WO2010001435A1 - Illumination control device - Google Patents

Illumination control device Download PDF

Info

Publication number
WO2010001435A1
WO2010001435A1 PCT/JP2008/001711 JP2008001711W WO2010001435A1 WO 2010001435 A1 WO2010001435 A1 WO 2010001435A1 JP 2008001711 W JP2008001711 W JP 2008001711W WO 2010001435 A1 WO2010001435 A1 WO 2010001435A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
load power
lighting
illumination
control device
Prior art date
Application number
PCT/JP2008/001711
Other languages
French (fr)
Japanese (ja)
Inventor
志賀雅人
北原忠幸
神子諭
小島直人
福田志郎
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to PCT/JP2008/001711 priority Critical patent/WO2010001435A1/en
Priority to JP2009548510A priority patent/JP4481366B2/en
Publication of WO2010001435A1 publication Critical patent/WO2010001435A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present invention relates to a lighting control device.
  • Patent Document 1 discloses a full-bridge MERS.
  • MERS an element capable of forward control, such as a transistor having a power MOSFET or a diode connected in antiparallel, is used as an element having no reverse blocking capability.
  • the MERS is configured by connecting a bridge circuit composed of four semiconductor elements and a capacitor that absorbs and releases magnetic energy to the positive electrode and the negative electrode of the bridge circuit.
  • the MERS can control the gate phase of these four semiconductor elements to flow current in either direction.
  • MERS multi semiconductor elements located on a diagonal line among four semiconductor elements connected in a bridge form a pair, and the ON / OFF switching operation of the two pairs is performed in synchronization with the frequency of the power source.
  • the other pair is turned off.
  • the capacitor repeatedly charges and discharges magnetic energy in accordance with the ON / OFF switching timing.
  • MERS controls the magnitude of the output voltage and the current phase of MERS by controlling the gate phase of two pairs of two semiconductor elements located on the diagonal line among the four semiconductor elements. It can be arbitrarily controlled, and thereby a desired power factor can be obtained.
  • Japanese Patent No. 3634982 Japanese Patent No. 3634982
  • thermal power generation is one of the main power supply sources in Japan, but in thermal power generation, carbon dioxide, which causes global warming, and the atmosphere accompanying the combustion of fuels such as oil, coal, and natural gas Sulfur oxides and nitrogen oxides that cause pollution are emitted. Therefore, it is expected that the reduction of power consumption will reduce the emission of substances that cause greenhouse gases and air pollution, and this will lead to a reduction in the load on the global environment.
  • an illuminating lamp control device including an inverter-type fluorescent lamp and a control device that adjusts and controls the inverter-type fluorescent lamp to a desired luminance.
  • this illuminating lamp control device the user can control the inverter type fluorescent lamp to a desired luminance, and wasteful power consumption can be suppressed.
  • an expensive inverter-type fluorescent lamp compatible with dimming control must be adopted, and other than the inverter-type fluorescent lamp compatible with dimming control It is difficult to dimm in the dimming direction with existing fluorescent lamps, discharge lamps such as mercury lamps and sodium lamps. Moreover, it is necessary to suppress useless power consumption also about the illuminating lamp which does not have an inductive load.
  • discharge lamps such as mercury lamps and sodium lamps having a large light quantity and a long life are often used for road illumination lamps, and a mechanism for dimming control of these discharge lamps in the dimming direction is not provided. Therefore, at present, the road illumination lamp is always lit at a rated level even when there is no vehicle on the road. Therefore, useless power is consumed.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique capable of reducing useless power consumption by dimming control of an illumination lamp.
  • an aspect of the present invention is a lighting control device, and the lighting control device is connected between the lighting lamp and the power source, and the lighting lamp is output from the power source to the lighting lamp.
  • a load power adjustment switch that adjusts the load power to perform, a dimming control unit that controls the load power adjustment switch, and a situation detection means that detects the situation around the illumination lamp, the dimming control unit, Adjust the load power so that the illuminating lamp is in a standby lighting state where it is lit at a brightness lower than the rated lighting intensity, and the lighting lamp lights at a brightness higher than that in the standby lighting state according to the detection result of the status detection means.
  • the load power adjustment switch is controlled so as to adjust the load power so as to be in a state of being activated.
  • FIGS. 2A and 2B are diagrams for explaining MERS switching control by the control unit.
  • FIGS. 3A and 3B are diagrams for explaining switching control of MERS by the control unit.
  • FIGS. 4A and 4B are diagrams for explaining MERS switching control by the control unit.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are diagrams for explaining operation results of the MERS embedded system. It is a figure which shows the other aspect of MERS. It is a figure which shows the other aspect of MERS. It is the schematic which shows the structure of the illumination control apparatus which concerns on Embodiment 1.
  • FIG. 1 shows the structure of the illumination control apparatus which concerns on Embodiment 1.
  • FIG. It is a functional block diagram explaining schematic structure of a light control part. It is a figure which shows the relationship between a traffic volume and the required brightness
  • FIG. It is a functional block diagram explaining schematic structure of a light control part.
  • MERS embedded system 20 AC voltage source, 30 magnetic energy regenerative switch (MERS), 32, 33, 34, 35, 36 capacitor, 40 control unit, 50 inductive load, 60 illumination lamp, 70 dimming control unit, 72 Sensor value acquisition unit, 74 reference table holding unit, 76 standby lighting parameter holding unit, 78 standby lighting parameter change instruction unit, 79 current monitoring unit, 80 traffic monitoring sensor, 90 human sensor, 100 lighting control device, C vehicle , D1, D2 diode, SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8 reverse conducting semiconductor switch.
  • MERS magnetic energy regenerative switch
  • the illumination control device is connected between an illumination lamp and a power source, and is output from the power source to the illumination lamp.
  • the load power adjustment switch that adjusts the load power for lighting the illumination lamp, and the load power
  • the light control part which controls an adjustment switch, and the condition detection means which detects the condition around an illumination light are provided.
  • the load power adjustment switch is, for example, a magnetic energy regenerative switch (MERS) (hereinafter referred to as MERS).
  • MERS magnetic energy regenerative switch
  • the dimming control unit adjusts the load power so that the lighting lamp is in a standby lighting state in which the lighting lamp is lit at a brightness lower than the rated lighting brightness, and the lighting lamp is in the standby lighting state according to the detection result of the state detection means.
  • the load power adjustment switch is controlled so as to adjust the load power so that the light is lit at a brightness higher than the brightness.
  • MERS as a load power adjustment switch
  • a MERS embedded system in which MERS is connected in series between an AC voltage source and a dielectric load will be described as an example.
  • MERS can comprise an alternating current power supply device by incorporating it into an alternating voltage source, and can constitute a MERS built-in load by incorporating it into an inductive load.
  • FIG. 1 is a diagram showing a basic configuration of the MERS embedded system 10.
  • the MERS embedded system 10 includes an AC voltage source 20 and an inductive load 50 having inductance.
  • MERS 30 is inserted between AC voltage source 20 and inductive load 50.
  • the MERS embedded system 10 includes a control unit 40 that controls switching of the MERS 30.
  • the MERS 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss.
  • the MERS 30 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and an energy storage capacitor 32 that absorbs magnetic energy of a current flowing through the circuit when the bridge circuit is switched off. Prepare.
  • a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
  • the capacitor 32 is at a connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW3, and between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N). Further, there is an alternating current between the AC terminal at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW3.
  • the voltage source 20 and the inductive load 50 are connected in series.
  • a first pair of reverse conducting semiconductor switches SW1 and SW2 located on the diagonal line disposed in the MERS 30 and a second pair of reverse conducting semiconductor switches SW3 and SW4 also located on the diagonal line are connected to the power source. It is turned ON / OFF alternately in synchronization with the frequency. That is, when one pair is ON, the other pair is OFF. For example, when an OFF gate is given to the first pair and an ON gate is given to the second pair, the current conducted in the forward direction is changed to the reverse conduction type semiconductor switch SW3-capacitor 32- The capacitor flows through the path of the reverse conducting semiconductor switch SW4, whereby the capacitor 32 is charged. That is, the magnetic energy of the circuit is stored in the capacitor 32.
  • the magnetic energy of the circuit at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor 32 rises and the current becomes zero, and the current interruption is completed when the voltage of the capacitor 32 rises until the capacitor current becomes zero.
  • the ON gate is already given to the second pair, the charge of the capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 which are turned on and accumulated in the capacitor 32. Magnetic energy is regenerated to the inductive load 50.
  • a pulse voltage is applied to the inductive load 50.
  • the magnitude of the voltage depends on the capacitance of the capacitor 32 and the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load 50 are resistant to each other. It can be within the allowable voltage range. Further, unlike the conventional series power factor correction capacitor, a direct current capacitor can be used for MERS30.
  • the reverse conducting semiconductor switches SW1 to SW4 are made of power MOSFETs, for example, and have gates G1, G2, G3, and G4, respectively. Body diodes are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
  • a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4.
  • the reverse conducting semiconductor switches SW1 to SW4 for example, an element such as an IGBT or a transistor having a diode connected in antiparallel can be used.
  • the control unit 40 controls switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30. Specifically, a pair ON / OFF operation composed of reverse conducting semiconductor switches SW1, SW2 located on a diagonal line in the bridge circuit of MERS 30 and a pair ON / OFF operation composed of reverse conducting semiconductor switches SW3, SW4 are provided.
  • the control signal is transmitted to the gates G1 to G4 so that each of them is simultaneously performed every half cycle so that when one is ON, the other is OFF.
  • 2A, 2 ⁇ / b> B, 3 ⁇ / b> A, 3 ⁇ / b> B, 4 ⁇ / b> A, and 4 ⁇ / b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
  • the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the capacitor 32 has no charging voltage, as shown in FIG. 2A, the current is reverse conducting semiconductor switches SW3 and SW1. And a path passing through the reverse conduction type semiconductor switches SW2 and SW4, and enters a parallel conduction state.
  • the control unit 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC voltage source 20 is inverted, for example, about 2 ms.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW3-capacitor 32-reverse conducting semiconductor switch SW4.
  • the magnetic energy is absorbed (charged) in the capacitor 32.
  • the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
  • the current is cut off.
  • the reverse conducting semiconductor switches SW3 and SW4 are already ON, and the capacitor 32 has a charging voltage, so that the current is reverse conducting as shown in FIG. It flows through a path passing through the type semiconductor switch SW4-capacitor 32-reverse conducting type semiconductor switch SW3. Then, the magnetic energy accumulated in the capacitor 32 is released (discharged).
  • the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW1-capacitor 32-reverse conducting semiconductor switch SW2.
  • the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
  • the current is cut off, and when the voltage of the AC voltage source 20 is inverted, the reverse conducting semiconductor switches SW1 and SW2 are already ON, and the capacitor 32 has a charging voltage. As shown in b), the current flows through a path through the reverse conducting semiconductor switch SW2-capacitor 32-reverse conducting semiconductor switch SW1. Then, the magnetic energy accumulated in the capacitor 32 is discharged. When the discharge from the capacitor 32 is completed, the parallel conduction state shown in FIG. Thus, the MERS 30 can flow a current in both directions by alternately bringing two pairs of opposing conductive semiconductor switches facing each other into a conductive state.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are diagrams for explaining operation results of the MERS embedded system 10.
  • 5A shows the waveforms of the power supply voltage and current when the MERS 30 is not incorporated
  • FIG. 5B shows the waveforms of the power supply voltage, current, and load voltage when the MERS 30 is incorporated.
  • FIG. 5C shows the waveform of the capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1
  • FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
  • the power factor of the AC voltage source 20 is smaller than 1.
  • the phase of the current can be advanced as shown in FIG.
  • the power factor can be 1.
  • the MERS 30 stores the magnetic energy of the inductive load 50 in the capacitor 32 by adjusting the gate phase of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4, and advances the phase of the current.
  • the power factor of the AC voltage source 20 can be made 1.
  • the MERS 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, whereby the power factor can be arbitrarily adjusted.
  • the load voltage can be increased or decreased steplessly.
  • the capacitor voltage is 0 at the timing when the reverse conducting semiconductor switch SW1 is turned on, and the current flowing through the reverse conducting semiconductor switch SW1 is parallel. This is a current that flows through the diode of the reverse conducting semiconductor switch SW1 when conducting.
  • the capacitor voltage is 0 even when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
  • the charging / discharging cycle of the capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32.
  • the MERS 30 always has zero voltage 0. Current switching, that is, soft switching is possible.
  • the capacitor 32 used in the MERS 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter.
  • the capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency.
  • each MERS 30 can be given a unique ID number, and this can be used to control each MERS 30 by receiving an external control signal.
  • the MERS 30 can be wirelessly controlled by sending a control signal wirelessly using a communication line such as the Internet.
  • the MERS 30 has a configuration including a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 32 connected between the DC terminals of the bridge circuit. May have the following configuration.
  • FIG. 6 and 7 are diagrams showing another aspect of the MERS 30.
  • FIG. The MERS 30 shown in FIG. 6 has two reverse-conducting semiconductor switches, two diodes and two full-conducting MERS 30 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and one capacitor 32 described above. It is a vertical half-bridge type composed of two capacitors.
  • the vertical half-bridge structure MERS 30 is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series, and the two reverse conducting semiconductor switches SW5 and SW6. It includes two capacitors 33 and 34 connected in series, and two diodes D1 and D2 connected in parallel with the two capacitors 33 and 34, respectively.
  • the MERS 30 shown in FIG. 7 is a horizontal half-bridge type.
  • the horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two capacitors. More specifically, the horizontal half-bridge structure MERS 30 includes a reverse conducting semiconductor switch SW7 and a capacitor 35 provided in series on the first path, and a second path parallel to the first path. Includes a reverse conducting semiconductor switch SW8 and a capacitor 36, and wirings connected in parallel to the first and second paths.
  • FIG. 8 is a schematic diagram illustrating a configuration of the illumination control apparatus according to the first embodiment.
  • the lighting control apparatus 100 of the present embodiment is configured such that MERS 30 (30a to 30h) is provided between each of the road lighting lamps 60 (60a to 60h) and the AC voltage source 20. It is.
  • the illuminating lamp 60 is, for example, an illuminating lamp having an inductive load, an illuminating lamp connected to the inductive load, or an illuminating lamp having a resistive load.
  • Examples of the illumination lamp having an inductive load include a discharge lamp.
  • the discharge lamp is, for example, a fluorescent lamp, a mercury lamp, a sodium lamp, or a neon lamp.
  • examples of the illuminating lamp connected to the inductive load include an incandescent lamp that does not have an inductive load, and a lamp connected to a light source such as an LED.
  • the illuminating lamp which has a resistive load is an illuminating lamp only of a resistive load, and an incandescent lamp etc. are mentioned. In the present embodiment, a case where a discharge lamp is used as the illumination lamp 60 will be described as an example.
  • the illumination control device 100 includes a dimming control unit 70 (70a to 70h) for controlling the gate phase angle of the MERS 30 and adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current.
  • the illumination control device 100 includes a traffic volume detection sensor 80 as a situation detection unit that detects the situation around the illumination lamp 60. The situation detection means detects the situation of the outside world in a predetermined range based on the illumination lamp 60, for example.
  • FIG. 9 is a functional block diagram illustrating a schematic configuration of the dimming control unit 70.
  • the dimming controller 70 transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4, and adjusts the magnitude of the output voltage of the MERS 30 and the phase of the current. Is provided.
  • the dimming control unit 70 receives the detection result of the traffic detection sensor 80 and transmits it to the control unit 40, and the control unit 40 changes the magnitude of the output voltage and the phase of the current.
  • a reference table holding unit 74 that holds a table to be referred to.
  • the dimming control unit 70 includes a standby lighting parameter holding unit 76 that holds parameters such as load power when the illumination lamp 60 is in a standby lighting state in which the lighting lamp 60 is lit at a brightness lower than the rated lighting brightness. Further, the dimming control unit 70 instructs the control unit 40 to change the standby lighting parameter held in the standby lighting parameter holding unit 76 according to the information from the current monitoring unit 79. Part 78 is provided.
  • the traffic volume detection sensor 80 detects the traffic volume upstream of the irradiation area of the illuminating lamp 60 in the vehicle traveling direction, and transmits the detection result to each dimming control unit 70.
  • the “traffic volume” may include a vehicle parked on the road.
  • the traffic volume detection sensor 80 detects a predetermined range determined by, for example, the load power changing speed by the MERS 30 and the prescribed traveling speed of the vehicle.
  • an existing system or sensor such as a road traffic information communication system (Vehicle Information and Communication System: VICS) can be used. In FIG. 8, only one traffic detection sensor 80 is shown, but the number of traffic detection sensors 80 is not particularly limited, and a plurality of traffic detection sensors 80 may be provided to detect each location. Good.
  • the control unit 40 of the dimming control unit 70 controls the MERS 30 based on the detection result of the traffic volume detection sensor 80, changes the output voltage and current phase of the MERS 30, and turns on the illumination lamp 60. To adjust the load power.
  • the dimming control unit 70 adjusts the load power by controlling the phase of the output voltage and current of the MERS 30 so that the illumination lamp 60 is in a standby lighting state in which the lighting lamp 60 is lit at a brightness lower than the rated lighting brightness. Yes.
  • the load power output to the illuminating lamp 60 in the standby lighting state is, for example, less than the load power at the time of rated lighting and is equal to or higher than the minimum load power that is the lowest load power at which the illuminating lamp 60 can maintain stable discharge. Thus, it is set to a power that is closer to the minimum load power than the load power at the time of rated lighting.
  • the load power at the time of standby lighting is a power obtained by adding a predetermined amount of power to the minimum load power so that a stable discharge state can be more reliably maintained, and further within the irradiation range of the illumination lamp 60.
  • the load power is such that the illuminance is such that a certain object is visible from a predetermined distance.
  • the “stable discharge” is a discharge state in which no flicker such as flicker occurs.
  • the control unit 40 refers to the load power during standby lighting stored in the standby lighting parameter holding unit 76 and adjusts the magnitude of the output voltage and the current phase of the MERS 30.
  • the load power is adjusted so that the illumination lamp 60 is lit at a luminance higher than the luminance in the standby lighting state.
  • the standby lighting state is set, and the luminance of the illuminating lamp 60 is increased or decreased in accordance with a change in traffic volume, so that useless power consumption can be reduced.
  • a method for controlling the luminance of the illuminating lamp 60 in accordance with the detection result of the traffic volume detection sensor 80 for example, there are the following methods.
  • the dimming control unit 70 adjusts the load power to the illuminating lamp 60 based on the relationship between the required luminance of the illuminating lamp 60 and the traffic volume shown in FIG.
  • FIG. 10 is a diagram showing the relationship between the traffic volume and the required luminance of the illuminating lamp 60.
  • the required brightness of the illuminating lamp 60 for example, the minimum brightness required to satisfy the desired safety of the vehicle C when traveling at night is defined according to the traffic volume of the vehicle C. be able to. That is, when the vehicle C is not present, the brightness of the illuminating lamp 60 can be viewed from a predetermined distance so that the presence of the road can be confirmed from a position separated by a predetermined distance. The brightness in the above-described standby lighting state is sufficient.
  • the luminance of the illuminating lamp 60 is higher than the luminance in the standby lighting state, but can be made relatively low.
  • the lower limit value of the luminance of the illuminating lamp 60 increases as the traffic volume increases.
  • the traffic volume further increases, the road and its surroundings are illuminated by the headlamps of a large number of vehicles C, and the illuminance of the road is increased to ensure the driver's visibility to some extent. it can. Therefore, the lower limit value of the luminance of the illuminating lamp 60 gradually decreases with the luminance at the time of the predetermined traffic volume a as a peak.
  • the dimming control unit 70 responds to the increase in the traffic volume until the traffic volume of the vehicle C on the upstream side in the vehicle traveling direction of the illumination lamp 60 reaches the predetermined amount a which is the first predetermined amount.
  • the load power is adjusted continuously, that is, steplessly by changing the magnitude of the output voltage of the MERS 30 and the phase of the current so that the luminance of the illuminating lamp 60 increases. And when the traffic volume of the vehicle C becomes more than the predetermined amount a, the magnitude of the output voltage and the current phase of the MERS 30 are changed so that the luminance of the illuminating lamp 60 decreases as the traffic volume increases. Adjust the load power steplessly.
  • the dimming control unit increases the luminance of the illumination lamp 60 according to the decrease in the traffic volume until the traffic volume of the vehicle C reaches the predetermined amount a which is the second predetermined amount, and the traffic volume of the vehicle C. Is less than the predetermined amount a, the magnitude of the output voltage of the MERS 30 and the phase of the current are adjusted in a stepless manner so that the luminance of the illuminating lamp 60 decreases as the traffic volume decreases. adjust.
  • the reference table holding unit 74 stores a table describing the relationship between the required luminance of the illuminating lamp 60 and the traffic volume shown in FIG. 10, and the control unit 40 refers to this table to the gates G1 to G4.
  • a control signal is transmitted to change the magnitude of the output voltage of the MERS 30 and the phase of the current.
  • the “predetermined amount” is, for example, the traffic volume with the highest probability of a vehicle accident and can be obtained statistically. Alternatively, the “predetermined amount” may be obtained experimentally.
  • the first predetermined amount and the second predetermined amount may be different, and the luminance adjustment according to the increase in traffic volume and the luminance adjustment according to the decrease in traffic volume are different using different reference tables. You may adjust so that it may become an aspect. Note that the load power may be adjusted in stages according to the situation.
  • FIG. 8 shows a state in which the traffic volume increases from the area of the illuminating lamps 60g and 60h with a small traffic volume to the area of the illuminating lamps 60a to 60c where the traffic volume is the predetermined amount a.
  • the illumination lamps 60a to 60c have a luminance of 100%, that is, a lighting state at the time of rated lighting, and the lighting lamps 60d to 60f have a luminance of about 70%, that is, a lighting state equivalent to 0.7 times that at the rated lighting.
  • the lamps 60g and 60h have a luminance of about 60%, that is, a lighting state equivalent to 0.6 times the rated lighting.
  • the dimming control unit 70 controls the magnitude of the output voltage of the MERS 30 and the phase of the current so that the brightness at the time of standby lighting is obtained.
  • the MERS 30 is connected between the AC voltage source 20 and the illuminating lamp 60, and the dimming control unit 70 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to change the load power. It is adjusted. Therefore, dimming control of the illumination lamp 60 according to the traffic volume is possible, and wasteful power consumption can be suppressed.
  • the load power at the time of standby lighting is set to load power at which the road within the irradiation range of the illuminating lamp 60 has an illuminance that is visible from a predetermined distance, but the road can be viewed from a predetermined distance. If it is not necessary to set the load power at the time of standby lighting, the minimum load power that is the lower limit may be used. In this case, the power consumption can be further reduced.
  • a method of reducing the power consumption of the entire illumination lamp 60 by turning off a part of the plurality of illumination lamps 60 can be considered.
  • the individual illumination lamps 60 are ON / OFF controlled, the irradiation area of the road changes, and it may be difficult to ensure the driver's visibility.
  • the illumination control device 100 of the present embodiment since the illumination lamp 60 is maintained in the standby lighting state during normal times, it is possible to reduce wasteful power consumption without changing the irradiation range of the road. .
  • the illumination lamp 60 is controlled to be turned on / off, the brightness increases in a short time, for example, short. Recovery to the rated lighting state over time is difficult.
  • the lighting control device 100 the lighting voltage of the lighting lamp 60 is maintained by adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current so that the minimum current that can discharge the lighting lamp 60 flows. Therefore, the luminance can be increased in a short time. Moreover, shortening the lifetime of the illuminating lamp 60 due to repeated ON / OFF can be suppressed by dimming the brightness by the MERS 30 without turning the illuminating lamp 60 OFF.
  • the dimming control unit 70 When the luminance of the illuminating lamp 60 is decreased, for example, the traffic volume of the vehicle C from the state where the traffic volume of the vehicle C is a predetermined amount a as in the area of the illuminating lamps 60a to 60c, as in the area of the illumination lamps 60g and 60h.
  • the dimming control unit 70 does not change the luminance of the illuminating lamp 60 following the change in the traffic volume and decreases it over a longer time. You may control as follows. On the contrary, even when the traffic volume suddenly increases, the dimming control unit 70 controls the luminance of the illuminating lamp 60 to increase over a longer time within a range satisfying the relationship shown in FIG. Also good.
  • the dimming control unit 70 may change the luminance of the illuminating lamp 60 so that the amount of change in luminance per unit time is equal to or less than a predetermined value. According to this, it is possible to prevent the brightness of the illuminating lamp 60 from rapidly increasing and decreasing, and it is possible to reduce unpleasant glare and uncomfortable feeling given to the driver due to a rapid change in the brightness of the illuminating lamp 60.
  • the “predetermined value” is, for example, a change amount that does not give an unpleasant glare or discomfort to the driver, and can be obtained experimentally.
  • the dimming control unit 70 adjusts the magnitude of the output voltage and the phase of the current so that the standby lighting state is set using a predetermined parameter, the standby lighting state cannot be maintained and the light is turned off. There is a risk that. Therefore, the dimming control unit 70 controls the MERS 30 to increase the load power in the standby lighting state when the illumination lamp 60 cannot maintain the standby lighting state with the load power in the standby lighting state defined in advance. Control for adjusting the magnitude of the output voltage and the phase of the current may be performed. This control can be performed as follows, for example.
  • the current flowing through the illuminating lamp 60 is monitored by a current monitoring unit 79 such as an ammeter, and when the current monitoring unit 79 detects that the amount of current flowing through the illuminating lamp 60 has become a predetermined amount or less, standby lighting is performed.
  • a signal is transmitted to the parameter change instruction unit 78.
  • the standby lighting parameter change instruction unit 78 instructs the control unit 40 to change the load power during standby lighting.
  • the control unit 40 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to increase the load power supplied to the illuminating lamp 60.
  • the “predetermined amount” is the amount of current in the standby lighting state, and is held in the standby lighting parameter holding unit 76.
  • the standby lighting parameter change instructing unit 78 recognizes that the illuminating lamp 60 is lit based on the monitoring result from the current monitoring unit 79. Further, the standby lighting parameter change instructing unit 78 recognizes that, for example, by monitoring the passage of time, the load power at the time of standby lighting is increased by a predetermined amount of power to the minimum load power.
  • the standby lighting parameter change instructing unit 78 When the standby lighting parameter change instructing unit 78 recognizes that the load power at the time of standby lighting is reached, the standby lighting parameter change instructing unit 78 instructs the control unit 40 to stop adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current. Upon receiving a stop instruction from the standby lighting parameter change instructing unit 78, the control unit 40 stops adjusting the magnitude of the output voltage and the current phase of the MERS 30, and waits with the load power value at that time as a new parameter. Stored in the lighting parameter holding unit 76.
  • a luminance detection sensor such as an illuminance sensor that detects the luminance of the illuminating lamp 60 is provided instead of the current monitoring unit 79 or together with the current monitoring unit 79, and the luminance of the illuminating lamp 60 in the standby lighting state is less than a predetermined value. It may be performed when it becomes.
  • the current monitoring unit 79 and the luminance detection sensor are combined, it is possible to avoid turning off the illumination lamp 60 with higher accuracy.
  • this control may be performed when the usage time of the illuminating lamp 60 reaches a predetermined time or more.
  • the usage time of the illumination lamp 60 is memorize
  • the MERS 30 and the dimming control unit 70 are provided for each illuminating lamp 60, but one set of the MERS 30 and the dimming control unit 70 is provided for the plurality of illuminating lamps 60. And the dimming control may be performed for each system using the plurality of illumination lamps 60 as one system.
  • the MERS 30 and the dimming control unit 70 are provided in the illuminating lamp 60, and the magnitude of the output voltage of the MERS 30 and the phase of the current are determined based on the detection result of the traffic volume detection sensor 80.
  • the brightness of the illumination lamp 60 is adjusted steplessly by changing. Therefore, it is possible to adjust the illumination lamp 60 according to the traffic volume of the vehicle C, and it is possible to reduce wasteful power consumption.
  • MERS30 since MERS30 is only incorporated between the illumination lamp 60 and the alternating voltage source 20, it is an existing illumination lamp other than the inverter type fluorescent lamp corresponding to dimming control. Even with this, dimming control can be performed.
  • the MERS 30 since the MERS 30 has a simple configuration, its price is low. Therefore, the cost of introducing the lighting control device 100 can be kept very low. Furthermore, since the MERS 30 has a simple configuration as described above, its size is small. Therefore, the installation to the existing illumination lamp can be performed easily.
  • the illumination control device 100 adjusts the illuminance of the road by adjusting the brightness by the MERS 30 without turning off the illumination lamp 60. Therefore, shortening of the lifetime of the illumination lamp 60 due to repeated ON / OFF can be suppressed, and as a result, the lifetime of the illumination lamp 60 can be extended. Moreover, since the existing system or sensors, such as VICS, can be diverted as the traffic volume detection sensor 80, the introduction cost of the illumination control apparatus 100 can be suppressed.
  • the illumination control device 100 according to the present embodiment is an example when applied to an illumination lamp in a park.
  • this embodiment will be described.
  • description is abbreviate
  • symbol is attached
  • FIG. 11 is a schematic diagram illustrating a configuration of the illumination control apparatus 100 according to the second embodiment.
  • the lighting control device 100 of the present embodiment includes MERS 30 (30i to 30k) between each of the lighting lamps 60 (60i to 60k) installed in the park and the AC voltage source 20.
  • the illuminating lamp 60 is, for example, an illuminating lamp having an inductive load, an illuminating lamp connected to the inductive load, or an illuminating lamp having a resistive load.
  • Examples of the illumination lamp having an inductive load include a discharge lamp.
  • the discharge lamp is, for example, a fluorescent lamp, a mercury lamp, a sodium lamp, or a neon lamp.
  • examples of the illuminating lamp connected to the inductive load include incandescent lamps that do not have an inductive load and lamps connected to a light source such as LEDs.
  • the illuminating lamp which has a resistive load is an illuminating lamp only of a resistive load, and an incandescent lamp etc. are mentioned. In this embodiment, a case where a discharge lamp is used as the illumination lamp 60 will be described as an example.
  • the illumination control device 100 includes a dimming control unit 70 (70i to 70k) for controlling the gate phase angle of the MERS 30 and adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current.
  • the illumination control device 100 includes a human sensor 90 as a situation detection unit that detects an external situation in a predetermined range with the illumination lamp 60 as a reference.
  • FIG. 12 is a functional block diagram illustrating a schematic configuration of the dimming control unit 70.
  • the dimming control unit 70 transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4 to control the gate phase, and the magnitude of the output voltage of the MERS 30 and the phase of the current
  • the control part 40 which adjusts is provided.
  • the dimming control unit 70 includes a sensor value acquisition unit 72 that receives the detection result of the human sensor 90 and transmits the detection result to the control unit 40.
  • the dimming control unit 70 includes a standby lighting parameter holding unit 76 that holds parameters such as load power when the illumination lamp 60 is in a standby lighting state in which the lighting lamp 60 is lit at a brightness lower than the rated lighting brightness. Further, the dimming control unit 70 instructs the control unit 40 to change the standby lighting parameter held in the standby lighting parameter holding unit 76 according to the information from the current monitoring unit 79. Part 78 is provided.
  • the human sensor 90 detects the presence of a person around the illuminating lamp 60 and transmits the detection result to each dimming control unit 70.
  • a known sensor can be used as the human sensor 90. In FIG. 11, only one human sensor 90 is shown, but the number of human sensors 90 is not particularly limited.
  • the human sensor 90 is provided in the housing of each illumination lamp 60, and each place is located. It may be detected.
  • the control unit 40 of the dimming control unit 70 controls the MERS 30 based on the detection result of the human sensor 90, and changes the magnitude of the output voltage and the current phase of the MERS 30 to change the illumination lamp 60.
  • the load power for lighting is adjusted.
  • the dimming control unit 70 adjusts the load power by changing the magnitude of the output voltage of the MERS 30 and the phase of the current so that the illumination lamp 60 enters a standby lighting state in which the lighting lamp 60 is lit at a luminance lower than that at the rated lighting. is doing.
  • the load power output to the illuminating lamp 60 in the standby lighting state is, for example, less than the load power at the time of rated lighting and is equal to or higher than the minimum load power that is the lowest load power at which the illuminating lamp 60 can maintain stable discharge. Therefore, it is set to be closer to the minimum load power than the load power at the time of rated lighting.
  • the load power at the time of standby lighting is power obtained by adding a predetermined amount of power to the minimum load power so that the stable discharge state can be more reliably maintained.
  • the control unit 40 refers to the load power during standby lighting stored in the standby lighting parameter holding unit 76 and adjusts the magnitude of the output voltage and the current phase of the MERS 30.
  • the luminance of the illuminating lamp 60 that irradiates the area where the person is detected is made different from the luminance of the illuminating lamp 60 that irradiates the area where no person is detected.
  • the load power is adjusted so that the illuminating lamp 60 that irradiates light in a range where a person is detected is lit at a luminance that is equal to or higher than the luminance in the standby lighting state.
  • the standby lighting state is set, and the luminance of the illuminating lamp 60 is increased in accordance with the presence of the person H, so that useless power consumption can be reduced.
  • the dimming control unit 70 j that controls the luminance of the illuminating lamp 60 j that irradiates the range in which the presence of the person H is detected by the human sensor 90 has a luminance that is
  • the output power of the MERS 30 and the phase of the current are changed so as to be larger than the luminance of the illumination lamps 60i and 60k that irradiate light in a range where the presence of the light is not detected, so that the load power is continuously changed, that is, steplessly. adjust.
  • the dimming control unit 70j controls the MERS 30j so that the luminance is 100%, that is, the lighting state at the time of rated lighting.
  • the dimming controllers 70i and 70j control the MERSs 30i and 30k, for example, so as to have the brightness at the time of standby lighting. Note that the load power may be adjusted in stages according to the situation.
  • the luminance of the illuminating lamp 60 that irradiates a range where the presence of a person is not detected by the human sensor 90 is not limited to the luminance at the time of standby lighting, and may be higher than the luminance at the time of standby lighting. Good. For example, if the brightness at the time of standby lighting is such that the area within the illumination range of the illumination lamp 60 is not visible from a predetermined distance, the area within the illumination range of the illumination lamp 60 can be visually recognized from the predetermined distance. It is good also as brightness
  • the illuminating lamps 60 that irradiate the range in which the presence of the person is not detected the illuminating lamps 60 that are adjacent to the illuminating lamp 60 that irradiates the range in which the presence of the person H is detected.
  • the brightness of the illuminating lamp 60 that irradiates light in a range where no human presence is detected is adjusted in multiple steps, such as by making the brightness higher than that of the illuminating lamp 60 that irradiates light in a range where no presence is detected. You may do it.
  • the MERS 30 is connected between the AC voltage source 20 and the illuminating lamp 60, and the dimming control unit 70 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to change the load power. It is adjusted. Therefore, dimming control of the illumination lamp 60 according to the presence of the person H is possible, and wasteful power consumption can be suppressed.
  • a method of reducing the power consumption of the entire illumination lamp 60 by turning off a part of the plurality of illumination lamps 60 can be considered.
  • the individual illumination lamps 60 are ON / OFF controlled, there is a possibility that the irradiation area may be changed, and there is a possibility that a strong sense of incongruity may be given to the viewer because the change in brightness is significant. Absent.
  • the illumination control device 100 of the present embodiment since the illumination lamp 60 is maintained in the standby lighting state during normal times, it is not necessary to change the irradiation range and suppress discomfort given to the viewer. Power consumption can be reduced.
  • the illumination lamp 60 is controlled to be turned on / off, the brightness increases in a short time, for example, short. Recovery to the rated lighting state over time is difficult.
  • the lighting lamp 60 is turned on by adjusting the magnitude of the output voltage and the phase of the current so that the lighting lamp 60 supplies the lowest load power that can maintain a stable discharge. Since the state is maintained, the luminance can be increased in a short time. Moreover, shortening the lifetime of the illuminating lamp 60 due to repeated ON / OFF can be suppressed by dimming the brightness by the MERS 30 without turning the illuminating lamp 60 OFF.
  • the dimming control unit 70 controls the luminance of the illuminating lamp 60 so as not to change rapidly following the movement of the person H but to decrease over a longer time. May be. Moreover, also when increasing a brightness
  • the “predetermined value” is, for example, a change amount that does not give unpleasant glare or discomfort to the person H, and this can be obtained experimentally.
  • the dimming control unit 70 adjusts the magnitude of the output voltage and the phase of the current so that the standby lighting state is set using a predetermined parameter, the standby lighting state cannot be maintained and the light is turned off. There is a risk that. Therefore, the dimming control unit 70 controls the MERS 30 to increase the load power in the standby lighting state when the illumination lamp 60 cannot maintain the standby lighting state with the load power in the standby lighting state defined in advance. Control for adjusting the magnitude of the output voltage and the phase of the current may be performed. This control can be performed as follows, for example.
  • the current flowing through the illuminating lamp 60 is monitored by a current monitoring unit 79 such as an ammeter, and when the current monitoring unit 79 detects that the amount of current flowing through the illuminating lamp 60 has become a predetermined amount or less, standby lighting is performed.
  • a signal is transmitted to the parameter change instruction unit 78.
  • the standby lighting parameter change instruction unit 78 instructs the control unit 40 to change the load power during standby lighting.
  • the control unit 40 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to increase the load power supplied to the illuminating lamp 60.
  • the “predetermined amount” is the amount of current in the standby lighting state, and is held in the standby lighting parameter holding unit 76.
  • the standby lighting parameter change instructing unit 78 recognizes that the illuminating lamp 60 is lit based on the monitoring result from the current monitoring unit 79. Further, the standby lighting parameter change instructing unit 78 recognizes that, for example, by monitoring the passage of time, the load power at the time of standby lighting is increased by a predetermined amount of power to the minimum load power.
  • the standby lighting parameter change instructing unit 78 When the standby lighting parameter change instructing unit 78 recognizes that the load power at the time of standby lighting is reached, the standby lighting parameter change instructing unit 78 instructs the control unit 40 to stop adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current. Upon receiving a stop instruction from the standby lighting parameter change instructing unit 78, the control unit 40 stops adjusting the magnitude of the output voltage and the current phase of the MERS 30, and waits with the load power value at that time as a new parameter. Stored in the lighting parameter holding unit 76.
  • This control is performed when a luminance detection sensor for detecting the luminance of the illumination lamp 60 is provided instead of the current monitoring unit 79 or together with the current monitoring unit 79, and the luminance of the illumination lamp 60 in the standby lighting state becomes less than a predetermined value. Alternatively, it may be performed. When the current monitoring unit 79 and the luminance detection sensor are combined, it is possible to avoid turning off the illumination lamp 60 with higher accuracy.
  • this control may be performed when the usage time of the illuminating lamp 60 becomes a predetermined time or more.
  • the usage time of the illumination lamp 60 is memorize
  • the MERS 30 and the dimming control unit 70 are provided for each illuminating lamp 60, but one set of the MERS 30 and the dimming control unit 70 is provided for the plurality of illuminating lamps 60. And the dimming control may be performed for each system using the plurality of illumination lamps 60 as one system.
  • the MERS 30 and the dimming control unit 70 are provided in the illumination lamp 60, and the magnitude of the output voltage and the current phase of the MERS 30 are changed based on the detection result of the human sensor 90.
  • the brightness of the illumination lamp 60 is adjusted steplessly. Therefore, it is possible to irradiate only the region where the person H is present in the normal lighting state and irradiate other regions with less luminance, and it is possible to reduce wasteful power consumption.
  • MERS30 since MERS30 is only incorporated between the illumination lamp 60 and the alternating voltage source 20, it is an existing illumination lamp other than the inverter type fluorescent lamp corresponding to dimming control.
  • the MERS 30 has a simple configuration, its price is low. Therefore, the cost of introducing the lighting control device 100 can be kept very low. Furthermore, since the MERS 30 has a simple configuration as described above, its size is small. Therefore, the installation to the existing illumination lamp can be performed easily. Moreover, since the presence area of the person H can be made brighter than other areas, the presence of the person H can be notified in the surroundings, and a crime prevention effect can be obtained.
  • the brightness is reduced by adjusting the brightness with the MERS 30 without turning off the illumination lamp 60. Therefore, shortening of the lifetime of the illumination lamp 60 due to repeated ON / OFF can be suppressed, and as a result, the lifetime of the illumination lamp 60 can be extended.
  • the illumination control apparatus 100 was applied to the illumination lamp of a park was shown as an example in Embodiment 2, it can also be applied to an illumination lamp in a tunnel, for example.
  • a vehicle detection sensor is used as a situation detection means, and the presence of the vehicle C in a predetermined area in the tunnel and upstream in the vehicle traveling direction is detected by the vehicle detection sensor. To do.
  • luminance of the illuminating lamp in a tunnel is controlled based on the detection result of a vehicle detection sensor. That is, when the vehicle C does not exist within the detection area of the vehicle detection sensor, wasteful power consumption can be reduced by reducing the luminance of the illumination lamp.
  • the lighting is adjusted so that it does not turn off, even if a discharge lamp with a slow start-up at the time of re-lighting such as a mercury lamp or a sodium lamp is used for the lighting, the desired brightness can be quickly obtained. It can be increased to an amount.
  • the dimming control unit 70 controls the MERS 30 based on the detection result of the traffic detection sensor, the human sensor, or the vehicle detection sensor as the situation detection unit. It may be a simple configuration. That is, a switch panel as a user operation unit operated by the user may be provided, and the user may manually control the MERS 30 to adjust the luminance of the illumination lamp 60. Further, in this case, an ID number or the like may be given to each MERS 30 as unique identification information, and the luminance of each illumination lamp 60 may be adjusted by remote operation by wireless communication or the like.
  • the situation detecting means may detect the weather. Further, the status detection means may detect the concentration, brightness, vibration, temperature, radioactivity, etc. of the chemical substance.
  • the adjustment of the brightness of the illuminating lamp through the switch panel by the user and the adjustment of the brightness of the illuminating lamp based on the detection result of the situation detecting means may be used in combination.
  • the light can be automatically adjusted according to the detection result of the situation detection means, and it is possible to quickly cope with a change in the situation by manual adjustment.
  • the adjustment control of the brightness of the illuminating lamp 60 shown in each of the above-described embodiments can be applied to a parking lot, a passage in a building, an airport, a bay port, a station platform, a factory, a warehouse, an emergency staircase lighting, and the like. It is possible to apply accordingly.
  • the present invention can be used for lighting equipment.

Abstract

An illumination control device (100) has magnetic energy recovery switches (MERS) (30) which are each connected between an illuminating lamp (60) and an alternate voltage source (20) to adjust load power outputted from the alternate voltage source (20) to the illuminating lamp (60) to light the illuminating lamp (60), dimming control parts (70) each controlling an MERS (30), and a traffic detection sensor (80) which detects a vehicle traffic volume on the upstream sides of the illuminating lamps (60) in a vehicle traveling direction. The dimming control part (70) controls the MERS (30) to adjust the load power so that the illuminating lamp (60) comes into a standby lighting state of lighting with a luminance less than that during rated lighting and to adjust the load power so that the illuminating lamp (60) lights with a luminance not less than that in the standby lighting state according to the detection result obtained by the traffic detection sensor (80).

Description

照明制御装置Lighting control device
 本発明は、照明制御装置に関するものである。 The present invention relates to a lighting control device.
 逆阻止能力を持たない、逆導通型の4つの素子を用いて順逆両方向の電流をゲート制御のみでON/OFF可能であり、かつ電流を遮断した際の電流の持つ磁気エネルギーをコンデンサに蓄積し、ONゲートが与えられた素子を通して負荷側に放出することで磁気エネルギーをロスなく回生できるスイッチが提案されている(特許文献1参照)。このスイッチは、電流順逆両方向制御が可能なロスの少ない磁気エネルギー回生スイッチであり、MERS(Magnetic Energy Recovery Switch:磁気エネルギー回生スイッチ)と呼ばれている。特許文献1では、フルブリッジ型のMERSを開示している。 It is possible to turn on / off the current in both forward and reverse directions only by gate control using four elements of reverse conduction type that do not have reverse blocking capability, and store the magnetic energy of the current when the current is cut off in the capacitor A switch has been proposed that can regenerate magnetic energy without loss by discharging it to a load side through an element provided with an ON gate (see Patent Document 1). This switch is a magnetic energy regenerative switch with little loss that can be controlled in both forward and reverse directions, and is called MERS (Magnetic Energy Recovery Switch). Patent Document 1 discloses a full-bridge MERS.
 MERSには、逆阻止能力を持たない素子として、たとえばパワーMOSFETやダイオードを逆並列接続したトランジスタなどの順方向制御が可能な素子が用いられている。MERSは、この半導体素子4つで構成されるブリッジ回路と、ブリッジ回路の正極、負極に磁気エネルギーを吸収、放出するコンデンサを接続して構成される。そして、MERSは、これら4つの半導体素子のゲート位相の制御を行うことで、電流をどちらの方向にも流すことが可能となっている。 In MERS, an element capable of forward control, such as a transistor having a power MOSFET or a diode connected in antiparallel, is used as an element having no reverse blocking capability. The MERS is configured by connecting a bridge circuit composed of four semiconductor elements and a capacitor that absorbs and releases magnetic energy to the positive electrode and the negative electrode of the bridge circuit. The MERS can control the gate phase of these four semiconductor elements to flow current in either direction.
 また、MERSは、ブリッジ接続された4つの半導体素子のうち、対角線上に位置する2つの半導体素子がペアとなり、2つのペアのON/OFFの切換動作を電源の周波数に同期して行い、一方のペアがONの時は他方のペアがOFFとなるように動作する。また、このON/OFFの切換タイミングに合わせて、コンデンサが磁気エネルギーの充放電を繰り返す。 In MERS, two semiconductor elements located on a diagonal line among four semiconductor elements connected in a bridge form a pair, and the ON / OFF switching operation of the two pairs is performed in synchronization with the frequency of the power source. When one pair is on, the other pair is turned off. Further, the capacitor repeatedly charges and discharges magnetic energy in accordance with the ON / OFF switching timing.
 そして、一方のペアにOFFゲートが与えられ、他方のペアにONゲートが与えられると、順方向に導通していた電流は他方のペアの第1のダイオード-コンデンサ-他方のペアの第2のダイオードという経路で流れ、これによりコンデンサを充電する。すなわち、回路の磁気エネルギーがコンデンサに蓄積される。電流遮断時の回路の磁気エネルギーは、コンデンサの電圧が上昇して電流がゼロになるまでコンデンサに蓄積される。コンデンサ電流がゼロになるまでコンデンサの電圧が上昇すると、電流の遮断が完了する。この時点で他方のペアには既にONゲートが与えられているため、ONしている半導体素子を通してコンデンサの電荷が負荷側に放電され、コンデンサに蓄積された磁気エネルギーが負荷側に回生される。 Then, when an OFF gate is given to one pair and an ON gate is given to the other pair, the current conducted in the forward direction becomes the second diode of the other pair, the second diode of the other pair. It flows through a diode path, which charges the capacitor. That is, the magnetic energy of the circuit is stored in the capacitor. The magnetic energy of the circuit at the time of current interruption is stored in the capacitor until the voltage of the capacitor rises and the current becomes zero. When the capacitor voltage increases until the capacitor current reaches zero, the current interruption is complete. At this time, since the ON gate is already given to the other pair, the charge of the capacitor is discharged to the load side through the semiconductor element that is turned ON, and the magnetic energy accumulated in the capacitor is regenerated to the load side.
 このように、MERSは、4つの半導体素子のうち対角線上に位置する2つの半導体素子からなるペア2つのON/OFFのゲート位相を制御することで、MERSの出力電圧の大きさと電流の位相を任意に制御することが可能であり、これにより所望の力率を得ることができる。
特許第3634982号公報
Thus, MERS controls the magnitude of the output voltage and the current phase of MERS by controlling the gate phase of two pairs of two semiconductor elements located on the diagonal line among the four semiconductor elements. It can be arbitrarily controlled, and thereby a desired power factor can be obtained.
Japanese Patent No. 3634982
 ところで、近年、大気汚染や地球温暖化などの環境問題が特に深刻化してきており、環境問題への取り組みとして、消費エネルギー量の低減(省エネ)が盛んに図られるようになってきている。 By the way, in recent years, environmental problems such as air pollution and global warming have become particularly serious, and as an approach to environmental problems, reduction of energy consumption (energy saving) has been actively promoted.
 たとえば、日本における主な電力供給源の一つとして火力発電があるが、火力発電では、石油、石炭、天然ガスなどの燃料の燃焼に伴って、地球温暖化の原因となる二酸化炭素や、大気汚染の原因となる硫黄酸化物、窒素酸化物などが排出される。そのため、消費電力の削減によって、温室効果ガスや大気汚染の原因となる物質の排出が削減され、これが地球環境に与える負荷の低減につながることが期待されている。 For example, thermal power generation is one of the main power supply sources in Japan, but in thermal power generation, carbon dioxide, which causes global warming, and the atmosphere accompanying the combustion of fuels such as oil, coal, and natural gas Sulfur oxides and nitrogen oxides that cause pollution are emitted. Therefore, it is expected that the reduction of power consumption will reduce the emission of substances that cause greenhouse gases and air pollution, and this will lead to a reduction in the load on the global environment.
 省エネへの取り組みの一つとしては、たとえば、インバータ方式の蛍光灯とこのインバータ方式の蛍光灯を所望の輝度まで調整制御する制御装置とを備えた照明灯制御装置が提案されている。この照明灯制御装置によれば、ユーザがインバータ方式の蛍光灯を所望の輝度まで制御することができ、無駄な電力消費を抑えることができる。しかしながら、照明灯の点灯使用時の輝度を調整制御するためには調光制御対応の高価なインバータ方式の蛍光灯を採用しなければならず、また調光制御対応のインバータ方式の蛍光灯以外の既存の蛍光灯や、水銀灯、ナトリウム灯などの放電灯では減光方向に調光することが困難である。また、誘導性負荷を有しない照明灯についても、無駄な電力消費を抑える必要がある。 As one of energy saving efforts, for example, an illuminating lamp control device including an inverter-type fluorescent lamp and a control device that adjusts and controls the inverter-type fluorescent lamp to a desired luminance has been proposed. According to this illuminating lamp control device, the user can control the inverter type fluorescent lamp to a desired luminance, and wasteful power consumption can be suppressed. However, in order to adjust and control the brightness when the lighting is turned on, an expensive inverter-type fluorescent lamp compatible with dimming control must be adopted, and other than the inverter-type fluorescent lamp compatible with dimming control It is difficult to dimm in the dimming direction with existing fluorescent lamps, discharge lamps such as mercury lamps and sodium lamps. Moreover, it is necessary to suppress useless power consumption also about the illuminating lamp which does not have an inductive load.
 たとえば、道路用の照明灯には光量が大きく寿命の長い水銀灯やナトリウム灯などの放電灯が多く使用されており、これらの放電灯を減光方向に調光制御する機構が提供されていない。そのため、現状では、道路用照明灯は道路上に車両が存在しない場合であっても常時定格点灯している。したがって、無駄な電力を消費していることとなる。 For example, discharge lamps such as mercury lamps and sodium lamps having a large light quantity and a long life are often used for road illumination lamps, and a mechanism for dimming control of these discharge lamps in the dimming direction is not provided. Therefore, at present, the road illumination lamp is always lit at a rated level even when there is no vehicle on the road. Therefore, useless power is consumed.
 また、たとえばトンネルや、公園、建物内の通路などにおいても、車両や人の存在が全くない状態であるにもかかわらず、放電灯を点灯状態に維持していることが多く、無駄に電力が消費されている。 Also, for example, in a tunnel, a park, a passage in a building, etc., there are many cases where a discharge lamp is kept in a lit state in spite of the absence of vehicles or people, and wasteful power is consumed. Is consumed.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、照明灯を減光制御して、無駄な電力消費を削減することができる技術の提供にある。 The present invention has been made in view of such a situation, and an object thereof is to provide a technique capable of reducing useless power consumption by dimming control of an illumination lamp.
 上記課題を解決するために、本発明のある態様は照明制御装置であり、この照明制御装置は、照明灯と電源との間に接続され、電源から照明灯に出力される、照明灯を点灯するための負荷電力を調整する負荷電力調整スイッチと、負荷電力調整スイッチを制御する調光制御部と、照明灯の周囲の状況を検知する状況検知手段と、を備え、調光制御部は、照明灯が定格点灯時の輝度未満の輝度で点灯する待機点灯状態となるように負荷電力を調整し、状況検知手段の検知結果に応じて、照明灯が待機点灯状態における輝度以上の輝度で点灯する状態となるように負荷電力を調整すべく、負荷電力調整スイッチを制御することを特徴とする。 In order to solve the above-described problems, an aspect of the present invention is a lighting control device, and the lighting control device is connected between the lighting lamp and the power source, and the lighting lamp is output from the power source to the lighting lamp. A load power adjustment switch that adjusts the load power to perform, a dimming control unit that controls the load power adjustment switch, and a situation detection means that detects the situation around the illumination lamp, the dimming control unit, Adjust the load power so that the illuminating lamp is in a standby lighting state where it is lit at a brightness lower than the rated lighting intensity, and the lighting lamp lights at a brightness higher than that in the standby lighting state according to the detection result of the status detection means. The load power adjustment switch is controlled so as to adjust the load power so as to be in a state of being activated.
 本発明によれば、照明灯を減光制御して、無駄な電力消費を削減することができる。 According to the present invention, useless power consumption can be reduced by dimming the illumination lamp.
MERS組み込みシステムの基本構成を示す図である。It is a figure which shows the basic composition of a MERS embedded system. 図2(a)、(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIGS. 2A and 2B are diagrams for explaining MERS switching control by the control unit. 図3(a)、(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIGS. 3A and 3B are diagrams for explaining switching control of MERS by the control unit. 図4(a)、(b)は、制御部によるMERSのスイッチング制御を説明するための図である。FIGS. 4A and 4B are diagrams for explaining MERS switching control by the control unit. 図5(a)、(b)、(c)、(d)は、MERS組み込みシステムの動作結果を説明するための図である。FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are diagrams for explaining operation results of the MERS embedded system. MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. 実施形態1に係る照明制御装置の構成を示す概略図である。It is the schematic which shows the structure of the illumination control apparatus which concerns on Embodiment 1. FIG. 調光制御部の概略構成を説明する機能ブロック図である。It is a functional block diagram explaining schematic structure of a light control part. 交通量と照明灯の必要輝度との関係を示す図である。It is a figure which shows the relationship between a traffic volume and the required brightness | luminance of an illumination light. 実施形態2に係る照明制御装置の構成を示す概略図である。It is the schematic which shows the structure of the illumination control apparatus which concerns on Embodiment 2. FIG. 調光制御部の概略構成を説明する機能ブロック図である。It is a functional block diagram explaining schematic structure of a light control part.
符号の説明Explanation of symbols
 10 MERS組み込みシステム、 20 交流電圧源、 30 磁気エネルギー回生スイッチ(MERS)、 32、33、34、35、36 コンデンサ、 40 制御部、 50 誘導性負荷、 60 照明灯、 70 調光制御部、 72 センサ値取得部、 74 参照テーブル保持部、 76 待機点灯パラメータ保時部、 78 待機点灯パラメータ変更指示部、 79 電流監視部、 80 交通量検知センサ、 90 人感センサ、 100 照明制御装置、 C 車両、 D1、D2 ダイオード、 SW1、SW2、SW3、SW4、SW5、SW6、SW7、SW8 逆導通型半導体スイッチ。 10 MERS embedded system, 20 AC voltage source, 30 magnetic energy regenerative switch (MERS), 32, 33, 34, 35, 36 capacitor, 40 control unit, 50 inductive load, 60 illumination lamp, 70 dimming control unit, 72 Sensor value acquisition unit, 74 reference table holding unit, 76 standby lighting parameter holding unit, 78 standby lighting parameter change instruction unit, 79 current monitoring unit, 80 traffic monitoring sensor, 90 human sensor, 100 lighting control device, C vehicle , D1, D2 diode, SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8 reverse conducting semiconductor switch.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
(実施形態1)
 本実施形態に係る照明制御装置は、照明灯と電源との間に接続され、電源から照明灯に出力される、照明灯を点灯するための負荷電力を調整する負荷電力調整スイッチと、負荷電力調整スイッチを制御する調光制御部と、照明灯の周囲の状況を検知する状況検知手段と、を備える。負荷電力調整スイッチは、たとえば磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS)(以下、MERSと称する)である。調光制御部は、照明灯が定格点灯時の輝度未満の輝度で点灯する待機点灯状態となるように負荷電力を調整し、状況検知手段の検知結果に応じて、照明灯が待機点灯状態における輝度以上の輝度で点灯する状態となるように負荷電力を調整すべく、負荷電力調整スイッチを制御する。これにより、照明灯の設置された場所における外界の状況に応じて照明灯の輝度を調節する。その結果、無駄な電力消費を削減することができる。
(Embodiment 1)
The illumination control device according to the present embodiment is connected between an illumination lamp and a power source, and is output from the power source to the illumination lamp. The load power adjustment switch that adjusts the load power for lighting the illumination lamp, and the load power The light control part which controls an adjustment switch, and the condition detection means which detects the condition around an illumination light are provided. The load power adjustment switch is, for example, a magnetic energy regenerative switch (MERS) (hereinafter referred to as MERS). The dimming control unit adjusts the load power so that the lighting lamp is in a standby lighting state in which the lighting lamp is lit at a brightness lower than the rated lighting brightness, and the lighting lamp is in the standby lighting state according to the detection result of the state detection means. The load power adjustment switch is controlled so as to adjust the load power so that the light is lit at a brightness higher than the brightness. Thereby, the brightness | luminance of an illumination light is adjusted according to the condition of the external field in the place in which the illumination light was installed. As a result, wasteful power consumption can be reduced.
 まず、負荷電力調整スイッチとしてのMERSの構成および動作を説明する。本実施形態では、MERSを交流電圧源と誘電性負荷との間に直列に接続したMERS組み込みシステムを例に説明する。なお、MERSは交流電圧源に組み込むことで交流電源装置を構成することができ、また誘導性負荷に組み込むことでMERS組み込み負荷を構成することができる。 First, the configuration and operation of MERS as a load power adjustment switch will be described. In this embodiment, a MERS embedded system in which MERS is connected in series between an AC voltage source and a dielectric load will be described as an example. In addition, MERS can comprise an alternating current power supply device by incorporating it into an alternating voltage source, and can constitute a MERS built-in load by incorporating it into an inductive load.
 図1は、MERS組み込みシステム10の基本構成を示す図である。 
 図1において、MERS組み込みシステム10は、交流電圧源20と、インダクタンスのある誘導性負荷50を備える。交流電圧源20と誘導性負荷50との間には、MERS30が挿入されている。また、MERS組み込みシステム10は、MERS30のスイッチングを制御する制御部40を備える。
FIG. 1 is a diagram showing a basic configuration of the MERS embedded system 10.
In FIG. 1, the MERS embedded system 10 includes an AC voltage source 20 and an inductive load 50 having inductance. MERS 30 is inserted between AC voltage source 20 and inductive load 50. The MERS embedded system 10 includes a control unit 40 that controls switching of the MERS 30.
 MERS30は、順逆両方向の電流を制御可能であり、磁気エネルギーをロスなく負荷側に回生できる磁気エネルギー回生スイッチである。MERS30は、4つの逆導通型半導体スイッチSW1、SW2、SW3、SW4にて構成されるブリッジ回路と、ブリッジ回路のスイッチ遮断時に回路に流れる電流の磁気エネルギーを吸収するエネルギー蓄積用のコンデンサ32とを備える。 The MERS 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss. The MERS 30 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and an energy storage capacitor 32 that absorbs magnetic energy of a current flowing through the circuit when the bridge circuit is switched off. Prepare.
 ブリッジ回路は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4とが直列に接続され、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3とが直列に接続され、それらが並列に接続されて形成されている。 In the bridge circuit, a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
 コンデンサ32は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW3との接続点にある直流端子DC(P)と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW4との接続点にある直流端子DC(N)とに接続されている。また、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4との接続点にある交流端子と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3との接続点にある交流端子とには交流電圧源20と誘導性負荷50とが直列接続されている。 The capacitor 32 is at a connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW3, and between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N). Further, there is an alternating current between the AC terminal at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW3. The voltage source 20 and the inductive load 50 are connected in series.
 MERS30に配設された対角線上に位置する逆導通型半導体スイッチSW1、SW2からなる第1のペアと、同じく対角線上に位置する逆導通型半導体スイッチSW3、SW4からなる第2のペアが、電源周波数に同期して交互にON/OFFされる。すなわち、片方のペアがONのとき他方のペアはOFFとなる。そして、たとえば第1のペアにOFFゲートが与えられ、第2のペアにONゲートが与えられると、順方向に導通していた電流が第2のペアの逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4という経路で流れ、これによりコンデンサ32が充電される。すなわち、回路の磁気エネルギーがコンデンサ32に蓄積される。 A first pair of reverse conducting semiconductor switches SW1 and SW2 located on the diagonal line disposed in the MERS 30 and a second pair of reverse conducting semiconductor switches SW3 and SW4 also located on the diagonal line are connected to the power source. It is turned ON / OFF alternately in synchronization with the frequency. That is, when one pair is ON, the other pair is OFF. For example, when an OFF gate is given to the first pair and an ON gate is given to the second pair, the current conducted in the forward direction is changed to the reverse conduction type semiconductor switch SW3-capacitor 32- The capacitor flows through the path of the reverse conducting semiconductor switch SW4, whereby the capacitor 32 is charged. That is, the magnetic energy of the circuit is stored in the capacitor 32.
 電流遮断時の回路の磁気エネルギーは、コンデンサ32の電圧が上昇して電流がゼロになるまでコンデンサに蓄積され、コンデンサ電流がゼロになるまでコンデンサ32の電圧が上昇すると、電流の遮断が完了する。この時点で第2のペアには既にONゲートが与えられているため、ONしている逆導通型半導体スイッチSW3、SW4を通してコンデンサ32の電荷が誘導性負荷50に放電され、コンデンサ32に蓄積された磁気エネルギーが誘導性負荷50に回生される。 The magnetic energy of the circuit at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor 32 rises and the current becomes zero, and the current interruption is completed when the voltage of the capacitor 32 rises until the capacitor current becomes zero. . At this time, since the ON gate is already given to the second pair, the charge of the capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 which are turned on and accumulated in the capacitor 32. Magnetic energy is regenerated to the inductive load 50.
 電流のON/OFF時、誘導性負荷50にはパルス電圧が印加されるが、電圧の大きさはコンデンサ32の静電容量に応じて逆導通型半導体スイッチSW1~SW4と誘導性負荷50の耐電圧許容範囲内とすることができる。また、MERS30には、従来の直列力率改善コンデンサと異なり、直流のコンデンサを用いることができる。逆導通型半導体スイッチSW1~SW4は、たとえばパワーMOSFETからなり、それぞれゲートG1、G2、G3、G4を有する。逆導通型半導体スイッチSW1~SW4のチャネルには、それぞれボディダイオードが並列接続されている。 When the current is turned on / off, a pulse voltage is applied to the inductive load 50. The magnitude of the voltage depends on the capacitance of the capacitor 32 and the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load 50 are resistant to each other. It can be within the allowable voltage range. Further, unlike the conventional series power factor correction capacitor, a direct current capacitor can be used for MERS30. The reverse conducting semiconductor switches SW1 to SW4 are made of power MOSFETs, for example, and have gates G1, G2, G3, and G4, respectively. Body diodes are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
 MERS30には、ボディダイオードに加えて、逆導通型半導体スイッチSW1~SW4と逆並列にダイオードを加えてもよい。なお、逆導通型半導体スイッチSW1~SW4としては、たとえばIGBTやダイオードを逆並列接続したトランジスタなどの素子を用いることもできる。 In addition to the body diode, a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4. As the reverse conducting semiconductor switches SW1 to SW4, for example, an element such as an IGBT or a transistor having a diode connected in antiparallel can be used.
 制御部40は、MERS30の逆導通型半導体スイッチSW1~SW4のスイッチングを制御する。具体的には、MERS30のブリッジ回路における対角線上に位置する逆導通型半導体スイッチSW1、SW2からなるペアのON/OFF動作と、逆導通型半導体スイッチSW3、SW4からなるペアのON/OFF動作とを、一方がONのとき他方がOFFとなるように、半サイクル毎にそれぞれ同時に行うようゲートG1~G4に制御信号を送信する。 The control unit 40 controls switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30. Specifically, a pair ON / OFF operation composed of reverse conducting semiconductor switches SW1, SW2 located on a diagonal line in the bridge circuit of MERS 30 and a pair ON / OFF operation composed of reverse conducting semiconductor switches SW3, SW4 are provided. The control signal is transmitted to the gates G1 to G4 so that each of them is simultaneously performed every half cycle so that when one is ON, the other is OFF.
 続いて、制御部40によるMERS30のスイッチング制御について詳細に説明する。図2(a)、(b)、図3(a)、(b)、図4(a)、(b)は、制御部40によるMERS30のスイッチング制御を説明するための図である。 Subsequently, switching control of the MERS 30 by the control unit 40 will be described in detail. 2A, 2 </ b> B, 3 </ b> A, 3 </ b> B, 4 </ b> A, and 4 </ b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
 まず、コンデンサ32に充電電圧がない状態で、制御部40が逆導通型半導体スイッチSW1、SW2をONにした場合、図2(a)に示すように、電流は逆導通型半導体スイッチSW3、SW1を通る経路と、逆導通型半導体スイッチSW2、SW4を通る経路を流れ、並列導通状態となる。 First, when the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the capacitor 32 has no charging voltage, as shown in FIG. 2A, the current is reverse conducting semiconductor switches SW3 and SW1. And a path passing through the reverse conduction type semiconductor switches SW2 and SW4, and enters a parallel conduction state.
 次に、交流電圧源20の電圧が反転する前の所定のタイミング、たとえば約2ms前に、制御部40は逆導通型半導体スイッチSW1、SW2をOFFにする。これにより、図2(b)に示すように、電流は逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収(充電)される。本実施形態では、逆導通型半導体スイッチSW1、SW2をOFFにするタイミングで、逆導通型半導体スイッチSW3、SW4をONにしている。 Next, the control unit 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC voltage source 20 is inverted, for example, about 2 ms. As a result, as shown in FIG. 2B, the current flows through a path passing through the reverse conducting semiconductor switch SW3-capacitor 32-reverse conducting semiconductor switch SW4. As a result, the magnetic energy is absorbed (charged) in the capacitor 32. In this embodiment, the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
 コンデンサ32の充電が完了すると、すなわちコンデンサ32の電圧が所定値以上となると、電流は遮断される。そして、交流電圧源20の電圧が反転すると、逆導通型半導体スイッチSW3、SW4は既にONであり、またコンデンサ32に充電電圧があるため、図3(a)に示すように、電流は逆導通型半導体スイッチSW4-コンデンサ32-逆導通型半導体スイッチSW3を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放出(放電)される。 When the charging of the capacitor 32 is completed, that is, when the voltage of the capacitor 32 exceeds a predetermined value, the current is cut off. When the voltage of the AC voltage source 20 is inverted, the reverse conducting semiconductor switches SW3 and SW4 are already ON, and the capacitor 32 has a charging voltage, so that the current is reverse conducting as shown in FIG. It flows through a path passing through the type semiconductor switch SW4-capacitor 32-reverse conducting type semiconductor switch SW3. Then, the magnetic energy accumulated in the capacitor 32 is released (discharged).
 次に、コンデンサ32からの放電が終了すると、図3(b)に示すように、電流は逆導通型半導体スイッチSW1、SW3を通る経路と、逆導通型半導体スイッチSW4、SW2を通る経路を流れ、並列導通状態となる。 Next, when the discharge from the capacitor 32 is completed, as shown in FIG. 3B, the current flows through a path passing through the reverse conducting semiconductor switches SW1 and SW3 and a path passing through the reverse conducting semiconductor switches SW4 and SW2. The parallel conduction state is established.
 次に、交流電圧源20の電圧が反転する前の所定のタイミングで、制御部40は逆導通型半導体スイッチSW3、SW4をOFFにする。これにより、図4(a)に示すように、電流は逆導通型半導体スイッチSW1-コンデンサ32-逆導通型半導体スイッチSW2を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収される。本実施形態では、逆導通型半導体スイッチSW3、SW4をOFFにするタイミングで、逆導通型半導体スイッチSW1、SW2をONにしている。 Next, at a predetermined timing before the voltage of the AC voltage source 20 is inverted, the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4. As a result, as shown in FIG. 4A, the current flows through a path passing through the reverse conducting semiconductor switch SW1-capacitor 32-reverse conducting semiconductor switch SW2. As a result, the magnetic energy is absorbed by the capacitor 32. In this embodiment, the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
 コンデンサ32の充電が完了すると電流は遮断され、そして交流電圧源20の電圧が反転すると、逆導通型半導体スイッチSW1、SW2は既にONであり、またコンデンサ32に充電電圧があるため、図4(b)に示すように、電流は逆導通型半導体スイッチSW2-コンデンサ32-逆導通型半導体スイッチSW1を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放電される。コンデンサ32からの放電が終了すると、図2(a)に示す並列導通状態となり、以後これを繰り返す。このように、MERS30は対向するペア2組の逆導通型半導体スイッチを交互に導通状態にすることにより、双方向に電流を流すことができる。 When the charging of the capacitor 32 is completed, the current is cut off, and when the voltage of the AC voltage source 20 is inverted, the reverse conducting semiconductor switches SW1 and SW2 are already ON, and the capacitor 32 has a charging voltage. As shown in b), the current flows through a path through the reverse conducting semiconductor switch SW2-capacitor 32-reverse conducting semiconductor switch SW1. Then, the magnetic energy accumulated in the capacitor 32 is discharged. When the discharge from the capacitor 32 is completed, the parallel conduction state shown in FIG. Thus, the MERS 30 can flow a current in both directions by alternately bringing two pairs of opposing conductive semiconductor switches facing each other into a conductive state.
 このようなMERS30のスイッチング制御を行うことで、次のような効果が得られる。図5(a)、(b)、(c)、(d)は、MERS組み込みシステム10の動作結果を説明するための図である。図5(a)は、MERS30が組み込まれていない場合の電源電圧と電流の波形を示し、図5(b)は、MERS30が組み込まれた場合の電源電圧、電流、負荷電圧の波形を示している。また、図5(c)はコンデンサ電圧と逆導通型半導体スイッチSW1を流れる電流の波形を示し、図5(d)は逆導通型半導体スイッチSW1がONになるタイミングを示している。 The following effects can be obtained by performing the switching control of the MERS 30. FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are diagrams for explaining operation results of the MERS embedded system 10. 5A shows the waveforms of the power supply voltage and current when the MERS 30 is not incorporated, and FIG. 5B shows the waveforms of the power supply voltage, current, and load voltage when the MERS 30 is incorporated. Yes. FIG. 5C shows the waveform of the capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1, and FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
 図5(a)に示すように、MERS30が組み込まれていない場合、誘導性負荷50の影響により、電流の位相が電源電圧の位相よりも遅れている。そのため交流電圧源20の力率は1より小さい。一方、交流電圧源20と誘導性負荷50との間にMERS30を直列に挿入した場合には、図5(b)に示すように電流の位相を進ませることができるため、交流電圧源20の力率を1とすることが可能である。 As shown in FIG. 5A, when the MERS 30 is not incorporated, the phase of the current is delayed from the phase of the power supply voltage due to the influence of the inductive load 50. Therefore, the power factor of the AC voltage source 20 is smaller than 1. On the other hand, when the MERS 30 is inserted in series between the AC voltage source 20 and the inductive load 50, the phase of the current can be advanced as shown in FIG. The power factor can be 1.
 すなわち、MERS30は、逆導通型半導体スイッチSW1~SW4の対角線上のペア2組のゲート位相を調整することで、誘導性負荷50の磁気エネルギーをコンデンサ32に蓄えて、電流の位相を進ませ、これにより交流電圧源20の力率を1にすることが可能である。また、MERS30は、電流の位相を進ませるだけでなく、電流の位相を任意に制御することが可能であり、これにより任意に力率を調整することができる。さらに、誘導性負荷50の磁気エネルギーをコンデンサ32に貯え、蓄えた磁気エネルギーを誘導性負荷50に回生することにより、負荷電圧を無段階に増減させることが可能である。 That is, the MERS 30 stores the magnetic energy of the inductive load 50 in the capacitor 32 by adjusting the gate phase of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4, and advances the phase of the current. As a result, the power factor of the AC voltage source 20 can be made 1. In addition, the MERS 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, whereby the power factor can be arbitrarily adjusted. Furthermore, by storing the magnetic energy of the inductive load 50 in the capacitor 32 and regenerating the stored magnetic energy in the inductive load 50, the load voltage can be increased or decreased steplessly.
 また、図5(c)および図5(d)に示すように、逆導通型半導体スイッチSW1がONになるタイミングでは、コンデンサ電圧は0であり、逆導通型半導体スイッチSW1を流れる電流は、並列導通時に逆導通型半導体スイッチSW1のダイオードを流れる電流である。逆導通型半導体スイッチSW1がOFFになるタイミングにおいてもコンデンサ電圧は0である。すなわち、0電圧、0電流でスイッチングされており、そのためスイッチングによる損失を無くすことができる。他の3つの逆導通型半導体スイッチSW2~SW4については、逆導通型半導体スイッチSW1と同期してスイッチングしているため、同様の結果となる。 Further, as shown in FIGS. 5C and 5D, the capacitor voltage is 0 at the timing when the reverse conducting semiconductor switch SW1 is turned on, and the current flowing through the reverse conducting semiconductor switch SW1 is parallel. This is a current that flows through the diode of the reverse conducting semiconductor switch SW1 when conducting. The capacitor voltage is 0 even when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
 コンデンサ32の充放電周期は、誘導性負荷50とコンデンサ32との共振周期の半周期分であり、スイッチング周期が誘導性負荷50とコンデンサ32との共振周期より長い時には、MERS30は常に0電圧0電流スイッチング、すなわちソフトスイッチングが可能である。 The charging / discharging cycle of the capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32. When the switching cycle is longer than the resonance cycle of the inductive load 50 and the capacitor 32, the MERS 30 always has zero voltage 0. Current switching, that is, soft switching is possible.
 MERS30に用いられるコンデンサ32は、従来の電圧型インバータと異なり、回路にあるインダクタンスの磁気エネルギーを蓄積するためだけのものである。そのため、コンデンサ容量を従来の電圧型インバータの電圧源コンデンサに比べて著しく小さくできる。コンデンサ容量は、負荷との共振周期がスイッチング周波数より短くなるように選定する。 Unlike the conventional voltage type inverter, the capacitor 32 used in the MERS 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter. The capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency.
 また、MERS30をゲートパルス発生装置として用いた場合、各MERS30に固有のIDナンバーを付与することができ、これを用いて外部からの制御信号を受信して各MERS30を制御することができる。たとえば、インターネットなどの通信回線を利用して無線で制御信号を送り、MERS30を無線制御できる。 Also, when the MERS 30 is used as a gate pulse generator, each MERS 30 can be given a unique ID number, and this can be used to control each MERS 30 by receiving an external control signal. For example, the MERS 30 can be wirelessly controlled by sending a control signal wirelessly using a communication line such as the Internet.
 上述のMERS組み込みシステム10では、MERS30は4つの逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子間に接続されたコンデンサ32とからなる構成であったが、MERS30は次のような構成であってもよい。 In the MERS embedded system 10 described above, the MERS 30 has a configuration including a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 32 connected between the DC terminals of the bridge circuit. May have the following configuration.
 図6および図7は、MERS30の他の態様を示す図である。 
 図6に示すMERS30は、上述の4つの逆導通型半導体スイッチSW1~SW4と1つのコンデンサ32とからなるフルブリッジ型のMERS30に対して、2つの逆導通型半導体スイッチと2つのダイオード、および2つのコンデンサで構成される縦型のハーフブリッジ型となっている。
6 and 7 are diagrams showing another aspect of the MERS 30. FIG.
The MERS 30 shown in FIG. 6 has two reverse-conducting semiconductor switches, two diodes and two full-conducting MERS 30 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and one capacitor 32 described above. It is a vertical half-bridge type composed of two capacitors.
 より詳細には、この縦型ハーフブリッジ構造のMERS30は、直列に接続された2つの逆導通型半導体スイッチSW5、SW6と、この2つの逆導通型半導体スイッチSW5、SW6と並列に設けられた、直列に接続された2つのコンデンサ33、34と、この2つのコンデンサ33、34それぞれと並列に接続された2つのダイオードD1、D2と、を含んでいる。 More specifically, the vertical half-bridge structure MERS 30 is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series, and the two reverse conducting semiconductor switches SW5 and SW6. It includes two capacitors 33 and 34 connected in series, and two diodes D1 and D2 connected in parallel with the two capacitors 33 and 34, respectively.
 図7に示すMERS30は、横型のハーフブリッジ型である。横型のハーフブリッジ型MERSは、2つの逆導通型半導体スイッチと2つのコンデンサで構成されている。 
 より詳細には、この横型のハーフブリッジ構造MERS30は、第1の経路上に直列に設けられた逆導通型半導体スイッチSW7およびコンデンサ35と、第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチSW8およびコンデンサ36と、第1、第2の経路に対して並列に結線された配線と、を含んでいる。
The MERS 30 shown in FIG. 7 is a horizontal half-bridge type. The horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two capacitors.
More specifically, the horizontal half-bridge structure MERS 30 includes a reverse conducting semiconductor switch SW7 and a capacitor 35 provided in series on the first path, and a second path parallel to the first path. Includes a reverse conducting semiconductor switch SW8 and a capacitor 36, and wirings connected in parallel to the first and second paths.
 続いて、本実施形態に係る照明制御装置について説明する。 
 図8は、実施形態1に係る照明制御装置の構成を示す概略図である。
Next, the illumination control device according to this embodiment will be described.
FIG. 8 is a schematic diagram illustrating a configuration of the illumination control apparatus according to the first embodiment.
 図8に示すように、本実施形態の照明制御装置100は、道路用の照明灯60(60a~60h)のそれぞれと交流電圧源20との間に、MERS30(30a~30h)を設けた構成である。照明灯60は、たとえば誘導性負荷を有する照明灯、誘導性負荷に接続された照明灯、または抵抗性負荷を有する照明灯である。誘導性負荷を有する照明灯としては、たとえば放電灯などが挙げられる。放電灯は、たとえば蛍光灯、水銀灯、ナトリウム灯、またはネオン灯である。また、誘導性負荷に接続された照明灯としては、誘導性負荷を持たない白熱灯、LEDなどの光源にリアクトルを接続したものが挙げられる。また、抵抗性負荷を有する照明灯は、抵抗性負荷のみの照明灯であり、白熱灯などが挙げられる。本実施形態では、照明灯60に放電灯を用いた場合を例に説明する。 As shown in FIG. 8, the lighting control apparatus 100 of the present embodiment is configured such that MERS 30 (30a to 30h) is provided between each of the road lighting lamps 60 (60a to 60h) and the AC voltage source 20. It is. The illuminating lamp 60 is, for example, an illuminating lamp having an inductive load, an illuminating lamp connected to the inductive load, or an illuminating lamp having a resistive load. Examples of the illumination lamp having an inductive load include a discharge lamp. The discharge lamp is, for example, a fluorescent lamp, a mercury lamp, a sodium lamp, or a neon lamp. In addition, examples of the illuminating lamp connected to the inductive load include an incandescent lamp that does not have an inductive load, and a lamp connected to a light source such as an LED. Moreover, the illuminating lamp which has a resistive load is an illuminating lamp only of a resistive load, and an incandescent lamp etc. are mentioned. In the present embodiment, a case where a discharge lamp is used as the illumination lamp 60 will be described as an example.
 また、照明制御装置100は、MERS30のゲート位相角を制御してMERS30の出力電圧の大きさと電流の位相を調整するための調光制御部70(70a~70h)を備える。また、照明制御装置100は、照明灯60の周囲の状況を検知する状況検知手段として交通量検知センサ80を備える。状況検知手段は、たとえば照明灯60を基準とした所定範囲における外界の状況を検知する。 Further, the illumination control device 100 includes a dimming control unit 70 (70a to 70h) for controlling the gate phase angle of the MERS 30 and adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current. In addition, the illumination control device 100 includes a traffic volume detection sensor 80 as a situation detection unit that detects the situation around the illumination lamp 60. The situation detection means detects the situation of the outside world in a predetermined range based on the illumination lamp 60, for example.
 図9は、調光制御部70の概略構成を説明する機能ブロック図である。 
 図9に示すように、調光制御部70は、逆導通型半導体スイッチSW1~SW4のゲートG1~G4に制御信号を送信し、MERS30の出力電圧の大きさと電流の位相を調整する制御部40を備える。また、調光制御部70は、交通量検知センサ80の検知結果を受信し、制御部40に送信するセンサ値取得部72と、制御部40が出力電圧の大きさと電流の位相を変更する際に参照するテーブルを保持する参照テーブル保持部74を備える。また、調光制御部70は、照明灯60が定格点灯時の輝度未満の輝度で点灯する待機点灯状態にある際の負荷電力などのパラメータを保持する待機点灯パラメータ保時部76を備える。さらに調光制御部70は、電流監視部79からの情報に応じて待機点灯パラメータ保時部76に保持された待機点灯時のパラメータを変更するように制御部40に指示する待機点灯パラメータ変更指示部78を備える。
FIG. 9 is a functional block diagram illustrating a schematic configuration of the dimming control unit 70.
As shown in FIG. 9, the dimming controller 70 transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4, and adjusts the magnitude of the output voltage of the MERS 30 and the phase of the current. Is provided. In addition, the dimming control unit 70 receives the detection result of the traffic detection sensor 80 and transmits it to the control unit 40, and the control unit 40 changes the magnitude of the output voltage and the phase of the current. A reference table holding unit 74 that holds a table to be referred to. In addition, the dimming control unit 70 includes a standby lighting parameter holding unit 76 that holds parameters such as load power when the illumination lamp 60 is in a standby lighting state in which the lighting lamp 60 is lit at a brightness lower than the rated lighting brightness. Further, the dimming control unit 70 instructs the control unit 40 to change the standby lighting parameter held in the standby lighting parameter holding unit 76 according to the information from the current monitoring unit 79. Part 78 is provided.
 交通量検知センサ80は、照明灯60の照射領域の車両進行方向上流側の交通量を検知し、検知結果を各調光制御部70に送信している。ここで、前記「交通量」には、道路上に停駐車している車両を含めてもよい。また、交通量検知センサ80は、たとえばMERS30による負荷電力の変更速度と車両の規定走行速度とによって決まる所定範囲を検知する。交通量検知センサ80としては、道路交通情報通信システム(Vehicle Information and Communication System:VICS)などの既存のシステムあるいはセンサを用いることができる。なお、図8では、交通量検知センサ80は1つだけ示しているが、交通量検知センサ80の数は特に限定されず、複数の交通量検知センサ80を設けて各場所を検知してもよい。 The traffic volume detection sensor 80 detects the traffic volume upstream of the irradiation area of the illuminating lamp 60 in the vehicle traveling direction, and transmits the detection result to each dimming control unit 70. Here, the “traffic volume” may include a vehicle parked on the road. In addition, the traffic volume detection sensor 80 detects a predetermined range determined by, for example, the load power changing speed by the MERS 30 and the prescribed traveling speed of the vehicle. As the traffic volume detection sensor 80, an existing system or sensor such as a road traffic information communication system (Vehicle Information and Communication System: VICS) can be used. In FIG. 8, only one traffic detection sensor 80 is shown, but the number of traffic detection sensors 80 is not particularly limited, and a plurality of traffic detection sensors 80 may be provided to detect each location. Good.
 続いて、照明制御装置100の動作について説明する。 
 照明制御装置100では、交通量検知センサ80の検知結果に基づいて、調光制御部70の制御部40がMERS30を制御し、MERS30の出力電圧および電流の位相を変更して照明灯60を点灯するための負荷電力を調整している。
Subsequently, the operation of the illumination control apparatus 100 will be described.
In the illumination control device 100, the control unit 40 of the dimming control unit 70 controls the MERS 30 based on the detection result of the traffic volume detection sensor 80, changes the output voltage and current phase of the MERS 30, and turns on the illumination lamp 60. To adjust the load power.
 通常、調光制御部70は、照明灯60が定格点灯時の輝度未満の輝度で点灯する待機点灯状態となるように、MERS30の出力電圧と電流の位相を制御して負荷電力を調整している。待機点灯状態で照明灯60に出力される負荷電力は、たとえば定格点灯時の負荷電力未満であり、かつ照明灯60が安定的な放電を維持し得る最低の負荷電力である最低負荷電力以上であって、定格点灯時の負荷電力よりも最低負荷電力に近い電力に設定されている。本実施形態では、待機点灯時の負荷電力は、最低負荷電力に、より確実に安定放電状態を維持できるように所定量の電力を上乗せした電力であって、さらに照明灯60の照射範囲内にある物体が所定距離から視認可能な程度の照度となる負荷電力である。ここで、前記「安定的に放電」とは、たとえばフリッカーなどのちらつきが生じない放電状態である。制御部40は、待機点灯パラメータ保時部76に格納されている待機点灯時の負荷電力を参照して、MERS30の出力電圧の大きさと電流の位相を調整する。 Normally, the dimming control unit 70 adjusts the load power by controlling the phase of the output voltage and current of the MERS 30 so that the illumination lamp 60 is in a standby lighting state in which the lighting lamp 60 is lit at a brightness lower than the rated lighting brightness. Yes. The load power output to the illuminating lamp 60 in the standby lighting state is, for example, less than the load power at the time of rated lighting and is equal to or higher than the minimum load power that is the lowest load power at which the illuminating lamp 60 can maintain stable discharge. Thus, it is set to a power that is closer to the minimum load power than the load power at the time of rated lighting. In the present embodiment, the load power at the time of standby lighting is a power obtained by adding a predetermined amount of power to the minimum load power so that a stable discharge state can be more reliably maintained, and further within the irradiation range of the illumination lamp 60. The load power is such that the illuminance is such that a certain object is visible from a predetermined distance. Here, the “stable discharge” is a discharge state in which no flicker such as flicker occurs. The control unit 40 refers to the load power during standby lighting stored in the standby lighting parameter holding unit 76 and adjusts the magnitude of the output voltage and the current phase of the MERS 30.
 そして、交通量検知センサ80の検知結果に応じて、待機点灯状態における輝度以上の輝度で照明灯60が点灯するように負荷電力を調整する。このように、通常は待機点灯状態にしておき、交通量の変化に応じて照明灯60の輝度を増大または減少させることで、無駄な電力消費を削減できる。交通量検知センサ80の検知結果に応じた照明灯60の輝度の制御方法としては、たとえば次のような方法がある。 Then, according to the detection result of the traffic volume detection sensor 80, the load power is adjusted so that the illumination lamp 60 is lit at a luminance higher than the luminance in the standby lighting state. As described above, normally, the standby lighting state is set, and the luminance of the illuminating lamp 60 is increased or decreased in accordance with a change in traffic volume, so that useless power consumption can be reduced. As a method for controlling the luminance of the illuminating lamp 60 in accordance with the detection result of the traffic volume detection sensor 80, for example, there are the following methods.
 調光制御部70は、図10に示す、必要とされる照明灯60の輝度と交通量との関係に基づいて照明灯60への負荷電力を調整する。図10は、交通量と照明灯60の必要輝度との関係を示す図である。 The dimming control unit 70 adjusts the load power to the illuminating lamp 60 based on the relationship between the required luminance of the illuminating lamp 60 and the traffic volume shown in FIG. FIG. 10 is a diagram showing the relationship between the traffic volume and the required luminance of the illuminating lamp 60.
 図10に示すように、照明灯60の必要輝度、たとえば夜間走行時における車両Cの所望の安全性を満たすために必要とされる最低限の輝度は、車両Cの交通量に応じて規定することができる。すなわち、車両Cが存在しない場合には、所定距離だけ離れた位置から道路の存在を確認できるように、照明灯60の輝度は、照明灯60の照射範囲内にある道路が所定距離から視認可能となる前述の待機点灯状態における輝度であればよい。また、車両Cの交通量が少ない場合には、車両同士の接触などの事故の起こる可能性も低く、走行している車両Cの前照灯による道路およびその周辺への照射によって、車両Cの安全性をある程度確保することができる。そのため、照明灯60の輝度は、待機点灯状態の輝度以上ではあるが、比較的低くすることができる。 As shown in FIG. 10, the required brightness of the illuminating lamp 60, for example, the minimum brightness required to satisfy the desired safety of the vehicle C when traveling at night is defined according to the traffic volume of the vehicle C. be able to. That is, when the vehicle C is not present, the brightness of the illuminating lamp 60 can be viewed from a predetermined distance so that the presence of the road can be confirmed from a position separated by a predetermined distance. The brightness in the above-described standby lighting state is sufficient. In addition, when the traffic volume of the vehicle C is small, the possibility of accidents such as contact between vehicles is low, and the irradiation of the vehicle C and the surrounding area by the headlamps of the traveling vehicle C causes Safety can be secured to some extent. For this reason, the luminance of the illuminating lamp 60 is higher than the luminance in the standby lighting state, but can be made relatively low.
 一方、車両Cの交通量が多くなると、車両Cの安全性は低くなり、安全性を確保するために運転者が他車両の存在をより明確に、またより早期に視認できるようにする必要がある。そのため、照明灯60の輝度の下限値は交通量の増加に応じて高くなる。そして、さらに交通量が多くなった場合には、多数の車両Cの前照灯によって道路およびその周辺が照射されることとなり、道路の照度が高まって運転者の視認性もある程度確保することができる。そのため、照明灯60の輝度の下限値は、所定の交通量aの時点での輝度をピークとして徐々に低くなる。 On the other hand, when the traffic volume of the vehicle C increases, the safety of the vehicle C decreases, and it is necessary for the driver to be able to visually recognize the existence of other vehicles more clearly and earlier in order to ensure safety. is there. Therefore, the lower limit value of the luminance of the illuminating lamp 60 increases as the traffic volume increases. When the traffic volume further increases, the road and its surroundings are illuminated by the headlamps of a large number of vehicles C, and the illuminance of the road is increased to ensure the driver's visibility to some extent. it can. Therefore, the lower limit value of the luminance of the illuminating lamp 60 gradually decreases with the luminance at the time of the predetermined traffic volume a as a peak.
 そこで、調光制御部70は、照明灯60の照射領域の車両進行方向上流側の車両Cの交通量が第1の所定量である所定量aになるまでは、交通量の増加に応じて照明灯60の輝度が増大するように、MERS30の出力電圧の大きさと電流の位相を変更して負荷電力を連続的に、すなわち無段階に調整する。そして、車両Cの交通量が所定量a以上となった場合には、交通量の増加に応じて照明灯60の輝度が減少するように、MERS30の出力電圧の大きさと電流の位相を変更して負荷電力を無段階に調整する。また、調光制御部は、車両Cの交通量が第2の所定量である所定量aとなるまでは、交通量の減少に応じて照明灯60の輝度が増大し、車両Cの交通量が所定量a未満となった場合には、交通量の減少に応じて照明灯60の輝度が減少するように、MERS30の出力電圧の大きさと電流の位相を調整して負荷電力を無段階に調整する。 Therefore, the dimming control unit 70 responds to the increase in the traffic volume until the traffic volume of the vehicle C on the upstream side in the vehicle traveling direction of the illumination lamp 60 reaches the predetermined amount a which is the first predetermined amount. The load power is adjusted continuously, that is, steplessly by changing the magnitude of the output voltage of the MERS 30 and the phase of the current so that the luminance of the illuminating lamp 60 increases. And when the traffic volume of the vehicle C becomes more than the predetermined amount a, the magnitude of the output voltage and the current phase of the MERS 30 are changed so that the luminance of the illuminating lamp 60 decreases as the traffic volume increases. Adjust the load power steplessly. Further, the dimming control unit increases the luminance of the illumination lamp 60 according to the decrease in the traffic volume until the traffic volume of the vehicle C reaches the predetermined amount a which is the second predetermined amount, and the traffic volume of the vehicle C. Is less than the predetermined amount a, the magnitude of the output voltage of the MERS 30 and the phase of the current are adjusted in a stepless manner so that the luminance of the illuminating lamp 60 decreases as the traffic volume decreases. adjust.
 参照テーブル保持部74には、図10に示す照明灯60の必要輝度と交通量との関係を記したテーブルが格納されており、制御部40は、このテーブルを参照してゲートG1~G4に制御信号を送信してMERS30の出力電圧の大きさと電流の位相を変更する。ここで、前記「所定量」とは、たとえば車両事故が発生する確率の最も高い交通量であり、統計的に求めることができる。あるいは、前記「所定量」は実験的に求めてもよい。また、第1の所定量と第2の所定量は異なっていてもよく、交通量の増加に応じた輝度調整と交通量の減少に応じた輝度調整とでは、異なる参照テーブルを用いて異なる変化態様となるように調整を行ってもよい。なお、状況に応じて、負荷電力を段階的に調整してもよい。 The reference table holding unit 74 stores a table describing the relationship between the required luminance of the illuminating lamp 60 and the traffic volume shown in FIG. 10, and the control unit 40 refers to this table to the gates G1 to G4. A control signal is transmitted to change the magnitude of the output voltage of the MERS 30 and the phase of the current. Here, the “predetermined amount” is, for example, the traffic volume with the highest probability of a vehicle accident and can be obtained statistically. Alternatively, the “predetermined amount” may be obtained experimentally. In addition, the first predetermined amount and the second predetermined amount may be different, and the luminance adjustment according to the increase in traffic volume and the luminance adjustment according to the decrease in traffic volume are different using different reference tables. You may adjust so that it may become an aspect. Note that the load power may be adjusted in stages according to the situation.
 図8は、交通量の少ない照明灯60g、60hの領域から交通量が所定量aである照明灯60a~60cの領域にかけて交通量が増加している状態を示している。照明灯60a~60cは、輝度100%、すなわち定格点灯時の点灯状態であり、照明灯60d~60fは、輝度約70%、すなわち定格点灯時の0.7倍相当の点灯状態であり、照明灯60g、60hは、輝度約60%、すなわち定格点灯時の0.6倍相当の点灯状態となっている。調光制御部70は、車両Cが存在しない場合には、待機点灯時の輝度となるようにMERS30の出力電圧の大きさと電流の位相を制御する。 FIG. 8 shows a state in which the traffic volume increases from the area of the illuminating lamps 60g and 60h with a small traffic volume to the area of the illuminating lamps 60a to 60c where the traffic volume is the predetermined amount a. The illumination lamps 60a to 60c have a luminance of 100%, that is, a lighting state at the time of rated lighting, and the lighting lamps 60d to 60f have a luminance of about 70%, that is, a lighting state equivalent to 0.7 times that at the rated lighting. The lamps 60g and 60h have a luminance of about 60%, that is, a lighting state equivalent to 0.6 times the rated lighting. When the vehicle C is not present, the dimming control unit 70 controls the magnitude of the output voltage of the MERS 30 and the phase of the current so that the brightness at the time of standby lighting is obtained.
 このように、照明制御装置100では、交流電圧源20と照明灯60との間にMERS30を接続し、調光制御部70によってMERS30の出力電圧の大きさと電流の位相を変更して負荷電力を調整している。そのため、交通量に応じた照明灯60の調光制御が可能となり、無駄な電力消費を抑えることができる。なお、本実施形態では、待機点灯時の負荷電力は、照明灯60の照射範囲内にある道路が所定距離から視認可能な程度の照度となる負荷電力としているが、道路を所定距離から視認可能にする必要がない場合には、待機点灯時の負荷電力を下限である最低負荷電力としてもよい。この場合には、さらなる電力消費の削減が可能となる。 As described above, in the lighting control device 100, the MERS 30 is connected between the AC voltage source 20 and the illuminating lamp 60, and the dimming control unit 70 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to change the load power. It is adjusted. Therefore, dimming control of the illumination lamp 60 according to the traffic volume is possible, and wasteful power consumption can be suppressed. In the present embodiment, the load power at the time of standby lighting is set to load power at which the road within the irradiation range of the illuminating lamp 60 has an illuminance that is visible from a predetermined distance, but the road can be viewed from a predetermined distance. If it is not necessary to set the load power at the time of standby lighting, the minimum load power that is the lower limit may be used. In this case, the power consumption can be further reduced.
 ここで、無駄な電力消費を削減する1つの方法としては、複数ある照明灯60の一部を消灯することで、照明灯60全体としての消費電力を低減する方法が考えられる。しかしながら、この場合には、個々の照明灯60をON/OFF制御するため、道路の照射領域が変わってしまい、運転者の視認性の確保などが困難になってしまうおそれがある。一方、本実施形態の照明制御装置100の場合には、通常時は照明灯60を待機点灯状態に維持しているため、道路の照射範囲を変えることなく無駄な電力消費を削減することができる。 Here, as one method of reducing useless power consumption, a method of reducing the power consumption of the entire illumination lamp 60 by turning off a part of the plurality of illumination lamps 60 can be considered. However, in this case, since the individual illumination lamps 60 are ON / OFF controlled, the irradiation area of the road changes, and it may be difficult to ensure the driver's visibility. On the other hand, in the case of the illumination control device 100 of the present embodiment, since the illumination lamp 60 is maintained in the standby lighting state during normal times, it is possible to reduce wasteful power consumption without changing the irradiation range of the road. .
 また、放電灯のうち、特に水銀灯もしくはナトリウム灯などでは、消灯後の再点灯に数分以上かかるため、照明灯60をON/OFF制御した場合には、短時間での輝度の増大、たとえば短時間での定格点灯状態への回復が困難である。これに対し、照明制御装置100では、照明灯60の放電が可能な最低限の電流を流すようにMERS30の出力電圧の大きさと電流の位相を調整して照明灯60の点灯状態を維持しているため、短時間での輝度の増大が可能となる。また、照明灯60をOFFにすることなく、その輝度をMERS30によって減光することで、ON/OFFの繰り返しによる照明灯60の寿命の短縮を抑制できる。 Among discharge lamps, particularly mercury lamps or sodium lamps, it takes several minutes to relight after extinguishing. Therefore, when the illumination lamp 60 is controlled to be turned on / off, the brightness increases in a short time, for example, short. Recovery to the rated lighting state over time is difficult. On the other hand, in the lighting control device 100, the lighting voltage of the lighting lamp 60 is maintained by adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current so that the minimum current that can discharge the lighting lamp 60 flows. Therefore, the luminance can be increased in a short time. Moreover, shortening the lifetime of the illuminating lamp 60 due to repeated ON / OFF can be suppressed by dimming the brightness by the MERS 30 without turning the illuminating lamp 60 OFF.
 照明灯60の輝度を減少させる場合、たとえば、照明灯60a~60cの領域のように車両Cの交通量が所定量aの状態から、照明灯60g、60hの領域のように車両Cの交通量が少ない状態へ、交通量が急激に変化した場合には、調光制御部70は、照明灯60の輝度を交通量の変化に追従して急激に変化させず、より長い時間をかけて下げるように制御してもよい。また、逆に交通量が急激に増大した場合にも、調光制御部70は、図11に示す関係を満たす範囲内で照明灯60の輝度をより長い時間をかけて上げるように制御してもよい。すなわち、調光制御部70は、単位時間あたりの輝度の変化量が所定値以下となるように、照明灯60の輝度を変化させてもよい。これによれば、照明灯60の輝度が急激に増減するのを防ぐことができ、照明灯60の輝度の急激な変化によって運転者に与える不快なグレアや違和感を軽減することができる。なお、前記「所定値」は、たとえば運転者に不快なグレアや違和感を与えない変化量であり、これは実験的に求めることができる。 When the luminance of the illuminating lamp 60 is decreased, for example, the traffic volume of the vehicle C from the state where the traffic volume of the vehicle C is a predetermined amount a as in the area of the illuminating lamps 60a to 60c, as in the area of the illumination lamps 60g and 60h. When the traffic volume suddenly changes to a state where there is a small amount of light, the dimming control unit 70 does not change the luminance of the illuminating lamp 60 following the change in the traffic volume and decreases it over a longer time. You may control as follows. On the contrary, even when the traffic volume suddenly increases, the dimming control unit 70 controls the luminance of the illuminating lamp 60 to increase over a longer time within a range satisfying the relationship shown in FIG. Also good. That is, the dimming control unit 70 may change the luminance of the illuminating lamp 60 so that the amount of change in luminance per unit time is equal to or less than a predetermined value. According to this, it is possible to prevent the brightness of the illuminating lamp 60 from rapidly increasing and decreasing, and it is possible to reduce unpleasant glare and uncomfortable feeling given to the driver due to a rapid change in the brightness of the illuminating lamp 60. The “predetermined value” is, for example, a change amount that does not give an unpleasant glare or discomfort to the driver, and can be obtained experimentally.
 また、照明灯60は、経年劣化などにより電極が劣化し、電流が流れにくくなって輝度が低下していく。そのため、調光制御部70が予め規定されたパラメータを用いて待機点灯状態になるようにMERS30の出力電圧の大きさと電流の位相を調整した際に、待機点灯状態を維持できずに消灯してしまうおそれがある。そこで、調光制御部70は、予め規定された待機点灯状態での負荷電力で照明灯60が待機点灯状態を維持できなくなった場合に、待機点灯状態での負荷電力を増大させるようにMERS30の出力電圧の大きさと電流の位相を調整する制御を行うようにしてもよい。この制御は、たとえば以下のようにして行うことができる。 In addition, the electrode of the illuminating lamp 60 is deteriorated due to aging, etc., current is difficult to flow, and the luminance is lowered. Therefore, when the dimming control unit 70 adjusts the magnitude of the output voltage and the phase of the current so that the standby lighting state is set using a predetermined parameter, the standby lighting state cannot be maintained and the light is turned off. There is a risk that. Therefore, the dimming control unit 70 controls the MERS 30 to increase the load power in the standby lighting state when the illumination lamp 60 cannot maintain the standby lighting state with the load power in the standby lighting state defined in advance. Control for adjusting the magnitude of the output voltage and the phase of the current may be performed. This control can be performed as follows, for example.
 まず、電流計などの電流監視部79によって、照明灯60に流れる電流が監視されており、電流監視部79が照明灯60に流れる電流量が所定量以下になったことを検知すると、待機点灯パラメータ変更指示部78に信号を送信する。電流監視部79からの信号を受けた待機点灯パラメータ変更指示部78は、制御部40に対して、待機点灯時の負荷電力を変更するように指示する。制御部40は、待機点灯パラメータ変更指示部78から指示を受けると、MERS30の出力電圧の大きさと電流の位相を変更して照明灯60に供給する負荷電力を増加させる。前記「所定量」は、待機点灯状態における電流量であり、待機点灯パラメータ保時部76に保持されている。 First, the current flowing through the illuminating lamp 60 is monitored by a current monitoring unit 79 such as an ammeter, and when the current monitoring unit 79 detects that the amount of current flowing through the illuminating lamp 60 has become a predetermined amount or less, standby lighting is performed. A signal is transmitted to the parameter change instruction unit 78. Upon receiving the signal from the current monitoring unit 79, the standby lighting parameter change instruction unit 78 instructs the control unit 40 to change the load power during standby lighting. When receiving an instruction from the standby lighting parameter change instruction unit 78, the control unit 40 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to increase the load power supplied to the illuminating lamp 60. The “predetermined amount” is the amount of current in the standby lighting state, and is held in the standby lighting parameter holding unit 76.
 負荷電力の増加によって照明灯60が点灯すると、待機点灯パラメータ変更指示部78は、電流監視部79からの監視結果によって照明灯60が点灯したことを認識する。さらに、待機点灯パラメータ変更指示部78は、たとえば時間の経過を監視することで、最低負荷電力に所定量の電力だけ増加して待機点灯時の負荷電力となったことを認識する。 When the illuminating lamp 60 is turned on due to an increase in load power, the standby lighting parameter change instructing unit 78 recognizes that the illuminating lamp 60 is lit based on the monitoring result from the current monitoring unit 79. Further, the standby lighting parameter change instructing unit 78 recognizes that, for example, by monitoring the passage of time, the load power at the time of standby lighting is increased by a predetermined amount of power to the minimum load power.
 待機点灯パラメータ変更指示部78は、待機点灯時の負荷電力となったことを認識すると、制御部40に対してMERS30の出力電圧の大きさと電流の位相の調整を停止するように指示する。待機点灯パラメータ変更指示部78から停止指示を受けた制御部40は、MERS30の出力電圧の大きさと電流の位相の調整を停止するとともに、その時点での負荷電力の値などを新たなパラメータとして待機点灯パラメータ保時部76に格納する。 When the standby lighting parameter change instructing unit 78 recognizes that the load power at the time of standby lighting is reached, the standby lighting parameter change instructing unit 78 instructs the control unit 40 to stop adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current. Upon receiving a stop instruction from the standby lighting parameter change instructing unit 78, the control unit 40 stops adjusting the magnitude of the output voltage and the current phase of the MERS 30, and waits with the load power value at that time as a new parameter. Stored in the lighting parameter holding unit 76.
 この制御は、電流監視部79の代わりに、あるいは電流監視部79とともに照明灯60の輝度を検知する照度センサなどの輝度検知センサを設け、待機点灯状態にある照明灯60の輝度が所定値未満となったときに行うようにしてもよい。電流監視部79および輝度検知センサを組み合わせた場合には、より精度よく照明灯60の消灯を回避することができる。 In this control, a luminance detection sensor such as an illuminance sensor that detects the luminance of the illuminating lamp 60 is provided instead of the current monitoring unit 79 or together with the current monitoring unit 79, and the luminance of the illuminating lamp 60 in the standby lighting state is less than a predetermined value. It may be performed when it becomes. When the current monitoring unit 79 and the luminance detection sensor are combined, it is possible to avoid turning off the illumination lamp 60 with higher accuracy.
 あるいは、この制御は、照明灯60の使用時間が所定時間以上となったときに行うようにしてもよい。照明灯60の使用時間は、たとえば調光制御部70に記憶しておく。この場合には、より簡単な構成で、照明灯60の消灯を回避することができる。 Alternatively, this control may be performed when the usage time of the illuminating lamp 60 reaches a predetermined time or more. The usage time of the illumination lamp 60 is memorize | stored in the light control part 70, for example. In this case, it is possible to avoid turning off the illumination lamp 60 with a simpler configuration.
 なお、本実施形態の照明制御装置100では、各照明灯60に対してMERS30と調光制御部70とを設けているが、複数の照明灯60に1組のMERS30と調光制御部70とを設け、これら複数の照明灯60を一系統として系統毎に調光制御するようにしてもよい。 In the illumination control device 100 of this embodiment, the MERS 30 and the dimming control unit 70 are provided for each illuminating lamp 60, but one set of the MERS 30 and the dimming control unit 70 is provided for the plurality of illuminating lamps 60. And the dimming control may be performed for each system using the plurality of illumination lamps 60 as one system.
 以上、本実施形態に係る照明制御装置100では、照明灯60にMERS30および調光制御部70を設け、交通量検知センサ80の検知結果に基づいて、MERS30の出力電圧の大きさと電流の位相を変更して照明灯60の輝度を無段階に調整している。そのため、車両Cの交通量に応じた照明灯60の調光が可能となり、無駄な電力の消費を削減することができる。また、本実施形態の照明制御装置100では、照明灯60と交流電圧源20との間にMERS30を組み込むだけであるため、調光制御対応のインバータ方式の蛍光灯以外の既存の照明灯であっても、調光制御を行うことができる。また、MERS30は簡単な構成であるため、その価格は安価である。そのため、照明制御装置100を導入するコストは非常に低く抑えることができる。さらに、MERS30は上述のように簡単な構成であるため、そのサイズは小さい。そのため、既存の照明灯への設置を簡単に行うことができる。 As described above, in the lighting control apparatus 100 according to the present embodiment, the MERS 30 and the dimming control unit 70 are provided in the illuminating lamp 60, and the magnitude of the output voltage of the MERS 30 and the phase of the current are determined based on the detection result of the traffic volume detection sensor 80. The brightness of the illumination lamp 60 is adjusted steplessly by changing. Therefore, it is possible to adjust the illumination lamp 60 according to the traffic volume of the vehicle C, and it is possible to reduce wasteful power consumption. Moreover, in the illumination control apparatus 100 of this embodiment, since MERS30 is only incorporated between the illumination lamp 60 and the alternating voltage source 20, it is an existing illumination lamp other than the inverter type fluorescent lamp corresponding to dimming control. Even with this, dimming control can be performed. In addition, since the MERS 30 has a simple configuration, its price is low. Therefore, the cost of introducing the lighting control device 100 can be kept very low. Furthermore, since the MERS 30 has a simple configuration as described above, its size is small. Therefore, the installation to the existing illumination lamp can be performed easily.
 さらに、照明制御装置100では、照明灯60をOFFにすることなく、その輝度をMERS30によって調整することで道路の照度を調整している。そのため、ON/OFFの繰り返しによる照明灯60の寿命の短縮を抑制でき、結果的に照明灯60の長寿命化を図ることができる。また、交通量検知センサ80としては、VICSなどの既存のシステムあるいはセンサなどを流用できるため、照明制御装置100の導入コストを抑えることができる。 Furthermore, the illumination control device 100 adjusts the illuminance of the road by adjusting the brightness by the MERS 30 without turning off the illumination lamp 60. Therefore, shortening of the lifetime of the illumination lamp 60 due to repeated ON / OFF can be suppressed, and as a result, the lifetime of the illumination lamp 60 can be extended. Moreover, since the existing system or sensors, such as VICS, can be diverted as the traffic volume detection sensor 80, the introduction cost of the illumination control apparatus 100 can be suppressed.
 また、MERS30の逆導通型半導体スイッチSW1~SW4が故障した場合は、交流電圧源20と照明灯60とが導通状態となるだけであり、MERS30の故障によって照明灯60が点灯不能な状態に陥ることはない。そのため、既存の交流電圧源20と照明灯60との間にMERS30を組み込んでも、それによる安全性の低下などの問題は生じない。 In addition, when the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30 fail, the AC voltage source 20 and the illuminating lamp 60 are merely in a conducting state, and the illuminating lamp 60 falls into a state where it cannot be turned on due to the failure of the MERS 30. There is nothing. Therefore, even if the MERS 30 is incorporated between the existing AC voltage source 20 and the illuminating lamp 60, there is no problem such as a reduction in safety.
(実施形態2)
 本実施形態に係る照明制御装置100は、公園の照明灯に適用した場合の例である。以下、本実施形態について説明する。なお、MERS30の構成および動作については、実施形態1と同様であるため、説明は省略する。また、その他実施形態1と同一の構成については同一の符号を付し、その説明は適宜省略する。
(Embodiment 2)
The illumination control device 100 according to the present embodiment is an example when applied to an illumination lamp in a park. Hereinafter, this embodiment will be described. In addition, about the structure and operation | movement of MERS30, since it is the same as that of Embodiment 1, description is abbreviate | omitted. Moreover, the same code | symbol is attached | subjected about the same structure as Embodiment 1, and the description is abbreviate | omitted suitably.
 図11は、実施形態2に係る照明制御装置100の構成を示す概略図である。 
 図11に示すように、本実施形態の照明制御装置100は、公園内に設置された照明灯60(60i~60k)のそれぞれと交流電圧源20との間に、MERS30(30i~30k)を設けた構成である。照明灯60は、たとえば誘導性負荷を有する照明灯、誘導性負荷に接続された照明灯、または抵抗性負荷を有する照明灯である。誘導性負荷を有する照明灯としては、たとえば放電灯などが挙げられる。放電灯は、たとえば蛍光灯、水銀灯、ナトリウム灯、またはネオン灯である。また、誘導性負荷に接続された照明灯としては、誘導性負荷を持たない白熱灯、LEDなどの光源にリアクトルを接続したものが挙げられる。また、抵抗性負荷を有する照明灯は、抵抗性負荷のみの照明灯であり、白熱灯などが挙げられる。本実施形態では、照明灯60に放電灯を用いた場合を例に説明する。
FIG. 11 is a schematic diagram illustrating a configuration of the illumination control apparatus 100 according to the second embodiment.
As shown in FIG. 11, the lighting control device 100 of the present embodiment includes MERS 30 (30i to 30k) between each of the lighting lamps 60 (60i to 60k) installed in the park and the AC voltage source 20. This is a configuration provided. The illuminating lamp 60 is, for example, an illuminating lamp having an inductive load, an illuminating lamp connected to the inductive load, or an illuminating lamp having a resistive load. Examples of the illumination lamp having an inductive load include a discharge lamp. The discharge lamp is, for example, a fluorescent lamp, a mercury lamp, a sodium lamp, or a neon lamp. In addition, examples of the illuminating lamp connected to the inductive load include incandescent lamps that do not have an inductive load and lamps connected to a light source such as LEDs. Moreover, the illuminating lamp which has a resistive load is an illuminating lamp only of a resistive load, and an incandescent lamp etc. are mentioned. In this embodiment, a case where a discharge lamp is used as the illumination lamp 60 will be described as an example.
 また、照明制御装置100は、MERS30のゲート位相角を制御してMERS30の出力電圧の大きさと電流の位相を調整するための調光制御部70(70i~70k)を備える。また、照明制御装置100は、照明灯60を基準とした所定範囲における外界の状況を検知する状況検知手段として人感センサ90を備える。 Further, the illumination control device 100 includes a dimming control unit 70 (70i to 70k) for controlling the gate phase angle of the MERS 30 and adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current. In addition, the illumination control device 100 includes a human sensor 90 as a situation detection unit that detects an external situation in a predetermined range with the illumination lamp 60 as a reference.
 図12は、調光制御部70の概略構成を説明する機能ブロック図である。
 図12に示すように、調光制御部70は、逆導通型半導体スイッチSW1~SW4のゲートG1~G4に制御信号を送信してゲート位相を制御し、MERS30の出力電圧の大きさと電流の位相を調整する制御部40を備える。また、調光制御部70は、人感センサ90の検知結果を受信し、制御部40に送信するセンサ値取得部72を備える。また、調光制御部70は、照明灯60が定格点灯時の輝度未満の輝度で点灯する待機点灯状態にある際の負荷電力などのパラメータを保持する待機点灯パラメータ保時部76を備える。さらに調光制御部70は、電流監視部79からの情報に応じて待機点灯パラメータ保時部76に保持された待機点灯時のパラメータを変更するように制御部40に指示する待機点灯パラメータ変更指示部78を備える。
FIG. 12 is a functional block diagram illustrating a schematic configuration of the dimming control unit 70.
As shown in FIG. 12, the dimming control unit 70 transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4 to control the gate phase, and the magnitude of the output voltage of the MERS 30 and the phase of the current The control part 40 which adjusts is provided. The dimming control unit 70 includes a sensor value acquisition unit 72 that receives the detection result of the human sensor 90 and transmits the detection result to the control unit 40. In addition, the dimming control unit 70 includes a standby lighting parameter holding unit 76 that holds parameters such as load power when the illumination lamp 60 is in a standby lighting state in which the lighting lamp 60 is lit at a brightness lower than the rated lighting brightness. Further, the dimming control unit 70 instructs the control unit 40 to change the standby lighting parameter held in the standby lighting parameter holding unit 76 according to the information from the current monitoring unit 79. Part 78 is provided.
 人感センサ90は、照明灯60の周囲における人の存在を検知し、検知結果を各調光制御部70に送信している。人感センサ90としては、公知のセンサを用いることができる。なお、図11では、人感センサ90は1つだけ示しているが、人感センサ90の数は特に限定されず、たとえば各照明灯60のハウジング内に人感センサ90を設け、各場所を検知してもよい。 The human sensor 90 detects the presence of a person around the illuminating lamp 60 and transmits the detection result to each dimming control unit 70. A known sensor can be used as the human sensor 90. In FIG. 11, only one human sensor 90 is shown, but the number of human sensors 90 is not particularly limited. For example, the human sensor 90 is provided in the housing of each illumination lamp 60, and each place is located. It may be detected.
 続いて、照明制御装置100の動作について説明する。 
 照明制御装置100では、人感センサ90の検知結果に基づいて、調光制御部70の制御部40がMERS30を制御し、MERS30の出力電圧の大きさと電流の位相を変更して照明灯60を点灯するための負荷電力を調整している。
Subsequently, the operation of the illumination control apparatus 100 will be described.
In the illumination control device 100, the control unit 40 of the dimming control unit 70 controls the MERS 30 based on the detection result of the human sensor 90, and changes the magnitude of the output voltage and the current phase of the MERS 30 to change the illumination lamp 60. The load power for lighting is adjusted.
 通常、調光制御部70は、照明灯60が定格点灯時の輝度未満の輝度で点灯する待機点灯状態となるように、MERS30の出力電圧の大きさと電流の位相を変更して負荷電力を調整している。待機点灯状態で照明灯60に出力される負荷電力は、たとえば定格点灯時の負荷電力未満であり、かつ照明灯60が安定的な放電を維持し得る最低の負荷電力である最低負荷電力以上であって、定格点灯時の負荷電力よりも最低負荷電力に近くなるように設定されている。本実施形態では、待機点灯時の負荷電力は、最低負荷電力に、より確実に安定放電状態を維持できるように所定量の電力を上乗せした電力である。制御部40は、待機点灯パラメータ保時部76に格納されている待機点灯時の負荷電力を参照して、MERS30の出力電圧の大きさと電流の位相を調整する。 Usually, the dimming control unit 70 adjusts the load power by changing the magnitude of the output voltage of the MERS 30 and the phase of the current so that the illumination lamp 60 enters a standby lighting state in which the lighting lamp 60 is lit at a luminance lower than that at the rated lighting. is doing. The load power output to the illuminating lamp 60 in the standby lighting state is, for example, less than the load power at the time of rated lighting and is equal to or higher than the minimum load power that is the lowest load power at which the illuminating lamp 60 can maintain stable discharge. Therefore, it is set to be closer to the minimum load power than the load power at the time of rated lighting. In the present embodiment, the load power at the time of standby lighting is power obtained by adding a predetermined amount of power to the minimum load power so that the stable discharge state can be more reliably maintained. The control unit 40 refers to the load power during standby lighting stored in the standby lighting parameter holding unit 76 and adjusts the magnitude of the output voltage and the current phase of the MERS 30.
 そして、人感センサ90の検知結果に応じて、人が検知された範囲に光照射する照明灯60の輝度を、人が検知されなかった領域に光照射する照明灯60の輝度と異ならせる。たとえば、人が検知された範囲に光照射する照明灯60を、待機点灯状態における輝度以上の輝度で点灯させるように負荷電力を調整する。このように、通常は待機点灯状態にしておき、人Hの存在に応じて照明灯60の輝度を増大させるようにすることで、無駄な電力消費を削減できる。なお、人が検知された範囲の輝度を他の範囲の輝度よりも下げるなど、状況に応じて適宜変更することができる。人感センサ90の検知結果に応じた照明灯60の輝度の制御方法としては、たとえば次のような方法がある。 Then, according to the detection result of the human sensor 90, the luminance of the illuminating lamp 60 that irradiates the area where the person is detected is made different from the luminance of the illuminating lamp 60 that irradiates the area where no person is detected. For example, the load power is adjusted so that the illuminating lamp 60 that irradiates light in a range where a person is detected is lit at a luminance that is equal to or higher than the luminance in the standby lighting state. As described above, normally, the standby lighting state is set, and the luminance of the illuminating lamp 60 is increased in accordance with the presence of the person H, so that useless power consumption can be reduced. In addition, it can change suitably according to a situation, such as lowering | hanging the brightness | luminance of the range in which the person was detected from the brightness | luminance of another range. As a method for controlling the luminance of the illuminating lamp 60 in accordance with the detection result of the human sensor 90, for example, there is the following method.
 図11に示すように、人感センサ90によって人Hの存在が検知された範囲に光照射する照明灯60jの輝度を制御する調光制御部70jは、その輝度が、人感センサ90によって人の存在が検知されなかった範囲に光照射する照明灯60i、60kの輝度よりも大きくなるように、MERS30の出力電圧の大きさと電流の位相を変更して負荷電力を連続的、すなわち無段階に調整する。たとえば、調光制御部70jは、輝度が100%、すなわち定格点灯時の点灯状態となるようにMERS30jを制御する。また、調光制御部70i、70jは、たとえば待機点灯時の輝度となるようにMERS30i、30kを制御する。なお、状況に応じて、負荷電力を段階的に調整してもよい。 As shown in FIG. 11, the dimming control unit 70 j that controls the luminance of the illuminating lamp 60 j that irradiates the range in which the presence of the person H is detected by the human sensor 90 has a luminance that is The output power of the MERS 30 and the phase of the current are changed so as to be larger than the luminance of the illumination lamps 60i and 60k that irradiate light in a range where the presence of the light is not detected, so that the load power is continuously changed, that is, steplessly. adjust. For example, the dimming control unit 70j controls the MERS 30j so that the luminance is 100%, that is, the lighting state at the time of rated lighting. In addition, the dimming controllers 70i and 70j control the MERSs 30i and 30k, for example, so as to have the brightness at the time of standby lighting. Note that the load power may be adjusted in stages according to the situation.
 なお、人感センサ90によって人の存在が検知されなかった範囲に光照射する照明灯60の輝度については、待機点灯時の輝度に限定されず、待機点灯時の輝度より大きい輝度であってもよい。たとえば、待機点灯時の輝度が、照明灯60の照射範囲内にある領域を所定距離から視認できない程度の輝度である場合には、照明灯60の照射範囲内にある領域が所定距離から視認可能となる輝度としてもよい。この場合には、公園の存在を周囲に知らしめることが可能となる。 Note that the luminance of the illuminating lamp 60 that irradiates a range where the presence of a person is not detected by the human sensor 90 is not limited to the luminance at the time of standby lighting, and may be higher than the luminance at the time of standby lighting. Good. For example, if the brightness at the time of standby lighting is such that the area within the illumination range of the illumination lamp 60 is not visible from a predetermined distance, the area within the illumination range of the illumination lamp 60 can be visually recognized from the predetermined distance. It is good also as brightness | luminance which becomes. In this case, it is possible to inform the surroundings of the existence of the park.
 また、人の存在が検知されなかった範囲に光照射する照明灯60のうち、人Hの存在が検知された範囲に光照射する照明灯60に隣接する照明灯60については、残りの人の存在が検知されなかった範囲に光照射する照明灯60よりもその輝度を大きくするようにするなど、人の存在が検知されなかった範囲に光照射する照明灯60の輝度を多段階に調整するようにしてもよい。 Of the illuminating lamps 60 that irradiate the range in which the presence of the person is not detected, the illuminating lamps 60 that are adjacent to the illuminating lamp 60 that irradiates the range in which the presence of the person H is detected. The brightness of the illuminating lamp 60 that irradiates light in a range where no human presence is detected is adjusted in multiple steps, such as by making the brightness higher than that of the illuminating lamp 60 that irradiates light in a range where no presence is detected. You may do it.
 このように、照明制御装置100では、交流電圧源20と照明灯60との間にMERS30を接続し、調光制御部70によってMERS30の出力電圧の大きさと電流の位相を変更して負荷電力を調整している。そのため、人Hの存在に応じた照明灯60の調光制御が可能となり、無駄な電力消費を抑えることができる。 As described above, in the lighting control device 100, the MERS 30 is connected between the AC voltage source 20 and the illuminating lamp 60, and the dimming control unit 70 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to change the load power. It is adjusted. Therefore, dimming control of the illumination lamp 60 according to the presence of the person H is possible, and wasteful power consumption can be suppressed.
 ここで、無駄な電力消費を削減する1つの方法としては、複数ある照明灯60の一部を消灯することで、照明灯60全体としての消費電力を低減する方法が考えられる。しかしながら、この場合には、個々の照明灯60をON/OFF制御するため、照射領域が変わってしまう可能性があり、また明暗の変化が著しいため見る者に強い違和感を与えるおそれがあり、好ましくない。一方、本実施形態の照明制御装置100の場合には、通常時は照明灯60を待機点灯状態に維持しているため、照射範囲を変えることなく、また見る者に与える違和感を抑えながら、無駄な電力消費を削減することができる。 Here, as one method of reducing useless power consumption, a method of reducing the power consumption of the entire illumination lamp 60 by turning off a part of the plurality of illumination lamps 60 can be considered. However, in this case, since the individual illumination lamps 60 are ON / OFF controlled, there is a possibility that the irradiation area may be changed, and there is a possibility that a strong sense of incongruity may be given to the viewer because the change in brightness is significant. Absent. On the other hand, in the case of the illumination control device 100 of the present embodiment, since the illumination lamp 60 is maintained in the standby lighting state during normal times, it is not necessary to change the irradiation range and suppress discomfort given to the viewer. Power consumption can be reduced.
 また、放電灯のうち、特に水銀灯あるいはナトリウム灯などでは、消灯後の再点灯に数分以上かかるため、照明灯60をON/OFF制御した場合には、短時間での輝度の増大、たとえば短時間での定格点灯状態への回復が困難である。これに対し、照明制御装置100では、照明灯60が安定的な放電を維持し得る最低の負荷電力を供給するようにMERS30の出力電圧の大きさと電流の位相を調整して照明灯60の点灯状態を維持しているため、短時間での輝度の増大が可能となる。また、照明灯60をOFFにすることなく、その輝度をMERS30によって減光することで、ON/OFFの繰り返しによる照明灯60の寿命の短縮を抑制できる。 Among discharge lamps, particularly mercury lamps or sodium lamps, it takes several minutes to relight after extinguishing. Therefore, when the illumination lamp 60 is controlled to be turned on / off, the brightness increases in a short time, for example, short. Recovery to the rated lighting state over time is difficult. On the other hand, in the lighting control device 100, the lighting lamp 60 is turned on by adjusting the magnitude of the output voltage and the phase of the current so that the lighting lamp 60 supplies the lowest load power that can maintain a stable discharge. Since the state is maintained, the luminance can be increased in a short time. Moreover, shortening the lifetime of the illuminating lamp 60 due to repeated ON / OFF can be suppressed by dimming the brightness by the MERS 30 without turning the illuminating lamp 60 OFF.
 照明灯60の輝度を減少させる場合には、調光制御部70は、照明灯60の輝度を人Hの移動に追従して急激に変化させず、より長い時間をかけて下げるように制御してもよい。また、輝度を増大させる場合にも、調光制御部70は、照明灯60の輝度をより長い時間をかけて上げるように制御してもよい。すなわち、調光制御部70は、単位時間あたりの輝度の変化量が所定値以下となるように、照明灯60の輝度を変化させてもよい。これによれば、照明灯60の輝度が急激に増減するのを防ぐことができ、照明灯60の輝度の急激な変化によって人Hに与える不快なグレアや違和感を軽減することができる。なお、前記「所定値」は、たとえば人Hに不快なグレアや違和感を与えない変化量であり、これは実験的に求めることができる。 When the luminance of the illuminating lamp 60 is decreased, the dimming control unit 70 controls the luminance of the illuminating lamp 60 so as not to change rapidly following the movement of the person H but to decrease over a longer time. May be. Moreover, also when increasing a brightness | luminance, the light control part 70 may control so that the brightness | luminance of the illumination lamp 60 may be raised over a longer time. That is, the dimming control unit 70 may change the luminance of the illuminating lamp 60 so that the amount of change in luminance per unit time is equal to or less than a predetermined value. According to this, it is possible to prevent the brightness of the illuminating lamp 60 from rapidly increasing and decreasing, and it is possible to reduce unpleasant glare and discomfort given to the person H due to a rapid change in the brightness of the illuminating lamp 60. The “predetermined value” is, for example, a change amount that does not give unpleasant glare or discomfort to the person H, and this can be obtained experimentally.
 また、照明灯60は、経年劣化などにより電極が劣化し、電流が流れにくくなって輝度が低下していく。そのため、調光制御部70が予め規定されたパラメータを用いて待機点灯状態になるようにMERS30の出力電圧の大きさと電流の位相を調整した際に、待機点灯状態を維持できずに消灯してしまうおそれがある。そこで、調光制御部70は、予め規定された待機点灯状態での負荷電力で照明灯60が待機点灯状態を維持できなくなった場合に、待機点灯状態での負荷電力を増大させるようにMERS30の出力電圧の大きさと電流の位相を調整する制御を行うようにしてもよい。この制御は、たとえば以下のようにして行うことができる。 In addition, the electrode of the illuminating lamp 60 is deteriorated due to aging, etc., current is difficult to flow, and the luminance is lowered. Therefore, when the dimming control unit 70 adjusts the magnitude of the output voltage and the phase of the current so that the standby lighting state is set using a predetermined parameter, the standby lighting state cannot be maintained and the light is turned off. There is a risk that. Therefore, the dimming control unit 70 controls the MERS 30 to increase the load power in the standby lighting state when the illumination lamp 60 cannot maintain the standby lighting state with the load power in the standby lighting state defined in advance. Control for adjusting the magnitude of the output voltage and the phase of the current may be performed. This control can be performed as follows, for example.
 まず、電流計などの電流監視部79によって、照明灯60に流れる電流が監視されており、電流監視部79が照明灯60に流れる電流量が所定量以下になったことを検知すると、待機点灯パラメータ変更指示部78に信号を送信する。電流監視部79からの信号を受けた待機点灯パラメータ変更指示部78は、制御部40に対して、待機点灯時の負荷電力を変更するように指示する。制御部40は、待機点灯パラメータ変更指示部78から指示を受けると、MERS30の出力電圧の大きさと電流の位相を変更して照明灯60に供給する負荷電力を増加させる。前記「所定量」は、待機点灯状態における電流量であり、待機点灯パラメータ保時部76に保持されている。 First, the current flowing through the illuminating lamp 60 is monitored by a current monitoring unit 79 such as an ammeter, and when the current monitoring unit 79 detects that the amount of current flowing through the illuminating lamp 60 has become a predetermined amount or less, standby lighting is performed. A signal is transmitted to the parameter change instruction unit 78. Upon receiving the signal from the current monitoring unit 79, the standby lighting parameter change instruction unit 78 instructs the control unit 40 to change the load power during standby lighting. When receiving an instruction from the standby lighting parameter change instruction unit 78, the control unit 40 changes the magnitude of the output voltage of the MERS 30 and the phase of the current to increase the load power supplied to the illuminating lamp 60. The “predetermined amount” is the amount of current in the standby lighting state, and is held in the standby lighting parameter holding unit 76.
 負荷電力の増加によって照明灯60が点灯すると、待機点灯パラメータ変更指示部78は、電流監視部79からの監視結果によって照明灯60が点灯したことを認識する。さらに、待機点灯パラメータ変更指示部78は、たとえば時間の経過を監視することで、最低負荷電力に所定量の電力だけ増加して待機点灯時の負荷電力となったことを認識する。 When the illuminating lamp 60 is turned on due to an increase in load power, the standby lighting parameter change instructing unit 78 recognizes that the illuminating lamp 60 is lit based on the monitoring result from the current monitoring unit 79. Further, the standby lighting parameter change instructing unit 78 recognizes that, for example, by monitoring the passage of time, the load power at the time of standby lighting is increased by a predetermined amount of power to the minimum load power.
 待機点灯パラメータ変更指示部78は、待機点灯時の負荷電力となったことを認識すると、制御部40に対してMERS30の出力電圧の大きさと電流の位相の調整を停止するように指示する。待機点灯パラメータ変更指示部78から停止指示を受けた制御部40は、MERS30の出力電圧の大きさと電流の位相の調整を停止するとともに、その時点での負荷電力の値などを新たなパラメータとして待機点灯パラメータ保時部76に格納する。 When the standby lighting parameter change instructing unit 78 recognizes that the load power at the time of standby lighting is reached, the standby lighting parameter change instructing unit 78 instructs the control unit 40 to stop adjusting the magnitude of the output voltage of the MERS 30 and the phase of the current. Upon receiving a stop instruction from the standby lighting parameter change instructing unit 78, the control unit 40 stops adjusting the magnitude of the output voltage and the current phase of the MERS 30, and waits with the load power value at that time as a new parameter. Stored in the lighting parameter holding unit 76.
 この制御は、電流監視部79の代わりに、あるいは電流監視部79とともに照明灯60の輝度を検知する輝度検知センサを設け、待機点灯状態にある照明灯60の輝度が所定値未満となったときに、行うようにしてもよい。電流監視部79および輝度検知センサを組み合わせた場合には、より精度よく照明灯60の消灯を回避することができる。 This control is performed when a luminance detection sensor for detecting the luminance of the illumination lamp 60 is provided instead of the current monitoring unit 79 or together with the current monitoring unit 79, and the luminance of the illumination lamp 60 in the standby lighting state becomes less than a predetermined value. Alternatively, it may be performed. When the current monitoring unit 79 and the luminance detection sensor are combined, it is possible to avoid turning off the illumination lamp 60 with higher accuracy.
 あるいは、この制御は、照明灯60の使用時間が所定時間以上となったときに、行うようにしてもよい。照明灯60の使用時間は、たとえば調光制御部70に記憶しておく。この場合には、より簡単な構成で、照明灯60の消灯を回避することができる。 Alternatively, this control may be performed when the usage time of the illuminating lamp 60 becomes a predetermined time or more. The usage time of the illumination lamp 60 is memorize | stored in the light control part 70, for example. In this case, it is possible to avoid turning off the illumination lamp 60 with a simpler configuration.
 なお、本実施形態の照明制御装置100では、各照明灯60に対してMERS30と調光制御部70とを設けているが、複数の照明灯60に1組のMERS30と調光制御部70とを設け、これら複数の照明灯60を一系統として系統毎に調光制御するようにしてもよい。 In the illumination control device 100 of this embodiment, the MERS 30 and the dimming control unit 70 are provided for each illuminating lamp 60, but one set of the MERS 30 and the dimming control unit 70 is provided for the plurality of illuminating lamps 60. And the dimming control may be performed for each system using the plurality of illumination lamps 60 as one system.
 以上、本実施形態に係る照明制御装置100では、照明灯60にMERS30および調光制御部70を設け、人感センサ90の検知結果に基づいて、MERS30の出力電圧の大きさと電流の位相を変更して照明灯60の輝度を無段階に調整している。そのため、人Hの存在する領域のみを通常点灯状態で照射し、他の領域をより少ない輝度で照射することが可能となり、無駄な電力の消費を削減することができる。また、本実施形態の照明制御装置100では、照明灯60と交流電圧源20との間にMERS30を組み込むだけであるため、調光制御対応のインバータ方式の蛍光灯以外の既存の照明灯であっても、調光制御を行うことができる。また、MERS30は簡単な構成であるため、その価格は安価である。そのため、照明制御装置100を導入するコストは非常に低く抑えることができる。さらに、MERS30は上述のように簡単な構成であるため、そのサイズは小さい。そのため、既存の照明灯への設置を簡単に行うことができる。また、人Hの存在領域を他の領域と比較してより明るくできるため、周囲に人Hの存在を報知することができ、防犯効果も得られる。 As described above, in the illumination control apparatus 100 according to the present embodiment, the MERS 30 and the dimming control unit 70 are provided in the illumination lamp 60, and the magnitude of the output voltage and the current phase of the MERS 30 are changed based on the detection result of the human sensor 90. Thus, the brightness of the illumination lamp 60 is adjusted steplessly. Therefore, it is possible to irradiate only the region where the person H is present in the normal lighting state and irradiate other regions with less luminance, and it is possible to reduce wasteful power consumption. Moreover, in the illumination control apparatus 100 of this embodiment, since MERS30 is only incorporated between the illumination lamp 60 and the alternating voltage source 20, it is an existing illumination lamp other than the inverter type fluorescent lamp corresponding to dimming control. Even with this, dimming control can be performed. In addition, since the MERS 30 has a simple configuration, its price is low. Therefore, the cost of introducing the lighting control device 100 can be kept very low. Furthermore, since the MERS 30 has a simple configuration as described above, its size is small. Therefore, the installation to the existing illumination lamp can be performed easily. Moreover, since the presence area of the person H can be made brighter than other areas, the presence of the person H can be notified in the surroundings, and a crime prevention effect can be obtained.
 さらに、照明制御装置100では、照明灯60をOFFにすることなく、その輝度をMERS30によって調整することで輝度を低減している。そのため、ON/OFFの繰り返しによる照明灯60の寿命の短縮を抑制でき、結果的に照明灯60の長寿命化を図ることができる。 Furthermore, in the illumination control apparatus 100, the brightness is reduced by adjusting the brightness with the MERS 30 without turning off the illumination lamp 60. Therefore, shortening of the lifetime of the illumination lamp 60 due to repeated ON / OFF can be suppressed, and as a result, the lifetime of the illumination lamp 60 can be extended.
 また、MERS30の逆導通型半導体スイッチSW1~SW4が故障した場合は、交流電圧源20と照明灯60とが導通状態となるだけであり、MERS30の故障によって照明灯60が点灯不能な状態に陥ることはない。そのため、既存の交流電圧源20と照明灯60との間にMERS30を組み込んでも、それによる安全性の低下などの問題は生じない。 In addition, when the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30 fail, the AC voltage source 20 and the illuminating lamp 60 are merely in a conducting state, and the illuminating lamp 60 falls into a state where it cannot be turned on due to the failure of the MERS 30. There is nothing. Therefore, even if the MERS 30 is incorporated between the existing AC voltage source 20 and the illuminating lamp 60, there is no problem such as a reduction in safety.
 なお、実施形態2では照明制御装置100を公園の照明灯に適用した場合を例として示したが、たとえば、トンネル内の照明灯に適用することもできる。照明制御装置100をトンネル内の照明灯に適用した場合には、状況検知手段として車両検知センサを用い、車両検知センサでトンネル内および車両進行方向上流側の所定領域内の車両Cの存在を検知する。そして、車両検知センサの検知結果に基づいて、トンネル内の照明灯の輝度を制御する。すなわち、車両Cが車両検知センサの検知エリア内に存在しない場合には、照明灯の輝度を低減することで無駄な電力消費を削減できる。 In addition, although the case where the illumination control apparatus 100 was applied to the illumination lamp of a park was shown as an example in Embodiment 2, it can also be applied to an illumination lamp in a tunnel, for example. When the illumination control device 100 is applied to an illuminating lamp in a tunnel, a vehicle detection sensor is used as a situation detection means, and the presence of the vehicle C in a predetermined area in the tunnel and upstream in the vehicle traveling direction is detected by the vehicle detection sensor. To do. And the brightness | luminance of the illuminating lamp in a tunnel is controlled based on the detection result of a vehicle detection sensor. That is, when the vehicle C does not exist within the detection area of the vehicle detection sensor, wasteful power consumption can be reduced by reducing the luminance of the illumination lamp.
 また、照明灯がOFFにならないように調整されるため、照明灯に水銀灯やナトリウム灯などの再点灯時の立ち上がりの遅い放電灯が用いられている場合であっても、迅速に輝度を所望の量まで増大させることが可能である。 In addition, since the lighting is adjusted so that it does not turn off, even if a discharge lamp with a slow start-up at the time of re-lighting such as a mercury lamp or a sodium lamp is used for the lighting, the desired brightness can be quickly obtained. It can be increased to an amount.
 本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiments to which such modifications are added are also possible. It can be included in the scope of the present invention.
 たとえば、上述の各実施形態では、状況検知手段としての交通量検知センサ、人感センサ、あるいは車両検知センサの検知結果に基づいて調光制御部70がMERS30を制御しているが、次のような構成であってもよい。すなわち、ユーザが操作するユーザ操作部としてのスイッチパネルを設け、ユーザが手動でMERS30を制御して照明灯60の輝度を調整するようにしてもよい。また、この場合には、各MERS30に対して固有の識別情報としてIDナンバーなどを付与し、無線通信などによって各照明灯60の輝度を遠隔操作で調整するようにしてもよい。また、天候なども視界に影響するため、状況検知手段は天候を検知するものであってもよい。さらに、状況検知手段は、化学物質の濃度、明るさ、振動、温度、放射能などを検知するものであってもよい。 For example, in each of the above-described embodiments, the dimming control unit 70 controls the MERS 30 based on the detection result of the traffic detection sensor, the human sensor, or the vehicle detection sensor as the situation detection unit. It may be a simple configuration. That is, a switch panel as a user operation unit operated by the user may be provided, and the user may manually control the MERS 30 to adjust the luminance of the illumination lamp 60. Further, in this case, an ID number or the like may be given to each MERS 30 as unique identification information, and the luminance of each illumination lamp 60 may be adjusted by remote operation by wireless communication or the like. In addition, since the weather and the like also affect the field of view, the situation detecting means may detect the weather. Further, the status detection means may detect the concentration, brightness, vibration, temperature, radioactivity, etc. of the chemical substance.
 また、ユーザによるスイッチパネルを介した照明灯の輝度の調整と、状況検知手段の検知結果に基づく照明灯の輝度の調整とを併用するようにしてもよい。この場合には、状況検知手段の検知結果に応じて自動的に調光することができるとともに、手動での調整によって状況の変化に迅速に対応することが可能となる。 Further, the adjustment of the brightness of the illuminating lamp through the switch panel by the user and the adjustment of the brightness of the illuminating lamp based on the detection result of the situation detecting means may be used in combination. In this case, the light can be automatically adjusted according to the detection result of the situation detection means, and it is possible to quickly cope with a change in the situation by manual adjustment.
 さらに、上述の各実施形態に示した照明灯60の輝度の調整制御は、駐車場、建物内の通路、空港、湾港、駅のプラットフォーム、工場、倉庫、非常階段用照明などにも状況に応じて適用することが可能である。  Furthermore, the adjustment control of the brightness of the illuminating lamp 60 shown in each of the above-described embodiments can be applied to a parking lot, a passage in a building, an airport, a bay port, a station platform, a factory, a warehouse, an emergency staircase lighting, and the like. It is possible to apply accordingly. *
 本発明は、照明機器に利用できる。 The present invention can be used for lighting equipment.

Claims (24)

  1.  照明灯と電源との間に接続され、前記電源から前記照明灯に出力される、前記照明灯を点灯するための負荷電力を調整する負荷電力調整スイッチと、
     前記負荷電力調整スイッチを制御する調光制御部と、
     前記照明灯の周囲の状況を検知する状況検知手段と、
    を備え、
     前記調光制御部は、前記照明灯が定格点灯時の輝度未満の輝度で点灯する待機点灯状態となるように負荷電力を調整し、前記状況検知手段の検知結果に応じて、前記照明灯が前記待機点灯状態における輝度以上の輝度で点灯する状態となるように負荷電力を調整すべく、前記負荷電力調整スイッチを制御することを特徴とする照明制御装置。
    A load power adjustment switch that is connected between an illumination lamp and a power supply and that is output from the power supply to the illumination lamp and that adjusts load power for turning on the illumination lamp;
    A dimming control unit for controlling the load power adjustment switch;
    A situation detecting means for detecting the situation around the illumination lamp;
    With
    The dimming control unit adjusts load power so that the illuminating lamp enters a standby lighting state in which the lighting lamp is lit at a luminance lower than that at the rated lighting, and the illuminating lamp is adjusted according to a detection result of the status detection unit. The lighting control device, wherein the load power adjustment switch is controlled so as to adjust the load power so as to be in a state of being lit at a luminance higher than the luminance in the standby lighting state.
  2.  前記負荷電力調整スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時の電流の磁気エネルギーを蓄積して前記照明灯に回生するためのコンデンサと、を有し、前記逆導通型半導体スイッチのゲート位相を制御することで、前記照明灯に供給する負荷電力を調整することを特徴とする請求項1に記載の照明制御装置。 The load power adjustment switch includes at least two reverse conducting semiconductor switches and a capacitor for accumulating magnetic energy of current at the time of current interruption and regenerating the lighting lamp, and the reverse conducting semiconductor switch The illumination control device according to claim 1, wherein load power supplied to the illumination lamp is adjusted by controlling a gate phase of the illumination lamp.
  3.  前記照明灯は、誘導性負荷を有する照明灯であり、
     前記待機点灯状態で前記照明灯に出力される負荷電力は、定格点灯時の負荷電力未満かつ前記照明灯が放電を維持し得る最低負荷電力以上であって、定格点灯時の負荷電力よりも前記最低負荷電力に近いことを特徴とする請求項1または2に記載の照明制御装置。
    The illuminating lamp is an illuminating lamp having an inductive load,
    The load power output to the illumination lamp in the standby lighting state is less than the load power at the time of rated lighting and is equal to or higher than the minimum load power at which the lighting lamp can maintain a discharge, and more than the load power at the time of rated lighting. The lighting control device according to claim 1, wherein the lighting control device is close to a minimum load power.
  4.  前記状況検知手段は、前記照明灯の照射領域の車両進行方向上流側の車両の交通量を検知する交通量検知センサであることを特徴とする請求項1ないし3のいずれか1項に記載の照明制御装置。 The said condition detection means is a traffic detection sensor which detects the traffic of the vehicle of the vehicle advancing direction upstream of the irradiation area | region of the said illumination light, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. Lighting control device.
  5.  前記調光制御部は、前記交通量検知センサによって検知された車両の交通量が第1の所定量となるまでは、交通量の増加に応じて前記照明灯に供給する負荷電力が増大し、車両の交通量が前記第1の所定量以上となった場合には、交通量の増加に応じて前記照明灯に供給する負荷電力が減少するように、前記負荷電力調整スイッチを制御することを特徴とする請求項4に記載の照明制御装置。 The dimming control unit increases the load power supplied to the illuminating lamp according to the increase in traffic volume until the traffic volume of the vehicle detected by the traffic volume detection sensor reaches a first predetermined amount, Controlling the load power adjustment switch so that the load power supplied to the illumination light decreases in accordance with an increase in the traffic volume when the traffic volume of the vehicle exceeds the first predetermined volume. The illumination control device according to claim 4, wherein
  6.  前記調光制御部は、前記交通量検知センサによって検知された車両の交通量が第2の所定量となるまでは、交通量の減少に応じて前記照明灯に供給する負荷電力が増大し、車両の交通量が前記第2の所定量未満となった場合には、交通量の減少に応じて前記照明灯に供給する負荷電力が減少するように、前記負荷電力調整スイッチを制御することを特徴とする請求項4または5に記載の照明制御装置。 The dimming control unit increases the load power supplied to the illuminating lamp according to the decrease in traffic until the traffic of the vehicle detected by the traffic detection sensor reaches a second predetermined amount. Controlling the load power adjustment switch so that the load power supplied to the illumination light decreases in accordance with a decrease in traffic when the traffic volume of the vehicle becomes less than the second predetermined amount. The illumination control device according to claim 4 or 5, characterized in that
  7.  前記状況検知手段は、前記照明灯から所定範囲内における人の存在を検知する人感センサであることを特徴とする請求項1ないし3のいずれか1項に記載の照明制御装置。 4. The illumination control apparatus according to claim 1, wherein the status detection means is a human sensor that detects the presence of a person within a predetermined range from the illumination lamp.
  8.  前記調光制御部は、前記人感センサによって人が検知された範囲に光照射する照明灯の輝度を、前記人感センサによって人が検知されなかった領域に光照射する照明灯の輝度と異ならせるように、前記負荷電力調整スイッチを制御することを特徴とする請求項7に記載の照明制御装置。 The dimming control unit is configured such that the luminance of the illumination lamp that irradiates light in a range where a person is detected by the human sensor is different from the luminance of the illumination lamp that irradiates an area where no human is detected by the human sensor. The lighting control device according to claim 7, wherein the load power adjustment switch is controlled so that the load power adjustment switch is controlled.
  9.  前記調光制御部は、前記人感センサによって人が検知された範囲に光照射する照明灯の輝度が、前記人感センサによって人が検知されなかった領域に光照射する照明灯の輝度よりも大きくなるように、前記負荷電力調整スイッチを制御することを特徴とする請求項8に記載の照明制御装置。 The dimming control unit is configured such that the luminance of the illuminating lamp that irradiates a range where a person is detected by the human sensor is higher than the luminance of the illuminating lamp that irradiates an area where no human is detected by the human sensor. The lighting control device according to claim 8, wherein the load power adjustment switch is controlled to be large.
  10.  前記調光制御部は、前記照明灯の輝度が無段階に変化するように、前記負荷電力調整スイッチを制御することを特徴とする請求項1ないし9のいずれか1項に記載の照明制御装置。 The lighting control device according to any one of claims 1 to 9, wherein the dimming control unit controls the load power adjustment switch so that the luminance of the illuminating lamp changes steplessly. .
  11.  前記調光制御部は、単位時間あたりの前記照明灯の輝度の変化量が所定値以下となるように、前記負荷電力調整スイッチを制御することを特徴とする請求項1ないし10のいずれか1項に記載の照明制御装置。 The said dimming control part controls the said load electric power adjustment switch so that the variation | change_quantity of the brightness | luminance of the said illuminating lamp per unit time may become below a predetermined value, The any one of Claim 1 thru | or 10 characterized by the above-mentioned. The lighting control device according to item.
  12.  前記調光制御部は、予め規定された前記待機点灯状態での負荷電力で前記照明灯が点灯できなくなった場合に、前記待機点灯状態での負荷電力を増大させるように、前記負荷電力調整スイッチを制御することを特徴とする請求項1ないし11のいずれか1項に記載の照明制御装置。 The dimming control unit is configured to adjust the load power adjustment switch so as to increase the load power in the standby lighting state when the illumination lamp cannot be turned on with a predetermined load power in the standby lighting state. The lighting control device according to claim 1, wherein the lighting control device controls the lighting.
  13.  前記照明灯に流れる電流を監視する電流監視部を備え、
     前記調光制御部は、前記待機点灯状態において前記照明灯に電流が流れなくなったことが前記電流監視部によって検知されたときに、前記待機点灯状態での負荷電力を増大させるように、前記負荷電力調整スイッチを制御することを特徴とする請求項12に記載の照明制御装置。
    A current monitoring unit for monitoring a current flowing through the lighting lamp;
    The dimming control unit is configured to increase the load power in the standby lighting state when the current monitoring unit detects that no current flows through the illumination lamp in the standby lighting state. The lighting control device according to claim 12, wherein the lighting control device controls a power adjustment switch.
  14.  前記照明灯の輝度を測定する輝度検知センサを備え、
     前記調光制御部は、前記待機点灯状態にある前記照明灯の輝度が所定値未満となったことが前記輝度検知センサによって検知されたときに、前記待機点灯状態での負荷電力を増大させるように、前記負荷電力調整スイッチを制御することを特徴とする請求項12または13に記載の照明制御装置。
    A luminance detection sensor for measuring the luminance of the illumination lamp;
    The dimming control unit increases load power in the standby lighting state when the luminance detection sensor detects that the luminance of the illumination lamp in the standby lighting state is less than a predetermined value. The lighting control device according to claim 12 or 13, wherein the load power adjustment switch is controlled.
  15.  前記調光制御部は、前記照明灯の使用時間が所定時間以上となったときに、前記待機点灯状態での負荷電力を増大させるように、前記負荷電力調整スイッチを制御することを特徴とする請求項12ないし14のいずれか1項に記載の照明制御装置。 The dimming control unit controls the load power adjustment switch so as to increase the load power in the standby lighting state when the usage time of the illuminating lamp becomes a predetermined time or more. 15. The lighting control device according to any one of claims 12 to 14.
  16.  ユーザが手動で前記負荷電力調整スイッチを制御するためのユーザ操作部を備え、
     前記負荷電力調整スイッチは、前記ユーザ操作部を介して制御されることを特徴とする請求項1ないし15のいずれか1項に記載の照明制御装置。
    A user operation unit for a user to manually control the load power adjustment switch;
    The lighting control device according to claim 1, wherein the load power adjustment switch is controlled via the user operation unit.
  17.  前記負荷電力調整スイッチは、4つの逆導通型半導体スイッチで構成されるブリッジ回路と、
     前記ブリッジ回路の直流端子間に接続され、電流遮断時の電流の磁気エネルギーを蓄積して前記照明灯に回生するためのコンデンサと、を有し、
     前記調光制御部は、前記逆導通型半導体スイッチのゲートに制御信号を送り、前記ブリッジ回路の対角線上に位置する2つの逆導通型半導体スイッチからなるペア2組のうち、一方のペアがONの時に他方のペアがOFFとなるように、各ペアの逆導通型半導体スイッチのON/OFF切換を前記電源の周波数に同期して行うことで、前記照明灯に供給する負荷電力量を調整することを特徴とする請求項1ないし16のいずれか1項に記載の照明制御装置。
    The load power adjustment switch includes a bridge circuit composed of four reverse conducting semiconductor switches,
    A capacitor connected between the DC terminals of the bridge circuit, for accumulating the magnetic energy of the current at the time of current interruption and regenerating the lamp,
    The dimming control unit sends a control signal to the gate of the reverse conducting semiconductor switch, and one of the two pairs of two reverse conducting semiconductor switches located on the diagonal line of the bridge circuit is ON. By adjusting ON / OFF switching of the reverse conducting semiconductor switches of each pair in synchronism with the frequency of the power supply so that the other pair is turned OFF at the time, the load power amount supplied to the lighting lamp is adjusted The lighting control device according to claim 1, wherein the lighting control device is a lighting device.
  18.  前記負荷電力調整スイッチは、
     直列に接続された2つの逆導通型半導体スイッチと、
     前記2つの逆導通型半導体スイッチと並列に設けられた、直列に接続された2つのコンデンサと、
     前記2つのコンデンサそれぞれと並列に接続された2つのダイオードと、
    を含む縦型のハーフブリッジ構造を有することを特徴とする請求項1ないし16のいずれか1項に記載の照明制御装置。
    The load power adjustment switch is
    Two reverse conducting semiconductor switches connected in series;
    Two capacitors connected in series, provided in parallel with the two reverse conducting semiconductor switches;
    Two diodes connected in parallel with each of the two capacitors;
    The lighting control apparatus according to claim 1, wherein the lighting control apparatus has a vertical half-bridge structure including
  19.  前記負荷電力調整スイッチは、
     第1の経路上に直列に設けられた逆導通型半導体スイッチおよびコンデンサと、
     前記第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチおよびコンデンサと、
     前記第1、第2の経路に対して並列に結線された配線と、
    を含む横型のハーフブリッジ構造を有することを特徴とする請求項1ないし16のいずれか1項に記載の照明制御装置。
    The load power adjustment switch is
    A reverse conducting semiconductor switch and a capacitor provided in series on the first path;
    A reverse conducting semiconductor switch and a capacitor provided in series on a second path parallel to the first path;
    Wiring connected in parallel to the first and second paths;
    The lighting control apparatus according to claim 1, wherein the lighting control apparatus has a horizontal half-bridge structure including
  20.  前記照明灯は、誘導性負荷を有する照明灯、誘導性負荷に接続された照明灯、または抵抗性負荷を有する照明灯であることを特徴とする請求項1ないし19のいずれか1項に記載の照明制御装置。 20. The illuminating lamp is an illuminating lamp having an inductive load, an illuminating lamp connected to the inductive load, or an illuminating lamp having a resistive load. Lighting control device.
  21.  前記誘導性負荷を有する照明灯は、放電灯であることを特徴とする請求項20に記載の照明制御装置。 The illumination control device according to claim 20, wherein the illumination lamp having the inductive load is a discharge lamp.
  22.  前記放電灯は、蛍光灯、水銀灯、ナトリウム灯、またはネオン灯であることを特徴とする請求項21に記載の照明制御装置。 The lighting control device according to claim 21, wherein the discharge lamp is a fluorescent lamp, a mercury lamp, a sodium lamp, or a neon lamp.
  23.  前記誘導性負荷に接続された照明灯は、白熱灯またはLEDにリアクトルを接続したものであることを特徴とする請求項20に記載の照明制御装置。 The illumination control device according to claim 20, wherein the illumination lamp connected to the inductive load is an incandescent lamp or an LED connected to a reactor.
  24.  前記抵抗性負荷を有する照明灯は、白熱灯であることを特徴とする請求項20に記載の照明制御装置。 The illumination control device according to claim 20, wherein the illumination lamp having a resistive load is an incandescent lamp.
PCT/JP2008/001711 2008-06-30 2008-06-30 Illumination control device WO2010001435A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/001711 WO2010001435A1 (en) 2008-06-30 2008-06-30 Illumination control device
JP2009548510A JP4481366B2 (en) 2008-06-30 2008-06-30 Lighting control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001711 WO2010001435A1 (en) 2008-06-30 2008-06-30 Illumination control device

Publications (1)

Publication Number Publication Date
WO2010001435A1 true WO2010001435A1 (en) 2010-01-07

Family

ID=41465550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001711 WO2010001435A1 (en) 2008-06-30 2008-06-30 Illumination control device

Country Status (2)

Country Link
JP (1) JP4481366B2 (en)
WO (1) WO2010001435A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113940A (en) * 2010-11-24 2012-06-14 Seiwa Electric Mfg Co Ltd Illumination system and illumination unit used for the same
CN102769977A (en) * 2012-07-18 2012-11-07 招商局重庆交通科研设计院有限公司 Method for determining brightness requirements of middle section of underground passage based on traffic flow principle
JP2014519693A (en) * 2011-06-13 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Adaptively controlled outdoor lighting system and method of operation thereof
WO2014162682A1 (en) * 2013-04-03 2014-10-09 株式会社小糸製作所 Road lighting control device
CN104837264A (en) * 2015-05-13 2015-08-12 安徽省德诺电子科技有限公司 Tunnel intelligent illumination remote monitoring system
JP2017501547A (en) * 2014-01-02 2017-01-12 フィリップス ライティング ホールディング ビー ヴィ Lighting unit, lighting fixture, and lighting network
JP2018120668A (en) * 2017-01-23 2018-08-02 富士通株式会社 Street light control system, street light control program and light street control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156694A (en) * 1984-12-28 1986-07-16 東芝ライテック株式会社 Dimmer controller
JP2005100786A (en) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2007058676A (en) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology Alternating voltage control device by leading current
JP2008071545A (en) * 2006-09-12 2008-03-27 Nippon Steel Corp Illumination lamp control method, and illumination lamp control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156694A (en) * 1984-12-28 1986-07-16 東芝ライテック株式会社 Dimmer controller
JP2005100786A (en) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2007058676A (en) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology Alternating voltage control device by leading current
JP2008071545A (en) * 2006-09-12 2008-03-27 Nippon Steel Corp Illumination lamp control method, and illumination lamp control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113940A (en) * 2010-11-24 2012-06-14 Seiwa Electric Mfg Co Ltd Illumination system and illumination unit used for the same
JP2014519693A (en) * 2011-06-13 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Adaptively controlled outdoor lighting system and method of operation thereof
CN102769977A (en) * 2012-07-18 2012-11-07 招商局重庆交通科研设计院有限公司 Method for determining brightness requirements of middle section of underground passage based on traffic flow principle
CN102769977B (en) * 2012-07-18 2014-06-11 招商局重庆交通科研设计院有限公司 Method for determining brightness requirements of middle section of underground passage based on traffic flow principle
WO2014162682A1 (en) * 2013-04-03 2014-10-09 株式会社小糸製作所 Road lighting control device
JPWO2014162682A1 (en) * 2013-04-03 2017-02-16 株式会社小糸製作所 Road lighting control device
JP2017501547A (en) * 2014-01-02 2017-01-12 フィリップス ライティング ホールディング ビー ヴィ Lighting unit, lighting fixture, and lighting network
CN104837264A (en) * 2015-05-13 2015-08-12 安徽省德诺电子科技有限公司 Tunnel intelligent illumination remote monitoring system
JP2018120668A (en) * 2017-01-23 2018-08-02 富士通株式会社 Street light control system, street light control program and light street control method

Also Published As

Publication number Publication date
JPWO2010001435A1 (en) 2011-12-15
JP4481366B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4481366B2 (en) Lighting control device
JP4528886B2 (en) Power control device
FI111323B (en) Safety light arrangement and safety light device
JP2001138799A (en) Lighting system for vehicle
JP4931119B2 (en) LIGHTING CONTROL METHOD AND LIGHTING CONTROL DEVICE
JP4279033B2 (en) Discharge lamp lighting device for in-vehicle headlights
KR101771986B1 (en) Tiny Lights Device For Light Emitting Diode Lamp
EP3941162A1 (en) System for street light lighting control and for iot control for monitoring solar power generation
US20060284564A1 (en) Method and device for ballast management in particular for a motor vehicle headlamp
KR200432782Y1 (en) automatic lighting system for underground park
WO2010029628A1 (en) Illumination system
WO2010001436A1 (en) Information providing device
JP2007034538A (en) Signal control backup device
WO2010001441A1 (en) Adapter with dimming function, illumination lamp with dimming function, socket with dimming function, and illumination control device
CN200959695Y (en) HID far and near double light driving controller of automobile
KR100796552B1 (en) Ballast stabilizer for high intensity discharge lamp built in assistant starting type dual ignitor
JP2004171971A (en) Guide light system in tunnel of road
CN103313494A (en) Low frequency half bridge HID ballast, high intensity discharge lamp and driving method
JP3251656B2 (en) Railroad crossing signal light
JP2003308986A (en) Illumination system equipped with sensor
KR100446100B1 (en) the appartus and method for alternation lighting by one ballast with two bulb
KR200308171Y1 (en) The traffic signal light
KR100341135B1 (en) Free-volt charged emergency lighting apparatus
Divakar et al. Study of Dimming control methods for HID automotive lamps
JPH10289789A (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009548510

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08790110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08790110

Country of ref document: EP

Kind code of ref document: A1