is necessary. About an image can be displayed.
  • the transfer time is 1.96 seconds, and even in the fifth layer, the transfer time is 2.54 seconds. Therefore, it takes time to transfer all image data. An image necessary for determining whether or not re-shooting is necessary can be displayed in about half the time, and the waiting time of the user (engineer) can be shortened.
  • FIG. 27 shows the difference in the number of displayable blocks (number of pixels) according to the size of the display area of the display unit 33 and the type of monitor.
  • the display part 33 in this embodiment is not limited to what was mentioned here.
  • the number of displayable blocks is 248 when the display unit 33 is a 15-inch liquid crystal panel (LCD). If the display unit 33 is a 17-inch liquid crystal panel (LCD) ⁇ 310 (column number (C) 248, line number (L) 248), then 310 ⁇ 310 (column number (C) 310, line number ( L) 310). In this regard, as shown in FIG.
  • the number of data transmission blocks (total number of pixels) in the third layer is 252 ⁇ 300, and a 15-inch liquid crystal It is almost the same as when four images are displayed on the display screen of a panel or a 17-inch liquid crystal panel, and the image displayed at the transmission stage of the third layer is almost equivalent to a compressed image of 1/8 of 2016 ⁇ 2400. is there.
  • the number of displayable blocks is 498 when the display unit 33 is a 15-inch liquid crystal panel (LCD). ⁇ 498 (number of columns (C) 498, number of lines (L) 498), and when the display unit 33 is a 17-inch liquid crystal panel (LCD), 622 ⁇ 622 (number of columns (C) 622, number of lines ( L) 622).
  • the display unit 33 is a 15-inch liquid crystal panel (LCD).
  • ⁇ 498 number of columns (C) 498, number of lines (L) 498
  • the display unit 33 is a 17-inch liquid crystal panel (LCD)
  • 622 ⁇ 622 number of columns (C) 622, number of lines ( L) 622).
  • the display unit block size is 32 pixels ⁇ 32 pixels
  • the number of data transmission blocks (total number of pixels) in the fourth layer is 504 ⁇ 600
  • the 15-inch liquid crystal This is almost the same as displaying one image on the display screen of a panel or a 17-inch liquid crystal panel, and the image displayed in the transmission stage of the fourth layer is almost equivalent to a compressed image of 1/4 of 2016 ⁇ 2400. is there.
  • the display unit block size is 32 ⁇ 32 pixels
  • the number of data transmission blocks (total number of pixels) in the seventh layer is 2016 ⁇ 2400, which is shown in FIG.
  • an image with such a number of pixels cannot be displayed unless it is a high-definition monitor, and the entire image cannot be displayed even on a high-definition monitor. Is displayed, and the peripheral portion is not displayed on the display screen.
  • step S401 when imaging is performed and the sensor panel unit 221 of the FPD cassette 2 detects radiation transmitted through the subject (step S401), image data is generated in the reading unit TFT 2220 based on the detection result (step S401).
  • step S402 The FPD cassette control unit 200 divides this image data into predetermined stages, and transmits the image data from the FPD cassette communication unit 208 to the console 3 in units of pixels (line units) (step S403).
  • the FPD cassette control unit 200 controls the communication unit so that information on how to divide the image data (how many stages it divides) is transmitted to the console 3 in advance. In the present embodiment, the image data is divided into seven stages, and image data for four transfer lines is transmitted in the first stage (see FIGS. 16 and 17).
  • image data for four transfer lines is also transmitted (see FIGS. 17 and 18).
  • the image data is transmitted to the console 3 in seven stages so that the transmission of all the image data is completed.
  • the FPD cassette communication unit 208 determines the position of the pixel in which the image data is located, position information for specifying the position, pixel size information regarding the pixel size of the pixel, and pixels regarding the number of pixels. Number information and the like are attached to the image data and transmitted together with the image data.
  • the FPD cassette control unit 200 always determines whether or not transmission of all image data has been completed (step S404). If the transmission is completed (step S404: YES), the process is terminated. On the other hand, if transmission has not been completed (step S404: NO), transmission of image data in units of pixels (line units) to the console 3 is continued.
  • the console control unit 30 determines how to divide the image data transmitted from the FPD cassette 2
  • the display area of the display unit 33 is divided into a plurality of divided areas according to the information and the number of transmitted pixels (the second and subsequent layers are the cumulative number of all pixels transmitted to the console) (step S406).
  • Each pixel is assigned to each divided area, and an image corresponding to the pixel value of any pixel included in the divided area is displayed (step S407).
  • an image in which the entire screen is displayed with one level of luminance (one density) is displayed (see FIG. 24A).
  • step S408 determines whether or not the seventh layer has been displayed (step S408), and when the display is ended (step S408: YES), the process ends. On the other hand, if the display is not completed (step S408: NO), the process returns to step S405, and the display area is divided according to the number of pixels of the received image data, and the pixels assigned to each divided area are displayed. The process of displaying an image according to the value is repeated.
  • the RAW image data is transmitted from the FPD cassette 2 side to the console 3 in pixel units (line units), and the display unit according to the increase in the number of transmitted pixels on the console 3 side.
  • the 33 display areas are divided into a plurality of divided areas in a stepwise manner, and an image is displayed by assigning each increased pixel to the divided areas. For this reason, even if transmission of all the image data constituting one image is not completed, an image corresponding to the image data that has already been transmitted with low resolution is displayed on the display unit 33 of the console 3.
  • so-called progressive display can be performed in which the resolution of the image is improved and the image becomes gradually clearer.
  • the number of transfer lines is set to 5 or less and image data is divided and transmitted little by little, even when RAW image data having a large amount of data is transmitted to the console 3, the communication is not burdened so much. Therefore, no stress is felt even when RAW image data is transmitted wirelessly. Further, since it is possible to determine whether or not positioning or re-imaging is necessary at a relatively early stage before the transfer of the image data is completed, it is possible to improve the efficiency of diagnosis. Thus, when re-shooting is necessary, it is possible to avoid wasting time by stopping the data transfer when it is known.
  • the engineer can prepare for the next imaging while waiting for transmission of continuation (residual) data, and can perform efficient medical treatment. Further, since it is not necessary to transmit the thinned image data (compressed image data), only the RAW image data needs to be transmitted to the console 3, and the image data transmission operation can be completed only once.
  • the position information specifying the position of the pixel at which the image data is located, the pixel size information, and the pixel number information are attached to the image data and transmitted to the console 3, the console 3 side Thus, the allocation position of each pixel in the display area of the display unit 33 can be accurately determined.
  • the display unit block size is 32 pixels ⁇ 32 pixels, but the display unit block size is not limited to this.
  • the display unit block size is 64 pixels ⁇ 64 pixels, and this image data is divided into eight stages and transmitted to the console 3.
  • the transfer data amount when the first layer is configured by 32 blocks in the column direction (C) ⁇ 38 blocks in the row direction (L) is as follows. That is, when image data for 4 lines is transferred in the first layer, 4 lines ⁇ 3.9 KB (data amount for 1 line) ⁇ 38 columns, and the transfer data amount in the first layer is 0.6 MB. It becomes.
  • the display unit block size is set to 128 pixels ⁇ 128 pixels, and this image data is divided into nine stages and transmitted to the console 3.
  • the display is divided into 9 layers.
  • the value obtained by adding the individual transfer times does not necessarily match the numerical value of the item of the total transfer time ( ⁇ ), but this is because two decimal places or less are rounded off. This is because there is a slight error.
  • the image data is divided into seven stages and transmitted to the console 3, and the console 3 has seven layers from the first layer to the seventh layer.
  • the number of steps in which image data transmission and display on the display unit 33 are performed there is no particular limitation on the number of steps in which image data transmission and display on the display unit 33 are performed, and the image data is divided into more steps such as 8 steps. You may make it perform the display in the transmission and the display part 33.
  • the number of display unit block sizes, the number of steps to be sent to the console 3 and the number of steps (number of layers) to be displayed on the console 3 side are displayed in advance with the FPD cassette 2 and the console 3.
  • the FPD cassette 2 side may divide the image data in accordance with this setting and send it to the console 3, or the console 3 side does not make a setting corresponding to the FPD cassette 2 in particular.
  • the imaging room R1 in which the FPD cassette 2 is disposed and the console 3 are close to each other has been described as an example, but the arrangement of the FPD cassette 2 and the console 3 is not limited thereto.
  • the arrangement of the FPD cassette 2 and the console 3 is not limited thereto.
  • the distance between the FPD cassette 2 and the console 3 is large, and the engineer takes a shot image (decimated image).
  • the console 3 and then returning to the FPD cassette 2 to transmit RAW image data again the amount of movement of the technician increases.
  • the RAW image data is transmitted from the FPD cassette 2 to the console 3 as in the present embodiment, it is possible to save time and effort for the engineer's movement and the image data transmission operation, and more effective. To do.
  • compressed image data may be transmitted in addition to RAW image data (original image data) as image data.
  • RAW image data original image data
  • the system configuration and the processing method when transmitting the compressed image data will be described with respect to differences from the above description.
  • the reading unit of the FPD cassette is based on the raw image data in addition to the original image data (hereinafter referred to as “RAW image data”) obtained by reading the image signal in units of individual photoelectric conversion elements. It functions as compressed image generation means for generating compressed image data (thinned-out image data).
  • the compressed image data is image data with a small amount of data reduced (compressed) by thinning and reading between photoelectric conversion elements at a predetermined thinning rate.
  • the RAW image data is generated by the reading unit and only the RAW image data is stored in the image storage unit or the like, and compression is performed by performing a thinning process (decimation transmission) using the RAW image data at the time of transmission.
  • Image data may be generated and sent to the console.
  • the aspect ratio of the image is the same as the original image (original image). This is to keep the same.
  • the reduction rate (compression rate) of the compressed image data is not limited to that exemplified here.
  • the cassette control unit functions as transmission data selection means for selecting which of the compressed image data and the raw image data before compression to be transmitted to the console.
  • the communication unit of the FPD cassette is the image selected by the cassette control unit. Send data to the console.
  • the communication unit of the FPD cassette can sequentially transmit image data constituting one image to the console in pixel units (line units).
  • the communication unit of the console acquires the image data in pixel units (line units).
  • the communication unit of the FPD cassette transmits information on the type of image data such as whether the image data to be transmitted is compressed image data or RAW image data as accompanying data together with the image data. Note that the information related to the type of image data may be sent prior to transmitting the image data separately from the image data.
  • the console control unit controls the display unit so as to switch the display of the display unit based on the accompanying data attached to the image data as display control means.
  • the image data is determined to be RAW image data from the accompanying data
  • the image data is divided into a plurality of layers in the order of transmission from the FPD cassette, and the number of pixels of the image data is increased.
  • the display area of the display unit is divided into a plurality of divided areas step by step, each pixel is assigned to the divided area, and an image corresponding to any pixel value of the pixels assigned to each divided area is displayed. It is displayed in the divided area. If it is determined that the image data is compressed image data, an image based on the compressed image data is displayed on the display unit after all the image data is obtained.
  • the reading unit TFT 2220 when imaging is performed and the sensor panel unit of the FPD cassette detects radiation that has passed through the subject (step S501), based on the detection result, the reading unit TFT 2220 generates RAW image data and a compressed image based thereon. Data is generated (step S502).
  • the cassette control unit determines whether or not to transmit RAW image data to the console (step S503), and when RAW image data is transmitted (step S503: YES), the image data is RAW image data.
  • the RAW image data constituting one image is divided into a plurality of stages and sequentially transmitted to the console in units of pixels (step S504).
  • step S503 NO
  • additional data indicating that the image data is compressed image data is attached, and the console is compressed. Image data is transmitted (step S505).
  • the communication unit of the console acquires the image data in units of pixels (step S506). Then, the console control unit divides the display area of the display unit into a plurality of divided regions in a stepwise manner according to the number of pixels transmitted from the FPD cassette (step S507), assigns each pixel to the divided region, and An image corresponding to any pixel value among the pixels assigned to the area is displayed in the divided area (step S508). Further, the console control unit always determines whether or not the display up to the seventh layer has been performed (step S509), and repeats the process until the display up to the seventh layer is completed. Note that the processing when RAW image data is transmitted is the same as steps S403 to S408 in FIG.
  • the communication unit of the console acquires the compressed image data (step S510). After the acquisition of the compressed image data is completed, the console control unit displays an image based on the compressed image data on the display unit (step S511).
  • image data selected from the compressed image data and RAW image data (original image data) is transmitted to the console. For this reason, it is possible to select the type of image data used for determining whether or not re-shooting is necessary according to the needs of the user.
  • RAW image data is to be transmitted, the so-called progressive display is performed as in the first embodiment. Therefore, when image data is received on the console side even a little at a time, A corresponding display is made on the display unit. For this reason, the engineer can visually recognize that the image data is normally received, and there is no psychological anxiety such as suspected communication failure.
  • the image data transmitted to the console is accompanied by information on the type of the image data, it is ensured according to the type of image data (type of compressed image data or RAW image data) on the display unit of the console.
  • the display method can be switched.
  • the medical field it may be used for medical image systems for taking diagnostic images.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A medical image system which quickly displays image data required for judging necessity of rephotograph, thereby judging the necessity of rephotograph faster. The system is provided with an FPD cassette (2) and a console (3). The FPD cassette (2) generates image data relating to a subject to be photographed which is obtained by obtaining an electric signal by a sensor panel part (221) and reading the electric signal by a reading part (230), divides the image data into divided image data by a divided image data generation means on the basis of predetermined division setting, sets the transmission order of the divided image data by a transmission management means, and transmits the divided image data to outside according to the set transmission order. The console (3) divides the display area of a display part (33) into a plurality of divided display areas according to information relating to a photographed section which identifies the photographed section, assigns the divided image data obtained from the FPD cassette (2) to respective divided display areas according to a predetermined assignment order, and displays the image based on the divided image data in the respective divided display areas.

Description

医用画像システムMedical imaging system
 本発明は、医用画像システムに関するものである。 The present invention relates to a medical image system.
 従来、病気診断等を目的として、X線画像に代表される、放射線を用いて撮影された放射線画像が広く用いられている。
 こうした医療用の放射線画像は、従来スクリーンフィルムを用いて撮影されていたが、近年は、放射線画像のデジタル化が実現されており、例えば、被写体を透過した放射線を輝尽性蛍光体層が形成された輝尽性蛍光体シートに蓄積させた後、この輝尽性蛍光体シートをレーザ光で走査し、これにより輝尽性蛍光体シートから発光される輝尽光を光電変換して画像データを得るCR(Computed Radiography)装置が広く普及している。
Conventionally, for the purpose of disease diagnosis and the like, a radiographic image taken using radiation, represented by an X-ray image, has been widely used.
Such medical radiographic images were conventionally taken using a screen film, but in recent years, digitization of radiographic images has been realized. For example, a stimulable phosphor layer forms radiation transmitted through a subject. After being stored in the photostimulable phosphor sheet, the photostimulable phosphor sheet is scanned with laser light, and thereby the photostimulated light emitted from the photostimulable phosphor sheet is photoelectrically converted to image data. A CR (Computed Radiography) apparatus for obtaining the above has been widely used.
 放射線画像撮影を行った際には、ポジショニングが誤っていた場合や被写体が撮影中に動いてしまった等の撮影ミスがあった場合には再撮影を行う必要がある。そこで、できるだけ早期に再撮影の要否を判断したいとの要請があり、CR装置であって、撮影後に当該装置において画像データの読み取り等まで行うことのできる、撮影室等に固定設置された専用機の場合には、患者を撮影した後、読み取りを開始するとほぼ同時に読み取られた画像が表示されるようにする方式が提案されている(例えば、特許文献1参照)。 When performing radiographic image capture, it is necessary to perform re-photographing if there is a mistake in positioning, such as if the positioning is incorrect or if the subject has moved during shooting. Therefore, there is a request to determine the necessity of re-shooting as soon as possible, and it is a CR device that can be used to read image data etc. in the device after shooting. In the case of a machine, a method has been proposed in which a scanned image is displayed almost simultaneously when scanning is started after imaging of a patient (see, for example, Patent Document 1).
 これに対して、持ち運び可能なカセッテ型に構成されたCR装置の場合には、患者を撮影した後、カセッテを読取装置に装填して画像データの読み取りを行い、読み取られた画像データがコンソールに送信されて、画像表示が行われる(例えば、特許文献2参照)。このため、撮影から画像の確認までの時間がCR専用機に比べて時間を要するものとなっていた。 On the other hand, in the case of a portable CR-type CR device, after imaging the patient, the cassette is loaded into the reader and the image data is read, and the read image data is transferred to the console. The image is displayed after being transmitted (see, for example, Patent Document 2). For this reason, the time from photographing to image confirmation requires more time than a CR dedicated machine.
 また最近では、CR装置に代えて照射された放射線を検出しデジタル画像データとして取得する検出器として放射線固体撮像素子FPD(Flat Panel Detector)を用いる医用画像システムが登場している。 Recently, a medical image system using a radiation solid-state image sensor FPD (Flat Panel Detector) as a detector that detects irradiated radiation and acquires it as digital image data instead of the CR apparatus has appeared.
 このようなFPDには、CR装置のカセッテ同様に可搬型に構成されたカセッテ型のFPD(以下「FPDカセッテ」と称する。)も用いられるようになっており、バッテリを内蔵し、かつ無線通信機能を有するFPDカセッテも登場している。FPDカセッテは、その可搬性を活かし、患者のベットサイド等、任意の場所での撮影を可能とし、コンソール、パーソナルコンピュータ(PC)やワークステーション(WS)等に対して無線方式で、画像データを送信することのできるシステムも提案されている(例えば、特許文献3参照)。このようなシステムでは、必要に応じて、読み取られた全画像データ(以下「RAW画像データ」という。)か、このRAW画像データを間引いて(圧縮して)データ量を少なくした間引き画像データ(圧縮画像データ)か、のいずれかを選択して、コンソール等に送信することも提案されている。
 また、FPDカセッテにおいて、RAW画像データと間引き画像データ(圧縮画像データ)の両方を生成する場合に、間引き画像データは無線方式で送信し、RAW画像データはケーブル等を経由した有線方式で送信するとの構成も開示されている(例えば、特許文献4参照)。
As such an FPD, a cassette-type FPD (hereinafter referred to as “FPD cassette”) configured to be portable like the cassette of the CR device is also used, and has a built-in battery and wireless communication. A functioning FPD cassette has also appeared. The FPD cassette makes use of its portability and enables imaging at any location, such as a patient's bedside, and transfers image data to a console, personal computer (PC), workstation (WS), etc. wirelessly. A system capable of transmitting is also proposed (see, for example, Patent Document 3). In such a system, if necessary, all read image data (hereinafter referred to as “RAW image data”) or thinned image data with a reduced amount of data (thinned by compression) is reduced (compressed). It has also been proposed to select one of (compressed image data) and send it to a console or the like.
Further, when both RAW image data and thinned image data (compressed image data) are generated in the FPD cassette, the thinned image data is transmitted by a wireless method, and the RAW image data is transmitted by a wired method through a cable or the like. (See, for example, Patent Document 4).
 RAW画像データの他にデータ量の少ない間引き画像データを生成して送信する場合には、通信時間を短縮することができ、比較的早期に画像データをコンソール等に送信することが可能であって、再撮影の要否判断等を速やかに行うことができる。
特許第2509815号公報 特開2002-159476号公報 特開平07-246199号公報 特開2002-191586号公報
When generating and transmitting thinned image data with a small amount of data in addition to RAW image data, the communication time can be shortened, and image data can be transmitted to a console or the like relatively early. Therefore, it is possible to quickly determine whether or not re-shooting is necessary.
Japanese Patent No. 2509815 JP 2002-159476 A JP 07-246199 A JP 2002-191586 A
 しかしながら、最終的に診断に用いられる診断画像(確定画像)はRAW画像データから生成されるため、間引き画像データによって再撮影の要否判断を行った後、再撮影が不要であれば、改めてRAW画像データをコンソール等に送信するというシーケンスとなり、先に送信した間引き画像データは不要なものとして消去されることとなる。このように最終的には消去される画像データを生成して、これを一旦コンソール等に送って再撮影の要否を確認してから改めてRAW画像データを送って確定画像の生成を行うとしたのでは、確定画像を生成するまでにかなりの時間を要することとなる。 However, since the diagnostic image (determined image) that is finally used for diagnosis is generated from the RAW image data, if it is not necessary to perform re-imaging after determining whether re-imaging is necessary based on the thinned-out image data, the RAW image is renewed. The sequence is such that the image data is transmitted to the console or the like, and the thinned image data transmitted previously is deleted as unnecessary. In this way, the image data to be finally deleted is generated, and once sent to a console or the like to confirm the necessity of re-shooting, the RAW image data is sent again to generate the final image. Therefore, it takes a considerable time to generate a definite image.
 また、再撮影の要否を確認するためには、必ずしも画像全体を見る必要はなく、画像の一部を見れば判断できる場合も多い。例えば、立位の胸部正面を撮影した場合であれば、首や腰の位置を確認することのできる部分、すなわち、画像全体のうち、上部分のみを見ればポジショニングのずれ等を確認することができる。
 この点、従来は、RAW画像データを送信する場合、間引き画像データを送信する場合ともに、画像全体のデータをコンソール等に送信していたため、再撮影の要否の判断を行うのに必要のない画像データまで送信することとなっていた。
 このため、画像データの送信に時間がかかり、早期に再撮影の要否を判断することができないとの問題があった。
Further, in order to confirm whether or not re-shooting is necessary, it is not always necessary to look at the entire image, and it can often be determined by looking at a part of the image. For example, in the case of photographing the front of the chest in a standing position, it is possible to check the position of the neck and waist, i.e., the positioning shift by looking only at the upper part of the entire image. it can.
In this regard, in the past, when RAW image data was transmitted and when thinned image data was transmitted, the entire image data was transmitted to the console or the like, so it is not necessary to determine whether or not re-shooting is necessary. The image data was to be transmitted.
For this reason, there is a problem that it takes time to transmit the image data, and it is impossible to determine whether or not re-photographing is necessary at an early stage.
 また、特許文献4に記載の技術のように、間引き画像データを無線方式で送信しRAW画像データをケーブル等を用いた有線方式で送信するとした場合には、RAW画像データを送信する度に技師がケーブルを取り付ける等の作業を行う必要があり、煩わしかった。 In addition, as in the technique described in Patent Document 4, when it is assumed that thinned image data is transmitted by a wireless method and RAW image data is transmitted by a wired method using a cable or the like, an engineer is transmitted each time RAW image data is transmitted. However, it was necessary to perform work such as attaching a cable.
 更に、再撮影の要否判断用に間引き画像データを送る場合、コンソール側に送信する間引き画像データ(例えばRAW画像データを1/8圧縮、1/16圧縮等の間引き画像データ)の画素数と、コンソールの表示部における表示画素数とが不一致である場合には画像データに欠損が生じ、再撮影の要否を適切に判断することができないとの問題もある。 Further, when sending thinned image data for determining whether or not re-photographing is necessary, the number of pixels of thinned image data (for example, thinned image data such as 1/8 compressed or 1/16 compressed raw data) transmitted to the console side When the display pixel number on the display unit of the console does not match, there is a problem that the image data is lost and it is not possible to appropriately determine whether or not re-shooting is necessary.
 他方で、RAW画像データのみをコンソールに送信して、このRAW画像データによって再撮影の要否判断等を行おうとした場合、RAW画像データの送信には時間を要するため、早期に撮影の要否を判断することができない。
 また、画像データの送信完了までコンソールに何も画像が表示されないとすると、技師が通信不良を疑う等、心理的不安に陥ることにもなる。
 さらに、内蔵のバッテリで駆動している場合には、通信時間が長く掛かるとその分バッテリを消費してしまい、画像データの送信が完了する前にバッテリが切れてしまう懸念もある。
On the other hand, when only RAW image data is transmitted to the console and it is attempted to determine whether or not re-shooting is necessary using this RAW image data, it takes time to transmit RAW image data. Cannot be judged.
Further, if no image is displayed on the console until the transmission of the image data is completed, the engineer may become psychologically uneasy such as suspected of poor communication.
Further, when the battery is driven by a built-in battery, if the communication time is long, the battery is consumed correspondingly, and there is a concern that the battery may run out before the transmission of the image data is completed.
 このことは、無線方式で通信を行う場合に特に顕著であるが、有線方式で通信を行う場合であっても、通信速度の遅いネットワークを用いた通信の場合等、通信環境が十分に整っていない状況では同様の問題を生じる。 This is particularly noticeable when performing communication using a wireless method, but the communication environment is sufficiently prepared even when performing communication using a wired method, such as when using a network with a low communication speed. A similar problem arises in situations where no.
 本発明は以上のような事情に鑑みてなされたものであり、通信環境等に左右されることなく、早期かつ確実に再撮影の要否判断を行うことのできる医用画像システムを提供することを目的とする。 The present invention has been made in view of the circumstances as described above, and provides a medical image system that can quickly and surely determine the necessity of re-imaging without being influenced by the communication environment or the like. Objective.
 上記課題を解決するため、本発明は、被写体を透過した放射線を電気信号に変換する素子が2次元的に複数配列された放射線検出手段と、前記放射線検出手段によって取得された電気信号を読み取り、被写体の画像データを生成する読取手段と、前記読取手段によって生成された画像データを所定の分割設定に基づいて分割画像データに分割する分割画像データ生成手段と、前記分割画像データの送信順序を設定する送信管理手段と、前記送信順序に従って前記分割画像データを外部に送信する検出器通信手段と、を有する放射線画像検出器と、
 2次元状の表示領域を有する表示手段と、前記放射線画像検出器から前記分割画像データを取得するコンソール通信手段と、前記表示手段を制御する表示制御手段と、を有するコンソールと、
 を備え、
 前記表示制御手段は、撮影部位を識別する撮影部位情報に基づいて、前記表示手段の表示領域を複数の分割表示領域に分割するとともに、前記コンソール通信手段により取得された前記分割画像データを所定の割当順序に従って前記各分割表示領域に割り当てて、前記分割画像データに基づく画像を当該各分割表示領域に表示させることを特徴とする。
In order to solve the above-described problems, the present invention reads radiation signals that are two-dimensionally arranged with a plurality of elements that convert radiation transmitted through a subject into electrical signals, and reads electrical signals acquired by the radiation detection units. Reading means for generating image data of a subject, divided image data generating means for dividing the image data generated by the reading means into divided image data based on a predetermined division setting, and a transmission order of the divided image data are set A radiological image detector comprising: a transmission management means for performing; and a detector communication means for transmitting the divided image data to the outside according to the transmission order;
A console having display means having a two-dimensional display area, console communication means for acquiring the divided image data from the radiation image detector, and display control means for controlling the display means;
With
The display control means divides the display area of the display means into a plurality of divided display areas based on imaging part information for identifying an imaging part, and outputs the divided image data acquired by the console communication means to a predetermined area. According to the allocation order, the image is allocated to each divided display area, and an image based on the divided image data is displayed in each divided display area.
 本発明によれば、送信管理手段は、所定の分割設定に基づいて一の画像データを分割してなる複数の分割画像データを所定の順番でコンソールに送信するため、再撮影要否の確認に必要な画像データをより早くコンソールに送信することが可能となる。 According to the present invention, the transmission management means transmits a plurality of divided image data obtained by dividing one image data based on a predetermined division setting to the console in a predetermined order. Necessary image data can be transmitted to the console more quickly.
 また、一の画像データを、撮影部位情報に基づいて所定の分割領域に対応する複数の分割画像データに分割し、その分割画像データを所定の順番でコンソールに送信するようにした場合には、再撮影要否の確認に必要な画像データをより適切に早くコンソールに送信することが可能となる。 Further, when one image data is divided into a plurality of divided image data corresponding to a predetermined divided area based on the imaging region information, and the divided image data is transmitted to the console in a predetermined order, Image data necessary for checking whether or not re-shooting is necessary can be transmitted to the console more appropriately and quickly.
 また、コンソール通信手段により取得された分割画像データを、表示制御手段は撮影部位に基づいて、表示手段における所定の分割表示領域に所定の順序で割り当てて表示するため、再撮影要否のより早い確認が可能となる。その結果、再撮影要否確認用の間引きした画像データ等を送信せずRAW画像データのみを送信しても、最終的な診断用の画像データも速やかに確認することが可能となる。 Further, since the display control means assigns and displays the divided image data acquired by the console communication means in a predetermined order in a predetermined divided display area on the display means based on the imaging part, it is earlier than the necessity of re-imaging. Confirmation is possible. As a result, even if only the RAW image data is transmitted without transmitting the thinned image data for re-photographing necessity confirmation, it is possible to quickly confirm the final diagnostic image data.
 そのため、操作者の移動や2度にわたる送信操作等の煩わしさ、通信不良ではないかという心理的不安を軽減することが可能となる。 Therefore, it is possible to reduce the troublesomeness of the movement of the operator, the twice transmission operation, and the psychological anxiety that the communication is bad.
 また、前記放射線検出手段からの電気信号の読取順序を、撮影部位を識別する撮影部位情報に基づき指定する読取指定手段を備える場合には、読取手段は、読取指定手段により指定された読取順序で読み取り、検出装置通信手段は、読取手段で読み取られた読取順序で画像データを外部に送信するため、再撮影要否の確認に必要な画像データをより早くコンソールに送信することが可能となる。 Further, in the case of including reading designation means for designating the reading order of the electrical signals from the radiation detection means based on the imaging part information for identifying the imaging part, the reading means is in the reading order designated by the reading designation means. Since the reading / detecting device communication means transmits the image data to the outside in the reading order read by the reading means, the image data necessary for confirming whether or not re-photographing is necessary can be transmitted to the console earlier.
 また、コンソール通信手段により取得された画像データを、表示制御手段は撮影部位に基づいて、表示手段における所定の分割表示領域に所定の順序で割り当てて表示するため、再撮影要否のより早い確認が可能となる。その結果、再撮影要否確認用の間引きした画像データ等を送信せずRAW画像データのみを送信しても、最終的な診断用の画像データも結果として速やかに確認することが可能となる。 In addition, since the display control means allocates and displays the image data acquired by the console communication means in a predetermined order in a predetermined divided display area on the display means based on the imaging region, it is possible to confirm whether or not re-imaging is necessary. Is possible. As a result, even if only the RAW image data is transmitted without transmitting the thinned image data for re-photographing necessity confirmation, the final diagnostic image data can be quickly confirmed as a result.
 また、分割画像データ生成手段は、所定の分割設定に基づいて一の画像データを分割して複数の分割画像データにするほか、所定の画像間引き率に基づいて分割画像データを間引きして分割間引き画像データを生成し、送信管理手段は、分割間引き画像データの送信順序を設定する。検出器通信手段は送信順序で分割間引き画像データとともに、分割設定、送信順序及び画像間引き率を付帯データとして送信するようにした場合には、分割間引き画像データは、一の画像データ(RAW画像データ)が分割され間引きされたものであるため、分割間引き画像データのデータ量は、一の画像データ(RAW画像データ)のデータ量に比べて小さくなる。そのため、データ転送時間が短くなり、再撮影要否の確認に必要な画像データをより速くコンソールに送信することが可能となる。 Further, the divided image data generation means divides one image data into a plurality of divided image data based on a predetermined division setting, and also thins out the divided image data based on a predetermined image thinning rate. The image data is generated, and the transmission management unit sets the transmission order of the divided thinned image data. When the detector communication means transmits the division setting, the transmission order, and the image thinning rate as supplementary data together with the divided thinned image data in the transmission order, the divided thinned image data is one image data (RAW image data). ) Is divided and thinned out, the data amount of the divided thinned-out image data is smaller than the data amount of one image data (RAW image data). Therefore, the data transfer time is shortened, and the image data necessary for confirming whether or not re-shooting is necessary can be transmitted to the console more quickly.
 また、コンソール通信手段は、付帯データと分割間引き画像データを取得する。表示制御手段は、付帯データの中の分割設定に基づいて所定の分割表示領域に、分割間引き画像データを、付帯データの中の送信順序で割り当てて、付帯データの中の画像間引き率に基づいて表示手段に表示するよう表示手段を制御する。そのため、最撮影要否のより早い確認が可能となる。 Also, the console communication means obtains incidental data and divided thinned image data. The display control means assigns the divided thinned image data to a predetermined divided display area based on the division setting in the accompanying data in the transmission order in the accompanying data, and based on the image thinning rate in the accompanying data. The display means is controlled to display on the display means. Therefore, it is possible to confirm earlier whether or not the most photographing is necessary.
第1実施形態に係る医用画像システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a medical image system according to a first embodiment. FPDカセッテの要部構成を示す斜視図である。It is a perspective view which shows the principal part structure of a FPD cassette. FPDカセッテのセンサパネル部および読取部の構成に示す等価回路図である。It is an equivalent circuit diagram shown in the structure of the sensor panel part and reading part of FPD cassette. 図2に示すFPDカセッテを矢視A方向から見た斜視図である。It is the perspective view which looked at the FPD cassette shown in FIG. 2 from the arrow A direction. 第1実施形態において撮影部位が胸部正面に対応した分割領域と分割表示領域を示す図である。It is a figure which shows the division area and division | segmentation display area where the imaging | photography site | part respond | corresponded to the chest front in 1st Embodiment. 第1実施形態において撮影部位が胸部側面に対応した分割領域と分割表示領域を示す図である。It is a figure which shows the division area and division | segmentation display area where the imaging | photography site | part respond | corresponded to the chest side surface in 1st Embodiment. FPDカセッテ制御部が送信順序を管理する場合の医用画像システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a medical image system in case an FPD cassette control part manages a transmission order. FPDカセッテ制御部が送信順序を管理する場合の医用画像システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a medical image system in case an FPD cassette control part manages a transmission order. 第2実施形態に係る医用画像システムの全体構成を示す図である。It is a figure which shows the whole structure of the medical image system which concerns on 2nd Embodiment. 第2実施形態において撮影部位が胸部正面に対応した分割領域と分割表示領域を示す図である。It is a figure which shows the division area and division | segmentation display area where the imaging | photography site | part respond | corresponded to the chest front in 2nd Embodiment. 第2実施形態において撮影部位が胸部側面に対応した分割領域と分割表示領域を示す図である。It is a figure which shows the division area and division | segmentation display area where the imaging | photography site | part respond | corresponded to the chest side surface in 2nd Embodiment. FPDカセッテ制御部が読取順序を指定する場合の医用画像システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a medical image system in case an FPD cassette control part designates reading order. FPDカセッテ制御部が読取順序を指定する場合の医用画像システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a medical image system in case an FPD cassette control part designates reading order. 第3実施形態に係る医用画像システムの全体構成を示す図である。It is a figure which shows the whole structure of the medical image system which concerns on 3rd Embodiment. 分割設定が胸部正面に対応した分割領域と分割表示領域を示す図である。It is a figure which shows the division area and division | segmentation display area where division | segmentation setting respond | corresponds to the chest front. 分割設定が胸部側面に対応した分割領域と分割表示領域を示す図である。It is a figure which shows the division | segmentation area | region and division | segmentation display area where division | segmentation setting corresponds to the chest side surface. FPDカセッテ制御部が分割設定、送信順序及び画像間引き率を管理する場合の医用画像システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a medical image system in case an FPD cassette control part manages a division setting, a transmission order, and an image thinning-out rate. FPDカセッテ制御部が分割設定、送信順序及び画像間引き率を管理する場合の医用画像システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of a medical image system in case an FPD cassette control part manages a division setting, a transmission order, and an image thinning-out rate. 第1の実施形態における画像データの分割の仕方を説明する説明図である。It is explanatory drawing explaining the division method of the image data in 1st Embodiment. 図16に示す第1レイヤーにおける画素の割付について説明する説明図である。It is explanatory drawing explaining the allocation of the pixel in the 1st layer shown in FIG. 図16に示す第2レイヤーにおける画素の割付について説明する説明図である。It is explanatory drawing explaining the allocation of the pixel in the 2nd layer shown in FIG. 図16に示す第3レイヤーにおける画素の割付について説明する説明図である。It is explanatory drawing explaining the allocation of the pixel in the 3rd layer shown in FIG. 図16に示す第4レイヤーにおける画素の割付について説明する説明図である。It is explanatory drawing explaining the allocation of the pixel in the 4th layer shown in FIG. 図16に示す第5レイヤーにおける画素の割付について説明する説明図である。It is explanatory drawing explaining the allocation of the pixel in the 5th layer shown in FIG. 図16に示す第6レイヤーにおける画素の割付について説明する説明図である。It is explanatory drawing explaining allocation of the pixel in the 6th layer shown in FIG. 図16に示す第7レイヤーにおける画素の割付について説明する説明図である。It is explanatory drawing explaining allocation of the pixel in the 7th layer shown in FIG. 図17及び図23に示すレイヤーにおける実際の表示画像の一例を示した図である。It is the figure which showed an example of the actual display image in the layer shown in FIG.17 and FIG.23. 図17及び図23に示すレイヤーにおける実際の表示画像の一例を示した図である。It is the figure which showed an example of the actual display image in the layer shown in FIG.17 and FIG.23. 図17及び図23に示すレイヤーにおける実際の表示画像の一例を示した図である。It is the figure which showed an example of the actual display image in the layer shown in FIG.17 and FIG.23. 図17及び図23に示すレイヤーにおける実際の表示画像の一例を示した図である。It is the figure which showed an example of the actual display image in the layer shown in FIG.17 and FIG.23. 図17及び図23に示すレイヤーにおける実際の表示画像の一例を示した図である。It is the figure which showed an example of the actual display image in the layer shown in FIG.17 and FIG.23. 図17及び図23に示すレイヤーにおける実際の表示画像の一例を示した図である。It is the figure which showed an example of the actual display image in the layer shown in FIG.17 and FIG.23. 図17及び図23に示すレイヤーにおける実際の表示画像の一例を示した図である。It is the figure which showed an example of the actual display image in the layer shown in FIG.17 and FIG.23. プログレッシブ表示を行う場合における画像データの分割転送の一例を説明する説明図である。It is explanatory drawing explaining an example of the division transfer of the image data in the case of performing a progressive display. 無線の種類による通信の実効速度の差異を表す表である。It is a table | surface showing the difference in the effective speed of communication by the kind of radio | wireless. 表示部の表示領域のサイズ・モニタ特性等一例を示す表である。It is a table | surface which shows an example, such as a size of a display area of a display part, and monitor characteristics. 表示部に4つの画像を表示させた場合の画面例を示した図である。It is the figure which showed the example of a screen at the time of displaying four images on a display part. 表示部に1つの画像を表示させた場合の画面例を示した図である。It is the figure which showed the example of a screen at the time of displaying one image on a display part. プログレッシブ表示を行う場合における医用画像システムの作用の一例を示すフローチャートである。It is a flowchart which shows an example of an effect | action of the medical image system in the case of performing a progressive display. 画像データの分割転送の一変形例を説明する説明図である。It is explanatory drawing explaining the modification of the division transfer of image data. 画像データの分割転送の一変形例を説明する説明図である。It is explanatory drawing explaining the modification of the division transfer of image data. プログレッシブ表示を行う場合における医用画像システムの作用の変形例を示すフローチャートである。It is a flowchart which shows the modification of an effect | action of the medical image system in the case of performing a progressive display.
[第1実施形態]
 以下、本発明に係る医用画像システムの実施形態について、図1から図7Bを参照しながら説明する。ただし、本発明は以下の図示例のものに限定されるものではない。
[First Embodiment]
Hereinafter, an embodiment of a medical image system according to the present invention will be described with reference to FIGS. 1 to 7B. However, the present invention is not limited to the following illustrated examples.
 本実施形態に係る医用画像システム1は、病院や医院内で行われる放射線画像撮影を想定したシステムである。
 図1に示すように、例えば、撮影室R1は放射線を遮蔽する部屋であり、撮影室R1には、検査対象に放射線を照射する放射線発生装置4、放射線発生装置4から照射された放射線に応じた画像データを生成するFPDカセッテ2、FPDカセッテ2を装填することができる保持装置7、無線アクセスポイント5が配置されている。
 また、前室R2には、放射線発生装置4を操作する操作装置6が配置されている。
 また、別室には、システム全体の制御を行うコンソール3が設けられている。このコンソール3は、前室R2に設けることも可能である。
 本実施形態では、医用画像システム1は、以上のFPDカセッテ2と、コンソール3と、放射線発生装置4と、無線アクセスポイント5と、操作装置6と、保持装置7とを備えている。
 なお、本実施形態では、FPDカセッテ2で取得した画像データをコンソール3に送信し、送信完了後に表示部33に画像が表示される場合を基本として説明するが、送信される画像データ量が送信時間とともに増加するにつれ、解像度を順次増加せしめる表示形式(以下、「プログレッシブ表示」という。)を採用することが好ましい(なお、プログレッシブ表示を行うための構成及び処理の手法については後述する。)。この場合は、画像送信に伴い、リアルタイムでプログレッシブ表示を行うことができる。
 以下、医用画像システム1の構成について詳細に説明する。
The medical image system 1 according to the present embodiment is a system that assumes radiographic imaging performed in a hospital or clinic.
As shown in FIG. 1, for example, the imaging room R <b> 1 is a room that shields radiation, and the imaging room R <b> 1 includes a radiation generator 4 that irradiates the examination target with radiation, and the radiation emitted from the radiation generator 4. An FPD cassette 2 that generates image data, a holding device 7 that can be loaded with the FPD cassette 2, and a wireless access point 5 are arranged.
An operation device 6 for operating the radiation generation device 4 is disposed in the front chamber R2.
A separate room is provided with a console 3 for controlling the entire system. This console 3 can also be provided in the front chamber R2.
In the present embodiment, the medical image system 1 includes the FPD cassette 2, the console 3, the radiation generation device 4, the wireless access point 5, the operation device 6, and the holding device 7.
In this embodiment, the image data acquired by the FPD cassette 2 is transmitted to the console 3 and the image is displayed on the display unit 33 after the transmission is completed. However, the amount of image data to be transmitted is transmitted. It is preferable to adopt a display format (hereinafter referred to as “progressive display”) in which the resolution is sequentially increased as time increases (a configuration and processing technique for performing progressive display will be described later). In this case, progressive display can be performed in real time with image transmission.
Hereinafter, the configuration of the medical image system 1 will be described in detail.
 放射線発生装置4は、電圧発生源により高圧電圧が印加されると放射線を発生する放射線管(図示せず)を備える。この放射線管の放射線照射口には、放射線照射範囲を調整する放射線絞り装置(図示せず)が設けられている。
 この放射線発生装置4は、撮影時にはFPDカセッテ2に対向する位置に配置されて、検査対象に対して放射線を照射するものである。
The radiation generator 4 includes a radiation tube (not shown) that generates radiation when a high voltage is applied from a voltage generation source. A radiation squeezing device (not shown) for adjusting the radiation irradiation range is provided at the radiation irradiation port of the radiation tube.
The radiation generating device 4 is disposed at a position facing the FPD cassette 2 at the time of imaging, and irradiates the inspection target with radiation.
 保持装置7は、FPDカセッテ2を装填するもので、ネットワークNに接続されている。FPDカセッテ2は、保持装置7に装填された場合は、無線方式或いは保持装置7を介して有線方式でデータの送受信を行う機能を有する。 The holding device 7 loads the FPD cassette 2 and is connected to the network N. When the FPD cassette 2 is loaded in the holding device 7, the FPD cassette 2 has a function of transmitting and receiving data by a wireless method or a wired method via the holding device 7.
 FPDカセッテ2は、放射線画像データ(以下、単に「画像データ」と称する。)を得るカセッテ型の放射線画像検出装置である。
 FPDカセッテ2としては、例えば、8インチ×10インチ、10インチ×12インチ、11インチ×14インチ、14インチ×14インチ、14インチ×17インチ、17インチ×17インチ等のサイズのものが用意されているが、サイズはここに挙げたものに限定されない。
The FPD cassette 2 is a cassette-type radiological image detection apparatus that obtains radiographic image data (hereinafter simply referred to as “image data”).
As the FPD cassette 2, for example, 8 inch × 10 inch, 10 inch × 12 inch, 11 inch × 14 inch, 14 inch × 14 inch, 14 inch × 17 inch, 17 inch × 17 inch, etc. are available. However, the size is not limited to those listed here.
 図2は、本実施形態におけるFPDカセッテ2の斜視図である。
 FPDカセッテ2は、図2に示すように、内部を保護する筐体210を備えている、この筐体210の内部には、照射された放射線を光に変換するシンチレータ層220が形成されている。シンチレータ層220は、例えばCsI:TlやCdS:Tb、ZnS:Ag等の母体内に発光中心物質が付活された蛍光体を用いて形成されたものを用いることができる。
FIG. 2 is a perspective view of the FPD cassette 2 in the present embodiment.
As shown in FIG. 2, the FPD cassette 2 includes a casing 210 that protects the inside. A scintillator layer 220 that converts irradiated radiation into light is formed in the casing 210. . As the scintillator layer 220, for example, a layer formed using a phosphor in which a luminescent center substance is activated in a matrix such as CsI: Tl, Cd 2 O 2 S: Tb, or ZnS: Ag can be used.
 シンチレータ層220の放射線が入射する側の面とは反対側の面側には、センサパネル部221が設けられている。このセンサパネル部221は、被写体を透過した放射線を電気信号に変換する放射線検出素子が2次元状に複数配列されたものであり、放射線検出手段として機能する。本実施形態において、センサパネル部221は、放射線検出素子として、シンチレータ層220から出力された光を電気信号に変換するフォトダイオード等の複数の光電変換素子223(図3参照)を備えている。
 この場合の各光電変換素子223は、画像読み取りの最小単位としての1画素に対応しており、各光電変換素子223は、例えば行方向の位置xと列方向の位置yとによって、その位置を特定することができるようになっている。
A sensor panel portion 221 is provided on the surface of the scintillator layer 220 opposite to the surface on which radiation is incident. The sensor panel unit 221 includes a plurality of two-dimensionally arranged radiation detection elements that convert radiation transmitted through a subject into electrical signals, and functions as radiation detection means. In the present embodiment, the sensor panel unit 221 includes a plurality of photoelectric conversion elements 223 (see FIG. 3) such as photodiodes that convert light output from the scintillator layer 220 into electric signals as radiation detection elements.
Each photoelectric conversion element 223 in this case corresponds to one pixel as a minimum unit of image reading, and each photoelectric conversion element 223 has its position determined by, for example, a position x in the row direction and a position y in the column direction. It can be specified.
 また、図2に示すように、センサパネル部221の周囲の部分や裏面側には、センサパネル部221の各光電変換素子223の出力値を読み取る読取部230が設けられている。読取部230は、センサパネル部221によって検出され出力された電気信号(放射線発生装置4により発生し被写体を透過した放射線量に対応する出力値)を読み取り、この電気信号に基づいて画像データを生成する読取手段として機能する。
 読取部230は、図示しないCPU(Central Processing Unit)等を備えるマイクロコンピュータ等からなるFPDカセッテ制御部200や図示しないROM(Read Only Memory)及びRAM(Random Access Memory)、フラッシュメモリ等からなるFPDカセッテ記憶部201、走査駆動回路202、信号読出し回路203等で構成されている。
In addition, as shown in FIG. 2, a reading unit 230 that reads the output value of each photoelectric conversion element 223 of the sensor panel unit 221 is provided on a portion around the sensor panel unit 221 or on the back surface side. The reading unit 230 reads an electrical signal detected and output by the sensor panel unit 221 (an output value corresponding to the amount of radiation generated by the radiation generator 4 and transmitted through the subject), and generates image data based on the electrical signal. Functions as a reading means.
The reading unit 230 includes an FPD cassette control unit 200 made up of a microcomputer having a CPU (Central Processing Unit) (not shown) or the like, an FPD cassette made up of ROM (Read Only Memory) and RAM (Random Access Memory), flash memory, etc. (not shown). The storage unit 201, the scanning drive circuit 202, the signal readout circuit 203, and the like are included.
 ここで、センサパネル部221及び読取部230の構成について、図3の等価回路図を参照しつつ、さらに説明する。
 図3に示すように、センサパネル部221の各光電変換素子223の一方の電極にはそれぞれ信号読み出し用のスイッチ素子であるTFT222のソース電極が接続されている。また、各光電変換素子223の他方の電極にはバイアス線Lbが接続されており、バイアス線Lbはバイアス電源228に接続されていて、バイアス電源228から各光電変換素子223にバイアス電圧が印加されるようになっている。
Here, the configuration of the sensor panel unit 221 and the reading unit 230 will be further described with reference to the equivalent circuit diagram of FIG.
As shown in FIG. 3, one electrode of each photoelectric conversion element 223 of the sensor panel unit 221 is connected to the source electrode of the TFT 222 which is a signal reading switch element. In addition, a bias line Lb is connected to the other electrode of each photoelectric conversion element 223, and the bias line Lb is connected to a bias power supply 228, and a bias voltage is applied from the bias power supply 228 to each photoelectric conversion element 223. It has become so.
 各TFT222のゲート電極はそれぞれ走査駆動回路202から延びる走査線Llに接続されており、各TFT222のドレイン電極はそれぞれ信号線Lrに接続されている。各信号線Lrは、それぞれ信号読み出し回路203内の増幅回路224に接続されており、各増幅回路224の出力線はそれぞれサンプルホールド回路225を経てアナログマルチプレクサ226に接続されている。また、アナログマルチプレクサ226にはA/D変換器227が接続されており、信号読み出し回路203はA/D変換器227を介してFPDカセッテ制御部200に接続されている。FPDカセッテ制御部200には、FPDカセッテ記憶部201が接続されている。 The gate electrode of each TFT 222 is connected to a scanning line Ll extending from the scanning drive circuit 202, and the drain electrode of each TFT 222 is connected to a signal line Lr. Each signal line Lr is connected to the amplifier circuit 224 in the signal readout circuit 203, and the output line of each amplifier circuit 224 is connected to the analog multiplexer 226 via the sample hold circuit 225, respectively. The analog multiplexer 226 is connected to an A / D converter 227, and the signal readout circuit 203 is connected to the FPD cassette control unit 200 via the A / D converter 227. An FPD cassette storage unit 201 is connected to the FPD cassette control unit 200.
 FPDカセッテ2では、図示しない被写体を撮影する放射線画像撮影において、被写体を透過した放射線がシンチレータ層220に入射すると、シンチレータ層220からセンサパネル部221に光が照射され、光の照射を受けた量に応じて、光電変換素子223の特性が変化する。 In the FPD cassette 2, in radiation image capturing for capturing a subject (not shown), when radiation transmitted through the subject is incident on the scintillator layer 220, light is irradiated from the scintillator layer 220 to the sensor panel unit 221 and the amount of light irradiation received. Accordingly, the characteristics of the photoelectric conversion element 223 change.
 そして、放射線画像撮影を終了し、FPDカセッテ2から画像データを電気信号として読み出す際には、走査線LlからTFT222のゲート電極に読み出し電圧を印加して各TFT222のゲートを開き、光電変換素子223からTFT222を介して電気信号を信号線Lrに取り出す。そして、電気信号を増幅回路224で増幅する等して、アナログマルチプレクサ226から順次A/D変換器227を介してFPDカセッテ制御部200に出力し、FPDカセッテ制御部200は、この電気信号と前述した光電変換素子223(すなわち画素)の位置を特定する位置情報とを対応付けてFPDカセッテ記憶部201に保存する。信号の読み出し処理は各走査線Llごとに順次行われ、センサパネル部221の全光電変換素子223から電気信号が読み出されると信号の読み出し処理が終了する。 When the radiographic image capturing is completed and image data is read out from the FPD cassette 2 as an electric signal, a read voltage is applied to the gate electrode of the TFT 222 from the scanning line Ll to open the gate of each TFT 222, and the photoelectric conversion element 223 Then, an electric signal is taken out to the signal line Lr through the TFT 222. Then, the electric signal is amplified by the amplifier circuit 224, and is sequentially output from the analog multiplexer 226 to the FPD cassette control unit 200 via the A / D converter 227. The FPD cassette control unit 200 The position information specifying the position of the photoelectric conversion element 223 (that is, the pixel) is stored in the FPD cassette storage unit 201 in association with each other. The signal reading process is sequentially performed for each scanning line Ll. When the electric signal is read from all the photoelectric conversion elements 223 of the sensor panel unit 221, the signal reading process is finished.
 また、FPDカセッテ2には、バッテリ207が内蔵されており、FPDカセッテ制御部200により、バッテリ207から各部材への給電が制御されるようになっている。
 なお、バッテリ207としては、例えばニッカド電池、ニッケル水素電池、リチウムイオン電池、小型シール鉛電池、鉛蓄電池等の充電自在な電池を適用することができる。また、バッテリ207に代えて、燃料電池等を適用してもよい。
The FPD cassette 2 includes a battery 207, and the FPD cassette control unit 200 controls power supply from the battery 207 to each member.
As the battery 207, for example, a rechargeable battery such as a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, a small sealed lead battery, or a lead storage battery can be used. Further, instead of the battery 207, a fuel cell or the like may be applied.
 また、FPDカセッテ2は、センサパネル部221で検出された電気信号に基づいて読取部230で生成された画像データを記憶する画像記憶部204を備えている。画像記憶部204は、例えばフラッシュメモリ等の書き換え可能なメモリ等で構成されている。本実施形態において、読取部230により生成される画像データは、個々の光電変換素子223に対応する各画素ごとに、各画素の画素サイズ情報、画素数情報及び位置情報と対応付けられて画像記憶部204に一時的に保存される。
 画像記憶部204は内蔵型のメモリでもよいし、メモリカード等の着脱可能なメモリでもよい。画像記憶部204の容量は特に限定されないが、複数枚分の画像データを保存可能な容量を有することが好ましい。このような画像記憶部204を備えることによって、被写体に対して連続して放射線を照射し、その度ごとに画像データを記録し蓄積していくことができ、連続撮影や動画撮影を行うことが可能となる。
Further, the FPD cassette 2 includes an image storage unit 204 that stores image data generated by the reading unit 230 based on an electrical signal detected by the sensor panel unit 221. The image storage unit 204 is configured by a rewritable memory such as a flash memory, for example. In the present embodiment, image data generated by the reading unit 230 is stored in an image storage unit in association with pixel size information, pixel number information, and position information of each pixel for each pixel corresponding to each photoelectric conversion element 223. The data is temporarily stored in the unit 204.
The image storage unit 204 may be a built-in memory or a removable memory such as a memory card. The capacity of the image storage unit 204 is not particularly limited, but preferably has a capacity capable of storing a plurality of pieces of image data. By providing such an image storage unit 204, it is possible to continuously irradiate a subject with radiation, and to record and accumulate image data each time, so that continuous shooting and moving image shooting can be performed. It becomes possible.
 また、FPDカセッテ2の筐体210の一端には充電用の端子209が形成されており、例えば、FPDカセッテ2を外部電源と接続されるクレードル等の充電用装置(図示せず)に装着することによって充電用装置側の端子(図示せず)と筐体210側の端子209とが接続されてバッテリ207の充電が行われるようになっている。 In addition, a terminal 209 for charging is formed at one end of the casing 210 of the FPD cassette 2. For example, the FPD cassette 2 is attached to a charging device (not shown) such as a cradle connected to an external power source. Thus, a terminal (not shown) on the charging device side and a terminal 209 on the housing 210 side are connected to charge the battery 207.
 また、FPDカセッテ2には、コンソール3等の外部装置との間で各種信号の送受信を行うFPDカセッテ通信部208(図1参照)が設けられている。FPDカセッテ通信部208は、例えば、画像データをコンソール3に転送したり、コンソール3等から送信される撮影開始信号等を受信するものである。
 本実施形態において、前記読取部230によって生成された画像データは、後述するように、撮影部位情報に基づいて所定の分割領域に対応する分割画像データに分割されて、所定の送信順序に従って外部に送信されるようになっており、FPDカセッテ通信部208は、この分割画像データを送信順序に従ってコンソール3等に送信する検出装置通信手段として機能する。
 また、後述するように、FPDカセッテ制御部200により分割画像データを送信する送信順序が変更されたときは、FPDカセッテ通信部208は、この変更された送信順序とともに分割画像データをコンソール3に送信する。
The FPD cassette 2 is provided with an FPD cassette communication unit 208 (see FIG. 1) that transmits and receives various signals to and from an external device such as the console 3. The FPD cassette communication unit 208 is, for example, for transferring image data to the console 3 or receiving a photographing start signal transmitted from the console 3 or the like.
In this embodiment, as will be described later, the image data generated by the reading unit 230 is divided into divided image data corresponding to a predetermined divided area based on the imaging region information, and externally according to a predetermined transmission order. The FPD cassette communication unit 208 functions as a detection device communication unit that transmits the divided image data to the console 3 or the like according to the transmission order.
Further, as will be described later, when the transmission order for transmitting the divided image data is changed by the FPD cassette control unit 200, the FPD cassette communication unit 208 transmits the divided image data to the console 3 together with the changed transmission order. To do.
 また、FPDカセッテ2の筐体210の表面一端には、バッテリ207の充電状況や各種の操作状況等を表示するインジケータ206が設けられており、操作者がFPDカセッテ2のバッテリ207の充電状況等を目視にて確認することができるようになっている。 Further, an indicator 206 for displaying the charging status of the battery 207 and various operation statuses is provided at one end of the front surface of the casing 210 of the FPD cassette 2 so that the operator can check the charging status of the battery 207 of the FPD cassette 2 and the like. Can be visually confirmed.
 また、FPDカセッテ2の筐体210の外部には、放射線技師等の操作者が各種の指示等を入力設定する入力操作部205が設けられている。入力操作部205から入力される内容としては、例えば、撮影条件や患者の識別情報、FPDカセッテ2の動作状態の選択設定等が挙げられるが、入力操作部205から入力することのできる内容は、ここに例示したものに限定されない。
 例えば、技師が、デフォルトとして設定されている分割画像データの送信順序を変更したい場合に、入力操作部205から指示を入力することによって、送信順序の変更を指示する指示信号がFPDカセッテ制御部200に出力されるようにしてもよい。このような指示信号が入力操作部205から出力されたときは、後述するように、FPDカセッテ制御部200は、デフォルトとして設定されている分割画像データの送信順序を指示信号に従って変更する。
In addition, an input operation unit 205 is provided outside the casing 210 of the FPD cassette 2 for an operator such as a radiologist to input and set various instructions. The contents input from the input operation unit 205 include, for example, imaging conditions, patient identification information, selection setting of the operation state of the FPD cassette 2, etc., but the contents that can be input from the input operation unit 205 are: It is not limited to what was illustrated here.
For example, when the engineer wants to change the transmission order of the divided image data set as default, an instruction signal for instructing the change of the transmission order is input by inputting an instruction from the input operation unit 205, and the FPD cassette control unit 200. May be output. When such an instruction signal is output from the input operation unit 205, as will be described later, the FPD cassette control unit 200 changes the transmission order of the divided image data set as a default according to the instruction signal.
 また、図4に示すように、FPDカセッテ2の筐体210の側面部分には、無線通信を行うためのアンテナ装置231が埋め込まれて設けられている。アンテナ装置231には、金属からなる平板状の一対の放射板232、233と、一対の放射板232、233を連結し、当該一対の放射板232、233に対して給電する給電部234とが設けられている。
 なお、アンテナ装置231の種類・形状は、ここに例示したものに限定されない。また、アンテナ装置231は筐体210に埋め込まれている場合に限定されず、筐体210の外側や内側に貼付されていてもよい。
Further, as shown in FIG. 4, an antenna device 231 for performing wireless communication is embedded in the side surface portion of the casing 210 of the FPD cassette 2. The antenna device 231 includes a pair of flat radiation plates 232 and 233 made of metal, and a power feeding unit 234 that connects the pair of radiation plates 232 and 233 and supplies power to the pair of radiation plates 232 and 233. Is provided.
Note that the type and shape of the antenna device 231 are not limited to those illustrated here. The antenna device 231 is not limited to being embedded in the housing 210, and may be attached to the outside or the inside of the housing 210.
 次に、FPDカセッテ2の機能的構成について図1を用いて説明する。
 FPDカセッテ記憶部201は、各種制御プログラムや、画像データ等の各種データを記憶するものである。本実施形態において、各種制御プログラムの中には、撮影部位に対応付けられた画像データの分割方法及び送信順序を示す送信管理用プログラムが含まれる。
 なおFPDカセッテ記憶部201には、デフォルトとして所定の分割方法及び送信順序が記憶されているが、前述したように、入力操作部205から指示信号を入力することにより、技師(ユーザ)等が任意に設定を変更することも可能である。
 本実施形態では、この送信管理プログラム中に、デフォルトとして、撮影部位が胸部正面である場合の分割方法及び送信順序と、撮影部位が胸部側面である場合の分割方法及び送信順序とが設定されている場合を例として説明するが、分割方法及び送信順序の規定の仕方はこれに限定されず、さらに多くのパターンが選択的に適用可能となっていてもよい。
Next, the functional configuration of the FPD cassette 2 will be described with reference to FIG.
The FPD cassette storage unit 201 stores various control programs and various data such as image data. In the present embodiment, the various control programs include a transmission management program indicating the image data division method and transmission order associated with the imaging region.
Note that the FPD cassette storage unit 201 stores a predetermined division method and transmission order as defaults. However, as described above, by inputting an instruction signal from the input operation unit 205, an engineer (user) or the like is arbitrarily selected. It is also possible to change the setting.
In the present embodiment, in this transmission management program, as a default, the division method and transmission order when the imaging region is the front of the chest, and the division method and transmission order when the imaging region is the side of the chest are set. However, the method of defining the dividing method and the transmission order is not limited to this, and more patterns may be selectively applicable.
 FPDカセッテ制御部200は、FPDカセッテ記憶部201に記憶されているプログラムに従ってFPDカセッテ2内の各部を統括制御したり、所定の演算を行ったりするものである。本実施形態においては、このFPDカセッテ制御部200は、FPDカセッテ記憶部201に記憶されている送信管理用プログラムに従って、前述の読取部230によって生成された画像データを撮影部位情報に基づいて所定の分割領域に対応する分割画像データに分割するとともに当該各分割画像データの送信順序を設定する送信管理手段としても機能する。 The FPD cassette control unit 200 performs overall control of each unit in the FPD cassette 2 according to a program stored in the FPD cassette storage unit 201 and performs predetermined calculations. In the present embodiment, the FPD cassette control unit 200 uses the transmission management program stored in the FPD cassette storage unit 201 to obtain the image data generated by the reading unit 230 based on the imaging part information. It also functions as transmission management means for dividing the divided image data corresponding to the divided areas and setting the transmission order of the divided image data.
 ここで、FPDカセッテ制御部200の送信管理手段としての機能について詳説する。
 本実施形態において、FPDカセッテ2には、コンソール3から当該撮影における撮影部位を識別する撮影部位情報が送信されるようになっており、コンソール3から送信された撮影部位情報をFPDカセッテ通信部208が取得すると、FPDカセッテ制御部200は、その撮影部位情報に対応する送信管理用プログラムをFPDカセッテ記憶部201から読み出す。そして、FPDカセッテ制御部200は、その送信管理用プログラムに基づいて、画像記憶部204に記憶されている一の画像データ(当該撮影によって得られた画像データ)を後述するコンソール3の表示部33の所定の分割領域に対応する複数の分割画像データに分割し、FPDカセッテ通信部208からこの複数の分割画像データを所定の送信順序でコンソール3に送信させる。
Here, the function as the transmission management means of the FPD cassette control unit 200 will be described in detail.
In the present embodiment, imaging part information for identifying an imaging part in the imaging is transmitted from the console 3 to the FPD cassette 2, and the imaging part information transmitted from the console 3 is transmitted to the FPD cassette communication unit 208. Is acquired, the FPD cassette control unit 200 reads the transmission management program corresponding to the imaging part information from the FPD cassette storage unit 201. Then, based on the transmission management program, the FPD cassette control unit 200 displays one image data (image data obtained by the photographing) stored in the image storage unit 204, which will be described later, on the display unit 33 of the console 3. The FPD cassette communication unit 208 transmits the plurality of divided image data to the console 3 in a predetermined transmission order.
 具体的には、FPDカセッテ制御部200は、撮影部位が胸部正面である場合には、図5に示すように一の画像データを縦方向(行方向)の3つ(分割画像データα、β、γ)に分割し、この分割画像データα、β、γを「α→β→γ」の順でコンソール3に送信させる。この分割画像データα、β、γは、後述するように、図5におけるコンソール3の表示部33の各分割表示領域A,B,Cに対応するようになっている。一方、FPDカセッテ制御部200は、撮影部位が胸部側面である場合には、図6に示すように一の画像データを横方向(列方向)の3つ(分割画像データα、β、γ)に分割し、この分割画像データα、β、γを「α→β→γ」の順でコンソール3に送信させる。この分割画像データα、β、γは、後述するように、図6におけるコンソール3の表示部33の各分割表示領域A,B,Cに対応するようになっている。 Specifically, when the imaging region is the front of the chest, the FPD cassette control unit 200 converts one piece of image data into three pieces (divided image data α, β) in the vertical direction (row direction) as shown in FIG. , Γ), and the divided image data α, β, γ are transmitted to the console 3 in the order of “α → β → γ”. As will be described later, the divided image data α, β, and γ correspond to the divided display areas A, B, and C of the display unit 33 of the console 3 in FIG. On the other hand, when the imaging region is the chest side surface, the FPD cassette control unit 200 divides one image data into three in the horizontal direction (column direction) (divided image data α, β, γ) as shown in FIG. The divided image data α, β, γ are transmitted to the console 3 in the order of “α → β → γ”. As will be described later, the divided image data α, β, and γ correspond to the divided display areas A, B, and C of the display unit 33 of the console 3 in FIG.
 なお、前述のように、ユーザ等の設定により、所定の送信順序が変更された場合も対応することが可能である。この場合は、画像データを送信する前に、FPDカセッテ2のFPDカセッテ通信部208からコンソール3に対して変更された送信順序の情報を分割画像データとともに送信する。
 このように分割送信することとした理由は、図5のように撮影部位が胸部正面であれば、分割画像データαである首部の画像データと分割画像データβである腰部の画像データとを先にコンソール3に送信すれば、胸部正面の画像データγをコンソール3に送信しない段階でも、コンソール3側で、首部及び腰部の位置関係から注目領域である胸部正面の概略の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを視認することが可能となることが多いからである。また、図6のように撮影部位が胸部側面であれば、分割画像データαである腹部の画像データと分割画像データβである背部の画像データとをコンソール3に送信すれば、胸部側面の画像データγをコンソール3に送信しない段階でも、コンソール3側で、腹部及び背部の位置関係から注目領域である胸部側面の概略の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを視認することが可能となることが多いからである。
As described above, it is possible to cope with the case where the predetermined transmission order is changed by the setting of the user or the like. In this case, the transmission order information changed from the FPD cassette communication unit 208 of the FPD cassette 2 to the console 3 is transmitted together with the divided image data before transmitting the image data.
The reason why the divided transmission is performed as described above is that if the imaging region is the front of the chest as shown in FIG. 5, the neck image data that is the divided image data α and the waist image data that is the divided image data β are the first. If the image data γ of the front of the chest is not transmitted to the console 3, the approximate position of the front of the chest that is the region of interest can be estimated from the positional relationship between the neck and the waist on the console 3 side. This is because it is often possible to visually recognize whether or not the position is appropriate, that is, whether or not the position of the subject exists at an appropriate position. If the imaging region is the chest side surface as shown in FIG. 6, if the abdominal image data as the divided image data α and the back image data as the divided image data β are transmitted to the console 3, the image of the chest side surface is obtained. Even when the data γ is not transmitted to the console 3, the approximate position of the side of the chest, which is the region of interest, can be estimated from the positional relationship between the abdomen and the back on the console 3, and whether the imaging position is appropriate, that is, the position of the subject This is because it is often possible to visually recognize whether or not the image exists at an appropriate position.
 また、本実施形態では、前記分割画像データがコンソール3の表示部33の各分割表示領域にプログレッシブ表示で表示されるように、FPDカセッテ制御部200は、各画像データの送信順序を決定し、それに従って画像データを画素単位に、または、ライン単位に送信するようにFDPカセッテ通信部208を制御することができる。
 プログレッシブ表示を行う場合とプログレッシブ表示を行わない場合とでは、最終的に全画像データを送信した場合のコンソール3へのデータ転送量は変わらない、すなわちデータの転送時間も変わらない。しかし、プログレッシブ表示は、最初に低解像度の画面を表示させ、画像データを受信するにつれてより高解像度の画像を表示させるものである。このため、通信インフラが充分ではない(通信速度が遅い)場合であっても、技師は、時間とともに変化する表示画面を視認することで、通信が進行していることを認知できるので、技師は、安心して、高解像度の画像が表示されるまで待てばよい。また、プログレッシブ表示を行うことにより、例えば、胸部正面の場合であれば、上記の分割画像データαから首部の輪郭、胸部側面の場合であれば、上記の分割画像データαから腹部の輪郭が、順次解像度を上げながら表示される。これにより、より早く被写体の位置が適切か否か、再撮影が必要か否かの確認することが可能である。
In the present embodiment, the FPD cassette control unit 200 determines the transmission order of each image data so that the divided image data is displayed in a progressive display in each divided display area of the display unit 33 of the console 3. Accordingly, the FDP cassette communication unit 208 can be controlled to transmit image data in units of pixels or in units of lines.
In the case where progressive display is performed and the case where progressive display is not performed, the data transfer amount to the console 3 when all image data is finally transmitted does not change, that is, the data transfer time does not change. However, in the progressive display, a low-resolution screen is first displayed, and a higher-resolution image is displayed as image data is received. For this reason, even if the communication infrastructure is not enough (communication speed is slow), the engineer can recognize that communication is in progress by visually recognizing the display screen that changes over time. You can rest assured that a high-resolution image is displayed. Further, by performing progressive display, for example, in the case of the front of the chest, the outline of the neck from the above-mentioned divided image data α, and in the case of the side of the chest, the outline of the abdomen from the above-mentioned divided image data α, It is displayed with increasing resolution. Thereby, it is possible to confirm earlier whether or not the position of the subject is appropriate and whether or not re-shooting is necessary.
 次に、コンソール3について詳しく説明する。
 コンソール3は、図1に示すように、CPU等(図示せず)で構成されるコンソール制御部30、ROMやRAM等で構成されるコンソール記憶部31、コンソール通信部32、表示部33、入力操作部34等を備えて構成されており、各部はバス35により接続されている。
Next, the console 3 will be described in detail.
As shown in FIG. 1, the console 3 includes a console control unit 30 composed of a CPU or the like (not shown), a console storage unit 31 composed of ROM, RAM, etc., a console communication unit 32, a display unit 33, an input An operation unit 34 and the like are provided, and each unit is connected by a bus 35.
 このうち、コンソール記憶部31には、患部を検出するための自動部位認識に基づく階調処理・周波数処理等の画像処理を行うためのプログラム等、各種の制御プログラムが記憶されているほか、撮影画像の画像データを診断に適した画質に調整するための画像処理パラメータ(階調処理に用いる階調曲線を定義したルックアップテーブル、周波数処理の強調度等)等が記憶されている。また、本実施形態においては、撮影部位に対応付けられた表示領域分割方法及び割当順序(FPDカセッテ2から送信された画像データをどの分割表示領域から順に割り当てて表示させていくかという表示順序)を示す表示制御用プログラムが含まれる。 Among these, the console storage unit 31 stores various control programs such as a program for performing image processing such as gradation processing and frequency processing based on automatic region recognition for detecting an affected part, and also imaging. The image processing parameters for adjusting the image data of the image to an image quality suitable for diagnosis (lookup table defining a gradation curve used for gradation processing, enhancement degree of frequency processing, etc.) and the like are stored. In the present embodiment, the display area division method and assignment order associated with the imaging region (display order in which the divided display areas from which the image data transmitted from the FPD cassette 2 are assigned in order are displayed) A display control program is included.
 コンソール制御部30は、コンソール記憶部31に記憶されているプログラムに従ってコンソール3内の各部を統括制御したり、所定の演算を行ったりするものである。本実施形態において、このコンソール制御部30は、コンソール記憶部31に記憶されている表示制御用プログラムに従って表示部33を制御する表示制御手段としても機能する。 The console control unit 30 performs overall control of each unit in the console 3 according to a program stored in the console storage unit 31 and performs predetermined calculations. In the present embodiment, the console control unit 30 also functions as a display control unit that controls the display unit 33 in accordance with a display control program stored in the console storage unit 31.
 ここで、コンソール制御部30の表示制御手段としての機能について詳説する。
 コンソール制御部30は、例えば入力操作部34からの入力によって撮影部位情報を取得すると、その撮影部位情報に対応する表示制御用プログラムをコンソール記憶部31から読み出す。そして、コンソール制御部30は、その表示制御用プログラムに基づいて、表示部33の表示領域を複数の分割表示領域に分割するとともに、コンソール通信部32により取得された各分割画像データを所定の割当順序に従って個々の分割表示領域に割り当て、各分割画像データに基づく画像を各分割表示領域に表示させる。
Here, the function of the console control unit 30 as the display control means will be described in detail.
When the console control unit 30 acquires imaging part information by input from the input operation unit 34, for example, the console control unit 30 reads a display control program corresponding to the imaging part information from the console storage unit 31. Then, the console control unit 30 divides the display area of the display unit 33 into a plurality of divided display areas based on the display control program, and assigns each divided image data acquired by the console communication unit 32 to a predetermined allocation. An image is assigned to each divided display area according to the order, and an image based on each divided image data is displayed in each divided display area.
 具体的には、コンソール制御部30は、撮影部位が胸部正面である場合には、図5に示すように一の表示領域を縦方向の3つの分割表示領域A,B,Cに分割し、この分割表示領域A,B,Cに所定の割当順序に従って各分割画像データを割り当て、各分割画像データに基づく画像を表示させる。一方、FPDカセッテ制御部200は、撮影部位が胸部側面である場合には、図6に示すように一の表示領域を横方向の3つの分割表示領域A,B,Cに分割し、この分割表示領域A、B、Cに所定の割当順序に従って各分割画像データを割り当て、各分割画像データに基づく画像を表示させる。
 この場合の「所定の割当順序(表示順序)」とは、コンソール3が分割画像データを取得した順(送信順序)である。つまり、図5及び図6に示すように、分割表示領域A、B、Cには分割画像データα、β、γが、それぞれ送信順序に従って割り当てられ、分割表示領域A、B、Cには分割画像データα、β、γに基づく画像が表示される。なお、本実施形態ではFPDカセッテ2の側で送信順序が変更された場合も対応することが可能である。この場合は、前述のように、FPDカセッテ2が、画像データを送信する前にコンソール3に対して変更した送信順序の情報を送信し、コンソール3は、送信された情報に基づいて各分割表示領域A、B、Cに分割画像データα、β、γを割り当て、表示部33に画像を表示させる。なお、「所定の割当順序(表示順序)」の規定の仕方は特に限定はされず、ここに例示した以外の割当順序が「所定の割当順序」として規定(設定)されてもよい。
Specifically, when the imaging region is the front of the chest, the console control unit 30 divides one display region into three vertical display regions A, B, and C as shown in FIG. Each divided image data is assigned to the divided display areas A, B, and C in accordance with a predetermined assignment order, and an image based on each divided image data is displayed. On the other hand, when the imaging region is the chest side surface, the FPD cassette control unit 200 divides one display area into three divided display areas A, B, and C in the horizontal direction as shown in FIG. Each divided image data is assigned to the display areas A, B, and C in accordance with a predetermined assignment order, and an image based on each divided image data is displayed.
The “predetermined allocation order (display order)” in this case is the order (transmission order) in which the console 3 acquires the divided image data. That is, as shown in FIGS. 5 and 6, the divided display areas A, B, and C are assigned the divided image data α, β, and γ according to the transmission order, and the divided display areas A, B, and C are divided. An image based on the image data α, β, γ is displayed. In the present embodiment, it is possible to cope with a case where the transmission order is changed on the FPD cassette 2 side. In this case, as described above, the FPD cassette 2 transmits the changed transmission order information to the console 3 before transmitting the image data, and the console 3 displays each divided display based on the transmitted information. The divided image data α, β, and γ are assigned to the regions A, B, and C, and an image is displayed on the display unit 33. The method of defining the “predetermined allocation order (display order)” is not particularly limited, and an allocation order other than those exemplified here may be defined (set) as the “predetermined allocation order”.
 このように分割表示することとした理由は、図5のように撮影部位が胸部正面であれば、ほとんどの場合、分割画像データαである首部の画像データと分割画像データβである腰部の画像データとに基づく画像が分割表示領域A,Bに表示されれば、胸部正面の画像データに基づく画像が分割表示領域Cに表示されない段階で、首部及び腰部の位置関係から注目領域である胸部正面の位置を推測でき撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを確認することが可能となるからである。また、図6のように撮影部位が胸部側面であれば、ほとんどの場合、分割画像データαである腹部の画像データと分割画像データβである背部の画像データとに基づく画像が分割表示領域A,Bに表示されれば、胸部側面の画像データに基づく画像が分割表示領域Cに表示されない段階で、腹部及び背部の位置関係から注目領域である胸部側面の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否か、再撮影の要否を確認することが可能となるからである。
 また、上記例においては、各分割表示領域毎の分割画像データを取得した後に各分割表示領域に画像が表示される場合について説明したが、前記分割画像データがコンソール3の表示部33にプログレッシブ表示で表示される場合は、各分割表示領域毎の分割画像データの取得が完了する前であっても取得したデータに基づいて順次画像が表示されるため、被写体の輪郭等が画像データの送信に伴い、低解像度から徐々に高解像度の画像へとリアルタイムに順次表示されていく。このため、上記例に比べて、より早期に再撮影の要否を判断することが可能となる。
The reason why the display is divided in this way is that, as shown in FIG. 5, if the imaging region is the front of the chest, in most cases, the neck image data that is the divided image data α and the waist image that is the divided image data β. If the image based on the data is displayed in the divided display areas A and B, the front of the chest which is the attention area is determined from the positional relationship between the neck and the waist at the stage where the image based on the image data on the front of the chest is not displayed in the divided display area C. This is because the position of the subject can be estimated and it can be confirmed whether or not the photographing position is appropriate, that is, whether or not the position of the subject exists at an appropriate position. As shown in FIG. 6, when the imaging region is the chest side surface, in most cases, an image based on the abdomen image data that is the divided image data α and the back image data that is the divided image data β is divided display area A. , B, when the image based on the image data of the chest side is not displayed in the divided display area C, the position of the chest side which is the attention area can be estimated from the positional relationship between the abdomen and the back, and the photographing position is appropriate. This is because it is possible to confirm whether or not re-shooting is necessary, that is, whether or not the position of the subject exists at an appropriate position.
In the above example, the case where the image is displayed in each divided display area after obtaining the divided image data for each divided display area has been described. However, the divided image data is progressively displayed on the display unit 33 of the console 3. In this case, since the images are sequentially displayed based on the acquired data even before the acquisition of the divided image data for each divided display area is completed, the contour of the subject is transmitted to the image data. Along with this, the images are sequentially displayed in real time from low resolution to high resolution images. For this reason, it is possible to determine the necessity of re-photographing earlier than in the above example.
 なお、表示部33は、2次元状の表示領域を有する表示手段であり、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のモニタを備えて構成されている。本実施形態において、表示部33は、複数の分割表示領域に分割可能な構成となっており、例えばFPDカセッテ2から送信される画像データ(分割画像データ)が送信され、各分割表示領域に分割画像データが割り当てられると、当該割り当てられた分割画像データに基づく画像を当該分割表示領域に表示させるようになっている。 The display unit 33 is a display unit having a two-dimensional display area, and includes a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display). In the present embodiment, the display unit 33 has a configuration that can be divided into a plurality of divided display areas. For example, image data (divided image data) transmitted from the FPD cassette 2 is transmitted and divided into the divided display areas. When image data is assigned, an image based on the assigned divided image data is displayed in the divided display area.
 また、コンソール通信部32は、無線アクセスポイント5を介してFPDカセッテ2との間で無線方式により情報の送受信を行ったり、FPDカセッテ2が保持装置7に接続されたときに、保持装置7を介して有線方式により情報の送受信を行ったりするものである。本実施形態において、コンソール通信部32は、FPDカセッテ2から分割画像データを取得するコンソール通信手段である。
 このコンソール通信部32は、ネットワークインターフェース等により構成され、スイッチングハブを介してネットワークNに接続された外部機器との間でデータの送受信を行う。本実施形態において、ネットワークNを介してコンソール3のコンソール通信部32と接続される外部装置としては、HIS/RIS8、PACSサーバ9、イメージャ10等があるが、ネットワークNに接続される外部装置はここに例示したものに限定されない。
Further, the console communication unit 32 transmits / receives information to / from the FPD cassette 2 via the wireless access point 5 by a wireless method, or when the FPD cassette 2 is connected to the holding device 7, Information is transmitted and received through a wired system. In the present embodiment, the console communication unit 32 is a console communication unit that acquires divided image data from the FPD cassette 2.
The console communication unit 32 is configured by a network interface or the like, and transmits / receives data to / from an external device connected to the network N via a switching hub. In the present embodiment, the external devices connected to the console communication unit 32 of the console 3 via the network N include the HIS / RIS 8, the PACS server 9, the imager 10, and the like, but the external devices connected to the network N are It is not limited to what was illustrated here.
 ここで、PACSサーバ9は、コンソール3から出力された画像データを保存する。また、イメージャ10は、コンソール3から出力された画像データに基づいて放射線画像をフィルムなどの画像記録媒体に記録し、出力する。 Here, the PACS server 9 stores the image data output from the console 3. The imager 10 records a radiographic image on an image recording medium such as a film based on the image data output from the console 3 and outputs the image.
 次に、図7A及び図7Bを参照しつつ、実施形態に係る医用画像システム1の動作の一例を説明する。 Next, an example of the operation of the medical image system 1 according to the embodiment will be described with reference to FIGS. 7A and 7B.
 FPDカセッテ2に対してコンソール3から無線にてFPDカセッテ2を起動させる起動信号が送信される(ステップS101)。FPDカセッテ2は、コンソール3からの起動信号を受信すると(ステップS102)、スリープ状態から覚醒し(ステップS103)、撮影可能な状態となる。この後、コンソール3からFPDカセッテ2に対して撮影部位情報を含む撮影オーダ情報が送信され(ステップS104)、FPDカセッテは、この撮影部位情報を含む撮影オーダ情報を受信する(ステップS105)。また、コンソール3から操作装置6に対して放射線発生装置4の放射線照射条件を制御する制御信号が送信され、操作装置6は、この制御信号に基づいて放射線発生装置4に対して曝射指示信号を送信する。これにより、放射線発生装置4は、曝射指示信号に従って所定の放射線を所定のタイミングで照射し、撮影が行われる。撮影が終了すると、FPDカセッテ2の読取手段は画像データを読み取り(ステップS106)、これを画像記憶部204に記憶する(ステップS107)。 A start signal for starting the FPD cassette 2 wirelessly from the console 3 is transmitted to the FPD cassette 2 (step S101). When the FPD cassette 2 receives the activation signal from the console 3 (step S102), the FPD cassette 2 is awakened from the sleep state (step S103) and becomes ready for photographing. Thereafter, the imaging order information including the imaging part information is transmitted from the console 3 to the FPD cassette 2 (step S104), and the FPD cassette receives the imaging order information including the imaging part information (step S105). Further, a control signal for controlling the radiation irradiation condition of the radiation generating device 4 is transmitted from the console 3 to the operating device 6, and the operating device 6 sends an exposure instruction signal to the radiation generating device 4 based on the control signal. Send. Thereby, the radiation generator 4 irradiates predetermined radiation at a predetermined timing according to the exposure instruction signal, and imaging is performed. When shooting is completed, the reading means of the FPD cassette 2 reads the image data (step S106) and stores it in the image storage unit 204 (step S107).
 FPDカセッテ制御部200は、画像データを所定の分割画像データに分割して送信する分割送信か否かを、撮影部位情報に基づいて判断し(ステップS108)、分割送信を行わない場合(ステップS108:NO)には、ステップS116に進む。分割送信を行う場合(ステップS108:YES)には、FPDカセッテ制御部200は、当該分割画像データの撮影部位情報に応じて、分割画像データの送信順序を設定する(ステップS109)。例えば、撮影部位情報が「胸部正面」である場合には、図5に示すように、分割画像データα、β、γを「α→β→γ」の順で送信するようにデフォルト設定されており、FPDカセッテ制御部200は、この「α→β→γ」の順を当該分割画像データの送信順序として設定する。
 そして、分割画像データの送信順序が設定されると、次に、FPDカセッテ制御部200は、分割画像データの送信順序が変更されたか否かを判断し(ステップS110)、送信順序が変更されなかった場合(ステップS110:NO)には、ステップS116に進む。他方、送信順序が変更された場合(ステップS110:YES)には、FPDカセッテ制御部200は、送信順序をデフォルトから変更後のものに変更し(ステップS111)、FPDカセッテ制御部200は、コンソール3に対して、変更された送信順序についての送信順序情報を送信する(ステップS112)。コンソール3は、送信順序情報を受信すると(ステップS113)、FPDカセッテ2に対して送信順序情報の受信完了信号を送信する(ステップS114)。FPDカセッテ2は、受信完了信号を受信する(ステップS115)。
The FPD cassette control unit 200 determines whether or not the divided transmission is performed by dividing the image data into predetermined divided image data based on the imaging part information (step S108), and when the divided transmission is not performed (step S108). : NO), the process proceeds to step S116. When performing divided transmission (step S108: YES), the FPD cassette control unit 200 sets the transmission order of the divided image data according to the imaging part information of the divided image data (step S109). For example, when the imaging region information is “front of chest”, as shown in FIG. 5, the default settings are set so that the divided image data α, β, γ are transmitted in the order of “α → β → γ”. The FPD cassette control unit 200 sets the order of “α → β → γ” as the transmission order of the divided image data.
When the transmission order of the divided image data is set, the FPD cassette control unit 200 next determines whether or not the transmission order of the divided image data has been changed (step S110), and the transmission order has not been changed. If YES (step S110: NO), the process proceeds to step S116. On the other hand, when the transmission order is changed (step S110: YES), the FPD cassette control unit 200 changes the transmission order from the default to the changed one (step S111), and the FPD cassette control unit 200 3, the transmission order information about the changed transmission order is transmitted (step S112). When the console 3 receives the transmission order information (step S113), the console 3 transmits a reception completion signal of the transmission order information to the FPD cassette 2 (step S114). The FPD cassette 2 receives the reception completion signal (step S115).
 次にFPDカセッテ制御部200は、ステップS108において分割送信が選択されなかった場合(ステップS108:NO)には、分割されていない画像データをコンソール3に送信し、分割送信が選択された場合(ステップS108:YES)には、分割画像データ(分割された画像データ)を設定(又は変更設定)された送信順序でコンソール3に送信する(ステップS116)。すなわち、例えば、撮影部位情報が「胸部正面」であり、その送信順序がデフォルトのまま変更されていない場合には、FPDカセッテ制御部200は、図5に示すように、「α→β→γ」の送信順序で分割画像データα、β、γをコンソール3に対して送信するように分割画像データの送信順序を管理する。
 コンソール3は、分割されていない画像データ又は分割画像データをFPDカセッテ2から受信すると(ステップS117)、コンソール記憶部31に記憶する(ステップS118)。
Next, when the divisional transmission is not selected in step S108 (step S108: NO), the FPD cassette control unit 200 transmits the undivided image data to the console 3 and the divisional transmission is selected (step S108: NO). In step S108: YES), the divided image data (divided image data) is transmitted to the console 3 in the transmission order set (or changed) (step S116). That is, for example, when the imaging region information is “chest front” and the transmission order is not changed as the default, the FPD cassette control unit 200 displays “α → β → γ” as shown in FIG. The transmission order of the divided image data is managed so that the divided image data α, β, and γ are transmitted to the console 3 in the order of transmission.
When the console 3 receives undivided image data or divided image data from the FPD cassette 2 (step S117), the console 3 stores it in the console storage unit 31 (step S118).
 コンソール制御部30は、FPDカセッテ2から画像データを受信すると、各画像データに応じた画像を表示部33に表示させる(ステップS119)。
 すなわち、FPDカセッテ2から送信された画像データが分割画像データの場合、例えば図5の胸部正面の場合であれば、コンソール制御部30は、各分割画像データα、β、γを、「α→β→γ」の順でFPDカセッテ2から受信し、各分割画像データα、β、γがコンソール記憶部31に記憶される。そして、各分割画像データα、β、γは、表示部33の分割表示領域Aに分割画像データαを割り当て、分割表示領域Bに分割画像データβを割り当て、分割表示領域Cに分割画像データγを割り当てるというように、それぞれ対応する分割表示領域に所定の割当順序に従って割り当てられ、各分割表示領域に各分割画像データに基づく画像が表示される。なお、ステップS110で、送信順序がα、β、γからβ、α、γに変更された場合には、コンソール制御部30は、β、α、γの順で分割画像データを受信する。そして、表示部33の、分割表示領域Bに分割画像データβを割り当て、分割表示領域Aに分割画像データαを割り当て、分割表示領域Cに分割画像データγ割り当てるというように、それぞれ対応する分割表示領域に所定の割当順序に従って割り当てられ、各分割表示領域に各分割画像データに基づく画像が表示される。分割されていない画像データがFPDカセッテ2から送信された場合は、上記のような割り当ての処理を行わずに、そのまま表示部33の表示領域に表示させる。
When the console control unit 30 receives the image data from the FPD cassette 2, the console control unit 30 displays an image corresponding to each image data on the display unit 33 (step S119).
That is, when the image data transmitted from the FPD cassette 2 is divided image data, for example, in the case of the front of the chest in FIG. 5, the console control unit 30 converts each divided image data α, β, γ to “α → Received from the FPD cassette 2 in the order of “β → γ”, and the divided image data α, β, γ are stored in the console storage unit 31. The divided image data α, β, γ is assigned to the divided display area A of the display unit 33, the divided image data β is assigned to the divided display area B, and the divided image data γ is assigned to the divided display area C. Are assigned to the corresponding divided display areas according to a predetermined assignment order, and an image based on each divided image data is displayed in each divided display area. If the transmission order is changed from α, β, γ to β, α, γ in step S110, the console control unit 30 receives the divided image data in the order of β, α, γ. Then, in the display unit 33, the divided image data β is assigned to the divided display area B, the divided image data α is assigned to the divided display area A, and the divided image data γ is assigned to the divided display area C. The areas are assigned in accordance with a predetermined assignment order, and an image based on each divided image data is displayed in each divided display area. When undivided image data is transmitted from the FPD cassette 2, it is displayed as it is in the display area of the display unit 33 without performing the above-described allocation process.
 コンソール3は、当該画像データの受信が完了すると受信完了信号をFPDカセッテ2に対して送信する(ステップS120)。FPDカセッテ2のFPDカセッテ制御部200は、当該受信完了信号を受信すると(ステップS121)、画像記憶部204から当該画像データを消去し(ステップS122)、一連の処理を終了する。 When the reception of the image data is completed, the console 3 transmits a reception completion signal to the FPD cassette 2 (step S120). When receiving the reception completion signal (step S121), the FPD cassette control unit 200 of the FPD cassette 2 deletes the image data from the image storage unit 204 (step S122), and ends a series of processes.
[第2実施形態]
 次に、図8から図11Bを参照しつつ、本発明に係る医用画像システムの第2実施形態について説明する。第2実施形態に係る医用画像システムは、FPDカセッテ記憶部201が読取指定用プログラムを有する点を除いては、第1実施形態に係る医用画像システムとほぼ同様の構成となっている。したがって、以下においては、特に第1実施形態と異なる部分について説明する。
[Second Embodiment]
Next, a second embodiment of the medical image system according to the present invention will be described with reference to FIGS. 8 to 11B. The medical image system according to the second embodiment has substantially the same configuration as the medical image system according to the first embodiment except that the FPD cassette storage unit 201 has a reading designation program. Therefore, in the following, a different part from the first embodiment will be described in particular.
 図8に示すように、本実施形態において、医用画像システム1は、第1実施形態と同様のFPDカセッテ2とコンソール3とを備えている。
 この第2実施形態の医用画像システム1にあっては、FPDカセッテ制御部200は、第1実施形態と同様に、送信管理用プログラムに従って送信管理手段として機能する他、FPDカセッテ記憶部201に記憶されている読取指定用プログラムに従って、読取部230におけるセンサパネル部221からの電気信号の読取順序を撮影部位情報に基づいて指定する読取指定手段としても機能する。
As shown in FIG. 8, in the present embodiment, the medical image system 1 includes an FPD cassette 2 and a console 3 similar to those in the first embodiment.
In the medical image system 1 according to the second embodiment, the FPD cassette control unit 200 functions as a transmission management unit according to the transmission management program and stores in the FPD cassette storage unit 201 as in the first embodiment. According to the reading designation program, the reading designation unit 230 also functions as a reading designation unit that designates the reading order of the electrical signals from the sensor panel unit 221 based on the imaging region information.
 ここで、FPDカセッテ制御部200の読取指定手段としての機能について詳説する。
 FPDカセッテ通信部208がコンソール3から撮影部位情報を取得すると、FPDカセッテ制御部200は、その撮影部位情報に対応する読取指定用プログラムをFPDカセッテ記憶部201から読み出す。そして、FPDカセッテ制御部200は、その読取指定用プログラムに基づいてセンサパネル部221における読取領域を分割して分割読取領域とし、読取部230に各分割読取領域の画像データを所定の読取順序で読み取らせる。
Here, the function of the FPD cassette control unit 200 as a reading designation unit will be described in detail.
When the FPD cassette communication unit 208 acquires imaging part information from the console 3, the FPD cassette control unit 200 reads a reading designation program corresponding to the imaging part information from the FPD cassette storage unit 201. Then, the FPD cassette control unit 200 divides the reading area in the sensor panel unit 221 into divided reading areas based on the reading designation program, and the reading unit 230 stores the image data of each divided reading area in a predetermined reading order. Let me read.
 具体的には、FPDカセッテ制御部200は、撮影部位が胸部正面である場合には、図9に示すように一の読取領域を縦方向の3つの分割読取領域a、b、cに分割し、この分割読取領域a、b、cの画像データを読取部230に「a→b→c」の順で読み取らせる。これにより、分割画像データα、β、γが生成される。一方、FPDカセッテ制御部200は、撮影部位が胸部側面である場合には、図10に示すように一の読取領域を縦方向の3つの分割読取領域a、b、cに分割し、この分割読取領域a、b、cの画像データを読取部230に「a→b→c」の順で読み取らせる。これにより、分割画像データα、β、γが生成される。
 なお、図9及び図10に示すように、読取部230により生成された分割画像データα、β、γは、それぞれコンソール3の表示部33の各分割表示領域A,B,Cに対応しており、分割画像データα、β、γがコンソール3に送信されると、対応する各分割表示領域に割り当てられる。
 なお、本実施形態では所定の読取順序が変更された場合にも対応することが可能である。この場合は、FPDカセッテ2が、画像データを送信する前にコンソール3に対して変更した読取順序の情報を送信し、コンソール3は、送信された情報に基づいて、表示部33に画像を表示させる。
Specifically, when the imaging region is the front of the chest, the FPD cassette control unit 200 divides one reading area into three divided reading areas a, b, and c in the vertical direction as shown in FIG. Then, the image data of the divided reading areas a, b, and c are read by the reading unit 230 in the order of “a → b → c”. Thereby, the divided image data α, β, and γ are generated. On the other hand, when the imaging region is the chest side surface, the FPD cassette control unit 200 divides one reading area into three vertical divided reading areas a, b, and c as shown in FIG. The image data in the reading areas a, b, and c is read by the reading unit 230 in the order of “a → b → c”. Thereby, the divided image data α, β, and γ are generated.
9 and 10, the divided image data α, β, and γ generated by the reading unit 230 correspond to the divided display areas A, B, and C of the display unit 33 of the console 3, respectively. When the divided image data α, β, γ are transmitted to the console 3, they are assigned to the corresponding divided display areas.
In the present embodiment, it is possible to cope with a case where the predetermined reading order is changed. In this case, the FPD cassette 2 transmits the changed reading order information to the console 3 before transmitting the image data, and the console 3 displays an image on the display unit 33 based on the transmitted information. Let
 このように分割読取りを行うこととした理由は、図9のように撮影部位が胸部正面であれば、分割画像データαである首部の画像データと分割画像データβである腰部の画像データとをコンソール3に送信すれば、胸部正面の画像データをコンソール3に送信しない段階でも、コンソール3側で、首部及び腰部の位置関係から注目領域である胸部正面の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを確認することが可能となることが多いからである。また、図10のように撮影部位が胸部側面であれば、分割画像データαである腹部の画像データと分割画像データβである背部の画像データとをコンソール3に送信すれば、胸部側面の画像データをコンソール3に送信しない段階でも、コンソール3側で、腹部及び背部の位置関係から注目領域である胸部側面の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを確認することが可能となることが多いからである。 The reason for performing the divided reading in this manner is that if the imaging region is the front of the chest as shown in FIG. 9, the image data of the neck as the divided image data α and the image data of the waist as the divided image data β are obtained. If it is transmitted to the console 3, even if the image data of the front of the chest is not transmitted to the console 3, the position of the front of the chest, which is the attention area, can be estimated from the positional relationship between the neck and the waist on the console 3 side. This is because it is often possible to confirm whether or not the subject is present at an appropriate position. If the imaging region is the chest side surface as shown in FIG. 10, if the abdomen image data as the divided image data α and the back image data as the divided image data β are transmitted to the console 3, the image of the chest side surface is obtained. Even when data is not sent to the console 3, the position of the chest side, which is the region of interest, can be estimated from the positional relationship between the abdomen and the back on the console 3, and whether or not the imaging position is appropriate, that is, the subject position is appropriate This is because it is often possible to confirm whether or not it exists at a position.
 また、上記例においては、各分割画像データを取得した後に各分割表示領域に画像が表示される場合について説明したが、前記分割画像データがコンソール3の表示部33にプログレッシブ表示で表示される場合は、FPDカセッテ制御部200は、前記分割画像データがコンソール3の表示部33にプログレッシブ表示で表示されるように、プログレッシブ表示において必要となる画像領域の画像データから順に読取るよう読取部230を制御することができる。
 また、本実施形態では、前記分割画像データがコンソール3の表示部33にプログレッシブ表示で表示されるように、FPDカセッテ制御部200は、各画像データの読取順序を決定し、それに従って画像データを画素単位で、または、ライン単位で各画像データを読取、順次コンソール3に送信するように読取部230及びFPDカセッテ通信部208を制御することができる。
In the above example, the case where an image is displayed in each divided display area after obtaining each divided image data has been described. However, the divided image data is displayed in a progressive display on the display unit 33 of the console 3. The FPD cassette control unit 200 controls the reading unit 230 so that the divided image data is sequentially read from the image data in the image area necessary for the progressive display so that the divided image data is displayed in the progressive display on the display unit 33 of the console 3. can do.
Further, in the present embodiment, the FPD cassette control unit 200 determines the reading order of each image data so that the divided image data is displayed in a progressive display on the display unit 33 of the console 3, and the image data is converted accordingly. The reading unit 230 and the FPD cassette communication unit 208 can be controlled so that each image data is read in units of pixels or in units of lines and sequentially transmitted to the console 3.
 なお、図8に示すように、本実施形態においては、FPDカセッテ記憶部201に、撮影部位に対応付けられた画像データの分割方法及び送信順序を示す送信管理用プログラムの他、撮影部位に対応付けられた読取順序を示す読取指定用プログラムが記憶されている。
 本実施形態では、この送信管理プログラム及び読取指定用プログラム中に、デフォルトとして、撮影部位が胸部正面である場合の分割方法、送信順序及び読取順序と、撮影部位が胸部側面である場合の分割方法、送信順序及び読取順序とが設定されている場合を例として説明するが、分割方法、送信順序及び読取順序の規定の仕方はこれに限定されず、さらに多くのパターンが選択的に適用可能となっていてもよい。
As shown in FIG. 8, in the present embodiment, the FPD cassette storage unit 201 corresponds to the imaging part in addition to the transmission management program indicating the image data division method and transmission order associated with the imaging part. A reading designating program indicating the attached reading order is stored.
In this embodiment, in the transmission management program and the reading designation program, as a default, a division method when the imaging region is the front of the chest, a transmission order and a reading order, and a division method when the imaging region is the side of the chest However, the method of defining the dividing method, the transmission order, and the reading order is not limited to this, and more patterns can be selectively applied. It may be.
 また、本実施形態では、例えば、技師が、デフォルトとして設定されている分割画像データの送信順序や画像データの読取順序を変更したい場合に、入力操作部205から指示を入力することによって、送信順序や読取順序の変更を指示する指示信号がFPDカセッテ制御部200に出力されるようにしてもよい。このような指示信号が入力操作部205から出力されたときは、後述するように、FPDカセッテ制御部200は、デフォルトとして設定されている分割画像データの送信順序や画像データの読取順序を指示信号に従って変更する。 In the present embodiment, for example, when the engineer wants to change the transmission order of the divided image data set as the default and the reading order of the image data, by inputting an instruction from the input operation unit 205, the transmission order Alternatively, an instruction signal for instructing a change in reading order may be output to the FPD cassette control unit 200. When such an instruction signal is output from the input operation unit 205, as will be described later, the FPD cassette control unit 200 indicates the transmission order of the divided image data and the reading order of the image data set as defaults. Change according to.
 なお、その他の構成は、第1実施形態で説明したものと同様であることから、同一箇所には同一の符号を付してその説明を省略する。 Since other configurations are the same as those described in the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
 次に、図11A及び図11Bを参照しつつ、FPDカセッテ制御部200が読取順序を指定する場合について説明する。ステップS201からステップS205までは、FPDカセッテ制御部200が送信順序を管理する場合(図7A)のステップS101からステップS105と同じなので省略する。 Next, the case where the FPD cassette control unit 200 designates the reading order will be described with reference to FIGS. 11A and 11B. Steps S201 to S205 are the same as steps S101 to S105 when the FPD cassette control unit 200 manages the transmission order (FIG. 7A), and thus will not be described.
 FPDカセッテ制御部200は、画像データを所定の分割画像データに分割して送信する分割送信か否かを、撮影部位情報に基づいて判断し(ステップS206)、分割送信を行わない場合(ステップS206:NO)には、ステップS214に進む。分割送信を行う場合(ステップS206:YES)には、FPDカセッテ制御部200は、当該分割画像データの撮影部位情報に応じて、読取部230による画像データの読取順序を設定する(ステップS207)。例えば、撮影部位情報が「胸部正面」である場合には、図9に示すように、センサパネル部の読取領域を分割読取領域a、b、cに分割し、この分割読取領域a、b、cを「a→b→c」の順で読み取るように読取順序がデフォルト設定されており、FPDカセッテ制御部200は、この「a→b→c」の順を当該画像データの読取順序として設定する。
 そして、画像データの読取順序が設定されると、次に、FPDカセッテ制御部200は、所定の読取順序が変更されたか否かを判断し(ステップS208)、読取順序が変更されなかった場合(ステップS208:NO)には、ステップS214に進む。他方、読取順序が変更された場合(ステップS208:YES)には、FPDカセッテ制御部200は、読取順序をデフォルトから変更後のものに変更し(ステップS209)、FPDカセッテ制御部200は、コンソール3に対して、変更された読取順序についての読取順序情報を送信する(ステップS210)。コンソール3は、読取順序情報を受信し(ステップS211)、受信が完了すると受信完了信号をFPDカセッテ2へ送信する(ステップS212)。FPDカセッテ2は、受信完了信号を受信する(ステップS213)。
The FPD cassette control unit 200 determines whether or not the divided transmission is performed by dividing the image data into predetermined divided image data based on the imaging region information (step S206), and when the divided transmission is not performed (step S206). : NO), the process proceeds to step S214. When performing divided transmission (step S206: YES), the FPD cassette control unit 200 sets the reading order of the image data by the reading unit 230 according to the imaging part information of the divided image data (step S207). For example, when the imaging part information is “front of chest”, as shown in FIG. 9, the reading area of the sensor panel is divided into divided reading areas a, b, and c, and the divided reading areas a, b, The reading order is set by default so that c is read in the order of “a → b → c”, and the FPD cassette control unit 200 sets the order of “a → b → c” as the reading order of the image data. To do.
When the reading order of the image data is set, the FPD cassette control unit 200 next determines whether or not the predetermined reading order has been changed (step S208), and when the reading order has not been changed (step S208). In step S208: NO), the process proceeds to step S214. On the other hand, when the reading order is changed (step S208: YES), the FPD cassette control unit 200 changes the reading order from the default to the changed one (step S209), and the FPD cassette control unit 200 3, the reading order information about the changed reading order is transmitted (step S210). The console 3 receives the reading order information (step S211), and transmits the reception completion signal to the FPD cassette 2 when the reception is completed (step S212). The FPD cassette 2 receives the reception completion signal (step S213).
 次にFPDカセッテ制御部200は、読取部230によってセンサパネル部221から画像データを読み取らせる(ステップS214)。
 すなわち、FPDカセッテ制御部200は、ステップS206で分割送信が選択されなかった場合(ステップS206:NO)は、読取部230によりそのまま画像データを読み取る。他方、分割送信が選択された場合(ステップS206:YES)、例えば図9の胸部正面の場合であれば、コンソール3の表示部33の分割表示領域A,B,Cに対応する分割読取領域a,b,cについて「a→b→c」の読取順序で読取部230による画像データの読み取りを行う。これにより分割読取領域a,b,cに対応する分割画像データα、β、γが生成される。また、読取順序がステップS208において「b→a→c」に変更された場合は、FPDカセッテ制御部200は、読取部230によりこの変更後の読取順序で分割画像データを読み取らせる。
 そして、読み取られた画像データ又は分割画像データ(分割された画像データ)は、適宜コンソール3に送信される(ステップS215)。
Next, the FPD cassette control unit 200 causes the reading unit 230 to read image data from the sensor panel unit 221 (step S214).
That is, the FPD cassette control unit 200 reads the image data as it is by the reading unit 230 when the divided transmission is not selected in step S206 (step S206: NO). On the other hand, when divided transmission is selected (step S206: YES), for example, in the case of the front of the chest in FIG. 9, the divided reading areas a corresponding to the divided display areas A, B, and C of the display unit 33 of the console 3 are used. , B, and c, the image data is read by the reading unit 230 in the reading order of “a → b → c”. As a result, divided image data α, β, γ corresponding to the divided reading areas a, b, c are generated. When the reading order is changed from “b → a → c” in step S208, the FPD cassette control unit 200 causes the reading unit 230 to read the divided image data in the changed reading order.
Then, the read image data or divided image data (divided image data) is appropriately transmitted to the console 3 (step S215).
 コンソール3は、分割されていない画像データ又は分割画像データを受信し(ステップS216)、コンソール記憶部31に記憶する(ステップS217)。そして、コンソール制御部30は、FPDカセッテ2から画像データを受信すると、各画像データに応じた画像を表示部33に表示させる(ステップS218)。
 すなわち、FPDカセッテ2から送信された画像データが分割画像データの場合、例えば図9の胸部正面である場合には、分割画像データが「a→b→c」の順で読取部230から読み取られ、生成された分割画像データα、β、γが随時コンソール3に送信される。そこで、コンソール制御部30は、「α→β→γ」の順で分割画像データα、β、γをコンソール記憶部31に記憶させて(ステップS216)、分割画像データごとに随時、表示部33の分割表示領域Aに分割画像データαを割り当て、分割表示領域Bに分割画像データβを割り当て、分割表示領域Cに分割画像データγを割り当てるというように、それぞれ対応する分割表示領域に所定の割当順序に従って割り当てる。そして、各分割表示領域に各分割画像データに基づく画像が表示される。
 なお、ステップS208で読取順序が「a→b→c」から「b→a→c」に変更された場合は、FPDカセッテ制御部200は読取部230により「b→a→c」の順で分割画像データを読み取り、コンソール3に対して「β→α→γ」の順で順次分割画像データα、β、γを送信する。コンソール制御部30は、分割画像データα、β、γを「β→α→γ」の順で受信し、表示部33の分割表示領域Bに分割画像データβを割り当て、分割表示領域Aに分割画像データαを割り当て、分割表示領域Cに分割画像データγの順で割り当てるというように、それぞれ対応する分割表示領域に所定の割当順序に従って割り当てる。そして、各分割表示領域に各分割画像データに基づく画像が表示される。
 他方、FPDカセッテ2から分割されていない画像データが送信された場合は、表示領域を分割する等の処理を行わずにそのまま表示部33に表示させる。
The console 3 receives the undivided image data or the divided image data (step S216) and stores it in the console storage unit 31 (step S217). When the console control unit 30 receives the image data from the FPD cassette 2, the console control unit 30 displays an image corresponding to each image data on the display unit 33 (step S218).
That is, when the image data transmitted from the FPD cassette 2 is divided image data, for example, when it is the front of the chest in FIG. 9, the divided image data is read from the reading unit 230 in the order of “a → b → c”. The generated divided image data α, β, γ are transmitted to the console 3 at any time. Therefore, the console control unit 30 stores the divided image data α, β, γ in the console storage unit 31 in the order of “α → β → γ” (step S216), and displays the display unit 33 as needed for each divided image data. The divided image data α is assigned to the divided display area A, the divided image data β is assigned to the divided display area B, and the divided image data γ is assigned to the divided display area C. Assign according to order. Then, an image based on each divided image data is displayed in each divided display area.
When the reading order is changed from “a → b → c” to “b → a → c” in step S208, the FPD cassette control unit 200 uses the reading unit 230 in the order of “b → a → c”. The divided image data is read, and the divided image data α, β, and γ are sequentially transmitted to the console 3 in the order of “β → α → γ”. The console control unit 30 receives the divided image data α, β, and γ in the order of “β → α → γ”, assigns the divided image data β to the divided display region B of the display unit 33, and divides the divided image data into the divided display region A. The image data α is assigned and assigned to the divided display areas C in the order of the divided image data γ in accordance with a predetermined assignment order. Then, an image based on each divided image data is displayed in each divided display area.
On the other hand, when image data that has not been divided is transmitted from the FPD cassette 2, it is displayed on the display unit 33 as it is without performing processing such as dividing the display area.
 コンソール3は、当該画像データの受信が完了すると受信完了信号を送信する(ステップS219)。FPDカセッテ2のFPDカセッテ制御部200は、受信完了信号を受信すると(ステップS220)、一連の処理を終了する。 The console 3 transmits a reception completion signal when the reception of the image data is completed (step S219). When receiving the reception completion signal (step S220), the FPD cassette control unit 200 of the FPD cassette 2 ends the series of processes.
 以上、本発明の実施形態について説明したが、本発明によれば、再撮影要否確認用の間引きした画像データ等を送信せず画像データ(RAW画像データ)のみを送信するため、最終的な診断用の画像データも速やかに確認することが可能となる。また、操作者の煩わしさ、通信不良という心理的不安を軽減することが可能となる。 The embodiment of the present invention has been described above. However, according to the present invention, only the image data (RAW image data) is transmitted without transmitting the thinned image data or the like for confirming the necessity of re-shooting. Diagnosis image data can also be quickly confirmed. In addition, it is possible to reduce the anxiety of the operator and psychological anxiety such as poor communication.
 なお、上記実施形態では、縦方向又は横方向で分割して、分割読取領域、分割画像データ、分割表示を得たが、分割した形は矩形に限定されない。また分割された領域のサイズ及び分割する個数も変更することも可能である。 In the above embodiment, the divided reading area, the divided image data, and the divided display are obtained by dividing in the vertical direction or the horizontal direction, but the divided shape is not limited to a rectangle. It is also possible to change the size of the divided areas and the number of divided areas.
 また、本実施形態では、FPDカセッテ2よりコンソール3に分割された画像データを、分割された画像データ毎に送信したが、分割画像データを画素単位で、またはライン単位で送信することも可能である。画像データの転送量も本実施形態に限定されない。また分割された画像データの形は本実施形態のような矩形に限定されない。また、分割した個数について本実施形態に限定されない。 In this embodiment, the image data divided from the FPD cassette 2 to the console 3 is transmitted for each divided image data. However, the divided image data can be transmitted in units of pixels or in units of lines. is there. The transfer amount of the image data is not limited to this embodiment. The shape of the divided image data is not limited to a rectangle as in this embodiment. Further, the number of divisions is not limited to this embodiment.
 また、画像データを間引き圧縮をすることを前提に、FPDカセッテ制御部200に間引き圧縮処理させるようにFPDカセッテ記憶部201に間引き圧縮処理用プログラムを追加することも可能である。例えば、1/64に間引き圧縮する場合は、分割画像データをさらに、縦8画素、横8画素になるように分割し、分割された1個の領域である64個の画素の濃度を平均化して1画素に対応するようにコンソール3に画像データを送信する。コンソール制御部30の表示制御手段としての機能は、1/64に間引き圧縮した画像を表示部33の所定の分割表示領域に表示させるように制御することも可能である。 Also, on the assumption that the image data is subjected to thinning compression, it is possible to add a thinning compression processing program to the FPD cassette storage unit 201 so that the FPD cassette control unit 200 performs thinning compression processing. For example, in the case of compressing to 1/64, the divided image data is further divided into 8 pixels in the vertical direction and 8 pixels in the horizontal direction, and the density of 64 pixels that are one divided area is averaged. Then, image data is transmitted to the console 3 so as to correspond to one pixel. The function as display control means of the console control unit 30 can also be controlled to display an image that has been thinned and compressed to 1/64 in a predetermined divided display area of the display unit 33.
 また、本実施形態では、分割領域ごとにすべての分割画像データを取得し表示を行う場合と、表示する際にプログレッシブ表示を行う場合とを説明したが、いずれか一方を採用するシステムであってもよい。 Further, in the present embodiment, the case where all the divided image data is acquired and displayed for each divided region and the case where progressive display is performed when the divided image data is displayed have been described. Also good.
 また、本実施形態では、送信された撮影部位情報に基づきFPDカセッテ2側で読取・送信順序を制御するように構成したが、コンソール3側が部位情報に読取・送信順序を決定し、この決定内容をFPDカセッテ2に対して伝え(送信し)、FPDカセッテ2はこの決定内容に従い読取送信を行うこととしても良い。 Further, in the present embodiment, the reading / transmission order is controlled on the FPD cassette 2 side based on the transmitted imaging part information, but the console 3 side determines the reading / transmission order in the part information. Is transmitted (transmitted) to the FPD cassette 2, and the FPD cassette 2 may perform reading and transmission according to the determined content.
 その他、本発明が本実施の形態に限定されず、適宜変更可能であることはいうまでもない。 In addition, it goes without saying that the present invention is not limited to this embodiment and can be changed as appropriate.
[第3実施形態]
 次に、図12から図15Bを参照しつつ、本発明に係る医用画像システムの第3実施形態について説明する。なお、以下においては、特に第1実施形態及び第2実施形態と異なる部分について説明する。
[Third Embodiment]
Next, a third embodiment of the medical image system according to the present invention will be described with reference to FIGS. 12 to 15B. In the following description, differences from the first embodiment and the second embodiment will be described.
 図12は、本実施形態に係る医用画像システム1の概略構成を示すブロック図である。図12に示すように、本実施形態において医用画像システム1は、第1実施形態及び第2実施形態と同様にFPDカセッテ2とコンソール3とを備えている。 FIG. 12 is a block diagram showing a schematic configuration of the medical image system 1 according to the present embodiment. As shown in FIG. 12, in this embodiment, the medical image system 1 includes an FPD cassette 2 and a console 3 as in the first and second embodiments.
 FPDカセッテ2は、FPDカセッテ制御部200、FPDカセッテ記憶部201、走査駆動回路202、信号読出し回路203、画像記憶部204、入力操作部205、インジケータ206、バッテリ207、FPDカセッテ通信部208等を備えて構成されている。
 本実施形態では、例えば、技師がデフォルトとして設定されている分割設定、送信順序及び画像間引き率の少なくとも一つを変更したい場合に、FPDカセッテ2の入力操作部205から指示を入力することによって、分割設定、送信順序又は画像間引き率の変更を指示する信号がFPDカセッテ制御部200に出力されるようにしてもよい。このような指示信号が入力操作部205から出力されたときは、後述するように、FPDカセッテ制御部200は、デフォルトとして設定されている分割設定、送信順序又は画像間引き率を指示信号に従って変更する。
The FPD cassette 2 includes an FPD cassette control unit 200, an FPD cassette storage unit 201, a scanning drive circuit 202, a signal readout circuit 203, an image storage unit 204, an input operation unit 205, an indicator 206, a battery 207, an FPD cassette communication unit 208, and the like. It is prepared for.
In the present embodiment, for example, when an engineer wants to change at least one of the division setting, transmission order, and image thinning rate set as defaults, by inputting an instruction from the input operation unit 205 of the FPD cassette 2, A signal instructing change of division setting, transmission order, or image thinning rate may be output to the FPD cassette control unit 200. When such an instruction signal is output from the input operation unit 205, as will be described later, the FPD cassette control unit 200 changes the division setting, transmission order, or image thinning rate set as default according to the instruction signal. .
 本実施形態におけるFPDカセッテ2の機能的構成について図12を用いて説明する。
 本実施形態において、FPDカセッテ記憶部201に記憶されている各種プログラムの中には、所定の分割設定に基づいて分割画像データを生成するための分割画像データ生成用プログラムと、所定の画像間引き率に基づいて分割間引き画像データを生成するための分割間引き画像データ生成用プログラムと、所定の送信順序に基づいて分割間引き画像データと、分割設定、送信順序及び画像間引き率を含む付帯データとを送信するための送信管理用プログラムが含まれている。
 また、FPDカセッテ記憶部201には、デフォルトとして所定の分割設定、送信順序及び画像間引き率が記憶されているが、前述したように、入力操作部205から指示信号を入力することにより、技師(ユーザ)等が任意に設定を変更することも可能である。上記の各種プログラムの中には、技師により変更された分割設定及び画像間引き率を設定するパラメータ設定手段用プログラムも含まれる。また、技師により変更された送信順序は送信管理プログラムによって設定が反映される。
 本実施形態では、パラメータ設定用プログラム中に、デフォルトとして、撮影部位が胸部正面及び胸部側面である場合の分割設定及び間引き率が、送信管理プログラム中に、撮影部位が胸部正面及び胸部側面である場合の送信順序が設定されている。なお、分割設定、送信順序及び画像間引き率の規定の仕方はこれに限定されず、さらに多くのパターンが選択的に適用可能となってもよい。
A functional configuration of the FPD cassette 2 in the present embodiment will be described with reference to FIG.
In the present embodiment, among various programs stored in the FPD cassette storage unit 201, a divided image data generation program for generating divided image data based on a predetermined division setting, and a predetermined image thinning rate A divided thinned-out image data generation program for generating divided thinned-out image data on the basis of the data, a divided thinned-out image data based on a predetermined transmission order, and incidental data including a division setting, a transmission order, and an image thinning rate A transmission management program is included.
The FPD cassette storage unit 201 stores a predetermined division setting, transmission order, and image thinning rate as defaults. As described above, by inputting an instruction signal from the input operation unit 205, an engineer ( The user can arbitrarily change the setting. The above-mentioned various programs include a parameter setting means program for setting the division setting and the image thinning rate changed by the engineer. Further, the transmission management program changes the setting of the transmission order reflected by the transmission management program.
In this embodiment, as a default in the parameter setting program, the division setting and the thinning rate when the imaging region is the chest front and the chest side surface are the default, and the imaging region is the chest front and the chest side surface in the transmission management program. If the transmission order is set. Note that the method of defining the division setting, the transmission order, and the image thinning rate is not limited to this, and more patterns may be selectively applicable.
 FPDカセッテ制御部200は、FPDカセッテ記憶部201に記憶されているプログラムに従ってFPDカセッテ2内の各部を統括制御したり、所定の演算を行ったりするものである。本実施形態においては、このFPDカセッテ制御部200は、FPDカセッテ記憶部201に記憶されている分割画像データ生成用プログラムに従って、前述の読取部230によって生成された画像データを所定の分割設定の下で分割して分割画像データを生成する分割画像データ生成手段として機能し、分割間引き画像データ生成用プログラムに従って、所定の画像間引き率で分割画像データを間引きして分割間引き画像データを生成する分割間引き画像データ生成手段としても機能する。さらに、FPDカセッテ制御部200は、当該送信管理用プログラムに従って、分割間引き画像データの送信順序を設定する当該送信管理手段としても機能する。
 また、FPDカセッテ制御部200は、FPDカセッテ記憶部201に記憶されているパラメータ設定用プログラムに従って、入力操作部205からの変更の指示信号に基づいて分割設定及び画像間引き率を設定するパラメータ設定手段としても機能する。
The FPD cassette control unit 200 performs overall control of each unit in the FPD cassette 2 or performs a predetermined calculation according to a program stored in the FPD cassette storage unit 201. In the present embodiment, the FPD cassette control unit 200 converts the image data generated by the reading unit 230 according to a predetermined division setting according to the divided image data generation program stored in the FPD cassette storage unit 201. The division thinning out function that generates divided image data by dividing the image data at a predetermined image thinning rate according to the divided thinned image data generation program. It also functions as image data generation means. Further, the FPD cassette control unit 200 also functions as a transmission management unit that sets the transmission order of the divided thinned image data in accordance with the transmission management program.
The FPD cassette control unit 200 also sets parameter setting means for setting the division setting and the image thinning rate based on a change instruction signal from the input operation unit 205 in accordance with a parameter setting program stored in the FPD cassette storage unit 201. Also works.
 ここで、FPDカセッテ制御部200の分割画像データ生成手段、分割間引き画像データ生成手段、パラメータ設定手段及び送信管理手段としての機能について詳説する。
 本実施形態において、分割設定、送信順序及び画像間引き率は予め、FPDカセッテ記憶部201に記憶され、前記分割設定、前記送信順序及び前記画像間引き率がデフォルト
の設定となる。技師がデフォルトとして設定されている分割設定、送信順序及び画像間引き率の少なくとも一つを変更したい場合に、入力操作部205から指示を入力することによって、分割設定、送信順序又は画像間引き率の変更の指示信号がFPDカセッテ制御部200に出力される。そして、FPDカセッテ制御部200は、パラメータ設定手段に基づいて、デフォルトとして設定されている分割設定及び画像間引き率を、変更の指示信号に従って設定し、送信管理手段に基づいて、デフォルトとして設定されている送信順序を変更の指示信号に従って設定する。次に、FPDカセッテ制御部200は、分割画像データ生成手段に基づいて、画像記憶部204に記憶されている一の画像データ(当該撮影によって得られた画像データ)を所定の分割設定に基づいて分割し分割画像データを生成し、分割間引き画像データ生成手段に基づいて、所定の画像間引き率の下、分割画像データを間引きして分割間引き画像データを生成する。さらにFPDカセッテ制御部200は、送信管理用プログラムに基づいて、所定の送信順序で分割間引き画像データとともに、分割設定、送信順序及び画像間引き率を付帯データとして送信する。
Here, functions of the FPD cassette control unit 200 as the divided image data generation unit, the divided thinned image data generation unit, the parameter setting unit, and the transmission management unit will be described in detail.
In this embodiment, the division setting, the transmission order, and the image thinning rate are stored in advance in the FPD cassette storage unit 201, and the division setting, the transmission order, and the image thinning rate become default settings. When the engineer wants to change at least one of the division setting, the transmission order, and the image thinning rate set as defaults, by inputting an instruction from the input operation unit 205, the division setting, the transmission order, or the image thinning rate is changed. Is output to the FPD cassette control unit 200. Then, the FPD cassette control unit 200 sets the division setting and the image thinning rate set as default based on the parameter setting unit according to the change instruction signal, and is set as the default based on the transmission management unit. The transmission order is set according to the change instruction signal. Next, the FPD cassette control unit 200 based on the divided image data generation unit, sets one piece of image data (image data obtained by the photographing) stored in the image storage unit 204 based on a predetermined division setting. Divided and divided image data is generated, and the divided thinned image data is generated by thinning the divided image data at a predetermined image thinning rate based on the divided thinned image data generating means. Further, based on the transmission management program, the FPD cassette control unit 200 transmits the division setting, the transmission order, and the image thinning rate as supplementary data together with the division thinned image data in a predetermined transmission order.
 具体的には、FPDカセッテ制御部200は、分割設定が胸部正面である場合には、図13に示すように一の画像データを縦方向(行方向)の3つの分割画像データに分割し所定の画像間引き率で間引きし分割間引き画像データα、β、γを生成し、この分割間引き画像データα、β、γを「α→β→γ」の送信順序で、分割設定、送信順序及び画像間引き率を含む付帯データとともにコンソール3に送信させる。一方、FPDカセッテ制御部200は、撮影部位が胸部側面である場合には、図14に示すように一の画像データを横方向(列方向)の3つの分割画像データに分割し所定の画像間引き率で間引きし分割間引き画像データα、β、γを生成し、この分割間引き画像データα、β、γを「α→β→γ」の送信順序で、付帯データとともにコンソール3に送信させる。 Specifically, when the division setting is the front of the chest, the FPD cassette control unit 200 divides one image data into three pieces of divided image data in the vertical direction (row direction) as shown in FIG. The divided thinned-out image data α, β, γ is generated at the image thinning rate of the divided thinned-out image data α, β, γ in the transmission order of “α → β → γ”, the division setting, the transmission order, and the image. The data is transmitted to the console 3 together with incidental data including a thinning rate. On the other hand, when the imaging region is the chest side surface, the FPD cassette control unit 200 divides one image data into three divided image data in the horizontal direction (column direction) as shown in FIG. The divided thinned image data α, β, γ are generated at a rate, and the divided thinned image data α, β, γ are transmitted to the console 3 together with the auxiliary data in the transmission order of “α → β → γ”.
 なお、ユーザ等の設定により、所定の分割設定、送信順序及び画像間引き率の少なくとも一つが変更された場合は、変更された分割設定、送信順序及び画像間引き率が付帯データとして、FPDカセッテ2のFPDカセッテ通信部208からコンソール3に送信される。 In addition, when at least one of the predetermined division setting, transmission order, and image thinning rate is changed by the setting of the user or the like, the changed division setting, transmission order, and image thinning rate are included in the FPD cassette 2 as incidental data. Sent from the FPD cassette communication unit 208 to the console 3.
 なお、分割送信することとした理由について述べれば、図13のように撮影部位が胸部正面であれば、分割間引き画像データαである首部の画像データと分割間引き画像データβである腰部の画像データとを先にコンソール3に送信すれば、胸部正面の分割間引き画像データγをコンソール3に送信しない段階でも、コンソール3側で、首部及び腰部の位置関係から注目領域である胸部正面の概略の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを判断することが可能となるからである。一方、図14のように撮影部位が胸部側面であれば、分割間引き画像データαである腹部の画像データと分割間引き画像データβである背部の画像データとをコンソール3に送信すれば、胸部側面の分割間引き画像データγをコンソール3に送信しない段階でも、コンソール3側で、腹部及び背部の位置関係から注目領域である胸部側面の概略の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを判断することが可能となるからである。 If the reason for the divided transmission is described, if the imaging region is the front of the chest as shown in FIG. 13, the neck image data as the divided thinned image data α and the waist image data as the divided thinned image data β. Is transmitted to the console 3 first, the approximate position of the front of the chest, which is a region of interest, from the positional relationship between the neck and the waist on the console 3 side even when the divided thinned-out image data γ on the front of the chest is not transmitted to the console 3. This is because it is possible to determine whether or not the shooting position is appropriate, that is, whether or not the position of the subject exists at an appropriate position. On the other hand, if the imaging region is the chest side surface as shown in FIG. 14, the abdominal image data that is the divided thinned image data α and the back image data that is the divided thinned image data β are transmitted to the console 3. Even when the divided thinned-out image data γ is not transmitted to the console 3, the console 3 side can estimate the approximate position of the side of the chest that is the attention area from the positional relationship between the abdomen and the back, and whether the imaging position is appropriate, This is because it is possible to determine whether or not the position of the subject exists at an appropriate position.
 また、本実施形態において画像の間引き方法の例について述べれば、例えば、175μmの画素サイズで読み取られた半切サイズ(14×17インチ)の画像データ(画素数は2016×2400)を、縦横共に1/8に間引き縮小する場合、間引きされた画像データの画素数は252×300となる。本実施形態では、分割画像データを、縦8画素、横8画素からなる64の画素の中の1画素を抽出することにより間引きを行なう。
 なお、縦横の画像間引き率を同一とするのは、画像のアスペクト比を原画像(元画像)と同一に保つためである。また、画像間引き率及び間引き方法についてはここに例示したものに限定されない。
Further, an example of the image thinning method in the present embodiment will be described. For example, half-cut image data (14 × 17 inches) read with a pixel size of 175 μm (the number of pixels is 2016 × 2400) is 1 in both vertical and horizontal directions. In the case of decimating / reducing to / 8, the number of pixels of the thinned image data is 252 × 300. In this embodiment, the divided image data is thinned by extracting one pixel out of 64 pixels consisting of 8 pixels vertically and 8 pixels horizontally.
The reason why the vertical and horizontal image thinning rates are the same is to maintain the same aspect ratio of the image as the original image (original image). Further, the image thinning rate and the thinning method are not limited to those exemplified here.
 次に、コンソール3は、図12に示すように、CPU等(図示せず)で構成されるコンソール制御部30、ROMやRAM等で構成されるコンソール記憶部31、コンソール通信部32、表示部33、入力操作部34等を備えて構成されている。 Next, as shown in FIG. 12, the console 3 includes a console control unit 30 composed of a CPU or the like (not shown), a console storage unit 31 composed of ROM, RAM, etc., a console communication unit 32, and a display unit. 33, an input operation unit 34, and the like.
 本実施形態において、コンソール記憶部31には、FPDカセッテ2より送信された付帯データの中の分割設定、送信順序及び画像間引き率に基づいて、FPDカセッテ2より送信された分割間引き画像データに基づく画像を表示部33に表示するように制御する表示制御用プログラムが記憶されている。 In the present embodiment, the console storage unit 31 is based on the divided thinned image data transmitted from the FPD cassette 2 based on the divided setting, transmission order, and image thinning rate in the auxiliary data transmitted from the FPD cassette 2. A display control program for controlling to display an image on the display unit 33 is stored.
 コンソール制御部30は、コンソール記憶部31に記憶されているプログラムに従ってコンソール3内の各部を統括制御したり、所定の演算を行ったりするものである。また、本実施形態において、このコンソール制御部30は、コンソール記憶部31に記憶されている表示制御用プログラムに従って表示部33を制御する表示制御手段としても機能する。 The console control unit 30 performs overall control of each unit in the console 3 according to a program stored in the console storage unit 31 and performs predetermined calculations. In the present embodiment, the console control unit 30 also functions as a display control unit that controls the display unit 33 according to the display control program stored in the console storage unit 31.
 ここで、コンソール制御部30の表示制御手段としての機能について詳説する。
 コンソール制御部30は、FPDカセッテ2から分割設定、送信順序及び画像間引き率を付帯データとして取得すると、表示制御用プログラムをコンソール記憶部31から読み出す。そして、コンソール制御部30は、その表示制御用プログラムと付帯データに基づいて、表示部33の表示領域を複数の分割表示領域に分割するとともに、コンソール通信部32により取得された各分割間引き画像データを付帯データの中の送信順序に従って個々の分割表示領域に割り当て、各分割間引き画像データに基づく画像を各分割表示領域に表示させる。
 なお、入力操作部34からの入力によって、FPDカセッテ2より送信された付帯データの中の分割設定、送信順序及び画像間引き率を表示部33で確認することができる。
Here, the function of the console control unit 30 as the display control means will be described in detail.
When the console control unit 30 acquires the division setting, transmission order, and image thinning rate from the FPD cassette 2 as supplementary data, the console control unit 30 reads the display control program from the console storage unit 31. The console control unit 30 divides the display area of the display unit 33 into a plurality of divided display areas based on the display control program and the incidental data, and each divided thinned image data acquired by the console communication unit 32. Are assigned to each divided display area in accordance with the transmission order in the accompanying data, and an image based on each divided thinned image data is displayed in each divided display area.
Note that the division setting, transmission order, and image thinning rate in the incidental data transmitted from the FPD cassette 2 can be confirmed on the display unit 33 by input from the input operation unit 34.
 具体的には、コンソール制御部30は、分割設定が胸部正面である場合には、図13に示すように一の表示領域を縦方向の3つの分割表示領域A,B,Cに分割し、この分割表示領域A,B,Cに所定の割当順序に従って各分割間引き画像データを割り当て、各分割間引き画像データに基づく画像を所定の画像間引き率で表示させる。一方、FPDカセッテ制御部200は、分割設定が胸部側面である場合には、図14に示すように一の表示領域を横方向の3つの分割表示領域A,B,Cに分割し、この分割表示領域A、B、Cに所定の割当順序に従って各分割間引き画像データを割り当て、各分割間引き画像データに基づく画像を表示させる。
 この場合の「所定の割当順序(表示順序)」とは、コンソール3が分割間引き画像データを取得した順(送信順序)である。つまり、図13及び図14に示すように、分割表示領域A、B、Cには分割間引き画像データα、β、γが、それぞれ送信順序に従って割り当てられ、分割表示領域A、B、Cには分割間引き画像データα、β、γに基づく画像が表示される。
Specifically, when the division setting is the front of the chest, the console control unit 30 divides one display area into three vertical divided display areas A, B, and C as shown in FIG. Each divided thinned image data is assigned to the divided display areas A, B, and C according to a predetermined assignment order, and an image based on each divided thinned image data is displayed at a predetermined image thinning rate. On the other hand, when the division setting is the chest side surface, the FPD cassette control unit 200 divides one display area into three divided display areas A, B, and C in the horizontal direction as shown in FIG. Each divided thinned image data is assigned to the display areas A, B, and C in accordance with a predetermined assignment order, and an image based on each divided thinned image data is displayed.
The “predetermined allocation order (display order)” in this case is the order (transmission order) in which the console 3 acquires the divided thinned image data. That is, as shown in FIGS. 13 and 14, divided thinned image data α, β, and γ are assigned to the divided display areas A, B, and C in accordance with the transmission order, and the divided display areas A, B, and C are assigned to the divided display areas A, B, and C, respectively. An image based on the divided thinned image data α, β, γ is displayed.
 このように分割表示することとした理由は、図13のように分割設定が胸部正面であれば、ほとんどの場合、分割間引き画像データαである首部の画像データ及び/又は分割間引き画像データβである腰部の画像データとに基づく画像が分割表示領域A,Bに表示されれば、胸部正面の分割間引き画像データに基づく画像が分割表示領域Cに表示されない段階で、分割間引き画像データαが取得されていれば首部の位置関係から、または、分割間引き画像データα及び分割間引き画像データβが取得されていれば首部及び腰部の位置関係から注目領域である胸部正面の位置を推測でき撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否かを判断することが可能となるからである。また、図14のように分割設定が胸部側面であれば、ほとんどの場合、分割間引き画像データαである腹部の画像データ及び/又は分割間引き画像データβである背部の画像データとに基づく画像が分割表示領域A,Bに表示されれば、胸部側面の分割間引き画像データに基づく画像が分割表示領域Cに表示されない段階で、分割間引き画像データαが取得されていれば腹部の位置関係から、または、分割間引き画像データα及び分割間引き画像データβが取得されていれば腹部及び背部の位置関係から注目領域である胸部側面の位置を推測でき、撮影位置が適切か否か、すなわち、被写体の位置が適切な位置に存在しているか否か、再撮影の要否を判断することが可能となるからである。 If the division setting is the front of the chest as shown in FIG. 13, the reason why the division display is performed in this way is almost always the image data of the neck and / or the division thinned image data β that is the division thinned image data α. If an image based on the image data of a certain waist is displayed in the divided display areas A and B, the divided thinned image data α is obtained at the stage where the image based on the divided thinned image data in front of the chest is not displayed in the divided display area C. The position of the front of the chest, which is the region of interest, can be estimated from the positional relationship of the neck, or from the positional relationship of the neck and waist if the divided thinned image data α and the divided thinned image data β are acquired. This is because it is possible to determine whether or not it is appropriate, that is, whether or not the position of the subject exists at an appropriate position. If the division setting is the chest side surface as shown in FIG. 14, in most cases, an image based on the abdominal image data that is the divided thinned image data α and / or the back image data that is the divided thinned image data β is used. If displayed in the divided display areas A and B, the image based on the divided thinned image data of the chest side surface is not displayed in the divided display area C. If the divided thinned image data α is acquired, the positional relationship of the abdomen Alternatively, if the divided thinned-out image data α and the divided thinned-out image data β are acquired, the position of the chest side surface that is the attention area can be estimated from the positional relationship between the abdomen and the back, and whether or not the photographing position is appropriate, This is because it is possible to determine whether or not the position exists at an appropriate position and whether or not re-photographing is necessary.
 なお、表示部33は、2次元状の表示領域を有する表示手段であり、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のモニタを備えて構成されている。本実施形態において、表示部33は、複数の分割表示領域に分割可能な構成となっており、例えばFPDカセッテ2から送信される画像データ(分割間引き画像データ)が送信され、各分割表示領域に分割間引き画像データが割り当てられると、当該割り当てられた分割間引き画像データに基づく画像を当該分割表示領域に表示させるようになっている。 The display unit 33 is a display unit having a two-dimensional display area, and includes a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display). In the present embodiment, the display unit 33 has a configuration that can be divided into a plurality of divided display areas. For example, image data (divided thinned image data) transmitted from the FPD cassette 2 is transmitted to each divided display area. When divided thinned image data is assigned, an image based on the assigned divided thinned image data is displayed in the divided display area.
 また、コンソール通信部32は、無線アクセスポイント5を介してFPDカセッテ2との間で無線方式により情報の送受信を行ったり、FPDカセッテ2が保持装置7に接続されたときに、保持装置7を介して有線方式により情報の送受信を行ったりするものである。本実施形態において、コンソール通信部32は、FPDカセッテ2から分割間引き画像データを取得するコンソール通信手段である。
 このコンソール通信部32は、ネットワークインターフェース等により構成され、スイッチングハブを介してネットワークNに接続されたHIS/RIS8、PACSサーバ9、イメージャ10等の外部機器との間でデータの送受信を行う。
Further, the console communication unit 32 transmits / receives information to / from the FPD cassette 2 via the wireless access point 5 by a wireless method, or when the FPD cassette 2 is connected to the holding device 7, Information is transmitted and received through a wired system. In the present embodiment, the console communication unit 32 is a console communication unit that acquires divided thinned image data from the FPD cassette 2.
The console communication unit 32 includes a network interface or the like, and transmits and receives data to and from external devices such as the HIS / RIS 8, the PACS server 9, and the imager 10 connected to the network N via a switching hub.
 本実施形態において、PACSサーバ9は、コンソール3から出力された分割間引き画像データ等を保存する。また、イメージャ10は、コンソール3から出力された分割間引き画像データ等に基づいて放射線画像をフィルムなどの画像記録媒体に記録し、出力する。 In the present embodiment, the PACS server 9 stores the divided thinned image data and the like output from the console 3. Further, the imager 10 records a radiation image on an image recording medium such as a film based on the divided thinned image data output from the console 3 and outputs the image.
 なお、その他の構成は、第1実施形態及び第2実施形態で説明したものと同様であることから、同一箇所には同一の符号を付してその説明を省略する。 Since other configurations are the same as those described in the first embodiment and the second embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
 次に、図15A及び図15Bを参照しつつ、本実施形態に係る医用画像システム1の動作の一例を説明する。 Next, an example of the operation of the medical image system 1 according to the present embodiment will be described with reference to FIGS. 15A and 15B.
 FPDカセッテ2に対してコンソール3から無線にてFPDカセッテ2を起動させる起動信号が送信される(ステップS301)。FPDカセッテ2は、コンソール3からの起動信号を受信すると(ステップS302)、スリープ状態から覚醒し(ステップS303)、撮影可能な状態となる。この後、コンソール3からFPDカセッテ2に対して撮影部位情報を含む撮影オーダ情報が送信され(ステップS304)、FPDカセッテは、この撮影オーダ情報を受信する(ステップS305)。また、コンソール3から操作装置6に対して放射線発生装置4の放射線照射条件を制御する制御信号が送信され、操作装置6は、この制御信号に基づいて放射線発生装置4に対して曝射指示信号を送信する。これにより、放射線発生装置4は、曝射指示信号に従って所定の放射線を所定のタイミングで照射し、撮影が行われる。撮影が終了すると、FPDカセッテ2の読取手段は画像データを読み取り(ステップS306)、これを画像記憶部204に記憶する(ステップS307)。 A start signal for starting the FPD cassette 2 wirelessly is transmitted from the console 3 to the FPD cassette 2 (step S301). When the FPD cassette 2 receives the activation signal from the console 3 (step S302), the FPD cassette 2 is awakened from the sleep state (step S303) and becomes ready for photographing. Thereafter, imaging order information including imaging region information is transmitted from the console 3 to the FPD cassette 2 (step S304), and the FPD cassette receives this imaging order information (step S305). Further, a control signal for controlling the radiation irradiation condition of the radiation generating device 4 is transmitted from the console 3 to the operating device 6, and the operating device 6 sends an exposure instruction signal to the radiation generating device 4 based on the control signal. Send. Thereby, the radiation generator 4 irradiates predetermined radiation at a predetermined timing according to the exposure instruction signal, and imaging is performed. When shooting is completed, the reading means of the FPD cassette 2 reads the image data (step S306) and stores it in the image storage unit 204 (step S307).
 FPDカセッテ制御部200は、FPDカセッテ記憶部201に記憶されている分割設定、送信順序及び画像間引き率をデフォルトとして設定する(ステップS308)。次に、分割設定、送信順序及び画像間引き率の少なくとも一つが変更されたか否かを判断し(ステップS309)、分割設定、送信順序及び画像間引き率のいずれも変更されなかった場合は、ステップS311aに進む。他方、技師が入力操作部205で、分割設定、送信順序及び画像間引き率の少なくとも一つを変更し、入力操作部205からの変更の指示信号が出力され、デフォルトの設定が変更された場合(ステップS309:YES)には、FPDカセッテ制御部200は、分割設定、送信順序及び画像間引き率をデフォルトから変更後のものに変更する(ステップS310)。次に、FPDカセッテ制御部200は、変更後の分割設定に基づき、画像記憶部204に記憶されている画像データを分割し分割画像データにし、変更後の画像間引き率に基づき分割画像データを間引きして分割間引き画像データを生成する(ステップS311)。なお、ステップS310で、分割設定、送信順序及び画像間引き率が変更されなかった場合は、デフォルトの分割設定に基づき、画像記憶部204に記憶されている画像データを分割し分割画像データにし、デフォルトの画像間引き率に基づき分割画像データを間引きして分割間引き画像データを生成する(ステップS311a)。次に分割設定、及び送信順序及び画像間引き率を付帯データとして、設定(又は変更設定)された送信順序で分割間引き画像データとともにコンソール3に送信する(ステップS312)。すなわち、例えば、撮影部位情報が「胸部正面」であり、その送信順序がデフォルトのまま変更されていない場合には、FPDカセッテ制御部200は、図5に示すように、「α→β→γ」の送信順序で分割間引き画像データα、β、γをコンソール3に対して送信するように分割画像データの送信順序を管理する。送信順序がデフォルトの設定「α→β→γ」から「β→α→γ」に変更された場合には、「β→α→γ」の送信順序で分割間引き画像データβ、α、γをコンソール3に対して送信するように分割画像データの送信順序を管理する。 The FPD cassette control unit 200 sets the division setting, transmission order, and image thinning rate stored in the FPD cassette storage unit 201 as defaults (step S308). Next, it is determined whether or not at least one of the division setting, the transmission order, and the image thinning rate has been changed (step S309). If none of the division setting, the transmission order, and the image thinning rate has been changed, step S311a is performed. Proceed to On the other hand, when the engineer changes at least one of the division setting, the transmission order, and the image thinning rate in the input operation unit 205, the change instruction signal is output from the input operation unit 205, and the default setting is changed ( In step S309: YES, the FPD cassette control unit 200 changes the division setting, the transmission order, and the image thinning rate from the default to the changed one (step S310). Next, the FPD cassette control unit 200 divides the image data stored in the image storage unit 204 into divided image data based on the changed division setting, and thins the divided image data based on the changed image thinning rate. Then, the divided thinned image data is generated (step S311). If the division setting, the transmission order, and the image thinning rate are not changed in step S310, the image data stored in the image storage unit 204 is divided into divided image data based on the default division setting. Based on the image thinning rate, the divided image data is thinned to generate divided thinned image data (step S311a). Next, the division setting, the transmission order, and the image thinning rate are transmitted as incidental data to the console 3 together with the divided thinned image data in the set (or changed setting) transmission order (step S312). That is, for example, when the imaging region information is “chest front” and the transmission order is not changed as the default, the FPD cassette control unit 200 displays “α → β → γ” as shown in FIG. The transmission order of the divided image data is managed so that the divided thinned-out image data α, β, γ is transmitted to the console 3 in the transmission order of “. When the transmission order is changed from the default setting “α → β → γ” to “β → α → γ”, the divided thinned image data β, α, and γ are set in the transmission order of “β → α → γ”. The transmission order of the divided image data is managed so as to be transmitted to the console 3.
 コンソール3は、付帯データ及び分割間引き画像データをFPDカセッテ2から受信すると(ステップS313)、コンソール記憶部31に記憶する(ステップS314)。
 コンソール制御部30は、コンソール記憶部31に記憶されている分割間引き画像データを、付帯データの分割設定、送信順序及び画像間引き率に基づいて、表示部33の各分割表示領域に各分割間引き画像データを割り当て、各分割表示領域に各分割間引き画像データに基づく画像を表示部33に表示させる(ステップS315)。
 具体的には、FPDカセッテ2から分割間引き画像データが送信され、例えば図5の胸部正面の場合であれば、コンソール制御部30は、各分割間引き画像データα、β、γを、「α→β→γ」の順でFPDカセッテ2から受信し、各分割間引き画像データα、β、γがコンソール記憶部31に記憶される。そして、コンソール制御部30は、表示部33の分割表示領域Aに分割間引き画像データαを割り当て、分割表示領域Bに分割間引き画像データβを割り当て、分割表示領域Cに分割間引き画像データγを割り当てるというように、それぞれ対応する分割表示領域に所定の割当順序(送信順序)に従って分割間引き画像データを割り当て、各分割表示領域に各分割間引き画像データに基づく画像を表示させる。なお、ステップS310で、送信順序がα、β、γからβ、α、γに変更された場合には、コンソール通信部32は、β、α、γの順で分割間引き画像データを受信する。そして、コンソール制御部30は、表示部33の、分割表示領域Bに分割間引き画像データβを割り当て、分割表示領域Aに分割間引き画像データαを割り当て、分割表示領域Cに分割間引き画像データγ割り当てるというように、それぞれ対応する分割表示領域に所定の割当順序(送信順序)に従って分割間引き画像データを割り当て、各分割表示領域に各分割間引き画像データに基づく画像を表示させる。
When the console 3 receives the incidental data and the divided thinned image data from the FPD cassette 2 (step S313), the console 3 stores them in the console storage unit 31 (step S314).
The console control unit 30 converts the divided thinned image data stored in the console storage unit 31 into the divided thinned images in the divided display areas of the display unit 33 based on the division setting of the auxiliary data, the transmission order, and the image thinning rate. Data is assigned, and an image based on each divided thinned image data is displayed on each divided display area on the display unit 33 (step S315).
Specifically, the divided thinned image data is transmitted from the FPD cassette 2, and for example, in the case of the front of the chest in FIG. 5, the console control unit 30 converts each divided thinned image data α, β, γ to “α → Received from the FPD cassette 2 in the order of “β → γ”, and the respective divided thinned image data α, β, γ are stored in the console storage unit 31. Then, the console control unit 30 assigns the divided thinned image data α to the divided display area A of the display unit 33, assigns the divided thinned image data β to the divided display area B, and assigns the divided thinned image data γ to the divided display area C. As described above, the divided thinned image data is assigned to the respective divided display areas according to a predetermined assignment order (transmission order), and an image based on each divided thinned image data is displayed in each divided display area. In step S310, when the transmission order is changed from α, β, γ to β, α, γ, the console communication unit 32 receives the divided thinned image data in the order of β, α, γ. Then, the console control unit 30 assigns the divided thinned image data β to the divided display area B of the display unit 33, assigns the divided thinned image data α to the divided display area A, and assigns the divided thinned image data γ to the divided display area C. As described above, the divided thinned image data is assigned to the respective divided display areas according to a predetermined assignment order (transmission order), and an image based on each divided thinned image data is displayed in each divided display area.
 コンソール3は、付帯データ及び当該分割間引き画像データの受信が完了すると受信完了信号をFPDカセッテ2に対して送信する(ステップS316)。FPDカセッテ2のFPDカセッテ制御部200は、当該受信完了信号を受信すると(ステップS317)、FPDカセッテ通信部208は、画像記憶部204に記憶されているRAW画像データをコンソール3へ送信する(ステップS318)。コンソール3は、RAW画像データを受信すると(ステップS319)、RAW画像データの受信完了信号をFPDカセッテ2に対して送信する(ステップS320)。FPDカセッテ2は、RAW画像データの受信完了信号を受信すると(ステップS321)、分割間引き画像データ及びRAW画像データを消去し(ステップS322)、一連の処理を終了する。 The console 3 transmits a reception completion signal to the FPD cassette 2 when reception of the incidental data and the divided thinned image data is completed (step S316). When the FPD cassette control unit 200 of the FPD cassette 2 receives the reception completion signal (step S317), the FPD cassette communication unit 208 transmits the RAW image data stored in the image storage unit 204 to the console 3 (step S317). S318). When the console 3 receives the RAW image data (step S319), the console 3 transmits a RAW image data reception completion signal to the FPD cassette 2 (step S320). When receiving the RAW image data reception completion signal (step S321), the FPD cassette 2 deletes the divided thinned-out image data and the RAW image data (step S322), and ends the series of processes.
 以上のように、本実施形態によれば、一の画像データを分割して複数の分割画像データを生成するため、各分割画像データのデータ量は、一の画像データのデータ量に比べて小さくなる。さらに分割画像データを間引きして分割間引き画像データを生成するため、分割間引き画像データのデータ量は、分割画像データのデータ量よりもさらに小さくなる。このように、分割間引き画像データのデータ量は、元の一の画像データ(RAW画像データ)のデータ量に比べて大幅に小さくなるため、分割間引き画像データをコンソール3に転送した場合のデータ転送時間は、一の画像データをコンソール3に転送した場合のデータ転送時間よりも短くてすむ。これにより、再撮影要否の確認に必要な分割間引き画像データをより速くコンソールに送信することが可能となる。
 また、コンソール通信部32は、FPDカセッテ2より送信された分割設定、送信順序及び画像間引き率を含む付帯データを分割間引き画像データとともに受信し、コンソール制御部30は、付帯データの中の分割設定、送信順序及び画像間引き率に基づいて表示部33に画像を表示するよう制御する。このため、コンソール3の表示部33に、分割間引き画像データに基づく画像を適切に表示させることができる。
As described above, according to the present embodiment, one piece of image data is divided to generate a plurality of pieces of divided image data. Therefore, the data amount of each piece of divided image data is smaller than the data amount of one piece of image data. Become. Further, since the divided image data is thinned to generate divided thinned image data, the data amount of the divided thinned image data is further smaller than the data amount of the divided image data. As described above, since the data amount of the divided thinned image data is significantly smaller than the data amount of the original one image data (RAW image data), data transfer when the divided thinned image data is transferred to the console 3 is performed. The time can be shorter than the data transfer time when one image data is transferred to the console 3. As a result, it is possible to transmit the divided thinned-out image data necessary for confirming the necessity of re-shooting to the console more quickly.
Further, the console communication unit 32 receives incidental data including the division setting, transmission order and image thinning rate transmitted from the FPD cassette 2 together with the divided thinned image data, and the console control unit 30 performs division setting in the auxiliary data. Then, the display unit 33 is controlled to display an image based on the transmission order and the image thinning rate. Therefore, an image based on the divided thinned image data can be appropriately displayed on the display unit 33 of the console 3.
 なお、上記実施形態では、縦方向又は横方向で分割して、分割間引き画像データ、分割表示を得たが、分割した形状は限定されてない。また分割された領域のサイズ及び分割する個数も変更することも可能である。 In the above embodiment, the divided thinned image data and the divided display are obtained by dividing in the vertical direction or the horizontal direction, but the divided shapes are not limited. It is also possible to change the size of the divided areas and the number of divided areas.
 また、本実施形態では、FPDカセッテ2よりコンソール3に分割間引き画像データを、分割間引き画像データ毎に送信したが、分割間引き画像データを画素単位で、またはライン単位で送信することも可能である。分割間引き画像データの転送量も本実施形態に限定されない。また分割間引き画像データの形は本実施形態のような矩形に限定されない。また、分割した個数について本実施形態に限定されない。 In this embodiment, the divided thinned image data is transmitted from the FPD cassette 2 to the console 3 for each divided thinned image data. However, the divided thinned image data may be transmitted in units of pixels or in units of lines. . The transfer amount of the divided thinned image data is not limited to this embodiment. The shape of the divided thinned image data is not limited to a rectangle as in the present embodiment. Further, the number of divisions is not limited to this embodiment.
 また、本実施形態では、分割表示領域ごとにすべての分割間引き画像データを取得し表示を行う場合を説明したが、プログレッシブ表示を採用することも可能である。プログレッシブ表示は、最初に低解像度の画面を表示させ、画像データを受信するにつれてより高解像度の画像を表示させるものである。このため、通信インフラが充分ではない(通信速度が遅い)場合であっても、技師は、時間とともに変化する表示画面を視認することで、通信が進行していることを認知できるので、技師は、安心して、より高解像度の画像が表示されるまで待てばよい。また、プログレッシブ表示を行うことにより、例えば、胸部正面の場合であれば、上記の分割間引き画像データαから首部の輪郭、胸部側面の場合であれば、上記の分割間引き画像データαから腹部の輪郭が、順次解像度を上げながら表示される。これにより、より早く被写体の位置が適切か否か、再撮影が必要か否かの判断することが可能である。 In this embodiment, the case has been described in which all divided thinned-out image data is acquired and displayed for each divided display area, but progressive display can also be employed. In progressive display, a low-resolution screen is displayed first, and a higher-resolution image is displayed as image data is received. For this reason, even if the communication infrastructure is not enough (communication speed is slow), the engineer can recognize that communication is in progress by visually recognizing the display screen that changes over time. Just wait until a higher resolution image is displayed. Further, by performing progressive display, for example, in the case of the front of the chest, the outline of the neck from the divided thinned image data α, and in the case of the side of the chest, the outline of the abdomen from the divided thinned image data α. Are displayed with increasing resolution. As a result, it is possible to determine whether the position of the subject is appropriate or whether re-photographing is necessary earlier.
 なお、本実施形態では、FPDカセッテ2で分割間引き画像データを生成し、この分割間引き画像データをコンソール3に送信する場合を例として説明したが、コンソール3に送信する画像データは、間引き処理を行なったものに限定されない。例えば、間引き処理を行なわずに、分割画像データをコンソール3に送信し、これに基づく画像を表示部33に表示させるようにしても良い。 In this embodiment, the case where the FPD cassette 2 generates divided thinned image data and transmits the divided thinned image data to the console 3 has been described as an example. However, the image data transmitted to the console 3 is subjected to thinning processing. It is not limited to what was done. For example, the divided image data may be transmitted to the console 3 without performing the thinning process, and an image based on the divided image data may be displayed on the display unit 33.
 ここで、上記各実施形態においてプログレッシブ表示を行う場合のシステム構成及び処理の手法について、図16から図33を参照しつつ説明する。 Here, a system configuration and a processing method when performing progressive display in each of the above-described embodiments will be described with reference to FIGS.
 プログレッシブ表示を行う場合には、FPDカセッテ2は、1つの画像についての画像データを複数段階に分割して、画素ごとに、或いは、2次元的に配置された素子の行または列ごとに、順次コンソール3に送信し、コンソール3は、FPDカセッテ2から受信した画像データの画素数の増加に応じて表示部33の表示領域を段階的に複数の分割領域に分割し、各分割領域に各画素を割り当てて当該割り当てられた画素の画素値に応じた画像を各分割領域に表示させるようになっている。これにより、画像全体をまず低解像度で表示し、その後画像データの受信が進むに伴って徐々に解像度を上げて詳細な表示としていく表示方法(プログレッシブ表示)を行うことができる。 In the case of performing progressive display, the FPD cassette 2 divides image data of one image into a plurality of stages, and sequentially for each pixel or for each row or column of two-dimensionally arranged elements. The console 3 divides the display area of the display unit 33 into a plurality of divided areas stepwise according to an increase in the number of pixels of the image data received from the FPD cassette 2, and each pixel is divided into each divided area. And an image corresponding to the pixel value of the assigned pixel is displayed in each divided region. Thus, it is possible to perform a display method (progressive display) in which the entire image is first displayed at a low resolution, and then the resolution is gradually increased and detailed display is performed as image data reception proceeds.
 この場合、FPDカセッテ制御部200は、1つの画像についての画像データを複数段階(本実施形態では、後述するように7段階)に分割し、画素ごとに、或いは、読取ライン単位(2次元的に配置された素子の行または列ごと)に、順次コンソール3に送信するようにFPDカセッテ通信部208を制御するようになっている。
 なお、FPDカセッテ通信部208は、FPDカセッテ2が保持装置7に保持されていない場合(撮影室R1内でブッキー装置等に装填せずに単体として使用する場合等)には、無線アクセスポイント5を介して無線方式により外部装置との信号の送受信を行う。また、FPDカセッテ2が保持装置7に保持されている場合や図示しない通信用のケーブルが接続されている場合には、FPDカセッテ通信部208は、有線方式により外部装置との信号の送受信を行う。
In this case, the FPD cassette control unit 200 divides the image data for one image into a plurality of stages (in this embodiment, seven stages as will be described later), for each pixel or for each reading line (two-dimensional). The FPD cassette communication unit 208 is controlled so as to sequentially transmit the data to the console 3 for each of the elements arranged in the column.
Note that the FPD cassette communication unit 208 uses the wireless access point 5 when the FPD cassette 2 is not held by the holding device 7 (for example, when the FPD cassette 2 is used as a single unit in the photographing room R1 without being loaded into a bucky device or the like). A signal is transmitted to and received from an external device via a wireless method. Further, when the FPD cassette 2 is held by the holding device 7 or when a communication cable (not shown) is connected, the FPD cassette communication unit 208 transmits / receives a signal to / from an external device by a wired method. .
 プログレッシブ表示を行う場合には、表示部33を所定の分割領域に分割し、分割された分割領域に各画素を割り当てて当該割り当てられた画素の画素値に応じた画像を当該分割領域に表示させる表示制御処理を行うためのプログラム等がコンソール記憶部31に格納されている。 In the case of performing progressive display, the display unit 33 is divided into predetermined divided areas, each pixel is assigned to the divided area, and an image corresponding to the pixel value of the assigned pixel is displayed in the divided area. A program or the like for performing display control processing is stored in the console storage unit 31.
 また、表示部33は、後述のように、FPDカセッテ2から送信される画像データの画素数の増加に応じて、その表示領域を段階的に複数の分割領域に分割可能な構成となっており、各分割領域に当該分割領域に含まれる画素が割り当てられると、当該割り当てられた画素の画素値に応じた画像を当該分割領域に表示させるようになっている。 In addition, as will be described later, the display unit 33 is configured to be able to divide the display region into a plurality of divided regions step by step as the number of pixels of the image data transmitted from the FPD cassette 2 increases. When a pixel included in the divided area is assigned to each divided area, an image corresponding to the pixel value of the assigned pixel is displayed in the divided area.
 コンソール制御部30は、FPDカセッテ2から送られた画像データに基づく画像を表示するように表示部33の表示を制御する。具体的には、コンソール制御部30は、コンソール通信部32によって取得された画像データの画素数の増加に応じて表示部33の表示領域を段階的に複数の分割領域に分割し、分割された各分割領域に各画素を割り当てて当該割り当てられた画素の画素値に応じた画像を当該分割領域に表示させる表示制御処理を行う。 The console control unit 30 controls the display of the display unit 33 so as to display an image based on the image data sent from the FPD cassette 2. Specifically, the console control unit 30 divides the display region of the display unit 33 into a plurality of divided regions step by step in accordance with an increase in the number of pixels of the image data acquired by the console communication unit 32. A display control process is performed in which each pixel is assigned to each divided region and an image corresponding to the pixel value of the assigned pixel is displayed on the divided region.
 ここで、図16から図24Gを参照しつつ、本実施形態におけるFPDカセッテ2による画像データの送信処理及びコンソール3の表示部33における表示処理の基本的な原理について説明する。
 なお、ここでは、説明の便宜上、FPDカセッテ2による画像データの読み取り・送信の画素数及びコンソール3の表示部33における表示可能画素数がともに32×32である場合を例として説明する。なお、後述するように、FPDカセッテ2による画像データの読み取り・送信の画素数及びコンソール3の表示部33における表示可能画素数は、これに限定されるものではない。
Here, with reference to FIGS. 16 to 24G, the basic principle of the image data transmission process by the FPD cassette 2 and the display process in the display unit 33 of the console 3 in the present embodiment will be described.
Here, for convenience of explanation, a case where both the number of pixels for reading and transmitting image data by the FPD cassette 2 and the number of displayable pixels on the display unit 33 of the console 3 are 32 × 32 will be described as an example. As will be described later, the number of pixels for reading and transmitting image data by the FPD cassette 2 and the number of displayable pixels on the display unit 33 of the console 3 are not limited to this.
 図16は、本実施形態における画像データの分割の仕方を説明する説明図である。本実施形態では、FPDカセッテ制御部200は、コンソールに画像データを送信する際に、画像データの転送ライン数が5を超えない範囲内で、1つの画像データを7段階に分割し、7回に分けて全ての画像データをFPDカセッテ通信部208から送信するようになっている。
 なお、画像データをどのような分割の仕方で、何段階に分けて送信するかについては特に限定されず、FPDカセッテ2は、画像データを送信する前に、当該画像データをどのように分割して送信するか、各送信段階がコンソール3側のいずれの表示レイヤーに対応するか等の情報をコンソール3に通知するようになっている。なお、FPDカセッテ2とコンソール3とが1対1で対応している場合等、画像データを送信する送信先のコンソール3が特定されているような場合には、FPDカセッテ2とコンソール3との間で画像データ送信時の分割の仕方等を予めデフォルトとして定めておき、このデフォルトに従って処理を行うようにしてもよい。この場合には、画像データの分割の仕方等についてFPDカセッテ2からコンソール3に事前の通知を行う必要がない。
FIG. 16 is an explanatory diagram for explaining how image data is divided in the present embodiment. In this embodiment, when transmitting image data to the console, the FPD cassette control unit 200 divides one image data into seven stages within a range where the number of transfer lines of image data does not exceed 5, All the image data is transmitted from the FPD cassette communication unit 208 separately.
It should be noted that there is no particular limitation on how the image data is divided and how many steps are transmitted. The FPD cassette 2 divides the image data before transmitting the image data. Information indicating whether each transmission stage corresponds to which display layer on the console 3 side is notified to the console 3. If the destination console 3 to which the image data is transmitted is specified, such as when the FPD cassette 2 and the console 3 are in a one-to-one correspondence, the FPD cassette 2 and the console 3 It is also possible to preliminarily determine a method of division at the time of image data transmission as a default, and perform processing according to this default. In this case, it is not necessary to notify the console 3 in advance from the FPD cassette 2 about how to divide the image data.
 図16に示すように、例えば1段階目の画像データの送信(図17における第1レイヤー)では、FPDカセッテ2は、行方向(図17から図23における縦方向。以下同様。)の4つの転送ライン(ライン1からライン4)の画像データ(当該4つの転送ライン中の全ての画素のデータ)をコンソール3送信する。また、2段階目の画像データの送信(図18における第2レイヤー)では、FPDカセッテ2は、行方向の4つの転送ライン(ライン17からライン20)の画像データをコンソール3送信する。3段階目の画像データの送信(図19における第3レイヤー)では、FPDカセッテ2は、行方向における5つの転送ライン(ライン9からライン11、ライン25及びライン26)の画像データをコンソール3送信する。このように、コンソール3に対して5以下の比較的少ない転送ライン数分ずつ順次画像データを送信し、7段階目の送信(図23における第7レイヤー)により全ての転送ラインの画像データの送信が完了し、1つの画像についての全画像データがコンソール3に送信される。 As shown in FIG. 16, for example, in the transmission of image data at the first stage (first layer in FIG. 17), the FPD cassette 2 has four rows in the row direction (vertical direction in FIGS. 17 to 23, and so on). The image data of the transfer lines (line 1 to line 4) (data of all pixels in the four transfer lines) is transmitted to the console 3. Further, in the transmission of the second stage image data (second layer in FIG. 18), the FPD cassette 2 transmits the image data of the four transfer lines (line 17 to line 20) in the row direction to the console 3. In the transmission of the third stage image data (third layer in FIG. 19), the FPD cassette 2 transmits the image data of five transfer lines (line 9 to line 11, line 25, and line 26) in the row direction to the console 3. To do. In this way, the image data is sequentially transmitted to the console 3 by the relatively small number of transfer lines of 5 or less, and the image data of all the transfer lines is transmitted by the seventh transmission (the seventh layer in FIG. 23). Is completed, and all image data for one image is transmitted to the console 3.
 FPDカセッテ制御部200は、各段階でどの転送ラインの画像データ(どの画素の画像データ)を送信するかを決定するようになっており、送信される画像データには、少なくとも当該画像データが画像全体の中でどの位置に位置する画素(或るいはライン)のものかを示す各画素の位置情報を付帯させる。
 例えば、1段階目で送信される画像データの1つ目の転送ライン(ライン1)の1つ目の画素には、それが画像全体の左上端の画素の画像データであることを示すx,y座標(1,1)が位置情報として付帯される。また、2段階目で送信される画像データの1つ目の転送ライン(ライン17)の1つ目の画素には、x,y座標(本実施形態では、(17,1)が位置情報として付帯される。なお、画像データに付帯させる情報はこれに限定されない。
The FPD cassette control unit 200 determines which transfer line image data (which pixel image data) is to be transmitted at each stage, and at least the image data is an image in the transmitted image data. The position information of each pixel indicating the position of the pixel (or line) in the whole is attached.
For example, in the first pixel of the first transfer line (line 1) of the image data transmitted in the first stage, x, which indicates that it is the image data of the upper left pixel of the entire image The y coordinate (1, 1) is attached as position information. Further, the first pixel of the first transfer line (line 17) of the image data transmitted in the second stage has x and y coordinates (in this embodiment, (17, 1) as position information. Note that the information attached to the image data is not limited to this.
 図17から図23は、FPDカセッテ2からコンソール3に対する各送信段階(第1レイヤーから第7レイヤー)におけるコンソール3側の画素の割付例を示したものであり、図24Aから図24Gは、図17に示す第1レイヤーから図23に示す第7レイヤーのそれぞれにおいて、表示部33上に実際に表示される画像の一例を示したものである。 FIGS. 17 to 23 show examples of pixel assignment on the console 3 side in each transmission stage (from the first layer to the seventh layer) from the FPD cassette 2 to the console 3, and FIGS. 17 shows an example of an image actually displayed on the display unit 33 in each of the first layer shown in FIG. 17 to the seventh layer shown in FIG.
 図17に示すように、1段階目の送信(第1レイヤー)では、コンソール3の表示部33における表示単位は、本実施形態における表示用単位ブロックサイズ(表示領域を最小単位に細分化した際の画素数)と同じ32画素×32画素であり、表示されるブロック数は1個であって、分割領域は表示領域と一致する(すなわち、表示領域全体が1つの分割領域となる)。この場合、コンソール制御部30は、FPDカセッテ2から送信された画像データのうち、いずれか1つの画素(例えば、本実施形態では、図17に示すx,y座標(1,1)の画素)の画素値を表示ブロック全体の代表値とし、表示部33の表示領域(分割領域)にこの画素値(代表値)に応じた画像を表示させる。
 この場合、図24Aに示すように、表示部33の全表示領域(分割領域)にはx,y座標(1,1)の画素の画素値に対応した1つの輝度レベル(1つの濃度レベル)のみの画像が表示される。
As shown in FIG. 17, in the first-stage transmission (first layer), the display unit on the display unit 33 of the console 3 is the display unit block size in this embodiment (when the display area is subdivided into the minimum units). The number of blocks to be displayed is one, and the divided area matches the display area (that is, the entire display area becomes one divided area). In this case, the console control unit 30 selects any one of the image data transmitted from the FPD cassette 2 (for example, a pixel having x and y coordinates (1, 1) shown in FIG. 17 in the present embodiment). Is used as a representative value of the entire display block, and an image corresponding to this pixel value (representative value) is displayed in the display area (divided area) of the display unit 33.
In this case, as shown in FIG. 24A, the entire display area (divided area) of the display unit 33 has one luminance level (one density level) corresponding to the pixel value of the pixel at x, y coordinates (1, 1). Only the image is displayed.
 図18に示すように、2段階目の送信(第2レイヤー)では、コンソール3の表示部33における表示単位は16画素×16画素であり、表示されるブロック数は2×2(4個)であって、コンソール制御部30は、表示部33の表示領域を4つの分割領域に分割する。そして、コンソール制御部30は、FPDカセッテ2から送信された画像データの画素を各分割領域に割り当てて、それぞれ各分割領域に含まれるいずれか1つの画素の画素値を表示ブロック全体の代表値とし、表示部33の各分割領域にこの画素値(代表値)に応じた画像を表示させる。
 例えば本実施形態では、図18に示すように、x,y座標(1,1)の画素の画素値が左上の分割領域の画素値(代表値)となり、x,y座標(17,1)の画素の画素値が左下の分割領域の画素値(代表値)となり、x,y座標(1,17)の画素の画素値が右上の分割領域の画素値(代表値)となり、x,y座標(17,17)の画素の画素値が左上の分割領域の画素値(代表値)となる。
 この場合、図24Bに示すように、表示部33の各分割領域には、それぞれx,y座標(1,1)、(17,1)、(1,17)、(17,17)の画素の画素値に対応した画像が表示される。
As shown in FIG. 18, in the second-stage transmission (second layer), the display unit on the display unit 33 of the console 3 is 16 pixels × 16 pixels, and the number of blocks to be displayed is 2 × 2 (4). The console control unit 30 divides the display area of the display unit 33 into four divided areas. Then, the console control unit 30 assigns the pixel of the image data transmitted from the FPD cassette 2 to each divided region, and sets the pixel value of any one pixel included in each divided region as the representative value of the entire display block. Then, an image corresponding to the pixel value (representative value) is displayed in each divided area of the display unit 33.
For example, in this embodiment, as shown in FIG. 18, the pixel value of the pixel at x, y coordinates (1, 1) becomes the pixel value (representative value) of the upper left divided region, and the x, y coordinates (17, 1). The pixel value of the pixel at the left is the pixel value (representative value) of the lower left divided region, the pixel value of the pixel at the x, y coordinates (1, 17) is the pixel value (representative value) of the upper right divided region, and x, y The pixel value of the pixel at the coordinates (17, 17) becomes the pixel value (representative value) of the upper left divided area.
In this case, as shown in FIG. 24B, each divided region of the display unit 33 has pixels of x, y coordinates (1, 1), (17, 1), (1, 17), and (17, 17), respectively. An image corresponding to the pixel value is displayed.
 また、3段階目の送信(第3レイヤー)では、コンソール3の表示部33における表示単位は8画素×8画素であり、表示されるブロック数は4×4(16個)であって、図19に示すように、コンソール制御部30は、表示部33の表示領域を16の分割領域に分割する。そして、第1レイヤー、第2レイヤーの場合と同様に、コンソール制御部30は、画像データの画素を各分割領域に割り当てて、それぞれ各分割領域に含まれるいずれか1つの画素の画素値を表示ブロック全体の代表値とし、表示部33の各分割領域にこの画素値(代表値)に応じた画像を表示させる。
 この場合、図24Cに示すように、表示部33の表示領域には16の分割領域からなるモザイク状の画像が表示される。
In the transmission at the third stage (third layer), the display unit on the display unit 33 of the console 3 is 8 pixels × 8 pixels, and the number of blocks to be displayed is 4 × 4 (16). As shown in FIG. 19, the console control unit 30 divides the display area of the display unit 33 into 16 divided areas. As in the case of the first layer and the second layer, the console control unit 30 assigns the pixel of the image data to each divided area and displays the pixel value of any one pixel included in each divided area. An image corresponding to this pixel value (representative value) is displayed in each divided area of the display unit 33 as a representative value of the entire block.
In this case, as shown in FIG. 24C, a mosaic image composed of 16 divided areas is displayed in the display area of the display unit 33.
 図20は、4段階目の送信(第4レイヤー)におけるコンソール3側の画素の割付例を示したものである。この場合、表示単位は4画素×4画素であり、表示されるブロック数は8×8(64個)であって、コンソール制御部30は、表示部33の表示領域を64の分割領域に分割し、各分割領域に割り当てられた画素のうちの1つの画素の画素値(代表値)に応じた画像を各分割領域にそれぞれ表示させる。
 この場合、図24Dに示すように、表示部33の表示領域には64の分割領域からなるモザイク状の画像が表示される。
FIG. 20 shows an example of pixel assignment on the console 3 side in the fourth transmission (fourth layer). In this case, the display unit is 4 pixels × 4 pixels, the number of blocks to be displayed is 8 × 8 (64), and the console control unit 30 divides the display area of the display unit 33 into 64 divided areas. Then, an image corresponding to the pixel value (representative value) of one pixel among the pixels assigned to each divided area is displayed in each divided area.
In this case, as shown in FIG. 24D, a mosaic image composed of 64 divided areas is displayed in the display area of the display unit 33.
 図21から図23は、5段階目の送信(第5レイヤー)から7段階目の送信(第7レイヤー)におけるコンソール3側の画素の割付例を示したものであり、図24Eから図24Gは、各送信段階において、表示部33の表示領域に表示される画像の例を示している。
 7段階目の送信(第7レイヤー)によって画像全体の画像データが全て送信されたときには、図23に示すように、表示部33の表示領域の表示単位は1画素×1画素となり、表示されるブロック数は32×32(1024個)であって、画像データの各画素に対応する分割領域に細分化されて、高精細な画像表示を行うことができる(図24G参照)。
FIGS. 21 to 23 show examples of pixel allocation on the console 3 side in the fifth-stage transmission (fifth layer) to the seventh-stage transmission (seventh layer). FIGS. The example of the image displayed on the display area of the display part 33 in each transmission stage is shown.
When all the image data of the entire image is transmitted by the seventh transmission (seventh layer), the display unit of the display area of the display unit 33 is displayed as 1 pixel × 1 pixel as shown in FIG. The number of blocks is 32 × 32 (1024), and the image data can be subdivided into divided regions corresponding to each pixel of the image data to display a high-definition image (see FIG. 24G).
 なお、本実施形態では、4段階目の送信(図20に示す第4レイヤー)が完了し、この段階でコンソール3に送信されている画像データに基づく画像が表示されると、図24Dに示すように、被写体像の輪郭(被写体の首の位置、肺の位置等)をおおよそ捉えることができ、ポジショニングの適否、再撮影の要否を判断することが可能であるといえる。したがって、全ての画像データの転送が完了する前であっても、再撮影が必要であれば、その時点でデータの転送を中止して再撮影の準備に入ることが可能であり、他方、被写体の位置が表示画面のほぼ中央に位置している場合であれば、技師は、再撮影不要と判断して次の撮影準備にかかることもできる。 In the present embodiment, when the transmission at the fourth stage (fourth layer shown in FIG. 20) is completed, and an image based on the image data transmitted to the console 3 is displayed at this stage, it is shown in FIG. 24D. Thus, the outline of the subject image (the position of the subject's neck, the position of the lung, etc.) can be roughly grasped, and it can be said that the suitability of positioning and the necessity of re-photographing can be determined. Therefore, even if transfer of all the image data is completed, if re-shooting is necessary, it is possible to stop the data transfer at that time and start preparation for re-shooting. If the position is located in the approximate center of the display screen, the engineer can determine that re-shooting is unnecessary and can prepare for the next shooting.
 なお、各分割領域に表示される画像は、当該分割領域に含まれる画素のうちのいずれかの画素の画素値(代表値)に応じたものに限定されず、各分割領域に含まれる全部又は一部の画素の画素値の平均値を各分割領域の画素値として算出し、この画素値(平均値)に基づく画像を分割領域に表示させるようにしてもよい。 Note that the image displayed in each divided region is not limited to the pixel value (representative value) of any pixel among the pixels included in the divided region, and the entire image included in each divided region or An average value of pixel values of some pixels may be calculated as a pixel value of each divided region, and an image based on this pixel value (average value) may be displayed in the divided region.
 以上のような画像データの送信処理及び表示処理を実際のデータ数に換算すると、図25に示すようになる。
 図25は、14インチ×17インチの半切サイズのFPDカセッテ2を用いて画像データを取得し、これをコンソール3に送信して表示部33に表示させる場合を例としている。
 なお、14インチ×17インチの半切サイズのFPDカセッテ2の場合、読み取りにおける画素サイズは175μm設定であり、画像データは2010×2446個のデータ(カラム数(図25中「C」とする。)が2010・ライン数(図25中「L」とする。)が2446)で構成される。この場合、各ラインにおけるデータ量を約3.9KBとすると、画像データの全データ量は、3.9KB×2446であり、約9.5MBである。
 この点、図25では、説明の便宜上、画像データを2016×2400(カラム数(C)が2016・ライン数(L)が2400)のデータ構成とし、1ラインのデータ量が約3.9KB、全画像の画像データ量が約9.2MBである場合を例としている。
When the above image data transmission processing and display processing are converted into the actual number of data, the result is as shown in FIG.
FIG. 25 illustrates an example in which image data is acquired using a 14-inch × 17-inch half-cut FPD cassette 2 and is transmitted to the console 3 to be displayed on the display unit 33.
In the case of the FPD cassette 2 having a half size of 14 inches × 17 inches, the pixel size for reading is set to 175 μm, and the image data is 2010 × 2446 data (the number of columns (referred to as “C” in FIG. 25)). Is composed of 2010 and the number of lines (“L” in FIG. 25) is 2446). In this case, if the data amount in each line is about 3.9 KB, the total amount of image data is 3.9 KB × 2446, which is about 9.5 MB.
In this regard, in FIG. 25, for convenience of explanation, the image data has a data configuration of 2016 × 2400 (the number of columns (C) is 2016 and the number of lines (L) is 2400), and the data amount of one line is about 3.9 KB. The case where the image data amount of all the images is about 9.2 MB is taken as an example.
 この場合、コンソール3の表示部33側で、例えば第1レイヤーを、列方向(C)63ブロック×行方向(L)75ブロック(すなわち、カラム数2016/32=63、ライン数2400/32=75)で構成した場合の転送データ量等は以下のようになる。
 すなわち、各レイヤーにおける転送データ量は、転送ライン数×1ライン分のデータ量×列数により算出することができる(なお、各ブロック当たりの転送データ量は、転送ライン数×1ライン分のデータ量)。図25に示す例において、先に述べた表示用単位ブロックサイズが32画素×32画素の場合の例(図16及び図17参照)と同様に4ライン分の画像データを転送するとした場合には、4ライン×3.9KB×75列となり、第1レイヤーにおける転送データ量は1.2MBとなる。
 すなわち、行方向(L)の1から75の各ブロックにおいて、4ライン分の画像データが転送され、各ブロックごとに32画素×32画素の場合の例(図16及び図17参照)と同様の表示処理が行われる。この場合、表示されるブロック数は、63×75であり、このブロック数が最初に表示される画像の解像度となる。
In this case, on the display unit 33 side of the console 3, for example, the first layer is arranged in the column direction (C) 63 blocks × row direction (L) 75 blocks (that is, the number of columns 2016/32 = 63, the number of lines 2400/32 = The amount of data transferred in the case of 75) is as follows.
That is, the transfer data amount in each layer can be calculated by the number of transfer lines × the amount of data for one line × the number of columns (the transfer data amount for each block is the number of transfer lines × the data for one line). amount). In the example shown in FIG. 25, when it is assumed that image data for four lines is transferred in the same manner as in the example (see FIGS. 16 and 17) in which the display unit block size is 32 pixels × 32 pixels described above. 4 lines × 3.9 KB × 75 columns, and the transfer data amount in the first layer is 1.2 MB.
That is, in each block from 1 to 75 in the row direction (L), four lines of image data are transferred, and the same as in the case of 32 pixels × 32 pixels for each block (see FIGS. 16 and 17). Display processing is performed. In this case, the number of blocks to be displayed is 63 × 75, and this number of blocks is the resolution of the image displayed first.
 また、例えば第2レイヤーを、列方向(C)126(すなわち63×2)ブロック×行方向(L)150(すなわち75×2)ブロックで構成した場合の転送データ量等は以下のようになる。
 すなわち、図25に示す例において、先に述べた表示用単位ブロックサイズが32画素×32画素の場合の例(図16及び図18参照)と同様に4ライン分の画像データを転送するとした場合には、4ライン×3.9KB×75列となり、第2レイヤーにおける転送データ量は1.2MBとなる。
 すなわち、縦方向(L)の1から75の各ブロックの第1レイヤーにおいて、さらに4ライン分の画像データが転送され、各ブロックごとに表示用単位ブロックサイズが32画素×32画素の場合の例(図16及び図18参照)と同様の表示処理が行われる。この場合、表示されるブロック数は、126×150である。
Further, for example, when the second layer is composed of column direction (C) 126 (that is, 63 × 2) blocks × row direction (L) 150 (that is, 75 × 2) blocks, the transfer data amount is as follows. .
That is, in the example shown in FIG. 25, when the image data for four lines is transferred in the same manner as in the example (see FIGS. 16 and 18) in which the display unit block size is 32 pixels × 32 pixels described above. 4 lines × 3.9 KB × 75 columns, and the transfer data amount in the second layer is 1.2 MB.
That is, in the first layer of each block from 1 to 75 in the vertical direction (L), image data for four lines is further transferred, and the display unit block size is 32 pixels × 32 pixels for each block. Display processing similar to that shown in FIGS. 16 and 18 is performed. In this case, the number of displayed blocks is 126 × 150.
 同様に、例えば第7レイヤーでは、列方向(C)2016ブロック×行方向(L)2400ブロックで構成されるので、表示されるブロック数は、2016×2400であり、読取時と同等の解像度で画像表示されたことになる。 Similarly, for example, the seventh layer is composed of column direction (C) 2016 blocks × row direction (L) 2400 blocks, so the number of blocks to be displayed is 2016 × 2400, with a resolution equivalent to that at the time of reading. An image is displayed.
 図26は、FPDカセッテ2とコンソール3との間において無線方式で情報の送受信を行った場合の通信速度を示したものである。
 図26に示すように、例えば、無線の種類がIEEE802.11a/gの場合には、通信の実効速度は20Mbpsであり、UWBによる場合には、通信の実効速度は100Mbpsとなる。このように、無線方式の場合のFPDカセッテ2とコンソール3との間の通信速度は、その無線の種類に応じて大きく異なっている。
FIG. 26 shows the communication speed when information is transmitted and received between the FPD cassette 2 and the console 3 in a wireless manner.
As shown in FIG. 26, for example, when the wireless type is IEEE802.11a / g, the effective communication speed is 20 Mbps, and when using the UWB, the effective communication speed is 100 Mbps. Thus, the communication speed between the FPD cassette 2 and the console 3 in the case of a wireless system varies greatly depending on the type of wireless.
 図25の右側欄は、図26に示す各通信速度の通信環境下において画像データの転送にかかる時間を示したものである。
 図25に示すように、例えば、通信の実効速度が20Mbpsである場合、全画像データを転送するまでに3.69秒かかることが分かる。したがって、コンソール3がFPDカセッテ2から全画像データを受信し、その受信が完了してから表示部33に画像を表示させるような通常の表示手法によった場合には、ユーザ(技師)は、画像が表示されるまで4秒近い時間待たなければならず、効率的な診療の妨げとなる。
 この点、本実施形態のような表示手法によれば、前述のように、第4レイヤーか、少なくとも第5レイヤーの段階まで表示されれば、ポジショニングの適否、再撮影の要否を判断し得る程度の画像を表示させることができる。そして、第4レイヤーであれば、転送にかかる時間は1.96秒であり、第5レイヤーであっても転送にかかる時間は2.54秒であるため、全画像データを転送するまでにかかる時間の半分程度の時間で、再撮影の要否判断に必要な画像を表示させることができ、ユーザ(技師)の待ち時間を短縮することができる。
The right column of FIG. 25 shows the time taken to transfer the image data in the communication environment of each communication speed shown in FIG.
As shown in FIG. 25, for example, when the effective communication speed is 20 Mbps, it is understood that it takes 3.69 seconds to transfer all the image data. Therefore, when the console 3 receives all image data from the FPD cassette 2 and uses a normal display method in which the image is displayed on the display unit 33 after the reception is completed, the user (engineer) It is necessary to wait for approximately 4 seconds until the image is displayed, which hinders efficient medical care.
In this regard, according to the display method of the present embodiment, as described above, if the fourth layer or at least the fifth layer stage is displayed, it is possible to determine whether positioning is appropriate and whether re-shooting is necessary. About an image can be displayed. In the fourth layer, the transfer time is 1.96 seconds, and even in the fifth layer, the transfer time is 2.54 seconds. Therefore, it takes time to transfer all image data. An image necessary for determining whether or not re-shooting is necessary can be displayed in about half the time, and the waiting time of the user (engineer) can be shortened.
 なお、表示部33の表示領域に第1レイヤーから第7レイヤーまでに対応する画像を順に表示させた場合に、実際の表示の精細さがどの程度のものとなるかは、表示部33の表示領域のサイズ(15インチか17インチか等)やモニタ性能(通常のモニタか、高精細モニタか等)等によって異なる。
 図27は、表示部33の表示領域のサイズやモニタの種類に応じた表示可能ブロック数(画素数)の違いを示したものである。なお、本実施形態における表示部33がここに挙げたものに限定されるものではない。
It should be noted that when the images corresponding to the first layer to the seventh layer are sequentially displayed in the display area of the display unit 33, how much the actual display is fine is determined by the display of the display unit 33. It depends on the size of the area (15 inches or 17 inches, etc.), monitor performance (normal monitor, high-definition monitor, etc.) and the like.
FIG. 27 shows the difference in the number of displayable blocks (number of pixels) according to the size of the display area of the display unit 33 and the type of monitor. In addition, the display part 33 in this embodiment is not limited to what was mentioned here.
 例えば、1つの表示画面上に4つの画像を表示させる場合(図28参照)の個々の表示可能ブロック数(画素数)は、表示部33が15インチの液晶パネル(LCD)である場合、248×248(カラム数(C)248、ライン数(L)248)であり、表示部33が17インチの液晶パネル(LCD)である場合、310×310(カラム数(C)310、ライン数(L)310)である。この点、図25に示したように、表示用単位ブロックサイズが32画素×32画素である場合、第3レイヤーにおけるデータ送信ブロック数(総画素数)は252×300であり、15インチの液晶パネル又は17インチの液晶パネルの表示画面上に4つの画像を表示させる場合とほぼ等しく、第3レイヤーの送信段階で表示される画像は、2016×2400の1/8の圧縮画像とほぼ同等である。 For example, when four images are displayed on one display screen (see FIG. 28), the number of displayable blocks (number of pixels) is 248 when the display unit 33 is a 15-inch liquid crystal panel (LCD). If the display unit 33 is a 17-inch liquid crystal panel (LCD) × 310 (column number (C) 248, line number (L) 248), then 310 × 310 (column number (C) 310, line number ( L) 310). In this regard, as shown in FIG. 25, when the display unit block size is 32 × 32 pixels, the number of data transmission blocks (total number of pixels) in the third layer is 252 × 300, and a 15-inch liquid crystal It is almost the same as when four images are displayed on the display screen of a panel or a 17-inch liquid crystal panel, and the image displayed at the transmission stage of the third layer is almost equivalent to a compressed image of 1/8 of 2016 × 2400. is there.
 また、例えば、1つの表示画面上に1つの画像を表示させる場合(図29参照)の表示可能ブロック数(画素数)は、表示部33が15インチの液晶パネル(LCD)である場合、498×498(カラム数(C)498、ライン数(L)498)であり、表示部33が17インチの液晶パネル(LCD)である場合、622×622(カラム数(C)622、ライン数(L)622)である。この点、図25に示したように、表示用単位ブロックサイズが32画素×32画素である場合、第4レイヤーにおけるデータ送信ブロック数(総画素数)は504×600であり、15インチの液晶パネル又は17インチの液晶パネルの表示画面上に1つの画像を表示させる場合とほぼ等しく、第4レイヤーの送信段階で表示される画像は、2016×2400の1/4の圧縮画像とほぼ同等である。 For example, when one image is displayed on one display screen (see FIG. 29), the number of displayable blocks (number of pixels) is 498 when the display unit 33 is a 15-inch liquid crystal panel (LCD). × 498 (number of columns (C) 498, number of lines (L) 498), and when the display unit 33 is a 17-inch liquid crystal panel (LCD), 622 × 622 (number of columns (C) 622, number of lines ( L) 622). In this regard, as shown in FIG. 25, when the display unit block size is 32 pixels × 32 pixels, the number of data transmission blocks (total number of pixels) in the fourth layer is 504 × 600, and the 15-inch liquid crystal This is almost the same as displaying one image on the display screen of a panel or a 17-inch liquid crystal panel, and the image displayed in the transmission stage of the fourth layer is almost equivalent to a compressed image of 1/4 of 2016 × 2400. is there.
 さらに、図25に示したように、表示用単位ブロックサイズが32画素×32画素である場合、第7レイヤーにおけるデータ送信ブロック数(総画素数)は2016×2400であるところ、図27に示すように、高精細モニタでなければ、このような画素数の画像を表示することはできず、高精細モニタであっても、画像全体を表示させることはできず、関心領域を中心とした領域を表示させ、周縁部分は表示画面上に表示されないこととなる。 Further, as shown in FIG. 25, when the display unit block size is 32 × 32 pixels, the number of data transmission blocks (total number of pixels) in the seventh layer is 2016 × 2400, which is shown in FIG. Thus, an image with such a number of pixels cannot be displayed unless it is a high-definition monitor, and the entire image cannot be displayed even on a high-definition monitor. Is displayed, and the peripheral portion is not displayed on the display screen.
 次に、図30を参照しつつ、上記のようなプログレッシブ表示のための処理を行う場合の医用画像システム1の作用について説明する。 Next, the operation of the medical image system 1 when performing the above-described processing for progressive display will be described with reference to FIG.
 図30に示すように、撮影が行われ、FPDカセッテ2のセンサパネル部221が被写体を透過した放射線を検出すると(ステップS401)、この検出結果に基づき読取部TFT2220において画像データが生成される(ステップS402)。FPDカセッテ制御部200は、この画像データを所定の段階に分割し、画素単位(ライン単位)でFPDカセッテ通信部208からコンソール3に送信する(ステップS403)。なお、FPDカセッテ制御部200は、画像データをどのように分割するか(何段階に分割するか等)の情報を、予めコンソール3に送信するように通信部を制御する。
 本実施形態では、画像データを7段階に分割し、1段階目では、4つの転送ライン分の画像データを送信する(図16及び図17参照)。また、2段階目では、同じく4つの転送ライン分の画像データを送信する(図17及び図18参照)。同様にして、7段階に分けて、全ての画像データの送信が完了するように画像データをコンソール3に送信する。なお、その際、FPDカセッテ通信部208は、当該画像データが全体のどの位置に位置する画素のものか、その位置を特定する位置情報、当該画素の画素サイズに関する画素サイズ情報、画素数に関する画素数情報等を画像データに付帯させ、画像データとともに送信するようになっている。
As shown in FIG. 30, when imaging is performed and the sensor panel unit 221 of the FPD cassette 2 detects radiation transmitted through the subject (step S401), image data is generated in the reading unit TFT 2220 based on the detection result (step S401). Step S402). The FPD cassette control unit 200 divides this image data into predetermined stages, and transmits the image data from the FPD cassette communication unit 208 to the console 3 in units of pixels (line units) (step S403). Note that the FPD cassette control unit 200 controls the communication unit so that information on how to divide the image data (how many stages it divides) is transmitted to the console 3 in advance.
In the present embodiment, the image data is divided into seven stages, and image data for four transfer lines is transmitted in the first stage (see FIGS. 16 and 17). In the second stage, image data for four transfer lines is also transmitted (see FIGS. 17 and 18). Similarly, the image data is transmitted to the console 3 in seven stages so that the transmission of all the image data is completed. At that time, the FPD cassette communication unit 208 determines the position of the pixel in which the image data is located, position information for specifying the position, pixel size information regarding the pixel size of the pixel, and pixels regarding the number of pixels. Number information and the like are attached to the image data and transmitted together with the image data.
 FPDカセッテ制御部200は、全ての画像データの送信が完了したか否かを常に判断する(ステップS404)。そして、送信が完了した場合(ステップS404:YES)には、処理を終了する。他方、送信が完了していない場合(ステップS404:NO)には、コンソール3に対する画素単位(ライン単位)での画像データの送信を続行する。 The FPD cassette control unit 200 always determines whether or not transmission of all image data has been completed (step S404). If the transmission is completed (step S404: YES), the process is terminated. On the other hand, if transmission has not been completed (step S404: NO), transmission of image data in units of pixels (line units) to the console 3 is continued.
 画像データがコンソール3のコンソール通信部32において画素単位(ライン単位)で受信されはじめると(ステップS405)、コンソール制御部30は、FPDカセッテ2から送信された画像データをどのように分割するかの情報や送信された画素数(第2レイヤー以降は、コンソールに送信されている全画素の累積画素数)に応じて表示部33の表示領域を複数の分割領域に分割し(ステップS406)、分割された各分割領域に各画素を割り当てて、当該分割領域に含まれるいずれかの画素の画素値に対応する画像を表示させる(ステップS407)。これにより、1段階目の画像データが送信された段階では、全画面が1レベルの輝度(1濃度)で表される画像が表示されるが(図24A参照)、2段階目、3段階目…と送信される画像データの画素数が増加するのに従って、少しずつ画像が鮮明になっていき、4段階目の画像データが送信された段階では、再撮影の要否判断を行うことができる程度の画像を表示させることができる(図24D参照)。コンソール制御部30は、第7レイヤーまで表示させたかを常に判断し(ステップS408)、表示が終了した場合(ステップS408:YES)には、処理を終了する。他方、表示が終了していない場合(ステップS408:NO)には、ステップS405に戻って、受信した画像データの画素数等に応じて表示領域を分割し、各分割領域に割り当てた画素の画素値に応じた画像を表示させる処理を繰り返す。 When image data starts to be received in pixel units (line units) in the console communication unit 32 of the console 3 (step S405), the console control unit 30 determines how to divide the image data transmitted from the FPD cassette 2 The display area of the display unit 33 is divided into a plurality of divided areas according to the information and the number of transmitted pixels (the second and subsequent layers are the cumulative number of all pixels transmitted to the console) (step S406). Each pixel is assigned to each divided area, and an image corresponding to the pixel value of any pixel included in the divided area is displayed (step S407). As a result, at the stage where the first-stage image data is transmitted, an image in which the entire screen is displayed with one level of luminance (one density) is displayed (see FIG. 24A). As the number of pixels of the transmitted image data increases, the image becomes clearer little by little, and the necessity of re-shooting can be determined at the stage where the fourth stage image data is transmitted. A certain degree of image can be displayed (see FIG. 24D). The console control unit 30 always determines whether or not the seventh layer has been displayed (step S408), and when the display is ended (step S408: YES), the process ends. On the other hand, if the display is not completed (step S408: NO), the process returns to step S405, and the display area is divided according to the number of pixels of the received image data, and the pixels assigned to each divided area are displayed. The process of displaying an image according to the value is repeated.
 以上のように、本実施形態によれば、FPDカセッテ2側からRAW画像データを画素単位(ライン単位)でコンソール3に送信し、コンソール3側では送信された画素数の増加に応じて表示部33の表示領域を段階的に複数の分割領域に分割して当該分割領域に増加した各画素を割り当てて画像を表示させていく。このため、コンソール3の表示部33には、1つの画像を構成する全画像データの送信が完了していなくても、低解像度ながら既に送信されている画像データに応じた画像が表示され、その後画像データの受信が進むに伴って画像の解像度が向上し徐々に鮮明な画像になっていくという、いわゆるプログレッシブ表示をさせることができる。
 これにより、僅かずつでも画像データがコンソール3側で受信されるとコンソール3の表示部33にそれに応じた表示がされるため、画像データを正常に受信していることを技師が視認可能となり、通信不良を疑う等、心理的不安に陥ることがない。
As described above, according to the present embodiment, the RAW image data is transmitted from the FPD cassette 2 side to the console 3 in pixel units (line units), and the display unit according to the increase in the number of transmitted pixels on the console 3 side. The 33 display areas are divided into a plurality of divided areas in a stepwise manner, and an image is displayed by assigning each increased pixel to the divided areas. For this reason, even if transmission of all the image data constituting one image is not completed, an image corresponding to the image data that has already been transmitted with low resolution is displayed on the display unit 33 of the console 3. As the reception of image data proceeds, so-called progressive display can be performed in which the resolution of the image is improved and the image becomes gradually clearer.
As a result, when image data is received even on the console 3 side, a display corresponding to the image data is displayed on the display unit 33 of the console 3, so that an engineer can visually recognize that the image data has been received normally. Do not fall into psychological anxiety, such as suspicion of poor communication.
 また、転送ライン数を5以下とし、少しずつ画像データを分けて送信するため、データ量の多いRAW画像データをコンソール3に送信した場合でも、通信にそれほど負担をかけることがない。このため、無線方式でRAW画像データを送信する場合でもストレスを感じることがない。また、画像データの転送が完了する前の比較的早い段階でポジショニングや再撮影の要否についての判断を行うことができるため、診断の効率化を実現することができる。これにより、再撮影が必要な場合には、それが分かった時点でデータの転送を中止させることにより、無駄な時間を費やすことを回避できる。他方、再撮影の必要がない場合には、継続(残余)データの送信を待つ間に、技師は次の撮影の準備等を行うことができ、効率のよい診療を行うことができる。
 また、間引き画像データ(圧縮画像データ)の送信を必要としない為、RAW画像データのみをコンソール3に送信すればよく、画像データの送信操作を1回で済ませることができる。
 また、当該画像データが全体のどの位置に位置する画素のものかという位置を特定する位置情報や、画素サイズ情報、画素数情報を画像データに付帯してコンソール3に送信するため、コンソール3側で表示部33の表示領域における各画素の割り付け位置を正確に判断することができる。
In addition, since the number of transfer lines is set to 5 or less and image data is divided and transmitted little by little, even when RAW image data having a large amount of data is transmitted to the console 3, the communication is not burdened so much. Therefore, no stress is felt even when RAW image data is transmitted wirelessly. Further, since it is possible to determine whether or not positioning or re-imaging is necessary at a relatively early stage before the transfer of the image data is completed, it is possible to improve the efficiency of diagnosis. Thus, when re-shooting is necessary, it is possible to avoid wasting time by stopping the data transfer when it is known. On the other hand, when there is no need for re-imaging, the engineer can prepare for the next imaging while waiting for transmission of continuation (residual) data, and can perform efficient medical treatment.
Further, since it is not necessary to transmit the thinned image data (compressed image data), only the RAW image data needs to be transmitted to the console 3, and the image data transmission operation can be completed only once.
In addition, since the position information specifying the position of the pixel at which the image data is located, the pixel size information, and the pixel number information are attached to the image data and transmitted to the console 3, the console 3 side Thus, the allocation position of each pixel in the display area of the display unit 33 can be accurately determined.
 なお、本実施形態では、表示用単位ブロックサイズを32画素×32画素としたが、表示用単位ブロックサイズはこれに限定されない。 In this embodiment, the display unit block size is 32 pixels × 32 pixels, but the display unit block size is not limited to this.
 図31に示すように、表示用単位ブロックサイズを64画素×64画素とするとともに、この画像データを8段階に分けてコンソール3に送信し、コンソール3では第1レイヤーから第8レイヤーの8つのレイヤーに分けて表示を行うようにする。
 この場合、例えば第1レイヤーを、列方向(C)32ブロック×行方向(L)38ブロックで構成した場合の転送データ量等は以下のようになる。
 すなわち、第1レイヤーにおいて4ライン分の画像データを転送するとした場合には、4ライン×3.9KB(1ライン分のデータ量)×38列となり、第1レイヤーにおける転送データ量は0.6MBとなる。
As shown in FIG. 31, the display unit block size is 64 pixels × 64 pixels, and this image data is divided into eight stages and transmitted to the console 3. Display in layers.
In this case, for example, the transfer data amount when the first layer is configured by 32 blocks in the column direction (C) × 38 blocks in the row direction (L) is as follows.
That is, when image data for 4 lines is transferred in the first layer, 4 lines × 3.9 KB (data amount for 1 line) × 38 columns, and the transfer data amount in the first layer is 0.6 MB. It becomes.
 また、図32に示すように、表示用単位ブロックサイズを128画素×128画素とするとともに、この画像データを9段階に分けてコンソール3に送信し、コンソール3では第1レイヤーから第9レイヤーの9つのレイヤーに分けて表示を行うようにする。
 なお、図31及び図32において、個々の転送時間を加算した値と、転送時間の総和(Σ)の項目の数値とが、必ずしも一致していないが、これは小数点以下2桁以下を四捨五入したために多少の誤差が生じているためである。
Further, as shown in FIG. 32, the display unit block size is set to 128 pixels × 128 pixels, and this image data is divided into nine stages and transmitted to the console 3. The display is divided into 9 layers.
In FIG. 31 and FIG. 32, the value obtained by adding the individual transfer times does not necessarily match the numerical value of the item of the total transfer time (Σ), but this is because two decimal places or less are rounded off. This is because there is a slight error.
 また、本実施形態では、表示用単位ブロックサイズが32画素×32画素の場合に、画像データを7段階に分けてコンソール3に送信し、コンソール3では第1レイヤーから第7レイヤーの7つのレイヤーに分けて表示を行うようにしたが、画像データの送信及び表示部33における表示を何段階に分けて行うかは特に限定されず、8段階等、さらに多くの段階に分割して画像データの送信及び表示部33における表示を行うようにしてもよい。 In the present embodiment, when the display unit block size is 32 pixels × 32 pixels, the image data is divided into seven stages and transmitted to the console 3, and the console 3 has seven layers from the first layer to the seventh layer. However, there is no particular limitation on the number of steps in which image data transmission and display on the display unit 33 are performed, and the image data is divided into more steps such as 8 steps. You may make it perform the display in the transmission and the display part 33. FIG.
 表示用単位ブロックサイズをいくつとするか、それを何段階に分けてコンソール3に送信し、コンソール3側で何段階(レイヤー数)に分けて表示させるかは、予めFPDカセッテ2とコンソール3との間で共通の設定をしておき、FPDカセッテ2側は、この設定に従って画像データを分割しコンソール3に送信してもよいし、コンソール3側では特にFPDカセッテ2と対応した設定はせず、FPDカセッテ2から送信された画像データに付帯されている各画素の位置情報等に基づいて、いくつのレイヤーに分けて表示させるか、各画素の画素値をどの分割領域に割り当てるかを決定してもよい。 The number of display unit block sizes, the number of steps to be sent to the console 3 and the number of steps (number of layers) to be displayed on the console 3 side are displayed in advance with the FPD cassette 2 and the console 3. The FPD cassette 2 side may divide the image data in accordance with this setting and send it to the console 3, or the console 3 side does not make a setting corresponding to the FPD cassette 2 in particular. Based on the position information of each pixel attached to the image data transmitted from the FPD cassette 2, it is determined how many layers to display and which pixel area the pixel value of each pixel is assigned to. May be.
 また、本実施形態では、FPDカセッテ2が配置された撮影室R1とコンソール3とが近接している場合を例として説明したが、FPDカセッテ2とコンソール3との配置はこれに限定されない。例えば、FPDカセッテ2を患者のベッドサイドに持っていって撮影を行うポータブルのベッドサイド撮影時には、FPDカセッテ2とコンソール3との距離が離れている可能性が高く、技師が撮影画像(間引き画像)をコンソール3で確認後、RAW画像データを再度送信するためにFPDカセッテ2に戻るとすると技師の移動量が多くなる。この場合、本実施形態のように、RAW画像データのみをFPDカセッテ2からコンソール3に送信する構成とすると、技師の移動及び画像データの送信操作にかかる手間を省くことができ、より効果を発揮する。 In the present embodiment, the case where the imaging room R1 in which the FPD cassette 2 is disposed and the console 3 are close to each other has been described as an example, but the arrangement of the FPD cassette 2 and the console 3 is not limited thereto. For example, at the time of portable bedside shooting in which the FPD cassette 2 is held at the patient's bedside and the image is taken, there is a high possibility that the distance between the FPD cassette 2 and the console 3 is large, and the engineer takes a shot image (decimated image). ) On the console 3 and then returning to the FPD cassette 2 to transmit RAW image data again, the amount of movement of the technician increases. In this case, if only the RAW image data is transmitted from the FPD cassette 2 to the console 3 as in the present embodiment, it is possible to save time and effort for the engineer's movement and the image data transmission operation, and more effective. To do.
 また、プログレッシブ表示を行う医用画像システムにおいて、画像データとしてRAW画像データ(元の画像データ)のほか、圧縮画像データを送信するようにしてもよい。以下、画像データとしてRAW画像データ(元の画像データ)のほか、圧縮画像データを送信する場合のシステム構成及び処理の手法について、上記説明と異なる部分について説明する。 Further, in a medical image system that performs progressive display, compressed image data may be transmitted in addition to RAW image data (original image data) as image data. Hereinafter, in addition to the RAW image data (original image data) as the image data, the system configuration and the processing method when transmitting the compressed image data will be described with respect to differences from the above description.
 この場合、FPDカセッテの読取部は、個々の光電変換素子単位で画像信号を読み取ることにより得られる元の画像データ(以下「RAW画像データ」と称する。)の他に、このRAW画像データに基づく圧縮画像データ(間引き画像データ)を生成する圧縮画像生成手段として機能する。圧縮画像データは、光電変換素子間を所定の間引き率で間引いて読み取ることにより縮小化(圧縮)したデータ量の少ない画像データである。 In this case, the reading unit of the FPD cassette is based on the raw image data in addition to the original image data (hereinafter referred to as “RAW image data”) obtained by reading the image signal in units of individual photoelectric conversion elements. It functions as compressed image generation means for generating compressed image data (thinned-out image data). The compressed image data is image data with a small amount of data reduced (compressed) by thinning and reading between photoelectric conversion elements at a predetermined thinning rate.
 ここで、本実施形態において生成される圧縮画像データの例について説明する。
 例えば、175μmの画素サイズで読み取られた半切サイズ(14×17インチ)の画像データ(画素数は2010×2400)を、縦横共に1/15に圧縮して送信する場合、送信される画像データの画素数は134×160となる。
 読取部において、2010×2400の画素を有するRAW画像データと、この予め設定された間引き率に対応する134×160の画素を有する圧縮画像データとを生成し、両者を対応付けて保存しておくことが好ましいが、読取部によりRAW画像データを生成してRAW画像データのみを画像記憶部等に記憶させておき、送信時にこのRAW画像データを用いて間引き処理(間引き送信)を行うことにより圧縮画像データを生成しコンソールに送信してもよい。(この場合には、画像データの送信完了後に圧縮画像データを削除(消去)する必要がない。)なお、縦横の間引き率を同一とするのは、画像のアスペクト比を原画像(元画像)と同一に保つためである。
 なお、圧縮画像データの縮小化率(圧縮率)はここに例示したものに限定されない。
Here, an example of compressed image data generated in the present embodiment will be described.
For example, when half-cut image data (14 × 17 inches) image data (the number of pixels is 2010 × 2400) read with a pixel size of 175 μm is compressed to 1/15 in both vertical and horizontal directions, the transmitted image data The number of pixels is 134 × 160.
In the reading unit, RAW image data having 2010 × 2400 pixels and compressed image data having 134 × 160 pixels corresponding to the preset thinning rate are generated and stored in association with each other. However, it is preferable that the RAW image data is generated by the reading unit and only the RAW image data is stored in the image storage unit or the like, and compression is performed by performing a thinning process (decimation transmission) using the RAW image data at the time of transmission. Image data may be generated and sent to the console. (In this case, it is not necessary to delete (erase) the compressed image data after transmission of the image data is complete.) Note that the aspect ratio of the image is the same as the original image (original image). This is to keep the same.
Note that the reduction rate (compression rate) of the compressed image data is not limited to that exemplified here.
 カセッテ制御部は、圧縮画像データと圧縮前のRAW画像データとのいずれをコンソールに送信するかを選択する送信データ選択手段として機能し、FPDカセッテの通信部は、カセッテ制御部によって選択された画像データをコンソールに送信する。
 なお、送信する画像データとしてRAW画像データが選択されたときには、FPDカセッテの通信部は、一の画像を構成する画像データをコンソールに対して画素単位(ライン単位)で順次送信可能となっており、コンソールの通信部は、画素単位(ライン単位)でこの画像データを取得するようになっている。
The cassette control unit functions as transmission data selection means for selecting which of the compressed image data and the raw image data before compression to be transmitted to the console. The communication unit of the FPD cassette is the image selected by the cassette control unit. Send data to the console.
When RAW image data is selected as image data to be transmitted, the communication unit of the FPD cassette can sequentially transmit image data constituting one image to the console in pixel units (line units). The communication unit of the console acquires the image data in pixel units (line units).
 また、FPDカセッテの通信部は、送信する画像データが圧縮画像データかRAW画像データかという画像データの種別に関する情報を付帯データとして画像データとともに送信するようになっている。なお、画像データの種別に関する情報は、画像データとは別個に、画像データを送信するに先立って送られるようにしてもよい。 In addition, the communication unit of the FPD cassette transmits information on the type of image data such as whether the image data to be transmitted is compressed image data or RAW image data as accompanying data together with the image data. Note that the information related to the type of image data may be sent prior to transmitting the image data separately from the image data.
 コンソール制御部は、表示制御手段として、画像データに付帯している付帯データに基づいて、表示部の表示を切り替えるように表示部を制御するようになっている。具体的には、付帯データから当該画像データがRAW画像データであると判断される場合には、画像データをFPDカセッテから送信された順に複数のレイヤーに分けるとともに、画像データの画素数の増加に応じて表示部の表示領域を段階的に複数の分割領域に分割し、当該分割領域に各画素を割り当てて、各分割領域に割り当てられた画素のうちのいずれかの画素値に応じた画像を当該分割領域に表示させる。また、当該画像データが圧縮画像データであると判断される場合には、全て画像データが揃ってから圧縮画像データに基づく画像を表示部に表示させる。 The console control unit controls the display unit so as to switch the display of the display unit based on the accompanying data attached to the image data as display control means. Specifically, when the image data is determined to be RAW image data from the accompanying data, the image data is divided into a plurality of layers in the order of transmission from the FPD cassette, and the number of pixels of the image data is increased. Accordingly, the display area of the display unit is divided into a plurality of divided areas step by step, each pixel is assigned to the divided area, and an image corresponding to any pixel value of the pixels assigned to each divided area is displayed. It is displayed in the divided area. If it is determined that the image data is compressed image data, an image based on the compressed image data is displayed on the display unit after all the image data is obtained.
 なお、その他の構成は、前述した構成と同様であることから、その説明を省略する。 Since other configurations are the same as those described above, description thereof will be omitted.
 次に、図33を参照しつつ、画像データとしてRAW画像データ(元の画像データ)のほか、圧縮画像データを送信する場合の医用画像システムの作用について説明する。 Next, the operation of the medical image system when transmitting compressed image data in addition to RAW image data (original image data) as image data will be described with reference to FIG.
 図33に示すように、撮影が行われ、FPDカセッテのセンサパネル部が被写体を透過した放射線を検出すると(ステップS501)、この検出結果に基づき読取部TFT2220においてRAW画像データとこれに基づく圧縮画像データとが生成される(ステップS502)。カセッテ制御部は、RAW画像データをコンソールに送信するか否かを判断し(ステップS503)、RAW画像データを送信する場合(ステップS503:YES)には、当該画像データがRAW画像データである旨の付帯データを付すとともに、一の画像を構成するRAW画像データを複数の段階に分割して、コンソールに対して画素単位で順次送信する(ステップS504)。
 他方、カセッテ制御部が圧縮画像データをコンソールに送信すると判断した場合(ステップS503:NO)には、当該画像データが圧縮画像データである旨の付帯データを付して、コンソールに対して当該圧縮画像データを送信する(ステップS505)。
As shown in FIG. 33, when imaging is performed and the sensor panel unit of the FPD cassette detects radiation that has passed through the subject (step S501), based on the detection result, the reading unit TFT 2220 generates RAW image data and a compressed image based thereon. Data is generated (step S502). The cassette control unit determines whether or not to transmit RAW image data to the console (step S503), and when RAW image data is transmitted (step S503: YES), the image data is RAW image data. The RAW image data constituting one image is divided into a plurality of stages and sequentially transmitted to the console in units of pixels (step S504).
On the other hand, when the cassette control unit determines that the compressed image data is to be transmitted to the console (step S503: NO), additional data indicating that the image data is compressed image data is attached, and the console is compressed. Image data is transmitted (step S505).
 FPDカセッテからRAW画像データが送信されると、コンソールの通信部は、画素単位で画像データを取得する(ステップS506)。そして、コンソール制御部は、FPDカセッテから送信された画素数に応じて表示部の表示領域を段階的に複数の分割領域に分割し(ステップS507)、当該分割領域に各画素を割り当てて各分割領域に割り当てられた画素のうちのいずれかの画素値に応じた画像を当該分割領域に表示させる(ステップS508)。また、コンソール制御部は、第7レイヤーまで表示させたか否かを常に判断し(ステップS509)、第7レイヤーまで表示が完了するまで処理を繰り返す。なお、RAW画像データが送信される場合の処理は、図30のステップS403からステップS408と同様であるので、詳細は省略する。 When the RAW image data is transmitted from the FPD cassette, the communication unit of the console acquires the image data in units of pixels (step S506). Then, the console control unit divides the display area of the display unit into a plurality of divided regions in a stepwise manner according to the number of pixels transmitted from the FPD cassette (step S507), assigns each pixel to the divided region, and An image corresponding to any pixel value among the pixels assigned to the area is displayed in the divided area (step S508). Further, the console control unit always determines whether or not the display up to the seventh layer has been performed (step S509), and repeats the process until the display up to the seventh layer is completed. Note that the processing when RAW image data is transmitted is the same as steps S403 to S408 in FIG.
 他方、FPDカセッテから圧縮画像データが送信されると、コンソールの通信部は、圧縮画像データを取得する(ステップS510)。コンソール制御部は、圧縮画像データの取得が完了した後に表示部にこの圧縮画像データに基づく画像を表示させる(ステップS511)。 On the other hand, when the compressed image data is transmitted from the FPD cassette, the communication unit of the console acquires the compressed image data (step S510). After the acquisition of the compressed image data is completed, the console control unit displays an image based on the compressed image data on the display unit (step S511).
 以上のように、本実施形態によれば、圧縮画像データとRAW画像データ(元の画像データ)のうち選択された画像データをコンソールに送信する。このため、再撮影の要否判断に用いる画像データの種類をユーザのニーズに合わせて選択することが可能となる。
 そして、RAW画像データを送信することとしたときは、第1の実施形態と同様に、いわゆるプログレッシブ表示を行うようになっているので、僅かずつでも画像データがコンソール側で受信されるとコンソールの表示部にそれに応じた表示がされる。このため、画像データを正常に受信していることを技師が視認可能となり、通信不良を疑う等、心理的不安に陥ることがない。
As described above, according to the present embodiment, image data selected from the compressed image data and RAW image data (original image data) is transmitted to the console. For this reason, it is possible to select the type of image data used for determining whether or not re-shooting is necessary according to the needs of the user.
When RAW image data is to be transmitted, the so-called progressive display is performed as in the first embodiment. Therefore, when image data is received on the console side even a little at a time, A corresponding display is made on the display unit. For this reason, the engineer can visually recognize that the image data is normally received, and there is no psychological anxiety such as suspected communication failure.
 また、転送ライン数を少なくして、少しずつ画像データを分けて送信することにより、データ量の多いRAW画像データをコンソールに送信した場合でも、通信にそれほど負担をかけることがない。このため、無線方式でRAW画像データを送信する場合でもストレスを感じることがない。また、画像データの転送が完了する前の比較的早い段階でポジショニングや再撮影の要否についての判断を行うことができるため、診断の効率化を実現することができる。これにより、再撮影が必要な場合には、それが分かった時点でデータの転送を中止させることにより、無駄な時間を費やすことを回避できる。他方、再撮影の必要がない場合には、技師は次の撮影の準備等を行うことができ、効率のよい診療を行うことができる。 In addition, by reducing the number of transfer lines and transmitting the image data in small increments, even when RAW image data with a large amount of data is transmitted to the console, the communication is not burdened so much. For this reason, stress is not felt even when RAW image data is transmitted by a wireless method. In addition, since it is possible to determine whether or not positioning or re-imaging is necessary at a relatively early stage before the transfer of image data is completed, it is possible to improve the efficiency of diagnosis. As a result, when re-shooting is necessary, it is possible to avoid wasting time by stopping the data transfer when it is known. On the other hand, when there is no need for re-imaging, the engineer can prepare for the next imaging and perform efficient medical treatment.
 また、コンソールに送信される画像データに当該画像データの種別に関する情報を付帯させているので、コンソールの表示部において画像データの種別(圧縮画像データかRAW画像データかの種別)に応じて確実に表示方式の切替を行うことができる。 In addition, since the image data transmitted to the console is accompanied by information on the type of the image data, it is ensured according to the type of image data (type of compressed image data or RAW image data) on the display unit of the console. The display method can be switched.
 医療の分野において、診断用画像を撮影するための医用画像システムに利用可能性がある。 In the medical field, it may be used for medical image systems for taking diagnostic images.
符号の説明Explanation of symbols
1   医用画像システム
2   FPDカセッテ(放射線画像検出器)
200 FPDカセッテ制御部
204 画像記憶部
208 FPDカセッテ通信部
3   コンソール
4   放射線発生装置
5   無線アクセスポイント
6   操作装置
7   保持装置
30  コンソール制御部
33  表示部
32  コンソール通信部
N   ネットワーク
R1  撮影室
R2  前室
1 Medical Imaging System 2 FPD Cassette (Radiation Image Detector)
200 FPD cassette control unit 204 Image storage unit 208 FPD cassette communication unit 3 Console 4 Radiation generation device 5 Wireless access point 6 Operation device 7 Holding device 30 Console control unit 33 Display unit 32 Console communication unit N Network R1 Imaging room R2 Front room

Claims (7)

  1.  被写体を透過した放射線を電気信号に変換する素子が2次元的に複数配列された放射線検出手段と、前記放射線検出手段によって取得された電気信号を読み取り、被写体の画像データを生成する読取手段と、前記読取手段によって生成された画像データを所定の分割設定に基づいて分割画像データに分割する分割画像データ生成手段と、前記分割画像データの送信順序を設定する送信管理手段と、前記送信順序に従って前記分割画像データを外部に送信する検出器通信手段と、を有する放射線画像検出器と、
     2次元状の表示領域を有する表示手段と、前記放射線画像検出器から前記分割画像データを取得するコンソール通信手段と、前記表示手段を制御する表示制御手段と、を有するコンソールと、
     を備え、
     前記表示制御手段は、撮影部位を識別する撮影部位情報に基づいて、前記表示手段の表示領域を複数の分割表示領域に分割するとともに、前記コンソール通信手段により取得された前記分割画像データを所定の割当順序に従って前記各分割表示領域に割り当てて、前記分割画像データに基づく画像を当該各分割表示領域に表示させることを特徴とする医用画像システム。
    Radiation detecting means in which a plurality of elements that two-dimensionally convert radiation transmitted through the subject are two-dimensionally arranged; reading means for reading the electrical signal acquired by the radiation detecting means and generating image data of the subject; Divided image data generating means for dividing the image data generated by the reading means into divided image data based on a predetermined division setting, transmission management means for setting the transmission order of the divided image data, and the transmission order according to the transmission order A detector communication means for transmitting the divided image data to the outside, and a radiation image detector,
    A console having display means having a two-dimensional display area, console communication means for acquiring the divided image data from the radiation image detector, and display control means for controlling the display means;
    With
    The display control means divides the display area of the display means into a plurality of divided display areas based on imaging part information for identifying an imaging part, and outputs the divided image data acquired by the console communication means to a predetermined area. A medical image system that assigns to each divided display area in accordance with an assignment order and displays an image based on the divided image data in each divided display area.
  2.  前記分割画像データ生成手段は、前記読取手段によって生成された画像データを、撮影部位を識別する撮影部位情報に基づき所定の分割領域に対応する分割画像データに分割するものであることを特徴とする請求項1に記載の医用画像システム。 The divided image data generating means divides the image data generated by the reading means into divided image data corresponding to a predetermined divided area based on imaging part information for identifying an imaging part. The medical image system according to claim 1.
  3.  前記読取手段における前記放射線検出手段からの電気信号の読取順序を、撮影部位を識別する撮影部位情報に基づいて指定する読取指定手段をさらに備えていることを特徴とする請求項1又は請求項2に記載の医用画像システム。 3. The reading designation means for designating the reading order of the electrical signals from the radiation detection means in the reading means based on imaging part information for identifying an imaging part. The medical image system described in 1.
  4.  前記分割画像データの前記送信順序は、前記送信管理手段において変更可能であり、
     前記検出装置通信手段は、前記送信管理手段によって前記送信順序が変更されたときは、この変更された送信順序とともに前記分割画像データを送信し、前記表示制御手段は、当該変更された送信順序に基づいて前記分割画像データを前記各分割表示領域に割り当てて表示させることを特徴とする請求項1から請求項3のいずれか一項に記載の医用画像システム。
    The transmission order of the divided image data can be changed in the transmission management means,
    When the transmission order is changed by the transmission management means, the detection device communication means transmits the divided image data together with the changed transmission order, and the display control means follows the changed transmission order. The medical image system according to any one of claims 1 to 3, wherein the divided image data is allocated to the divided display areas and displayed based on the divided image data.
  5.  前記検出器通信手段は、前記分割設定及び前記送信順序を付帯データとして、前記分割画像データとともに送信し、
     前記表示制御手段は、前記付帯データの中の分割設定に基づいて前記表示手段の表示領域を複数の分割表示領域に分割するとともに、前記コンソール通信手段により取得された前記分割画像データを前記付帯データの中の送信順序に基づいて前記各分割表示領域に割り当てて、前記表示手段に表示させることを特徴とする請求項1から請求項4のいずれか一項に記載の医用画像システム。
    The detector communication means transmits the division setting and the transmission order as incidental data together with the divided image data,
    The display control means divides the display area of the display means into a plurality of divided display areas based on the division setting in the auxiliary data, and the divided image data acquired by the console communication means is added to the auxiliary data. 5. The medical image system according to claim 1, wherein the medical image system is assigned to each of the divided display areas based on a transmission order in the image and displayed on the display unit. 6.
  6.  前記放射線画像検出器は、前記分割画像データを所定の画像間引き率に基づいて分割間引き画像データを生成する分割間引き画像データ生成手段をさらに有し、
     前記検出器通信手段は、前記分割設定、前記送信順序及び前記画像間引き率を付帯データとして、前記分割間引き画像データとともに送信し、
     前記表示制御手段は、前記コンソール通信手段により取得された前記分割間引き画像データを前記付帯データの中の画像間引き率に基づいて前記表示手段に表示させることを特徴とする請求項1から請求項4のいずれか一項に記載の医用画像システム。
    The radiological image detector further includes a divided thinned image data generating unit that generates divided thinned image data based on a predetermined image thinning rate of the divided image data,
    The detector communication means transmits the division setting, the transmission order and the image thinning rate as incidental data together with the divided thinned image data,
    The display control means causes the display means to display the divided thinned image data acquired by the console communication means on the basis of an image thinning rate in the auxiliary data. The medical image system according to any one of the above.
  7.  前記放射線画像検出器は、前記分割設定及び前記画像間引き率を設定するパラメータ設定手段をさらに備え、前記パラメータ設定手段は、前記分割設定及び前記画像間引き率を変更可能であり、前記送信管理手段は、前記送信順序を変更可能であることを特徴とする請求項6に記載の医用画像システム。 The radiation image detector further includes parameter setting means for setting the division setting and the image thinning rate, the parameter setting means is capable of changing the division setting and the image thinning rate, and the transmission management means The medical image system according to claim 6, wherein the transmission order can be changed.
PCT/JP2009/054022 2008-07-08 2009-03-04 Medical image system WO2010004779A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-177681 2008-07-08
JP2008177681A JP2010017213A (en) 2008-07-08 2008-07-08 Medical imaging system
JP2008-179136 2008-07-09
JP2008179136A JP2010017296A (en) 2008-07-09 2008-07-09 Medical imaging system
JP2008-190653 2008-07-24
JP2008190653A JP2010022752A (en) 2008-07-24 2008-07-24 Medical image system

Publications (1)

Publication Number Publication Date
WO2010004779A1 true WO2010004779A1 (en) 2010-01-14

Family

ID=41506901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054022 WO2010004779A1 (en) 2008-07-08 2009-03-04 Medical image system

Country Status (1)

Country Link
WO (1) WO2010004779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131336A (en) * 2016-01-26 2017-08-03 東芝メディカルシステムズ株式会社 Photon counting type X-ray CT apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067220A (en) * 1998-08-21 2000-03-03 Canon Inc System, device and method for processing image
JP2005057494A (en) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd Image communication apparatus and method
JP2005303535A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Image data communicating method
JP2005328940A (en) * 2004-05-19 2005-12-02 Fuji Photo Film Co Ltd Medical image display method, medical image processor and medical image display device
JP2006026083A (en) * 2004-07-15 2006-02-02 Canon Inc Imaging device, control method therefor and program
JP2006333899A (en) * 2005-05-31 2006-12-14 Konica Minolta Medical & Graphic Inc Method, apparatus and program for image processing
WO2007141995A1 (en) * 2006-06-05 2007-12-13 Konica Minolta Medical & Graphic, Inc. Display processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067220A (en) * 1998-08-21 2000-03-03 Canon Inc System, device and method for processing image
JP2005057494A (en) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd Image communication apparatus and method
JP2005303535A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Image data communicating method
JP2005328940A (en) * 2004-05-19 2005-12-02 Fuji Photo Film Co Ltd Medical image display method, medical image processor and medical image display device
JP2006026083A (en) * 2004-07-15 2006-02-02 Canon Inc Imaging device, control method therefor and program
JP2006333899A (en) * 2005-05-31 2006-12-14 Konica Minolta Medical & Graphic Inc Method, apparatus and program for image processing
WO2007141995A1 (en) * 2006-06-05 2007-12-13 Konica Minolta Medical & Graphic, Inc. Display processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131336A (en) * 2016-01-26 2017-08-03 東芝メディカルシステムズ株式会社 Photon counting type X-ray CT apparatus

Similar Documents

Publication Publication Date Title
JP5167966B2 (en) Radiographic imaging system and radiographic image detector
JP5239623B2 (en) Radiation image generation system and radiation image detector
EP1921466A2 (en) Radiation image radiographing system and radiation image detecting apparatus
JP2013126604A (en) Radiographic image photographing system
JPWO2011142157A1 (en) Radiation imaging system
WO2006030594A1 (en) Radiographic system
JP2008145101A (en) Cassette type radiographic image detector, and radiographic image detection system
JP5200625B2 (en) Radiation image generation system
JP2010022419A (en) Medical image system
JP2010264000A (en) Radiation image detector and radiation image capturing system
JP2012157666A (en) Radiation image photographing system
JP2010029419A (en) Radiation image photographing system
JP5585390B2 (en) Radiation imaging system
JP5707869B2 (en) Radiation imaging system
JP2010022752A (en) Medical image system
WO2010004779A1 (en) Medical image system
JP2006026283A (en) Radiography system
JP6900178B2 (en) Control device for radiography system
JP2010017296A (en) Medical imaging system
JP2010017213A (en) Medical imaging system
JP7020509B2 (en) Control device
JP2005323732A (en) Radiographic image detecting apparatus and radiographic imaging system
JP2017113344A (en) Dynamic state imaging device and dynamic state imaging system
JP2010012060A (en) Portable radiation image detector and radiation image photographing system
WO2010001635A1 (en) Radiation image capturing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794226

Country of ref document: EP

Kind code of ref document: A1