WO2010001894A1 - Aqueous slurry and manufacturing method therefor - Google Patents

Aqueous slurry and manufacturing method therefor Download PDF

Info

Publication number
WO2010001894A1
WO2010001894A1 PCT/JP2009/061964 JP2009061964W WO2010001894A1 WO 2010001894 A1 WO2010001894 A1 WO 2010001894A1 JP 2009061964 W JP2009061964 W JP 2009061964W WO 2010001894 A1 WO2010001894 A1 WO 2010001894A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
carbon material
nanocomposite
slurry
water slurry
Prior art date
Application number
PCT/JP2009/061964
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 川村
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010001894A1 publication Critical patent/WO2010001894A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking

Definitions

  • the present invention relates to a water slurry using a nanocomposite composed of nanoparticles capable of redox and a carbon material covering the nanoparticles, and a method for producing the same.
  • Powdered carbon materials are used in a wide variety of applications such as positive and negative electrodes in electrochemical electricity storage devices, conductive paints for antistatic purposes, and aqueous paints as coloring materials.
  • International Publication No. 2007/044614 pamphlet discloses a nanocomposite material composed of nanoparticles capable of oxidation-reduction and a carbon material covering the nanoparticles.
  • the surface of the powdery carbon material is generally hydrophobic and difficult to disperse in water. Therefore, a slurry in which a carbon material is stably and uniformly dispersed in water and a method for producing the same have been desired.
  • Non-Patent Document 1 In order to disperse the carbon nanotubes in water, a method is disclosed in which the carbon nanotubes are uniformly dispersed in water only by ultrasonic irradiation after the carbon nanotubes are added to the green tea aqueous solution.
  • the nanocomposite material forms a strong aggregate in terms of the manufacturing method, and it was difficult to disperse it in water with an average secondary particle diameter of 1 ⁇ m or less only by adding a tea component or the like.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to coat a nanoparticle capable of redox (hereinafter also simply referred to as “nanoparticle”) and the nanoparticle.
  • An object is to provide a water slurry in which a nanocomposite material made of a carbon material is dispersed with an average secondary particle diameter of 1 ⁇ m or less, and a method capable of producing the water slurry by an inexpensive and simple method.
  • the present invention relates to an average of dispersed nanocomposites in an aqueous slurry in which a nanocomposite composed of a redox-capable nanoparticle and a carbon material covering the nanoparticle is dispersed in an aqueous solution containing a tea component.
  • the secondary particle diameter is 1 ⁇ m or less.
  • the carbon material preferably forms a layer.
  • the number of layers formed by the carbon material is more preferably 2 to 1000, the total thickness is 1 to 200 nm, and the diameter of the nanoparticles is more preferably 0.5 to 400 nm.
  • the water slurry of the present invention has a weight reduction rate of 3% by weight or less when the nanocomposite reaches a temperature of 600 ° C. at a temperature increase rate of 10 ° C./min from room temperature in a nitrogen atmosphere. It is preferable.
  • the nanocomposite material in the water slurry of the present invention is preferably obtained by a production method including the following steps (1) and (2) in this order.
  • the present invention is also a method for producing the water slurry of the present invention described above, wherein a raw slurry containing a nanocomposite material comprising a redox-capable nanoparticle and a carbon material covering the nanoparticle is pulverized and pulverized.
  • the present invention also provides a method for producing a water slurry in which the raw material slurry mixed with an aqueous solution containing a tea component is mixed.
  • a water slurry dispersed with an average secondary particle diameter of 1 ⁇ m or less which is a water slurry using a nanocomposite material comprising a nanoparticle capable of redox and a carbon material covering the nanoparticle.
  • the method which can manufacture the said water slurry by a cheap and simple method can be provided.
  • the water slurry of the present invention is characterized in that nanocomposite particles are dispersed in water with an average secondary particle diameter of 1 ⁇ m or less, preferably 0.02 to 0.8 ⁇ m in the presence of a tea component.
  • nanocomposite particles are dispersed in water with an average secondary particle diameter of 1 ⁇ m or less, preferably 0.02 to 0.8 ⁇ m in the presence of a tea component.
  • conductivity is improved when applied to electrode materials and conductive materials, filling properties and adhesion during coating film formation. Effects, such as improvement in hardness and hardness.
  • the “average secondary particle size” of the nanocomposite material dispersed in the water slurry means the particle size in which the nanocomposite material is actually dispersed in water. The aggregated particle diameter is shown.
  • the average secondary particle size of such a nanocomposite can be calculated using a laser diffraction / scattering method.
  • a laser diffraction / scattering type particle size distribution measuring device such as a microtrack HRA (Leads and North wrap), SALD series (manufactured by Shimadzu Corporation), LS series (manufactured by Beckman Coulter), etc. are added to the water slurry of the present invention, diluted and adjusted to a predetermined concentration, and then measured.
  • a particle size distribution curve is obtained and indicates a value calculated as a 50 % by weight equivalent particle diameter (D 50 ).
  • the nanocomposite material used in the present invention has a redox-capable nanoparticle and a carbon material that covers a part or all of the nanoparticle in a bag shape, that is, about 0.5 nm to 800 nm, The typical shape is granular.
  • redox capable of the nanoparticles in the nanocomposite means that the metal atoms constituting the nanoparticles can exchange electrons.
  • the ability of the nanoparticles to be redoxed in this way has the advantage that the carbon material precursor polymerization and / or the carbon material intermediate formation and carbonization can be promoted.
  • the nanocomposite material in the present invention preferably has the following requirements (A), and more preferably has the following requirements (B), (C) and (D).
  • the carbon material forms a layer
  • the number of layers formed by the carbon material is 2 to 1000, preferably 2 to 100.
  • the total thickness of the layers formed by the carbon material is 1 to 200 nm, preferably 1 to 20 nm.
  • the diameter of the nanoparticles is 0.5 to 400 nm, preferably 0.5 to 200 nm.
  • the carbon material is preferably a graphite-like layer, that is, a multilayer. This layer may be curved or bent along the surface of the nanoparticles.
  • the nanoparticle diameter in the nanocomposite material is less than 0.5 nm, it is difficult to suppress aggregation of the nanoparticles in the nanoparticle production process described later.
  • the particle diameter as a nanocomposite material also including the layer of a carbon material will become enlarged, and there exists a possibility that a suitable effect may not be acquired with respect to uses, such as an electrode material and a conductive paint.
  • the diameter of the nanoparticles is more preferably in the range of 0.5 to 50 nm.
  • the nanoparticle in the present invention is not limited to an equiaxed shape including a substantially spherical shape, that is, a particle having an aspect ratio of about 1, but also includes a rod shape, a cylindrical shape, a prism shape, and the like having a major axis and a minor axis.
  • the nanoparticles have a major axis and a minor axis, it is sufficient that at least the minor axis is within the above range.
  • the nanoparticles in the present invention are preferably equiaxed particles including a substantially spherical shape.
  • the shape, the number of layers when the carbon material forms a layer, the total thickness of the carbon layer, and the diameter of the nanoparticle can be measured by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the shape and particle size of the carbon material formed around the nanoparticles are largely dependent on the shape and particle size of the nanoparticles.
  • a material obtained by a production method including the following steps (1) and (2) in this order can be suitably used.
  • the nanoparticles capable of redox are produced as follows. That is, using one or more nanoparticle precursors and one or more dispersing agents, the nanoparticle precursors and the dispersing agent are reacted or combined to form a precursor complex. Generally, the nanoparticle precursor and the dispersant are dissolved in an appropriate solvent or dispersion medium (the one obtained at this time is referred to as “composite solution”) or dispersed (the one obtained at this time is “ This precursor complex is formed by combining the nanoparticle precursor and the dispersant.
  • the nanoparticle precursor is not particularly limited as long as it promotes polymerization of a carbon material precursor and / or carbonization of a carbon material intermediate, which will be described later.
  • lithium, sodium, potassium as constituent elements
  • Alkali metal elements such as calcium and magnesium
  • Group 4 elements such as titanium and zirconium
  • Group 5 elements such as vanadium and niobium
  • Group 6 elements such as chromium, molybdenum and tungsten
  • Copper Group 11 elements such as silver and gold
  • Group 12 elements such as zinc and cadmium
  • Group 13 elements such as aluminum, gallium and indium
  • Group 14 elements such as silicon, germanium, tin and lead, and manganese
  • transition metal elements such as iron, cobalt, nickel, palladium, and platinum.
  • the nanoparticle precursor examples include a simple metal composed of these elements, an alloy including two or more of these elements, a metal compound including one or more of these elements, or a mixture thereof.
  • the nanoparticle precursor preferably contains one or more elements selected from the group consisting of manganese, iron, cobalt, and nickel because the valence can be easily changed.
  • the precursor complex includes one or more dispersants.
  • This dispersant is selected from those that promote the production of nanoparticles having the desired stability, size, and uniformity.
  • the dispersant includes various organic molecules, polymers, oligomers and the like. This dispersant is used after being dissolved or dispersed in a suitable solvent or dispersion medium.
  • solvent or dispersion medium used for dissolving or dispersing the precursor complex including the nanoparticle precursor and the dispersant various known solvents or dispersion media can be used.
  • Preferred examples of such a solvent or dispersion medium include water, methanol, ethanol, n-propanol, isopropyl alcohol, acetonitrile, acetone, tetrahydrofuran, ethylene glycol, dimethylformamide, dimethyl sulfoxide, and methylene chloride. These may be used as a mixture.
  • the precursor complex dissolved or dispersed in the solvent or dispersion medium described above is considered to be a complex obtained from a nanoparticle precursor and a dispersant surrounded by solvent molecules or dispersion medium molecules.
  • the dried precursor complex can be obtained by removing the solvent or the dispersion medium by drying or the like.
  • the dried precursor complex can be returned to a solution or suspension by adding an appropriate solvent or dispersion medium.
  • the nanoparticle precursor and the dispersant are dissolved or dispersed in a solvent or dispersion medium to prepare a complex solution or a complex suspension, in the complex solution or the complex suspension,
  • the molar ratio of the dispersant to the nanoparticle precursor can be controlled.
  • the dispersant can promote the formation of nanoparticles with a very small and uniform particle size.
  • the nanoparticle precursor is formed in a size of 1 ⁇ m or less in the presence of a dispersant. Preferably it is 500 nm or less, More preferably, it is 50 nm or less.
  • an additive for promoting the formation of nanoparticles may be included.
  • an inorganic acid or a basic compound can be added.
  • the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid
  • examples of the inorganic base compound include sodium hydroxide, potassium hydroxide, calcium hydroxide, and ammonium hydroxide.
  • a basic substance for example, aqueous ammonia solution
  • the nanoparticle precursor can be finely separated by adjusting the complex solution or the complex suspension to a high pH value within the above-described range, the pH of the complex solution or the complex suspension is Affects the particle size of the nanoparticles.
  • a solid substance for promoting the formation of nanoparticles may be added to the complex solution or the complex suspension.
  • an ion exchange resin as a solid material can be added during nanoparticle formation. Solid material can be removed from the final complex solution or complex suspension by simple manipulations.
  • nanoparticles are obtained by mixing the complex solution or complex suspension for 0.5 hours to 14 days.
  • the mixing temperature is about 0 to 200 ° C.
  • Mixing temperature is an important factor affecting the particle size of the nanoparticles.
  • the nanoparticle precursor When iron is used as the nanoparticle precursor, typical examples of the nanoparticle precursor include iron compounds such as iron chloride, iron nitrate, and iron sulfate.
  • the nanoparticle precursor becomes nanoparticles by reacting with or binding to the dispersant. These compounds are often dissolved in an aqueous solvent.
  • By-products are formed by the formation of nanoparticles using metal salts.
  • a typical by-product is hydrogen gas that is generated when nanoparticles are prepared using metal.
  • the nanoparticles are activated in the mixing step or are further reduced with hydrogen.
  • the nanoparticles are preferably formed as a suspension of stably active nanoparticles.
  • the aggregation of nanoparticles is suppressed by the stability of the nanoparticles. Even if some or all of the nanoparticles settle, they are easily resuspended by mixing.
  • the nanoparticles obtained as described above can play a role as a catalyst for promoting the polymerization of the carbon material precursor and / or the formation of the carbon material intermediate in the step (1).
  • the carbon material precursor used in step (1) is preferably one that can disperse nanoparticles.
  • a carbon material intermediate is formed on the surface of the nanoparticles.
  • organic materials suitable as the carbon material precursor include benzene and naphthalene derivatives having one or more aromatic rings in the molecule and a functional group for polymerization.
  • functional groups for polymerization include COOH, C ⁇ O, OH, C ⁇ C, SO 3 , NH 2 , SOH, and N ⁇ C ⁇ O.
  • Preferred carbon material precursors include resorcinol, phenol resin, melamine-formamide gel, polyfurfuryl alcohol, polyacrylonitrile, sugar, petroleum pitch and the like.
  • the nanoparticles are mixed with the carbon material precursor so that the carbon material precursor polymerizes on the surface. If the nanoparticles are catalytically active, they can play a role in initiating and / or promoting the polymerization of the carbon material precursor in the vicinity of the nanoparticles.
  • the amount of nanoparticles with respect to the carbon material precursor may be set so that the carbon material precursor uniformly forms the maximum amount of the carbon material intermediate.
  • the amount of nanoparticles also depends on the type of carbon material precursor used.
  • the molar ratio of the carbon material precursor to the nanoparticles is preferably 0.1: 1 to 100: 1, more preferably 1: 1 to 30: 1. This molar ratio, the type of nanoparticles, and the particle size affect the thickness of the resulting carbon material.
  • the mixture of the nanoparticles and the carbon material precursor is sufficiently aged until the carbon material intermediate is sufficiently formed on the surface of the nanoparticles.
  • the time required to form the carbon material intermediate depends on the temperature, the type of nanoparticles, the concentration of nanoparticles, the pH of the solution, and the type of carbon material precursor used.
  • ammonia for pH adjustment by adding ammonia for pH adjustment, the rate of polymerization is increased, the amount of crosslinking between the carbon material precursors is increased, and there are cases where polymerization can be performed effectively.
  • the carbon material precursor that can be polymerized by heat usually polymerizes as the temperature rises.
  • the temperature at which the carbon material precursor is polymerized is preferably 0 to 200 ° C., more preferably 25 to 120 ° C.
  • the optimum polymerization conditions are 0 to 90 ° C.
  • the aging time is 1 to 72 hours.
  • step (2) the carbon material intermediate obtained in step (1) is carbonized to form a carbon material to obtain a nanocomposite material.
  • Carbonization is usually performed by firing.
  • the calcination is performed at a temperature of 500 to 2500 ° C., preferably 1000 to 2500 ° C.
  • oxygen atoms and nitrogen atoms in the carbon material intermediate are released, and rearrangement of carbon atoms occurs to form a carbon material.
  • the carbon material thus formed is preferably graphite-like layered (multilayered), but the number of layers can be controlled by the type, thickness and firing temperature of the carbon material intermediate.
  • the thickness of the carbon material (layer thickness) in the nanocomposite material can also be controlled by adjusting the progress of carbonization of the carbon material precursor and / or the carbon material intermediate.
  • the nanocomposite material obtained by the above method has an average secondary particle diameter of 3 to 100 ⁇ m when suspended as a slurry in water.
  • the content of the nanocomposite material in the slurry is 1 part by weight or more and less than 50 parts by weight with respect to 100 parts by weight of water.
  • Water is used as a solvent for dispersing the nanocomposite, and a water-soluble solvent such as ethanol, methanol, acetone, or ethyl acetate may be added as necessary.
  • the amount of the water-soluble solvent added at this time is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of water.
  • the nanocomposite material obtained by the above method usually has a BET specific surface area (measured by a nitrogen adsorption method according to the method specified in JIS-Z-8830) in the range of 80 to 400 m 2 / g. Yes, preferably in the range of 100 to 200 m 2 / g.
  • a BET specific surface area measured by a nitrogen adsorption method according to the method specified in JIS-Z-8830
  • the nanocomposite material has a BET specific surface area of less than 80 m 2 / g, it suggests that the primary particles of the nanocomposite material are sintered, making it difficult to disperse by pulverization described later. There is a fear.
  • the BET specific surface area of the nanocomposite material exceeds 400 m 2 / g, the viscosity of the water slurry obtained by pulverization described later tends to be remarkably high.
  • the content of nanoparticles in the nanocomposite material is not particularly limited, but is usually in the range of 1000 to 200,000 ppm in terms of metal atoms.
  • the nanocomposite material in the present invention preferably has a weight reduction rate of 3% by weight or less when the temperature is increased from room temperature at a temperature increase rate of 10 ° C./min and reaches 600 ° C. in a nitrogen atmosphere. More preferably, it is 2% by weight or less.
  • a weight reduction rate exceeds 3% by weight, the tea component is dispersed without adding.
  • the weight reduction rate is 3% by weight or less, the dispersibility is poor, and the dispersibility is remarkably improved by the addition of the tea component, and the present invention can be applied particularly preferably.
  • the present invention exists in the state where the nanocomposite material is dispersed with an average secondary particle diameter of 1 ⁇ m or less from the raw material slurry in which the nanocomposite material is dispersed in water with the average secondary particle diameter of 3 to 100 ⁇ m.
  • a method for producing a water slurry for obtaining the water slurry of the present invention is also provided.
  • the method for producing a water slurry of the present invention comprises a raw material slurry containing a nanocomposite material composed of nanoparticles capable of oxidation and reduction and a carbon material covering the nanoparticles, and contains the pulverized raw material slurry and a tea component. It is characterized by mixing with an aqueous solution.
  • the “raw material slurry” refers to a water slurry for producing the water slurry of the present invention, which contains a nanocomposite material but does not contain a tea component.
  • the pulverization of the raw material slurry in which the nanocomposite material is suspended can be performed using a pulverizer such as a ball mill, a high-speed rotary pulverizer, or a medium stirring mill.
  • a pulverizer such as a ball mill, a high-speed rotary pulverizer, or a medium stirring mill.
  • a medium used for pulverization a known medium such as alumina or zirconia can be used.
  • the time for pulverizing the raw material slurry with a pulverizer is not particularly limited, but is preferably 0.1 to 5 hours. If the pulverization time is less than 0.1 hour, it may be difficult to apply sufficient pulverization energy to weaken strong aggregation between the nanocomposites. On the other hand, even if the pulverization time is longer than 5 hours, an effect commensurate with the treatment time cannot be obtained.
  • an aqueous solution containing a tea component is mixed with the ground slurry after pulverization.
  • the “tea component” in the present invention refers to tea leaves and / or stems of oolong tea, green tea, black tea, etc., water, water-containing ethanol, ethanol, water-containing methanol, methanol, acetone, ethyl acetate, etc. at a predetermined temperature.
  • the solvent used for extraction of the tea component may be a solvent in which two or more selected from the above are mixed.
  • the extraction amount of the tea component is affected by the blending ratio of the solvent and tea leaves and / or tea stems, but is usually 0.01 to 5 parts by weight of tea leaves and / or tea stems with respect to 100 parts by weight of the solvent.
  • the tea component is preferably extracted until the extraction amount of the tea component reaches equilibrium.
  • the tea components obtained by such extraction include “tea science” edited by Keiichiro Muramatsu, p. 85-93 compounds such as catechins (catechin, gallocatechin, epicatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate) and tannins such as polyphenols Mainly contained.
  • catechins catechin, gallocatechin, epicatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate
  • tannins such as polyphenols Mainly contained.
  • the mixing amount of the aqueous solution containing the tea component is preferably in the range of 1 to 200 parts by weight, and more preferably in the range of 5 to 100 parts by weight with respect to 100 parts by weight of the raw slurry after pulverization.
  • the mixing amount of the aqueous solution containing the tea component is less than 1 part by weight with respect to 100 parts by weight of the raw material slurry after pulverization, sufficient tea component cannot be supplied to disperse the nanocomposite material to a desired particle size. This is because the dispersed particle size in water tends to be large, and when it exceeds 200 parts by weight, the effect corresponding to the amount added cannot be obtained.
  • the nanocomposite After pulverizing the raw slurry containing the nanocomposite according to the production method of the present invention, the nanocomposite has an average secondary particle size in the aqueous solution containing the tea component by adding an aqueous solution containing the tea component. A water slurry existing in a dispersed state at 1.0 ⁇ m or less can be produced. On the other hand, even if the tea component is added to the raw slurry containing the nanocomposite material before pulverization and pulverized, the nanocomposite material is present in a dispersed state with an average secondary particle size of 1.0 ⁇ m or less. A water slurry cannot be obtained.
  • the application of the water slurry of the present invention is not particularly limited, but can be suitably applied to the same application as a conventionally known water slurry containing carbon black, and the water slurry is applied to a substrate, or resin or By compounding with inorganic powder and other water slurry, electrode materials and conductive materials for lithium secondary batteries, non-aqueous capacitors and fuel cells, conductive paints, hard coat materials, water-based paints, pneumatic tires, etc. It can be applied to a wide range of applications such as wet masterbatch for manufacturing rubber products.
  • Example 1 BET specific surface area 117m 2 / g, average secondary particle diameter 16 ⁇ m, Fe content 8440ppm, under nitrogen atmosphere, heated from room temperature at a heating rate of 10 ° C / min, weight loss when reaching 600 ° C 30 parts by weight of a nanocomposite powder having a rate of 0.8% by weight was added to 970 parts by weight of pure water and stirred to obtain a raw material slurry.
  • the raw material slurry and the aqueous solution containing the tea component were mixed at a weight ratio of 1: 1, and subjected to ultrasonic treatment for 5 minutes with a 300 W ultrasonic generator.
  • the average secondary particle diameter of the nanocomposite material in the obtained water slurry was 0.50 ⁇ m.
  • the above-mentioned average secondary particle diameter is adjusted by adding a water slurry to water using a laser scattering particle size distribution analyzer (Microtrac HRA, manufactured by Leeds and Northrup Co., Ltd.) and diluting it to a predetermined concentration.
  • the particle size distribution curve is measured, and the value calculated as the 50 % by weight equivalent particle diameter (D 50 ) is indicated.
  • the BET specific surface area described above refers to a value calculated by a nitrogen adsorption method according to the method defined in JIS-Z-8830.
  • the liquid color (L value, a value, b value) of the aqueous solution containing the above-described tea component is measured by placing the aqueous solution in a glass cell and using a colorimetric color difference meter (ZE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.) The value obtained by measuring twice using and calculating the arithmetic average of the values.
  • ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the weight reduction rate described above was measured using a thermogravimetric differential thermal simultaneous measurement apparatus (TG / DTA300, manufactured by Seiko Electronics), a nitrogen flow rate of 200 ml / min, a nanocomposite powder of 8.0 mg, and ⁇ -Al 2 O 3 as a reference. 10 mg each in a platinum cell, heated from room temperature to 800 ° C. at a rate of 10 ° C./min without a top cover, measured TG curve, and the weight loss from the room temperature to 600 ° C. Based on calculations.
  • TG / DTA300 thermogravimetric differential thermal simultaneous measurement apparatus
  • Example 1 A water slurry containing the nanocomposite material was prepared in the same manner as in Example 1 except that the aqueous solution containing the tea component was not added. The water slurry and pure water were mixed at a weight ratio of 1: 1, and sonicated for 5 minutes with a 300 W ultrasonic generator. The average secondary particle diameter (measured in the same manner as in Example 1) of the nanocomposite material in the obtained water slurry was 6.8 ⁇ m.
  • Example 2 After mixing 30 parts by weight of the nanocomposite powder used in Example 1 with 970 parts by weight of the aqueous solution containing the tea component prepared in Example 1, the nanocomposite material was pulverized by the same method as in Example 1 and then ground. A water slurry containing was obtained. The water slurry and pure water were mixed at a weight ratio of 1: 1, and sonicated for 5 minutes with a 300 W ultrasonic generator. The average secondary particle diameter (measured in the same manner as in Example 1) of the nanocomposite material in the obtained slurry was 6.2 ⁇ m.
  • Ultrasonic treatment was performed for 5 minutes with a 300 W ultrasonic generator.
  • the average secondary particle diameter of the nanocomposite material in the obtained water slurry was 0.47 ⁇ m.

Abstract

Provided are aqueous slurries made by dispersing nano-composite materials made from redox-capable nanoparticles and carbon materials coating said nanoparticles in aqueous solutions comprising tea components, wherein the mean secondary particle size of the dispersed nano-composite material is 1 µm or less, aqueous slurries wherein nano-composite materials made from redox-capable nanoparticles and carbon materials that coat said nanoparticles are dispersed with a mean secondary particle size of 1 µm or less by means of an aqueous slurry manufacturing method wherein a starting material slurry comprising redox-capable nanoparticles and carbon materials coating said nanoparticles is pulverized, and the pulverized starting material slurry is mixed with an aqueous solution comprising tea components, as well as a method that enables inexpensive and simple manufacture of said aqueous slurries.

Description

水スラリーおよびその製造方法Water slurry and method for producing the same
 本発明は、酸化還元可能なナノ粒子と当該ナノ粒子を被覆する炭素材料からなるナノ複合材料を用いた水スラリー、およびその製造方法に関する。 The present invention relates to a water slurry using a nanocomposite composed of nanoparticles capable of redox and a carbon material covering the nanoparticles, and a method for producing the same.
 粉末状の炭素材料は、電気化学的蓄電デバイスにおける正極および負極の電極、帯電防止を目的とした導電性塗料、着色材料としての水性塗料など、多岐にわたる用途に用いられている。国際公開第2007/044614号パンフレット(特許文献1)には、酸化還元可能なナノ粒子と、当該ナノ粒子を被覆する炭素材料からなるナノ複合材料が開示されている。しかしながら、粉末状の炭素材料の表面は一般に疎水性であり、水への分散が困難である。そこで、炭素材料が安定に水中に均一に分散したスラリーおよびその製造方法が望まれていた。 Powdered carbon materials are used in a wide variety of applications such as positive and negative electrodes in electrochemical electricity storage devices, conductive paints for antistatic purposes, and aqueous paints as coloring materials. International Publication No. 2007/044614 pamphlet (Patent Document 1) discloses a nanocomposite material composed of nanoparticles capable of oxidation-reduction and a carbon material covering the nanoparticles. However, the surface of the powdery carbon material is generally hydrophobic and difficult to disperse in water. Therefore, a slurry in which a carbon material is stably and uniformly dispersed in water and a method for producing the same have been desired.
 Genki Nakamura et al., 「Green Tea Solution Individually Solubilizes Single-walled Carbon Nanotubes」, Chemistry Letters Vol. 36, No.9 (2007) p.1140-1141(非特許文献1)には、代表的な炭素材料であるカーボンナノチューブを水へ分散するため、カーボンナノチューブを緑茶水溶液に添加後、超音波照射のみにより、カーボンナノチューブを水へ均一に分散させる方法が開示されている。 Genki Nakamura et al., “Green Tea Solution Individually Solubilizes Single-walled Carbon Nanotubes”, Chemistry Letters Vol. 36, No. 9 (2007) p.1140-1141 (Non-Patent Document 1) In order to disperse the carbon nanotubes in water, a method is disclosed in which the carbon nanotubes are uniformly dispersed in water only by ultrasonic irradiation after the carbon nanotubes are added to the green tea aqueous solution.
国際公開第2007/044614号パンフレットInternational Publication No. 2007/044614 Pamphlet
 しかしながら、ナノ複合材料は、製法上強固な凝集体を形成しており、茶成分などの添加のみで水中へ平均二次粒子径1μm以下で分散させることは困難であった。 However, the nanocomposite material forms a strong aggregate in terms of the manufacturing method, and it was difficult to disperse it in water with an average secondary particle diameter of 1 μm or less only by adding a tea component or the like.
 本発明は、上記課題を解決するためになされたものであって、その目的とするところは、酸化還元可能なナノ粒子(以下、単に「ナノ粒子」ともいう)と、当該ナノ粒子を被覆する炭素材料からなるナノ複合材料が平均二次粒子径1μm以下で分散した水スラリー、ならびに、安価にかつ簡便な方法により当該水スラリーを製造できる方法を提供することである。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to coat a nanoparticle capable of redox (hereinafter also simply referred to as “nanoparticle”) and the nanoparticle. An object is to provide a water slurry in which a nanocomposite material made of a carbon material is dispersed with an average secondary particle diameter of 1 μm or less, and a method capable of producing the water slurry by an inexpensive and simple method.
 本発明は、茶成分を含有する水溶液に、酸化還元可能なナノ粒子と前記ナノ粒子を被覆する炭素材料からなるナノ複合材料を分散させてなる水スラリーにおいて、分散しているナノ複合材料の平均二次粒子径が1μm以下であることを特徴とする。 The present invention relates to an average of dispersed nanocomposites in an aqueous slurry in which a nanocomposite composed of a redox-capable nanoparticle and a carbon material covering the nanoparticle is dispersed in an aqueous solution containing a tea component. The secondary particle diameter is 1 μm or less.
 本発明の水スラリーにおいて、前記炭素材料が層を形成していることが好ましい。この場合、前記炭素材料が形成する層は、その数が2~1000、その総厚みが1~200nmであり、かつ、ナノ粒子の径が0.5~400nmであることがより好ましい。 In the water slurry of the present invention, the carbon material preferably forms a layer. In this case, the number of layers formed by the carbon material is more preferably 2 to 1000, the total thickness is 1 to 200 nm, and the diameter of the nanoparticles is more preferably 0.5 to 400 nm.
 本発明の水スラリーは、ナノ複合材料が、窒素雰囲気下において、室温から、昇温速度10℃/分で昇温して、600℃に到達した時の重量減少率が3重量%以下であることが、好ましい。 The water slurry of the present invention has a weight reduction rate of 3% by weight or less when the nanocomposite reaches a temperature of 600 ° C. at a temperature increase rate of 10 ° C./min from room temperature in a nitrogen atmosphere. It is preferable.
 本発明の水スラリーにおけるナノ複合材料は、以下の(1)及び(2)の工程をこの順で含む製造方法により得られるものであることが、好ましい。 The nanocomposite material in the water slurry of the present invention is preferably obtained by a production method including the following steps (1) and (2) in this order.
 (1)酸化還元可能なナノ粒子の存在下、炭素材料前駆体を重合させ、前記ナノ粒子の表面に炭素材料中間体を形成させる工程、
 (2)前記炭素材料中間体を炭化して、前記ナノ粒子を被覆する炭素材料を形成し、ナノ複合材料を製造する工程。
(1) a step of polymerizing a carbon material precursor in the presence of nanoparticles capable of redox, and forming a carbon material intermediate on the surface of the nanoparticles;
(2) A step of carbonizing the carbon material intermediate to form a carbon material that covers the nanoparticles to produce a nanocomposite material.
 本発明はまた、上述した本発明の水スラリーを製造する方法であって、酸化還元可能なナノ粒子と当該ナノ粒子を被覆する炭素材料とからなるナノ複合材料を含む原料スラリーを粉砕し、粉砕された原料スラリーと茶成分を含有する水溶液とを混合する水スラリーの製造方法についても提供する。 The present invention is also a method for producing the water slurry of the present invention described above, wherein a raw slurry containing a nanocomposite material comprising a redox-capable nanoparticle and a carbon material covering the nanoparticle is pulverized and pulverized. The present invention also provides a method for producing a water slurry in which the raw material slurry mixed with an aqueous solution containing a tea component is mixed.
 本発明によれば、酸化還元可能なナノ粒子と、当該ナノ粒子を被覆する炭素材料からなるナノ複合材料を用いた水スラリーでありながら、平均二次粒子径1μm以下で分散された水スラリーを提供することができる。また、当該水スラリーを安価にかつ簡便な方法により製造できる方法を提供することができる。 According to the present invention, a water slurry dispersed with an average secondary particle diameter of 1 μm or less, which is a water slurry using a nanocomposite material comprising a nanoparticle capable of redox and a carbon material covering the nanoparticle, Can be provided. Moreover, the method which can manufacture the said water slurry by a cheap and simple method can be provided.
 本発明の水スラリーは、茶成分の存在下、ナノ複合粒子が平均二次粒子径1μm以下、好ましくは0.02~0.8μmで水中に分散していることを特徴とする。このように、ナノ複合粒子が平均二次粒子径1μm以下で分散された水スラリーを実現することで、電極材料や導電材料に適用する場合の導電性向上、塗膜形成時の充填性や密着性、硬度向上などの効果が奏される。ここで、水スラリー中で分散しているナノ複合材料の「平均二次粒子径」とは、ナノ複合材料が水中で実際に分散している粒子径を意味し、凝集している場合は、その凝集粒子径を示している。このようなナノ複合材料の平均二次粒子径は、レーザ回折散乱法を用いて算出することができ、具体的には、レーザ回折・散乱式粒度分布測定装置、たとえば、マイクロトラックHRA(リーズ アンド ノースラップ社製)、SALDシリーズ(島津製作所製)、LSシリーズ(ベックマンコールター社製)などを用いて、本発明の水スラリーを水中に添加し、希釈して所定濃度に調整した後測定し、粒度分布曲線を求め、50重量%相当粒子径(D50)として算出された値を指す。 The water slurry of the present invention is characterized in that nanocomposite particles are dispersed in water with an average secondary particle diameter of 1 μm or less, preferably 0.02 to 0.8 μm in the presence of a tea component. In this way, by realizing a water slurry in which nanocomposite particles are dispersed with an average secondary particle diameter of 1 μm or less, conductivity is improved when applied to electrode materials and conductive materials, filling properties and adhesion during coating film formation. Effects, such as improvement in hardness and hardness. Here, the “average secondary particle size” of the nanocomposite material dispersed in the water slurry means the particle size in which the nanocomposite material is actually dispersed in water. The aggregated particle diameter is shown. The average secondary particle size of such a nanocomposite can be calculated using a laser diffraction / scattering method. Specifically, a laser diffraction / scattering type particle size distribution measuring device such as a microtrack HRA (Leads and North wrap), SALD series (manufactured by Shimadzu Corporation), LS series (manufactured by Beckman Coulter), etc. are added to the water slurry of the present invention, diluted and adjusted to a predetermined concentration, and then measured. A particle size distribution curve is obtained and indicates a value calculated as a 50 % by weight equivalent particle diameter (D 50 ).
 本発明に用いられるナノ複合材料は、酸化還元可能なナノ粒子と、ナノ粒子の一部または全部を袋状に被覆する炭素材料とを有するものであり、すなわち0.5nm~800nm程度であり、その典型的な形状としては粒状が挙げられる。ここで、ナノ複合材料におけるナノ粒子の「酸化還元可能」とは、ナノ粒子を構成する金属原子が電子の授受が可能であるという意味である。ナノ粒子がこのように酸化還元可能であることで、炭素材料前駆体の重合および/または炭素材料中間体の形成および炭化を促進できるという利点がある。 The nanocomposite material used in the present invention has a redox-capable nanoparticle and a carbon material that covers a part or all of the nanoparticle in a bag shape, that is, about 0.5 nm to 800 nm, The typical shape is granular. Here, “redox capable” of the nanoparticles in the nanocomposite means that the metal atoms constituting the nanoparticles can exchange electrons. The ability of the nanoparticles to be redoxed in this way has the advantage that the carbon material precursor polymerization and / or the carbon material intermediate formation and carbonization can be promoted.
 本発明におけるナノ複合材料は、以下の(A)の要件を有することが好ましく、さらには、以下の(B)、(C)および(D)の要件を有することがより好ましい。 The nanocomposite material in the present invention preferably has the following requirements (A), and more preferably has the following requirements (B), (C) and (D).
 (A)炭素材料が層を形成している、
 (B)炭素材料が形成する層の数が2~1000、好ましくは2~100である、
 (C)炭素材料が形成する層の総厚みが1~200nm、好ましくは1~20nmである、
 (D)ナノ粒子の径が0.5~400nm、好ましくは0.5~200nmである。
(A) The carbon material forms a layer,
(B) The number of layers formed by the carbon material is 2 to 1000, preferably 2 to 100.
(C) The total thickness of the layers formed by the carbon material is 1 to 200 nm, preferably 1 to 20 nm.
(D) The diameter of the nanoparticles is 0.5 to 400 nm, preferably 0.5 to 200 nm.
 ここで、炭素材料は、好ましくはグラファイト様の層状、すなわち多層状である。この層はナノ粒子の表面に沿って、湾曲あるいは屈曲していてもよい。 Here, the carbon material is preferably a graphite-like layer, that is, a multilayer. This layer may be curved or bent along the surface of the nanoparticles.
 また、ナノ複合材料におけるナノ粒子の径が0.5nm未満である場合には、後述するナノ粒子の製造工程において、ナノ粒子同士の凝集を抑制することが困難となる。また、400nmを超える場合、炭素材料の層も含めたナノ複合材料としての粒子径が肥大になり、電極材料や導電性塗料といった用途に対して、見合った効果が得られなくなる虞がある。ナノ粒子の径は、より好ましくは0.5~50nmの範囲内である。ここで、本発明におけるナノ粒子は、略球状を含む等軸、すなわちアスペクト比が約1である粒子に限らず、棒状、円筒状、角柱状などで長径と短径を有するものも含まれる。ナノ粒子が長径と短径を有する場合は、少なくとも短径が上記範囲内に入っていればよい。本発明におけるナノ粒子としては、略球状を含む等軸の粒子が好ましい。 In addition, when the nanoparticle diameter in the nanocomposite material is less than 0.5 nm, it is difficult to suppress aggregation of the nanoparticles in the nanoparticle production process described later. Moreover, when exceeding 400 nm, the particle diameter as a nanocomposite material also including the layer of a carbon material will become enlarged, and there exists a possibility that a suitable effect may not be acquired with respect to uses, such as an electrode material and a conductive paint. The diameter of the nanoparticles is more preferably in the range of 0.5 to 50 nm. Here, the nanoparticle in the present invention is not limited to an equiaxed shape including a substantially spherical shape, that is, a particle having an aspect ratio of about 1, but also includes a rod shape, a cylindrical shape, a prism shape, and the like having a major axis and a minor axis. When the nanoparticles have a major axis and a minor axis, it is sufficient that at least the minor axis is within the above range. The nanoparticles in the present invention are preferably equiaxed particles including a substantially spherical shape.
 ナノ複合材料において、その形状や、炭素材料が層を形成している場合の層数、炭素層の総厚み、ナノ粒子の径は、透過型電子顕微鏡(TEM)によって、測定することができる。なお、ナノ複合材料において、ナノ粒子を内包して周囲に形成される炭素材料の形状、粒径は、ナノ粒子の形状、粒径に依存する部分が大きい。 In the nanocomposite material, the shape, the number of layers when the carbon material forms a layer, the total thickness of the carbon layer, and the diameter of the nanoparticle can be measured by a transmission electron microscope (TEM). In the nanocomposite material, the shape and particle size of the carbon material formed around the nanoparticles are largely dependent on the shape and particle size of the nanoparticles.
 このような本発明におけるナノ複合材料としては、以下の(1)、(2)の工程をこの順で含む製造方法により得られるものを好適に用いることができる。 As such a nanocomposite material in the present invention, a material obtained by a production method including the following steps (1) and (2) in this order can be suitably used.
 (1)酸化還元可能なナノ粒子の存在下、炭素材料前駆体を重合させ、前記ナノ粒子の表面に炭素材料中間体を形成させる工程、
 (2)前記炭素材料中間体を炭化して、前記ナノ粒子を被覆する炭素材料を形成し、ナノ複合材料を製造する工程。
(1) a step of polymerizing a carbon material precursor in the presence of nanoparticles capable of redox, and forming a carbon material intermediate on the surface of the nanoparticles;
(2) A step of carbonizing the carbon material intermediate to form a carbon material that covers the nanoparticles to produce a nanocomposite material.
 まず、工程(1)において、酸化還元可能なナノ粒子は、次のようにして製造される。すなわち、1つもしくは複数のナノ粒子前駆体と1つもしくは複数の分散剤を用い、ナノ粒子前駆体と分散剤とを反応もしくは結合させ、前駆体複合体を形成させる。一般的には、ナノ粒子前駆体と分散剤とを適当な溶媒または分散媒に溶解(このとき得られるものを「複合体溶液」と呼称する)、または、分散(このとき得られるものを「複合体懸濁液」と呼称する)させ、ナノ粒子前駆体と分散剤とが結合することによりこの前駆体複合体が形成される。 First, in the step (1), the nanoparticles capable of redox are produced as follows. That is, using one or more nanoparticle precursors and one or more dispersing agents, the nanoparticle precursors and the dispersing agent are reacted or combined to form a precursor complex. Generally, the nanoparticle precursor and the dispersant are dissolved in an appropriate solvent or dispersion medium (the one obtained at this time is referred to as “composite solution”) or dispersed (the one obtained at this time is “ This precursor complex is formed by combining the nanoparticle precursor and the dispersant.
 ナノ粒子前駆体としては、後述する炭素材料前駆体の重合および/または炭素材料中間体の炭化を促進するものであれば特に限定されないが、具体的には、構成元素として、リチウム、ナトリウム、カリウムなどのアルカリ金属元素、カルシウム、マグネシウムなどのアルカリ土類金属元素、チタン、ジルコニウムなどの第4族元素、バナジウム、ニオブなどの第5族元素、クロム、モリブデン、タングステンなどの第6族元素、銅、銀、金などの第11族元素、亜鉛、カドミウムなどの第12族元素、アルミニウム、ガリウム、インジウムなどの第13族元素、シリコン、ゲルマニウム、錫、鉛などの第14族元素のほか、マンガン、鉄、コバルト、ニッケル、パラジウム、白金などの遷移金属元素を挙げることができる。ナノ粒子前駆体としては、これらの元素からなる金属単体、これらの元素を2つ以上含む合金、これらの元素を1つ以上含む金属化合物、または、これらの混合物を挙げることができる。ナノ粒子前駆体は、価数を容易に変化できるという理由から、マンガン、鉄、コバルトおよびニッケルからなる群より選ばれる1種以上の元素を含むことが好ましく、炭素材料前駆体の重合および/または炭素材料中間体の炭化をより促進できるという理由からは、鉄を含むことがより好ましい。 The nanoparticle precursor is not particularly limited as long as it promotes polymerization of a carbon material precursor and / or carbonization of a carbon material intermediate, which will be described later. Specifically, lithium, sodium, potassium as constituent elements Alkali metal elements such as calcium and magnesium, Group 4 elements such as titanium and zirconium, Group 5 elements such as vanadium and niobium, Group 6 elements such as chromium, molybdenum and tungsten, Copper Group 11 elements such as silver and gold, Group 12 elements such as zinc and cadmium, Group 13 elements such as aluminum, gallium and indium, Group 14 elements such as silicon, germanium, tin and lead, and manganese And transition metal elements such as iron, cobalt, nickel, palladium, and platinum. Examples of the nanoparticle precursor include a simple metal composed of these elements, an alloy including two or more of these elements, a metal compound including one or more of these elements, or a mixture thereof. The nanoparticle precursor preferably contains one or more elements selected from the group consisting of manganese, iron, cobalt, and nickel because the valence can be easily changed. The polymerization of the carbon material precursor and / or It is more preferable that iron is included from the reason that carbonization of the carbon material intermediate can be further promoted.
 前駆体複合体は、1つもしくは複数の分散剤を含む。この分散剤は、目的とする安定性、大きさ、均一性を有するナノ粒子の生成を促進されるものから選ばれる。分散剤とは種々の有機分子、高分子、オリゴマーなどである。この分散剤は、適当な溶媒または分散媒に溶解もしくは分散させて用いる。 The precursor complex includes one or more dispersants. This dispersant is selected from those that promote the production of nanoparticles having the desired stability, size, and uniformity. The dispersant includes various organic molecules, polymers, oligomers and the like. This dispersant is used after being dissolved or dispersed in a suitable solvent or dispersion medium.
 ナノ粒子前駆体および分散剤を含む前駆体複合体を溶解または分散させるために用いられる溶媒または分散媒としては、公知の種々の溶媒または分散媒を用いることができる。このような溶媒または分散媒としては、好ましくは、水、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、アセトニトリル、アセトン、テトラヒドロフラン、エチレングリコール、ジメチルホルムアミド、ジメチルスルフォキシド、メチレンクロライドなどを挙げることができ、また、これらを混合して用いてもよい。 As the solvent or dispersion medium used for dissolving or dispersing the precursor complex including the nanoparticle precursor and the dispersant, various known solvents or dispersion media can be used. Preferred examples of such a solvent or dispersion medium include water, methanol, ethanol, n-propanol, isopropyl alcohol, acetonitrile, acetone, tetrahydrofuran, ethylene glycol, dimethylformamide, dimethyl sulfoxide, and methylene chloride. These may be used as a mixture.
 上述した溶媒または分散媒中に溶解または分散した前駆体複合体は、溶媒分子または分散媒分子に囲まれた、ナノ粒子前駆体と分散剤とから得られる複合体であると考えられる。複合体溶液または複合体懸濁液中で前駆体複合体を生成させた後、溶媒または分散媒を乾燥などにより除去することにより、乾燥された前駆体複合体を得ることができる。また、この乾燥された前駆体複合体は適当な溶媒または分散媒を加えることで、溶液または懸濁液に戻すこともできる。 The precursor complex dissolved or dispersed in the solvent or dispersion medium described above is considered to be a complex obtained from a nanoparticle precursor and a dispersant surrounded by solvent molecules or dispersion medium molecules. After the precursor complex is produced in the complex solution or the complex suspension, the dried precursor complex can be obtained by removing the solvent or the dispersion medium by drying or the like. In addition, the dried precursor complex can be returned to a solution or suspension by adding an appropriate solvent or dispersion medium.
 このようにナノ粒子前駆体と分散剤とを溶媒または分散媒に溶解または分散させて、複合体溶液または複合体懸濁液を調製する場合、複合体溶液または複合体懸濁液の中で、分散剤とナノ粒子前駆体とのモル比を制御できる。 Thus, when the nanoparticle precursor and the dispersant are dissolved or dispersed in a solvent or dispersion medium to prepare a complex solution or a complex suspension, in the complex solution or the complex suspension, The molar ratio of the dispersant to the nanoparticle precursor can be controlled.
 また上述のようにして複合体溶液または複合体懸濁液を調製する場合、分散剤は、非常に小さくかつ均一な粒径のナノ粒子の形成を促進させることができる。一般的に、分散剤の存在下でナノ粒子前駆体は1μm以下の大きさとして形成される。好ましくは500nm以下であり、より好ましくは50nm以下である。 Also, when preparing a complex solution or a complex suspension as described above, the dispersant can promote the formation of nanoparticles with a very small and uniform particle size. In general, the nanoparticle precursor is formed in a size of 1 μm or less in the presence of a dispersant. Preferably it is 500 nm or less, More preferably, it is 50 nm or less.
 複合体溶液または複合体懸濁液においては、ナノ粒子の形成を促進させるための添加物を含んでもよい。添加物しては、たとえば、無機酸や塩基化合物を加えることができる。無機酸としてはたとえば、塩酸、硝酸、硫酸、リン酸などが挙げられ、無機塩基化合物としては水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化アンモニウムなどが挙げられる。 In the complex solution or complex suspension, an additive for promoting the formation of nanoparticles may be included. As an additive, for example, an inorganic acid or a basic compound can be added. Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, and examples of the inorganic base compound include sodium hydroxide, potassium hydroxide, calcium hydroxide, and ammonium hydroxide.
 また、pHを8~13、好ましくは10~11の範囲内に調整するために、塩基性物質(たとえば、アンモニア水溶液)を複合体溶液または複合体懸濁液に添加してもよい。複合体溶液または複合体懸濁液を上述した範囲内の高いpH値に調整することで、ナノ粒子前駆体を微細に分離させることができるため、複合体溶液または複合体懸濁液のpHはナノ粒子の粒径に影響を与える。 Further, in order to adjust the pH within the range of 8 to 13, preferably 10 to 11, a basic substance (for example, aqueous ammonia solution) may be added to the complex solution or the complex suspension. Since the nanoparticle precursor can be finely separated by adjusting the complex solution or the complex suspension to a high pH value within the above-described range, the pH of the complex solution or the complex suspension is Affects the particle size of the nanoparticles.
 また、ナノ粒子の形成を促進させるための固体物質を複合体溶液または複合体懸濁液に加えてもよい。たとえば、固体物質としてイオン交換樹脂を、ナノ粒子形成時に加えることができる。固体物質は、最終的な複合体溶液もしくは複合体懸濁液から簡単な操作によって除去することができる。 Also, a solid substance for promoting the formation of nanoparticles may be added to the complex solution or the complex suspension. For example, an ion exchange resin as a solid material can be added during nanoparticle formation. Solid material can be removed from the final complex solution or complex suspension by simple manipulations.
 典型的には、上記複合体溶液または複合体懸濁液を0.5時間~14日間混合させることにより、ナノ粒子が得られる。また混合温度は0~200℃程度である。混合温度は、ナノ粒子の粒径に影響を与える重要な因子である。 Typically, nanoparticles are obtained by mixing the complex solution or complex suspension for 0.5 hours to 14 days. The mixing temperature is about 0 to 200 ° C. Mixing temperature is an important factor affecting the particle size of the nanoparticles.
 ナノ粒子前駆体として鉄を用いた場合には、ナノ粒子前駆体としては、典型的には、塩化鉄、硝酸鉄、硫酸鉄などの鉄化合物が挙げられる。ナノ粒子前駆体は、分散剤と反応もしくは結合することにより、ナノ粒子となる。これらの化合物は水系の溶媒に溶解する場合が多い。金属塩を用いたナノ粒子の形成によって、副生成物が生成する。典型的な副生成物としては、金属を用いてナノ粒子を調整したときに出る水素ガスである。典型的な実施態様としては、ナノ粒子は混合工程で活性化されるかもしくは、さらには水素を用いてより還元を行う。 When iron is used as the nanoparticle precursor, typical examples of the nanoparticle precursor include iron compounds such as iron chloride, iron nitrate, and iron sulfate. The nanoparticle precursor becomes nanoparticles by reacting with or binding to the dispersant. These compounds are often dissolved in an aqueous solvent. By-products are formed by the formation of nanoparticles using metal salts. A typical by-product is hydrogen gas that is generated when nanoparticles are prepared using metal. In a typical embodiment, the nanoparticles are activated in the mixing step or are further reduced with hydrogen.
 ナノ粒子は、安定的に活性なナノ粒子の懸濁液として形成されることが好ましい。ナノ粒子の安定性により、ナノ粒子同士の凝集が抑制される。一部もしくは全てのナノ粒子が沈降したとしても、混合することによって容易に再懸濁化する。 The nanoparticles are preferably formed as a suspension of stably active nanoparticles. The aggregation of nanoparticles is suppressed by the stability of the nanoparticles. Even if some or all of the nanoparticles settle, they are easily resuspended by mixing.
 上述のようにして得られたナノ粒子は、工程(1)における炭素材料前駆体の重合および/または炭素材料中間体の形成を促進する触媒としての役割を担うことができる。 The nanoparticles obtained as described above can play a role as a catalyst for promoting the polymerization of the carbon material precursor and / or the formation of the carbon material intermediate in the step (1).
 工程(1)において用いられる炭素材料前駆体としては、ナノ粒子を分散できるものであることが好ましい。ナノ粒子を分散させて、当該ナノ粒子の存在下、炭素材料前駆体を重合させることにより、ナノ粒子の表面に炭素材料中間体が形成される。炭素材料前駆体として好適な有機材料としては、分子中に芳香族環を1つもしくは複数有し、重合化のための官能基を有するベンゼンやナフタレン誘導体が挙げられる。重合化のための官能基としては、COOH、C=O、OH、C=C、SO3、NH2、SOH、N=C=Oなどが例示される。 The carbon material precursor used in step (1) is preferably one that can disperse nanoparticles. By dispersing the nanoparticles and polymerizing the carbon material precursor in the presence of the nanoparticles, a carbon material intermediate is formed on the surface of the nanoparticles. Examples of organic materials suitable as the carbon material precursor include benzene and naphthalene derivatives having one or more aromatic rings in the molecule and a functional group for polymerization. Examples of functional groups for polymerization include COOH, C═O, OH, C═C, SO 3 , NH 2 , SOH, and N═C═O.
 好ましい炭素材料前駆体としては、レゾルシノール、フェノール樹脂、メラミン-ホルムアミドゲル、ポリフリフリルアルコール、ポリアクリロニトリル、砂糖、石油ピッチなどが挙げられる。 Preferred carbon material precursors include resorcinol, phenol resin, melamine-formamide gel, polyfurfuryl alcohol, polyacrylonitrile, sugar, petroleum pitch and the like.
 ナノ粒子は、その表面で炭素材料前駆体が重合化するように、炭素材料前駆体と混合される。ナノ粒子は、触媒活性である場合には、当該ナノ粒子の近傍で炭素材料前駆体の重合の開始および/または促進の役割を担うことができる。 The nanoparticles are mixed with the carbon material precursor so that the carbon material precursor polymerizes on the surface. If the nanoparticles are catalytically active, they can play a role in initiating and / or promoting the polymerization of the carbon material precursor in the vicinity of the nanoparticles.
 炭素材料前駆体に対するナノ粒子の量は、炭素材料前駆体が、均一に炭素材料中間体を最大量形成するように設定してもよい。ナノ粒子の量は、用いる炭素材料前駆体の種類にも依存する。炭素材料前駆体とナノ粒子とのモル比は、好ましくは0.1:1~100:1であり、より好ましくは1:1~30:1である。このモル比、ナノ粒子の種類、粒径は、得られる炭素材料の厚みなどに影響を与える。 The amount of nanoparticles with respect to the carbon material precursor may be set so that the carbon material precursor uniformly forms the maximum amount of the carbon material intermediate. The amount of nanoparticles also depends on the type of carbon material precursor used. The molar ratio of the carbon material precursor to the nanoparticles is preferably 0.1: 1 to 100: 1, more preferably 1: 1 to 30: 1. This molar ratio, the type of nanoparticles, and the particle size affect the thickness of the resulting carbon material.
 ナノ粒子および炭素材料前駆体の混合物は、ナノ粒子の表面に炭素材料中間体が十分に形成されるまで、十分熟成させる。炭素材料中間体を形成させるのに必要な時間は、温度、ナノ粒子の種類、ナノ粒子の濃度、溶液のpH、用いる炭素材料前駆体の種類に依存する。なお、pH調整のためにアンモニアを加えることで、重合の速度を速め、炭素材料前駆体同士の架橋量が増え、効果的に重合できる場合がある。 The mixture of the nanoparticles and the carbon material precursor is sufficiently aged until the carbon material intermediate is sufficiently formed on the surface of the nanoparticles. The time required to form the carbon material intermediate depends on the temperature, the type of nanoparticles, the concentration of nanoparticles, the pH of the solution, and the type of carbon material precursor used. In addition, by adding ammonia for pH adjustment, the rate of polymerization is increased, the amount of crosslinking between the carbon material precursors is increased, and there are cases where polymerization can be performed effectively.
 熱により重合可能な炭素材料前駆体は、通常、温度が上昇するほど重合が進む。炭素材料前駆体を重合させる際の温度は、好ましくは0~200℃であり、さらに好ましくは25~120℃である。 The carbon material precursor that can be polymerized by heat usually polymerizes as the temperature rises. The temperature at which the carbon material precursor is polymerized is preferably 0 to 200 ° C., more preferably 25 to 120 ° C.
 具体的には、炭素材料前駆体としてレゾルシノール-ホルムアルデヒドゲル(鉄粒子を用いる場合で、懸濁液pHが1~14の場合)を用いる場合、その最適な重合条件は0~90℃であり、熟成時間は1~72時間である。 Specifically, when resorcinol-formaldehyde gel (when iron particles are used and the suspension pH is 1 to 14) is used as the carbon material precursor, the optimum polymerization conditions are 0 to 90 ° C., The aging time is 1 to 72 hours.
 工程(2)では、工程(1)で得られた炭素材料中間体を炭化して炭素材料を形成し、ナノ複合材料を得る。炭化は、通常、焼成により行う。典型的には、焼成は、500~2500℃、好ましくは1000~2500℃の温度で行う。焼成時には、炭素材料中間体における酸素原子、窒素原子が放出され、炭素原子の再配列が起こり、炭素材料が形成される。このようにして形成された炭素材料は、好ましくはグラファイト様の層状(多層状)であるが、その層数は、炭素材料中間体の種類、厚み、焼成温度により制御できる。また、ナノ複合材料における炭素材料の厚み(層の厚み)は、炭素材料前駆体の重合および/または炭素材料中間体の、炭化の進行度の調整によっても制御できる。 In step (2), the carbon material intermediate obtained in step (1) is carbonized to form a carbon material to obtain a nanocomposite material. Carbonization is usually performed by firing. Typically, the calcination is performed at a temperature of 500 to 2500 ° C., preferably 1000 to 2500 ° C. At the time of firing, oxygen atoms and nitrogen atoms in the carbon material intermediate are released, and rearrangement of carbon atoms occurs to form a carbon material. The carbon material thus formed is preferably graphite-like layered (multilayered), but the number of layers can be controlled by the type, thickness and firing temperature of the carbon material intermediate. The thickness of the carbon material (layer thickness) in the nanocomposite material can also be controlled by adjusting the progress of carbonization of the carbon material precursor and / or the carbon material intermediate.
 上記方法によって得られたナノ複合材料は、水中にスラリーとして懸濁させたときの平均二次粒子径が3~100μmである。また、スラリー中のナノ複合材料の含有量は、水100重量部に対して1重量部以上50重量部未満である。ナノ複合材料を分散させるための溶媒としては水を用い、必要に応じて、エタノール、メタノール、アセトン、酢酸エチル等の水溶性溶媒を加えてもよい。このときの水溶性溶媒の添加量は、水100重量部に対して0.1~20重量部の範囲内であることが好ましい。 The nanocomposite material obtained by the above method has an average secondary particle diameter of 3 to 100 μm when suspended as a slurry in water. The content of the nanocomposite material in the slurry is 1 part by weight or more and less than 50 parts by weight with respect to 100 parts by weight of water. Water is used as a solvent for dispersing the nanocomposite, and a water-soluble solvent such as ethanol, methanol, acetone, or ethyl acetate may be added as necessary. The amount of the water-soluble solvent added at this time is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of water.
 また、上記方法によって得られたナノ複合材料は、BET比表面積(JIS-Z-8830に規定された方法に従った窒素吸着法により測定)が、通常、80~400m2/gの範囲内であり、好ましくは100~200m2/gの範囲内である。ナノ複合材料のBET比表面積が80m2/g未満である場合には、ナノ複合材料の一次粒子同士が焼結していることを示唆しており、後述する粉砕によって分散させることが困難となる虞がある。一方、ナノ複合材料のBET比表面積が400m2/gを超える場合には、後述する粉砕を行うことにより得られた水スラリーの粘度が著しく高くなる傾向にある。 In addition, the nanocomposite material obtained by the above method usually has a BET specific surface area (measured by a nitrogen adsorption method according to the method specified in JIS-Z-8830) in the range of 80 to 400 m 2 / g. Yes, preferably in the range of 100 to 200 m 2 / g. When the nanocomposite material has a BET specific surface area of less than 80 m 2 / g, it suggests that the primary particles of the nanocomposite material are sintered, making it difficult to disperse by pulverization described later. There is a fear. On the other hand, when the BET specific surface area of the nanocomposite material exceeds 400 m 2 / g, the viscosity of the water slurry obtained by pulverization described later tends to be remarkably high.
 ナノ複合材料中のナノ粒子の含有量は特に制限はないが、通常は金属原子換算で1000~200000ppmの範囲内である。 The content of nanoparticles in the nanocomposite material is not particularly limited, but is usually in the range of 1000 to 200,000 ppm in terms of metal atoms.
 本発明におけるナノ複合材料は、窒素雰囲気下において、室温から、昇温速度10℃/分で昇温して、600℃に到達した時の重量減少率が3重量%以下であることが好ましく、2重量%以下であることがより好ましい。後述する比較例4に示すように、上記重量減少率が3重量%を超える場合には、茶成分を添加せずとも分散する。しかしながら、上記重量減少率が3重量%以下である場合には分散性が乏しく、茶成分の添加により分散性が著しく向上し、本発明が特に好適に適用できるためである。 The nanocomposite material in the present invention preferably has a weight reduction rate of 3% by weight or less when the temperature is increased from room temperature at a temperature increase rate of 10 ° C./min and reaches 600 ° C. in a nitrogen atmosphere. More preferably, it is 2% by weight or less. As shown in Comparative Example 4 described later, when the weight reduction rate exceeds 3% by weight, the tea component is dispersed without adding. However, when the weight reduction rate is 3% by weight or less, the dispersibility is poor, and the dispersibility is remarkably improved by the addition of the tea component, and the present invention can be applied particularly preferably.
 本発明は、上述した平均二次粒子径が3~100μmでナノ複合材料が水中に分散した状態の原料スラリーから、ナノ複合材料が平均二次粒子径1μm以下で分散している状態で存在している本発明の水スラリーを得る水スラリーの製造する方法についても提供する。本発明の水スラリーの製造方法は、酸化還元可能なナノ粒子と当該ナノ粒子を被覆する炭素材料とからなるナノ複合材料を含む原料スラリーを粉砕し、粉砕された原料スラリーと茶成分を含有する水溶液とを混合することを特徴とする。本明細書において「原料スラリー」とは、本発明の水スラリーを製造するための水スラリーであって、ナノ複合材料を含むが、茶成分を含まない水スラリーをいう。 The present invention exists in the state where the nanocomposite material is dispersed with an average secondary particle diameter of 1 μm or less from the raw material slurry in which the nanocomposite material is dispersed in water with the average secondary particle diameter of 3 to 100 μm. A method for producing a water slurry for obtaining the water slurry of the present invention is also provided. The method for producing a water slurry of the present invention comprises a raw material slurry containing a nanocomposite material composed of nanoparticles capable of oxidation and reduction and a carbon material covering the nanoparticles, and contains the pulverized raw material slurry and a tea component. It is characterized by mixing with an aqueous solution. In this specification, the “raw material slurry” refers to a water slurry for producing the water slurry of the present invention, which contains a nanocomposite material but does not contain a tea component.
 ナノ複合材料を懸濁させた原料スラリーの粉砕は、ボールミル、高速回転粉砕機、媒体撹拌ミルなどの粉砕装置を用いて行うことができる。粉砕に用いる媒体としては、アルミナ、ジルコニアなどの公知の媒体を用いることができる。 The pulverization of the raw material slurry in which the nanocomposite material is suspended can be performed using a pulverizer such as a ball mill, a high-speed rotary pulverizer, or a medium stirring mill. As a medium used for pulverization, a known medium such as alumina or zirconia can be used.
 上記原料スラリーを粉砕装置により粉砕する時間は、特に制限されないが、好ましくは0.1~5時間である。粉砕時間が0.1時間未満では、ナノ複合材料同士の強い凝集を弱めるための十分な粉砕エネルギーを加えることが困難となる虞がある。一方、粉砕時間を5時間よりも長くしても、処理時間に見合った効果を得ることはできない。 The time for pulverizing the raw material slurry with a pulverizer is not particularly limited, but is preferably 0.1 to 5 hours. If the pulverization time is less than 0.1 hour, it may be difficult to apply sufficient pulverization energy to weaken strong aggregation between the nanocomposites. On the other hand, even if the pulverization time is longer than 5 hours, an effect commensurate with the treatment time cannot be obtained.
 本発明の水スラリーの製造方法では、粉砕後の原料スラリーに、茶成分を含有する水溶液を混合する。ここで、本発明における「茶成分」とは、烏龍茶、緑茶、紅茶などの茶の葉および/または茎を、所定の温度で水や含水エタノール、エタノール、含水メタノール、メタノール、アセトン、酢酸エチルなどの水溶性溶媒と接触させることによって抽出された抽出物を指す。茶成分の抽出に用いる溶媒は、上述した中から選ばれる2つ以上を混合させた溶媒を用いてもよい。茶成分の抽出量は、溶媒と茶葉および/または茶茎との配合比に影響されるが、通常、溶媒100重量部に対して、茶葉および/または茶茎0.01~5重量部であり、茶成分の抽出量が平衡に達するまで抽出させることが好ましい。 In the water slurry production method of the present invention, an aqueous solution containing a tea component is mixed with the ground slurry after pulverization. Here, the “tea component” in the present invention refers to tea leaves and / or stems of oolong tea, green tea, black tea, etc., water, water-containing ethanol, ethanol, water-containing methanol, methanol, acetone, ethyl acetate, etc. at a predetermined temperature. An extract extracted by contacting with a water-soluble solvent. The solvent used for extraction of the tea component may be a solvent in which two or more selected from the above are mixed. The extraction amount of the tea component is affected by the blending ratio of the solvent and tea leaves and / or tea stems, but is usually 0.01 to 5 parts by weight of tea leaves and / or tea stems with respect to 100 parts by weight of the solvent. The tea component is preferably extracted until the extraction amount of the tea component reaches equilibrium.
 このような抽出によって得られる茶成分には、村松 敬一郎 編著「茶の科学」P.85~93に記載されている化合物、例えばカテキン類(カテキン、ガロカテキン、エピカテキン、エピガロカテキン、カテキンガレート、エピカテキンガレート、ガロカテキンガレート、エピガロカテキンガレート)やタンニン類などの、ポリフェノール類が主に含有される。 The tea components obtained by such extraction include “tea science” edited by Keiichiro Muramatsu, p. 85-93 compounds such as catechins (catechin, gallocatechin, epicatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate) and tannins such as polyphenols Mainly contained.
 茶成分を含有する水溶液の混合量は、粉砕後の原料スラリー100重量部に対し1~200重量部の範囲内であることが好ましく、5~100重量部の範囲内であることがより好ましい。茶成分を含有する水溶液の混合量が粉砕後の原料スラリー100重量部に対し1重量部未満である場合には、ナノ複合材料を所望の粒子径に分散させるのに十分な茶成分を供給できないため、水中での分散粒子径が大きくなる傾向にあるためであり、また、200重量部を超える場合には、添加量に見合った効果が得られないという傾向にあるためである。 The mixing amount of the aqueous solution containing the tea component is preferably in the range of 1 to 200 parts by weight, and more preferably in the range of 5 to 100 parts by weight with respect to 100 parts by weight of the raw slurry after pulverization. When the mixing amount of the aqueous solution containing the tea component is less than 1 part by weight with respect to 100 parts by weight of the raw material slurry after pulverization, sufficient tea component cannot be supplied to disperse the nanocomposite material to a desired particle size. This is because the dispersed particle size in water tends to be large, and when it exceeds 200 parts by weight, the effect corresponding to the amount added cannot be obtained.
 本発明の製造方法にしたがってナノ複合材料を含有する原料スラリーを粉砕した後、茶成分を含有する水溶液を添加することで、茶成分を含有する水溶液中に、ナノ複合材料が平均二次粒子径1.0μm以下で分散している状態で存在している水スラリーを製造することができる。これに対し、粉砕前のナノ複合材料を含有する原料スラリーに茶成分を添加し、これを粉砕したとしても、ナノ複合材料が平均二次粒子径1.0μm以下で分散している状態で存在する水スラリーを得ることはできない。 After pulverizing the raw slurry containing the nanocomposite according to the production method of the present invention, the nanocomposite has an average secondary particle size in the aqueous solution containing the tea component by adding an aqueous solution containing the tea component. A water slurry existing in a dispersed state at 1.0 μm or less can be produced. On the other hand, even if the tea component is added to the raw slurry containing the nanocomposite material before pulverization and pulverized, the nanocomposite material is present in a dispersed state with an average secondary particle size of 1.0 μm or less. A water slurry cannot be obtained.
 本発明の水スラリーの用途については特に限定されないが、従来公知のカーボンブラックを含有する水スラリーと同様の用途に好適に適用することが可能であり、該水スラリーを基板に塗布、もしくは樹脂や無機粉末、他の水スラリーと複合化させることにより、リチウム二次電池用、非水系キャパシタ用および燃料電池用などの電極材料や導電材料、導電塗料、ハードコート材料、水性塗料、空気入りタイヤなどのゴム製品製造用のウェットマスターバッチなどの幅広い用途に適用することができる。 The application of the water slurry of the present invention is not particularly limited, but can be suitably applied to the same application as a conventionally known water slurry containing carbon black, and the water slurry is applied to a substrate, or resin or By compounding with inorganic powder and other water slurry, electrode materials and conductive materials for lithium secondary batteries, non-aqueous capacitors and fuel cells, conductive paints, hard coat materials, water-based paints, pneumatic tires, etc. It can be applied to a wide range of applications such as wet masterbatch for manufacturing rubber products.
 以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 <実施例1>
 BET比表面積117m2/g、平均二次粒子径16μm、Fe含有量8440ppm、窒素雰囲気下において、室温から、昇温速度10℃/分で昇温して、600℃に到達した時の重量減少率が0.8重量%のナノ複合材料粉末30重量部を純水970重量部に加え、撹拌して原料スラリーを得た。この原料スラリー100重量部と直径0.1mmのジルコニアビーズ150mlとを湿式媒体ミル(サンドグラインダー、アイメックス社製(内容積:400ml))に仕込み、回転速度2000rpmで60分間粉砕処理を行った。粉砕後、目開き75μmの篩でジルコニアビーズと原料スラリーを篩別した。
<Example 1>
BET specific surface area 117m 2 / g, average secondary particle diameter 16μm, Fe content 8440ppm, under nitrogen atmosphere, heated from room temperature at a heating rate of 10 ° C / min, weight loss when reaching 600 ° C 30 parts by weight of a nanocomposite powder having a rate of 0.8% by weight was added to 970 parts by weight of pure water and stirred to obtain a raw material slurry. 100 parts by weight of this raw material slurry and 150 ml of zirconia beads having a diameter of 0.1 mm were charged into a wet medium mill (sand grinder, manufactured by IMEX (internal volume: 400 ml)), and pulverized at a rotational speed of 2000 rpm for 60 minutes. After pulverization, the zirconia beads and the raw material slurry were sieved with a sieve having an opening of 75 μm.
 市販の乾燥茶葉(くき茶、有限会社脇製茶場製)3gを目開き850μmのSUS製篩上に広げ、75℃の純水1Lを注ぎ、茶成分を抽出した(抽出時間:3分)。その後、目開き42μmのSUS製篩で固形分を除去し、茶成分を含有する水溶液を調製した。なお、この水溶液の液色はL値:95.8、a値:-0.9、b値:5.15であった。 3 g of commercially available dried tea leaves (Kukicha, manufactured by Waki Seika Co., Ltd.) were spread on a SUS sieve having an opening of 850 μm, and 1 L of pure water at 75 ° C. was poured to extract tea components (extraction time: 3 minutes). Thereafter, the solid content was removed with a SUS sieve having an opening of 42 μm to prepare an aqueous solution containing a tea component. The liquid color of this aqueous solution was L value: 95.8, a value: -0.9, and b value: 5.15.
 上記原料スラリーと、茶成分を含有する水溶液とを重量比1:1で混合し、300Wの超音波発生装置にて5分間超音波処理を行った。得られた水スラリー中の、ナノ複合材料の平均二次粒子径は0.50μmであった。 The raw material slurry and the aqueous solution containing the tea component were mixed at a weight ratio of 1: 1, and subjected to ultrasonic treatment for 5 minutes with a 300 W ultrasonic generator. The average secondary particle diameter of the nanocomposite material in the obtained water slurry was 0.50 μm.
 なお、上述した平均二次粒子径は、レーザ散乱式粒度分布計(マイクロトラックHRA、リーズ アンド ノースラップ社製)を用いて、水スラリーを水中に添加し、希釈して所定濃度に調整した後測定し、粒度分布曲線を求め、50重量%相当粒子径(D50)として算出された値を指す。また上述したBET比表面積は、JIS-Z-8830に規定された方法に従って、窒素吸着法により算出した値を指す。また、上述した茶成分を含有する水溶液の液色(L値、a値、b値)は、ガラスセルに当該水溶液を入れ、測色色差計(ZE-2000、日本電色工業株式会社製)を用いて2回測定し、その値の算術平均値を算出して得られた値を指す。 The above-mentioned average secondary particle diameter is adjusted by adding a water slurry to water using a laser scattering particle size distribution analyzer (Microtrac HRA, manufactured by Leeds and Northrup Co., Ltd.) and diluting it to a predetermined concentration. The particle size distribution curve is measured, and the value calculated as the 50 % by weight equivalent particle diameter (D 50 ) is indicated. Further, the BET specific surface area described above refers to a value calculated by a nitrogen adsorption method according to the method defined in JIS-Z-8830. The liquid color (L value, a value, b value) of the aqueous solution containing the above-described tea component is measured by placing the aqueous solution in a glass cell and using a colorimetric color difference meter (ZE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.) The value obtained by measuring twice using and calculating the arithmetic average of the values.
 上述した重量減少率は、熱重量示差熱同時測定装置(TG/DTA300、セイコー電子製)を用いて、窒素流量200ml/分、ナノ複合材料粉末を8.0mg、リファレンスとしてα-Al23を10mg、それぞれ白金セルに仕込み、上蓋の無い状態で室温から800℃まで10℃/分の速度で加熱を行い、TG曲線を測定し、室温から600℃に到達した時点までの重量減少量をもとに算出した。 The weight reduction rate described above was measured using a thermogravimetric differential thermal simultaneous measurement apparatus (TG / DTA300, manufactured by Seiko Electronics), a nitrogen flow rate of 200 ml / min, a nanocomposite powder of 8.0 mg, and α-Al 2 O 3 as a reference. 10 mg each in a platinum cell, heated from room temperature to 800 ° C. at a rate of 10 ° C./min without a top cover, measured TG curve, and the weight loss from the room temperature to 600 ° C. Based on calculations.
 <比較例1>
 茶成分を含有する水溶液を添加しなかったこと以外は実施例1と同様の操作を行い、ナノ複合材料を含有する水スラリーを調製した。水スラリーと純水とを重量比1:1で混合し、300Wの超音波発生装置にて5分間超音波処理を行った。得られた水スラリー中のナノ複合材料の平均二次粒子径(実施例1と同様にして測定)は6.8μmであった。
<Comparative Example 1>
A water slurry containing the nanocomposite material was prepared in the same manner as in Example 1 except that the aqueous solution containing the tea component was not added. The water slurry and pure water were mixed at a weight ratio of 1: 1, and sonicated for 5 minutes with a 300 W ultrasonic generator. The average secondary particle diameter (measured in the same manner as in Example 1) of the nanocomposite material in the obtained water slurry was 6.8 μm.
 <比較例2>
 実施例1で用いたナノ複合材料粉末30重量部を、実施例1で調製した茶成分を含有する水溶液970重量部に混合した後に、実施例1と同様の方法で粉砕して、ナノ複合材料を含有する水スラリーを得た。水スラリーと純水とを重量比1:1で混合し、300Wの超音波発生装置にて5分間超音波処理を行った。得られたスラリー中の、ナノ複合材料の平均二次粒子径(実施例1と同様にして測定)は6.2μmであった。
<Comparative example 2>
After mixing 30 parts by weight of the nanocomposite powder used in Example 1 with 970 parts by weight of the aqueous solution containing the tea component prepared in Example 1, the nanocomposite material was pulverized by the same method as in Example 1 and then ground. A water slurry containing was obtained. The water slurry and pure water were mixed at a weight ratio of 1: 1, and sonicated for 5 minutes with a 300 W ultrasonic generator. The average secondary particle diameter (measured in the same manner as in Example 1) of the nanocomposite material in the obtained slurry was 6.2 μm.
 <比較例3>
 実施例1で用いたナノ複合材料粉末30重量部を純水970重量部に加え、撹拌して得た水スラリーに、実施例1と同様の茶成分を含有する水溶液を重量比1:1で混合し、300Wの超音波発生装置にて5分間超音波処理を行った。得られた水スラリー中の、ナノ複合材料の平均二次粒子径の平均二次粒子径は14μmであった。
<Comparative Example 3>
30 parts by weight of the nanocomposite powder used in Example 1 was added to 970 parts by weight of pure water, and an aqueous solution containing the same tea component as in Example 1 was added to the water slurry obtained by stirring at a weight ratio of 1: 1. The mixture was mixed and sonicated for 5 minutes with a 300 W ultrasonic generator. The average secondary particle diameter of the average secondary particle diameter of the nanocomposite in the obtained water slurry was 14 μm.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <比較例4>
 BET比表面積106m2/g、平均二次粒子径16μm、Fe含有量7444ppm、窒素雰囲気下において昇温速度10℃/分で昇温したときの、600℃到達時の重量減少率が3.7重量%のナノ複合材料粉末を用いたこと以外は、実施例1と同様の条件で粉砕を行ない、茶成分を含有しない水スラリーを得た。
<Comparative example 4>
BET specific surface area 106 m 2 / g, average secondary particle diameter 16 μm, Fe content 7444 ppm, weight loss rate when reaching 600 ° C. when heated at 10 ° C./min under nitrogen atmosphere is 3.7 Grinding was carried out under the same conditions as in Example 1 except that the weight percent nanocomposite powder was used to obtain an aqueous slurry containing no tea component.
 300Wの超音波発生装置にて5分間超音波処理を行った。得られた水スラリー中の、ナノ複合材料の平均二次粒子径は0.47μmであった。 Ultrasonic treatment was performed for 5 minutes with a 300 W ultrasonic generator. The average secondary particle diameter of the nanocomposite material in the obtained water slurry was 0.47 μm.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (6)

  1.  茶成分を含有する水溶液に、酸化還元可能なナノ粒子と前記ナノ粒子を被覆する炭素材料からなるナノ複合材料を分散させてなる水スラリーにおいて、
     分散しているナノ複合材料の平均二次粒子径が1μm以下である水スラリー。
    In an aqueous slurry in which a nanocomposite composed of nanoparticles capable of oxidation and reduction and a carbon material covering the nanoparticles is dispersed in an aqueous solution containing a tea component,
    A water slurry in which the average secondary particle diameter of the dispersed nanocomposite is 1 μm or less.
  2.  前記炭素材料が層を形成している、請求の範囲第1項に記載の水スラリー。 The water slurry according to claim 1, wherein the carbon material forms a layer.
  3.  前記炭素材料が形成する層は、その数が2~1000、その総厚みが1~200nmであり、かつ、ナノ粒子の径が0.5~400nmである、請求の範囲第2項に記載の水スラリー。 The layer formed of the carbon material has a number of 2 to 1000, a total thickness of 1 to 200 nm, and a nanoparticle diameter of 0.5 to 400 nm. Water slurry.
  4.  ナノ複合材料は、窒素雰囲気下において、室温から、昇温速度10℃/分で昇温して、600℃に到達した時の重量減少率が3重量%以下である請求の範囲第1項に記載の水スラリー。 The nanocomposite material has a weight reduction rate of 3% by weight or less when the temperature is increased from room temperature to a temperature rising rate of 10 ° C./min and reaching 600 ° C. in a nitrogen atmosphere. The water slurry described.
  5.  ナノ複合材料が、以下の(1)及び(2)の工程をこの順で含む製造方法により得られるものである、請求の範囲第1項に記載の水スラリー。
     (1)酸化還元可能なナノ粒子の存在下、炭素材料前駆体を重合させ、前記ナノ粒子の表面に炭素材料中間体を形成させる工程、
     (2)前記炭素材料中間体を炭化して、前記ナノ粒子を被覆する炭素材料を形成し、ナノ複合材料を製造する工程。
    The water slurry according to claim 1, wherein the nanocomposite material is obtained by a production method including the following steps (1) and (2) in this order.
    (1) a step of polymerizing a carbon material precursor in the presence of nanoparticles capable of redox, and forming a carbon material intermediate on the surface of the nanoparticles;
    (2) A step of carbonizing the carbon material intermediate to form a carbon material that covers the nanoparticles to produce a nanocomposite material.
  6.  請求の範囲第1項に記載の水スラリーを製造する方法であって、
     酸化還元可能なナノ粒子と当該ナノ粒子を被覆する炭素材料とからなるナノ複合材料を含む原料スラリーを粉砕し、粉砕された原料スラリーと茶成分を含有する水溶液とを混合する、水スラリーの製造方法。
    A method for producing the water slurry according to claim 1, comprising:
    Production of a water slurry in which a raw material slurry containing a nanocomposite material composed of nanoparticles capable of oxidation and reduction and a carbon material covering the nanoparticles is pulverized, and the pulverized raw material slurry and an aqueous solution containing a tea component are mixed. Method.
PCT/JP2009/061964 2008-07-04 2009-06-30 Aqueous slurry and manufacturing method therefor WO2010001894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-176144 2008-07-04
JP2008176144 2008-07-04

Publications (1)

Publication Number Publication Date
WO2010001894A1 true WO2010001894A1 (en) 2010-01-07

Family

ID=41465986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061964 WO2010001894A1 (en) 2008-07-04 2009-06-30 Aqueous slurry and manufacturing method therefor

Country Status (2)

Country Link
TW (1) TW201008872A (en)
WO (1) WO2010001894A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045034A (en) * 2004-08-09 2006-02-16 Futaba Corp Composite material of carbon nanotube and its manufacturing method
JP2007056136A (en) * 2005-08-24 2007-03-08 Mitsubishi Electric Corp Carbon nanotube dispersion, its manufacturing method, carbon nanotube paste for printing and electron discharge source
JP2007070147A (en) * 2005-09-06 2007-03-22 Japan Agengy For Marine-Earth Science & Technology Manufacturing method of fullerene nanoparticle dispersion
WO2007044614A2 (en) * 2005-10-06 2007-04-19 Headwaters Technology Innovation Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
JP2008037695A (en) * 2006-08-04 2008-02-21 Mitsubishi Heavy Ind Ltd Nanocarbon material production apparatus and nanocarbon material purification method
JP2008520775A (en) * 2004-11-16 2008-06-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Core / shell particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045034A (en) * 2004-08-09 2006-02-16 Futaba Corp Composite material of carbon nanotube and its manufacturing method
JP2008520775A (en) * 2004-11-16 2008-06-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Core / shell particles
JP2007056136A (en) * 2005-08-24 2007-03-08 Mitsubishi Electric Corp Carbon nanotube dispersion, its manufacturing method, carbon nanotube paste for printing and electron discharge source
JP2007070147A (en) * 2005-09-06 2007-03-22 Japan Agengy For Marine-Earth Science & Technology Manufacturing method of fullerene nanoparticle dispersion
WO2007044614A2 (en) * 2005-10-06 2007-04-19 Headwaters Technology Innovation Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
JP2008037695A (en) * 2006-08-04 2008-02-21 Mitsubishi Heavy Ind Ltd Nanocarbon material production apparatus and nanocarbon material purification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENKI NAKAMURA ET AL.: "Green Tea Solution Individually Solubilizes Single-walled Carbon Nanotubes", CHEMISTRY LETTERS, vol. 36, no. 9, 11 August 2007 (2007-08-11), pages 1140 - 1141 *

Also Published As

Publication number Publication date
TW201008872A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
EP3656008B1 (en) Carbon-coated silicon oxide / graphite composite particles, as well as preparation methods and applications of the same
Zhang et al. One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline
TWI594945B (en) Metal tin-carbon composite, use thereof, negative electrode active material for non-aqueous lithium battery using the same, negative electrode containing non-aqueous lithium-ion battery and non-aqueous lithium secondary battery
JP5964859B2 (en) Iron (III) orthophosphate-carbon composite
Cabán-Huertas et al. Aqueous synthesis of LiFePO4 with fractal granularity
KR20070030274A (en) Nanocarbon composite structure having ruthenium oxide trapped therein
CN109690837B (en) Composition and use thereof
Behm et al. High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices
Zhang et al. Facile assembly of silica gel/reduced graphene oxide/Ag nanoparticle composite with a core–shell structure and its excellent catalytic properties
Iuchi et al. Synthesis and electrochemical performance of a nanocrystalline Li4Ti5O12/C composite for lithium-ion batteries prepared using resorcinol–formaldehyde resins
KR20170094123A (en) Method for producing metal compound particle group, metal compound particle group, and electrode for electricity storage device containing metal compound particle group
Zhang et al. One-pot method for multifunctional yolk structured nanocomposites with N-doped carbon shell using polydopamine as precursor
Melánová et al. Polyaniline–zirconium phosphonate composites: Thermal stability and spectroscopic study
CN108837826B (en) Preparation method and application of metal nano-catalyst loaded on inner layer of carbon hollow sphere
Liu et al. Silica/ultrasmall Ag composite microspheres: facile synthesis, characterization and antibacterial and catalytic performance
Dai et al. Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes
Van Hung et al. Nitrogen-doped carbon-coated nanodiamonds for electrocatalytic applications
JP2011028848A (en) Aqueous slurry and method of producing therefor
Cho et al. MWCNT-embedded Li4Ti5O12 microspheres interfacially modified with polyaniline as ternary composites for high-performance lithium ion battery anodes
TW201425215A (en) Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby
JP5958139B2 (en) Method for producing carbon-iron-based crystal composite nanosheet
CN117133913A (en) Lithium iron phosphate precursor, lithium iron phosphate material, and preparation methods and applications thereof
WO2010001894A1 (en) Aqueous slurry and manufacturing method therefor
WO2019171994A1 (en) Positive electrode active material for lithium ion secondary batteries, positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR20120075706A (en) Process for preparing highly dispersed and concentrated carbon nanotube aqueous solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773472

Country of ref document: EP

Kind code of ref document: A1