WO2010000156A1 - 运用广播调频信号定位地理位置的方法及系统 - Google Patents

运用广播调频信号定位地理位置的方法及系统 Download PDF

Info

Publication number
WO2010000156A1
WO2010000156A1 PCT/CN2009/071681 CN2009071681W WO2010000156A1 WO 2010000156 A1 WO2010000156 A1 WO 2010000156A1 CN 2009071681 W CN2009071681 W CN 2009071681W WO 2010000156 A1 WO2010000156 A1 WO 2010000156A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
positioning
pilot frequency
mobile unit
pair
Prior art date
Application number
PCT/CN2009/071681
Other languages
English (en)
French (fr)
Inventor
廖恒俊
Original Assignee
Liao Henry H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liao Henry H filed Critical Liao Henry H
Priority to EP09771926.4A priority Critical patent/EP2312331B1/en
Publication of WO2010000156A1 publication Critical patent/WO2010000156A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction

Definitions

  • the present invention relates to a positioning system, and more particularly to a positioning system suitable for indoor positioning. Background technique
  • GPS Global Positioning Satellites
  • Current GPS systems use 24 to 27 half geo-synchronous satellites for triangulation in three dimensions.
  • the traditional GPS receiver can only receive line-of-sight signals, and often the signal strength is too weak to penetrate the building. For this reason, the current GPS signal cannot be used indoors.
  • due to the obstacles of high-rise buildings it is difficult to obtain signals from low elevation GPS satellites in the city.
  • manufacture, transmission and maintenance of GPS requires huge and expensive national resources, and the complexity of the signal structure, the need to compensate for interference, and the delay of the ionosphere of relatively weak signals lead to higher GPS receiver costs.
  • the navigation system before the GPS was widely used was mainly the Long Range Positioning (LORAN) system.
  • the LORAN system uses hyperbolic positioning theory rather than the spherical triangulation theory used by GPS. The difference between the two is that hyperbolic positioning uses time-difference-of-arrival (TDOA) and spherical theory uses time-of-arrival (TOA). However, whether it is hyperbolic positioning theory or spherical triangulation theory, it is necessary to require full time synchronization of each base station to achieve high accuracy.
  • the LORAN system has a main high frequency (HF) station and two satellite stations that transmit pulse signals at different frequencies for a known time.
  • HF high frequency
  • the line formed by the points where the two-point distance difference is fixed is a hyperbola.
  • the intersection of a pair of hyperbola determines the position of an object.
  • the location of the object is determined by the distance difference between two pairs of base stations (TDOA:).
  • TDOA distance difference between two pairs of base stations
  • the OMEGA system which uses very low frequency (VLF) signals, is also used for long-range positioning with a frequency range of 11 to 15 KHz, using long-wave long-range broadcasts.
  • VLF very low frequency
  • the OMEGA system uses the phase difference of two consecutive waveform signals to determine the position.
  • the OMEGA system still has problems with insufficient positional accuracy (deviation of four mile:) for the following reasons: 1) The phase deviation caused by the long-distance broadcast of the wave over a plurality of cycles. 2) Due to the characteristics of the path of the ionosphere. 3) Stratophere: Signals reflected by the ocean or land interfere with straight waves. 4) Synchronization time difference occurs between distant base stations.
  • GSM Global System for Mobile communications
  • TOA time of arrival
  • AOA angle of arrival
  • E-OTD Enhanced-Observed-Time-Difference
  • A-GPS assisted-GPS global satellite positioning
  • the Code Division Multiple Access (CDMA) mobile phone uses the Advanced-Forward-Link-Triangulation (A-FLT) technology.
  • Time Division Multiple Access (TDMA) mobile phones use A-GPS technology.
  • A-GPS uses network mutual help to shorten the time of the call, up to five meters Accuracy.
  • the accuracy of A-FLT and E-OTD is about 100 meters, and the accuracy of TDOA and AOA is about 150 meters.
  • the accuracy of mobile phone positioning is only applicable to the E-911, but not for indoor positioning applications.
  • WiFi Wideband Fidelity
  • LAN Local Area Network
  • RSS Multi-stations Radio Signal Strength
  • TO A TO A
  • TDOA TDOA
  • Triangular positioning This indoor signal transmission can cause uneven attenuation and reflection due to walls, room partitions, and metal furniture.
  • High-frequency (2.4 GHz) signals are still much weaker in indoor short-space.
  • modern indoor positioning requires a basic WiFi network architecture.
  • AM Amplitude Modulation
  • LBS Location base service
  • SPOT Small Personal Objects Technology
  • the LBS is arranged according to the number of radio stations (RSS) of a certain number of FM stations to determine the location of the city. For example, based on the signal strengths of 5 to 11 stations, you can locate the approximate location of the town within 5 miles. Although not precise, it can still be used for LBS.
  • RSS radio stations
  • an object of the present invention is to provide a positioning geographic position using a broadcast FM signal.
  • Method and system One embodiment is to receive the FM stereo signal and apply the phase difference of the signal to determine the geographic location.
  • FM stereo signals from three FM stations are received by more than one receiver, and each stereo signal includes a pilot frequency of FM19KHZ; and the phase difference of the pilot frequency demodulated by FM determines the geographical position of each receiver .
  • Figure 1 shows the spectrum of the FM stereo composite signal.
  • Figure 2 is a hyperbolic navigation system using the time difference of arrival (TDOA).
  • 3 is a pilot frequency phase measurement of an action or reference station in accordance with an embodiment of the present invention.
  • Fig. 4 is a view showing an example of calculating a representative phase difference in a unit distance according to an embodiment of the present invention.
  • Figure 5 is a process diagram for determining geographic location (i.e., positioning:) in accordance with an embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a mobile transceiver unit (mobile unit:) in accordance with an embodiment of the present invention.
  • Fig. 7A is a schematic view showing a positioning process in an outdoor plaza according to an embodiment of the present invention (the distance of the station is reduced to facilitate the illustration:).
  • Fig. 7B is a schematic diagram showing the process of positioning in an indoor area according to an embodiment of the present invention (the distance of the station is reduced to facilitate the illustration:).
  • Figure 7C is a schematic diagram of a positioning process performed by an indoor repeater in accordance with an embodiment of the present invention.
  • Figure 8 is a perspective view of a field for positioning under known conditions of a station position in accordance with an embodiment of the present invention.
  • Figure 9 is a simplified site preparation diagram for positioning at an unknown station position, in accordance with an embodiment of the present invention.
  • Figure 10 is a simplified site preparation map for positioning based on the location of an unknown radio station in accordance with an embodiment of the present invention.
  • Figure 11A is a diagram showing an indoor positioning process in accordance with an embodiment of the present invention.
  • Figure 11B is a location look-up table in accordance with an embodiment of the present invention.
  • Figure 12 is a process diagram of simplified indoor positioning in accordance with an embodiment of the present invention.
  • Figure 13 is a diagram showing the GPS extended dead reckoning using the FM composite signal in accordance with an embodiment of the present invention.
  • Figure 14A is a flow chart showing the positioning using GPS, dead reckoning and FM signals in accordance with an embodiment of the present invention.
  • Fig. 14B is a structural diagram of a GPS-FM integrated receiver for positioning according to an embodiment of the present invention.
  • Figure 14C is a diagram showing a positioning process performed by a GPS-FM integrated receiver in accordance with an embodiment of the present invention.
  • Figure 15 is a functional block diagram of a mobile station using a single-to-serial repeat phase detection for positioning, in accordance with an embodiment of the present invention.
  • Figure 16 is a diagram of a seek/position process in accordance with an embodiment of the present invention. Detailed ways
  • the present invention provides a method and system for locating and positioning using a Frequency Modulation (FM) signal.
  • An embodiment relates to locating and locating using a multi-task pilot frequency of a broadcast FM composite signal.
  • the broadcast FM signal may include a commercial broadcast FM radio signal.
  • the phase of the FM signal ie the phase of the pilot frequency, is used for positioning. Therefore, existing commercial broadcast FM signals can be used for positioning, positioning and navigation, and their application is extensive, even
  • signals from more than three FM stereo stations, i.e., existing FM broadcast signals are utilized. In the following embodiments, only three stations are described, but the principles of the present invention can be extended to more radio stations for positioning. Use the average of more stations to get higher accuracy.
  • Figure 1 shows the spectrum 10 of a conventional FM stereo synthesis signal.
  • the frequency band that FM stations can allocate is ⁇ (kilohertz).
  • the FM stereo theory is divided into L+R sounds that add left (L) and right (; R) soundtracks, and LR sounds that are modulated by double side-band suppressed carriers, where single tone reception
  • the L+R sound can be received at the baseband, and the carrier frequency is 38 KHz.
  • the pilot frequency is synchronized with the carrier phase of 38 KHz at a phase of 19 KHz, and is synthesized and transmitted.
  • a receiving station receives FM signals transmitted from three stations S1, S2 and S3.
  • the receiving station takes the sinusoidal pilot frequency from the synthesized FM signal of the first pair of stations S1, S2.
  • the phase of the pilot frequency is then measured and compared to calculate the difference in distance from the two stations S1, S2, respectively.
  • the phase difference of the two pilot frequencies represents the time difference of arrival (TDOA) of the stations S1, S2.
  • TDOA time difference of arrival
  • the trajectory of each point which is equidistant from the FM stations S1, S2 by the aforementioned LORAN or OMEGA system is a hyperbola 21.
  • the other pair of stations S1, S3 also obtain another hyperbola in the same manner.
  • the two sets of FM pilot frequency differences can be used to locate the binocular intersection 22 .
  • phase difference Because the phase of the pilot frequency is not synchronized between FM stations, it is necessary to measure the original between the three FM stations by using a reference station (referred to as RS) at a known position before navigation. Phase difference. Thereafter, a plurality of mobile units (hereinafter referred to as MUs) use the information of the reference station to calculate the relative position of each mobile unit to the reference station (or base station:) or the FM station. The actual phase difference to the reference station can be calculated from the actual distance of each FM station from the reference station. By measuring the phase difference minus the actual phase difference, the phase difference of the original station can be calculated.
  • RS reference station
  • MUs mobile units
  • phase difference measured by the mobile unit is subtracted from the original station phase difference, and the actual phase difference of the mobile unit can be derived, and the actual phase difference is used to determine the position of the mobile unit.
  • 3 shows the phase relationship 30 between the pilot frequencies 32 of the three FM stations S1, S2, S3.
  • the phase of the station S2 with respect to the station S1 is delayed (the phase difference is a positive value:), and the phase of the station S3 with respect to the station S1 is advanced (the phase difference is a negative value:). Therefore, the original phase difference can be defined between -180 degrees and 180 degrees.
  • the original phase difference can be converted to a time range of ⁇ 26.32 ⁇ 8 or a distance range of ⁇ 7894.74 meters.
  • the distance mentioned in the following description is for phase measurement. use.
  • the distance from a fixed reference station (RS) or a base station (hereinafter referred to as BS) to an FM station is known, and the actual phase difference can be calculated (as if the FM station is synchronized:).
  • the phase difference between FM stations can also be measured by the FM pilot frequency receiver of the RS or BS.
  • the original phase difference of the pilot frequency from Sl and S2 can be calculated by the following relation (1):
  • Original phase difference (S1, S2) Measurement phase difference (S1, S2) - Actual phase difference (S1, S2) ( 1)
  • S1, S2) Measurement phase difference (S1, S2) - Actual phase difference (S1, S2)
  • S1, S2 Actual phase difference
  • 2 the phase difference measured from Sl and S2 minus the original phase difference of (S1, S2) can obtain the actual phase difference from Sl and S2.
  • MU actual phase difference (S1, S3) MU measurement phase difference (S1, S3) - original phase difference (S1, S3)
  • the actual phase difference of the MU's FM pilot frequency ie, the actual phase difference (S1, S2) and the actual phase difference (S1, S3X)
  • the intersection 22 of the two hyperbola is the position of the MU.
  • 4 is a two-dimensional coordinate system space example diagram 40 for explaining how the embodiment of the present invention uses the phase difference of the FM pilot frequencies of the BS or RS to calculate the position of the MU.
  • the BS, RS and MU both receive FM broadcast signals from the FM stations S l, S2, S3.
  • the unit of calculation is converted from a time difference to a distance, where the distance is equal to the product of time and speed of light.
  • the measurement phase difference of the BS ⁇ n 12 (the subscript line represents the value belongs to the BS or RS) is calculated as follows:
  • the distance between the BS and the FM stations S1, S2 is respectively, and the two distances can be known by their latitude and longitude
  • the position is calculated.
  • the multiples il, ⁇ of the pilot frequency wavelength corresponding to the distance 1, ⁇ - can be calculated according to the following equations:
  • the phase difference of m and ⁇ is subtracted from the known distances di and d2_ on the receiver of the BS.
  • 2 ⁇ i - ⁇
  • 2 is the calculated (or should:) phase difference between the BS receiving the pilot frequencies from SI and S2.
  • the distance is not the direct distance between two horizontal points.
  • the broadcasting station usually pulls up from the ground.
  • the altitude of the FM radio antenna is indicated in the radio information.
  • the height of the receiver can be measured with a barometric altimeter (in some applications the barometric altimeter will be miniaturized for integration:).
  • the line of sight (LOS) of the FM radio antenna to the receiver ie, from the station S1 to the BS receiver
  • the horizontal line from the receiver to the FM station address form an angle ⁇ .
  • the ratio of the actual distance of the linear distance (LOS) to the ground distance is cos e.
  • the ⁇ e is nearly zero, so the cos e approaches 1.
  • the calibration ratio to LOS must be considered.
  • l/cosGo The TDOA measured at the BS is not the actual TDOA, because the stations are not synchronized, so there is an FM between Sl and S2.
  • the original phase difference of the radio is ⁇ 12 . Since the location of the BS is known, it can be used to calculate the actual distance of the BS to the stations S1, S2 for calculating the original phase difference of the station.
  • the relation (1) can be rewritten as the relation (3) as follows, the pilot frequencies from the stations S1, S2 to BS (measurement phase difference ⁇ 2 plus (mn) number of cycles:) minus the actual distance ( - d2) The original radio phase difference ⁇ 2 is obtained .
  • ⁇ 13 Before calculating the distance difference d 12 (TDOA) from the MU to the stations S1, S2, ⁇ 13 first needs to measure the phase difference 5 ml2 from the stations S1, S2 to MU. Secondly, estimate the 111, n integral multiple of the pilot frequency wavelength (15,789.5 meters) from Sl, S2, and m, n can get the RSS value from RS or from the published field strength contour map (field strength contour ) Estimated.
  • the method for determining the MU position by using the station information of the BS includes:
  • Step 52 The original station phase difference 12 , ⁇ 13 is calculated by the BS calculating the phase differences ⁇ ⁇ 2 , ⁇ 13 and the measured phase difference 5 ml2 , 5 ml3 , and the ⁇ 12 , ⁇ 13 to MU are transmitted.
  • the BS can also determine the location of the MU without transmitting 12 , ⁇ 13 to the MU.
  • Step 54 MU measures the phase difference 5 ml2 , 5 ml3 o and transfers the value of 5 ml2 and 5 ml3 from the MU to the BS to calculate the MU position.
  • Step 56 Estimate ⁇ , ⁇ (for example, look up the table according to the RSS distance formula or field strength and other bit line graphs:). If m or ⁇ falls on the boundary of the integer wavelength, then the (m-1) or ( ⁇ -1) wavelength can also be tested to find the most suitable value.
  • Step 58 Calculate d 12 and d 13 from the relations (4) and (5), and then calculate the MU position coordinates (X, y:) using the hyperbolic calculation method (or the hyperbola/position look-up table:).
  • the above steps can be performed with different hardware/software.
  • Kalman filtering Kalman Filtering M stand-up calculation method can also be used.
  • the positioning accuracy is based on the accuracy of the FM radio station to the BS distance, and 5 ml2 , 5 ml3 , 5 ml2 , ml3 phase The accuracy of the measurement.
  • the present invention can be applied to many environments, including campus positioning or indoor positioning within a few hundred meters of the MU.
  • the indoor positioning system of the embodiment of the present invention can be used in a hospital, and the BS can be used to locate a disease. Suffering from, medical cadres or high-value instruments; or car dealers using BS to locate vehicles equipped with MU or to monitor test drives in adjacent streets, etc. Table 1 lists the application examples as follows:
  • FIG. 6 is a functional block diagram of a mobile unit (; MU) 60 in accordance with an embodiment of the present invention.
  • the MU 60 includes an antenna 61, an FM stereo receiver 62, a microcontroller with a high speed timer and an operational amplifier function. (microcontroller) 64, and regional radio frequency (RF) transceiver 66 (RF transceiver can be used with an FM RDS transceiver:).
  • the high-speed timer is used to accurately measure the phase, and the op amp converts the sine wave of the signal into a square wave for phase edge detection.
  • the MU 60 can be used in conjunction with BS for indoor environments or outdoor parks.
  • the park map 70 indicates the campus building 72, the fixed base station BS, the mobile unit MU and the more or less reference station RS.
  • the RS is a BSo BS, MU and RS that have no map display and human interface, and are simultaneously received by the FM station. Sl, S2, S3 signals.
  • the array of exhibits 71 can be stamped to the park map 70 and the building 72, while the parsing point 74 represents the geographic location, and the array of exhibits 71 can be stored in the memory of the MU and the BS. If you need a higher resolution, you need more memory capacity.
  • Each grid or resolution point is represented by a grid point coordinate (x, y:>.
  • the fixed BS coordinates are used as the origin (0, 0). Based on the origin BS, the coordinate system is a positive integer. The method of adding negative integers is increased until it can cover the whole building or the entire campus.
  • the corners of the building or the park are reference points 73 of the GPS position, during the site preparation process, Each of the reference points is interpolated by a plot map, and the geographic position of each (x, y:> coordinate 74 is determined in advance and stored in the memory. From the above relationship (4 5), d
  • the values of 12 and d 13 are the distance difference from all the coordinates (x, y) in the park to the stations Sl, S2 and S3, because the geographical position of each coordinate is known.
  • Calculating the coordinates (1 12 , d 13 principle and method is the same as calculating BS, RS to radio Sl, S2, S3. Using the calculated wavelengths m, n, p, all BS, RS and checkpoint coordinates To the station Sl, S2
  • the distance difference of S3 can be pre-calculated in the same way in the site preparation processing procedure.
  • the formula is as follows:
  • Dl3 (m - ⁇ ) ⁇ + ⁇ 3 All BS and OS RS Since BS is similar to MU, basically ( ⁇ - ⁇ ) ⁇ of BS is equal to ( ⁇ - ⁇ ) ⁇ of MU. Similarly, d 13 and ⁇ are also general algorithms. If it is located at the wavelength boundary (ie, the distance between the MU and the BS is close to the integer wavelength:), then the (m-ii ⁇ operation is the same value, and the remainder is stored in the phase difference ⁇ 12 of the MU and the phase difference of the BS 2 Double Difference Method for Indoor Positioning or Park Positioning The present invention introduces a double difference method, which is particularly effective in indoor and park positioning. First, the double difference between square points and BS and RS is defined as:
  • the values of Ad 12 and Ad 13 are defined as the double phase difference of the square point with respect to the BS or RS.
  • the period number fuzzy term ( ⁇ - ⁇ ) ⁇ , ( ⁇ - ⁇ ) ⁇ ⁇ ( ⁇ - ⁇ ) ⁇ , ( ⁇ - ⁇ ) ⁇ , and the original phase difference 12 , ⁇ 13 are eliminated. It doesn't matter, so using the double difference method will greatly improve positional accuracy.
  • the Ad 12 and Ad 13 values are usually small and increase as the distance between the MU and the BS (0, 0) increases.
  • Ad 12 , Ad 13 of each square point relative to the BS or RS the value is stored in the memory for later indoor or campus positioning.
  • the Ad ml2 and Ad ml3 according to the formula (6) (5 ml2 - ml2 ), (5 ml3 - 5 ml3 ), and obtain the (x, y) of the MU according to the method described in the description. coordinate.
  • MU does not need to have a map or know its location. But in some applications, MU may need a map or know its own location.
  • the aforementioned digital map can be downloaded from the BS to the MU, or the BS can also calculate the MU location and download to the MU after each location location.
  • the MU includes a shared interface to obtain information/services from nearby BSs or RSs.
  • Figure 7B is another campus map 75 of the present invention.
  • the FM signals from the broadcasting stations Sl, S2, and S3 can use the repeater ( Repeater) 78, the signal is passed through the wall to the indoor BS and MU.
  • hyperbolic triangulation is performed based on the square points where the three repeaters 78 are located.
  • Other embodiments within the reinforced cement building can also be illustrated by the map shown in Figure 7C.
  • the operating band of a typical low-power FM transceiver is an FM power band that is not required to be licensed (ie, does not require a government license:).
  • FM power bands are in compliance with the US Federal Communication Commission (FCC) No. 15.
  • the rules for example, the power measurement of three meters from the transceiver must be less than 250 ⁇ /m:).
  • the receiver can use the frequency band of any frequency.
  • the pilot frequency from the three receivers may be a sine wave other than 19 kHz or a periodic wave of other modes. From Fig. 7A to Fig. 7C, the extra reference station functions as a base station, and the position of the MU can be determined more accurately.
  • the information provided by the MU closer to the BS or the RS can more accurately determine the MU position, and the transmission power of the transceivers of the BS, RS, and MU is lower.
  • BS, RS, and MU can use similar FM hardware and antennas to avoid differences in phase measurements caused by different hardware. Therefore, the RS can use a low cost FM receiver.
  • the BS can monitor the difference between the original phase differences ⁇ 12 and ⁇ 13 measured by the RS, and the difference can be corrected in the BS calculation.
  • RS and MU are no different on the hardware of the FM receiver. The BS knows the fixed position of the RS in order to calculate the station distance.
  • Fig. 8 is a view for explaining a method of performing the site preparation work 80 by the stations S1, S2, and S3, and is described as follows with reference to the map of Fig. 7A: Step 81: A digital map (or a stand map:) of an indoor or a park to be implemented is obtained. Find more than one GPS-referenced reference point 73 on the campus or indoor map.
  • Step 82 Divide the spread point map 70 drawn on the actual scale into square grid coordinates, and use the latitude and longitude of the reference point 73 measured by the GPS in the park as a reference, and insert all the grid coordinates (x, y) into the latitude and longitude coordinates. , used to calculate the distance from the grid point to the stations Sl, S2, S3 (Sl, S2, S3 are also marked by latitude and longitude coordinates:).
  • the reference point 73 is selected to be located at multiple corners to determine the latitude and longitude of the other square points using interpolation.
  • Step 84 Therefore, each square point (x, y) has a corresponding value (Ad 12 , Ad 13 :), which is recorded in the memory of the BS for reading the table for positioning the MU.
  • Ad 12 , Ad 13 the value recorded in the memory of the BS for reading the table for positioning the MU.
  • the hyperbolic positioning method yields a nonlinear equation.
  • the double phase difference (Ad 12 , Ad 13 :) per coordinate does not increase in a linear manner.
  • Ad 12 , Ad 13 : the park is relatively small, while the double phase difference in small areas increases in a more linear manner.
  • another alternative venue pre-processing method must be sought.
  • the approximate direction of the signal and intensity is helpful for triangulation.
  • Figure 9 illustrates, by way of illustration, how the simplified site preparation work 90 can be performed under the conditions of the unknown station position.
  • the park map 70 is divided into square coordinate points at an appropriate resolution (meter:).
  • the present invention provides a triple difference method that does not require lookup tables for simplified positioning.
  • the triple difference ( ⁇ 12 , ⁇ 12 , Ah , ⁇ 13 can be used. :) Solve the double phase difference ( ⁇ 2, Ad 13 ). If the triple difference is not constant, it can be processed by gradual difference interpolation. If the difference value is gradually increasing or decreasing, the difference can be processed using a nonlinear interpolation equation.
  • a double-phase difference Ad 12 , Ad 13
  • any RS or BS can be regarded as the origin (0, 0).
  • the lookup table can be smaller.
  • the smaller (Ad 12 , Ad 13 :) look-up table can be completed.
  • the size of the lookup table depends on the number of RSs and the maximum range of square coordinates extending from the RS or BS as the origin (0, 0). This method is an effective site preparation method when GPS measurements are not available.
  • the lookup table is divided into a plurality of areas covered by the BS or the RS.
  • the simple positioning method solved by solving the binary linear equation is to define the double phase difference of the relative distance of the MU to the BS (or RS) as Ad 12 and Ad 13 , then the double phase difference Ad 12 , Ad 13 It must be the combination of the average triple difference ⁇ 2 , ⁇ ⁇ 2 or ⁇ 3 , ⁇ 13 to determine the position of the MU position. Therefore, assume that the multipliers of the horizontal and vertical directions may be AND.
  • the linear equation of the multiplier x, y is: This is a binary linear equation solving the problem of two variables (x, y). Therefore, if the basic upper lattice double phase difference is increased in a uniform (linear:) manner, the linear equation can be solved without looking up the table, thereby determining the position of the MU. In most cases, the requirement for positioning accuracy is not to the extent of the degree of commonality.
  • the binary linear equation solving method becomes a simple positioning method without looking up the table.
  • Figure 10 is a diagram of a method for performing a place measurement (place preparation work:) 100 under the condition of an unknown FM station position, the method comprising:
  • Step 101 Obtain a map of the indoor area or the park to be implemented, and then make the map into a digitized digital map.
  • Step 102 Divide the digital map into a two-dimensional grid map composed of a plurality of equidistant square coordinates (x, y) according to a desired coordinate resolution.
  • Step 103 From the BS or RS as the origin (0,0), expand the ⁇ ⁇ N (linear horizontal and vertical:) coordinate points to measure the phase difference of 5 ml2 and 5 ml3 , and obtain the double phase difference of all coordinates according to FIG. (Ad 12 , ⁇ d 13 ).
  • Step 104 Subtract the double phase difference (Ad 12 , Ad 13 :) of each point in a horizontal and vertical manner, obtain triple difference values ⁇ 12 , ⁇ 13 , ⁇ 0 , ⁇ 12 , and calculate an average triple difference according to FIG. 9 .
  • Value 12 Ahn, Av, ⁇ ⁇
  • Step 105 If the neighbor difference value is not equal, use the non-equal value interpolation method to establish a lookup table necessary for calculating (Ad 12 , Ad 13 ) using the difference value ⁇ 12 , ⁇ v 12 and ⁇ 13 , ⁇ v 13 Then, (Ad 12: Ad 13 :) is used to calculate the MU position (x, y:) with respect to the BS or RS as the origin (0, 0).
  • Step 106 If the neighbor difference value is substantially mean (or the accuracy does not need to be cm), the similar straight line averaging method is used. Record the average triple difference value ⁇ 2, ⁇ 3, ⁇ 12 , ⁇ 13 and use it as a parameter to solve the MU (x, yM stand) of the binary linear equation with respect to the origin (0, 0).
  • the job that determines the position of the MU is based on the values measured by the BS and the MU, and the look-up table obtained from the site preparation work performed as described above. The method of operation is detailed as follows: Positioning work for site preparation work under the condition of known FM station position
  • phase measurement was performed at MU, and 5 ml2 and 5 ml3 were measured.
  • Phase measurement was performed on BS or RS, and ⁇ 2 and 5 ml3 were measured .
  • the phase measurement at BS or RS may be somewhat different from the previous preparatory work, but the difference value ( ⁇ 8 (1 12 , ⁇ Ad 13 :) will basically remain unchanged.
  • Adi2 ⁇ (5 m i2 - 5 m i 2 ) , ⁇ 3 ⁇ (5 m i 3 - 5 m i 3 ) (7)
  • Ad 12 , Ad 13 use (Ad 12 , Ad 13 :) to look up the table and find the closest one ( x, y), in order to locate the position of the MU. That is, the measured value of MU (5 ml2 - 5 ml2 , 5 ml3 - ml3 ) is closest to the stored value (x, y) of (Ad 12 , Ad 13 ).
  • Step 111 Measure 5 ml2 , 5 ml3 , 5 ml2 , 5 ml3 in MU and BS, and calculate (5 ml2 - ⁇ d 12 and (5 ml3 - ml3 ) ⁇ Ad 13 to make a pair ( ⁇ 8 (1 12) , ⁇ eight (1 13 ) to check the table.
  • Step 112 Using the lookup table obtained by the site preparation work, use the least square approximation method to find the closest pair (Ad 12 , Ad 13 ) to determine the (x, y) position of the MU.
  • Step 113 If more precise, compare the four square points (Ad 12 , Ad 13 ), find the nearest four adjacent square points; then use linear interpolation to increase or decrease the difference ratio, Determine (x, y:> value as the most likely MU position between the four adjacent checkpoints.
  • the positioning method includes MU measuring phase difference 5 ml2 , 5 ml3 , and measuring the phase difference ⁇ 2 , 5 ml 3 o RS in BS or RS is fixed, and will also transmit its measured value from time to time. Lost to the BS as a basis for testing the proximity of the MU. At this time, each pair (5 ml2 - 5 ml2 , 5 ml3 - 5 ml3 ) was paired to look up the table. In fact, the lookup work for the lookup table at the location of the unknown FM station has been completed.
  • the BS can continuously compare the measured values of MU measured by 5 ml2 , 5 ml3 and RS with ⁇ ml2 and 5 ml3 to check the extent to which MU is close to RS ( The closest value received from the MU or the highest received value of the RSSI is based on :). At this time, RS is designated as the origin (0, 0). Using the measured values ( ⁇ Ad 12 , ⁇ Ad 13 :) and the most consistent RS as the basis for the lookup operation, to find the relative position (x, y:) of the MU to the RS origin (0, 0).
  • the uniform linear approximation method is to solve the binary linear equation and obtain the (x, y) coordinates.
  • the binary linear equation is the difference value (Ad 12 , Ad 13 ) measured by MU, and the formula is as follows:
  • Ad 12 and Ad 13 can calculate the MU coordinate unique solution (x, y without looking up the table). :).
  • (x, y:> can be a non-integer solution.
  • Fig. 11B is an example of a partial lookup table of (Ad 12 , Ad 13 :).
  • the horizontal average increase both are 1.71 meters
  • the vertical average increase ⁇ ⁇ is 0.71 meters, respectively.
  • Ad 12 ⁇ ⁇ 12 + y ⁇ 12
  • ⁇ 13 xAh + ⁇ 13
  • the unique solution (x, y) can be calculated, that is, MU relative At the location of the BS. Due to the local linearity of the hyperbola, there is no need to look up the table for solution.
  • Figure 12 summarizes the above operations as a work method 120, including the following steps:
  • Step 121 Measure 5 ml2 , 5 ml3 , 5 ml2 , 5 ml3o on MU, RS and BS and calculate (5 ml2 -
  • Step 122 Comparing the measured value of the MU with the measured value of the RS (based on the highest received RSSI value received by the RS:), the BS is used to determine the RS closest to the MU; and the nearest RS is used as the origin
  • (0,0) determines the relative position of the MU.
  • Step 123 Determine the coordinates (x, y:) of the MU using a linear approximation solution.
  • the linear equation Ad 12 is solved by the measured difference (Ad 12 , Ad 13 ) measured by 12 , ⁇ 13 , ⁇ 2 , ⁇ 3 and MU obtained from the site preparation work.
  • Step 124 The case of a table lookup method using nonlinear interpolation. Use the lookup table established by the simple site pre-procedure program to find the best matching value pair (Ad 12 , Ad 13 ), and determine the (x, y) coordinates by the least square approximation method.
  • Step 125 If the seek more accurate location determination, the comparison between the coordinates of its four squares Bu Ad 12, ⁇ Ad 13), four adjacent grid point to find the best match; followed by linear interpolation, The optimal position (x, y) of the MU is determined by increasing or decreasing the relative ratio.
  • the present invention can further expand the range of GPS dead reckoning.
  • GPS may use dead reckoning.
  • An example of GPS two-dimensional dead reckoning for a car or handheld GPS receiver will be discussed below, and the calculation method 130 of FIG. 13 will be described with this example.
  • Each large/small star in Figure 13 represents the location of the dead reckoning.
  • the FM stereo receiver 172 and the processor 173 and the GPS receiver 173 are built into the GPS device 170, which may be a MU.
  • the FM stereo receiver 172 When the dead reckoning function is required (ie, the GPS can cover the satellite down to 4), the FM stereo receiver 172 will turn on and operate in parallel with the GPS.
  • the FM stereo receiver 172 in the MU performs phase measurement at each GPS position point and performs a test to track the accuracy of the dead reckoning. The test results are compared with the actual position points of the GPS, and calibration is performed using a prediction matrix of a Kalman Filter, which will be discussed later.
  • the processor 173 determines ⁇ 12 and ⁇ 13 for each location point :
  • ⁇ 2 ((m - ⁇ ) ⁇ + 5 ml2 ) - (di - d2),
  • ⁇ 3 (( ⁇ - ⁇ ) ⁇ + ⁇ ⁇ 13 ) - ( ⁇ 1 - ⁇ 3)
  • dl, d2, d3 are the distances calculated from the known GPS positions and the three FM stations SI, S2, S3, ml2 , 13 are the measured phase differences, and n, 2_ are as described above, by dl, d2 D3 decided.
  • the last position before the GPS loses tracking is called the departure point.
  • the distance difference d 12 and d 13 of the two hyperbola can be calculated by using 5 ml2 and 5 ml3 measured at the departure point.
  • the Kalman filtering method does not need to memorize the departure point measurement values other than the original phase differences ⁇ 12 and ⁇ 3.
  • ⁇ and Ay represent the difference in the movement amount between the x direction and the y direction, respectively, and the triangle represents the displacement displacement projected on the x, y coordinates.
  • the accuracy of the dead reckoning depends on the accuracy of the phase measurement and the proximity of the distance to the point of departure.
  • the calibrated measurements (d 12 , d 13 :) are the inputs to the Kalman filter.
  • Z k HX k + k
  • a noise vector, and A and H represent a Kalman filter matrix.
  • the steps for solving the Karman equation are well documented in the literature.
  • the velocity vector can be extrapolated from a position difference of 1/10 seconds.
  • a more complex Kalman filter matrix can still be used.
  • Ad 12 is defined as the difference between the continuous measurement of the distance difference or the measured phase difference of 5 ml2 , 5 ml2 o
  • the advantage of this definition is that ( ⁇ - ⁇ ) ⁇ can be omitted
  • the phase difference ⁇ 12 , ⁇ 13 for the reason, see the description of the above relation (6).
  • the implicit meaning of using the double phase difference vector is: If the GPS dead reckoning device cannot know the exact position of the station, the three are known.
  • Stations S, S2, and S3 provide appropriate HDOP (good triangulation), and the dead reckoning can still be performed by the stepwise double difference method using the measurement phase difference of 5 ml2 and ml2 .
  • the program is called blind dead reckoning, which is used under the condition that the measured phase difference of the three stations is known, but the exact position of the three stations is unknown.
  • 14A is a flow diagram of a general dead reckoning method 140 of a GPS receiver equipped with a dead reckoning device, which includes the steps as follows:
  • Step 141 The arrays A and H required for the Kalman filter matrix sequence are obtained from the GPS position.
  • Step 142 GPS positioning.
  • Step 143 Determine if the GPS can cover more than three satellites. If the GPS can cover more than 4 satellites, the GPS receiver operates as usual, and step 141 is performed; if the GPS can cover less than 3 satellites, then step 144 is performed.
  • Step 144 Using the Karman filter matrix for dead reckoning.
  • the GPS receiver can use the known position to derive the Kalman filter matrix and 11.
  • Indoor/outdoor GPS-FM integrated positioning should note that when the FM stereo receiver is combined with GPS for dead reckoning, it is a GPS-FM integrated receiver that can be effectively used indoors and outdoors.
  • the advantage of the GPS receiver is that it still has a high-precision positioning capability in open space.
  • the FM pilot frequency receiver is more suitable for indoor and urban high-rise buildings based on the GPS location point as a reference location.
  • the indoor positioning look-up table method or the binary linear equation solving method described above can be used on the FM pilot frequency receiver.
  • the FM pilot frequency is used as a GPS dead reckoning method, which requires the GPS to cooperate with the FM receiver to obtain an indoor solution (position:).
  • the GPS receiver can be integrated into a single chip with the FM stereo receiver, and is used for both outdoor and indoor positioning.
  • FIG. 14B is a schematic diagram of a GPS-FM stereo integrated receiver 170 in which a GPS receiver 171 shares a processor 173 with an FM stereo receiver 172 to obtain a GPS-FM common solution.
  • the FM receiver can refer to the GPS positioning point and obtain the position solution between the indoor and urban high-rise buildings under the condition of unknown three station positions.
  • the above operational example 180 is illustrated in FIG.
  • ⁇ ' ⁇ 2 ⁇ ' h n + ⁇ , ⁇ 12
  • the two unknowns 13 , ⁇ 13 can also be solved.
  • the measured double phase differences Ad 12 , Ad 13 obtained at the positions of subsequent movements may be added.
  • the equations for calculating the new position are listed below:
  • the unknown new position ( X , y) relative to the last position of the GPS can be determined by the measured double phase difference (Ad 12 , Ad 13 :).
  • the FM position point can help to confirm the accuracy of the GPS position point, and when the GPS signal is lost, the FM positioning system can also provide the position solution of the area between the indoor and urban high-rise buildings.
  • more than three previous location points are needed to calculate h l2 , 13 , v 12 , v 13 in order to determine the current location point. Only by obtaining information on more points in the adjacent area, the method of large number averaging can improve the positioning accuracy.
  • the advantages of GPS-FM integrated positioning are as follows:
  • the FM position fix can be used as an abnormal condition for smoothing the GPS position trajectory and correcting the GPS position.
  • the FM system provides positional positioning when the GPS signal cannot be transmitted or the transmission is disturbed. In other words, it can improve the integrity of the GPS positioning system.
  • the commercial GPS signal is rather weak and more susceptible to interference than the signal strength of the local FM signal. GPS may sometimes fail, and the FM pilot frequency can complement the lack of GPS signals when the above conditions occur.
  • the FM Receiver 172 ( Figure 14B) can receive GPS differentially corrected digital RDS broadcasts, as well as station phase differences for different reference points (RS). Differentially modified RDS broadcasting will be a highly accurate method of positional positioning for high-precision GPS-FM integrated receiver applications such as measurement and construction. Three-dimensional positioning
  • the present invention further provides a three-dimensional positioning method.
  • the FM radio station is basically a ground-based tower that can provide a Vertical Dilution of Position (VDOP:).
  • VDOP Vertical Dilution of Position
  • the present invention can be expanded from relation (45) to three relations to solve for positional variables (x, y, z).
  • the dual phase difference values Ad 12 , Ad 13 , Ad 14 and the additional elevation increments e 12 , e 13 , e 14 required to solve the following ternary simultaneous equations can be obtained with more than four FM stations.
  • the height increase amounts 12 , 13 , and 14 are height differences that are located according to the position acquired by the GPS receiver, and the height difference changes slowly in the case of ground navigation.
  • the altitude positioning may not be as accurate as the horizontal positioning on the ground.
  • the Z-dimensional positional positioning is well suited for GPS aeronautical assistance.
  • the RS on each floor is used to identify the vertical position by the RSSI value of the receiver of the reference station. If a reference station cannot be set up on each floor, a micro-barometer altimeter can be used to determine the height of the two-dimensional positioning facility.
  • the FM stations currently referred to may include broadcast stations, regional FM transmitters, low power FM transmitters, and the like. Implementation example
  • the measurement accuracy of the pilot frequency phase difference and the proximity of the base station (or reference station:) to the mobile unit are two important factors that affect the positioning accuracy.
  • the FM pilot frequency is a universal 19 kHz fundamental frequency sinusoidal signal that is extracted from the FM stereo synthesis signal.
  • the linear distance of each cycle of the pilot frequency is 15789.5 meters.
  • a high frequency timer is needed to measure the time of the waveform zero crossing. For example, a 100 MHz timer can measure an interval of 10 nanoseconds (; nano-second) or 3 meters. More than 30dB signal strength and 19KHz FM pilot frequency can minimize the effects of multi-channel signals.
  • the multi-path problem of pilot frequency has two levels: (1) giant multi-channel reflection of 19KHz pilot frequency through various terrains, and (2) demodulation of VHF carrier at the front end of the receiver, plus Microscopic multi-channel reflections formed by building obstructions and reflections.
  • Embodiments of the present invention can substantially reduce the impact of the two multiple approaches.
  • the serial processing embodiment proposed by the present invention is not only used to obtain higher positional accuracy, but also saves implementation cost, size, power and weight.
  • microcontroller 64 receives the pilot frequency and performs time division processing between the three FM signals at MU 60 (Fig. 6) and serial processing. Microcontroller 64 also configures time for each station to operate and transmit in a time-sharing manner.
  • each FM station is configured with approximately 5,000 cycles per second for phase detection.
  • the remaining time and the timer sampling interval are used for calculation and transmission.
  • the MU uses 200 microseconds (200 msec) in three segments for phase detection.
  • the pilot frequency has 3800 cycles for phase detection. If each station uses 1000 cycles to perform repeated phase detection, each station uses only about 52.6 microseconds. The remaining 42 microseconds is used for radio tuning and other calculations.
  • phase detection the sine wave rises at the edge interval and can be used for other processing operations.
  • the microcontroller 64 has plenty of time to perform other functions, such as averaging, smoothing, and communication.
  • the counter has 1000 interrupt samples.
  • Arrival time CTOA can be 1000 picks After averaging the samples, the average phase of the pilot frequency is calculated. This repeated phase detection improves the accuracy of the TOA.
  • the average program of 1000 samples is called the law of large numbers of smoothing in statistics. Let ⁇ be the TOA of the rising edge of the pilot frequency.
  • the effective time measurement can be increased to 64 GHz, or 0.45 cm, by smoothing the calculation of 1000 samples. interval.
  • the variance ⁇ of positional accuracy is increased by ⁇ /Sqrt ( ⁇ ).
  • the 5Hz acquisition frequency, 1000 phase samples per station, reduces the error to Sqrt(1000) 31.62.
  • TDOA counter count
  • an application example of the present invention includes locating and positioning.
  • the figure also indicates the operating procedure for positioning and positioning, and the direction of transmission of the phase difference ( ⁇ 12 , ⁇ 13 :) or the original phase difference ( ⁇ 12 , ⁇ 13 :).
  • the MU of the locating system may use simple hardware without calculating the MU's own location.
  • the MU of the positioning system must use the original phase difference of the station received from the BS to calculate the hyperbolic equation.
  • Another possible design is to use an integrated mode that passes the measured values from the MU to the BS to calculate the position; then the BS decodes the position back to the MU. This mode makes the MU processor simpler and less expensive.
  • the locating or positioning method can be used.
  • the MU for example, mobile phone:
  • the MU is like a GPS mobile phone; in addition, it can be used indoors and urban high-rise buildings, which is better than GPS mobile phones.
  • the accuracy of positioning depends on the number and proximity of mobile phone towers (as RS) in distributed cities.
  • a two-way transceiver is required, such as a two-way pager.
  • the station's information is returned.
  • the base station finds the three stations that match according to the three strongest signals, and then calculates the distance differences d 12 and d 13 using the relation (4 5). From the three stations of the group, the position of the stolen car can be found by using the hyperbolic intersection method. If there are most reference stations distributed in the metropolitan area, the accuracy will be increased due to the addition of regional references. Higher. However, if you only use the radio in the service center as a reference station, you may sacrifice accuracy, but it is still enough to find the approximate location of the stolen car.
  • the RDS signal bearer data rate is 1187.5 bps. This data rate is sufficient to broadcast up to 100 FM station phase differences approximately every 3 seconds. Regardless of the phase difference relative to the FM main station or the phase difference of the relative GPS time (that is, the phase difference of the GPS second unit:) may be broadcast from the RDS channel, this method can also be used as a general public GPS without a GPS receiver. Time synchronization method. This kind of deviation information can be measured by accurate GPS measurement methods in most reference stations in the city. The 100 FM stations are only a hypothetical value. In fact, there are no more than 50 FM stations in each metropolitan area, and not every FM station always carries stereo signals, and only a few FM stations are selected as the Geographical dilution of precision (GDOP). To perform hyperbolic positioning.
  • GDOP Geographical dilution of precision
  • the speed and vector of the mobile unit can be estimated by the position change every 1/10 second. For example, the fastest runner in the world runs 100 meters in 10 seconds, and the positioning frequency of 10 Hz per second is enough to measure the position of the runner to be 1 meter.
  • the acceleration of the moving unit can be calculated by further dividing by the difference value of 1/10 second.
  • a low-cost digital compass or yaw angle gyroscope mounts two separate receiver units on a car that is in line with the direction of the car itself (one after the other, or the left and right sides:), The angle between the line and the velocity vector taken by the first receiver can determine the direction of the car. This orientation is presented in digital form in many dead reckoning applications. However, for most applications, the receiver can be used as a digital compass when the velocity vector is in line with the speed axis of the mobile unit.
  • a mobile unit can periodically switch the FM receiver (to save battery power).
  • the FM receiver is used to measure the phase difference d 12 , d 13 between the three stations and remember the phase difference of the current period.
  • the phase difference between the phase difference and the latter period before being stored in the memory is subtracted to obtain a double phase difference ⁇ (1 12 , ⁇ if the double phase difference (Ad 12 , Ad 13 ) is 0 (or a slight measurement error) If the value is close to 0), the mobile unit can detect that there is no movement between two consecutive periods. However, if the double phase difference is not 0, and is much higher than a predetermined threshold, it can be detected. The movement of the mobile unit. So this The mobile unit can be attached to an object as a volume label, and the mobile unit label can be used as a motion detector for the object.
  • the present invention utilizes the extracted FM pilot frequency for navigation operations, unlike the signal strength or AM signal phase of prior art FM applications.
  • the fixed envelope signal of the FM broadcast signal can penetrate the building for indoor use.
  • the FM broadcast signal strength ranges from 25,000 watts (Watts, W) to 100,000 W in the metropolitan area FM radio station, and from 3000 W to 6000 W in the low power FM (LPFM) cell station.
  • W 25,000 watts
  • LPFM low power FM
  • the FM signal is very powerful.
  • the accuracy of positioning is directly related to the signal to noise ratio (SNR).
  • the present invention utilizes a unique 19 KHz pilot frequency and an FM band in phase with stereo broadcast for positioning operations.
  • This signal is protected not only by the FM stereo spectrum and the 8KHz guard band, but also by a stable sinusoidal waveform that accounts for approximately ten percent of the total power allocated to the FM band.
  • This signal is best suited for most stereo FM stations for TDOA positioning.
  • positioning using a regional reference station is the most suitable positioning method for indoor and garden positioning systems.
  • E-911 invests heavily in base station facilities to locate the location of the mobile phone.
  • the invention adds a very low cost and small FM receiver to the mobile phone unit, and does not require a high investment in the base station.
  • the fundamental frequency is 19KHz.
  • the pilot frequency has a wavelength of 15789.5 meters, and the frequency of each FM FM band of the modulation is from 88 to 108 MHz.
  • the problem of periodic blurring and multi-path reflected signals is easily solved.
  • the FM signal strength is 30 dB, which is greater than other indoor RF signals, which greatly reduces the interference of multi-channel reflected signals.
  • the invention can be implemented using low cost commercial single chip FM transceivers, some of which are also combined with Bluetooth machines.
  • the small size and low cost of this product package is more affordable to consumers than the GPS receiver.
  • the invention can be equipped with a small hardware component of the GPS receiver, and the expansion function becomes a dead reckoning device, or just becomes a GPS-FM integrated transceiver positioning device.
  • the present invention greatly expands the range of use of the GPS, and only adds a small amount of cost, that is, it can expand the range of use to the area between the indoor and urban high-rise buildings.
  • the present invention is described in the above embodiments, but the technical content thereof is not limited thereto, and may be designed differently according to actual design requirements.
  • the components used in the implementation of the embodiment may be selected such as a processor, a logic circuit, an application specific integrated circuit (ASIC) or a firmware.
  • ASIC application specific integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

运用广播调频信号定位地理位置的方法及系统
技术领域
本发明是关于一种定位系统, 尤指一种适用于室内定位的定位系统。 背景技术
全球卫星定位 (Global Positioning Satellites, GPS) 系统主要是用来提供 导航坐标。 目前的 GPS 系统使用 24 至 27 个半对地同步卫星 (half geo-synchronous satellites)在三维空间中进行三角定位。 但 GPS全球覆盖范围 仍有许多不足之处, 再加上传统的 GPS 接收器仅能接收直线传输信号 (line-of-sight signal), 加上常因信号强度太弱以致无法穿透建筑物的缘故, 导 致现行 GPS信号无法在室内使用。 另外, 由于高楼的障蔽, 城市内也很难取 得低仰角 GPS卫星的信号。 此外, GPS的制造、 发射与维持需要庞大昂贵的 国家资源, 而信号结构的复杂、 补偿干扰的需求、 相对弱信号的电离层迟延 等因素更导致 GPS接收器成本偏高。
在 GPS 被大量运用之前的导航系统主要是长程定位 (Long Range Positioning, LORAN)系统。 LORAN系统运用双曲线定位理论, 而非 GPS所 采用的球面三角定位理论。 两者的差异在于, 双曲线定位使用到达时间差 (time-difference-of-arrival , TDOA)而球面理论则用到达时间 (time-of-arrival, TOA)。但不论是双曲线定位理论或是球面三角定位理论均须要求各个基地台 完全时间同步, 才能达到高精确性。 LORAN 系统有一个主要高频 (high frequency, HF)电台与两个附属站, 于已知时间内以不同频率传送脉冲信号。 依据传统几何学, 对二点距离差为定值的各点所集合而成的线就是双曲线。 一对双曲线的交叉点决定一对象的位置。 该对象位置决定于二对基地台的距 离差 (TDOA:)。 现代化后的 LORAN系统采用 GPS的优点, 或是将全部基地 台都使用同步的原子钟, 而不必使用主一从 (master-slave)基地台的关系。
使用极低频 (very low frequency, VLF)信号的 OMEGA系统也被运用于长 程定位, 其频带介于 11至 15 KHz, 使用长波远距播送。 不同于 LORAN系 统, OMEGA系统运用两个连续波形信号的相位差决定位置。然而, OMEGA 系统仍有位置精确性不足 (偏差四海浬:)的问题, 这是因为如下理由: 1)远距播 送的波在历经多个周期 (cycle)造成的相位偏差。 2)因电离层发生多途径 (Path) 的特性。 3)平流层 (stratophere:)、 海洋或陆地所反射的信号会干扰直线波。 4) 相隔遥远的基地台所发生同步时差。
近来, E-911紧急援救项目开启对于目标定位系统的新需求。 美国联邦 通讯委员会 (Federal Communication Commission, FCC)规定行动电话业者应提 供大略位置的信息给 911 呼救的执法单位。 由于行动电话转播塔的结构, 更 便于定位系统建立在现有转播台的基础结构。 转播台的时间同步可以由行动 电话公司经由网络或 GPS进行。 全球行动通讯系统 (Global System for Mobile communications, GSM)行动电话采用到达时间(TOA)、 到达角度 (Angle-Of-Arrival , AOA) 、 增 强 测 量 时 间 差 (Enhanced-Observed-Time-Difference, E-OTD)、以及辅助全球卫星定位 (A-GPS) 等等。 分码多任务撷取 (Code Division Multiple Access, CDMA)行动电话则采 用进阶前向连结三角定位法 (Advanced-Forward-Link-Triangulation, A-FLT)的 技术。 分时多任务撷取 (Time Division Multiple Access, TDMA)行动电话则采 用 A-GPS的技术。 A-GPS用网络互助来缩短取讯时间, 可达五公尺以内的精 准度。 A-FLT与 E-OTD的精准度约 100公尺, TDOA与 AOA的精准度约 150 公尺。 除了 GPS的外, 行动电话定位的精确度只适用于 E-911的工作, 但不 适用于室内定位的应用。
现代室内定位系统多半运用宽带信号 (Wideband Fidelity, WiFi)或其它区 域网络 (Local Area Network, LAN)信号, 其所传达的信号强度 (Multi-stations Radio Signal Strength, RSS)、 TO A, TDOA或综合的三角定位。 该室内信号 传播会因为墙壁、房间隔板、金属家具而造成不均匀衰减与反射。高频 (2.4GHz) 信号在室内短距空间中, 仍会消弱许多。 此外, 现代室内定位还需要 WiFi 网络基本架构。
其它定位系统用商用调幅 (Amplitude Modulation, AM)广播信号的相位差 距导航。此系统使用商用调幅频率 (520KHz至 ΠΙΟΚΗζ,波长约从 200公尺 至 600公尺:)。 虽可用于室内, 但是信号会受建筑物导体影响而失真。
由于 AM 信号容易因建筑与障蔽物而衰减, 而调频(Frequency Modulation, FM)信号的相位随时变动, 因此, 另一种方法是利用 FM信号的 包络信号强度而非 FM信号的相位作为行动定位服务 (location base service, LBS)之用。 该方式称为小型个人对象技术 (Small Personal Objects Technology, SPOT), 其将微型 FM接收器内建于手表大小的显示装置中, 以提供行动定 位服务。 换言的, LBS是依照一定数量 FM电台的电讯强度 (RSS)大小排列, 用以决定城市所在。 比方说, 依据 5至 11个电台信号强度排列, 可以定位出 5哩内城镇的大略位置。 虽不精确, 但仍可用于 LBS。
发明内容
有鉴于此,本发明的目的是提供一种运用广播调频信号进行定位地理位 置的方法与系统。 一实施例是接收 FM立体声信号以及运用信号的相位差决 定地理位置。 由一个以上的接收器接收从三个 FM电台发出的 FM立体声信 号, 而每一立体声信号包括 FM19KHZ的导引频率; 再由 FM解调的导引频 率的相位差决定每一接收器的地理位置。
为让本发明的上述内容能更明显易懂, 下文特举一较佳实施例, 并配合 所附图式, 作详细说明如下:
附图说明
图 1是 FM立体声合成信号频谱。
图 2是运用到达时间差 (TDOA)的双曲线导航系统。
图 3是本发明一实施例, 行动或参考站的导引频率相位测量。
图 4是本发明一实施例, 计算单位距离中的代表相位差的例示图。 图 5是本发明一实施例, 决定地理位置 (即定位:)过程图。
图 6是本发明一实施例, 行动收发信号单元 (移动单元:)的功能方块图。 图 7A是本发明一实施例,于室外广场进行定位过程的示意图 (电台的距 离缩小以利图示:)。
图 7B是本发明一实施例,于室内区域进行定位过程的示意图 (电台的距 离缩小以利图示:)。
图 7C是本发明一实施例, 以室内中继器进行定位过程的示意图。
图 8是本发明一实施例,于已知电台位置的条件下进行定位的场地预备 图。
图 9是本发明一实施例,于未知电台位置的条件下进行定位的简化场地 预备图。 图 10是本发明一实施例,于未知无线电站位置的条件下进行定位的简 化选址场地预备图。
图 11A是本发明一实施例的室内定位过程图。
图 11B是本发明一实施例的位置查表。
图 12是本发明一实施例, 简化的室内定位的过程图。
图 13是本发明一实施例, 以 FM合成信号进行 GPS扩大航位推算的 图示。
图 14A是本发明一实施例, 运用 GPS、 航位推算与 FM信号进行定位 的流程图。
图 14B是本发明一实施例, 定位用 GPS-FM综合接收器的结构图。 图 14C是本发明一实施例, 以 GPS-FM综合接收器进行的定位过程图。 图 15是本发明的一实施例, 行动站利用单到串行重复相位侦测进行定 位的功能方块图。
图 16是本发明一实施例的寻位 /定位过程图。 具体实施方式
在以下各实施例中, 在不同的图中, 相同部分是以相同标号表示。
本发明提供一运用广播调频 (Frequency Modulation, FM)信号进行寻位 (locating), 定位 (positioning)的方法与系统。 一实施例是关于运用广播 FM合 成信号的多任务导引频率进行寻位与定位。 广播 FM信号可以包括商业用广 播 FM无线电信号。 FM信号的相位, 即导引频率的相位是用于定位。 因此, 现有商用广播 FM信号能够用于寻位、 定位与导航, 其应用层面广泛, 甚至 在一实施例中, 利用三个以上的 FM立体声电台的信号, 即现有的 FM 广播信号。 在下列实施例中, 只用三座电台说明, 但本发明的原理可推广到 更多无线电台来定位。 利用更多电台的平均值可以得出更高的精准度。 例如 使用四座电台, 4C3 = 4, 可以得到 4次定位。 如果使用 5座电台, 5C3 = 10, 则可以得到 10次定位。 图 1 是传统 FM 立体合成信号的频谱 10。 FM 电台可分配的频带为 ΙΟΟΚΗζ (千赫兹)。 FM立体声理论是分成将左 (L)、右 (; R)声轨相加的 L+R声音, 以及利用双边带抑载波 (double side-band suppressed carrier)调变的 L-R声音, 其中单音接收器可于基频带接收该 L+R声音, 抑载波的频率为 38 KHz。 如 图 1所示, 导引频率在 19 KHz的相位与 38KHz的载波相位同步, 并合成传 送。这也让立体声 L-R声音得以透过清晰且不被干扰的导引频率来回复相位。 导引频率的乘数还可用来作为 57KHz的射频数字系统 (radio data system, RDS) 数字传讯。 因为导引频率的相位与立体声信号的相位同步, 所以导引频率无 法自行产生, 而每一 FM电台有自己的 19KHz导引频率的相位, 各个 FM电 台的导引频率也没有同步。 根据本发明的一实施例,一接收台接收发自三座电台 Sl、 S2与 S3的 FM 信号。 接收台从第一对电台 Sl、 S2的合成 FM信号中取出正弦导引频率。然 后测量该导引频率的相位,并比较之, 以分别算出离 S1、 S2二电台的距离差。 在去除电台的偏差值后, 二导引频率的相位差代表电台 Sl、 S2的到达时间差 (TDOA)。 如图 2计算例 20所示, 利用前述的 LORAN或 OMEGA系统, 与 FM 电台 Sl、 S2等距离的各点的集合, 其轨迹是一双曲线 21。 另一对电台 Sl、 S3也用相同方式得到另一双曲线。如同 LORAN或 OMEGA导航系统的 原理, 由二组 FM导引频率差可以得到二双曲线交点 22来定位。 因为 FM电台之间, 其导引频率的相位并未同步化, 所以用于导航定位 之前, 需先用已知位置的参考台 (reference station, 以下简称 RS)测量三座 FM 电台之间的原始相位差。 其后, 诸多移动单元 (mobile unit, 以下简称 MU)利 用参考台的信息,计算每一移动单元与参考台 (或基地台:)或者 FM电台的相对 位置。 到参考站的实际相位差可以透过每一座 FM 电台距离参考台的实际距离 算出。 藉由测量相位差减去实际相位差, 可以算出原始电台的相位差。 一旦 得知原始电台的相位差, 将移动单元测得的相位差减去原始电台相位差, 可 以推算出移动单元的实际相位差,再用该实际相位差决定该移动单元的位置。 图 3绘示三座 FM电台 Sl、 S2、 S3的导引频率 32之间的相位关系 30。 电台 S2相对于电台 S1的相位为迟延 (相位差为正值:),电台 S3相对于电台 S1 的相位为超前 (相位差为负值:)。 因此, 原始相位差可被界定在 -180度至 180 度之间。 以 19KHz 导引频率为准, 原始相位差能够分别转换成时间范围 ±26.32μ8或距离范围 ±7894.74公尺。以下说明提及的距离是做为相位测量之 用。 从固定参考台 (reference station, 以下简称 RS)或基地台 (base station, 以 下简称 BS)至 FM电台的距离已知, 可以算出实际相位差 (如同将 FM电台同 步化:)。 FM电台间的相位差亦能够由 RS或 BS的 FM导引频率接收器所测得。 因此, 从 Sl、 S2导引频率的原始相位差能够以下列关系式 (1)算出: 原始相位差 (S1, S2) =测量相位差 (S1, S2) -实际相位差 (S1, S2) (1) 对 MU来说, 其所测量自 Sl、 S2的相位差减去 (S1,S2)原始相位差可得 从 Sl、 S2的实际相位差。 如下列关系式 (2
MU实际相位差 (S1, S2) =
MU测量相位差 (SI, S2) -原始相位差 (SI, S2) (2)
(S1,S3)的部份亦同, 从 Sl、 S3的原始相位差可在 BS由下列关系式推算: 原始相位差 (S1, S3) =测量相位差 (SI, S3) -实际相位差 (S1, S3) 而 MU距 Sl、 S3信号的实际相位差可以依下式算出:
MU实际相位差 (S1, S3) = MU测量相位差 (S1, S3) -原始相位差 (S1, S3) 接着运用图 2所示的双曲线定位法,以 MU的 FM导引频率实际相位差 (即实际相位差 (S1,S2)和实际相位差 (S1,S3X), 再加上整数个导引频率的周期 数, 二条双曲线的交点 22即为该 MU的位置。 图 4是二维坐标系统空间范例图 40, 用于说明本发明的实施例如何运用 BS或 RS的 FM导引频率的相位差, 算出 MU的位置。 BS、 RS与 MU均接 收发自 FM电台 S l、 S2、 S3的 FM广播信号。 为了方便解释, 计算单位会从 时间差转换成距离, 其中, 距离等于时间和光速的乘积。 首先, BS的测量相位差^ n12 (下标线代表该值属于 BS或 RS)的计算方式 如下: BS与 FM电台 Sl、 S2的距离分别为 与 , 该二距离可以由其已 知的经纬度位置算出。 与距离 1、 ^—相对应的导引频率波长的倍数 il、 η 可分别依下式算出:
m = Integer (dl I λ),
n = Integer (d2 I λ),
其中 λ表示导引频率波长为 15,789.5 公尺, Integer^表示取自变量的整 数值。 因此距离 1、 d2 可改写成:
Figure imgf000011_0001
其中 、 52 分别表示: BS的接收器上从已知的距离 di、 d2_减去 m 、 ηλ 的相位差数。 与 的距离差可用来计算由电台 (S1, S2)至 BS的距离 差 (实际的 TDOA) , 如下式: ά1 - ά2 =(ηι - η) λ + δι2 ,
其中 2 = ^i - ^, 2是 BS接收发自 SI与 S2导引频率的计算 (或应 该:)相位差。 一般而言, 距离不是两个水平点之间的直接距离。为了增加接收电波强 度,广播电台通常从平地上拔地而起。 FM电台天线的海拔高度会标示在电台 信息中。 接收器的高度可以用气压测高仪 (barometric altimeter)测得 (某些应用 产品中会将气压测高仪微型化以利整合:)。 FM电台天线到接收器 (亦即从电台 S1到 BS接收器) 的直线距离 (line of sight, LOS)与从接收器到 FM电台地址 的水平线, 构成一夹角 θ。 因此, 直线距离 (LOS)的实际距离与地面距离的比 值为 cose。大部分的情形中,因为水平距离远大于天线高度,因而 Θ几近为零, 故 cose趋近为 1。 不过, 如果接收器接近电台, 就必须考虑对 LOS的校准比 率 l/cosGo 在 BS所测得的 TDOA不是实际的 TDOA, 原因在于各电台之间不同步, 因此 Sl、 S2之间存在着一 FM电台原始相位差 χ12。 因 BS的位置已知, 可以 用来计算 BS至电台 Sl、 S2的实际距离, 以供计算电台原始相位差。 因此, 关系式 (1)可以改写成关系式 (3)如下, 发自电台 Sl、 S2至 BS的导引频率 (测 量相位差^ 2加上 (m-n)个周期数:)减去实际距离 ( - d2) 就可得到原始电台 相位差 χι2
%i2 = ((m - η) λ + 5mi2 ) - (dl - d2) = §ml2 - δι2 (3) SI与 S3之间 FM电台原始相位差 χ13亦可以依相同方式算出, 其中: m = Integer (dl I λ),
β = Integer (d3 I λ),
Figure imgf000013_0001
d3 =βλ + δ3,
dl -ά3 = (ηι-β)λ + δι3
δ13 = δ1-δ3^ 3是88接收发自 SI与 S3的导引频率的计算相位差, 因此, lis = ((m— β) λ + 5ml3 )-(dl-d3) = 5ml3― δ13 在计算从 MU至电台 Sl、 S2的距离差 d12 (TDOA)之前, 首先需测量从 电台 Sl、 S2至 MU的相位差 5ml2。 其次, 估算从 Sl、 S2发出的导引频率波 长 (15,789.5公尺)的111、 n整倍数, 而 m、 n能够从 RS得到的 RSS值或从公 开的场强等位线图 (field strength contour)估算出来。 因为电台原始相位差 χ12 已从关系式 (3)导出, 所以能够用关系式 (4)算出从电台 Sl、 S2至 MU的实际 距离差: di2 = dl - d2 = (m - η) λ + 5mi2 - χι2 (4) 其中 512 = 5ml2-Xl2 , 因此 d12代表经过 χ12校准后的实际距离差 (实际的 TDOA) , 而 5ml2是由 MU测得。 同理: d13 = (m— p + 5ml3-Xl3 (5) 其中 513 = 5ml3-Xl3, 则 d13是 MU至电台 Sl、 S3的实际距离差。 由于二电台 (二点:)间距离等差所组成的轨迹是一双曲线, 所以距离等差点 d12与 d13形成的轨迹分别为二条双曲线, 该二条双曲线的交点决定 MU的位 置。 另外, (m-n) λ被称为周期模糊项。 至于周期数 (15789.5 公尺:)则能够用 MU接收的 RSS值以及参考公开的 FM电台的场强等位线图估算出来。 藉由 公开 FM场强等位线图,可以建构出 RSS值与周期倍数的概略查询表 (look-up table) 由于电讯强度介于 15789.5公尺的周期之间会减弱许多, 所以不必担 心周期模糊问题。 因此, 请参考图 5过程 50, 依据本发明的一实施例, 使用 BS的电台信息 来决定 MU位置的方法包括:
步骤 52: 由 BS计算相位差 δι2、 δ13以及测得的测量相位差 5ml2、 5ml3算出 原始电台相位差 12、 χ13,并且传送 χ12、 χ13至 MU。 而 BS也能够确定 MU的 位置, 而不需将 12、 χ13传送至 MU。
步骤 54: 在 MU测量相位差 5ml2、 5ml3 o 将 5ml2, 5ml3的数值由 MU传送至 BS, 用来算出 MU位置。
步骤 56: 估算 ηιλ、 ηλ (例如根据 RSS距离公式或场强等位线图来查表:)。 如果 m或 η落在整数波长的边界上,那么也可以测试 (m-1)或 (η-1)波长以找出 最适合值。
步骤 58: 从关系式 (4)与 (5)计算 d12 、 d13, 接着运用双曲线计算法 (或双 曲线 /位置的查表:)算出 MU位置坐标 (X, y:)。 上述步骤可以用不同的硬件 /软件执行。 在另一实施例也可使用卡曼滤 波 (Kalman FilteringM立置计算法。根据本发明, 定位精确度系于 FM广播电台 至 BS距离的精准度, 以及 5ml2、 5ml3、 5ml2, ml3相位测量的准确度。 本发明能够应用于许多环境, 包括 BS距离 MU数百公尺以内的园区定位 或室内定位。 例如, 本发明实施例的室内寻位系统能够在医院使用, BS可用 来定位病患、 医疗干部或高价值仪器; 或者汽车商使用 BS定位配有 MU的车 辆或监视在邻近街道的试驾等。 表 1列出应用范例如下:
表 1: 应用范例
Figure imgf000015_0001
在此举一实施例说明园区 /室内定位系统。 图 6是本发明实施例的移动单 元 (; MU)60的功能方块图。 MU 60包括天线 61、 FM立体接收器 62、 具有高 速定时器 timer)与运算放大器(operational amplifier)功能的微控制器 (microcontroller)64, 以及地区性射频 (radio frequency, RF)收发器 66(RF收发 器可用一 FM RDS收发器:)。 该高速定时器用来精确测量相位, 而运算放大器 将信号的正弦波转换成方形波, 以供相位边缘侦测之用。 如前所言, MU 60能够结合 BS用于室内环境或户外园区。 图 7A绘示园 区地图 (; Plot map)70。 园区地图 70标示园区建筑物 72、 固定基地台 BS、 移动 单元 MU与可多可少的参考台 RS, 此 RS是一座没有地图显示与人性接口的 BSo BS、 MU与 RS都同时接收由 FM电台 Sl、 S2、 S3发出的信号。 展点数组 71可加盖到园区地图 70以及建筑物 72,而解析点 74则代表地 理位置, 展点数组 71可保存于 MU与 BS的内存内。 若需要更高的分辨率, 便需要更多的内存容量。 每一方格区或解析点以方格点坐标 (x,y:>表示, 为求方便起见, 以固定 BS 坐标为原点 (0,0)。 以原点 BS为基准, 该坐标系均以正整数与负整数的方式向 四周增加, 直到能够涵盖整座建筑物或整个园区的最大程度为止。 该建筑物 或园区的角落各点是经过 GPS测定位置的参考点 73, 在场地预备处理程序 时, 利用各参考点以展点图 (plot map)进行内插法, 预先决定每个 (x,y:>坐标 74 的地理位置, 并且储存在内存内。 从上述关系式 (4 5)可知, d12、 d13的值是从园区内所有坐标 (x,y)到电台 Sl、 S2、 S3的距离差能够预先决定, 因为已知每一坐标的地理位置。 所以计 算坐标点(112、 d13的原理与方法与计算 BS、 RS到电台 Sl、 S2、 S3的方法无 异。运用算出来的波长 m、 n、 p, 所有 BS、 RS与方格点坐标到电台 Sl、 S2、
S3的距离差可以在场地预备处理程序中, 按照相同方式预先计算出来, 其公 式如下:
dl2 = (m - n) λ + δΐ2 所有方格点
dl3 = (m - Ρ) λ + δΐ3 所有方格点
dl2 = (m - n) λ + δΐ2 所有 BS禾口 RS
dl3 = (m - β) λ + δΐ3 所有 BS禾口 RS 因为 BS与 MU相近, 所以基本上 BS的 (πΐ-Π)λ与 MU的 (ηι-η)λ二值相 等。 同样地, d13与^也一般的算法。 如果其位于波长边界 (即 MU与 BS距 离电台的距离接近整数波长:), 则可将 与 (m-ii^操作为相同值, 而余数 保存在 MU的相位差 δ12与 BS的相位差 2。 室内定位或园区定位的双重差分法 本发明引进一双重差分法, 应用在室内与园区定位中特别有效。 首先, 方格点相对于 BS和 RS的双重差分的定义为:
Adi2 = di2 -di2 = δΐ2 - δΐ2 。同理,
Adi3 = (in -di3 = δι3 -δΐ3 (6) Ad12、 Ad13的值被定义为方格点相对于 BS或 RS的双重相位差。 在关系 式 (6)中,周期数模糊项 (ίίΐ - ίΐ)λ、(ηι-η)λ ^ (ηι-β)λ、 (ηι-ρ)λ以及原始相位差 12、 χ13被消去而变得无关紧要, 所以使用双重差分法将大幅改善位置精准度。 另 夕卜, 通常 Ad12、 Ad13数值很小, 并会随着 MU与 BS(0,0)之间距离增加而增加。 在算出每一方格点相对于 BS或 RS的双重相位差 Ad12, Ad13之后,将该值储存 于内存内, 以供后来室内或园区定位之用。 为了定出 MU的位置, 首先以公 式 (6)依据 (5ml2 - ml2)、 (5ml3 - 5ml3) 算出 Adml2、 Adml3, 再依本说明所述方法获 得 MU的 (x,y)坐标。 就室内寻位系统而言, MU 不须具备地图或知道其自身位置。 但是有些 应用之中, MU可能需要地图或知道其自身位置。 此时, 前述的数字地图可 以从 BS下载至 MU,或者 BS也可以算出 MU位置,并于每一次位置定位后, 下载至 MU。 MU包括共享接口, 以便从附近的 BS或 RS取得信息 /服务。 图 7B是本发明的另一园区地图 75。 此外, 如图 7C中的园区地图 77所示, 当 所在的区域内有强化水泥建筑物或配备金属架构的建筑物时, 发自广播电台 Sl、 S2、 S3 的 FM信号可使用中继器 (repeater)78, 使信号穿墙至室内的 BS 与 MU。 此时, 导航中继器 78的附加相位差为512 = (11 - d2, 513 = dl - d3。 新 X,12 与 ,13修正¾,12 = 12 + 512 ¾,13 = 13 + 513。经修正后,根据三个中 继器 78所在的方格点上进行双曲线三角测量。 其它在强化水泥建筑物内部的实施例也能够用图 7C所示的地图加以说 明。该实施例使用三个以上位于中继器 78的低功率 FM收发器来取代 FM信 号。 典型低功率 FM收发器的运作频带属无需执照 (亦即, 不需政府的使用执 照:)的 FM 功率频带, 这些 FM 功率频带是符合美国联邦通讯委员会 (U.S. Federal Communication Commission, FCC) 第 15号规则的规定 (;例如, 距离收 发器三公尺的功率测量值必须低于 250 μν/m:)。 FCC许可下, 接收器能够使 用任一频率的频带。 此外, 从该三个接收器发出的导引频率可以为 19KHz以 外的正弦波或其它波型的周期波。 从图 7A到图 7C, 多出的参考台的功能如同基地台, 更能准确定出 MU 的位置。 由于无线电波的相似性, MU越靠近 BS或 RS所提供的信息能够更 准确地定出 MU位置,亦使 BS、 RS与 MU的收发器的传输耗电量更低。 BS、 RS与 MU可以使用类似的 FM硬件与天线以避免不同硬件所造成的相位测量 的差异。 因此, RS可使用低成本 FM接收器。 当使用 RS时, BS能够监看该 RS所测得的原始相位差 χ12、 χ13的差距, 而该差距可以在 BS计算中得到校 正。 RS与 MU在 FM接收器的硬件上并无差别。 BS知道 RS的固定位置, 以便进行电台距离的计算。 如果园区过大而超出 BS 的电讯可及范围, 则可 以设立更多座 BS。 因此, 可以有下列数种可能的系统架构, 例如: 单一 BS 以及多个 MU; 单一 BS、一座或多座 RS, 以及多个 MU; 多座 BS、多座 RS, 以及一个或多个 MU等等。 已知 FM电台位置实施的场地预备工作
以下将以一实施例说明场地预备处理步骤以进行室内或园区的定位。场 地预备是用来简化 MU位置的计算。如果同时有多个 MU,在 BS进行双曲线 定位计算可能需要高速运算处理。 场地预备工作先行计算一方格坐标的相关 数值, 并将该数值储存于一查询表, 以供后来的存取。 查表比运算更快, 但 需占用内存。 图 8是例示说明用电台 Sl、 S2、 S3实施场地预备工作 80的方 法, 并结合图 7A的地图说明如下: 步骤 81 : 取得实施对象的室内或园区的数字化地图 (或展点图:)。在园区 或室内地图上找出一个以上经 GPS测定的参考点 73。
步骤 82: 将以实际尺度绘制成的展点图 70划分成方格坐标, 并使用园 区内经 GPS测定的参考点 73 的经纬度为基准, 将所有方格坐标 (x,y)插补入 经纬度坐标, 用来计算该方格点至电台 Sl、 S2、 S3的距离 (Sl、 S2、 S3亦以 经纬度坐标标示:)。 较佳地, 参考点 73 的选定后应将其设定为位于多角落, 以便使用内插法决定其它方格点的经纬度。
步骤 83 :计算每个方格坐标 (x,y)至三座已知电台 Sl、 S2、 S3的距离 dl、 d2、 d3。 使 dl与 d2, dl与 d3相减, 分别算出每个方格坐标点至电台的距离 差 (d12, d13)以及 Sl、 S2、 S3至 BS的距离差 ( 2, ^3)。将各坐标距离差 (d12, d13) 减去 BS距离差 12, 3),可得出每一坐标点 (x, y)的双重相位差 (Ad12 , Ad13 ) = (di2 -An, H )。
步骤 84: 因此每一方格点 (x, y)都有一相应值 (Ad12, Ad13:), 记录于 BS的 内存中用来读表, 以供定位 MU之用。 以下段落将说明如何于场地预备工作,根据 BS与 MU的计算与查表所 得的数据, 按照上述步骤进行 MU定位作业。 未知 FM电台位置实施场地预备工作
一般而言, 双曲线定位法会得出一个非线性方程式。 每坐标的双重相位 差值 (Ad12, Ad13:)并非依线性方式增加。然而, 比起无线电电台数英哩或数十英 哩的距离, 园区相对上是比较小的区域, 而小区域的双重相位差值会以比较 接近线性的方式增加。 依据上述推论, 当电台的位置没有被精确掌握时, 就 必须找寻另一种替代的场地预先处理法。 然而, 信号与强度的近似方向 (direction)对三角测量法有帮助。 图 9以图标说明本发明于未知电台位置的条 件下, 如何进行简化场地预备工作 90。 以适当的分辨率 (公尺:)将园区展点图 70划分成方格坐标点。 方格点的三重差分法
在另一实施例中, 本发明提供一种三重差分法, 不须查表以供简化定位 之用。 如图 9中放大区块 91所示是一传统笛卡尔 (Cartesian)坐标系表示的方 格化数字地图, 从 BS或 RS为原点开始划分一块 Ν χ Ν方格 (例如 N=5)。 然 后, 使用测量双重差分法算出每个方格点的双重相位差 (Ad12, Ad13:), 其中 Ad12
= (5ml2 -
Figure imgf000021_0001
)0 接着, 再将连续方格点所测量的双重相位 差值以水平方向与垂直方向相减 (得三重差分:), 可得 Δ 12 =Adn 12 -Αάη- 2, 与 Δν12 = Adn 12 -Αάη- 2 (Adn 12是指现在的方格点, 而 AcT^是指前一个方格点, Ahu 与 Δν12是指水平与垂直方格三重差分值:)。 同理可获得 Δ 13 与 Δν13。 在 Ν=5的例子中, 确定出 20组水平与垂直差分值, 若该方格差分 Δ 、 Δν为均 等值 (uniform), 则能够用该三重差分 (Δ 12, Δν12, Ah , Δν13:)解出双重相位差值 (Δάΐ2, Ad13)。 如果该三重差分并非定值, 则能用渐差内插法 (gradual difference interpolation)处理的。 若该差分值是逐渐增加或逐渐减少, 则能使用一非线性 插补方程式处理该差分。当已将每一方格坐标 (x,y)的双重相位差值 (Ad12, Ad13) 建立一查询表时, 可以将任一 RS或 BS当作原点 (0,0)。 或者是, 分别把数个 RS或 BS位置作为原点, 将整个地图 71划分成多个小区块 93, 则该查询表 可以更小。使用渐差内插法, 可以将较小的 (Ad12, Ad13:)查表插补完成。该查询 表的大小取决于 RS的个数以及从 RS或 BS作为原点 (0,0)延伸出去的方格坐 标的最大范围。 当 GPS测量无法使用时, 此法是一个有效的场地预备处理方 法。 该查询表划分成复数个由 BS或 RS所涵盖的区域。 然而, 若方格三重差 分 12、 Δν12基本上为均等值, 则不需内插法, 原因是下述的二元线性方程式 求解法可以使用该平均差完成简易定位, 详见下述。 毋须查表, 藉由解二元线性方程式求解的简易定位法 若将 MU对 BS (或 RS)相对距离的测量双重相位差定义为 Ad12、 Ad13, 则该双重相位差 Ad12、 Ad13必定为平均三重差分 Δ 2, Δ ΐ2或 Δ 3、 Δν13的组合, 以决定 MU位置的定位。 因此, 假设水平与垂直方向的乘数可能为 与 。 乘数 x, y的线性方程式为:
Figure imgf000022_0001
此是一个二元线性方程式求解二变量 (x,y)的问题。 因此, 基本上方格双 重相位差值的增加方式若为均匀 (线性:)增加,就能够无需查表而解出该线性方 程式, 进而确定 MU的位置。 大多数的情况对定位精准度的需求并未到公分 程度时, 二元线性方程求解法就成为不须查表的简易定位法。
图 10是本发明在未知 FM电台位置的条件下进行场所测量 (场所预备工 作:) 100的方法, 该方法包括:
步骤 101 : 取得实施对象的室内区域或园区的地图, 再将该地图做成方 格化的数位地图。
步骤 102: 按照想要的坐标分辨率, 将该数字地图划分成多个等距方格 坐标 (x,y)所组成的二维方格地图。
步骤 103 : 从 BS或 RS作为原点 (0,0), 展开 Ν χ N (线性水平与垂直:)坐 标点,以测量 5ml2、5ml3相位差,并且根据图 9取得所有坐标的双重相位差 (Ad12, △d13)。
步骤 104: 将各点的双重相位差 (Ad12, Ad13:)以水平与垂直方式相减, 取 得三重差分值 Δ 12、 Δ 13、 Δν0, Δν12, 并根据图 9算出平均三重差分值 12、 Ahn、 Av 、 Δνη ο
步骤 105: 若隔邻差分值并非均等值, 则利用非均等值内插法, 使用渐 差分值 Δ 12、Δv12与 Δ 13、Δv13建立计算 (Ad12, Ad13)所必要的查询表,再以 (Ad12: Ad13:)算出相对于 BS或 RS作为原点 (0,0)的 MU位置 (x,y:)。
步骤 106: 若隔邻差分值基本上为均值 (或精准度不需到公分), 则使用 相近直线平均法。 记录平均三重差分值 ΐ2、 ΐ3、 Δν12, Δν13, 并以之为参 数, 解出二元线性方程式相对于原点 (0,0)的 MU(x,yM立置。 决定 MU位置的作业是根据 BS与 MU所测得的值,以及按上述步骤实 施的场地预备工作所得的查表。 该作业方法详述如下: 已知 FM电台位置的条件下实施场地预备工作的定位作业
接下来说明在已知 FM电台的位置的条件下, 实施预备工作中 (例如园区 或室内环境:), 如何进行定位作业, 以确定 MU对 BS 的相对位置。 首先在 MU进行相位测量, 测得 5ml2、 5ml3;在 BS或 RS进行相位测量, 测得^ ^2、 5ml3。在 BS或 RS的相位测量值有可能与先前预备工作有些不同, 但是差分 值(~八(112, ~Ad13:)基本上会保持不变。 其次, 计算出差分值 5ml2 - ^ml2 与 5ml3 - 5ml3, 以组成一对双重相位差对 (5ml2 - ^ml2, 5ml3 - ^ml3)用来查表。 此查询表即 在场地预备工作中所完成。 如此一来, 运用由关系式 (6)所衍生的近似关系式 (7), 找到接近 MU位置的方格点 (x,y), 即是:
Adi2 ~ (5mi2 - 5mi2) , Δάΐ3 ~ (5mi3 - 5mi3) (7) 于是, 利用 (Ad12, Ad13:)来查表, 找出最接近的 (x,y), 以便定位出 MU的位 置。而即是 MU的测量值 (5ml2 - 5ml2 , 5ml3 - ml3)最接近该点的 (Ad12 , Ad13)的储 值 (x,y)。 除此之外, 还可以利用最小平方近似法 (least square approximation), 藉由寻找邻近 4个方格坐标来寻找最接近坐标。 此法能够能出在该方格分辨 率内所能得到的最精确位置, 至于更精确的计算法有待下述。 MU测量值 (5ml2 - ml2)与 (5ml3 13),可找出最接近 (Ad12 , Ad13 )的四个方 格点, 可以提高位置的精准度。 此时, 该邻近四个方格点的加权线性内插法 可以解出更高的分辨率, 而非用逼近出最接近方格点的解。 图 11A总结上述各项作业为一作业方法 110, 包括下列步骤:
步骤 111 : 在 MU与 BS测量 5ml2、 5ml3、 5ml2, 5ml3, 并且运算 (5ml2- △d12与 (5ml3- ml3 ) ~ Ad13,做成一对(~八(112, ~八(113)来查表。
步骤 112:利用场地预备工作所取得的查询表,使用最小平方逼近法找到 最接近的一对(Ad12, Ad13), 以决定 MU的 (x, y)位置。
步骤 113 : 若求更精确, 比较四个方格点的 (Ad12, Ad13), 找出最接近的四 个相邻方格点; 然后用线性内插法, 以相差值比率增减, 确定 (x,y:>值任该四 个相邻方格点之间最可能的 MU位置。
MU越接近 RS, 定位精准度就越高, 而相位差 (5ml2 - ^ml2:)与 (5ml3 n13:) 的测量精准度也越高。 在未知 FM电台位置的条件下, 场地预备工作的定位作业 (简易场地预备) 接下来说明在未知 FM 电台的位置的条件下, 在前述简易场地预备工作 中 (例如园区或室内环境:), 如何进行定位作业, 以确定 MU离开 BS的相对位 置。 如图 9所示, 以 RS所在的位置为原点 (0,0)。 当 MU越接近原点, 其定 位精准度就越高。 该定位方法包括 MU测量相位差 5ml2、 5ml3, 以及在 BS或 RS测量相位差^ 2、 5ml3 o RS的位置是固定的, 而且还会不时将其测量值传 输给 BS,做为检验 MU接近程度的依据。此时,将各个 (5ml2 - 5ml2, 5ml3 - 5ml3) 组成一对来查表。 事实上, 该查询表在未知 FM电台的位置的场地预备工作 已完成。 此对 (5ml2 - ml2, 5ml3 - ml3)即是用做 (Ad12, Ad13)来查表, 其中 (5ml2 - mi2 ) ~ Adi2, (5ml3 - ml3) ~ Ad13
利用查表的方式获得 (Ad12, Ad13:)后, 再藉由最小平方逼近法搜寻出最接 近 MU位置的四个相邻 (X,y)方格点。 或者用前述的四相邻方格点依据内插法 更精准地定出 MU的位置。
由于 RS测得的值^ n12ml3会不时传输到 BS, 因此 BS能够持续比较 MU测量值 5ml2, 5ml3与 RS所得的测量值 ^ml2、 5ml3,检验 MU接近 RS的程度 (以从 MU的处接收到最接近值或 RSSI最高接收值为依据:)。 此时 RS指定为 原点 (0,0)。 利用测量值 (~Ad12, ~Ad13:)与最符合的 RS为根据进行查表作业, 以找出 MU对 RS原点 (0,0)的相对位置 (x,y:)。
均匀线性逼近法Uniform linear approximate)是将二元线性方程式求解, 得出 (x,y)坐标。 而该二元线性方程式是由 MU测量所得的差分值 (Ad12, Ad13), 公式如下:
Figure imgf000026_0001
因此, 利用从场地预备工作中取得的三重差分平均值 1213, Δν12, Δν13,以及所测得的值对 Ad12、Ad13可以不用查表而算出 MU坐标唯一解 (x,y:)。 另外, (x,y:>可以为非整数解。
图 11B是 (Ad12, Ad13:)的部分查表的范例。 在此范例中, 水平平均增加量 、 、 均为 1.71公尺, 而垂直平均增加量 Δ ι,、 则分别为 0.71公尺 与 -0.71公尺, 只有数字最后一位因舍入法造成 0.01公尺的误差。 因此, 以测 得的距离差 Ad12、 Ad13, 以及二元方程式 Ad12= χΔ 12 + y Δν12、 Δά13 = xAh + γΔν13, 可以算出唯一解 (x,y), 即是 MU相对于 BS的位置。 由于双曲线的局 部直线性, 所以不需要查表得解。 图 12总结上述各项作业为一作业方法 120, 包括下列步骤:
步骤 121: 于 MU、 RS与 BS测量 5ml2、 5ml3、 5ml2, 5ml3o 并且算出 (5ml2-
^^ 八^与^^-^^〜八^, 制作成 (Ad12,Ad13)以查表。
步骤 122:比较 MU的测量值与 RS的测量值 (以 RS所接收的 RSSI最高 接收值为依据:), BS用来确定最接近该 MU的 RS; 并以该最近的 RS为原点
(0,0)决定 MU的相对位置。
步骤 123: 使用线性近似解法决定 MU的坐标 (x,y:)。 以场地预备工作所 得的 12、Δ^13、Δ 2、Δ 3及 MU测得的测量差 (Ad12, Ad13)来解线性方程式 Ad12
= X Ahl2 + y Δν12与 Ad13 = xAhu + γΔν13,算出相对于 RS或 BS的原点 (0,0)的方 格点 (x,y)坐标。
步骤 124: 使用非线性内插的查表法的情形。 使用简易场地预处程序所 建立的查表找出最符合的值对 (Ad12, Ad13), 用最小平方逼近法决定 (x,y)坐标。
步骤 125:若求更精确的位置判断,则在四个方格坐标之间比较其卜 Ad12, ~Ad13), 找出最符合的四相邻方格点; 然后用线性内插法, 以相对比率增减来 决定 MU的最佳位置 (x,y)。
GPS航位推算 (Dead reckoning)的应用 本发明还能够进一步扩大 GPS航位推算的范围。 当处在都市高楼之间或 室内, 使得 GPS可涵盖卫星小于 4颗时, GPS就可能要使用航位推算。 以下 将讨论汽车或手持 GPS接收器的 GPS二维航位推算的范例,并以该范例说明 图 13中的计算方法 130。 图 13中每一大 /小星标代表航位推算的位置点。 如 图 14B所示, FM立体接收器 172与处理器 173和 GPS接收器 173内建于 GPS 装置 170之中, GPS装置 170可以是 MU。 当需要航位推算功能时 (亦即 GPS 可涵盖卫星降至 4颗时), FM立体接收器 172会开启, 并与 GPS同时平行运 作。 MU内的 FM立体接收器 172在每一 GPS位置点上进行相位测量, 并且 进行追踪航位推算精准性的测试。该测试结果与 GPS的实际位置点相互比较, 并利用卡曼滤波法预测矩阵 (prediction matrix of a Kalman Filter)实施校准,该 方法将讨论于后。 而处理器 173决定每一位置点的 χ12与 χ13 :
χΐ2 = ((m - η) λ + 5ml2) - (di - d2),
χΐ3 = ((ηι - β) λ + δπι13) - (ά1 - ά3)
其中 dl、 d2、 d3是依据已知 GPS位置与三座 FM电台 SI、 S2、 S3所 算出的距离, ml213是测量相位差, 而 、 n、 2_如前述, 是由 dl、 d2、 d3所决定。 GPS失去追踪前的最后位置点称做离去点, 可以用在该离去点所 测得的 5ml2、 5ml3计算出二条双曲线的距离差 d12、 d13, 其中:
di2 = dl - d2 = (m - η) λ + (5mi2 - %i2 )
dB = dl - d3 = (m - p) λ + (5mi3 - χΒ ) 假定从离去点消失之后,(ηι-η)λ并未改变。若离去点位置是位于整数倍 波长的边界上,
Figure imgf000028_0001
而使测量值 5ml2保留余数。 该 GPS最后位置点被定义为离去点, 也就是航位推算的参考点。 如果 GPS信号 位置点重新出现, 又会重启正常 GPS接收信号程序。 航位推算位置点之间隔 频率可以与 GPS相同 (正常为一秒一次:), 然而其频率通常为更高。 以该 GPS 离去点做为航位推算的参考点可以避免错误传播 (error propagation:)的问题。一 般而言, 直接将离去点做为参考点会比较精准, 因为每一次逐步定位作业可 能在每一步骤中都可能累积错误量。 然而, 利用卡曼滤波法除了原始相位差 χ12、 χΐ3以外, 不需记忆离去点测量值。 在图 13 中, Δχ、 Ay分别代表 x方 向与 y方向的移动量差, 而该三角形代表投射在 x,y坐标上的移动位移。 航位推算的精准度取决于相位测量的精准度与距离离去点的接近程度。 一旦拥有双曲线的距离差 d12、 d13, 则有几种定位方法可以使用, 其中有二个 常见的方法, 一种是卡曼滤波法, 另一种是在每一预估位置上使用直接最小 平方逼近法。校准过的测量值 (d12, d13:)是卡曼滤波法的输入。将目前测量位置 Xk = (xk, yk)定义为一位置向量以及一测量向量 Zk = (d12, d13),因此卡曼预测方 程式 (从 k-1至 k)可以表示成:
X k = AX k-i + w k-i
而该测量向量可以表示成:
Z k = HX k + k 噪声向量 (measurement noise vector), 而 A与 H表示卡曼滤波矩阵。卡曼方程 式的求解步骤在文献上有详尽记载。航位推算作业的主要精神是使用 GPS离 去点以计算相位差 χ12、 χ13,, 以及结合使用该相位差与新测量差值 5ml2、 5ml3, 以算出卡曼方程式的差分测量值对 (differences measurement pair)Zk = (d12, d13)。 请注意,为了简化低动态航位推算,位置向量方程式可不考虑速度向量, 因为测量向量 Zk在 10Hz或更高频率下仍然适用。 举例来说, 若 MU以每小 时移动 36公里, 而测量程序以 10Hz的频率每 1公尺之间隔下进行, 则该速 度向量可以由 1/10秒的位置差推算而出。 一但遇到较慢的取样频率, 仍可以 使用较复杂的卡曼滤波矩阵, 需将位置一速度向量定义为 Xk = (xk, yk, x'k, y'k),其中 x'、 y'是分别指 x、 y方向的速度,以及将该测量向量定义为 Zk = (d12, dn, d' 12, d,13)。 未知电台位置的条件下的简易航位推算
对卡曼滤波测量向量 Zk = (d12, d13:)而言, 关系式 (6)所定义的双重相位差 可以当做测量向量 Zk = (Ad12, Ad13), 其中 Ad12 = dn 12 - d(n_u 12。 Ad12的定义是距 离差的连续测量值的差分或测量相位差 5ml2, 5ml2 o 该定义的好处在于可以略 除 (ηι-η)λ与原始相位差 χ12、 χ13, 理由见前述关系式 (6)的说明。 使用双重相位 差向量的隐含意义为: 如果 GPS航位推算设备无法得知该电台位置的确切位 置, 而已知该三电台 Sl、 S2、 S3提供适当的 HDOP (良好的三角测量), 则仍 然可以用测量相位差 5ml2ml2以逐步双重差分法进行航位推算作业。 该作业 程序称的为盲目航位推算法 (blind dead reckoning), 该法的使用条件为已知三 电台的测量相位差, 但是不知该三电台的确切位置。 图 14A是配备航位推算设备的 GPS接收器的一般航位推算方法 140的流 程图, 其包含步骤如下:
步骤 141 : 以 GPS位置得出卡曼滤波矩阵序列所需的数组 A、 H。
步骤 142: GPS定位。
步骤 143 : 判断 GPS可涵盖卫星是否超过 3个。 如果 GPS可涵盖卫星为 4 个以上, 则 GPS接收器运作如常, 执行步骤 141 ; 如果 GPS可涵盖卫星为 3个以 下, 则进行步骤 144。
步骤 144: 使用卡曼滤波矩阵进行航位推算。
每一位置点上都会检查 GPS可涵盖卫星的数量, 藉以决定应使用 GPS或 航位推算定位作业。每当 GPS可涵盖卫星数处于边界条件 (即可涵盖卫星数为 4颗:)的时, GPS接收器可以利用已知位置, 推导出卡曼滤波矩阵 与11。 室内 /外 GPS-FM综合定位 应注意, 当 FM立体接收器与 GPS合并使用于航位推算作业时, 其是 一个在室内外位置都能有效使用的 GPS-FM综合接收器。 GPS接收器的优点 在于其在开放空间仍能拥有高准度的定位能力。 而 FM导引频率接收器依据 GPS位置点作为参考位置点, 更能在室内以及都市高楼之间发挥其效用。 先 前所述的室内定位查表法或二元线性方程式求解法均能在 FM导引频率接收 器上加以使用。 根据本发明的一实施例, 将 FM导引频率用作一种 GPS航位推算方法, 其需要 GPS与 FM接收器共同合作, 始能得到室内解 (位置:)。 GPS接收器可 以与 FM立体接收器整合成一单芯片, 同时作为可供室外与室内定位之用。 此外, 藉由 GPS位置点的信息, 还可以决定哪三座 FM电台的地理位置最适 合用于 FM导航 TDOA三角定位法。
图 14B是 GPS-FM立体声综合接收器 170的示意图, 其中 GPS接收器 171与 FM立体接收器 172共享一处理器 173以取得一 GPS-FM共同解。 FM 接收器可参考 GPS定位点, 在未知三电台位置的条件下, 求得室内与城市高 楼之间的位置解。 该上述运算范例 180图标于图 14C中, 其中标示出三个连 续 GPS位置点 (Χ,Υ), (Χ',Υ') 与 (Χ", Υ,,) (;未用到 ζ轴)。该三连续位置点对 FM 电台距离的双重相位差分 Ad'12、Ad'13 与 八(1"12、八(1"13可以经由 FM接收器在 每一位置点上进行测量以及差分法取得。 接着, 不用卡曼滤波法, 而改用前 述的二元线性方程式求解法定出位置点。 该二元方程式包括利用相位双重差 分值与双重位置点投射值的项, 以解开未知的 i12、 v12。式子如下:
Δά'ΐ2 = ΔΧ' hn + ΔΥ,ν12
Figure imgf000032_0001
其中 ΔΧ,= Χ,- Χ, ΔΥ' = Υ' - Υ, ΔΧ"= Χ" - Χ', ΔΥ" = Υ" - Υ,。 双重相位差 Ad'12、 Ad"12以及位置点差值 ΔΧ'、 ΔΧ"、 ΔΥ'、 ΔΥ"分别为 测量值以及 GPS位置定位值。 因此, 该二未知数 12、v12 (方格点三重差分值:) 可以得解。 同理,
Δά' Β = ΔΧ' i3 + ΔΥ,ν13
Figure imgf000033_0001
该二未知数 13、 ν13也可以被解出。凭借初始阶段时所知的三个以上 GPS 位置点, 解出 hl213、 v12、 v13之后, 加上在后续移动的位置上所取得的测 量双重相位差 Ad12、 Ad13, 可列出计算新位置的方程式如下:
Figure imgf000033_0002
于是, 相对于 GPS最后位置点的未知新位置 (X,y)能够用测得双重相位 差 (Ad12, Ad13:)加以确定。 本例之中, FM位置点可以帮助确认 GPS位置点的 精准与否, 而当失去 GPS信号时, FM定位系统亦可以提供室内与城市高楼 之间区域的位置解。 另需指明, 为了定出大部分的目前位置点, 需要超过三 个以前位置点用来算出 hl213、 v12、 v13 , 以便决定目前位置点。 唯有透过 取得邻近区域中更多位置点的信息, 使用大数平均法则, 方能提升定位精准 度。 总而言的, GPS-FM综合定位的优点如下:
1. 使 GPS接收器成为一个全功能、 室内外及都市高楼之间均可进行简易 定位的定位系统。
2. 校平 GPS位置点, 提升定位精准度。 由于商业 GPS定位的频率一般为 ΙΗζ, 每秒间之间隔空档可以由 FM接收器所取得的更多位置点加以填 补, 原因是 FM定位作业的执行频率可以更密集, 能在更多位置点上进 行测量与运算,得出更多位置点的解。从三座当地电台发出的强力信号, 比起 GPS卫星在高速动态的轨道运行中, 在两万公里的遥所发出信号 的微弱, FM导航具有高度稳定性, 使其 「差分」 位置的确定更加稳定 与精准。因此, FM位置定位可以用做使 GPS位置轨迹平滑化以及修正 GPS位置的异常状况。
3. 当 GPS信号无法传输或传输被干扰时, FM系统提供位置定位。易言的, 它可提升 GPS定位系统的完整性。 比起当地 FM信号的信号强度, 商 用 GPS信号相当微弱也易干扰。 GPS可能有时失效, 而 FM导引频率 可以补足上述情况发生时 GPS信号的不足。
4. FM接收器 172(图 14B)可以接收 GPS差分修正的数字 RDS广播, 以及 不同参考点 (RS)的电台相位差。 差分修正的 RDS广播将成为高精准度 位置定位的方法,可以用在测量、建筑等高精准度 GPS-FM综合接收器 的应用上。 三维定位
于其它实施例中, 本发明另提供三维定位方法。 FM电台基本上是立基 于地面的高塔, 可以提供有限垂直位置分量 (Vertical Dilution of Position, VDOP:)。 本发明可以从关系式 (4 5)扩张至三个关系式, 以解出位置变量 (x, y, z)。 可以用四座以上 FM电台取得解开下列三元联立方程式所需的双重相位差 值 Ad12、 Ad13、 Ad14以及高度增力口量 (additional elevation increment) e12、 e13、 e14
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0003
该高度增加量 121314是根据 GPS接收器所取得的位置定位的高度 差, 该高度差在地面导航的情形时缓慢变化。 除此之外, 由于地面 FM无线 电电台的 VDOP很小, 因此高度定位可能不如地面水平定位一般精确。然而, Z维度的位置定位十分合适于 GPS航空辅助功能。 对多楼层建筑物中的室内 定位而言, 每一楼层上的 RS是用来供参考台的接收器的 RSSI值来辨识垂直 位置。 如果无法在每一楼层都设一参考站, 则能使用微型气压高度计, 用来 确定二维定位设施的高度。 而目前所说的 FM电台可以包括广播电台、 地区 FM发送机 (transmitter)、 低功率 FM发送机等。 实施范例
本发明有许多可能的实施途径。导引频率相位差的测量精准度以及基地 台 (或参考台:)距离移动单元的接近程度是影响定位精准度的两个重要因素。 FM导引频率是通用 19KHz基频正弦信号, 该信号从 FM立体声合成信号中 抽取出来。 导引频率的每一周期的直线距离是 15789.5公尺。 要精准地测量 该导引频率的相位,需要使用高频定时器以测量波形零点 (waveform zero)交越 的时间。 举例而言, 100MHz定时器可以测量 10纳秒 (; nano-second)或 3公尺 之间隔。 超过 30dB信号强度与 19KHz调频导引频率可以让多途径信号的影 响降到最低。 导引频率的多途径问题有二层面: (1)行经各种地形的 19KHz 导引频率的巨观多途径反射,(2)接收器的前级端 (front end)的解调 VHF载波, 加上建筑物障蔽与反射所形成的微观多途径反射。 本发明的实施例可以大幅 减少该二种多途径的影响。 本发明所提出的串行处理实施例不仅用来获得较高位置精准度,并可节 省实施成本、 尺寸大小、 功率与重量。 例如图 15中所示的系统 150, 微控制 器 64接收导引频率,并且在 MU 60(图 6) 将三 FM信号间进行分时分工处理 并以串行处理 (serial processing)。 微控制器 64亦配置时间给每一电台分时运 算与传送。
因为导引频率每秒有 19,000周期数, 每一 FM电台每秒会配置约 5,000 周期数进行相位侦测。 剩余时间与定时器取样间隔期间则用来计算与传送。 举例来说, 每秒 5次定位的情形中, MU将 200微秒 (200 msec)分三段用来相 位侦测。 在 200微秒中, 导引频率有 3800周期数用于相位侦测。 如果每一电 台利用 1000周期数进行重复相位侦测, 则每一电台只有使用约 52.6微秒。 剩下 42微秒用来电台调谐 (timing)与其它计算。 在相位侦测时, 正弦波上升 边缘间隔时间, 可用来其它处理作业。 换句话说, 微控制器 64有充足时间进 行其它功能, 例如平均功能、 平滑功能与沟通功能。
因为定位决定作业对于每一处理频道间的非均等延迟非常敏感,所以就 每一电台而言, 串行处理对每一电台具有等量延迟的明显优点。 这些延迟量 都会因为差分计算而被消去。 在 200微秒极短的期间, 热噪声与其它噪声的 延迟几乎可视为定值而被减去。 在图 15中, 每一电台 Sl、 S2、 S3所发出的正弦波在透过一运算放大 器转换成方波 151。 运算放大器、 上升边缘中断计数器与微控制器内建于该 微控制器 64。 每一方波的上升边缘是导引频率的相位。 当微控制器 64侦测 到上升边缘时, 会读取高速定时器的内容。 如上述, 若每一 FM电台取讯频 率为 5Hz, 则计数器有 1000个中断采样数。到达时间 CTOA)可以将 1000个采 样数平均之后, 算出导引频率平均相位。此重复的相位侦测可改善 TOA的精 准度。 1000个采样数的平均程序在统计学中被称为平滑大数定律 (law of large numbers of smoothing) 设 τι 为导引频率上升边缘的 TOA, 经过 1000个采样 数的平均到达时间为: xave = Σ τι /1000, 其中 i = 1, 2, 1000. 运用平滑法 (smoothing), TOA 的尺度将会缩减到其千分之一。 举例来 说, 如果为微控制器 64用来计数 TOA的定时器是 64MHz, 或 4.5公尺间隔, 藉由 1000个采样数的平滑计算后,有效的时间测量值可以增加至 64GHz,或 0.45公分间隔。 位置精准度的变异数 (variance) σ藉由 σ/Sqrt (η)而提升。 5Hz 的取讯频率, 每电台 1000个相位采样数, 误差减少到 Sqrt(1000) = 31.62。将 TOA平均之后, 可以推算出 Sl、 S2, 或 Sl、 S3之间计数器计数 (;即 TDOA)。 若转换成距离的尺度, 便得到 5ml2与 5ml3。 同理, 以相同方式在基地台运作 则可得到^ 12与 §ml3。 在平滑程序中, VHF 波形多途径反射的效果也被平均化。 另外, 藉由 使用一串行处理,三电台之间微观多途径反射的效果被差分所消除。就 19KHz 导引频率通过各种地形所造成的巨观相位差异 (phase variation)而言, 其是藉 由遍布全城市的数个参考站而解决。 由于 MU与其附近 RS的环境相似, 亦 能产生较精准的差分值。 如图 16的架构 160所示, 本发明的一应用例包括寻位 (locating)与定位 (positioning) 该图亦标示出寻位与定位的作业程序, 以及相位差 (δ12, δ13:)或原 始相位差 (χ12, χ13:)的传送方向。 寻位系统的 MU可能使用简易硬件, 不用计算 MU自己的位置。 而定位 系统的 MU则必须使用从 BS接收的电台原始相位差, 用来计算双曲线方程 式。 另一种可能的设计是采用综合模式, 该模式藉由将测量值由 MU传送至 BS, 以便计算位置; 然后 BS将位置解回传给 MU。 该模式使得 MU处理器 更简化, 而成本降低。 在 E-911应用或行动定位服务 (LBS)中, 寻位或定位法都可以使用。 优 点在于具有双向沟通能力,可以传送电台原始相位差 χ12、 χ13。若使用定位法, 则 MU (例如手机:)就像一 GPS手机; 此外, 其可在室内与市区高楼之间使用, 此点胜过 GPS手机。定位的精准性取决于分布城市的手机塔台 (作为 RS)的数 量与接近程度。 应用于被偷窃汽车搜寻而言, 则需要一双向收发器, 例如一双向呼叫器。 当服务中心的无线电电台收到搜寻要求后, 隐藏于车内的 MU会回送最强电 台号码, 然后依照信号强度或电台号码, 将相对于最强电台的相位差传送到 服务中心。 凡是电台信号强度超过一临界值, 就会将该电台的信息回传。 接 着, 基地台根据三个最强的信号找出符合的三座电台, 再运用关系式 (4 5)计 算距离差 d12、 d13。由该组三座电台, 运用双曲线交点法可以找出被窃汽车的 位置。 若有多数参考站分布在该大都会区, 由于增加地区性参考, 精准度会 更高。 然而, 若只用服务中心的电台做为参考台, 或许会牺牲精准度, 但是 仍足以寻找出被偷汽车的大略位置。 在广大城市间的定位系统中, 因为发自三电台的 FM信号将经过各种地 形、 自然与人造障碍、 多途径反射与分散的环境, 造成不同地点有不同的相 位变异。 尽管如此, 若 RS接近 MU, 相同的多途径条件将会呈现在 MU与 RS上。 因此, 当 MU使用邻近的 RS, 相对差分法的运算将会消除该误差。 因此, 为了取得准确的城市间地区定位, 多个分布于各地的 RS便十分重要。 为了更有效地在城市各地分布的 RS测得电台相位差 χ12, χ13, 使用 FM副载波 的 57 KHz广域 RDS (wide area RDS digital modulation)数字信号是比较理想的 选择 (见图 1)。 RDS信号承载数据率为 1187.5bps。 此资料率足以约每 3秒广 播高达 100个 FM电台相位差。 不管是相对于 FM主电台的相位差或是相对 GPS时间相位差 (亦即 GPS秒计时单位的相位差:)可能从 RDS频道广播出来, 此方式亦可用来当做一般大众没有 GPS接收器的 GPS时间同步化的方法。此 种偏差信息在城市里多数个参考站中, 可以精准的 GPS测量方法测得。 100 座 FM电台仅是一假设值。实际上,每一大都会区的 FM电台不会超过 50座, 而且不是每一座 FM电台总是承载立体声信号, 而只有少数 FM电台会被选 作最佳几何位置 (Geographical dilution of precision, GDOP)来进行双曲线定位 法。如果将所有 FM电台的导引频率与 GPS时间同步化, 则不需要 BS或 RS 用来定位的辅助。一般而言, 高功率大都会区 FM电台 (大部分聚集于山丘上:) 可用来 RDS广播,而散布在不同城市的地区 LPFM (低功率 FM)电台则用来进 行双曲线三角定位。 其它可用于本发明的应用包括:
1. 用于走路、慢跑、骑自行车或汽车的低成本测速器一使用超过 10Hz 的测量方法以及数个位置定位, 可以藉由每 1/10秒的位置变动推算 出移动单元的速度与向量。举例来说,世界上最快的跑者 10秒跑 100 公尺,每秒 10Hz的定位频率,足以测得该跑者的位置间隔为 1公尺。
2. 低成本加速度计一运用连续时间间隔的速度差分, 移动单元的加 速度可以藉由进一步除以 1/10秒的差分值算出来。
3. 低成本数字罗盘或偏航角回转仪一将二个分离接收器单元装在一 汽车上, 该二单元与该汽车本身的方向成一直线 (一前一后, 或左右 两侧:), 而该直线与第一接收器取得的速度向量的夹角角度能够确定 该汽车的方向。 在许多航位推算应用产品中该方位是以数字形式呈 现。 然而, 就大多数应用而言, 当速度向量与该移动单元的速度轴 成一直线时, 接收器就能当做数字罗盘使用。
4. 自我移动侦测 一移动单元可以定期开关 FM接收器 (以节省电池电 力, 该 FM接收器是用来测量三电台间的相位差 d12、 d13并且记忆 为现时段的相位差。 接着将储存于内存之前一时段相位差与后一时 段的相位差相减, 得到双重相位差值 Δ(112, Δά 如果该双重相位差 (Ad12, Ad13)为 0(或者细微的测量误差所造成该值几近于 0), 则该移 动单元侦测不出二连续时段之间有移动。 然而, 若该双重相位差不 为 0, 且远高于预定临界值, 则可侦测出该移动单元的移动。 因此该 移动单元可以如卷标一般附属于某物体上, 而该移动单元卷标可以 用来做为该物体的移动侦测器。 本发明的优点
1. 本发明利用析取出来的 FM导引频率用于导航作业,不同于先前技术运 用 FM的信号强度或 AM信号相位。
2. FM广播信号的定值包络信号能够穿透建筑物以供室内用途。依据 FCC 的分类, FM广播信号强度的范围从大都会区 FM电台的 25,000瓦特 (Watts, W)到 100,000W, 到低功率调频 (Low Power FM, LPFM)小区电 台的功率则在 3000W到 6000W。 相较于 LAN-WiFi室内系统的功率为 lOOmW的信号, 与手机的功率为 0.3W到 1W的信号, FM信号功率甚 强。 定位的精准性直接与信号噪声比 (signal to noise ratio, SNR)相关。
3. 本发明利用唯一的 19KHz导引频率与立体声广播同相位的 FM频带用 于定位作业上。该信号不仅受到 FM立体声频谱与 8KHz防护频带 (guard band)的保护, 并且是稳定的正弦波形, 约占分配 FM频带总功率的百 分的十。 该信号最适合于多数个立体声 FM电台进行 TDOA定位作业。
4. 根据本发明的一实施例,使用地区参考台进行定位是最适合于室内与园 区定位系统的定位方法。
5. 相较于 E-911的定位法, E-911大量投资于基地台设施, 以便定位手机 的位置。本发明在手机单元上加上极低成本而小型 FM接收器, 无需高 额的基地台投资。 6. 基频为 19KHz导引频率具有 15789.5公尺的波长, 而调变的每一电台 FM 频带频率由 88 至 108MHz。 按照本发明, 周期模糊与多途径 (multi-path)反射信号的问题容易解决。 此外, FM信号强度为 30dB, 大 于其它室内 RF信号, 此大幅减少多途径反射信号的干扰。
7. 本发明能够使用低成本商用单芯片 FM收发器实施,有些还与蓝芽机结 合。 本产品包装件体积小、 低成本相较于 GPS接收器更易于让消费者 负担。
8. 本发明能够将 GPS接收器配上小型硬件配件后, 扩充功能成为航位推 算器, 或者只是成为 GPS-FM综合收发器定位装置。 本发明大幅扩张 GPS使用范围,只增加少量成本, 即能将使用范围扩张至室内与都市高 楼间的区域。 本发明虽然以如上的实施例来作说明, 但是其技术内容并不以此为限, 亦可以依实际设计需求而有不同的变化设计。 例如, 于实际的运用上, 实施 例中用于实施运作的组件, 可选用如配置程序指令的处理器、 逻辑电路、 应 用特殊集成电路 (Application specific integrate circuit, ASIC)或是韧体
(f irmware)程序代码等等, 于实际运用上, 依设计需求而变化这些组件的实 施态样。 虽然本发明已以较佳实施例揭露如上, 但所述较佳实施例并非用以 限制本发明, 该领域的普通技术人员, 在不脱离本发明的精神和范围内, 当 可作各种更动与润饰, 因此本发明的保护范围当视后附的权利要求所界定者 为准。

Claims

权 利 要 求
1. 一种定位方法, 其包含:
利用至少一接收器接收自三个调频 (Frequency modulation, FM)无线电电 台的 FM立体声信号, 所述 FM立体声信号包含一 FM调频 19KHz导 引频率 (pilot tone); 其特征在于, 所述定位方法包含:
根据所接收的所述若干个 FM立体声信号解调后的若干个导引频率的相 位差, 决定每一接收器所在的地理位置。
2. 如权利要求 1所述的方法, 其特征在于, 所述方法另包含:
利用每一接收器对解调后的所述若干个导引频率进行相位偏差校正以 获得相位校正后导引频率; 以及
根据所接收的所述相位校正后导引频率执行到达时间差双曲线三角定 位 (Time Difference of Arrival (TDOA) hyperbolic triangulation) ,决定每 一接收器所在的地理位置。
3. 如权利要求 2所述的方法, 其特征在于, 所述定位方法另包含:
提供至少一基地台 (base station, BS)或至少一参考台 (reference station,
RS), 每一基地台或每一参考台包含一 FM立体声收接器、 一收发器 以及一处理器,每一基地台或每一参考台根据同步导引频率计算导引 频率的到达相位差; 以及
每一基地台或每一参考台测量接收的异步导引频率的相位差, 并连同计 算出的同步导引频率的所述到达相位差来决定若干个电台间异步导 引频率的原始电台相位差。
4. 如权利要求 2所述的方法, 其特征在于: 一接收器包含一移动单元, 所 述方法另包含:
所述移动单元接收自至少一基地台或是至少一参考台传来的相位校正 后导引频率, 并测量所述若干个电台导引频率的相位差;
所述移动单元根据所述若干个测得导引频率的相位差以及所述接收相 位校正后导引频率, 决定所述移动单元的地理位置。
5. 如权利要求 4所述的方法, 其特征在于: 所述移动单元包含一 FM立体 声收接器、一收发器以及一处理器,用来双向通讯传输所述若干个测得 导引频率的相位差至所述基地台或是所述参考台,以决定所述移动单元 的地理位置。
6. 如权利要求 3所述的方法, 其特征在于, 所述定位方法另包含:
提供一区域地图, 所述区域地图分割有数个方格数组, 每一方格点对应 至一已知地理位置, 且每一方格点对应至一导引频率的计算相位差 对。
7. 如权利要求 6所述的方法,其特征在于决定所述移动单元的地理位置的 步骤另包含:
决定每一方格点的所述导引频率的计算相位差对以及对所述基地台或 是所述参考台计算的导引频率相位差之间的差异值,以产生一对计算 双重相位差, 所述对计算双重相位差对应到一方格点坐标, 所述方格 点坐标是以最靠近基地台或是一参考台作为原点的平面笛卡尔坐标
(x, y);
将所述方格点坐标储存对应的双重差分对值, 用来决定所述移动单元的 地理位置。
8. 如权利要求 7所述的方法, 其特征在于, 所述定位方法另包含:
接收自移动单元发出的测量相位差对;
根据所述测量相位差对以及所述基地台或是所述参考台的测量相位差 对, 形成测量双重相位差对; 以及
比较所述测量双重相位差对与纪录于所述查询表的双重相位差对, 决定 离最接近基地台或所述参考台作为原点的方格点坐标 (x,y:)。
9. 如权利要求 8所述的方法, 其特征在于, 所述定位方法另包含:
当所述无线电电台的位置未知时, 在以坐标平面原点的基地台或所述参 考台周围的水平与垂直方向有限个方格点进行一预备工作; 得到每一方格点相对于所述基地台或是所述参考台的测量导引频率的 相位差的双重相位差对,并将连续方格点的双重相位差对相减以得到 三重方格差分对; 以及
对所述三重方格差分对进行非均等值内插法以产生一位置查询表。
10. 如权利要求 9所述的方法, 其特征在于, 所述定位方法另包含:
不论电台的位置未知或已知时, 在所述基地台或是所述参考台周围的每 一方格点进行预备工作, 得到测量双重相位差对或计算双重相位差 对, 然后取得所述三重方格差分对;
将垂直和水平方向的所述三重方格差分对平均, 以形成一 2x2预处理三 重差分对的矩阵;
将所述移动单元的测量双重相位差对作为输入, 配合移动单元的未知笛 卡尔坐标 (X, y) 乘上所述 2x2矩阵以形成二元方程式, 并解出所述二 元方程式以决定移动单元的 (x, 坐标。
11. 如权利要求 10所述的方法, 其特征在于, 所述定位方法另包含:
自所述基地台或是所述参考台传送所述 2x2矩阵的参数至一移动单元, 让所述移动单元执行定位功能。
12. 如权利要求 2所述的方法, 其特征在于, 所述定位方法另包含:
串行处理并重复地执行所述三 FM无线电电台的导引频率的相位测量以 決定所述若干个导引频率的相位差, 以用来执行所述到达时间差 (TDOA)双曲线三角定位法。
13. 如权利要求 2所述的方法, 其特征在于, 所述定位方法另包含:
当全球卫星定位 (Global Positioning Satellites, GPS)信号不足时,协助一
GPS接收器执行一航位推算程序;
使用所述 GPS接收器侦测到的最后 GPS定位点作为一参考点, 并持续利 用所述若干个导引频率使用到达时间差双曲线三角定位法逐步进行 定位。
14. 如权利要求 13所述的方法, 其特征在于所述航位推算程序另包含: 逐步依据所述导引频率的测量相位差, 得到一对 TDOA (测量相位差:)以 及所述导引频率的测量相位差的变动速率,以分别作为卡曼矩阵计算 法的输入位置和速度向量。
15. 如权利要求 13所述的方法, 其特征在于所述航位推算程序另包含: 逐步依据所述导引频率的测量相位差, 得到一对 TDOA的双重相位差以 及所述导引频率的双重相位差的变动速率,合成作为卡曼矩阵计算法 的输入位置和速度向量。
4
16. 如权利要求 1所述的方法, 其特征在于: 一 FM接收器是与一 GPS接 收器整合, 用来分别执行室内与室外定位。
17. 如权利要求 1所述的方法, 其特征在于: 决定所述地理位置的步骤另包 含: 利用所述若干个 19 KHz导引频率所衍生的 57 KHz导引频率或是 其它 FM副载波 (sub-carrier)的导引频率,决定每一接收器所在的地理位 置。
18. 如权利要求 1所述的方法, 其特征在于, 所述定位方法另包含:
接收发自所述三个以上 FM电台的 FM立体声信号, 来做移动单元的定 位。
19. 如权利要求 1所述的方法, 其特征在于, 所述定位方法另包含:
将得到所述地理位置的技术应用于 E-911 紧急援救项目中, 以用来寻找 位于室内或室外的行动电话的位置。
20. 如权利要求 1所述的方法, 其特征在于, 所述定位方法另包含:
将得到所述地理定位的技术应用于行动定位服务中, 以用来寻找行动电 话或是其它通讯装置的位置。
21. 如权利要求 1所述的方法, 其特征在于, 所述定位方法另包含:
将得到所述地理位置的技术应用于追踪资产或是追踪个人之用。
22. 如权利要求 1所述的方法, 其特征在于: 所述 FM电台为若干个低功率 FM传输器, 用来提供正弦波导引频率或是其它周期性调变导引频率。
23. 如权利要求 1所述的方法, 其特征在于, 所述定位方法另包含:
接收发自至少四个调频 FM电台立体声信号,并根据所接收的所述若干 个 FM立体声信号决定三维空间的地理位置。
24. 一种定位系统, 其特征在于, 所述定位系统包含:
一基地台包含一通讯模块,用来接收发自三个以上 FM无线电电台的 FM 立体声信号, 所述 FM立体声信号包含一 FM调频 19KHz导引频率; 以及
一定位模块, 用来根据所接收若干个 FM立体声信号解调后的若干个导 引频率的相位差, 决定每一接收器所在的地理位置。
25. 如权利要求 24所述的定位系统, 其特征在于: 所述定位模块用来对解 调后的所述若干个导引频率进行相位偏差校正以获得相位校正导引频 率,以及用来根据所接收的所述相位校正导引频率执行到达时间差双曲 线三角定位 (Time Difference of Arrival (TDOA) hyperbolic triangulation) , 来决定所述接收器所在的地理位置。
26. 如权利要求 25所述的定位系统, 其特征在于: 所述定位模块用来根据 同步导引频率计算出的到达相位差,以及根据测量出异步导引频率的所 述到达相位差决定若干个电台间异步导引频率的原始相位差对
27. 如权利要求 26所述的定位系统, 其特征在于: 所述定位系统另包含提 供一区域地图,所述区域地图分割有若干个方格点, 每一方格点对应至 一已知地理位置, 且每一方格点对应至一导引频率的计算相位差对。
28. 如权利要求 27所述的定位系统, 其特征在于: 所述定位单元用来每一 方格点的所述导引频率的计算相位差对以及离所述基地台或是所述参 考台计算出的导引频率相位差之间的差异值,以产生一对计算双重相位 差, 所述对计算双重相位差对应到一方格点坐标 (x,y), 所述方格点坐标 是以一基地台或是一参考台作为笛卡尔平面坐标的原点,所述定位单元
6 将所述方格点坐标储存至一双重相位差对查询表中,用来决定所述移动 单元的地理位置。
29. 如权利要求 28所述的定位系统, 其特征在于: 所述定位单元用接收自 所述移动单元发出的测量相位差对,以及所述基地台或是所述参考台的 测量相位差对, 形成测量双重相位差对, 用来比较所述测量双重相位差 对与纪录于查询表的计算双重相位差对,决定最接近基地台或是所述参 考台的方格点坐标 (x,y:)。
30. 如权利要求 29所述的定位系统, 其特征在于: 所述定位单元当电台的 位置不详时,在以笛卡尔平面坐标作原点的所述基地台或是所述参考台 周围的有限方格点进行一预备工作,并用来得到每一方格点相对于所述 基地台或是所述参考台的测量导引频率的相位双重相位差对,并将连续 方格点的双重相位差对相减以得到三重方格差分对,然后用所述三重方 格差分对进行非均等值内插法以产生一位置查询表。
31. 如权利要求 30所述的定位系统, 其特征在于: 所述定位单元不论电台 的位置未知或已知时,在所述基地台或是所述参考台周围的每一方格点 进行预备工作,得以计算或测得的双重相位差对来计算连续方格的三重 方格差分对, 并用来将垂直和水平方向的所述三重方格差分值平均, 形 成一 2x2矩阵的三重差分参数,以及将移动单元测得的测量双重相位差 对作为输入, 配合移动单元的未知笛卡尔坐标 (x, y) 乘上所述 2x2预处 理三重差分矩阵以形成二元方程式,并解出所述二元方程式以决定所述 移动单元离开基地台或参考台为原点的 (X, y)坐标。
32. 如权利要求 31所述的定位系统, 其特征在于: 所述通讯模块另用来自
7 所述基地台或是所述参考台传送的 2x2 预处理三重差分矩阵的参数至 移动单元, 让移动单元自行定位功能。
33. 如权利要求 25所述的定位系统, 其特征在于: 所述定位模块另串行处 理并重复地执行所述三 FM无线电电台的导引频率的相位测量以決定所 述若干个导引频率的相位差, 以用来执行所述到达时间差 (TDOA)双曲 线三角定位法。
34. 如权利要求 24所述的定位系统, 其特征在于: 所述基地台是参考台。
35. 如权利要求 24所述的定位系统, 其特征在于: 一参考台包含一固定行 动电话塔台, 与行动电话的基地台通联, 且所述定位系统另包含行动电 话, 且定位功能可在所述基地台或是所述行动电话上。
36. 如权利要求 24所述的定位系统, 其特征在于: 所述基地台包含一个以 上低功率 FM立体声传输器电台,用来提供正弦波导引频率或是其它周 期性调变导引频率。
37. 一种移动单元, 其特征在于,所述移动单元包含:
一通讯模块, 用来接收发自三个以上 FM电台的 FM立体声信号, 所述 FM立体声信号包含一 FM调频 19KHz导引频率,并用来接收自基地 台或是参考台传来的电台原始相位校正值; 以及
一定位模块, 用来测量出来若干个导引频率的相位差, 并用传来的原始 相位差校正后, 决定所述移动单元的地理位置。
38. 如权利要求 37所述的移动单元, 其特征在于: 所述通讯模块包含一收 发器, 用来双向通讯传送导引频率的相位差至基地台或是参考台, 以决 定所述移动单元的地理位置。
8
39. 如权利要求 37所述的移动单元, 其特征在于: 所述定位模块用来串行 处理且重复地执行所述至少三个以上 FM 电台的导引频率的相位测量 以决定到达时间差 (TDOA)双曲线三角定位。
40. 如权利要求 37所述的移动单元, 其特征在于: 所述定位模块另用来于 全球卫星定位 (Global Positioning Satellites, GPS)信号不足时, 协助一 GPS接收器执行航位推算程序, 以及使用所述 GPS接收器侦测到的最后 GPS定位点作为参考点, 并逐步利用所述至少三个以上 FM电台的导引 频率使用到达时间差 (TDOA)双曲线三角定位法逐步进行定位。
41. 如权利要求 40所述的移动单元, 其特征在于: 所述定位模块另用来逐 步地依据所述导引频率的测量相位差, 得到一对 TDOA (导引频率相位 差:)以及一对导引频率相位差的变动速率, 以作为卡曼矩阵计算法的输 入位置和速度向量来作为航位推算。
42. 如权利要求 40所述的移动单元, 其特征在于: 所述定位模块另用来逐 步地依据所述导引频率的测量相位差, 得到一对 TDOA双重相位差以及 所述 TDOA双重相位差的变动速率, 以作为卡曼矩阵计算法的双重差分 和速度向量来作为航位推算。
43. 如权利要求 40所述的移动单元,其特征在于:所述通讯模块包含一 FM 接收器与一 GPS接收器整合, 用来执行室内与室外的互补定位。
44. 如权利要求 1所述的方法, 其特征在于: 所述至少三个 FM导引频率发 生于二时段之间的相位变化用来作所述移动单元以及其附属对象的移 动侦测。
45. 如权利要求 44所述的移动单元, 其特征在于: 一 FM立体接收器用来
9 接收至少三个解调的 FM导引频率, 以用来测量二时段之间 FM导引频 率的相位差变化以侦测所述移动单元以及其附属对象的位置移动。
10
PCT/CN2009/071681 2008-06-30 2009-05-08 运用广播调频信号定位地理位置的方法及系统 WO2010000156A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09771926.4A EP2312331B1 (en) 2008-06-30 2009-05-08 Method and system of utilizing broadcast fm signal to determine geographical position

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/215,832 US7990314B2 (en) 2008-06-30 2008-06-30 Method and system for locating a geographical position using broadcast frequency modulation signals
US12/215,832 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010000156A1 true WO2010000156A1 (zh) 2010-01-07

Family

ID=41446734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071681 WO2010000156A1 (zh) 2008-06-30 2009-05-08 运用广播调频信号定位地理位置的方法及系统

Country Status (5)

Country Link
US (1) US7990314B2 (zh)
EP (1) EP2312331B1 (zh)
CN (1) CN101620271B (zh)
TW (1) TWI438465B (zh)
WO (1) WO2010000156A1 (zh)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614975B2 (en) 2008-09-19 2013-12-24 Qualcomm Incorporated Synchronizing a base station in a wireless communication system
US9037155B2 (en) 2008-10-28 2015-05-19 Sven Fischer Time of arrival (TOA) estimation for positioning in a wireless communication network
US8982851B2 (en) 2009-01-06 2015-03-17 Qualcomm Incorporated Hearability improvements for reference signals
US9046591B1 (en) * 2009-05-07 2015-06-02 Sigtem Technology, Inc. Coordinate-free measurement-domain navigation and guidance using location-dependent radio signal measurements
DE102009025851A1 (de) * 2009-05-20 2010-11-25 Deutsche Telekom Ag Verfahren zur Standortbestimmung einer Femtozelle
US9002354B2 (en) * 2009-06-12 2015-04-07 Google Technology Holdings, LLC Interference control, SINR optimization and signaling enhancements to improve the performance of OTDOA measurements
US8792910B2 (en) * 2009-10-23 2014-07-29 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement to monitor distances among a group of electronic communication devices
US8503368B2 (en) * 2011-02-08 2013-08-06 Walter Rausch Macro-network location determination, local-oscillator stabilization, and frame-start synchronization based on nearby FM radio signals
US9674807B2 (en) 2010-06-11 2017-06-06 Clearwire IP Holdings, LLC Subcarrier signal for synchronization in macro network
US9844014B2 (en) 2010-06-11 2017-12-12 Sprint Spectrum L.P. Alternatives to satellite signals for synchronization in macro network
US9091746B2 (en) * 2010-07-01 2015-07-28 Qualcomm Incorporated Determination of positions of wireless transceivers to be added to a wireless communication network
EP2597486A4 (en) * 2010-07-21 2014-03-12 Korea Trade Network SYSTEM AND METHOD FOR LOCATION-BASED SERVICES FOR INTERIOR NAVIGATION
US8294617B2 (en) 2010-08-17 2012-10-23 Navteq B.V. Location-determining system for radio clients within local-area spaces
CN102547827A (zh) * 2010-12-30 2012-07-04 展讯通信(上海)有限公司 非可视路径的鉴别方法及移动终端定位方法
CN102098782B (zh) * 2011-03-22 2014-11-26 无锡智感星际科技有限公司 一种基于调频广播的终端定位方法及专用定位装置
US8548493B2 (en) 2011-04-14 2013-10-01 Navteq B.V. Location tracking
US20120270564A1 (en) * 2011-04-19 2012-10-25 Qualcomm Incorporated Methods and apparatuses for use in a mobile device to detect signaling apertures within an environment
US8599758B1 (en) 2011-04-20 2013-12-03 Google Inc. Indoor localization of mobile devices
US8588097B1 (en) * 2011-04-20 2013-11-19 Google Inc. Indoor localization of mobile devices
CN102196096A (zh) * 2011-05-19 2011-09-21 青岛海信移动通信技术股份有限公司 一种移动终端执行特定操作的方法、移动终端及通信系统
US10135667B1 (en) * 2011-06-08 2018-11-20 Kerry L. Greer System and method for increased indoor position tracking accuracy
US8433337B2 (en) * 2011-07-18 2013-04-30 Ting-Yueh Chin RSS-based DOA indoor location estimation system and method
US8548497B2 (en) * 2011-12-16 2013-10-01 Microsoft Corporation Indoor localization using commercial frequency-modulated signals
CN103176165B (zh) * 2011-12-20 2015-07-08 北京北大千方科技有限公司 一种车载单元定位装置及方法
US9539164B2 (en) 2012-03-20 2017-01-10 Xerox Corporation System for indoor guidance with mobility assistance
US9103916B2 (en) 2012-05-02 2015-08-11 Texas Instruments Incorporated Apparatus and method for indoor positioning
WO2013188598A2 (en) 2012-06-12 2013-12-19 Trx Systems, Inc. Fusion of sensor and map data using constraint based optimization
US9164844B2 (en) * 2013-03-12 2015-10-20 Qualcomm Incorporated Method and apparatus for detecting anomalies within indoor information
US9144055B2 (en) * 2013-10-15 2015-09-22 Qualcomm Incorporated Method and apparatus for asynchrosous positioning of wireless base stations
WO2015062012A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 一种相位测量方法、装置和系统
CN103561387A (zh) * 2013-11-11 2014-02-05 无锡清华信息科学与技术国家实验室物联网技术中心 一种基于TDoA的室内定位方法及系统
US20150198719A1 (en) * 2014-01-14 2015-07-16 Kinze Manufacturing, Inc. Radio frequency position transducer
US9179285B1 (en) 2014-05-19 2015-11-03 Disney Enterprises, Inc. Reflection-based location detection
US9326104B2 (en) 2014-05-22 2016-04-26 Qualcomm Incorporated Method and apparatus for indoor/outdoor detection using ambient signals
CN105827339A (zh) * 2014-06-26 2016-08-03 青岛海信移动通信技术股份有限公司 一种电台搜索方法及装置
US9763044B2 (en) * 2014-09-16 2017-09-12 Intel IP Corporation Method, system and apparatus for enabling location determination using multiple simultaneous location databases
US9857452B2 (en) * 2014-10-16 2018-01-02 Henry H. Liao Method for locating and positioning using broadcast FM signals and phase difference computation technique
US9671502B2 (en) 2015-01-02 2017-06-06 Samsung Electronics Co., Ltd Adaptive synthetic positioning
US9654904B2 (en) * 2015-02-19 2017-05-16 Xerox Corporation System and method for flexibly pairing devices using adaptive variable thresholding
US10775749B2 (en) 2015-04-17 2020-09-15 The Mitre Corporation Robust and resilient timing architecture for critical infrastructure
FR3038067B1 (fr) * 2015-06-24 2017-08-18 Inst Mines-Telecom Procede de localisation d'un recepteur au sein d'un systeme de positionnement
US10054446B2 (en) 2015-11-17 2018-08-21 Truemotion, Inc. Methods and systems for combining sensor data to measure vehicle movement
US10228445B2 (en) * 2016-03-30 2019-03-12 International Business Machines Corporation Signal propagating positioning system
CN105929364B (zh) * 2016-04-22 2018-11-27 长沙深之瞳信息科技有限公司 利用无线电定位的相对位置测量方法及测量装置
CN106093861A (zh) * 2016-07-31 2016-11-09 中国海洋大学 一种相位定位信标方法及系统
US10591609B1 (en) 2017-01-11 2020-03-17 Telephonics Corp. System and method for providing accurate position location information to military forces in a disadvantaged signal environment
US10187752B2 (en) * 2017-05-16 2019-01-22 Apple Inc. UE motion estimate based on cellular parameters
US10075817B1 (en) 2017-08-04 2018-09-11 Apple Inc. UE motion estimate in unconventional cell deployments
TWI642960B (zh) * 2017-09-28 2018-12-01 國立陽明大學 Automatic traveling system and application method thereof
WO2019134104A1 (zh) * 2018-01-05 2019-07-11 深圳市沃特沃德股份有限公司 定位方法、装置和智能手表
CN110333478B (zh) * 2018-03-30 2022-05-17 华为技术有限公司 一种到达角度、出发角度确定方法及通信装置
CN108959435B (zh) * 2018-06-12 2020-06-16 北京小蓦机器人技术有限公司 一种用于为用户提供资源信息的方法与设备
US11662477B2 (en) 2018-11-16 2023-05-30 Westinghouse Air Brake Technologies Corporation System and method for determining vehicle position by triangulation
WO2021110534A1 (en) * 2019-12-06 2021-06-10 Sony Semiconductor Solutions Corporation Communication device and method
TWI758920B (zh) * 2020-10-27 2022-03-21 聚眾聯合科技股份有限公司 相對位置定位系統及其相對位置定位方法
CN114326362B (zh) * 2021-12-30 2023-08-08 国网思极位置服务有限公司 一种寄生于调频电台的无线授时系统和方法
EP4273572A1 (en) * 2022-05-05 2023-11-08 Stichting IMEC Nederland System, device, and method for estimating position information with respect to at least one target node

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213626A (zh) * 1997-10-07 1999-04-14 财团法人工业技术研究院 应用调频副载波及差分修正卫星定位技术的汽车防盗器
CN1568434A (zh) * 2001-10-23 2005-01-19 罗瑟姆公司 利用广播模拟电视信号的定位
CN1731893A (zh) * 2005-08-31 2006-02-08 中兴通讯股份有限公司 利用分布式天线对移动终端进行定位的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159310A (en) * 1981-03-28 1982-10-01 Nissan Motor Co Ltd Running inductive device for car
US5173710A (en) * 1991-08-15 1992-12-22 Terrapin Corporation Navigation and positioning system and method using uncoordinated beacon signals
US5600706A (en) * 1992-04-08 1997-02-04 U S West, Inc. Method and system for determining the position of a mobile receiver
US5936572A (en) * 1994-02-04 1999-08-10 Trimble Navigation Limited Portable hybrid location determination system
US5774829A (en) * 1995-12-12 1998-06-30 Pinterra Corporation Navigation and positioning system and method using uncoordinated beacon signals in conjunction with an absolute positioning system
US6035202A (en) * 1997-12-19 2000-03-07 Ericsson Inc. Method and apparatus for locating a mobile unit
US6219385B1 (en) * 1998-12-23 2001-04-17 Itt Manufacturing Enterprises, Inc. Digital AM/FM positioning system (DAFPS)—an international positioning system
GB9915277D0 (en) * 1999-07-01 1999-09-01 Aircom International Limited Mobile telephone positioning system
US7042396B2 (en) * 2001-08-17 2006-05-09 Rosom Corporation Position location using digital audio broadcast signals
US6806830B2 (en) * 2001-12-31 2004-10-19 Texas Instruments Incorporated Electronic device precision location via local broadcast signals
US7319877B2 (en) 2003-07-22 2008-01-15 Microsoft Corporation Methods for determining the approximate location of a device from ambient signals
US7738881B2 (en) 2003-07-22 2010-06-15 Microsoft Corporation Systems for determining the approximate location of a device from ambient signals
US7202816B2 (en) 2003-07-22 2007-04-10 Microsoft Corporation Utilization of the approximate location of a device determined from ambient signals
US8682334B2 (en) * 2006-05-31 2014-03-25 Agilent Technologies, Inc. System and method for increasing area density of terrestrial broadcast stations
US7941159B2 (en) * 2007-05-25 2011-05-10 Broadcom Corporation Position determination using received broadcast signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213626A (zh) * 1997-10-07 1999-04-14 财团法人工业技术研究院 应用调频副载波及差分修正卫星定位技术的汽车防盗器
CN1568434A (zh) * 2001-10-23 2005-01-19 罗瑟姆公司 利用广播模拟电视信号的定位
CN1731893A (zh) * 2005-08-31 2006-02-08 中兴通讯股份有限公司 利用分布式天线对移动终端进行定位的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2312331A4 *

Also Published As

Publication number Publication date
EP2312331A1 (en) 2011-04-20
EP2312331A4 (en) 2011-08-31
CN101620271A (zh) 2010-01-06
TWI438465B (zh) 2014-05-21
US7990314B2 (en) 2011-08-02
EP2312331B1 (en) 2013-05-01
CN101620271B (zh) 2013-07-31
TW201000939A (en) 2010-01-01
US20090322603A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
TWI438465B (zh) 運用廣播調頻訊號定位地理位置之方法、系統及移動單元
KR100660257B1 (ko) 무선 cdma 트랜시버의 위치를 결정하기 위한 시스템및 방법
US7856235B2 (en) Position detection with frequency smoothing
US8089399B2 (en) System and method for refining a WLAN-PS estimated location using satellite measurements in a hybrid positioning system
Kos et al. Mobile user positioning in GSM/UMTS cellular networks
US7403155B2 (en) Method for the accelerated acquisition of satellite signals
JP2003518632A (ja) Gps地上ハイブリッド位置決定システム方程式に対する代数的解を決定する方法および装置
WO2010029439A2 (en) System and methods for real time kinematic surveying using gnss and ultra wideband ranging
MXPA06007257A (es) Sistema hibrido de localizacion sin hilos tdoa/gps.
JP2003501633A (ja) 無線測位システムの改良
CN102216734A (zh) 使用运动传感器的基于无线的定位调整
KR100448574B1 (ko) 지피에스 단말기 및 무선통신 단말기에 대한 측위 방법
Li et al. Using two global positioning system satellites to improve wireless fidelity positioning accuracy in urban canyons
Khalel Position location techniques in wireless communication systems
US20080218411A1 (en) Assisted Satellite-Based Positioning
KR20060099539A (ko) 총 수신 전력을 이용한 과도 지연 추정
AU2009255955B2 (en) Method and system for determining location using a hybrid satellite and WLAN positioning system by selecting the best WLAN-PS solution
WO2001094968A1 (en) Location procedure for mobile telephone units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009771926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 685/DELNP/2011

Country of ref document: IN