WO2010001438A1 - ファイバ無線用ユニット及びファイバ無線用システム - Google Patents

ファイバ無線用ユニット及びファイバ無線用システム Download PDF

Info

Publication number
WO2010001438A1
WO2010001438A1 PCT/JP2008/001753 JP2008001753W WO2010001438A1 WO 2010001438 A1 WO2010001438 A1 WO 2010001438A1 JP 2008001753 W JP2008001753 W JP 2008001753W WO 2010001438 A1 WO2010001438 A1 WO 2010001438A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
substrate
antenna
fiber radio
Prior art date
Application number
PCT/JP2008/001753
Other languages
English (en)
French (fr)
Inventor
品田聡
川西哲也
中島慎也
Original Assignee
独立行政法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人情報通信研究機構 filed Critical 独立行政法人情報通信研究機構
Priority to US13/001,883 priority Critical patent/US8824895B2/en
Priority to JP2010518826A priority patent/JP5201640B2/ja
Priority to EP08776765.3A priority patent/EP2296229B1/en
Priority to PCT/JP2008/001753 priority patent/WO2010001438A1/ja
Publication of WO2010001438A1 publication Critical patent/WO2010001438A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • H04B10/25756Bus network topology

Definitions

  • the present invention relates to a fiber radio unit and the like.
  • Japanese Patent Application Laid-Open No. 2001-53542 discloses an antenna device that converts a radio signal into an optical signal for reception or converts an optical signal into a radio signal for transmission.
  • the antenna device disclosed in this publication has several series antenna elements. That is, the publication does not intend to increase the scale of the system, so it is difficult to use it for a wireless LAN for a mobile object.
  • a configuration of a large-scale array, a connection technology between an antenna and an optical modulator array, an optical loss compensation technology of a multistage optical modulator, etc. have not been established, and several series antenna elements It is supposed to have. JP 2001-53542 A
  • the object of the present invention is to provide a fiber radio unit and a fiber radio system that can transmit and receive a sufficient amount of transmission, particularly to a moving object.
  • a first aspect of the present invention relates to a fiber radio unit (3) including an antenna array (1) and an optical modulator array (2).
  • the antenna array (1) has a plurality of antenna elements (5) arranged in two dimensions.
  • the optical modulator array (2) includes a plurality of optical modulators (7) connected to the plurality of antenna elements (5) via electric circuits.
  • the optical modulator (7) is preferably connected to the corresponding antenna element (5) via an electric circuit having a phase compensator (6).
  • the antenna array layer (10) is formed in a layer provided on the substrate (9), and the antenna element is attached to the substrate (9) via a contact hole provided in the antenna array layer (10). What is electrically connected with the provided electric power feeding part (25) is preferable.
  • the optical modulator array (2) includes a substrate (9), a light introducing section (11), an optical waveguide (13), a light output section (15), and a plurality of optical modulators (7).
  • the substrate (9) is provided in parallel with the antenna array layer (10) provided with a plurality of antenna elements (5).
  • the light introducing part (11) is a part for introducing signal light into the substrate (9).
  • the optical waveguide (13) is a portion through which the signal light incident from the light introducing portion (11) propagates, and is provided on the substrate (9).
  • the light output part (15) is a part where the signal light that has passed through the optical waveguide (13) is output from the substrate (9).
  • the plurality of optical modulators (7) are provided in the optical waveguide (13).
  • the feeding point (25) of each optical modulator (7) is provided at a position corresponding to the plurality of antenna elements (5).
  • the optical waveguide (13) has a plurality of rows of optical waveguides (13) along the optical modulator (7) included in a certain row among the plurality of optical modulators (7).
  • the optical modulator array (2) further includes a reflection section (17) for connecting two adjacent row waveguides.
  • a reflection section (17) for connecting two adjacent row waveguides.
  • the second aspect of the present invention relates to a fiber radio system having the fiber radio unit (3) according to the first aspect of the present invention.
  • the fiber radio unit (3) of any aspect in this specification can be adopted.
  • predetermined information can be transmitted wirelessly to the mobile body moving on the line,
  • Each of the fiber radio units of the fiber radio unit is connected to an antenna array (1) having a plurality of antenna elements (5) arranged two-dimensionally and the plurality of antenna elements (5) via an electric circuit.
  • An optical modulator array (2) having a plurality of optical modulators (7), and a fiber radio unit, wherein the optical modulator array (2) A substrate (9) provided in parallel with the antenna array layer (10) provided with the plurality of antenna elements (5), and a light introducing portion (11) for introducing signal light into the substrate (9) Then, the signal light incident from the light introducing portion (11) propagates, the optical waveguide (13) provided on the substrate (9), and the signal light passing through the optical waveguide (13) are transmitted to the substrate (9).
  • the optical modulator array (2) further includes a reflection part (17) for connecting two adjacent row waveguides, so that the signal light incident on the light introducing part (11) is transmitted.
  • the present invention relates to a fiber radio system that is output from the optical output unit (15) via each row optical waveguide (13).
  • the present invention it is possible to provide a fiber radio unit and a fiber radio system that can transmit and receive a sufficient amount of transmission, particularly to a moving body.
  • FIG. 1 is a conceptual diagram showing an example of a fiber radio unit of the present invention.
  • FIG. 2 is a conceptual diagram when the antenna array and the optical modulator array are spatially separated.
  • the fiber radio unit of the present invention includes an antenna array (1) and an optical modulator array (2).
  • the antenna array (1) has a plurality of antenna elements (5) arranged in two dimensions.
  • the antenna elements (5a, 5b, 5c,...) are two-dimensionally arranged in a lattice pattern.
  • each antenna element for example, those disclosed in Japanese Patent Laid-Open No. 2001-53542 can be appropriately used.
  • the light modulator array (2) has a plurality of light modulators (7).
  • Each optical modulator (7) is connected to the corresponding antenna element (5) via an electric circuit having a phase compensator (6).
  • Phase compensators are known. With the phase compensator, the timing of the optical signal and the electrical signal received by the antenna can be controlled.
  • the phase compensator is provided on the optical modulator side.
  • the phase compensator may be provided on the antenna array side.
  • an electric circuit for example, one disclosed in Japanese Patent Laid-Open No. 2001-53542 can be used as appropriate.
  • an array antenna in which n (n is a positive integer greater than or equal to 2) antenna elements are arranged on a straight line, and the array antenna And n photoelectric / electrical conversion means (optical modulators) connected to the first to nth antenna elements via electric circuits, respectively, and the first to the second of the photoelectric / electrical conversion means. and an optical circuit for connecting the antenna element with the xth (x is an arbitrary integer, 2 ⁇ x ⁇ n) adjacent photoelectric transmission path.
  • the phase difference of the high frequency signal necessary to compensate for the transit time difference ⁇ T, d: the distance between the xth antenna element and the x ⁇ 1th antenna element, ⁇ : the wavefront of the received wave or the transmitted wave and the antenna surface
  • the circuit characteristics of the first to nth electric circuits may be set so as to satisfy the angle, ⁇ : wavelength of the electric signal, and N: any integer.
  • the optical modulator array (2) includes a substrate (9), a light introducing section (11), an optical waveguide (13), a light output section (15), and a plurality of optical modulators (7).
  • the substrate (9) is provided in parallel with the antenna array layer (10) provided with a plurality of antenna elements (5).
  • the light introducing part (11) is a part for introducing signal light into the substrate (9).
  • the optical waveguide (13) is a portion through which the signal light incident from the light introducing portion (11) propagates, and is provided on the substrate (9).
  • the optical waveguide itself provided on the substrate in this way is known.
  • a multi-stage folded waveguide is used as shown in FIGS.
  • the folded waveguide has, for example, a plurality of parallel portions and a portion that is tapered and joined to connect adjacent parallel portions that are located at the tip of the parallel portion.
  • the light output part (15) is a part where the signal light that has passed through the optical waveguide (13) is output from the substrate (9).
  • the plurality of optical modulators (7) are provided in the optical waveguide (13).
  • the optical modulator itself provided in the optical waveguide in this way is known. That is, modulation such as phase modulation and intensity modulation can be performed on the light propagating through the optical waveguide.
  • the optical waveguide (13) includes a row-shaped optical waveguide (13) along the optical modulator (7) included in a certain row among the plurality of optical modulators (7). Has multiple rows.
  • the waveguide examples include a waveguide obtained by diffusing titanium or the like using a ferroelectric material such as a LiNbO 3 substrate or a LiTaO 3 substrate.
  • a waveguide based on proton exchange may be used.
  • a ridge waveguide may be used.
  • a waveguide in which these are combined may be used. Since the fiber radio unit of the present invention has a long propagation length and a reflective structure, the optical loss is large. Therefore, it is preferable to add a material that compensates for loss to the optical waveguide and perform loss compensation by optical excitation.
  • erbium (Er) known for optically amplified atoms in the 1550 nm band may be diffused into the optical waveguide, or may be added in the crystal growth stage.
  • the optical waveguide a reflection-type folded optical waveguide in which light is reflected at the optical waveguide combining section and folded in multiple stages is preferable.
  • modulation electrodes resonance type, traveling wave type
  • An optical modulator may be an intensity modulator or a phase modulator.
  • FIG. 3 is a diagram illustrating an example of a waveguide when a phase modulator is used as the optical modulator.
  • symbol 21 shows a polarization inversion area
  • positive and negative signs indicate examples of partial polarization inversion regions matched to the folded waveguide.
  • the signal input to the light introducing section (11) is phase-modulated by a phase modulator provided along the waveguide (13) when propagating through the waveguide (13). Is done.
  • This phase modulator is electrically connected to the antenna element (5).
  • the phase modulator performs phase modulation on the signal reflecting the weak radio wave received by the antenna element (5).
  • the domain-inverted region is, for example, a region in which the polarization direction (crystal axis direction) of the substrate is reversed.
  • the domain-inverted region may be provided along a straight line portion of the waveguide. Further, as illustrated in FIG. 3, the domain-inverted regions may be provided only in even-numbered rows.
  • FIG. 4 is a diagram showing an example of a waveguide when an intensity modulator is used as an optical modulator.
  • FIG. 4A shows an example of a waveguide when a Mach-Zehnder type waveguide is used.
  • FIG. 4B shows an example of an intensity modulator when delay control is performed.
  • reference numeral 23 denotes a delay controller.
  • the operating principle of an intensity modulator using a Mach-Zehnder waveguide and the operating principle of an intensity modulator when performing delay control are known.
  • the input signal can be modulated in the same manner as in the waveguide shown in FIG.
  • FIG. 5 is a diagram showing an example of an antenna array.
  • FIG. 5A is a diagram illustrating an example of a dipole antenna array.
  • FIG. 5B is a diagram illustrating an example of a microstrip antenna array (MSA).
  • MSA microstrip antenna array
  • FIG. 5A a 7 ⁇ 4 dipole antenna array is shown.
  • FIG. 5B a 7 ⁇ 4 MSA array is shown.
  • the antenna array of the present invention can employ other numbers of rows and columns.
  • a microstrip antenna (MSA) is a type of planar antenna configured by etching a circular or square planar circuit resonant element on a printed circuit board with copper foil, for example. That is, the antenna element in this specification includes a dipole antenna or a microstrip antenna.
  • the antenna electrodes are arranged in a two-dimensional array in accordance with the feeding point (25) of the light modulation electrode formed along the optical waveguide.
  • FIG. 6 is a diagram showing an example of a two-dimensional modulator array.
  • FIG. 6A shows an example of a resonant electrode array.
  • FIG. 6B shows an example of a traveling wave electrode array.
  • a light modulation electrode is formed in a two-dimensional array on the optical waveguide along the optical waveguide.
  • Reference numeral 25 denotes a feeding point of the light modulation electrode. It is preferable to have a phase compensator (6) before and after the feeding point (25).
  • a resonant electrode structure capable of high density integration or a traveling wave electrode structure capable of forming a long electrode may be used.
  • each optical modulator (7) is provided at a position corresponding to the plurality of antenna elements (5).
  • an optical modulator corresponding to the corresponding antenna element can be prepared.
  • the signal propagating through the optical waveguide can be modulated corresponding to each antenna element.
  • the antenna array (1) and the optical modulator array (2) are monolithically formed on one substrate (9). That is, it is preferable that one of the antenna array (1) and the optical modulator array (2) is formed on the other substrate. In this embodiment, the antenna array (1) and the optical modulator array (2) form one circuit. By making it monolithic in this way, a certain antenna array and the corresponding optical modulator can be easily electrically connected.
  • One of the antenna substrate constituting the antenna array layer (10) and the substrate (9) may be one in which the other layer is laminated.
  • a layer including the optical modulator array (2) may be laminated on the antenna substrate. Further, the antenna array layer (10) may be laminated on the substrate (9) including the optical modulator array (2). Specifically, providing the modulating electrode and the optical waveguide substrate such as LiNbO 3. Thereafter, a layer is formed of SiO 2 or resin. Then, an antenna array is formed on this layer. A contact hole is opened in a portion of the layer located at the feeding point, and the antenna is electrically connected through the contact hole.
  • the antenna array (1) may have an antenna substrate.
  • the plurality of antenna elements (5) are provided on the antenna substrate. That is, the antenna substrate functions as an antenna array layer (10). And this antenna board
  • an antenna substrate may be used as the antenna array layer (10), and the antenna substrate and the substrate (9) may be connected.
  • each antenna element and the corresponding modulator are connected through an electric circuit.
  • An example of this electric circuit may be disclosed in Japanese Patent Laid-Open No. 2001-53542. Each configuration of the electric circuit may also be disclosed in Japanese Patent Laid-Open No. 2001-53542. Further, the electric circuit may include a flat coaxial cable, bonding formed by flip chip bonding, or a thin film formed by wafer fusion.
  • the optical modulator array (2) further includes a reflection section (17) for connecting two adjacent row waveguides.
  • a reflection section (17) for connecting two adjacent row waveguides.
  • Examples of the reflector (17) are a metal reflector, a dielectric multilayer reflector, or a diffraction grating reflector provided on the end surface of the substrate (9).
  • FIG. 7 is a conceptual diagram of the reflecting portion.
  • FIG. 7A shows a metal reflector.
  • FIG. 7B shows a dielectric multilayer reflector.
  • FIG. 7C shows a diffraction grating reflector. Since these are publicly known, an optimal one may be adopted as appropriate according to incident light or the like.
  • FIG. 8 is a diagram illustrating an example of a fiber radio unit that introduces excitation light into an optical waveguide.
  • FIG. 8A shows an example of a single path input waveguide.
  • FIG. 8B is a diagram illustrating an example of multipath input.
  • signal light (31) enters from the optical input unit (11).
  • the waveguide near the optical input unit (11) has a Y-shaped branch.
  • One of the Y branches is optically connected to a light source for excitation light.
  • excitation light (32) enters from one of the Y-shaped branches.
  • the excitation light and the signal light are combined.
  • An example of the signal light is light having a wavelength of 1550 nm.
  • a crystal appropriately added with erbium can be used.
  • signal light can be amplified by using a crystal to which erbium is added.
  • examples of the excitation light include light having a wavelength of 980 nm or 1480 nm.
  • the combined signal light (31) and pumping light (32) are demultiplexed by the WDM coupler (35).
  • the preferred embodiment of the fiber radio unit of the present invention is such that the optical modulator array (2) introduces pumping light into the optical waveguide (13) via the reflector (17). , Having an optical system for excitation light. Since this excitation light source system is provided, the amplification efficiency can be remarkably increased. Thereby, a plurality of modulations can be performed using a long optical waveguide with a plurality of optical modulators.
  • the fiber radio unit shown in FIG. 8B has a plurality of optical systems for introducing excitation light into the waveguide.
  • FIG. 9 is a diagram for explaining an operation in which excitation light is introduced through the reflecting portion.
  • FIG. 9A is a diagram illustrating an example using a diffraction grating.
  • FIG. 9B is a diagram illustrating an example using a dielectric multilayer film.
  • FIG. 9C shows an example using a metal reflector and a directional coupler.
  • excitation light introduced into the substrate from the outside of the substrate is introduced into the waveguide through the diffraction grating.
  • the traveling direction of the signal light introduced into the diffraction grating is changed to the next row at a certain part of the diffraction grating.
  • the diffraction grating may be designed to fold back the signal light and transmit the excitation light.
  • Such a design per se is known, and for example, the slit interval of the diffraction grating may be adjusted.
  • the metal reflecting mirror (26) is provided on the end surface of the substrate (9).
  • the end of the waveguide (13) is designed so that the signal light reaches the metal reflector (26). Then, the signal light propagating through the waveguide (13) is reflected by the metal reflecting mirror (26), and the path is changed to the waveguide of the next row.
  • an optical system for introducing excitation light into the substrate from the outside of the substrate is provided. Then, the excitation light introduced into the substrate through this optical system travels to the waveguide by the directional coupler (coupler). And since excitation light and signal light couple
  • the above diffraction grating and dielectric multilayer film function as a wavelength selection filter.
  • FIG. 10 shows a part of a fiber radio unit when wavelength division multiplexing (WDM) light is propagated.
  • FIG. 10A shows a configuration example.
  • FIG. 10B shows a configuration example.
  • FIG. 10C shows an explanatory diagram of FIG. 10A or 10B.
  • the optical waveguide (13) is provided with a plurality of wavelength dispersion media (41). Since the wavelength dispersion medium (41) is thus provided in the waveguide, it can be adjusted so that only light of a specific wavelength is modulated. With this structure, it is possible to select light of a wavelength corresponding to the characteristics of the radio signal such as frequency and directivity. Therefore, it is simple to convert a plurality of signals having different directivities in wireless communication into optical signals having different wavelengths in optical communication.
  • the distance from the antenna array (5a, 5b, 5c) to the feeding point (25) and the phase compensator (6) may be different for each antenna array.
  • a phase compensator may be provided on the optical modulator side via the feeding point (25), and a phase compensator may also be provided on the antenna array side.
  • FIG. 11 is a diagram showing an example of the fiber radio unit of the present invention. As shown in FIG. 11, the light introduction part and the light output part may be provided on the same side.
  • FIG. 12 is a diagram illustrating an example of a serial connection configuration of transmission / reception units.
  • the system shown in FIG. 12 includes an antenna integrated type optical modulator array (fiber radio unit (3)) for upstream (mobile to Internet network) and an antenna (53) for downstream (mobile network to mobile).
  • the accommodated transmission / reception unit (55) is configured by connecting each with an optical fiber (42) of an appropriate length.
  • the length of the optical fiber is, for example, from several meters to 100 meters.
  • FIG. 13 is a conceptual diagram of the fiber radio system of the present invention. As shown in FIG. 13, the transmission / reception units (55) are arranged along the path of the high-speed moving body (43) and at an optimum interval for the speed of the moving body. Thereby, seamless communication can be realized.
  • FIG. 14 is a diagram illustrating a state of the transmitting station, the unit, and the receiving station.
  • reference numeral 51 denotes a device that detects communication of a mobile object.
  • the transmitting station has, for example, a continuous wave (CW) light source in the 1550 nm band and outputs it toward the receiving station.
  • CW continuous wave
  • a multi-wavelength light source may be used as a transmission light source in order to use a wavelength multiplexing technique that effectively uses the wavelength band.
  • This wavelength multiplexing may be used for the purpose of compensating light that has become unmodulated due to a shift due to a Doppler shift of a radio signal frequency from a moving body with light of a different wavelength.
  • This transmitting station may have an excitation light source for Er excitation or Raman amplification. Then, the signal light is amplified using these excitation light sources.
  • the fiber for the Raman amplifier is preferably provided in parallel with the fiber for connecting the optical modulator array with the antenna, and is preferably combined at an appropriate position to amplify the signal light.
  • each fiber radio unit (3) is composed of a phase modulator that does not require bias adjustment (no power supply is required), leading to reduction in unit introduction cost and power consumption.
  • Start-up control of transmitter / receiver station from mobile unit The transmitter station starts up instantly upon receiving a signal from the mobile unit and starts supplying light. For example, the network is established only for the section where the moving object exists, and the other sections are stopped. Thereby, the efficiency of power consumption is also good.
  • the connected fiber radio unit (3) operates with only the power transmitted from the mobile body and modulates the light because of the non-powered operation.
  • the receiving station also starts immediately upon receiving the first pilot signal, and starts receiving the modulated signal.
  • This system can also be used for position information of Shinkansen and moving speed monitors.
  • the passage detection device observes that the mobile body has passed, and activates only the transmitting station and the transmitting / receiving unit (55) in the section that needs to be activated.
  • power consumption can be reduced by starting and stopping the system according to the position of the moving body.
  • continuous light is output from the transmitting station (47) toward the first fiber radio unit (3).
  • This continuous light becomes signal light. That is, signal light having various information is obtained by performing various light modulations on continuous light. Of course, pulsed light may be used as long as synchronization can be achieved.
  • the passage detection device (51) detects that a moving body (43) such as a bullet train, a train, or a car has passed.
  • a control device such as a computer activates the system (transmission station and transmission / reception unit (55)) in the section where the moving object exists based on the detection information of the passage detection device.
  • the antenna element included in the fiber radio unit (3) receives a radio signal emitted from the moving body (43).
  • the received radio signal is transmitted to an optical modulator electrically connected to each antenna element. After that, the signal light is modulated according to the received radio signal. In this way, since the signal light is modulated, the signal light can have information corresponding to the radio signal. This signal light is appropriately combined with the excitation light and amplified.
  • An optical fiber is connected between the fiber radio units (3), and the signal light propagates to the next fiber radio unit (3). Also in the next fiber radio unit (3), the signal light is modulated in accordance with the received radio signal. Then, the signal light propagates through the fiber radio unit (3) and then propagates to the receiving station (49). Then, since the receiving station (49) is connected to the Internet network, it reads the modulation information added to the signal light by the fiber radio unit (3) and outputs the information to the Internet network.
  • the information received from the Internet is received by the receiving station (49) and transmitted to the fiber radio unit (3). And it transmits to the portable terminal contained in a mobile body (43) as a radio signal from the antenna (53) provided in the unit for fiber radio (3).
  • the present invention can be used in the field of information communication technology.
  • FIG. 1 is a conceptual diagram showing an example of a fiber radio unit of the present invention.
  • FIG. 2 is a conceptual diagram when the antenna array and the optical modulator array are spatially separated.
  • FIG. 3 is a diagram illustrating an example of a waveguide when a phase modulator is used as the optical modulator.
  • FIG. 4 is a diagram illustrating an example of a waveguide when an intensity modulator is used as an optical modulator.
  • FIG. 4A shows an example of a waveguide when a Mach-Zehnder type waveguide is used.
  • FIG. 4B shows an example of an intensity modulator when delay control is performed.
  • FIG. 5 is a diagram illustrating an example of an antenna array.
  • FIG. 5A is a diagram illustrating an example of a dipole antenna array.
  • FIG. 5B is a diagram illustrating an example of a microstrip antenna array.
  • FIG. 6 is a diagram illustrating an example of a two-dimensional modulator array.
  • FIG. 6A shows an example of a resonant electrode array.
  • FIG. 6B shows an example of a traveling wave electrode array.
  • FIG. 7 is a conceptual diagram of the reflecting portion.
  • FIG. 7A shows a metal reflector.
  • FIG. 7B shows a dielectric multilayer reflector.
  • FIG. 7C shows a diffraction grating reflector.
  • FIG. 8 is a diagram illustrating an example of a fiber radio unit that introduces excitation light into an optical waveguide.
  • FIG. 8A shows an example of a single path input waveguide.
  • FIG. 8B is a diagram illustrating an example of multipath input.
  • FIG. 9 is a diagram for explaining an operation in which excitation light is introduced through the reflecting portion.
  • FIG. 9A is a diagram illustrating an example using a diffraction grating.
  • FIG. 9B is a diagram illustrating an example using a dielectric multilayer film.
  • FIG. 9C shows an example using a metal reflector and a directional coupler.
  • FIG. 10 shows a part of a fiber radio unit when wavelength division multiplexing (WDM) light is propagated.
  • FIG. 10A shows a configuration example.
  • FIG. 10B shows a configuration example.
  • FIG. 10C shows an explanatory diagram of FIGS. 10A and 10B.
  • FIG. 11 is a diagram showing an example of the fiber radio unit of the present invention.
  • FIG. 11 is a diagram showing an example of the fiber radio unit of the present invention.
  • FIG. 12 is a diagram illustrating an example of a serial connection configuration of transmission / reception units.
  • FIG. 13 is a conceptual diagram of the fiber radio system of the present invention.
  • FIG. 14 is a diagram illustrating a state of the transmitting station, the unit, and the receiving station.

Abstract

 【課題】 本発明は,特に移動体に対して,十分な伝送量を送受信できるファイバ無線用ユニット及びファイバ無線用システムを提供することを目的とする。  【解決手段】 本発明の第1の側面は,アンテナアレイ(1)と光変調器アレイ(2)とを含むファイバ無線用ユニット(3)に関する。光変調器アレイ(2)は,複数のアンテナエレメント(5)とそれぞれ電気回路を介して接続された複数の光変調器(7)を有する。光導波路(13)は,複数の光変調器(7)のうち,ある行に含まれる光変調器(7)に沿った行状光導波路(13)を複数行有する。光変調器アレイ(2)は,隣接する2つの行状導波路を接続するための反射部(17)を有する。これにより,光導入部(11)に入射した信号光が,各行状光導波路(13)を経由し,光出力部(15)から出力される。  

Description

ファイバ無線用ユニット及びファイバ無線用システム
 本発明は,ファイバ無線用ユニットなどに関する。
 光ファイバ無線システムにおいて,ミリ波信号と光信号を相互に変換するインターフェース技術の開発が重要である。特にアップリンクにおいては,受信した微弱なミリ波信号を電気増幅してから,レーザや変調器を動作させており,各基地局の構成の複雑さ,設置コストや消費電力の増加などが問題となり,普及の障害となることが予想される。このため,特開2001-53542号公報には,電波信号を光信号に変換して受信,または光信号を電波信号に変換して送信するアンテナ装置が開示されている。
 しかしながら,この公報に開示されたアンテナ装置は,数個の直列アンテナエレメントを有するものである。すなわち,同公報では,システムの大規模化などが意図されていないので,移動体に対する無線LANに用いることが難しい。具体的には,同公報では,大規模アレイの構成,アンテナと光変調器アレイとの接続技術,多段な光変調器の光損失補償技術などが未確立であって,数個の直列アンテナエレメントを有するものとされている。
特開2001-53542号公報
 本発明は,特に移動体に対して,十分な伝送量を送受信できるファイバ無線用ユニット及びファイバ無線用システムを提供することを目的とする。
 本発明の第1の側面は,アンテナアレイ(1)と光変調器アレイ(2)とを含むファイバ無線用ユニット(3)に関する。
 アンテナアレイ(1)は,2次元に並んだ複数のアンテナエレメント(5)を有する。また,光変調器アレイ(2)は,複数のアンテナエレメント(5)とそれぞれ電気回路を介して接続された複数の光変調器(7)を有する。光変調器(7)は,対応するアンテナエレメント(5)と,位相補償器(6)を有する電気回路を介して接続されるものが好ましい。また,アンテナアレイ層(10)は,前記基板(9)上に設けられた層に形成され,アンテナエレメントは,アンテナアレイ層(10)に設けられたコンタクトホールを介して,基板(9)に設けられた給電部(25)と電気的に接続されるものが好ましい。
 そして,光変調器アレイ(2)は,基板(9)と,光導入部(11)と,光導波路(13)と,光出力部(15)と,複数の光変調器(7)とを有する。基板(9)は,複数のアンテナエレメント(5)が設けられたアンテナアレイ層(10)と平行に設けられる。光導入部(11)は,基板(9)に信号光を導入するため部位である。光導波路(13)は,光導入部(11)から入射した信号光が伝播する部位であり,基板(9)に設けられる。光出力部(15)は,光導波路(13)を経た信号光が,基板(9)から出力される部位である。複数の光変調器(7)は,光導波路(13)に設けられる。
 複数の光変調器(7)は,それぞれの光変調器(7)の給電点(25)が,複数のアンテナエレメント(5)に対応する位置に設けられる。光導波路(13)は,複数の光変調器(7)のうち,ある行に含まれる光変調器(7)に沿った行状光導波路(13)を複数行有する。
 光変調器アレイ(2)は,さらに,隣接する2つの行状導波路を接続するための反射部(17)を有する。これにより,光導入部(11)に入射した信号光が,各行状光導波路(13)を経由し,光出力部(15)から出力される。
 本発明の第2の側面は,本発明の第1の側面に係るファイバ無線用ユニット(3)を有するファイバ無線用システムに関する。ファイバ無線用システムにおいて,本明細書におけるあらゆる態様のファイバ無線用ユニット(3)を採用することができる。具体的には,線路に沿って設けられた複数のファイバ無線用ユニットを有するファイバ無線システムであって,前記ファイバ無線用ユニットのうち隣接するものは,光学的に接続されており,前記線路を移動する移動体から送信された無線信号を受信して,受信信号を光変調信号に変えることができ,一方,前記線路を移動する移動体へ所定の情報を無線にて送信でき,前記複数のファイバ無線用ユニットのそれぞれのファイバ無線用ユニットは,2次元に並んだ複数のアンテナエレメント(5)を有するアンテナアレイ(1)と,前記複数のアンテナエレメント(5)とそれぞれ電気回路を介して接続された複数の光変調器(7)を有する光変調器アレイ(2)と,を含む,ファイバ無線用ユニットであって,前記光変調器アレイ(2)は,前記複数のアンテナエレメント(5)が設けられたアンテナアレイ層(10)と平行に設けられた基板(9)と,前記基板(9)に信号光を導入するための,光導入部(11)と,前記光導入部(11)から入射した信号光が伝播する,前記基板(9)に設けられた光導波路(13)と,前記光導波路(13)を経た信号光が前記基板(9)から出力される,光出力部(15)と,前記光導波路(13)に設けられた複数の光変調器(7)と,を有し,前記複数の光変調器(7)は,それぞれの光変調器(7)の給電点(25)が,前記複数のアンテナエレメント(5)に対応する位置に設けられ,前記光導波路(13)は,前記複数の光変調器(7)のうち,ある行に含まれる光変調器(7)に沿った行状光導波路(13)を,複数行有し,前記光変調器アレイ(2)は,さらに,隣接する2つの行状導波路を接続するための反射部(17)を有し,これにより,前記光導入部(11)に入射した信号光が,各行状光導波路(13)を経由し,前記光出力部(15)から出力される,ファイバ無線システムに関する。
 本発明によれば,特に移動体に対して,十分な伝送量を送受信できるファイバ無線用ユニット及びファイバ無線用システムを提供できる。
 以下,図面を用いて,本発明の最良の実施形態を説明する。図1は,本発明のファイバ無線用ユニットの例を示す概念図である。図2は,アンテナアレイと光変調器アレイとを空間的に分離した場合の概念図を示す。
 図1及び図2に示されるように,本発明のファイバ無線用ユニットは,アンテナアレイ(1)と光変調器アレイ(2)とを含む。
 アンテナアレイ(1)は,2次元に並んだ複数のアンテナエレメント(5)を有する。図1及び図2に示される例では,それぞれのアンテナエレメント(5a,5b,5c,・・・)は,2次元に格子状に配置されている。それぞれのアンテナエレメントは,たとえば,特開2001-53542号公報に開示されたものを適宜用いることができる。
 光変調器アレイ(2)は,複数の光変調器(7)を有する。それぞれの光変調器(7)は,それぞれ対応するアンテナエレメント(5)と,位相補償器(6)を有する電気回路を介して接続される。位相補償器は公知である。位相補償器を有することで,光信号と,アンテナで受信した電気信号とのタイミングを制御できる。なお,図2に示される例では,位相補償器が光変調器側に設けられている。しかしながら,位相補償器はアンテナアレイ側に設けられてもよい。また,電気回路として,たとえば,特開2001-53542号公報に開示されたものを適宜用いることができる。
 具体的には,特開2001-53542号公報に記載されるように,n個(nは2以上の正の整数)のアンテナエレメントを直線上に均等配置してなるアレイアンテナと,上記アレイアンテナにおける第1番目から第n番目までのアンテナエレメントと各々電気回路を介して接続されるn個の光電・電光変換手段(光変調器)と,上記各光電・電光変換手段の第1番目から第n番目までを等間隔で通過する光伝送路と,を備え,隣接する第x番目(xは任意の整数で,2≦x≦n)の光電・電光変換手段とアンテナエレメントを接続する電気回路の回路特性と,第x-1番目の光電・電光変換手段とアンテナエレメントを接続する電気回路の回路特性とが,ΔφE+Δφ-2π・d・sinθ/λ=2πNの関係(ΔφE:x番目の電気回路とx-1番目の電気回路で生ずる高周波信号の位相遅れの差,ΔφP:x番目の光電・電光変換手段とx-1番目の光電・電光変換手段との間の光伝送路を光が通過する通過時間差ΔTを補償するために必要な高周波信号の位相差,d:x番目のアンテナエレメントとx-1番目のアンテナエレメントとの間隔,θ:受信波もしくは送信波の波面とアンテナ面とがなす角,λ:電気信号の波長,N:任意の整数)を満たすように,第1番目~第n番目の電気回路の回路特性を設定すればよい。
 そして,光変調器アレイ(2)は,基板(9)と,光導入部(11)と,光導波路(13)と,光出力部(15)と,複数の光変調器(7)とを有する。基板(9)は,複数のアンテナエレメント(5)が設けられたアンテナアレイ層(10)と平行に設けられる。光導入部(11)は,基板(9)に信号光を導入するため部位である。光導波路(13)は,光導入部(11)から入射した信号光が伝播する部位であり,基板(9)に設けられる。このように基板に設けられた光導波路自体は公知である。一方,本発明においては,図1及び図2に示されるように複数段折り返し式の導波路を用いる。折り返し式の導波路は,たとえば,複数段の平行部分と,平行部分の先端部分に位置し隣接する平行部分を結ぶために先が細くなって合わさる部分とを有する。
 光出力部(15)は,光導波路(13)を経た信号光が,基板(9)から出力される部位である。複数の光変調器(7)は,光導波路(13)に設けられる。このように光導波路に設けられた光変調器自体は公知である。すなわち,光導波路を伝播する光に対して,位相変調や強度変調などの変調を施すことができるようにされている。図1及び図2に示されるように,光導波路(13)は,複数の光変調器(7)のうち,ある行に含まれる光変調器(7)に沿った行状光導波路(13)を複数行有する。導波路は,LiNbO基板やLiTaO基板などの強誘電体を用いたチタンなどを拡散した導波路があげられる。また,プロトン交換による導波路を用いても良い。また,リッジ導波路を用いても良い。さらに,これらを組合わせた導波路を用いても良い。本発明のファイバ無線用ユニットは,伝搬長が長く,さらに反射構造をもつため,光損失が大きい。よって,損失を補償するような原料を光導波路に添加し,光励起による損失補償を行うことが好ましい。たとえば,信号光として1550nmの光を用いる場合,1550nm帯の光増幅原子で知られるエルビウム(Er)などを光導波路に対して拡散してもよいし,結晶成長段階において添加してもよい。光導波路として,光導波路合波部で光を反射させ,多段に折り返した,反射型折り返し光導波路が好ましい。これにより,光導波路上部に設ける変調電極(共振型,進行波型)を多数,またはより長く配置することができ,光と電気の相互作用長を伸ばすことができるため,より低電圧で駆動することができる。
 光変調器として,強度変調器,又は位相変調器があげられる。図3は,光変調器として位相変調器を用いた場合の導波路の例を示す図である。図3において,符号21は,分極反転領域を示す。なお,図3において,正負の符号は,折り返し導波路に合わせた部分的な分極反転領域の例を示す。図3に示される例では,光導入部(11)に入力された信号は,導波路(13)を伝播する際に,導波路(13)に沿って設けられる位相変調器により位相変調が施される。この位相変調器は,アンテナエレメント(5)と電気的に接続されている。そして,位相変調器は,信号に対し,アンテナエレメント(5)が受信した微弱な電波を反映した位相変調を施すこととなる。光導波路に分極反転領域が設けられるので,光変調を効率よく行うことができる。分極反転領域は,たとえば,基板の分極方向(結晶軸の方向)を反転させた領域である。分極反転領域は,たとえば,導波路の直線部分に沿うように設ければよい。また,図3に例示されるように,偶数番目の行にのみ分極反転領域を設けるようにしても良い。
 図4は,光変調器として強度変調器を用いた場合の導波路の例を示す図である。図4Aは,マッハツェンダー型の導波路を用いた場合の導波路の例を示す。図4Bは,遅延制御を行った場合の強度変調器の例を示す。図4B中,符号23は遅延制御器である。マッハツェンダー導波路を用いた強度変調器の作動原理や遅延制御を行った場合の強度変調器の作動原理は公知である。図4A及び図4Bともに,図3に示される導波路のものと同様にして入力信号に変調を施すことができる。
 図5は,アンテナアレイの例を示す図である。図5Aは,ダイポールアンテナアレイの例を示す図である。図5Bは,マイクロストリップアンテナアレイ(MSA)の例を示す図である。図5Aでは,7行4列のダイポールアンテナアレイが図示されている。図5Bでは,7行4列のMSAアレイが図示されている。本発明のアンテナアレイは,これ以外の行数及び列数を採用することができる。マイクロストリップアンテナ(MSA)は,たとえば,円形または方形の平面回路用共振素子を銅箔付きプリント基板上にエッチング技術などにより構成される平面アンテナの一種である。すなわち,本明細書におけるアンテナエレメントとして,ダイポールアンテナ又はマイクロストリップアンテナがあげられる。たとえば,光導波路に沿って形成した光変調電極の給電点(25)に合わせて,アンテナ電極を2次元アレイ状に配置する。
 図6は,2次元変調器アレイの例を示す図である。図6Aは,共振型電極アレイの例を示す。図6Bは,進行波型電極アレイの例を示す。光導波路に沿って,その上部に光変調電極を2次元アレイ状に形成する。符号25は,光変調電極の給電点を示す。給電点(25)の前後には,位相補償器(6)を有するものが好ましい。光変調電極には,高密度な集積が可能な共振型電極構造や,長い電極を構成できる進行波型電極構造を用いればよい。
 複数の光変調器(7)は,それぞれの光変調器(7)の給電点(25)が,複数のアンテナエレメント(5)に対応する位置に設けられる。このようにすることで,対応するアンテナエレメントと対応した光変調器を用意することができる。そして,光導波路を伝播する信号に対し,アンテナエレメントごとに対応した変調を施すことができることとなる。
 2次元に並んだアンテナアレイと光変調器アレイを同一平面において接続することは難しい。そこで,本発明ではこれらを平行に設置する。そして,アンテナアレイ(1)と光変調器アレイ(2)が,モノリシックにひとつの基板(9)に形成されたものは,本発明の好ましい態様のひとつである。すなわち,アンテナアレイ(1)及び光変調器アレイ(2)の一方の基板にもう一方が形成されるものが好ましい。この態様では,アンテナアレイ(1)と光変調器アレイ(2)とが,ひとつの回路を形成する。このようにモノリシックにすることで,あるアンテナアレイと,それに対応する光変調器とを容易に電気的に接続することができる。アンテナアレイ層(10)を構成するアンテナ基板,又は基板(9)のいずれかの基板上に,もう片方の層を積層するものがあげられる。具体的には,アンテナ基板上に,光変調器アレイ(2)を含む層を積層してもよい。また,光変調器アレイ(2)を含む基板(9)上に,アンテナアレイ層(10)を積層してもよい。具体的には,LiNb0などの基板に光導波路と変調電極を設ける。その後,SiOや樹脂などで層を形成する。そして,この層の上部にアンテナアレイを形成する。そして,この層の給電点に位置する部位にはコンタクトホールを空けておき,このコンタクトホールを介して各アンテナと電気的に接続する。
 アンテナアレイ(1)は,アンテナ基板を有するものでもよい。この場合,複数のアンテナエレメント(5)は,アンテナ基板に設けられる。すなわち,アンテナ基板が,アンテナアレイ層(10)として機能する。そして,このアンテナ基板と基板(9)とが接続される。このようにアンテナアレイ層(10)としてアンテナ基板を用い,このアンテナ基板と基板(9)とを接続してもよい。具体的には,各アンテナエレメントとこれに対応する変調器とが電気回路を介して接続される。この電気回路の例は,特開2001-53542号公報に開示されたものであっても良い。この電気回路の各構成も,特開2001-53542号公報に開示されたものであっても良い。また,電気回路は,フラット同軸ケーブル,フリップチップボンディングにより形成されたボンディング,又はウェハフュージョンにより形成された薄膜を含むものであってもよい。
 光変調器アレイ(2)は,さらに,隣接する2つの行状導波路を接続するための反射部(17)を有する。これにより,光導入部(11)に入射した信号光が,各行状光導波路(13)を経由し,光出力部(15)から出力される。
 反射部(17)の例は,基板(9)端面に設けられた金属反射鏡,誘電体多層膜反射鏡,又は回折格子反射鏡である。図7は,反射部の概念図である。図7Aは金属反射鏡を示す。図7Bは,誘電体多層膜反射鏡を示す。図7Cは,回折格子反射鏡を示す。これらは,公知であるから,入射する光などに応じて,適宜最適なものを採用すればよい。
 本発明においては,励起光を光導波路に入れて,光信号を増幅することが好ましい。このようにするため,長い光導波路を伝播する信号に対して,複数の変調を施すことができる。図8は,励起光を光導波路に入れるファイバ無線用ユニットの例を示す図である。図8Aは,シングルパス入力導波路の例を示す。図8Bは,マルチパス入力の例を示す図である。
 図8Aに示す例では,光入力部(11)から信号光(31)が入る。一方,光入力部(11)付近の導波路には,Y字分岐がある。そして,Y字分岐の一方は,励起光用の光源に光学的に接続される。このため,励起光(32)が,Y字分岐の一方から入る。そして,励起光と信号光とが合波される。信号光は,たとえば1550nmの波長を有する光があげられる。この場合,たとえば,適宜エルビウムが添加された結晶を用いることができる。このようにエルビウムが添加された結晶を用いることで,信号光を増幅できる。一方,励起光は,たとえば980nm又は1480nmの波長を有する光があげられる。図8Aに示す例では,合波された信号光(31)及び励起光(32)は,WDMカプラ(35)で分波される。
 図8Bに示されるように,本発明のファイバ無線用ユニットの好ましい態様は,光変調器アレイ(2)が,反射部(17)を介して光導波路(13)へ励起光を導入するための,励起光用光学系を有するものである。この励起光用光源系を有するため,増幅効率を著しく高めることができる。これにより,複数の光変調器を伴った長い光導波路を用いて複数の変調を施すことができることとなる。
 図8Bに示されるファイバ無線用ユニットは,励起光を導波路に導入するための光学系を複数有する。
 図9は,反射部を介して,励起光が導入される動作を説明するための図である。図9Aは,回折格子を用いた例を示す図である。図9Bは,誘電体多層膜を用いた例を示す図である。図9Cは,金属反射鏡及び方向性結合器を用いた例を示す。
 図9Aに示されるように,回折格子を用いた例では,基板外部から基板に導入された励起光が回折格子を経て導波路内に導入される。一方,回折格子に導入された信号光は,回折格子のある部分で,次の行へと進行方向を変化させられる。このように作用するために,回折格子が,信号光を折り返し,励起光を透過させるように設計すればよい。このような設計自体は公知であり,たとえば,回折格子のスリット間隔を調整すればよい。
 図9Bに示されるように,誘電体多層膜を用いた場合,基板外部から導入された励起光が誘電体多層膜を経て導波路内に導入される。一方,誘電体多層膜に導入された信号光は,誘電体多層膜により,次の行へと進行方向を変化させられる。
 図9Cに示されるように,金属反射鏡及び方向性結合器を用いた例について説明する。金属反射鏡(26)は,基板(9)の端面に設けられる。そして,導波路(13)の端部は,金属反射鏡(26)に信号光が到達するように設計される。すると,導波路(13)を伝播する信号光は,金属反射鏡(26)により反射されて,次の行の導波路へと進路を変更する。一方,基板外部から基板内に励起光を導入するための光学系が設けられている。そして,この光学系を経て基板内に導入された励起光は,方向性結合器(カプラ)により,導波路へ進行する。そして,励起光と信号光とが結合するため,信号光が増幅される。
 なお,上記の回折格子や誘電体多層膜は,波長選択フィルタとして機能する。
 図10は,波長分割多重(WDM)光を伝播させた際のファイバ無線用ユニットの部分を示す。図10Aは,構成例を示す。図10Bは,構成例を示す。図10Cは,図10Aまたは図10Bの説明図を示す。この例では,光導波路(13)には,複数の波長分散媒質(41)が設けられる。このように波長分散媒質(41)が導波路に設けられるので,特定の波長の光にのみ変調が加わるように調整できることとなる。この構造により,周波数や指向性といった無線信号の特性に対応した波長の光を選択できるため,無線通信における複数の指向性の異なる信号を,光通信における波長の異なる光信号に変換するという簡素な多重変換を実現できる。図10Aのように,アンテナアレイ(5a,5b,5c)から,給電点(25)及び位相補償器(6)までの距離が各アンテナアレイにより異なるものであってもよい。また,図10Bに示されるように,給電点(25)を介して光変調器側に位相補償器が設けられるとともに,アンテナアレイ側にも位相補償器が設けられてもよい。
 図11は,本発明のファイバ無線用ユニットの例を示す図である。図11に示されるように光導入部と光出力部とは同じ側に設けられていても良い。
 送受信ユニットの直列接続構成
 図12は,送受信ユニットの直列接続構成例を示す図である。図12に示されるシステムは,上り(移動体からインターネット網)用のアンテナ集積型光変調器アレイ(ファイバ無線ユニット(3))と,下り(インターネット網から移動体)用のアンテナ(53)を収めた送受信ユニット(55)が,各々を適当な長さの光ファイバ(42)で接続することにより構成されている。光ファイバの長さは,たとえば,数m以上100m以下があげられる。図13は,本発明のファイバ無線用システムの概念図である。図13に示されるように,高速な移動体(43)の進路に沿って,また移動体の速度に最適な間隔で送受信ユニット(55)が並べられている。これにより,シームレスな通信を実現することができる。このシステムは,ファイバ端に光を送る送信局(47)と,各ユニットで変調された光信号を受ける受信局(49)を設け,受信局は従来のインターネット網に接続される。図12に示されるようにラマン用光ファイバ(45)を併用しても良い。これにより光ファイバを伝播する光に対しラマン増幅を行うことができる。図14は,送信局,ユニット及び受信局の様子を示す図である。図14中,符号51は,移動体の通信を検出する装置である。
 送信局(上り用)の構成(WDM多重化技術,光励起増幅技術の導入)
 送信局は,たとえば,1550nm帯の連続発振(CW)光源を有し,受信局に向けて出力する。このとき,波長帯域を有効利用する波長多重技術を併用するため,多波長光源を送信光源としてもよい。この波長多重は,移動体からの無線信号周波数のドップラーシフトによるずれにより変調されなくなった光を,異なる波長の光で補償する目的に用いられる場合もある。この送信局は,Er励起用やラマン増幅用の励起光源を有していてもよい。そして,これらの励起光源を用いて,信号光を増幅する。ラマン増幅器用のファイバは,アンテナ付き光変調器アレイをつなぐファイバとは並列に設けられ,適当な位置で合波して信号光を増幅させることが好ましい。
 受信局(上り用)の構成(無給電ユニット技術)
 光変調器を位相変調器で構成した場合は,受信局の光検出器の前に分散媒質(FBG,バンドパスフィルタ等)を配置し,位相変調を強度変調に変換することが好ましい。これにより,各ファイバ無線用ユニット(3)は,バイアス調整不要な(電源不要な)位相変調器で構成されることとなるため,ユニット導入コストや消費電力の低減につながることとなる。
 移動体からの送受信局の起動制御
 送信局は,移動体の通過信号を受けて瞬時に起動し,光の供給を開始する。たとえば,移動体が存在する区間のみのネットワークを確立し,他の区間は停止している。これにより,消費電力の効率もよい。送信局が連続光を送信した後,接続されているファイバ無線用ユニット(3)は無給電動作のため,移動体から送信された電力のみで動作し,光を変調する。受信局も初めのパイロット信号を受けて瞬時に起動し,変調信号の受信を開始する。このシステムは,新幹線などの位置情報や移動速度のモニタなどにも用いられうる。
 なお,図14に示されるように,通過検出装置(51)を用いて移動体が通過したことを観測するものは本発明の好ましい態様である。すなわち,通過検出装置が,移動体が通過したこと観測し,起動する必要のある区間の送信局及び送受信ユニット(55)のみを起動させる。このように移動体の位置に応じてシステムを起動・停止することで,消費電力を軽減できる。
 本発明のファイバ無線用システムは,送信局(47)から連続光が第1のファイバ無線用ユニット(3)へ向けて出力される。この連続光が信号光となる。つまり,連続光に様々な光変調を施すことで,様々な情報を持つ信号光となる。もちろん,同期を取ることができれば,パルス光を用いても良い。通過検出装置(51)は,新幹線,電車,車などの移動体(43)が通過したことを検出する。そして,コンピュータなどの図示しない制御装置は,通過検出装置の検出情報を基に,移動体の存在する区間のシステム(送信局および送受信ユニット(55))を起動する。ファイバ無線用ユニット(3)に含まれるアンテナエレメントは,移動体(43)から放出される無線信号を受信する。受信した無線信号は,それぞれのアンテナエレメントと電気的に接続された光変調器へと伝えられる。その上で,信号光に受信した無線信号に応じた変調を施す。このようにして,信号光に変調が施されるため,信号光に無線信号に応じた情報をもたせることができることとなる。この信号光は,適宜励起光と合波され,増幅される。ファイバ無線用ユニット(3)間を光ファイバが接続しており,信号光は次のファイバ無線用ユニット(3)へと伝播する。次のファイバ無線用ユニット(3)においても,信号光に対して,受信した無線信号に応じた変調が施される。そして,信号光は,ファイバ無線用ユニット(3)をいくつか伝播した後に,受信局(49)へと伝播する。すると,受信局(49)は,インターネット網と接続されているので,ファイバ無線用ユニット(3)により信号光に加えられた変調情報を読取り,インターネット網へと情報を出力する。
 一方,インターネットから受信された情報を,受信局(49)が受信し,ファイバ無線用ユニット(3)へと伝えられる。そして,ファイバ無線用ユニット(3)に設けられたアンテナ(53)から無線信号として,移動体(43)に含まれる携帯端末へと送信される。
 本発明は,情報通信技術の分野で利用されうる。
図1は,本発明のファイバ無線用ユニットの例を示す概念図である。 図2は,アンテナアレイと光変調器アレイとを空間的に分離した場合の概念図を示す。 図3は,光変調器として位相変調器を用いた場合の導波路の例を示す図である。 図4は,光変調器として強度変調器を用いた場合の導波路の例を示す図である。図4Aは,マッハツェンダー型の導波路を用いた場合の導波路の例を示す。図4Bは,遅延制御を行った場合の強度変調器の例を示す。 図5は,アンテナアレイの例を示す図である。図5Aは,ダイポールアンテナアレイの例を示す図である。図5Bは,マイクロストリップアンテナアレイの例を示す図である。 図6は,2次元変調器アレイの例を示す図である。図6Aは,共振型電極アレイの例を示す。図6Bは,進行波型電極アレイの例を示す。 図7は,反射部の概念図である。図7Aは金属反射鏡を示す。図7Bは,誘電体多層膜反射鏡を示す。図7Cは,回折格子反射鏡を示す。 図8は,励起光を光導波路に入れるファイバ無線用ユニットの例を示す図である。図8Aは,シングルパス入力導波路の例を示す。図8Bは,マルチパス入力の例を示す図である。 図9は,反射部を介して,励起光が導入される動作を説明するための図である。図9Aは,回折格子を用いた例を示す図である。図9Bは,誘電体多層膜を用いた例を示す図である。図9Cは,金属反射鏡及び方向性結合器を用いた例を示す。 図10は,波長分割多重(WDM)光を伝播させた際のファイバ無線用ユニットの部分を示す。図10Aは,構成例を示す。図10Bは,構成例を示す。図10Cは,図10A及び図10Bの説明図を示す。 図11は,本発明のファイバ無線用ユニットの例を示す図である。 図12は,送受信ユニットの直列接続構成例を示す図である。 図13は,本発明のファイバ無線用システムの概念図である。 図14は,送信局,ユニット及び受信局の様子を示す図である。
符号の説明
 1 アンテナアレイ
 2 光変調器アレイ
 3 ファイバ無線用ユニット
 5 アンテナエレメント
 7 光変調器
 9 基板
 10 アンテナアレイ層
 11 光導入部
 13 光導波路
 15 光出力部
 17 反射部
 25 給電点

Claims (13)

  1.  2次元に並んだ複数のアンテナエレメント(5)を有するアンテナアレイ(1)と,前記複数のアンテナエレメント(5)とそれぞれ電気回路を介して接続された複数の光変調器(7)を有する光変調器アレイ(2)と,を含む,ファイバ無線用ユニット(3)であって,
     
     前記光変調器アレイ(2)は,
      前記複数のアンテナエレメント(5)が設けられたアンテナアレイ層(10)と平行に設けられた基板(9)と,
      前記基板(9)に信号光を導入するための,光導入部(11)と,
      前記光導入部(11)から入射した信号光が伝播する,前記基板(9)に設けられた光導波路(13)と,
      前記光導波路(13)を経た信号光が前記基板(9)から出力される,光出力部(15)と,
      前記光導波路(13)に設けられた複数の光変調器(7)と,
    を有し,
     
     前記複数の光変調器(7)は,
      それぞれの光変調器(7)の給電点(25)が,前記複数のアンテナエレメント(5)に対応する位置に設けられ,
     
     前記光導波路(13)は,
      前記複数の光変調器(7)のうち,ある行に含まれる光変調器(7)に沿った行状光導波路(13)を,複数行有し,
     
     前記光変調器アレイ(2)は,さらに,
      隣接する2つの行状導波路を接続するための反射部(17)を有し,
      これにより,前記光導入部(11)に入射した信号光が,各行状光導波路(13)を経由し,前記光出力部(15)から出力される,
     
     ファイバ無線用ユニット。
  2.  前記各行状光導波路(13)は,
      それぞれ分極反転領域(21)を有する,
     請求項1に記載のファイバ無線用ユニット。
  3.  前記アンテナアレイ(1)と前記光変調器アレイ(2)は,モノリシックにひとつの基板(9)に形成された,
     請求項1に記載のファイバ無線用ユニット。
  4.  前記アンテナアレイ層(10)は,前記基板(9)上に設けられた層に形成され,
     
     前記アンテエレメント(5)は,前記アンテナアレイ層(10)に設けられたコンタクトホールを介して,前記基板(9)に設けられた給電点(25)と電気的に接続される,
     
     請求項1に記載のファイバ無線用ユニット。
  5.  前記光変調器(7)は,対応するアンテナエレメント(5)と,位相補償器(6)を有する電気回路を介して接続される,
     請求項1に記載のファイバ無線用ユニット。
  6.  前記アンテナアレイ(1)は,アンテナ基板を有し,
     前記複数のアンテナエレメント(5)は,前記アンテナ基板に設けられ,
     
     前記電気回路は,
      フラット同軸ケーブル,
      フリップチップボンディングにより形成されたボンディング,又は
      ウェハフュージョンにより形成された薄膜,
     を含む,
     
    請求項1に記載のファイバ無線用ユニット。
  7.  前記反射部(17)は,
      前記基板(9)端面に設けられた金属反射鏡,誘電体多層膜反射鏡,又は回折格子反射鏡である,
     請求項1に記載のファイバ無線用ユニット。
  8.  前記光変調器アレイ(2)は,さらに,
       前記反射部(17)を介して,前記光導波路(13)へ励起光を導入するための,励起光用光学系,
      を有する,
     請求項1に記載のファイバ無線用ユニット。
  9.  前記励起光用光学系は,
       前記反射部(17)に設けられた波長選択フィルタを有し,
       前記波長選択フィルタは,前記信号光を反射し,
       前記励起光を透過する,
     請求項1に記載のファイバ無線用ユニット。
     
  10.  前記励起光用光学系は,
       前記反射部(17)に設けられた回折格子を有し,
       前記回折格子は,前記信号光を反射し,
       前記励起光を透過する,
     請求項1に記載のファイバ無線用ユニット。
     
  11.  前記光変調器アレイ(2)は,さらに,
       前記反射部(17)に方向性結合器と,
       前記光導波路(13)へ励起光を導入するための,第2の励起光用光学系と,
      を有し,
      前記第2の励起光用光学系を介して,前記光導波路(13)へ導入された励起光は,前記方向性結合器を介して,前記信号光と結合する,
     請求項1に記載のファイバ無線用ユニット。
     
  12.  前記光導波路(13)には,複数の波長分散媒質が設けられる,
     請求項1に記載のファイバ無線用ユニット。
     
  13.  線路に沿って設けられた複数のファイバ無線用ユニットを有するファイバ無線システムであって,前記ファイバ無線用ユニットのうち隣接するものは,光学的に接続されており,
     
     前記線路を移動する移動体から送信された無線信号を受信して,受信信号を光変調信号に変えることができ,
     
     一方,前記線路を移動する移動体へ所定の情報を無線にて送信でき,
     
     前記複数のファイバ無線用ユニットのそれぞれのファイバ無線用ユニットは,
      2次元に並んだ複数のアンテナエレメント(5)を有するアンテナアレイ(1)と,前記複数のアンテナエレメント(5)とそれぞれ電気回路を介して接続された複数の光変調器(7)を有する光変調器アレイ(2)と,を含む,ファイバ無線用ユニットであって,
     
     前記光変調器アレイ(2)は,
      前記複数のアンテナエレメント(5)が設けられたアンテナアレイ層(10)と平行に設けられた基板(9)と,
      前記基板(9)に信号光を導入するための,光導入部(11)と,
      前記光導入部(11)から入射した信号光が伝播する,前記基板(9)に設けられた光導波路(13)と,
      前記光導波路(13)を経た信号光が前記基板(9)から出力される,光出力部(15)と,
      前記光導波路(13)に設けられた複数の光変調器(7)と,
    を有し,
     
     前記複数の光変調器(7)は,
      それぞれの光変調器(7)の給電点(25)が,前記複数のアンテナエレメント(5)に対応する位置に設けられ,
     
     前記光導波路(13)は,
      前記複数の光変調器(7)のうち,ある行に含まれる光変調器(7)に沿った行状光導波路(13)を,複数行有し,
     
     前記光変調器アレイ(2)は,さらに,
      隣接する2つの行状導波路を接続するための反射部(17)を有し,
      これにより,前記光導入部(11)に入射した信号光が,各行状光導波路(13)を経由し,前記光出力部(15)から出力される,
     
     ファイバ無線システム。
PCT/JP2008/001753 2008-07-03 2008-07-03 ファイバ無線用ユニット及びファイバ無線用システム WO2010001438A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/001,883 US8824895B2 (en) 2008-07-03 2008-07-03 Radio-on-fiber unit and radio-on-fiber system
JP2010518826A JP5201640B2 (ja) 2008-07-03 2008-07-03 ファイバ無線用ユニット及びファイバ無線用システム
EP08776765.3A EP2296229B1 (en) 2008-07-03 2008-07-03 Radio-on-fiber unit and radio-on-fiber system
PCT/JP2008/001753 WO2010001438A1 (ja) 2008-07-03 2008-07-03 ファイバ無線用ユニット及びファイバ無線用システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001753 WO2010001438A1 (ja) 2008-07-03 2008-07-03 ファイバ無線用ユニット及びファイバ無線用システム

Publications (1)

Publication Number Publication Date
WO2010001438A1 true WO2010001438A1 (ja) 2010-01-07

Family

ID=41465553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001753 WO2010001438A1 (ja) 2008-07-03 2008-07-03 ファイバ無線用ユニット及びファイバ無線用システム

Country Status (4)

Country Link
US (1) US8824895B2 (ja)
EP (1) EP2296229B1 (ja)
JP (1) JP5201640B2 (ja)
WO (1) WO2010001438A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198492A (ja) * 2011-03-08 2012-10-18 Sumitomo Osaka Cement Co Ltd 光制御素子
WO2017145998A1 (ja) * 2016-02-25 2017-08-31 国立大学法人大阪大学 光ssb変調器
CN111684346A (zh) * 2018-02-14 2020-09-18 国立大学法人东京工业大学 光束偏转装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2662892T3 (es) 2008-12-19 2018-04-10 Radio Physics Solutions Ltd Método para la formación de imágenes radiométricas y antena para la implementación del método
CN101780907B (zh) * 2009-12-31 2013-06-12 三一重工股份有限公司 提升机构行程控制装置、提升机和相应的控制方法
GB201015207D0 (en) 2010-09-13 2010-10-27 Radio Physics Solutions Ltd Improvements in or relating to millimeter and sub-millimeter mave radar-radiometric imaging
GB2496835B (en) 2011-09-23 2015-12-30 Radio Physics Solutions Ltd Package for high frequency circuits
EP2868011B1 (en) * 2012-07-02 2024-02-07 Corning Optical Communications LLC A communication link
JP7435881B1 (ja) 2023-05-25 2024-02-21 三菱電機ビルソリューションズ株式会社 エレベーター装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168675A (ja) * 1997-08-08 1999-03-09 Tokin Corp 光送受信システム
JP2001053542A (ja) 1999-08-11 2001-02-23 Communication Research Laboratory Mpt アンテナ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614136B1 (fr) * 1987-04-14 1989-06-09 Thomson Csf Dispositif de commande optique d'une antenne a balayage
US6337660B1 (en) * 1993-09-17 2002-01-08 The United States Of America As Represented By The Secretary Of The Navy Fiber optic true time-delay array antenna feed system
JP4007493B2 (ja) * 2002-05-29 2007-11-14 三菱電機株式会社 光制御型フェーズドアレーアンテナ
US7919755B2 (en) * 2006-09-27 2011-04-05 Anis Rahman Dendrimer based electro-optic sensor
GB0407568D0 (en) * 2004-04-02 2004-05-05 Bae Systems Plc Receivers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168675A (ja) * 1997-08-08 1999-03-09 Tokin Corp 光送受信システム
JP2001053542A (ja) 1999-08-11 2001-02-23 Communication Research Laboratory Mpt アンテナ装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Conference Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, 2005.05", vol. 2, article T.YAMASHITA ET AL.: "Development of a microwave receiving and transmission system using an optical modulator", pages: 1517 - 1520, XP010815807 *
"Conference Record of the 2002 IEEE Industry Applications Conference: 37th IAS Annual Meeting, 2002.10", vol. 1, article K.HAEIWA ET AL.: "Optical RF-TV signal sensing and transmission for terrestrial TV relaying stations", pages: 297 - 302, XP010610237 *
S.SHINADA ET AL.: "A 10-GHz Resonant-Type LiNb03 Optical Modulator Array", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 19, no. 10, May 2007 (2007-05-01), pages 735 - 737, XP011177240 *
W.B. BRIDGES ET AL.: "Wave-coupled LiNb03 electrooptic modulator for microwave and millimeter-wave modulation", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 3, no. 2, February 1991 (1991-02-01), pages 133 - 135, XP000203007 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198492A (ja) * 2011-03-08 2012-10-18 Sumitomo Osaka Cement Co Ltd 光制御素子
WO2017145998A1 (ja) * 2016-02-25 2017-08-31 国立大学法人大阪大学 光ssb変調器
CN111684346A (zh) * 2018-02-14 2020-09-18 国立大学法人东京工业大学 光束偏转装置
CN111684346B (zh) * 2018-02-14 2023-09-26 国立大学法人东京工业大学 光束偏转装置

Also Published As

Publication number Publication date
US8824895B2 (en) 2014-09-02
JP5201640B2 (ja) 2013-06-05
JPWO2010001438A1 (ja) 2011-12-15
EP2296229B1 (en) 2019-03-13
US20110103800A1 (en) 2011-05-05
EP2296229A1 (en) 2011-03-16
EP2296229A4 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5201640B2 (ja) ファイバ無線用ユニット及びファイバ無線用システム
EP3289407B1 (en) Polarization independent reflective modulator
US11929826B2 (en) Optical modules having an improved optical signal to noise ratio
US7068948B2 (en) Generation of optical signals with return-to-zero format
CA3057047C (en) Iq optical modulator
US20030147591A1 (en) Optical waveguide device and optical modulator
JP2003169021A (ja) 光伝送システム
WO2004068221A1 (ja) 光変調器
JPH02256334A (ja) 両方向性コヒーレント光伝送システム用トランシーバ
US11609474B2 (en) Terahertz signal generation apparatus and terahertz signal generation method using the same
WO2017139345A1 (en) High-speed optical transmitter with a silicon substrate
JP2006330523A (ja) 周波数コム光発生装置および高密度波長多重伝送用多波長光源
WO2016021163A1 (ja) 光変調器
US20140139900A1 (en) Wavelength tunable optical transmitter
US20100246629A1 (en) Multiple-wavelength laser device
US6788832B2 (en) Optical modulator and optical signal and electric wave signal converter using same
US6674944B2 (en) Waveguide coupler modulator
EP3172850B1 (en) Multilayer vertical cavity surface emitting electro-absorption optical transceiver
JPH11119177A (ja) 光時間多重変調送信器モジュール
KR20150104385A (ko) 코히어런트 파장 가변 레이저 장치
JP4701428B2 (ja) 進行波型電極用の駆動回路、それを用いた光変調システム、光情報通信システム及び進行波型電極用の駆動方法
Moralis-Pegios et al. A 160 Gb/s (4× 40) WDM O-band Tx subassembly using a 4-ch array of Silicon Rings co-packaged with a SiGe BiCMOS IC driver
Tadokoro et al. Optically-controlled beam forming technique for 60 GHz-ROF system using dispersion of optical fiber and DFWM
US20180335681A1 (en) Optical device
US20240120998A1 (en) Silicon optical chip with integrated antenna array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08776765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518826

Country of ref document: JP

Ref document number: 2008776765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13001883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE