WO2009158646A1 - Composés thérapeutiques et procédés d'utilisation apparentés - Google Patents

Composés thérapeutiques et procédés d'utilisation apparentés Download PDF

Info

Publication number
WO2009158646A1
WO2009158646A1 PCT/US2009/048911 US2009048911W WO2009158646A1 WO 2009158646 A1 WO2009158646 A1 WO 2009158646A1 US 2009048911 W US2009048911 W US 2009048911W WO 2009158646 A1 WO2009158646 A1 WO 2009158646A1
Authority
WO
WIPO (PCT)
Prior art keywords
hat
disease
activity
compound
mitochondrial
Prior art date
Application number
PCT/US2009/048911
Other languages
English (en)
Other versions
WO2009158646A8 (fr
Inventor
Jeffrey O. Saunders
Thomas Mcdonagh
Original Assignee
Elixir Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elixir Pharmaceuticals, Inc. filed Critical Elixir Pharmaceuticals, Inc.
Publication of WO2009158646A1 publication Critical patent/WO2009158646A1/fr
Publication of WO2009158646A8 publication Critical patent/WO2009158646A8/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Histone acetyl transferases also known as HATsn are enzymes that acetylate histone proteins by transferring an acetyl group from acetyl CoA.
  • Histone acetylation is generally linked to transcriptional activation. Acetylation and other posttranslational modifications of histones generate binding sites for specific protein- protein interaction domains, such as the acetyl-lysine binding bromodomain. Inhibition of HAT can be useful in the treatment of various diseases or disorders.
  • Examplary HAT inhibitors include curcumin, garcinol, and anacardic acid.
  • HAT histone acetyl transferase
  • Modulators of HAT can be used to treat various disorders.
  • HATs include the following: CBP (CREB-binding protein), p300, pCAF, hGCN5, and ATF2 (activating transcription factor T).
  • the invention features a method of treating a HAT related disorder, the method comprising, administering to a subject (e.g., a subject in need thereof) a compound of formula (I), e.g., an effective amount of a compound of formula (I)
  • each of R 1 and R 2 are Ci-C 6 alkyl; or R 1 and R 2 , when taken together with the carbon to which they are attached form an optionally substituted ring;
  • R 3 is -CN or -C(O)NR 5 R 6 ;
  • R 4 is C(O)OH; each of R and R is independently H or Ci-C 6 alkyl; and
  • X is Ci-C 6 alkylenyl, Ci-C 6 alkenylenyl, or Ci-C 6 alkynylenyl.
  • the method includes administering a compound of formula (Ia)
  • the compound of formula (I) is compound 1 or compound 2 as shown below:
  • the compound of formula (I) (e.g., compound 1 or compound 2) has an IC 50 of less than about 15 ⁇ M, e.g., from about 10 to about 15 ⁇ M, less than about 10 ⁇ M, less than about 5 ⁇ M, or less than about 1 ⁇ M.
  • the invention features, a preparation or pharmaceutical preparation of a compound disclosed herein (e.g., a compound of formula (I), the preparation including at least one carrier, preservative, or excipient, which is suitable for or has been selected for being suitable for an inhibitor of HAT.
  • the preparation excudes a CoA co-ennzyme, e.g., acetyl-CoA.
  • the preparation excludes a component which would antagonize, interfere with, neutralize, or substantially reduce the effectiveness of a HAT inhibitor but optimally would not antagonize, interfere with, neutralize, or substantially reduce the effectiveness of a sirtuin activator.
  • the invention features, a reaction mixture for evaluating ability of a composition described herein for inhibiting a HAT.
  • a reaction mixture for evaluating ability of a composition described herein for inhibiting a HAT.
  • it includes a compound described herein, e.g., a compound of formula ⁇ ), and HAT, or a purified HAT.
  • the mixture is substantially free of an activator of a sirtuin.
  • a cell culture comprising a compound described herein, e.g., a compound of formula (Ij, and a recombinantly produced HAT.
  • kits comprising a compound described herein, e.g., a compound of formula (I), for example, in a pharmaceutical preparation, and a memorialized designation that the compound is an inhibitor of a HAT, e.g., a label indicating the compound is an inhibitor of a HAT,
  • the invention features a method for monitoring the progress of therapeutic treatment with a compound described herein.
  • the method includes determining the level of acetylation of one or more HAT substrates in a biological sample from a subject being greated with a compound described herein, wherein a change in the level of acetylation of the HAT substrate relative to a control is indicative of therapeutic modulation of HAT in the subject.
  • HAT substrates include p53 (368-386), which is a cubstrate of CBP and p300 or histone H3 peptide, which is a substrate for pCAF and hGCN5.
  • the invention features a method for detecting modulation of a HAT in a mammal.
  • the method includes: obtaining a biological sample from a subject that has received a compound described herein, and determining the level of acetylation of one or more HAT substrates in the sample, wherein a change in the level of acetylation of the one or more HAT substrates as compared to a control is indicative of HAT modulation in the mammal.
  • Exemplary HAT substrates include p53 (368-386), which is a cubstrate of CBP and p300 or histone H3 peptide, which is a substrate for pCAF and hGCN5.
  • the invention features a method of identifying a subject in need of treatment with a HAT inhibiting compound.
  • the method includes determining the level of acetylation of one or more HAT substrates in a biological sample from the subject, wherein a higher level of acetylation in a HAT substrate as compared to a control is indicative of a subject in need of treatment with a HAT inhibiting compound.
  • HAT substrates include p53 (368-386), which is a cubstrate of CBP and p300 or histone H3 peptide, which is a substrate for pCAF and hGCN5.
  • compositions comprising one or more of the compouds described herein (e.g., a compound of formula (I)) or a salt, prodrug or metabolite thereof.
  • the invention provides methods for using a compound described herein (e.g., a compound of formula (I)).
  • a compound described herein may be used for a variety of therapeutic applications including, for example, increasing the lifespan of a cell, and treating and/or preventing a wide variety of diseases and disorders including, for example, diseases or disorders related to aging or stress, diabetes, obesity, neurodegenerative diseases, chemotherapeutic induced neuropathy, neuropathy associated with an ischemic event, ocular diseases and/or disorders, cardiovascular disease, blood clotting disorders, inflammation, and/or flushing, etc.
  • a compound described herein also be used for treating a disease or disorder in a subject that would benefit from increased mitochondrial activity, for enhancing muscle performance, for increasing muscle ATP levels, or for treating or preventing muscle tissue damage associated with hypoxia or ischemia.
  • a compound described herein may be used for a variety of therapeutic applications including, for example, increasing cellular sensitivity to stress, increasing apoptosis, treatment of cancer, stimulation of appetite, and/or stimulation of weight gain, etc.
  • the methods comprise administering to a subject in need thereof a pharmaceutically effective amount of a compound described herein.
  • a compound described herein may be administered alone or in combination with other compounds or other therapeutic agents.
  • agent is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule (such as a nucleic acid, an antibody, a protein or portion thereof, e.g., a peptide), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
  • a biological macromolecule such as a nucleic acid, an antibody, a protein or portion thereof, e.g., a peptide
  • an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
  • the activity of such agents may render it suitable as a "therapeutic agent” which is a biologically, physiologically, or pharmacologically active substance (or substances) that acts locally or systemically in a subject.
  • bioavailable when referring to a compound is art-recognized and refers to a form of a compound that allows for it, or a portion of the amount of compound administered, to be absorbed by, incorporated to, or otherwise physiologically available to a subject or patient to whom it is administered.
  • the term "companion animals” refers to cats and dogs.
  • the term “dog(s)” denotes any member of the species Canis familiaris, of which there are a large number of different breeds.
  • cat(s) refers to a feline animal including domestic cats and other members of the family Felidae, genus Felis.
  • the terms “comprise” and “comprising” are used in the inclusive, open sense, meaning that additional elements may be included.
  • Diabetes refers to high blood sugar or ketoacidosis, as well as chronic, 10 general metabolic abnormalities arising from a prolonged high blood sugar status or a decrease in glucose tolerance. “Diabetes” encompasses both the type I and type II (Non Insulin Dependent Diabetes Mellitus or NIDDM) forms of the disease.
  • the risk factors for diabetes include the following factors: waistline of more than 40 inches for men or 35 inches for women, blood pressure of 130/85 mmHg or higher, triglycerides 15 above 150 mg/dl, fasting blood glucose greater than 100 mg/dl or high-density lipoprotein of less than 40 mg/dl in men or 50 mg/dl in women.
  • hyperinsulinemia refers to a state in an individual in which the level of insulin in the blood is higher than normal.
  • insulin resistance refers to a state in which a normal amount of insulin produces a subnormal biologic response relative to the biological response in a subject that does not have insulin resistance.
  • insulin resistance disorder refers to any disease or condition that is caused by or contributed to by insulin resistance. Examples include: diabetes, obesity, metabolic syndrome, insulin-resistance syndromes, syndrome X, insulin resistance, high blood pressure, hypertension, high blood cholesterol, dyslipidemia, hyperlipidemia, dyslipidemia, atherosclerotic disease including stroke, coronary artery disease or myocardial infarction, hyperglycemia, hyperinsulinemia and/or hyperproinsulinemia, impaired glucose tolerance, delayed insulin release, diabetic complications, including coronary heart disease, angina pectoris, congestive heart failure, stroke, cognitive functions in dementia, retinopathy, peripheral neuropathy, nephropathy, glomerulonephritis, glomerulosclerosis, nephrotic syndrome, hypertensive nephrosclerosis some types of cancer (such as endometrial, breast, prostate, and colon), complications of pregnancy, poor female reproductive health (such as menstrual irregularities, infertility, irregular ovulation, poly
  • Obese individuals or individuals suffering from obesity are generally individuals having a body mass index (BMI) of at least 25 or greater. Obesity may or 10 may not be associated with insulin resistance.
  • BMI body mass index
  • parenteral administration and “administered parenterally” are art- recognized and refer to modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articulare, subcapsular, subarachnoid, intraspinal, and intrasternal injection and infusion.
  • a "patient”, “subject”, “individual” or “host” refers to either a human or a non- human animal.
  • pharmaceutically acceptable carrier refers to a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting any subject composition or component thereof.
  • a pharmaceutically-acceptable material such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting any subject composition or component thereof.
  • Each carrier must be “acceptable” in the sense of being compatible with the subject composition and its components and not injurious to the patient.
  • materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide;
  • protecting group is art-recognized and refers to temporary substituents that protect a potentially reactive functional group from undesired chemical transformations.
  • protecting groups include esters of carboxylic acids, silyl ethers of alcohols, and acetals and ketals of aldehydes and ketones, respectively.
  • the field of protecting group chemistry has been reviewed by Greene and Wuts in Protective Groups in Organic Synthesis (2 nd ed., Wiley: New York, 1991).
  • Replicative lifespan of a cell refers to the number of daughter cells produced by an individual "mother cell.”
  • Increasing the lifespan of a cell or “extending the lifespan of a cell,” as applied to cells or organisms, refers to increasing the number of daughter cells produced by one cell; increasing the ability of cells or organisms to cope with stresses and combat damage, e.g., to DNA, proteins; and/or increasing the ability of cells or organisms to survive and exist in a living state for longer under a particular condition, e.g., stress (for example, heatshock, osmotic stress, high energy radiation, chemically-induced stress, DNA damage, inadequate salt level, inadequate nitrogen level, or inadequate nutrient level). Lifespan can be increased by at least about 20%, 30%, 40%, 50%, 60% or between 20% and 70%, 30% and 60%, 40% and 60% or more using methods described herein.
  • HAT-inhibiting compound refers to a compound that decreases the level of a HAT and/or decreases at least one activity of a HAT.
  • a HAT-inhibiting compound may decrease at least one biological activity of a HAT by at least about 10%, 25%, 50%, 75%, 100%, or more.
  • Exemplary biological activities of HATs include acetylation, e.g., of histones and p53; extending lifespan; increasing genomic stability; silencing; transcription; and controlling the segregation of oxidized proteins between mother and daughter cells.
  • HAT-modulating compound refers to a compound described herein.
  • a HAT-modulating compound may either up regulate (e.g., activate or stimulate), down regulate (e.g., inhibit or suppress) or otherwise change a functional property or biological activity of a HAT.
  • HAT-modulating compounds may act to modulate a HAT either directly or indirectly.
  • a HAT-modulating compound may be a HAT- activating compound or a HAT- inhibiting compound.
  • systemic administration refers to the administration of a subject composition, therapeutic or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes.
  • therapeutic agent is art-recognized and refers to any chemical moiety that is a biologically, physiologically, or pharmacologically active substance that acts locally or systemically in a subject.
  • the term also means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and/or conditions in an animal or human.
  • therapeutic effect is art-recognized and refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance.
  • therapeutically-effective amount means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment.
  • the therapeutically effective amount of such substance will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
  • certain compositions described herein may be administered in a sufficient amount to produce a desired effect at a reasonable benefit/risk ratio applicable to such treatment.
  • modulators of HAT include those compounds of formula (I)
  • each of R 1 and R 2 are Ci-C 6 alkyl; or R 1 and R 2 , when taken together with the carbon to which they are attached form an optionally substituted ring;
  • R 3 is -CN or -C(O)NR 5 R 6 ;
  • R 4 is C(O)OH; each of R 5 and R 6 is independently H or Ci-C 6 alkyl; and
  • X is Ci-C 6 alkylenyl, Ci-C 6 alkenylenyl, or Ci-C 6 alkynylenyl.
  • the method includes administering a compound of formula (Ia)
  • the compound of formula (I) is compound 1 or compound 2 as shown below:
  • the compound of formula (I) (e.g., compound 1 or compound 2) has an IC 50 of less than about 15 ⁇ M, e.g., from about 10 to about 15 ⁇ M, less than about 10 ⁇ M, less than about 5 ⁇ M, or less than about 1 ⁇ M.
  • An alkyl group is a straight chained, branched or cyclic non-aromatic hydrocarbon which is completely saturated.
  • a straight chained or branched alkyl group has from 1 to about 20 carbon atoms, preferably from 1 to about 10
  • a cyclic alkyl group has from 3 to about 10 carbon atoms, preferably from 3 to about 8.
  • straight chained and branched alkyl groups include methyl, ethyl, n- propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, pentyl and octyl.
  • a Ci- C 4 straight chained or branched alkyl group is also referred to as a "lower alkyl" group.
  • alkylenyl group is a straight chained or branched hydrocarbon which is completely saturated. Typically, a straight chained or branched alkylenyl group has from 1 to about 20 carbon atoms, preferably from 1 to about 10.
  • alkenylenyl group is a straight chained or branched hydrocarbon which includes at least one double bond.
  • a straight chained or branched alkenylenyl group has from 1 to about 20 carbon atoms, preferably from 1 to about 10.
  • alkynylenyl group is a straight chained or branched hydrocarbon which includes at least one triple bond.
  • a straight chained or branched alkynylenyl group has from 1 to about 20 carbon atoms, preferably from 1 to about 10.
  • Suitable substituents are those which do not substantially interfere with the ability of the disclosed compounds to have one or more of the properties disclosed herein.
  • a substituent substantially interferes with the properties of a compound when the magnitude of the property is reduced by more than about 50% in a compound with the substituent compared with a compound without the substituent.
  • substituents include -OH, halogen (-Br, -Cl, -I and - F), -OR ⁇ a>, -O- COR ⁇ a>, -COR ⁇ a>, -C(O)R ⁇ 3>, -CN, -NO ⁇ 2>, -COOH, -COOR ⁇ a>, -OCO 2 R ⁇ 3>, - C(0)NR ⁇ a>R ⁇ b>, -OC(O)NR ⁇ a>R ⁇ b>, -SO 3 H, -NH 2 , -NHR ⁇ a>, -N(R ⁇ a>R ⁇ b>), - COOR ⁇ 3>, -CHO, - CONH 2 , -C0NHR ⁇ 3>, -CON(R ⁇ a>R ⁇ b>), -NHC0R ⁇ a>, - NRC0R ⁇ 3>, -NHCONH 2 , -NHC0NR ⁇ 3>H, - NHCON(R ⁇ a>R ⁇ b
  • R ⁇ 3>-R ⁇ d> are each independently an aliphatic, substituted aliphatic, benzyl, substituted benzyl, aromatic or substituted aromatic group, preferably an alkyl, benzylic or aryl group.
  • -NR ⁇ a>R ⁇ b> taken together, can also form a substituted or unsubstituted non- aromatic heterocyclic group.
  • a non-aromatic heterocyclic group, benzylic group or aryl group can also have an aliphatic or substituted aliphatic group as a substituent.
  • a substituted aliphatic group can also have a non-aromatic heterocyclic ring, a substituted a non-aromatic heterocyclic ring, benzyl, substituted benzyl, aryl or substituted aryl group as a substituent.
  • a substituted aliphatic, non-aromatic heterocyclic group, substituted aryl, or substituted benzyl group can have more than one substituent.
  • a hydrogen-bond donating group is a functional group having a partially positively-charged hydrogen atom (e.g., -OH, -NH 2 , -SH) or a group (e.g., an ester) that metabolizes into a group capable of donating a hydrogen bond.
  • a partially positively-charged hydrogen atom e.g., -OH, -NH 2 , -SH
  • a group e.g., an ester
  • Double bonds indicated in a structure as: are intended to include both the (E)- and (Z)-configuration. Preferably, double bonds are in the (E)- configuration.
  • salts particularly pharmaceutically acceptable salts, of the sirtuin- modulating compounds described herein.
  • compounds that are inherently charged, such as those with a quaternary nitrogen, can form a salt with an appropriate counterfoil (e.g., a halide such as bromide, chloride, or fluoride, particularly bromide).
  • Acids commonly employed to form acid addition salts are inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like, and organic acids such as p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like
  • organic acids such as p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like.
  • salts include the sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monoliydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caproate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-l,4-dioate, hexyne-l,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxy benzoate, niethoxybenzoate, phthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phen
  • Base addition salts include those derived from inorganic bases, such as ammonium or alkali or alkaline earth metal hydroxides, carbonates, bicarbonates, and the like.
  • bases useful in preparing the salts of this invention thus include sodium hydroxide, potassium hydroxide, ammonium hydroxide, potassium carbonate, and the like.
  • the invention provides methods for modulating the level and/or activity of a HAT and methods of use thereof.
  • the invention provides methods for using HAT- modulating compounds wherein the HAT-modulating compounds inhibit a HAT, e.g., decrease the level and/or activity of a HAT.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be useful for a variety of therapeutic applications including, for example, increasing the lifespan of a cell, and treating and/or preventing a wide variety of diseases and disorders including, for example, diseases or disorders related to aging or stress, diabetes, obesity, neurodegenerative diseases, cardiovascular disease, blood clotting disorders, inflammation, cancer, and/or flushing, etc.
  • the methods comprise administering to a subject in need thereof a pharmaceutically effective amount of a HAT-modulating compound, e.g., a HAT- inhibiting compound.
  • the HAT-modulating compounds described herein may be taken alone or in combination with other compounds.
  • a mixture of two or more HAT-modulating compounds may be administered to a subject in need thereof.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be administered with one or more of the following compounds: resveratrol, butein, fisetin, piceatannol, or quercetin.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be administered in combination with nicotinic acid.
  • a HAT-modulating compound that increases the level and/or activity of a HAT may be administered with one or more of the following compounds: nicotinamide (NAM), suranim; NF023 (a G-protein antagonist); NF279 (a purinergic receptor antagonist); Trolox (6-hydroxy- 2,5,7, 8,tetramethylchroman-2-carboxylic acid); (-)-epigallocatechin (hydroxy on sites 3,5,7,3',4 ⁇ T>, 5'); (-)-epigallocatechin gallate (Hydroxy sites 5,7,3',4',5' and gallate ester on 3); cyanidin choloride (3,5,7,3',4'-pentahydroxyflavylium chloride); delphinidin chloride (S'- hexahydroxyflavylium chloride); myricetin (cannabiscetin; 3,5,7,3',4',5'- hexahydroxyflavone); 3,
  • one or more HAT-modulating compounds may be administered with one or more therapeutic agents for the treatment or prevention of various diseases, including, for example, cancer, diabetes, neurodegenerative diseases, cardiovascular disease, blood clotting, inflammation, flushing, obesity, ageing, stress, etc.
  • combination therapies comprising a HAT-modulating compound may refer to (1) pharmaceutical compositions that comprise one or more HAT-modulating compounds in combination with one or more therapeutic agents (e.g., one or more therapeutic agents described herein); and (2) co-administration of one or more HAT- modulating compounds with one or more therapeutic agents wherein the HAT- modulating compound and therapeutic agent have not been formulated in the same compositions (but may be present within the same kit or package, such as a blister pack or other multi-chamber package; connected, separately sealed containers (e.g., foil pouches) that can be separated by the user; or a kit where the HAT modulating compound(s) and other therapeutic agent(s) are in separate vessels).
  • the HAT-modulating compound may be administered at the same, intermittent, staggered, prior to, subsequent to, or combinations thereof, with the administration of another therapeutic agent.
  • the invention provides a method extending the lifespan of a cell, extending the proliferative capacity of a cell, slowing ageing of a cell, promoting the survival of a cell, delaying cellular senescence in a cell, mimicking the effects of calorie restriction, increasing the resistance of a cell to stress, or preventing apoptosis of a cell, by contacting the cell with a HAT-modulating compound of the invention that decreases the level and/or activity of a HAT.
  • the methods comprise contacting the cell with a HAT-inhibiting compound.
  • the methods described herein may be used to increase the amount of time that cells, particularly primary cells (i.e., cells obtained from an organism, e.g., a human), may be kept alive in a cell culture.
  • Embryonic stem (ES) cells and pluripotent cells, and cells differentiated therefrom may also be treated with a HAT- modulating compound that decreases the level and/or activity of a HAT protein to keep the cells, or progeny thereof, in culture for longer periods of time.
  • Such cells can also be used for transplantation into a subject, e.g., after ex vivo modification.
  • cells that are intended to be preserved for long periods of time may be treated with a HAT-modulating compound that decreases the level and/or activity of a HAT.
  • the cells may be in suspension (e.g., blood cells, serum, biological growth media, etc. or in tissues or organs.
  • blood collected from an individual for purposes of transfusion may be treated with a HAT- modulating compound that decreases the level and/or activity of a HAT to preserve the blood cells for longer periods of time.
  • blood to be used for forensic purposes may also be preserved using a HAT-modulating compound that decreases the level and/or activity of a HAT.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may also be applied during developmental and growth phases in mammals, plants, insects or microorganisms, in order to, e.g., alter, retard or accelerate the developmental and/or growth process.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT protein may be used to treat cells useful for transplantation or cell therapy, including, for example, solid tissue grafts, organ transplants, cell suspensions, stem cells, bone marrow cells, etc.
  • the cells or tissue may be an autograft, an allograft, a syngraft or a xenograft.
  • the cells or tissue may be treated with the HAT-modulating compound prior to administration/implantation, concurrently with administration/implantation, and/or post administration/implantation into a subject.
  • the cells or tissue may be treated prior to removal of the cells from the donor individual, ex vivo after removal of the cells or tissue from the donor individual, or post implantation into the recipient.
  • the donor or recipient individual may be treated systemically with a HAT-modulating compound or may have a subset of cells/tissue treated locally with a HAT-modulating compound that decreases the level and/or activity of a HAT.
  • the cells or tissue may additionally be treated with another therapeutic agent useful for prolonging graft survival, such as, for example, an immunosuppressive agent, a cytokine, an angiogenic factor, etc.
  • cells may be treated with a HAT-modulating compound that decreases the level and/or activity of a HAT in vivo, e.g., to increase their lifespan or prevent apoptosis.
  • skin can be protected from aging (e.g., developing wrinkles, loss of elasticity, etc.) by treating skin or epithelial cells with a HAT-modulating compound that decreases the level and/or activity of a HAT.
  • skin is contacted with a pharmaceutical or cosmetic composition comprising a HAT-modulating compound that decreases the level and/or activity of a HAT.
  • exemplary skin afflictions or skin conditions that may be treated in accordance with the methods described herein include disorders or diseases associated with or caused by inflammation, sun damage or natural aging.
  • compositions find utility in the prevention or treatment of contact dermatitis (including irritant contact dermatitis and allergic contact dermatitis), atopic dermatitis (also known as allergic eczema), actinic keratosis, keratinization disorders (including eczema), epidermolysis bullosa diseases (including penfigus), exfoliative dermatitis, seborrheic dermatitis, erythemas (including erythema multiforme and erythema nodosum), damage caused by the sun or other light sources, discoid lupus erythematosus, dermatomyositis, psoriasis, skin cancer and the effects of natural aging.
  • contact dermatitis including irritant contact dermatitis and allergic contact dermatitis
  • atopic dermatitis also known as allergic eczema
  • actinic keratosis also known as allergic eczema
  • HAT-modulating compounds that decrease the level and/or activity of a HAT maybe used for the treatment of wounds and/or bums to promote healing, including, for example, first-, second- or third-degree bums and/or a thermal, chemical or electrical bums.
  • the formulations may be administered topically, to the skin or mucosal tissue, as an ointment, lotion, cream, microemulsion, gel, solution or the like, as further described herein, within the context of a dosing regimen effective to bring about the desired result.
  • Topical formulations comprising one or more HAT-modulating compounds that decrease the level and/or activity of a HAT may also be used as preventive, e.g., chemopreventive, compositions.
  • preventive e.g., chemopreventive
  • susceptible skin is treated prior to any visible condition in a particular individual.
  • HAT-modulating compounds may be delivered locally or systemically to a subject.
  • a HAT-modulating compound is delivered locally to a tissue or organ of a subject by injection, topical formulation, etc.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be used for treating or preventing a disease or condition induced or exacerbated by cellular senescence in a subject; methods for decreasing the rate of senescence of a subject, e.g., after onset of senescence; methods for extending the lifespan of a subject; methods for treating or preventing a disease or condition relating to lifespan; methods for treating or preventing a disease or condition relating to the proliferative capacity of cells; and methods for treating or preventing a disease or condition resulting from cell damage or death.
  • the method does not act by decreasing the rate of occurrence of diseases that shorten the lifespan of a subject.
  • a method does not act by reducing the lethality caused by a disease, such as cancer.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be administered to a subject in order to generally increase the lifespan of its cells and to protect its cells against stress and/or against apoptosis. It is believed that treating a subject with a compound described herein is similar to subjecting the subject to hormesis, i.e., mild stress that is beneficial to organisms and may extend their lifespan.
  • HAT modulating compounds that decrease the level and/or activity of a HAT may be administered to a subject to prevent aging and aging-related consequences or diseases, such as stroke, heart disease, heart failure, arthritis, high blood pressure, and Alzheimer's disease.
  • Other conditions that can be treated include ocular disorders, e.g., associated with the aging of the eye, such as cataracts, glaucoma, and macular degeneration.
  • HAT modulating compounds that decrease the level and/or activity of a HAT can also be administered to subjects for treatment of diseases, e.g., chronic diseases, associated with cell death, in order to protect the cells from cell death.
  • Exemplary diseases include those associated with neural cell death, neuronal dysfunction, or muscular cell death or dysfunction, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, amniotropic lateral sclerosis, and muscular dystrophy; AIDS; fulminant hepatitis; diseases linked to degeneration of the brain, such as Creutzfeld- Jakob disease, retinitis pigmentosa and cerebellar degeneration; myelodysplasis such as aplastic anemia; ischemic diseases such as myocardial infarction and stroke; hepatic diseases such as alcoholic hepatitis, hepatitis B and hepatitis C; joint-diseases such as osteoarthritis; atherosclerosis; alopecia; damage to the skin due to UV light; lichen planus; atrophy of the skin; cataract; and graft rejections.
  • Cell death can also be caused by surgery, drug therapy, chemical exposure or radiation exposure.
  • HAT modulating compounds that decrease the level and/or activity of a HAT can also be administered to a subject suffering from an acute disease, e.g., damage to an organ or tissue, e.g., a subject suffering from stroke or myocardial infarction or a subject suffering from a spinal cord injury.
  • HAT -modulating compounds that decrease the level and/or activity of a HAT may also be used to repair an alcoholic's liver.
  • the invention provides a method for treating and/or preventing a cardiovascular disease by administering to a subject in need thereof a HAT modulating compound that decreases the level and/or activity of a HAT.
  • Cardiovascular diseases that can be treated or prevented using the HAT modulating compounds that decrease the level and/or activity of a HAT include cardiomyopathy or myocarditis; such as idiopathic cardiomyopathy, metabolic cardiomyopathy, alcoholic cardiomyopathy, drug-induced cardiomyopathy, ischemic cardiomyopathy, and hypertensive cardiomyopathy.
  • cardiomyopathy or myocarditis such as idiopathic cardiomyopathy, metabolic cardiomyopathy, alcoholic cardiomyopathy, drug-induced cardiomyopathy, ischemic cardiomyopathy, and hypertensive cardiomyopathy.
  • atheromatous disorders of the major blood vessels such as the aorta, the coronary arteries, the carotid arteries, the cerebrovascular arteries, the renal arteries, the iliac arteries, the femoral arteries, and the popliteal arteries.
  • vascular diseases that can be treated or prevented include those related to platelet aggregation, the retinal arterioles, the glomerular arterioles, the vasa nervorum, cardiac arterioles, and associated capillary beds of the eye, the kidney, the heart, and the central and peripheral nervous systems.
  • the HAT -modulating compounds that decrease the level and/or activity of a HAT may also be used for increasing HDL levels in plasma of an individual.
  • HAT -modulating compounds that decrease the level and/or activity of a HAT include restenosis, e.g., following coronary intervention, and disorders relating to an abnormal level of high density and low density cholesterol.
  • a HAT -modulating compound that decreases the level and/or activity of a HAT may be administered as part of a combination therapeutic with another cardiovascular agent including, for example, an antiarrhythmic agent, an antihypertensive agent, a calcium channel blocker, a cardioplegic solution, a cardiotonic agent, a fibrinolytic agent, a sclerosing solution, a vasoconstrictor agent, a vasodilator agent, a nitric oxide donor, a potassium channel blocker, a sodium channel blocker, statins, or a naturiuretic agent.
  • a HAT modulating compound that decreases the level and/or activity of a HAT may be administered as part of a combination therapeutic with an anti-arrhythmia agent.
  • Anti-arrhythmia agents are often organized into four main groups according to their mechanism of action: type I, sodium channel blockade; type II, beta-adrenergic blockade; type III, repolarization prolongation; and type IV, calcium channel blockade.
  • Type I anti- arrhythmic agents include lidocaine, moricizine, mexiletine, tocainide, procainamide, encainide, flecanide, tocainide, phenytoin, propafenone, quinidine, disopyramide, and flecainide.
  • Type II antiarrhythmic agents include propranolol and esmolol.
  • Type III includes agents that act by prolonging the duration of the action potential, such as amiodarone, artilide, bretylium, clofilium, isobutilide, sotalol, azimilide, dofetilide, dronedarone, ersentilide, ibutilide, tedisamil, and tedilide.
  • Type IV anti- arrhythmic agents include verapamil, diltaizem, digitalis, adenosine, nickel chloride, and magnesium ions.
  • a HAT modulating compound that decreases the level and/or activity of a HAT may be administered as part of a combination therapeutic with another cardiovascular agent.
  • cardiovascular agents include vasodilators, for example, hydralazine; angiotensin converting enzyme inhibitors, for example, captopril; anti-anginal agents, for example, isosorbide nitrate, glyceryl trinitrate and pentaerythritol tetranitrate; anti- arrhythmic agents, for example, quinidine, procainaltide and lignocaine; cardioglycosides, for example, digoxin and digitoxin; calcium antagonists, for example, verapamil and nifedipine; diuretics, such as thiazides and related compounds, for example, bendrofluazide, chlorothiazide, chlorthalidone, hydrochlorothiazide and other diuretics, for example, fursemide and triamterene,
  • exemplary cardiovascular agents include, for example, a cyclooxygenase inhibitor such as aspirin or indomethacin, a platelet aggregation inhibitor such as clopidogrel, ticlopidene or aspirin, fibrinogen antagonists or a diuretic such as chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorthiazide, trichloromethiazide, polythiazide or benzthiazide as well as ethacrynic acid tricrynafen, chlorthalidone, furosemide, musolimine, bumetanide, triamterene, amiloride and spironolactone and salts of such 5 compounds, angiotensin converting enzyme inhibitors such as captopril, zofenopril, fosinopril, enalapril, ceranopri
  • cardiovascular agents include, for example, vasodilators, e.g., bencyclane, cinnarizine, citicoline, cyclandelate, cyclonicate, ebumamonine, phenoxezyl, flunarizine, ibudilast, ifenprodil, lomerizine, naphlole, nikamate, nosergoline, nimodipine, papaverine, pentifylline, nofedoline, vincamin, vinpocetine, vichizyl, pentoxifylline, prostacyclin derivatives (such as prostaglandin El and prostaglandin 12), an endothelin receptor blocking drug (such as bosentan), diltiazem, nicorandil, and nitroglycerin.
  • vasodilators e.g., bencyclane, cinnarizine, citicoline, cyclandelate, cyclonicate, e
  • Examples of the cerebral protecting drug include radical scavengers (such as edaravone, vitamin E, and vitamin C), glutamate antagonists, AMPA antagonists, kainate antagonists, NMDA antagonists, GABA agonists, growth factors, opioid antagonists, phosphatidylcholine precursors, serotonin agonists, Na ⁇ 4>VCa ⁇ 2+> channel inhibitory drugs, and K ⁇ +> channel opening drugs.
  • Examples of the brain metabolic stimulants include amantadine, tiapride, and gamma- aminobutyric acid.
  • anticoagulant examples include heparins (such as heparin sodium, heparin potassium, dalteparin sodium, dalteparin calcium, heparin calcium, parnaparin sodium, reviparin sodium, and danaparoid sodium), warfarin, enoxaparin, argatroban, batroxobin, and sodium citrate.
  • heparins such as heparin sodium, heparin potassium, dalteparin sodium, dalteparin calcium, heparin calcium, parnaparin sodium, reviparin sodium, and danaparoid sodium
  • warfarin warfarin
  • enoxaparin argatroban
  • batroxobin and sodium citrate.
  • antiplatelet drug examples include ticlopidine hydrochloride, dipyridamole, cilostazol, ethyl icosapentate, sarpogrelate hydrochloride, dilazep hydrochloride, trapidil, a nonsteroidal antiinflammatory agent (such as aspirin), beraprostsodium, iloprost, and indobufene.
  • thrombolytic drug include urokinase, tissue-type plasminogen activators (such as alteplase, tisol[alpha]nase, nateplase, pamiteplase, monteplase, and rateplase), and nasaruplase.
  • antihypertensive drug examples include angiotensin converting enzyme inhibitors (such as captopril, alacepril, lisinopril, imidapril, quinapril, temocapril, delapril, benazepril, cilazapril, trandolapril, enalapril, ceronapril, fosinopril, imadapril, mobertpril, perindopril, ramipril, spirapril, and randolapril), angiotensin II antagonists (such as losartan, candesartan, valsartan, eprosartan, and irbesartan), calcium channel blocking drugs (such as aranidipine, efonidipine, nicardipine, bamidipine, benidipine, manidipine, cilnidipine, nisoldipine, nitrendipin
  • antianginal drug examples include nitrate drugs (such as amyl nitrite, nitroglycerin, and isosorbide), [beta]- adrenaline receptor blocking drags (such as propranolol, pindolol, indenolol, carteolol, bunitrolol, atenolol, acebutolol, metoprolol, timolol, nipradilol, penbutolol, nadolol, tilisolol, carvedilol, bisoprolol, betaxolol, celiprolol, bopindolol, bevantolol, labetalol, alprenolol, amosulalol, arotinolol, befunolol, bucumolol, bufetolol, buferalol, buprandolol, butylidine
  • diuretic examples include thiazide diuretics (such as hydrochlorothiazide, methyclothiazide, trichlormethiazide, benzy Hydrochlorothiazide, and penflutizide), loop diuretics (such as furosemide, etacrynic acid, bumetanide, piretanide, azosemide, and torasemide), K ⁇ +> sparing diuretics (spironolactone, triamterene, andpotassiumcanrenoate), osmotic diuretics (such as isosorbide, D- mannitol, and glycerin), nonthiazide diuretics (such as meticrane, tripamide, chlorthalidone, and mefruside), and acetazolamide.
  • thiazide diuretics such as hydrochlorothiazide, methyclothiazide, trichlormethiazide, benzy
  • cardiotonic examples include digitalis formulations (such as digitoxin, digoxin, methyldigoxin, deslanoside, vesnarinone, lanatoside C, and proscillaridin), xanthine formulations (such as aminophylline, choline theophylline, diprophylline, and proxyphylline), catecholamine formulations (such as dopamine, dobutamine, and docarpamine), PDE III inhibitors (such as amrinone, olprinone, and milrinone), denopamine, ubidecarenone, pimobendan, levosimendan, aminoethylsulfonic acid, vesnarinone, carperitide, and colforsin daropate.
  • digitalis formulations such as digitoxin, digoxin, methyldigoxin, deslanoside, vesnarinone, lanatoside C, and proscillaridin
  • xanthine formulations such
  • antiarrhythmic drug examples include ajmaline, pirmenol, procainamide, cibenzoline, disopyramide, quinidine, aprindine, mexiletine, lidocaine, phenyloin, pilsicainide, propafenone, flecainide, atenolol, acebutolol, sotalol, propranolol, metoprolol, pindolol, amiodarone, nifekalant, diltiazem, bepridil, and verapamil.
  • antihyperlipidemic drag examples include atorvastatin, simvastatin, pravastatin sodium, fluvastatin sodium, clinofibrate, clof[iota]brate, simfibrate, fenof[iota]brate, bezafibrate, colestimide, and colestyramine.
  • immunosuppressant examples include azathioprine, mizoribine, cyclosporine, tacrolimus, gusperimus, and methotrexate.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered to subjects who have recently received or are likely to receive a dose of radiation or toxin.
  • the dose of radiation: or toxin is received as part of a work-related or medical procedure, e.g., working in a nuclear power plant, flying an airplane, an X-ray, CAT scan, or the administration of a radioactive dye for medical imaging; in such an embodiment, the compound is administered as a prophylactic measure.
  • the radiation or toxin exposure is received unintentionally, e.g., as a result of an industrial accident, habitation in a location of natural radiation, terrorist act, or act of war involving radioactive or toxic material.
  • the compound is preferably administered as soon as possible after the exposure to inhibit apoptosis and the subsequent development of acute radiation syndrome.
  • HAT-modulating compounds may also be used for treating and/or preventing cancer.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for treating and/or preventing cancer.
  • a decrease in the level and/or activity of a HAT may be useful for treating and/or preventing the incidence of age-related disorders, such as, for example, cancer.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for treating or preventing cancer.
  • Exemplary cancers that may be treated using a HAT-modulating compound are those of the brain and kidney; hormone-dependent cancers including breast, prostate, testicular, and ovarian cancers; lymphomas, and leukemias.
  • a modulating compound may be administered directly into the tumor.
  • Cancer of blood cells e.g., leukemia
  • Benign cell growth can also be treated, e.g., warts.
  • Other diseases that can be treated include autoimmune diseases, e.g., systemic lupus erythematosus, scleroderma, and arthritis, in which autoimmune cells should be removed.
  • Viral infections such as herpes, HIV, adenovirus, and HTLV-I associated malignant and benign disorders can also be treated by administration of HAT- modulating compound.
  • cells can be obtained from a subject, treated ex vivo to remove certain undesirable cells, e.g., cancer cells, and administered back to the same or a different subject.
  • Chemotherapeutic agents that may be coadministered with modulating compounds described herein as having anti-cancer activity (e.g., compounds that induce apoptosis, compounds that reduce lifespan or compounds that render cells sensitive to stress) include: aminoglutethimide, amsacrine, anastrozole, asparaginase, beg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, dienestrol, diethylstilbestrol, docetaxel, doxorubicin, epirubicin, estradiol, estramustine, etoposide, exemestane, filgras
  • chemotherapeutic agents may be categorized by their mechanism of action into, for example, following groups: anti-metabolites/anti-cancer agents, such as pyrimidine analogs (5-fluorouracil, floxuridine, capecitabine, gemcitabine and cytarabine) and purine analogs, folate antagonists and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine (cladribine)); antiproliferative/antimitotic agents including natural products such as vinca alkaloids (vinblastine, vincristine, and vinorelbine), microtubule disrupters such as taxane (paclitaxel, docetaxel), vincristin, vinblastin, nocodazole, epothilones and navelbine, epidipodophyllotoxins (teniposide), DNA damaging agents (actinomycin, amsacrine, anthracyclines, bleomycin, busulfan,
  • chemotherapeutic agents may be used by themselves with a HAT- modulating compound described herein as inducing cell death or reducing lifespan or increasing sensitivity to stress and/or in combination with other chemotherapeutics agents.
  • the HAT- modulating compounds described herein as capable of inducing cell death or reducing lifespan can also be used with antisense RNA, RNAi or other polynucleotides to inhibit the expression of the cellular components that contribute to unwanted cellular proliferation that are targets of conventional chemotherapy.
  • targets are, merely to illustrate, growth factors, growth factor receptors, cell cycle regulatory proteins, transcription factors, or signal transduction kinases.
  • Combination therapies comprising HAT-modulating compounds and a conventional chemotherapeutic agent may be advantageous over combination therapies known in the art because the combination allows the conventional chemotherapeutic agent to exert greater effect at lower dosage.
  • the effective dose (ED 50 ) for a chemotherapeutic agent, or combination of conventional chemotherapeutic agents, when used in combination with a HAT- modulating compound is at least 2 fold less than the ED 50 for the chemotherapeutic agent alone, and even more preferably at 5 fold, 10 fold or even 25 fold less.
  • the therapeutic index (TI) for such chemotherapeutic agent or combination of such chemotherapeutic agent when used in combination with a HAT- modulating compound described herein can be at least 2 fold greater than the TI for conventional chemotherapeutic regimen alone, and even more preferably at 5 fold, 10 fold or even 25 fold greater.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT can be used to treat patients suffering from neurodegenerative diseases, and traumatic or mechanical injury to the central nervous system (CNS), spinal cord or peripheral nervous system (PNS).
  • Neurodegenerative disease typically involves reductions in the mass and volume of the human brain, which s [alpha] B [kappa] 30 B +- [identical to] may be due to the atrophy and/or death of brain cells, which are far more profound than those in a healthy person that are attributable to aging.
  • Neurodegenerative diseases can evolve gradually, after a long period of normal brain function, due to progressive degeneration (e.g., nerve cell dysfunction and death) of specific brain regions.
  • neurodegenerative diseases can have a quick onset, such as those associated with trauma or toxins. The actual onset of brain degeneration may precede clinical expression by many years.
  • Examples of neurodegenerative diseases include, but are not limited to, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS; Lou Gehrig's disease), diffuse Lewy body disease, chorea-acanthocytosis, primary lateral sclerosis, ocular diseases (ocular neuritis), chemotherapy-induced neuropathies (e.g., from vincristine, paclitaxel, bortezomib), diabetes-induced neuropathies and Friedreich's ataxia.
  • AD Alzheimer's disease
  • PD Parkinson's disease
  • HD Huntington's disease
  • ALS amyotrophic lateral sclerosis
  • ALS amyotrophic lateral sclerosis
  • ocular diseases ocular neuritis
  • chemotherapy-induced neuropathies e.
  • AD is a chronic, incurable, .and unstoppable CNS disorder that occurs gradually, resulting in memory loss, unusual behavior, personality changes, and a decline in thinking abilities. These losses are related to the death of specific types of brain cells and the breakdown of connections and their supporting network (e.g. glial cells) between them. AD has been described as childhood development in reverse. In most people with AD, symptoms appear after the age 60. The earliest symptoms include loss of recent memory, faulty judgment, and changes in personality. Later in the disease, those with AD may forget how to do simple tasks like washing their hands. Eventually people with AD lose all reasoning abilities and become dependent on other people for their everyday care. Finally, the disease becomes so debilitating that patients are bedridden and typically develop coexisting illnesses.
  • PD is a chronic, incurable, and unstoppable CNS disorder that occurs gradually and results in uncontrolled body movements, rigidity, tremor, and dyskinesia.
  • These motor system problems are related to the death of brain cells in an area of the brain that produces dopamine, a chemical that helps control muscle activity.
  • symptoms appear after age 50.
  • the initial symptoms of PD are a pronounced tremor affecting the extremities, notably in the hands or lips.
  • Subsequent characteristic symptoms of PD are stiffness or slowness of movement, a shuffling walk, stooped posture, and impaired balance.
  • secondary symptoms such as memory loss, dementia, depression, emotional changes, swallowing difficulties, abnormal speech, sexual dysfunction, and bladder and bowel problems.
  • ALS motor neuron disease
  • ALS motor neuron disease
  • the motor neurons deteriorate and eventually die, and though a person's brain normally remains fully functioning and alert, the command to move never reaches the muscles.
  • Most people who get ALS are between 40 and 70 years old.
  • the first motor neurons that weaken are those controlling the arms or legs. Those with ALS may have trouble walking, they may drop things, fall, slur their speech, and laugh or cry uncontrollably. Eventually the muscles in the limbs begin to atrophy from disuse. This muscle weakness will become debilitating and a person will need a wheel chair or become unable to function out of bed. The causes of these neurological diseases have remained largely unknown.
  • HD is another neurodegenerative disease resulting from genetically programmed degeneration of neurons in certain areas of the brain. This degeneration causes uncontrolled movements, loss of intellectual faculties, and emotional disturbance.
  • HD is a familial disease, passed from parent to child through a dominant mutation in the wild-type gene. Some early symptoms of HD are mood swings, depression, irritability or trouble driving, learning new things, remembering a fact, or making a decision. As the disease progresses, concentration on intellectual tasks becomes increasingly difficult and the patient may have difficulty feeding himself or herself and swallowing.
  • Tay-Sachs disease and S andhoff disease are glycolipid storage diseases caused by the lack of lysosomal [beta] -hexosaminidase (Gravel et al., in The Metabolic Basis of Inherited Disease, eds. Scriver et al., McGraw-Hill, New York, pp. 2839-2879, 1995). In both disorders, GM2 ganglioside and related glycolipidssubstrates for [beta] -hexosaminidase accumulate in the nervous system and trigger acute neurodegeneration.
  • apoptosis plays a role in AIDS pathogenesis in the immune system.
  • HIV-I also induces neurological disease.
  • Shi et al. (J. Clin. Invest. 98: 1979-1990, 1996) examined apoptosis induced by HIV-I infection of the 10 CNS in an in vitro model and in brain tissue from AIDS patients, and found that HIV-I infection of primary brain cultures induced apoptosis in neurons and astrocytes in vitro. Apoptosis of neurons and astrocytes was also detected in brain tissue from 10/11 AIDS patients, including 5/5 patients with HIV-I dementia and 4/5 nondemented patients.
  • HIV peripheral neuropathies associated with HIV, namely sensory neuropathy, AIDP/CIPD, drug-induced neuropathy and CMV-related.
  • DSPN distal symmetrical polyneuropathy
  • AIDP/CIDP acute or chronic inflammatory demyelinating polyneuropathy
  • AIDP/CIDP there is damage to the fatty membrane covering the nerve impulses.
  • This kind of neuropathy involves inflammation and resembles the muscle deterioration often identified with long-term use of AZT. It can be the first manifestation of HIV infection, where the patient may not complain of pain, but fails to respond to standard reflex tests.
  • This kind of neuropathy may be associated with seroconversion, in which case it can sometimes resolve spontaneously. It can serve as a sign of HIV infection and indicate that it might be time to consider antiviral therapy.
  • AIDP/CIDP may be auto-immune in origin.
  • Drug-induced, or toxic, neuropathies can be very painful. Antiviral drugs commonly cause peripheral neuropathy, as do other drugs e.g. vincristine, dilantin (an anti-seizure medication), high-dose vitamins, isoniazid, and folic acid antagonists. Peripheral neuropathy is often used in clinical trials for antivirals as a dose-limiting side effect, which means that more drugs should not be administered. Additionally, the use of such drugs can exacerbate otherwise minor neuropathies. Usually, these drug-induced neuropathies are reversible with the discontinuation of the drug. CMV causes several neurological syndromes in AIDS, including encephalitis, myelitis, and polyradiculopathy.
  • Neuronal loss is also a salient feature of prion diseases, such as Creutzfeldt- Jakob disease in human, BSE in cattle (mad cow disease), Scrapie Disease in sheep andmgoats, and feline spongiform encephalopathy (FSE) in cats.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be useful for treating or preventing neuronal loss due to these prior diseases.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be used to treat or prevent any disease or disorder involving axonopathy.
  • Distal axonopathy is a type of peripheral neuropathy that results from some metabolic or toxic derangement of peripheral nervous system (PNS) neurons. It is the most common response of nerves to metabolic or toxic disturbances, and as such may be caused by metabolic diseases such as diabetes, renal failure, deficiency syndromes such as malnutrition and alcoholism, or the effects of toxins or drugs. The most common cause of distal axonopathy is diabetes, and the most common distal axonopathy is diabetic neuropathy.
  • PNS peripheral nervous system
  • axons The most distal portions of axons are usually the first to degenerate, and axonal atrophy advances slowly towards the nerve's cell body. If the noxious stimulus is removed, regeneration is possible, though prognosis decreases depending on the duration and severity of the stimulus.
  • Those with distal axonopathies usually present with symmetrical glove- stocking sensori-motor disturbances. Deep tendon reflexes and autonomic nervous system (ANS) functions are also lost or diminished in affected areas.
  • ANS autonomic nervous system
  • Diabetic neuropathies are neuropathic disorders that are associated with diabetes mellitus. These conditions usually result from diabetic microvascular injury involving small blood vessels that supply nerves (vasa nervorum). Relatively common conditions which may be associated with diabetic neuropathy include third nerve palsy; mononeuropathy; mononeuritis multiplex; diabetic amyotrophy; a painful polyneuropathy; autonomic neuropathy; and thoracoabdominal neuropathy.
  • diabetic neuropathy Clinical manifestations of diabetic neuropathy include, for example, sensorimotor polyneuropathy such as numbness, sensory loss, dysesthesia and nighttime pain; autonomic neuropathy such as delayed gastric emptying or gastroparesis; and cranial neuropathy such as oculomotor (3rd) neuropathies or Mononeuropathies of the thoracic or lumbar spinal nerves.
  • Peripheral neuropathy is the medical term for damage to nerves of the peripheral nervous system, which may be caused either by diseases of the nerve or from the side-effects of systemic illness. Peripheral neuropathies vary in their presentation and origin, and may affect the nerve or the neuromuscular junction. Major causes of peripheral neuropathy include seizures, nutritional deficiencies, and HIV, though diabetes is the most likely cause. Mechanical pressure from staying in one position for too long, a tumor, intraneural hemorrhage, exposing the body to extreme conditions such as radiation, cold temperatures, or toxic substances can also cause peripheral neuropathy.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be used to treat or prevent multiple sclerosis (MS), including relapsing MS and monosymptomatic MS, and other demyelinating conditions, such as, for example, chromic inflammatory demyelinating polyneuropathy (CIDP), or symptoms associated therewith.
  • MS multiple sclerosis
  • CIDP chromic inflammatory demyelinating polyneuropathy
  • MS is a chronic, often disabling disease of the central nervous system.
  • Various and converging lines of evidence point to the possibility that the disease is caused by a disturbance in the immune function, although the cause of this disturbance has not been established.
  • This disturbance permits cells of the immune system to "attack" myelin, the fat containing insulating sheath that surrounds the nerve axons located in the central nervous system ("CNS").
  • CNS central nervous system
  • myelin When myelin is damaged, electrical pulses cannot travel quickly or normally along nerve fiber pathways in the brain and spinal cord. This results in disruption of normal electrical conductivity within the axons, fatigue and disturbances of vision, strength, coordination, balance, sensation, and bladder and bowel function.
  • MS is now a common and well-known neurological disorder that is characterized by episodic patches of inflammation and demyelination which can occur anywhere in the CNS.
  • Demyelination produces a situation analogous to that resulting from cracks or tears in an insulator surrounding an electrical cord. That is, when the insulating sheath is disrupted, the circuit is "short circuited" and the electrical apparatus associated therewith will function intermittently or nor at all.
  • Such loss of myelin surrounding nerve fibers results in short circuits in nerves traversing the brain and the spinal cord that thereby result in symptoms of MS.
  • demyelination occurs in patches, as opposed to along the entire CNS.
  • demyelination may be intermittent. Therefore, such plaques are disseminated in both time and space.
  • MS exists in both sexes and can occur at any age. However, its most common presentation is in the relatively young adult, often with a single focal lesion such as a damage of the optic nerve, an area of anesthesia (loss of sensation), or paraesthesia (localize loss of feeling), or muscular weakness.
  • a single focal lesion such as a damage of the optic nerve, an area of anesthesia (loss of sensation), or paraesthesia (localize loss of feeling), or muscular weakness.
  • vertigo, double vision, localized pain, incontinence, and pain in the arms and legs may occur upon flexing of the neck, as well as a large variety of less common symptoms.
  • An initial attack of MS is often transient, and it may be weeks, months, or years before a further attack occurs.
  • Some individuals may enjoy a stable, relatively event free condition for a great number of years, while other less fortunate ones may experience a continual downhill course ending in complete paralysis.
  • elevated body temperature i.e., a fever, will make the condition worse, or as a reduction of temperature by, for example, a cold bath, may make the condition better.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be used to treat trauma to the nerves, including, trauma due to disease, injury (including surgical intervention), or environmental trauma (e.g., neurotoxins, alcoholism, etc.).
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may also be useful to prevent, treat, and alleviate symptoms of various PNS disorders, such as the ones described below.
  • the PNS is composed of the nerves that lead to or branch off from the spinal cord and CNS.
  • the peripheral nerves handle a diverse array of functions in the body, including sensory, motor, and autonomic functions.
  • nerves of the PNS have been damaged. Nerve damage can arise from a number of causes, such as disease, physical injury, poisoning, or malnutrition. These agents may affect either afferent or efferent nerves. Depending on the cause of damage, the nerve cell axon, its protective myelin sheath, or both may be injured or destroyed.
  • peripheral neuropathy encompasses a wide range of disorders in which the nerves outside of the brain and spinal cord - peripheral nerves - have been damaged. Peripheral neuropathy may also be referred to as peripheral neuritis, or if many nerves are involved, the terms polyneuropathy or polyneuritis may be used.
  • Peripheral neuropathy is a widespread disorder, and there are many underlying causes. Some of these causes are common, such as diabetes, and others are extremely rare, such as acrylamide poisoning and certain inherited disorders.
  • the most common worldwide cause of peripheral neuropathy is leprosy. Leprosy is caused by the bacterium Mycobacterium leprae, which attacks the peripheral nerves of affected people.
  • Leprosy is extremely rare in the United States, where diabetes is the most commonly known cause of peripheral neuropathy. It has been estimated that more than 17 million people in the United States and Europe have diabetes-related polyneuropathy. Many neuropathies are idiopathic; no known cause can be found. The most common of the inherited peripheral neuropathies in the United States is Charcot- Marie-Tooth disease, which affects approximately 125,000 persons.
  • peripheral neuropathies Another of the better known peripheral neuropathies is Guillain-Barre syndrome, which arises from complications associated with viral illnesses, such as cytomegalovirus, Epstein-Barr vims, and human immunodeficiency virus (HIV), or bacterial infection, including Campylobacter jejuni and Lyme disease. The worldwide incidence rate is approximately 1.7 cases per 100,000 people annually.
  • Other well- known causes of peripheral neuropathies include chronic alcoholism, infection of the varicella- zoster virus, botulism, and poliomyelitis.
  • Peripheral neuropathy may develop as a primary symptom, or it may be due to another disease. For example, peripheral neuropathy is only one symptom of diseases such as amyloid neuropathy, certain cancers, or inherited neurologic disorders. Such diseases may affect the PNS and the CNS, as well as other body tissues.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT
  • Brachial Plexus Neuropathies diseases of the cervical and first thoracic roots, nerve trunks, cords, and peripheral nerve components of the brachial plexus.
  • Clinical manifestations include regional pain, paresthesia; muscle weakness, and decreased sensation in the upper extremity.
  • These disorders may be associated with trauma, including birth injuries; thoracic outlet syndrome; neoplasms, neuritis, radiotherapy; and other conditions. See Adams et al., Principles of Neurology, 6th ed, pp 1351-2); Diabetic Neuropathies (peripheral, autonomic, and cranial nerve disorders that are associated with diabetes mellitus).
  • diabetic neuropathy usually results from diabetic microvascular injury involving small blood vessels that supply nerves (vasa nervorum).
  • Relatively common conditions which may be associated with diabetic neuropathy include third nerve palsy; mononeuropathy; mononeuritis multiplex; diabetic amyotrophy; a painful polyneuropathy; autonomic neuropathy; and thoracoabdominal neuropathy (see Adams et al., Principles of Neurology, 6th ed, pl325); mononeuropathies (disease or trauma involving a single peripheral nerve in isolation, or out of proportion to evidence of diffuse peripheral nerve dysfunction).
  • Mononeuritis multiplex refers to a condition characterized by multiple isolated nerve injuries.
  • Mononeuropathies may result from a wide variety of causes, including ischemia; traumatic injury; compression; connective tissue diseases; cumulative trauma disorders; and other conditions; Neuralgia (intense or aching pain that occurs along the course or distribution of a peripheral or cranial nerve); Peripheral Nervous System Neoplasms (neoplasms which arise from peripheral nerve tissue). This includes neurofibromas; Schwannomas; granular cell tumors; and malignant peripheral nerve sheath tumors (see DeVita Jr et al., Cancer: Principles and Practice of Oncology, 5th ed, pp. 1750-1); and Nerve Compression Syndromes (mechanical compression of nerves or nerve roots from internal or external causes).
  • the nerve and nerve sheath injuries may be caused by ischemia; inflammation; or a direct mechanical effect; Neuritis (a general term indicating inflammation of a peripheral or cranial nerve).
  • Clinical manifestation may include pain; paresthesias; paresis; or hyperesthesia; Polyneuropathies (diseases of multiple peripheral nerves).
  • the various fonns are categorized by the type of nerve affected (e.g., sensory, motor, or autonomic), by the distribution of nerve injury (e.g., distal vs. proximal), by nerve component primarily affected (e.g., demyelinating vs. axonal), by etiology, or by pattern of inheritance.
  • a HAT inhibiting compound may be used to treat or prevent chemotherapeutic induced neuropathy.
  • the HAT modulating compounds may be administered prior to administration of the chemotherapeutic agent, concurrently with administration of the chemotherapeutic drug, and/or after initiation of administration of the chemotherapeutic drug. If the HAT inhibiting compound is administered after the initiation of administration of the chemotherapeutic drug, it is desirable that the HAT inhibiting compound be administered prior to, or at the first signs, of chemotherapeutic induced neuropathy.
  • Chemotherapy drugs can damage any part of the nervous system. Encephalopathy and myelopathy are notably very rare. Damage to peripheral nerves is much more common and can be a side effect of treatment experienced by people with cancers, such as lymphoma. Most of the neuropathy affects sensory rather than motor nerves. Thus, the common symptoms are tingling, numbness or a loss of balance. The longest nerves in the body seem to be most sensitive hence the fact that most patients will report numbness or pins and needles in their hands and feet.
  • the chemotherapy drugs which are most commonly associated with neuropathy are the Vinca alkaloids (anti-cancer drugs originally derived from a member of the periwinkle - the Vinca plant genus) and a platinum- containing drug called Cisplatin.
  • the Vinca alkaloids include the drugs vinblastine, vincristine and vindesine.
  • Many combination chemotherapy treatments for lymphoma for example CHOP and CVP contain vincristine, which is the drug known to cause this problem most frequently. Indeed, it is the risk of neuropathy that limits the dose of vincristine that can be administered.
  • a HAT inhibiting compound may be used to treat or prevent a polyglutamine disease.
  • Huntington's Disease (HD) and Spinocerebellar type 1 (SCAl) are just two examples of a class of genetic diseases caused by dynamic mutations involving the expansion of triplet sequence repeats. In reference to this common mechanism, these disorders are called trinucleotide repeat diseases. At least 14 such diseases are known to affect human beings. Nine of them, including SCAl and Huntington's disease, have CAG as the repeated sequence. Since CAG codes for an amino acid called glutamine, these nine trinucleotide repeat disorders are collectively known as polyglutamine diseases.
  • mice have generated genetically engineered mice expressing proteins with long polyglutamine tracts. Regardless of whether the mice express full-length proteins or only those portions of the proteins containing the polyglutamine tracts, they develop symptoms of polyglutamine diseases. This suggests that a long polyglutamine tract by itself is damaging to cells and does not have to be part of a functional protein to cause its damage.
  • LANP is needed for nerve cells to communicate with one another and thus for their survival.
  • the mutant ataxin-1 protein accumulates inside nerve cells, it "traps" the LANP protein, interfering with its normal function.
  • HDAC I/II Class I/I Histone Deacetylase
  • the invention provides a method for treating or preventing neuropathy related to ischemic injuries or diseases, such as, for example, coronary heart disease (including congestive heart failure and myocardial infarctions), stroke, emphysema, hemorrhagic shock, peripheral vascular disease (upper and lower 5 extremities) and transplant related injuries.
  • ischemic injuries or diseases such as, for example, coronary heart disease (including congestive heart failure and myocardial infarctions), stroke, emphysema, hemorrhagic shock, peripheral vascular disease (upper and lower 5 extremities) and transplant related injuries.
  • the invention provides a method to treat a central nervous system cell to prevent damage in response to a decrease in blood flow to the cell.
  • the severity of damage that may be prevented will depend in large part on the degree of reduction in blood flow to the cell and the duration of the reduction.
  • the normal amount of perfusion to brain gray matter in humans is about 60 to 70 mIVlOO g of brain tissue/min.
  • Death of central nervous system cells typically occurs when the flow of blood falls below approximately 8-10 mL/100 g of brain tissue/min, while at slightly higher levels (i.e. 20-35 mL/100 g of brain tissue/min) the tissue remains alive but not able to function.
  • apoptotic or necrotic cell death may be prevented.
  • ischemic-mediated damage such as cytoxic edema or central nervous system tissue anoxemia, may be prevented.
  • the central nervous system cell may be a spinal cell or a brain cell.
  • ischemic condition is a stroke that results in any type of ischemic central nervous system damage, such as apoptotic or necrotic cell death, cytoxic edema or central nervous system tissue anoxia.
  • the stroke may impact any area of the brain or be caused by any etiology commonly known to result in the occurrence of a stroke.
  • the stroke is a brain stem stroke.
  • brain stem strokes strike the brain stem, which control involuntary life-support functions such as breathing, blood pressure, and heartbeat.
  • the stroke is a cerebellar stroke.
  • cerebellar strokes impact the cerebellum area of the brain, which controls balance and coordination.
  • the stroke is an embolic stroke.
  • embolic strokes may impact any region of the brain and typically result from the blockage of an artery by a vaso-occlusion.
  • the stroke may be a hemorrhagic stroke.
  • hemorrhagic stroke may impact any region of the brain, and typically result from a ruptured blood vessel characterized by a hemorrhage (bleeding) within or surrounding the brain.
  • the stroke is a thrombotic stroke.
  • thrombotic strokes result from the blockage of a blood vessel by accumulated deposits.
  • the ischemic condition may result from a disorder that occurs in a part of the subject's body outside of the central nervous system, but yet still causes a reduction in blood flow to the central nervous system.
  • disorders may include, but are not limited to a peripheral vascular disorder, a venous thrombosis, a pulmonary embolus, arrhythmia (e.g. atrial fibrillation), a myocardial infarction, a transient ischemic attack, unstable angina, or sickle cell anemia.
  • the central nervous system ischemic condition may occur as result of the subject undergoing a surgical procedure.
  • the subject may be undergoing heart surgery, lung surgery, spinal surgery, brain surgery, vascular surgery, abdominal surgery, or organ transplantation surgery.
  • the organ transplantation surgery may include heart, lung, pancreas, kidney or liver transplantation surgery.
  • the central nervous system ischemic condition may occur as a result of a trauma or injury to a part of the subject's body outside the central nervous system.
  • the trauma or injury may cause a degree of bleeding that significantly reduces the total volume of blood in the subject's body. Because of this reduced total volume, the amount of blood flow to the central nervous system is concomitantly reduced.
  • the trauma or injury may also result in the formation of a vaso-occlusion that restricts blood flow to the central nervous system.
  • the HAT inhibiting compounds may be employed to treat the central nervous system ischemic condition irrespective of the cause of the condition.
  • the ischemic condition results from a vaso- occlusion.
  • the vaso-occlusion may be any type of occlusion, but is typically a cerebral thrombosis or an embolism.
  • the ischemic condition may result from a hemorrhage.
  • the hemorrhage may be any type of hemorrhage, but is generally a cerebral hemorrhage or a subararachnoid hemorrhage.
  • the ischemic condition may result from the narrowing of a vessel. Generally speaking, the vessel may narrow as a result of a vasoconstriction such as occurs during vasospasms, or due to arteriosclerosis.
  • the ischemic condition results from an injury to the brain or spinal cord.
  • a HAT inhibiting compound may be administered to reduce infarct size of the ischemic core following a central nervous system ischemic condition. Moreover, a HAT inhibiting compound may also be beneficially administered to reduce the size of the ischemic penumbra or transitional zone following a central nervous system ischemic condition.
  • a combination drug regimen may include drugs or compounds for the treatment or prevention of neurodegenerative disorders or secondary conditions associated with these conditions. Thus, a combination drug regimen may include one or more HAT inhibitors and one or more anti- neurodegeneration agents.
  • one or more HAT inhibiting compounds can be combined with an effective amount of one or more of: L-DOPA; a dopamine agonist; an adenosine A2A receptor antagonist; a COMT inhibitor; a MAO inhibitor; an N-NOS inhibitor; a sodium channel antagonist; a selective N-methyl D-aspartate (NMDA) receptor antagonist; an AMPA/kainate receptor antagonist; a calcium channel antagonist; a GABA-A receptor agonist; an acetyl-choline esterase inhibitor; a matrix metalloprotease inhibitor; a PARP inhibitor; an inhibitor of p38 MAP kinase or c-jun- N-terminal kinases; TPA; NDA antagonists; beta- interferons; growth factors; glutamate inhibitors; and/or as part of a cell therapy.
  • N-NOS inhibitors include 4-(6-amino-pyridin-2-yl)-3- methoxyphenol 6-[4-(2-dimethylamino-ethoxy)-2-methoxy-phenyl]-pyridin-2-yl- amine, 6-[4-(2-dimethylamino-ethoxy)-2,3-dimethyl-phenyl]-pyridm-2-yl-amine, 6- [4- (2-pyrrolidinyl-ethoxy)-2,3-dimethyl-p-henyl]-pyridin-2-yl-amine, 6-[4-(4-(n- methyl)piperidinyloxy)-2,3-dimethyl-p-henyl]-pyridin-2-yl-amine, 6-[4-(2- dimethylaiuino-ethoxy)-3-methoxy-phenyl]-pyridin-2-yl-amine, 6-[4-(2-pyrrolidinyl- ethoxy)
  • Exemplary NMDA receptor antagonist include (+)-(lS,2S)-l-(4-hydroxy- phenyl)-2-(4-hydroxy-4-phenylpiperidino)-l-propanol, (lS,2S)-l-(4-hydroxy-3- metlioxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-l-propanol, (3 R, 4S)-3-(4-(4- fluorophenyl)-4-hydroxypiperidin-l-yl-)-chroman-4,7-diol, (IR*, 2R*)-l-(4-hydroxy- 3-methylphenyl)-2-(4-(4-fluoro-phenyl)-4-hydroxypiperidin-l-yl)-propan-l-ol- mesylate or a pharmaceutically acceptable acid addition salt thereof.
  • dopamine agonist examples include ropininole; L-dopa decarboxylase inhibitors such as carbidopa or benserazide, bromocriptine, dihydroergocryptine, etisulergine, AF- 14, alaptide, pergolide, piribedil; dopamine Dl receptor agonists such as A-68939, A-77636, dihydrexine, and SKF-38393; dopamine D2 receptor agonists such as carbergoline, lisuride, N-0434, naxagolide, PD- 118440, pramipexole, quinpirole and ropinirole; dopamine/[beta]-adrenegeric receptor agonists such as DPDMS and dopexamine; dopamine/5-HT uptake inhibitor/5 -HT-I A agonists such as roxindole; dopamine/opiate receptor agonists such as NIH-104
  • Exemplary acetyl cholinesterase inhibitors include donepizil, l-(2-methyl-lH- benzimidazol-5-yl)-3-[l-(phenylmethyl)-4-piperidinyl]-l-propanone; l-(2-phenyl-lH- benzimidazol-5-yl)-3-[l-(phenylmethyl)-4-piperidinyl]-l-pr-opanone; l-(l-ethyl-2- methyl-lH-benzimidazol-5-yl)-3-[l-(phenylmethyl)-4-p-iperidinyl]-l-propanone; l-(2- methyl-6-benzothiazolyl)-3-[l-(phenylmethyl)-4-piperidinyl]-l-propanone; l-(2- methyl-6-benzothiazolyl)-3-[l-[(2-methyl-4-thiazolyl)methyl]-4-pipe
  • Exemplary calcium channel antagonists include diltiazem, omega-conotoxin GVIA, methoxyverapamil, amlodipine, felodipine, lacidipine, and mibefradil.
  • Exemplary GABA-A receptor modulators include clomethiazole; IDDB; gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol); ganaxolone(3-alpha- hydroxy-3-beta-methyl-5-alpha-pregnan-20-one); fengabine(2-[(butylimino)-(2- chlorophenyl)methyl]- 4-chlorophenol); 2-(4-methoxyphenyl)-2,5,6,7,8, 9-hexahydro- pyrazolo[4,3-c]cinnolin-3-one; 7-cyclobutyl-6-(2-methyl-2H-l ,2,4-triazol-3
  • Exemplary potassium channel openers include diazoxide, flupirtine, pinacidil, levcromakalim, rilmakalim, chromakalim, PCO-400 and SKP-450 (2-[2"(l",3"- dioxolone)-2-methyl]-4-(2'-oxo-r-pyrrolidinyl)-6-nitro-2H-l-benzopyran).
  • AMPA/kainate receptor antagonists include 6-cyano-7- nitroquinoxalin-2,3-dione(CNQX); 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3- dione (NBQX); 6,7-dinitroquinoxaline-2,3-dione (DNQX); l-(4-aminophenyl)-4- methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride; and 2,3- dihydroxy-6-nitro-7-sulfamoylbenzo-[f]quinoxaline.
  • CNQX 6-cyano-7- nitroquinoxalin-2,3-dione
  • NBQX 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3- dione
  • DNQX 6,7-dinitroquinoxaline-2,3-dione
  • Exemplary sodium channel antagonists include ajmaline, procainamide, flecainide and riluzole.
  • Exemplary matrix-metalloprotease inhibitors include 4-[4-(4- fluorophenoxy)benzenesulfon-ylamino]tetrahydropyran-4-carboxylic acid hydroxyamide; 5-Methyl-5-(4-(4'-fluorophenoxy)-phenoxy)-[rho]yrimidine-2,4,6- trione; 5-n-Butyl-5-(4-(4'-fluorophenoxy)-phenoxy)-pyrimidine-2,4,6-trione and prinomistat.
  • PARP PoIy(ADP ribose) polymerase
  • PARP is over-activated, resulting in cell-based energetic failure characterized by NAD depletion and leading to ATP consumption, cellular necrosis, tissue injury, and organ damage/failure.
  • PARP is thought to contribute to neurodegeneration by depleting nicotinamide adenine dinucleotide (NAD+) which then reduces adenosine triphosphate (ATP; Cosi and Marien, Ann. N. Y. Acad. ScL, 890:227, 1999) contributing to cell death which can be prevented by PARP inhibitors.
  • NAD+ nicotinamide adenine dinucleotide
  • ATP adenosine triphosphate
  • Exemplory PARP inhibitors can be found in Southan and Szabo, Current Medicinal Chemistry, 10:321, 2003.
  • Exemplary inhibitors of p38 MAP kinase and c-jun-N-terminal kinases include pyridyl imidazoles, such as PD 169316, isomeric PD 169316, SB 203580, SB 202190, SB 220026, and RWJ 67657. Others are described in US Patent 6,288,089, and incorporated by reference herein.
  • a combination therapy for treating or preventing MS comprises a therapeutically effective amount of one or more HAT modulating compounds that decrease the level and/or activity of a HAT and one or more of Avonex ⁇ c> (interferon beta- Ia), Tysabri ⁇ (R)>(natalizumab), or Fumaderm (BG- 12/Oral Fumarate).
  • HAT modulating compounds that decrease the level and/or activity of a HAT and one or more of Avonex ⁇ c> (interferon beta- Ia), Tysabri ⁇ (R)>(natalizumab), or Fumaderm (BG- 12/Oral Fumarate).
  • a combination therapy for treating or preventing diabetic neuropathy or conditions associated therewith comprises a therapeutically effective amount of one or more HAT-modulating compounds that decreases the level and/or activity of a HAT and one or more of tricyclic antidepressants (TCAs) (including, for example, imipramine, amytriptyline, desipramine and nortriptyline), serotonin reuptake inhibitors (SSRIs) (including, for example, fluoxetine, paroxetine, sertralene, and citalopram) and antiepileptic drags (AEDs) (including, for example, gabapentin, carbamazepine, and topimirate)
  • TCAs tricyclic antidepressants
  • SSRIs serotonin reuptake inhibitors
  • AEDs antiepileptic drags
  • the invention provides a method for treating or preventing a polyglutamine disease using a combination comprising at least one HAT inhibiting compound and at least one HDAC I/II inhibitor.
  • HDAC I/II inhibitors include hydroxamic acids, cyclic peptides, benzamides, short-chain fatty acids, and depudecin.
  • hydroxamic acids and hydroxamic acid derivatives examples include trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), oxamflatin, suberic bishydroxamic acid (SBHA), m-carboxy-cinnamic acid bishydroxamic acid (CBHA), valproic acid and pyroxamide.
  • TSA was isolated as an antifungi antibiotic (Tsuji et al (1976) J. Antibiot (Tokyo) 29:1-6) and found to be a potent inhibitor of mammalian HDAC (Yoshida et al. (1990) J. Biol. Chem. 265:17174-17179).
  • hydroxamic acid-based HDAC inhibitors SAHA, SBHA, and CBHA are synthetic compounds that are able to inhibit HDAC at micromolar concentration or lower in vitro or in vivo. Glick et al. (1999) Cancer Res. 59:4392-4399.
  • SAHA, SBHA, and CBHA are synthetic compounds that are able to inhibit HDAC at micromolar concentration or lower in vitro or in vivo.
  • CBHA hydroxamic acid-based HDAC inhibitors
  • SAHA, SBHA, and CBHA are synthetic compounds that are able to inhibit HDAC at micromolar concentration or lower in vitro or in vivo. Glick et al. (1999) Cancer Res. 59:4392-4399.
  • These hydroxamic acid-based HDAC inhibitors all possess an essential structural feature: a polar hydroxamic terminal linked through a hydrophobic methylene spacer (e.g. 6 carbon at length) to another polar site which is attached to a terminal hydrophobic mo
  • Cyclic peptides used as HDAC inhibitors are mainly cyclic tetrapeptides.
  • cyclic peptides include, but are not limited to, trapoxin A, apicidin and depsipeptide.
  • Trapoxin A is a cyclic tetrapeptide that contains a 2-amino-8-oxo-9,10- epoxy-decanoyl (AOE) moiety.
  • AOE 2-amino-8-oxo-9,10- epoxy-decanoyl
  • Depsipeptide is isolated from Chromobacterium violaceum, and has been shown to inhibit HDAC activity at micromolar concentrations.
  • benzamides include but are not limited to MS-27-275. Saito et al. (1990) Proc. Natl. Acad. Sci. USA. 96:4592-4597.
  • Examples of short-chain fatty acids include but are not limited to butyrates (e.g., butyric acid, arginine butyrate and phenylbutyrate (PB)).
  • butyrates e.g., butyric acid, arginine butyrate and phenylbutyrate (PB)
  • PB phenylbutyrate
  • depudecin which has been shown to inhibit HDAC at micromolar concentrations (Kwon et al. (1998) Proc. Natl. Acad. Sci. 5 USA. 95:3356-3361) also falls within the scope of histone deacetylase inhibitor as described herein.
  • Blood Coagulation Disorders e.g., butyric acid, arginine butyrate and phenylbutyrate (PB)
  • HAT-modulating compounds that decrease the level and/or activity of a HAT can be used to treat or prevent blood coagulation disorders (or hemostatic disorders).
  • blood coagulation disorders or hemostatic disorders
  • the terms “hemostasis”, “blood coagulation,” and “blood clotting” refer to the control of bleeding, including the physiological properties of vasoconstriction and coagulation. Blood coagulation assists in maintaining the integrity of mammalian circulation after injury, inflammation, disease, congenital defect, dysfunction or other disruption. After initiation of clotting, blood coagulation proceeds through the sequential activation of certain plasma proenzymes to their enzyme forms (see, for example, Coleman, R. W. et al.
  • Plasma glycoproteins including Factor XII, Factor XI, Factor IX, Factor X, Factor VII, and prothrombin, are zymogens of serine proteases. Most of these blood clotting enzymes are effective on a physiological scale only when assembled in complexes on membrane surfaces with protein cofactors such as Factor VIII and Factor V. Other blood factors modulate and localize clot formation, or dissolve blood clots.
  • Activated protein C is a specific enzyme that inactivates procoagulant components. Calcium ions are involved in many of the component reactions.
  • Blood coagulation follows either the intrinsic pathway, where all of the protein components are present in blood, or the extrinsic pathway, where the cell-membrane protein tissue factor plays a critical role. Clot formation occurs when fibrinogen is cleaved by thrombin to form fibrin. Blood clots are composed of activated platelets and fibrin.
  • the formation of blood clots does not only limit bleeding in case of an injury (hemostasis), but may lead to serious organ damage and death in the context of atherosclerotic diseases by occlusion of an important artery or vein.
  • Thrombosis is thus blood clot formation at the wrong time and place. It involves a cascade of complicated and regulated biochemical reactions between circulating blood proteins (coagulation factors), blood cells (in particular platelets), and elements of an injured vessel wall.
  • the present invention provides anticoagulation and antithrombotic treatments aiming at inhibiting the formation of blood clots in order to prevent or treat blood coagulation disorders, such as myocardial infarction, stroke, loss of a limb by peripheral artery disease or pulmonary embolism.
  • modulating or modulation of hemostasis includes the induction (e.g., stimulation or increase) of hemostasis, as well as the inhibition (e.g., reduction or decrease) of hemostasis.
  • the invention provides a method for reducing or inhibiting hemostasis in a subject by administering a HAT-modulating compound that decreases the level and/or activity of a HAT.
  • a HAT-modulating compound that decreases the level and/or activity of a HAT.
  • the compositions and methods disclosed herein are useful for the treatment or prevention of thrombotic disorders.
  • thrombotic disorder includes any disorder or condition characterized by excessive or unwanted coagulation or hemostatic activity, or a hypercoagulable state.
  • Thrombotic disorders include diseases or disorders involving platelet adhesion and thrombus formation, and may manifest as an increased propensity to form thromboses, e.g., an increased number of thromboses, thrombosis at an early age, a familial tendency towards thrombosis, and thrombosis at unusual sites.
  • thrombotic disorders include, but are not limited to, thromboembolism, deep vein thrombosis, pulmonary embolism, stroke, myocardial infarction, miscarriage, thrombophilia associated with anti-thrombin III deficiency, protein C deficiency, protein S deficiency, resistance to activated protein C, dysfibrinogenemia, fibrinolytic disorders, homocystinuria, pregnancy, inflammatory disorders, myeloproliferative disorders, arteriosclerosis, angina, e.g., unstable angina, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, cancer metastasis, sickle cell disease, glomerular nephritis, and drug induced thrombocytopenia (including, for example, heparin induced thrombocytopenia).
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered to prevent thrombotic events
  • a combination drug regimen may include drugs or compounds for the treatment or prevention of blood coagulation disorders or secondary conditions associated with these conditions.
  • a combination drug regimen may include one or more HAT-modulating compounds that decrease the level and/or activity of a HAT and one or more anti-coagulation or anti-thrombosis agents.
  • one or more HAT-modulating compounds can be combined with an effective amount of one or more of: aspirin, heparin, and oral Warfarin that inhibits Vit K-dependent factors, low molecular weight heparins that inhibit factors X and II, thrombin inhibitors, inhibitors of platelet GP IIbIIIa receptors, inhibitors of tissue factor (TF), inhibitors of human von Willebrand factor, inhibitors of one or more factors involved in hemostasis (in particular in the coagulation cascade).
  • aspirin heparin
  • oral Warfarin that inhibits Vit K-dependent factors
  • low molecular weight heparins that inhibit factors X and II
  • thrombin inhibitors inhibitors of platelet GP IIbIIIa receptors
  • TF tissue factor
  • human von Willebrand factor inhibitors of one or more factors involved in hemostasis (in particular in the coagulation cascade).
  • HAT- modulating compounds that decrease the level and/or activity of a HAT can be combined with thrombolytic agents, such as t-PA, streptokinase, reptilase, TNK-t-PA, and staphylokinase.
  • thrombolytic agents such as t-PA, streptokinase, reptilase, TNK-t-PA, and staphylokinase.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for treating or preventing weight gain or obesity in a subject.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used, for example, to treat or prevent hereditary obesity, dietary obesity, hormone related obesity, obesity related to the administration of medication, to reduce the weight of a subject, or to reduce or prevent weight gain in a subject.
  • a subject in need of such a treatment may be a subject who is obese, likely to become obese, overweight, or likely to become overweight.
  • Subjects who are likely to become obese or overweight can be identified, for example, based on family history, genetics, diet, activity level, medication intake, or various combinations thereof.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered to subjects suffering from a variety of other diseases and conditions that may be treated or prevented by promoting weight loss in the subject.
  • diseases include, for example, high blood pressure, hypertension, high blood cholesterol, dyslipidemia, type 2 diabetes, insulin resistance, glucose intolerance, hyperinsulinemia, coronary heart disease, angina pectoris, congestive heart failure, stroke, gallstones, cholescystitis and cholelithiasis, gout, osteoarthritis, obstructive sleep apnea and respiratory problems, some types of cancer (such as endometrial, breast, prostate, and colon), complications of pregnancy, poor female reproductive health (such as menstrual irregularities, infertility, irregular ovulation), bladder control problems (such as stress incontinence); uric acid nephrolithiasis; psychological disorders (such as depression, eating disorders, distorted body image, and low self esteem). Stunk
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for inhibiting adipogenesis or fat cell differentiation, whether in vitro or in vivo.
  • high circulating levels of insulin and/or insulin like growth factor (IGF) 1 will be prevented from recruiting preadipocytes to differentiate into adipocytes.
  • IGF insulin like growth factor
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for reducing appetite and/or increasing satiety, thereby causing weight loss or avoidance of weight gain.
  • a subject in need of such a treatment may be a subject who is overweight, obese or a subject likely to become overweight or obese.
  • the method may comprise administering daily or, every other day, or once a week, a dose, e.g., in the form of a pill, to a subject.
  • the dose may be an "appetite reducing dose.”
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered as a combination therapy for treating or preventing weight gain or obesity.
  • one or more HAT - modulating compounds that decrease the level and/or activity of a HAT may be administered in combination with one or more anti-obesity agents.
  • Exemplary anti- obesity agents include, for example, phenylpropanolamine, ephedrine, pseudoephedrine, phentermine, a cholecystokinin-A agonist, a monoamine reuptake inhibitor (such as sibutramine), a sympathomimetic agent, a serotonergic agent (such as dexfenfluramine or fenfluramine), a dopamine agonist (such as bromocriptine), a melanocyte-stimulating hormone receptor agonist or mimetic, a melanocyte- stimulating hormone analog, a cannabinoid receptor antagonist, a melanin concentrating hormone antagonist, the OB protein (leptin), a leptin analog, a leptin receptor agonist, a galanin antagonist or a GI lipase inhibitor or decreaser (such as orlistat).
  • a monoamine reuptake inhibitor such as sibutramine
  • a sympathomimetic agent such as si
  • anorectic agents include bombesin agonists, dehydroepiandrosterone or analogs thereof, glucocorticoid receptor agonists and antagonists, orexin receptor antagonists, urocortin binding protein antagonists, agonists of the glucagon-like peptide- 1 receptor such as Exendin and ciliary neurotrophic factors such as Axokine.
  • HAT -modulating compounds that decrease the level and/or activity of a HAT may be administered to reduce drug-induced weight gain.
  • a HAT -modulating compound that decreases the level and/or activity of a HAT may be administered as a combination therapy with medications that may stimulate appetite or cause weight gain, in particular, weight gain due to factors other than water retention.
  • medications that may cause weight gain include for example, diabetes treatments, including, for example, sulfonylureas (such as glipizide and glyburide), thiazolidinediones (such as pioglitazone and rosiglitazone), meglitinides, nateglinide, repaglinide, sulphonylurea medicines, and insulin; antidepressants, including, for example, tricyclic antidepressants (such as amitriptyline and imiprarnine), irreversible monoamine oxidase inhibitors (MAOIs), selective serotonin reuptake inhibitors (SSRIs), bupropion, paroxetine, and mirtazapine; steroids, such as, for example,
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for treating or preventing a metabolic disorder, such as insulin-resistance, a pre-diabetic state, type II diabetes, and/or complications thereof.
  • Administration of a HAT-modulating compounds that decreases the level and/or activity of a HAT may increase insulin sensitivity and/or decrease insulin levels in a subject.
  • a subject in need of such a treatment may be a subject who has insulin resistance or other precursor symptom of type II diabetes, who has type II diabetes, or who is likely to develop any of these conditions.
  • the subject may be a subject having insulin resistance, e.g., having high circulating levels of insulin and/or associated conditions, such as hyperlipidemia, dyslipogenesis, hypercholesterolemia, impaired glucose tolerance, high blood glucose sugar level, other manifestations of syndrome X, hypertension, atherosclerosis and lipodystrophy.
  • insulin resistance e.g., having high circulating levels of insulin and/or associated conditions, such as hyperlipidemia, dyslipogenesis, hypercholesterolemia, impaired glucose tolerance, high blood glucose sugar level, other manifestations of syndrome X, hypertension, atherosclerosis and lipodystrophy.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered as a combination therapy for treating or preventing a metabolic disorder.
  • one or more HAT- modulating compounds that decrease the level and/or activity of a HAT may be administered in combination with one or more anti-diabetic agents.
  • Exemplary antidiabetic agents include, for example, an aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, a protein tyrosine phosphatase IB inhibitor, a dipeptidyl protease inhibitor, insulin (including orally bioavailable insulin preparations), an insulin mimetic, metformin, acarbose, a peroxisome proliferator-activated receptor- ⁇ (PPAR- ⁇ ) ligand such as troglitazone, rosaglitazone, pioglitazone or GW-1929, a sulfonylurea, glipazide, glyburide, or chlorpropamide wherein the amounts of the first and second compounds result in a therapeutic effect.
  • PPAR- ⁇ peroxisome proliferator-activated receptor- ⁇
  • anti-diabetic agents include a glucosidase inhibitor, a glucagon-like peptide- 1 (GLP-I), insulin, a PPAR ⁇ / ⁇ dual agonist, a meglitimide and an ⁇ P2 inhibitor.
  • GLP-I glucagon-like peptide- 1
  • insulin a PPAR ⁇ / ⁇ dual agonist
  • meglitimide a meglitimide
  • ⁇ P2 inhibitors include a glucosidase inhibitor, a glucagon-like peptide- 1 (GLP-I), insulin, a PPAR ⁇ / ⁇ dual agonist, a meglitimide and an ⁇ P2 inhibitor.
  • an anti-diabetic agent may be a dipeptidyl peptidase IV (DP-IV or DPP-IV) inhibitor, such as, for example LAF237 from Novartis (NVP DPP728; l-[[[2-[(5-cyanopyridin-2- yl)amino]ethyl]amino]acetyl]-2-cyano-(S)- pyrrolidine) or MK-04301 from Merck (see e.g., Hughes et al., Biochemistry 38: 11597-603 (1999)). Inflammatory Diseases
  • DP-IV or DPP-IV dipeptidyl peptidase IV
  • HAT-modulating compounds that decrease the level and/or activity of a HAT can be used to treat or prevent a disease or disorder associated with inflammation.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered prior to the onset of, at, or after the initiation of inflammation.
  • the compounds are preferably provided in advance of any inflammatory response or symptom. Administration of the compounds may prevent or attenuate inflammatory responses or symptoms.
  • Exemplary inflammatory conditions include, for example, multiple sclerosis, rheumatoid arthritis, psoriatic arthritis, degenerative joint disease, spondouloarthropathies, gouty arthritis, systemic lupus erythematosus, juvenile arthritis, rheumatoid arthritis, osteoarthritis, osteoporosis, diabetes (e.g., insulin dependent diabetes mellitus or juvenile onset diabetes), menstrual cramps, cystic fibrosis, inflammatory bowel disease, irritable bowel syndrome, Crohn's disease, mucous colitis, ulcerative colitis, gastritis, esophagitis, pancreatitis, peritonitis, Alzheimer's disease, shock, ankylosing spondylitis, gastritis, conjunctivitis, pancreatis (acute or chronic), multiple organ injury syndrome (e.g., secondary to septicemia or trauma), myocardial infarction, atherosclerosis, stroke, reperfusion
  • Exemplary inflammatory conditions of the skin include, for example, eczema, atopic dermatitis, contact dermatitis, urticaria, schleroderma, psoriasis, and dermatosis with acute inflammatory components.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used to treat or prevent allergies and respiratory conditions, including asthma, bronchitis, pulmonary fibrosis, allergic rhinitis, oxygen toxicity, emphysema, chronic bronchitis, acute respiratory distress syndrome, and any chronic obstructive pulmonary disease (COPD).
  • the compounds may be used to treat chronic hepatitis infection, including hepatitis B and hepatitis C.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used to treat autoimmune diseases and/or inflammation associated with autoimmune diseases such as organ-tissue autoimmune diseases (e.g., Raynaud's syndrome), scleroderma, myasthenia gravis, transplant rejection, endotoxin shock, sepsis, psoriasis, eczema, dermatitis, multiple sclerosis, autoimmune thyroiditis, uveitis, systemic lupus erythematosis, Addison's disease, autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome), and Grave's disease.
  • organ-tissue autoimmune diseases e.g., Raynaud's syndrome
  • scleroderma myasthenia gravis
  • transplant rejection transplant rejection
  • endotoxin shock sepsis
  • psoriasis psoriasis
  • eczema derma
  • one or more HAT-modulating compounds that decrease the level and/or activity of a HAT may be taken alone or in combination with other compounds useful for treating or preventing inflammation.
  • exemplary antiinflammatory agents include, for example, steroids (e.g., Cortisol, cortisone, fludrocortisone, prednisone, 6-alpha-methylprednisone, triamcinolone, betamethasone or dexamethasone), nonsteroidal antiinflammatory drugs (NSAIDS (e.g., aspirin, acetaminophen, tolmetin, ibuprofen, mefenamic acid, piroxicam, nabumetone, rofecoxib, celecoxib, etodolac or nimesulide).
  • steroids e.g., Cortisol, cortisone, fludrocortisone, prednisone, 6-alpha-methylprednisone, triamcinolone, betamethasone or dex
  • the other therapeutic agent is an antibiotic (e.g., vancomycin, penicillin, amoxicillin, ampicillin, cefotaxime, ceftriaxone, cefixime, rifampinmetronidazole, doxycycline or streptomycin).
  • the other therapeutic agent is a PDE4 inhibitor (e.g., roflumilast or rolipram).
  • the other therapeutic agent is an antihistamine (e.g., cyclizine, hydroxyzine, promethazine or diphenhydramine).
  • the other therapeutic agent is an antimalarial (e.g., artemisinin, artemether, artsunate, chloroquine phosphate, mefloquine hydrochloride, doxycycline hyclate, proguanil hydrochloride, atovaquone or halofantrine).
  • the other therapeutic agent is drotrecogin alfa.
  • anti-inflammatory agents include, for example, aceclofenac, acemetacin, e-acetamidocaproic acid, acetaminophen, acetaminosalol, acetanilide, acetylsalicylic acid, S-adenosylmethionine, alclofenac, alclometasone, alfentanil, algestone, allylprodine, alminoprofen, aloxiprin, alphaprodine, aluminum bis(acetylsalicylate), amcinonide, amfenac, aminochlorthenoxazin, 3-amino-4- hydroxybutyric acid, 2-amino-4-picoline, aminopropylon, aminopyrine, amixetrine, ammonium salicylate, ampiroxicam, amtolmetin guacil, anileridine, antipyrine, antrafenine, apazone, beclomethasone, bendazac, benorylate, benox
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be administered with a selective COX-2 inhibitor for treating or preventing inflammation.
  • selective COX-2 inhibitors include, for example, deracoxib, parecoxib, celecoxib, valdecoxib, rofecoxib, etoricoxib, lumiracoxib, 2-(3,5-difluorophenyl)-3-[4- (methylsulfonyl)phenyl]-2-cyclopenten-l-one, (S)-6,8-dichloro-2-(triflu- oromethyl)- 2H-l-benzopyran-3-carboxylic acid, 2-(3 ,4-difluorophenyl)-4-(3-hydroxy-3-methyl- l-butoxy)-5-[4-(methylsulfonyl)phenyl]-3-(2H)-pyridazinone, 4-[5-(4-fluor
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for reducing the incidence or severity of flushing and/or hot flashes which are symptoms of a disorder.
  • the subject method includes the use of HAT-modulating compounds that decrease the level and/or activity of a HAT, alone or in combination with other agents, for reducing incidence or severity of flushing and/or hot flashes in cancer patients.
  • the method provides for the use of HAT-modulating compounds that decrease the level and/or activity of a HAT to reduce the incidence or severity of flushing and/or hot flashes in menopausal and post-menopausal woman.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used as a therapy for reducing the incidence or severity of flushing and/or hot flashes which are side-effects of another drug therapy, e.g., drug- induced flushing.
  • a method for treating and/or preventing drug-induced flushing comprises administering to a patient in need thereof a formulation comprising at least one flushing inducing compound and at least one HAT-modulating compound that decreases the level and/or activity of a HAT.
  • a method for treating drug induced flushing comprises separately administering one or more compounds that induce flushing and one or more HAT- modulating compounds, e.g., wherein the HAT-modulating compound and flushing inducing agent have not been formulated in the same compositions.
  • the HAT-modulating compound maybe administered (1) at the same as administration of the flushing inducing agent, (2) intermittently with the flushing inducing agent, (3) staggered relative to administration of the flushing inducing agent, (4) prior to administration of the flushing inducing agent, (5) subsequent to administration of the flushing inducing agent, and (6) various combination thereof.
  • Exemplary flushing inducing agents include, for example, niacin, faloxifene, antidepressants, anti-psychotics, chemotherapeutics, calcium channel blockers, and antibiotics.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used to reduce flushing side effects of a vasodilator or an antilipemic agent (including anticholesteremic agents and lipotropic agents).
  • a HAT-modulating compound that decreases the level and/or activity of a HAT may be used to reduce flushing associated with the administration of niacin.
  • Nicotinic acid 3-pyridinecarboxylic acid or niacin
  • Nicotinic acid is an antilipidemic agent that is marketed under, for example, the trade names Nicolar®, SloNiacin®, Nicobid® 5 and Time Release Niacin®. Nicotinic acid has been used for many years in the treatment of lipidemic disorders such as hyperlipidemia, hypercholesterolemia and atherosclerosis. This compound has long been known to exhibit the beneficial effects of reducing total cholesterol, low density lipoproteins or "LDL cholesterol,” triglycerides and apolipoprotein a (Lp(a)) in the human body, while increasing desirable high density lipoproteins or "HDL cholesterol".
  • LDL cholesterol low density lipoproteins
  • triglycerides triglycerides
  • apolipoprotein a Lp(a)
  • Typical doses range from about 1 gram to about 3 grams daily. Nicotinic acid is normally administered two to four times per day after meals, depending upon the dosage form selected. Nicotinic acid is currently commercially available in two dosage forms. One dosage form is an immediate or rapid release tablet which should be administered three or four times per day. Immediate release (“IR”) nicotinic acid formulations generally release nearly all of their nicotinic acid within about 30 to 60 minutes following ingestion. The other dosage form is a sustained release form which is suitable for administration two to four times per day.
  • IR immediate release
  • sustained release (“SR") nicotinic acid formulations are designed to release significant quantities of drug for absorption into the blood stream over specific timed intervals in order to maintain therapeutic levels of nicotinic acid over an extended period such as 12 or 24 hours after ingestion.
  • nicotinic acid is meant to encompass nicotinic acid or a compound other than nicotinic acid itself which the body metabolizes into nicotinic acid, thus producing essentially the same effect as nicotinic acid.
  • exemplary compounds that produce an effect similar to that of nicotinic acid include, for example, nicotinyl alcohol tartrate, d-glucitol hexanicotinate, aluminum nicotinate, niceritrol and d,l-alpha-tocopheryl nicotinate. Each such compound will be collectively referred to herein as "nicotinic acid.”
  • the invention provides a method for treating and/or preventing hyperlipidemia with reduced flushing side effects.
  • the method comprises the steps of administering to a subject in need thereof a therapeutically effective amount of nicotinic acid and a HAT-modulating compound that decreases the level and/or activity of a HAT in an amount sufficient to reduce flushing.
  • the nicotinic acid and/or HAT-modulating compound may be administered nocturnally.
  • the method involves the use of HAT- modulating compounds that decrease the level and/or activity of a HAT to reduce flushing side effects of raloxifene.
  • Raloxifene acts like estrogen in certain places in the body, but is not a hormone. It helps prevent osteoporosis in women who have reached menopause. Osteoporosis causes bones to gradually grow thin, fragile, and more likely to break. Evista slows down the loss of bone mass that occurs with menopause, lowering the risk of spine fractures due to osteoporosis.
  • a common side effect of raloxifene is hot flashes (sweating and flushing). This can be uncomfortable for women who already have hot flashes due to menopause.
  • the method involves the use of HAT- modulating compounds that decrease the level and/or activity of a HAT to reduce flushing side effects of antidepressants or anti -psychotic agent.
  • HAT- modulating compounds that decrease the level and/or activity of a HAT can be used in conjunction (administered separately or together) with a serotonin reuptake inhibitor, a 5HT2 receptor antagonist, an anticonvulsant, a norepinephrine reuptake inhibitor, an ⁇ -adrenoreceptor antagonist, an NK-3 antagonist, an NK-I receptor antagonist, a PDE4 inhibitor, an Neuropeptide Y5 Receptor Antagonists, a D4 receptor antagonist, a 5HT IA receptor antagonist, a 5HT ID receptor antagonist, a CRF antagonist, a monoamine oxidase inhibitor, or a sedative-hypnotic drag.
  • HAT- modulating compounds that decrease the level and/or activity of a HAT may be used as part of a treatment with a serotonin reuptake inhibitor (SRI) to reduce flushing.
  • SRI is a selective serotonin reuptake inhibitor (SSRI), such as a fluoxetinoid (fluoxetine, norfluoxetine) or a nefazodonoid (nefazodone, hydroxynefazodone, oxonefazodone).
  • SSRI selective serotonin reuptake inhibitor
  • Other exemplary SSRFs include duloxetine, venlafaxine, milnacipran, citalopram, fluvoxamine, paroxetine and sertraline.
  • the HAT-modulating compound that decreases the level and/or activity of a HAT can also be used as part of a treatment with sedative -hypnotic drag, such as selected from the group consisting of a benzodiazepine (such as alprazolam, chlordiazepoxide, clonazepam, chlorazepate, clobazam, diazepam, halazepam, lorazepam, oxazepam and prazepam), Zolpidem, and barbiturates.
  • a benzodiazepine such as alprazolam, chlordiazepoxide, clonazepam, chlorazepate, clobazam, diazepam, halazepam, lorazepam, oxazepam and prazepam
  • Zolpidem such as barbiturates.
  • a HAT-modulating compound that decreases BOS - the level and/or activity of a HAT may be used as part of a treatment with a 5-HT1A receptor partial agonist, such as selected from the group consisting of buspirone, flesinoxan, gepirone and ipsapirone.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT can also used as part of a treatment with a norepinephrine reuptake inhibitor, such as selected from tertiary amine tricyclics and secondary amine tricyclics.
  • exemplary tertiary amine tricyclic include amitriptyline, clomipramine, doxepin, imipramine and trimipramine.
  • Exemplary secondary amine tricyclic include amoxapine, desipramine, maprotiline, nortriptyline and protriptyline.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used as part of a treatment with a monoamine oxidase inhibitor, such as selected from the group consisting of isocarboxazid, phenelzine, tranylcypromine, selegiline and moclobemide.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used to reduce flushing side effects of chemotherapeutic agents, such as cyclophosphamide, tamoxifen.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used to reduce flushing side effects of calcium channel blockers, such as amlodipine.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used to reduce flushing side effects of antibiotics.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT can be used in combination with levofloxacin.
  • Levofloxacin is used to treat infections of the sinuses, skin, lungs, ears, airways, bones, and joints caused by susceptible bacteria.
  • Levofloxacin also is frequently used to treat urinary infections, including those resistant to other antibiotics, as well as prostatitis.
  • Levofloxacin is effective in treating infectious diarrheas caused by E. coli, Campylobacter jejuni, and shigella bacteria.
  • Levofloxacin also can be used to treat various obstetric infections, including mastitis.
  • Ocular Disorders One aspect of the present invention is a method for inhibiting, reducing or otherwise treating vision impairment by administering to a patient a therapeutic dosage of HAT modulator selected from a compound disclosed herein, or a pharmaceutically acceptable salt, prodrug or a metabolic derivative thereof.
  • the vision impairment is caused by damage to the optic nerve or central nervous system.
  • optic nerve damage is caused by high intraocular pressure, such as that created by glaucoma.
  • optic nerve damage is caused by swelling of the nerve, which is often associated with an infection or an immune (e.g., autoimmune) response such as in optic neuritis.
  • Glaucoma describes a group of disorders which are associated with a visual field defect, cupping of the optic disc, and optic nerve damage. These are commonly referred to as glaucomatous optic neuropathies. Most glaucomas are usually, but not always, associated with a rise in intraocular pressure.
  • Exemplary forms of glaucoma include Glaucoma and Penetrating Keratoplasty, Acute Angle Closure, Chronic Angle Closure, Chronic Open Angle, Angle Recession, Aphakic and Pseudophakic, Drug- Induced, Hyphema, Intraocular Tumors, Juvenile, Lens-Particle, Low Tension, Malignant, Neovascular, Phacolytic, Phacomorphic, Pigmentary, Plateau Iris, Primary Congenital, Primary Open Angle, Pseudoexfoliation, Secondary Congenital, Adult Suspect, Unilateral, Uveitic, Ocular Hypertension, Ocular Hypotony, Posner- Schlossman Syndrome and Scleral Expansion Procedure in Ocular Hypertension & Primary Open-angle Glaucoma.
  • Intraocular pressure can also be increased by various surgical procedures, such as phacoemulsification (i.e., cataract surgery) and implanation of structures such as an artificial lens.
  • phacoemulsification i.e., cataract surgery
  • implanation of structures such as an artificial lens.
  • spinal surgeries in particular, or any surgery in which the patient is prone for an extended period of time can lead to increased interoccular pressure.
  • Optic neuritis is inflammation of the optic nerve and causes acute loss of vision. It is highly associated with multiple sclerosis (MS) as 15-25% of MS patients initially present with ON, and 50-75% of ON patients are diagnosed with MS. ON is also associated with infection (e.g., viral infection, meningitis, syphilis), inflammation (e.g., from a vaccine), infiltration and ischemia.
  • MS multiple sclerosis
  • AION anterior ischemic optic neuropathy
  • Arteritic AION is due to giant cell arteritis (vasculitis) and leads to acute vision loss.
  • Non-arteritic AION encompasses all cases of ischemic optic neuropathy other than those due to giant cell arteritis.
  • the pathophysiology of AION is unclear although it appears to incorporate both inflammatory and ischemic mechanisms.
  • optic nerve damage typically associated with demyleination, inflammation, ischemia, toxins, or trauma to the optic nerve.
  • exemplary conditions where the optic nerve is damaged include Demyelinating Optic Neuropathy (Optic Neuritis, Retrobulbar Optic Neuritis), Optic Nerve Sheath Meningioma, Adult Optic Neuritis, Childhood Optic Neuritis, Anterior Ischemic Optic Neuropathy, Posterior Ischemic Optic Neuropathy, Compressive Optic Neuropathy, Papilledema, Pseudopapilledema and Toxic/Nutritional Optic Neuropathy.
  • Demyelinating Optic Neuropathy Optic Neuritis, Retrobulbar Optic Neuritis
  • Optic Nerve Sheath Meningioma Meningioma
  • Adult Optic Neuritis Childhood Optic Neuritis
  • Anterior Ischemic Optic Neuropathy Posterior Ischemic Optic Neuropathy
  • Compressive Optic Neuropathy Papilledema,
  • Other neurological conditions associated with vision loss include Amblyopia, Bells Palsy, Chronic Progressive External Ophthalmoplegia, Multiple Sclerosis, Pseudotumor Cerebri and Trigeminal Neuralgia.
  • the vision impairment is caused by retinal damage.
  • retinal damage is caused by disturbances in blood flow to the eye (e.g., arteriosclerosis, vasculitis).
  • retinal damage is caused by disrupton of the macula (e.g., exudative or non-exudative macular degeneration).
  • Exemplary retinal diseases include Exudative Age Related Macular Degeneration, Nonexudative Age Related Macular Degeneration, Retinal Electronic Prosthesis and RPE Transplantation Age Related Macular Degeneration, Acute Multifocal Placoid Pigment Epitheliopathy, Acute Retinal Necrosis, Best Disease, Branch Retinal Artery Occlusion, Branch Retinal Vein Occlusion, Cancer Associated and Related Autoimmune Retinopathies, Central Retinal Artery Occlusion, Central Retinal Vein Occlusion, Central Serous Chorioretinopathy, Eales Disease, Epimacular Membrane, Lattice Degeneration, Macroaneurysm, Diabetic Macular Edema, Irvine- Gass Macular Edema, Macular Hole, Subretinal Neovascular Membranes, Diffuse Unilateral Subacute Neuroretinitis, Nonpseudophakic Cystoid Macular Edema, Presumed Ocular Histoplasmosis Syndrome, Exu
  • exemplary diseases include ocular bacterial infections (e.g. conjunctivitis, keratitis, tuberculosis, syphilis, gonorrhea), viral infections (e.g. Ocular Herpes Simplex Virus, Varicella Zoster Virus, Cytomegalovirus retinitis, Human Immunodeficiency Virus (HIV)) as well as progressive outer retinal necrosis secondary to HIV or other HIV-associated and other immunodeficiency-associated ocular diseases.
  • ocular diseases include fungal infections (e.g. Candida choroiditis, histoplasmosis), protozoal infections (e.g.
  • One aspect of the invention is a method for inhibiting, reducing or treating vision impairment in a subject undergoing treatment with a chemotherapeutic drug (e.g., a neurotoxic drug, a drug that raises intraocular pressure such as a steroid), by administering to the subject in need of such treatment a therapeutic dosage of a HAT modulator disclosed herein.
  • a chemotherapeutic drug e.g., a neurotoxic drug, a drug that raises intraocular pressure such as a steroid
  • Another aspect of the invention is a method for inhibiting, reducing or treating vision impairment in a subject undergoing surgery, including ocular or other surgeries performed in the prone position such as spinal cord surgery, by administering to the subject in need of such treatment a therapeutic dosage of a HAT modulator disclosed herein.
  • Ocular surgeries include cataract, iridotomy and lens replacements.
  • Another aspect of the invention is the treatment, including inhibition and prophylactic treatment, of age related ocular diseases include cataracts, dry eye, retinal damage and the like, by administering to the subject in need of such treatment a therapeutic dosage of a HAT modulator disclosed herein.
  • cataracts is associated with several biochemical changes in the lens of the eye, such as decreased levels of antioxidants ascorbic acid and glutathione, increased lipid, amino acid and protein oxidation, increased sodium and calcium, loss of amino acids and decreased lens metabolism.
  • the lens which lacks blood vessels, is suspended in extracellular fluids in the anterior part of the eye.
  • Nutrients such as ascorbic acid, glutathione, vitamin E, selenium, bioflavonoids and carotenoids are required to maintain the transparency of the lens.
  • Low levels of selenium results in an increase of free radical-inducing hydrogen peroxide, which is neutralized by the selenium-dependent antioxidant enzyme glutathione peroxidase.
  • Lens-protective glutathione peroxidase is also dependent on the amino acids methionine, cysteine, glycine and glutamic acid.
  • Cataracts can also develop due to an inability to properly metabolize galactose found in dairy products that contain lactose, a disaccharide composed of the monosaccharide galactose and glucose. Cataracts can be prevented, delayed, slowed and possibly even reversed if detected early and metabolically corrected. Retinal damage is attributed, inter alia, to free radical initiated reactions in glaucoma, diabetic retinopathy and age-related macular degeneration (AMD).
  • AMD age-related macular degeneration
  • the eye is a part of the central nervous system and has limited regenerative capability.
  • the retina is composed of numerous nerve cells which contain the highest concentration of polyunsaturated fatty acids (PFA) and subject to oxidation.
  • PFA polyunsaturated fatty acids
  • Free radicals are generated by UV light entering the eye and mitochondria in the rods and cones, which generate the energy necessary to transform light into visual impulses. Free radicals cause peroxidation of the PFA by hydroxyl or superoxide radicals which in turn propagate additional free radicals. The free radicals cause temporary or permanent damage to retinal tissue. Glaucoma is usually viewed as a disorder that causes an elevated intraocular pressure (IOP) that results in permanent damage to the retinal nerve fibers, but a sixth of all glaucoma cases do not develop an elevated IOP. This disorder is now perceived as one of reduced vascular perfusion and an increase in neurotoxic factors.
  • IOP intraocular pressure
  • nitric oxide synthase inhibitors block the formation of peroxynitrite from nitric oxide and superoxide.
  • animals treated with aminoguanidine, a nitric oxide synthase inhibitor had a reduction in the loss of retinal ganglion cells. It was concluded that nitric oxide in the eye caused cytotoxicity in many tissues and neurotoxicity in the central nervous system.
  • Diabetic retinopathy occurs when the underlying blood vessels develop microvascular abnormalities consisting primarily of microaneurysms and intraretinal hemorrhages. Oxidative metabolites are directly involved with the pathogenesis of diabetic retinopathy and free radicals augment the generation of growth factors that lead to enhanced proliferative activity. Nitric oxide produced by endothelial cells of the vessels may also cause smooth muscle cells to relax and result in vasodilation of segments of the vessel. Ischemia and hypoxia of the retina occur after thickening of the arterial basement membrane, endothelial proliferation and loss of pericytes.
  • the inadequate oxygenation causes capillary obliteration or nonperfusion, arteriolar- venular shunts, sluggish blood flow and an impaired ability of RBCs to release oxygen. Lipid peroxidation of the retinal tissues also occurs as a result of free radical damage.
  • the macula is responsible for our acute central vision and composed of light- sensing cells (cones) while the underlying retinal pigment epithelium (RPE) and choroid nourish and help remove waste materials.
  • the RPE nourishes the cones with the vitamin A substrate for the photosensitive pigments and digests the cones shed outer tips.
  • RPE is exposed to high levels of UV radiation, and secretes factors that inhibit angiogenesis.
  • the choroid contains a dense vascular network that provides nutrients and removes the waste materials.
  • the shed cone tips become indigestible by the RPE, where the cells swell and die after collecting too much undigested material. Collections of undigested waste material, called drusen, form under the RPE.
  • Photoxic damage also causes the accumulation of lipofuscin in RPE cells.
  • the intracellular lipofuscin and accumulation of drusen in Bruch's membrane interferes with the transport of oxygen and nutrients to the retinal tissues, and ultimately leads to RPE and photoreceptor dysfunction.
  • blood vessels grow from the choriocapillaris through defects in Bruch's membrane and may grow under the RPE, detaching it from the choroid, and leaking fluid or bleeding.
  • Macular pigment one of the protective factors that prevent sunlight from damaging the retina, is formed by the accumulation of nutritionally derived carotenoids, such as lutein, the fatty yellow pigment that serves as a delivery vehicle for other important nutrients and zeaxanthin.
  • nutritionally derived carotenoids such as lutein
  • lutein the fatty yellow pigment that serves as a delivery vehicle for other important nutrients and zeaxanthin.
  • Antioxidants such as vitamins C and E, beta- carotene and lutein, as well as zinc, selenium and copper, are all found in the healthy macula. In addition to providing nourishment, these antioxidants protect against free radical damage that initiates macular degeneration.
  • a combination drug regimen may include drugs or compounds for the treatment or prevention of ocular disorders or secondary conditions associated with these conditions.
  • a combination drug regimen may include one or more HAT inhibitors and one or more therapeutic agents for the treatment of an ocular disorder.
  • one or, more HAT-inhibiting compounds can be combined with an effective amount of one or more of: an agent that reduces intraocular pressure, an agent for treating glaucoma, an agent for treating optic neuritis, an agent for treating CMV Retinopathy, an agent for treating multiple sclerosis, and/or an antibiotic, etc.
  • a HAT modulator can be administered in conjunction with a therapy for reducing intraocular pressure.
  • One group of therapies involves blocking aqueous production.
  • topical beta-adrenergic antagonists timolol and betaxolol
  • Topical timolol causes IOP to fall in 30 minutes with peak effects in 1-2 hours.
  • Timoptic 0.5% one drop every 30 minutes for 2 doses.
  • the carbonic anhydrase inhibitor, acetazolamide also decreases aqueous production and should be given in conjunction with topical beta-antagonists.
  • An initial dose of 500 mg is administered followed by 250 mg every 6 hours. This medication may be given orally, intramuscularly, or intravenously.
  • alpha 2-agonists e.g., Apraclonidine
  • aqueous production e.g., 1,3-bis(trimethyl)-2-agonists
  • beta-blockers e.g., 1,3-bis(trimethyl)-2-agonists
  • They have been approved for use in controlling an acute rise in pressure following anterior chamber laser procedures, but has been reported effective in treating acute closed-angle glaucoma. A reasonable regimen is 1 drop every 30 minutes for 2 doses.
  • a second group of therapies for reducing intraocular pressure involve reducing vitreous volume.
  • Hyperosmotic agents can be used to treat an acute attack. These agents draw water out of the globe by making the blood hyperosmolar.
  • Oral glycerol in a dose of 1 mL/kg in a cold 50% solution (mixed with lemon juice to make it more palatable) often is used. Glycerol is converted to glucose in the liver; persons with diabetes may need additional insulin if they become hyperglycemic after receiving glycerol.
  • Oral isosorbide is a metabolically inert alcohol that also can be used as an osmotic agent for patients with acute angle-closure glaucoma. Usual dose is 100 g taken p.o.
  • a third group of therapies involve facilitating aqueous outflow from the eye.
  • Miotic agents pull the iris from the iridocorneal angle and may help to relieve the obstruction of the trabecular meshwork by the peripheral iris.
  • Pilocarpine 2% (blue eyes)-4% (brown eyes) can be administered every 15 minutes for the first 1-2 hours. More frequent administration or higher doses may precipitate a systemic cholinergic crisis.
  • NSAIDS are sometimes used to reduce inflammation.
  • Exemplary therapeutic agents for reducing intraocular pressure include ALPHAGAN® P (Allergan) (brimonidine tartrate ophthalmic solution), AZOPT® (Alcon) (brinzolamide ophthalmic suspension), BETAGAN® (Allergan) (levobunolol hydrochloride ophthalmic solution, USP), BETIMOL® (Vistakon) (timolol ophthalmic solution), BETOPTIC S® (Alcon) (betaxolol HCl), BRIMONIDINE TARTRATE (Bausch & Lomb), CARTEOLOL HYDROCHLORIDE (Bausch & Lornb), COSOPT® (Merck) (dorzolamide hydrochloride-timolol maleate ophthalmic solution), LUMIGAN® (Allergan) (bimatoprost ophthalmic solution), OPTIPRANOLOL® (Bausch & Lomb) (metipranolol ophthalmic solution
  • a HAT modulator can be administered in conjunction with a therapy for treating and/or preventing glaucoma.
  • a therapy for treating and/or preventing glaucoma is DARANIDE® Tablets (Merck) (Dichlorphenamide).
  • a HAT modulator can be administered in conjunction with a therapy for treating and/or preventing optic neuritis.
  • drugs for optic neuritis include DECADRON® Phosphate Injection (Merck) (Dexamethasone Sodium Phosphate), DEPO-MEDROL® (Pharmacia & Upjohn)(methylprednisolone acetate), HYDROCORTONE® Tablets (Merck) (Hydrocortisone), ORAPRED® (Biomarin) (prednisolone sodium phosphate oral solution) and PEDIAPRED® (Celltech) (prednisolone sodium phosphate, USP).
  • a HAT modulator can be administered in conjunction with a therapy for treating and/or preventing CMV Retinopathy.
  • Treatments for CMV retinopathy include CYTO VENE® (ganciclovir capsules) and VALCYTE® (Roche Laboratories) (valganciclovir hydrochloride tablets).
  • a HAT modulator can be administered in conjunction with a therapy for treating and/or preventing multiple sclerosis.
  • examples of such drugs include DANTRIUM® (Procter & Gamble Pharmaceuticals) (dantrolene sodium), NOVANTRONE® (Serono) (mitoxantrone), AVONEX® (Biogen pie) (Interferon beta-la), BETASERON® (Berlex) (Interferon beta-lb), COPAXONE® (Teva Neuroscience) (glatiramer acetate injection) and REB IF® (Pfizer) (interferon beta-la).
  • Macrolide antibiotics include tacrolimus, cyclosporine, sirolimus, everolimus, ascomycin, erythromycin, azithromycin, clarithromycin, clindamycin, lincomycin, dirithromycin, josamycin, spiramycin, diacetyl-midecamycin, tylosin, roxithromycin, ABT-773, telithromycin, leucomycins, and lincosamide.
  • the invention provides methods for treating diseases or disorders that would benefit from increased mitochondrial activity.
  • the methods involve administering to a subject in need thereof a therapeutically effective amount of a HAT inhibiting compound.
  • Increased mitochondrial activity refers to increasing activity of the mitochondria while maintaining the overall numbers of mitochondria (e.g., mitochondrial mass), increasing the numbers of mitochondria thereby increasing mitochondrial activity (e.g., by stimulating mitochondrial biogenesis), or combinations thereof.
  • diseases and disorders that would benefit from increased mitochondrial activity include diseases or disorders associated with mitochondrial dysfunction.
  • methods for treating diseases or disorders that would benefit from increased mitochondrial activity may comprise identifying a subject suffering from a mitochondrial dysfunction.
  • Methods for diagnosing a mitochondrial dysfunction may involve molecular genetic, pathologic and/or biochemical analysis are summarized in Cohen and Gold, Cleveland Clinic Journal of Medicine, 68: 625- 642 (2001).
  • One method for diagnosing a mitochondrial dysfunction is the Thor- Byrne-ier scale (see e.g., Cohen and Gold, supra; Collin S. et al., Eur Neurol. 36: 260- 267 (1996)).
  • enzymatic assays e.g., a mitochondrial enzyme or an ATP biosynthesis factor such as an ETC enzyme or a Krebs cycle enzyme
  • determination or mitochondrial mass, mitochondrial volume, and/or mitochondrial number quantification of mitochondrial DNA
  • monitoring intracellular calcium homeostasis and/or cellular responses to perturbations of this homeostasis evaluation of response to an apoptogenic stimulus, determination of free radical production.
  • enzymatic assays e.g., a mitochondrial enzyme or an ATP biosynthesis factor such as an ETC enzyme or a Krebs cycle enzyme
  • determination or mitochondrial mass, mitochondrial volume, and/or mitochondrial number quantification of mitochondrial DNA
  • monitoring intracellular calcium homeostasis and/or cellular responses to perturbations of this homeostasis evaluation of response to an apoptogenic stimulus
  • determination of free radical production determination of free radical production.
  • Mitochondria are critical for the survival and proper function of almost all types of eukaryotic cells. Mitochondria in virtually any cell type can have congenital or acquired defects that affect their function. Thus, the clinically significant signs and symptoms of mitochondrial defects affecting respiratory chain function are heterogeneous and variable depending on the distribution of defective mitochondria among cells and the severity of their deficits, and upon physiological demands upon the affected cells. Nondividing tissues with high energy requirements, e.g. nervous tissue, skeletal muscle and cardiac muscle are particularly susceptible to mitochondrial respiratory chain dysfunction, but any organ system can be affected. Diseases and disorders associated with mitochondrial dysfunction include diseases and disorders in which deficits in mitochondrial respiratory chain activity contribute to the development of pathophysiology of such diseases or disorders in a mammal.
  • Diseases or disorders that would benefit from increased mitochondrial activity generally include for example, diseases in which free radical mediated oxidative injury leads to tissue degeneration, diseases in which cells inappropriately undergo apoptosis, and diseases in which cells fail to undergo apoptosis.
  • Exemplary diseases or disorders that would benefit from increased mitochondrial activity include, for example, AD (Alzheimer's Disease), ADPD (Alzheimer's Disease and Parkinsons's Disease), AMDF (Ataxia, Myoclonus and Deafness), auto-immune disease, cancer, CIPO (Chronic Intestinal Pseudoobstruction with myopathy and Ophthalmoplegia), congenital muscular dystrophy, CPEO (Chronic Progressive External Ophthalmoplegia), DEAF (Maternally inherited DEAFness or aminoglycoside-induced DEAFness).
  • DIDMOAD Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, Deafness
  • DMDF Diabetes Mellitus and Deafness
  • dystonia Exercise Intolerance
  • ESOC Epilepsy, Strokes, Optic atrophy, and Cognitive decline
  • FBSN Femilial Bilateral Striatal Necrosis
  • FICP Fetal Infantile 5 Cardiomyopathy Plus, a MELAS-associated cardiomyopathy
  • GER Gastrointestinal Reflux
  • HD Huntington's Disease
  • KSS Kearns Sayre Syndrome
  • LDYT Leber's hereditary optic neuropathy and DYsTonia
  • LHON Leber Hereditary Optic Neuropathy
  • LIMM Lethal Infantile Mitochondrial Myopathy
  • MDM Myopathy and Diabetes Mellitus
  • MELAS Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes
  • MEPR Myoclonic Epilepsy and Psychomotor Regression
  • MERME MERRF/MELAS overlap disease
  • MERRF Myoclonic Epilepsy and Ragged Red Muscle Fibers
  • MHCM Meaternally Inherited Hypertrophic CardioMyopathy
  • MICM Magnetically Inherited Cardiomyopathy
  • MILS Middle Inherited Leigh Syndrome
  • Mitochondrial Encephalo cardiomyopathy Mitochondrial Encephalomyopathy
  • MM Mitsubishi Myopathy
  • MMC Mesternal Myopathy and Cardiomyopathy
  • MNGIE Myopathy and external ophthalmoplegia, Neuropathy, Gastro-Intestinal, Encephalopathy
  • ALS amyotrophic lateral sclerosis
  • macular degeneration epilepsy, Alpers syndrome, Multiple mitochondrial DNA deletion syndrome, MtDNA depletion syndrome, Complex I deficiency, Complex II (SDH) deficiency, Complex III deficiency, Cytochrome c oxidase (COX, Complex IV) deficiency, Complex deficiency, Adenine Nucleotide Translocator (ANT) deficiency, Pyruvate dehydrogenase (PDH) deficiency, Ethylmalonic aciduria with lactic acidemia, 3 -Methyl glutaconic aciduria with lactic acidemia, Refractory epilepsy with declines during infection, Asperger syndrome with declines during infection, Autism with declines during infection, Attention deficit hyperactivity disorder (ADHD), Cerebral palsy with declines
  • the invention provides methods for treating a subject suffering from mitochondrial disorders arising from, but not limited to, post-traumatic head injury and cerebral edema, stroke (invention methods useful for preventing or preventing reperfusion injury), Lewy body dementia, hepatorenal syndrome, acute liver failure, NASH (non-alcoholic steatohepatitis), Anti-metastasis/prodifferentiation therapy of cancer, idiopathic congestive heart failure, atrial fibrilation (non- valvular), Wolff- Parkinson- White Syndrome, idiopathic heart block, prevention of reperfusion injury in acute myocardial infarctions, familial migraines, irritable bowel syndrome, secondary prevention of non-Q wave myocardial infarctions, Premenstrual syndrome, Prevention of renal failure in hepatorenal syndrome, anti-phospholipid antibody syndrome, eclampsia/pre-eclampsia, oopause infertility, ischemic heart disease/angina, and Sh
  • Types of pharmaceutical agents that are associated with mitochondrial disorders include reverse transcriptase inhibitors, protease inhibitors, inhibitors of DHOD, and the like.
  • reverse transcriptase inhibitors include, for example, Azidothymidine (AZT), Stavudine (D4T), Zalcitabine (ddC), Didanosine (DDI), Fluoroiodoarauracil (FIAU), Lamivudine (3TC), Abacavir and the like.
  • Examples of protease inhibitors include, for example, Ritonavir, Indinavir, Saquinavir, Nelfinavir and the like.
  • inhibitors of dihydroorotate dehydrogenase (DHOD) include, for example, Leflunomide, Brequinar, and the like.
  • Reverse transcriptase inhibitors not only inhibit reverse transcriptase but also polymerase gamma which is required for mitochondrial function. Inhibition of polymerase gamma activity (e.g., with a reverse transcriptase inhibitor) therefore leads to mitochondrial dysfunction and/or a reduced mitochondrial mass which manifests itself in patients as hyperlactatemia. This type of condition may benefit from an increase in the number of mitochondria and/or an improvement in mitochondrial function, e.g., by administration of a HAT inhibiting compound.
  • mitochondrial diseases include cardiomyopathy, muscle weakness and atrophy, developmental delays (involving motor, language, cognitive or executive function), ataxia, epilepsy, renal tubular acidosis, peripheral neuropathy, optic neuropathy, autonomic neuropathy, neurogenic bowel dysfunction, sensorineural deafness, neurogenic bladder dysfunction, dilating cardiomyopathy, migraine, hepatic failure, lactic acidemia, and diabetes mellitus.
  • the invention provides methods for treating a disease or disorder that would benefit from increased mitochondrial activity that involves administering to a subject in need thereof one or more HAT inhibiting compounds in combination with another therapeutic agent such as, for example, an agent useful for treating mitochondrial dysfunction (such as antioxidants, vitamins, or respiratory chain cofactors), an agent useful for reducing a symptom associated with a disease or disorder involving mitochondrial dysfunction (such as, an anti-seizure agent, an agent useful for alleviating neuropathic pain, an agent for treating cardiac dysfunction), a cardiovascular agent (as described further below), a chemotherapeutic agent (as described further below), or an anti-neurodegeneration agent (as described further below).
  • an agent useful for treating mitochondrial dysfunction such as antioxidants, vitamins, or respiratory chain cofactors
  • an agent useful for reducing a symptom associated with a disease or disorder involving mitochondrial dysfunction such as, an anti-seizure agent, an agent useful for alleviating neuropathic pain, an agent for treating cardiac dysfunction
  • a cardiovascular agent
  • the invention provides methods for treating a disease or disorder that would benefit from increased mitochondrial activity that involves administering to a subject in need thereof one or more HAT inhibiting compounds in combination with one or more of the following: coenzyme QiO, L- carnitine, thiamine, riboflavin, niacinamide, folate, vitamin E, selenium, lipoic acid, or prednisone.
  • HAT inhibiting compounds in combination with one or more of the following: coenzyme QiO, L- carnitine, thiamine, riboflavin, niacinamide, folate, vitamin E, selenium, lipoic acid, or prednisone.
  • Compositions comprising such combinations are also provided herein.
  • the invention provides methods for treating diseases or disorders that would benefit from increased mitochondrial acitivty by administering to a subject a therapeutically effective amount of a HAT inhibiting compound.
  • diseases or disorders include, for example, neuromuscular disorders (e.g., Friedreich's Ataxia, muscular dystrophy, multiple sclerosis, etc.), disorders of neuronal instability (e.g., seizure disorders, migrane, etc.), developmental delay, neurodegenerative disorders (e.g., Alzheimer's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, etc.), ischemia, renal tubular acidosis, age-related neurodegeneration and cognitive decline, chemotherapy fatigue, age-related or chemotherapy-induced menopause or irregularities of menstrual cycling or ovulation, mitochondrial myopathies, mitochondrial damage (e.g., calcium accumulation, excitotoxicity, nitric oxide exposure, hypoxia, etc.), and mitochondrial deregulation.
  • mitochondrial myopathies e.g., calcium accumulation, exci
  • FA Friedreich's Ataxia
  • the genetic basis for FA involves GAA trinucleotide repeats in an intron region of the gene encoding frataxin. The presence of these repeats results in reduced transcription and expression of the gene. Frataxin is involved in regulation of mitochondrial iron content.
  • HAT inhibiting compounds may be used for treating patients with disorders related to deficiencies or defects in frataxin, including Friedreich's Ataxia, myocardial dysfunction, diabetes mellitus and complications of diabetes like peripheral neuropathy.
  • Muscular dystrophy refers to a family of diseases involving deterioration of neuromuscular structure and function, often resulting in atrophy of skeletal muscle and myocardial dysfunction.
  • Duchenne muscular dystrophy mutations or deficits in a specific protein, dystrophin, are implicated in its etiology. Mice with their dystrophin genes inactivated display some characteristics of muscular dystrophy, and have an approximately 50% deficit in mitochondrial respiratory chain activity. A final common pathway for neuromuscular degeneration in most cases is calcium- mediated impairment of mitochondrial function.
  • HAT inhibiting compounds may be used for reducing the rate of decline in muscular functional capacities and for improving muscular functional status in patients with muscular dystrophy.
  • MS Multiple sclerosis
  • MM Multiple sclerosis
  • MM Multiple sclerosis
  • Periodic exacerbations or attacks are significantly correlated with upper respiratory tract and other infections, both bacterial and viral, indicating that mitochondrial dysfunction plays a role in MS.
  • Depression of neuronal mitochondrial respiratory chain activity caused by Nitric Oxide (produced by astrocytes and other cells involved in inflammation) is implicated as a molecular mechanism contributing to MS.
  • HAT inhibiting compounds maybe used for treatment of patients with multiple sclerosis, both prophylactically and during episodes of disease exacerbation.
  • Epilepsy is often present in patients with mitochondrial cytopathies, involving a range of seizure severity and frequency, e.g.
  • HAT inhibiting compounds may be used for treating patients with seizures secondary to mitochondrial dysfunction, including reducing frequency and severity of seizure activity.
  • HAT inhibiting compounds may be used for treating patients with recurrent migraine headaches, including headaches refractory to ergot compounds or serotonin receptor antagonists. Delays in neurological or neuropsychological development are often found in children with mitochondrial diseases.
  • Uridine nucleotides are involved inactivation and transfer of sugars to glycolipids and glycoproteins. Cytidine nucleotides are derived from uridine nucleotides, and are crucial for synthesis of major membrane phospholipid constituents like phosphatidylcholine, which receives its choline moiety from cytidine diphosphocholine.
  • mitochondrial dysfunction due to either mitochondrial DNA defects or any of the acquired or conditional deficits like exicitoxic or nitric oxide-mediated mitochondrial dysfunction
  • cell proliferation and axonal extension is impaired at crucial stages in development of neuronal interconnections and circuits, resulting in delayed or arrested development of neuropsychological functions like language, motor, social, executive function, and cognitive skills.
  • autism magnetic resonance spectroscopy measurements of cerebral phosphate compounds indicates that there is global undersynthesis of membranes and membrane precursors indicated by reduced levels of uridine diphospho-sugars, and cytidine nucleotide derivatives involved in membrane synthesis.
  • HAT inhibiting compounds may be useful for treating treating patients with neurodevelopmental delays (e.g., involving motor, language, executive function, and cognitive skills), or other delays or arrests of neurological and neuropsychological development in the nervous system and somatic development in non-neural tissues like muscle and endocrine glands.
  • neurodevelopmental delays e.g., involving motor, language, executive function, and cognitive skills
  • AD Alzheimer's Disease
  • PD Parkinson's Disease
  • Complex I deficiencies in particular are frequently found not only in the nigrostriatal neurons that degenerate in Parkinson's disease, but also in peripheral tissues and cells like muscle and platelets of Parkinson's Disease patients.
  • mitochondrial respiratory chain activity is often depressed, especially Complex IV (Cytochrome c Oxidase).
  • mitochondrial respiratory function altogether is depressed as a consequence of aging, further amplifying the deleterious sequelae of additional molecular lesions affecting respiratory chain function.
  • Other factors in addition to primary mitochondrial dysfunction underlie neurodegeneration in AD, PD, and related disorders.
  • HAT inhibiting compounds may be useful for treating and attenuating progression of age- related neurodegenerative diseases including AD and PD.
  • One of the major genetic defects in patients with Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig's Disease) is mutation or deficiency in Copper-Zinc Superoxide Dismutase (SODl), an antioxidant enzyme.
  • Mitochondria both produce and are primary targets for reactive oxygen species. Inefficient transfer of electrons to oxygen in mitochondria is the most significant physiological source of free radicals in mammalian systems. Deficiencies in antioxidants or antioxidant enzymes can result in or exacerbate mitochondrial degeneration. Mice transgenic for mutated SODl develop symptoms and pathology similar to those in human ALS. The development of the disease in these animals has been shown to involve oxidative destruction of mitochondria followed by functional decline of motor neurons and onset of clinical symptoms. Skeletal muscle from ALS patients has low mitochondrial Complex I activity. In certain embodiments, HAT inhibiting compounds may be useful for treating ALS, for reversing or slowing the progression of clinical symptoms.
  • Oxygen deficiency results in both direct inhibition of mitochondrial respiratory chain activity by depriving cells of a terminal electron acceptor for Cytochrome c reoxidation at Complex IV, and indirectly, especially in the nervous system, via secondary post-anoxic excitotoxicity and nitric oxide formation.
  • tissues are relatively hypoxic.
  • compounds that increase mitochondrial activity provide protection of affected tissues from deleterious effects of hypoxia, attenuate secondary delayed cell death, and accelerate recovery from hypoxic tissue stress and injury.
  • HAT inhibiting compounds may be useful for preventing delayed cell death (apoptosis in regions like the hippocampus or cortex occurring about 2 to 5 days after an episode of cerebral ischemia) after ischemic or hypoxic insult to the brain.
  • HAT inhibiting compounds may be useful for treating renal tubular acidosis and other forms of renal dysfunction caused by mitochondrial respiratory chain deficits.
  • mitochondrial respiratory chain function During normal aging, there is a progressive decline in mitochondrial respiratory chain function. Beginning about age 40, there is an exponential rise in accumulation of mitochondrial DNA defects in humans, and a concurrent decline in nuclear-regulated elements of mitochondrial respiratory activity. Many mitochondrial DNA lesions have a selection advantage during mitochondrial turnover, especially in postmitotic cells.
  • mitochondria with a defective respiratory chain produce less oxidative damage to themselves than do mitochondria with intact functional respiratory chains (mitochondrial respiration is the primary source of free radicals in the body). Therefore, normally-functioning mitochondria accumulate oxidative damage to membrane lipids more rapidly than do defective mitochondria, and are therefore "tagged" for degradation by lysosomes.
  • HAT inhibiting compounds may be useful for treating or attenuating cognitive decline and other degenerative consequences of aging.
  • Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in cells subjected to oxidative stress or cancer chemotherapy agents like cisplatin due to both greater vulnerability and less efficient repair of mitochondrial DNA.
  • mitochondrial DNA may be more sensitive to damage than nuclear DNA, it is relatively resistant, in some situations, to mutagenesis by chemical carcinogens. This is because mitochondria respond to some types of mitochondrial DNA damage by destroying their defective genomes rather than attempting to repair them. This results in global mitochondrial dysfunction for a period after cytotoxic chemotherapy.
  • HAT inhibiting compounds may be useful for treatment and prevention of side effects of cancer chemotherapy related to mitochondrial dysfunction.
  • a crucial function of the ovary is to maintain integrity of the mitochondrial genome in oocytes, since mitochondria passed onto a fetus are all derived from those present in oocytes at the time of conception. Deletions in mitochondrial DNA become detectable around the age of menopause, and are also associated with abnormal menstrual cycles.
  • Chemotherapy-induced amenorrhea is generally due to primary ovarian failure.
  • the incidence of chemotherapy-induced amenorrhea increases as a function of age in premenopausal women receiving chemotherapy, pointing toward mitochondrial involvement.
  • Inhibitors of mitochondrial respiration or protein synthesis inhibit hormone-induced ovulation, and furthermore inhibit production of ovarian steroid hormones in response to pituitary gonadotropins.
  • Women with Down's syndrome typically undergo menopause prematurely, and also are subject to early onset of Alzheimer- like dementia. Low activity of cytochrome oxidase is consistently found in tissues of Down's patients and in late-onset Alzheimer's Disease.
  • HAT inhibiting compounds maybe useful for treating and preventing amenorrhea, irregular ovulation, menopause, or secondary consequences of menopause.
  • HAT inhibiting compounds may be useful for treatment mitochondrial myopathies. Mitochondrial myopathies range from mild, slowly progressive weakness of the extraocular muscles to severe, fatal infantile myopathies and multisystem encephalomyopathies. Some syndromes have been defined, with some overlap between them.
  • Established syndromes affecting muscle include progressive external ophthalmoplegia, the Kearns-Sayre syndrome (with ophthalmoplegia, pigmentary retinopathy, cardiac conduction defects, cerebellar ataxia, and sensorineural deafness), the MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), the MERFF syndrome (myoclonic epilepsy and ragged red fibers), limb-girdle distribution weakness, and infantile myopathy (benign or severe and fatal). Muscle biopsy specimens stained with modified Gomori's trichrome stain show ragged red fibers due to excessive accumulation of mitochondria.
  • HAT inhibiting compounds may be useful for treating patients suffering from toxic damage to mitochondria, such as, toxic damage due to , calcium accumulation, excitotoxicity, nitric oxide exposure, drug induced toxic damage, or hypoxia.
  • Mitochondria are major sites of calcium sequestration, and preferentially utilize energy from the respiratory chain for taking up calcium rather than for ATP synthesis, which results in a downward spiral of mitochondrial failure, since calcium uptake into mitochondria results in diminished capabilities for energy transduction.
  • Excessive stimulation of neurons with excitatory amino acids is a common mechanism of cell death or injury in the central nervous system.
  • Activation of glutamate receptors, especially of the subtype designated NMDA receptors results in mitochondrial dysfunction, in part through elevation of intracellular calcium during excitotoxic stimulation.
  • Nitric oxide (about 1 micromolar) inhibits cytochrome oxidase (Complex IV) and thereby inhibits mitochondrial respiration; moreover, prolonged exposure to nitric oxide (NO) irreversibly reduces Complex I activity. Physiological or pathophysiological concentrations of NO thereby inhibit pyrimidine biosynthesis.
  • Nitric oxide is implicated in a variety of neurodegenerative disorders including inflammatory and autoimmune diseases of the central nervous system, and is involved in mediation of excitotoxic and post-hypoxic damage to neurons.
  • Oxygen is the terminal electron acceptor in the respiratory chain. Oxygen deficiency impairs electron transport chain activity, resulting in diminished pyrimidine synthesis as well as diminished ATP synthesis via oxidative phosphorylation. Human cells proliferate and retain viability under virtually anaerobic conditions if provided with uridine and pyruvate (or a similarly effective agent for oxidizing NADH to optimize glycolytic ATP production).
  • HAT inhibiting compounds may be useful for treating diseases or disorders associated with mitochondrial deregulation. Transcription of mitochondrial DNA encoding respiratory chain components requires nuclear factors. In neuronal axons, mitochondria must shuttle back and forth to the nucleus in order to maintain respiratory chain activity. If axonal transport is impaired by hypoxia or by drugs like taxol which affect microtubule stability, mitochondria distant from the nucleus undergo loss of cytochrome oxidase activity. Accordingly, treatment with a HAT inhibiting compound may be useful for promoting nuclear-mitochondrial interactions.
  • Mitochondria are the primary source of free radicals and reactive oxygen species, due to spillover from the mitochondrial respiratory chain, especially when defects in one or more respiratory chain components impairs orderly transfer of electrons from metabolic intermediates to molecular oxygen.
  • cells can compensate by expressing mitochondrial uncoupling proteins (UCP), of which several have been identified.
  • UCP -2 is transcribed in response to oxidative damage, inflammatory cytokines, or excess lipid loads, e.g. fatty liver and steatohepatitis.
  • UCPs reduce spillover of reactive oxygen species from mitochondria by discharging proton gradients across the mitochondrial inner membrane, in effect wasting energy produced by metabolism and rendering cells vulnerable to energy stress as a trade-off for reduced oxidative injury.
  • Muscle Performance Muscle Performance
  • the invention provides methods for enhancing muscle performance by administering a therapeutically effective amount of a HAT inhibiting compound.
  • HAT inhibiting compounds may be useful for improving physical endurance (e.g., ability to perform a physical task such as exercise, physical labor, sports activities, etc.), inhibiting or retarding physical fatigues, enhancing blood oxygen levels, enhancing energy in healthy individuals, enhance working capacity and endurance, reducing muscle fatigue, reducing stress, enhancing cardiac and cardiovascular function, improving sexual ability, increasing muscle ATP levels, and/or reducing lactic acid in blood.
  • the methods involve administering an amount of a HAT inhibiting compound that increase mitochondrial activity, increase mitochondrial biogenesis, and/or increase mitochondrial mass.
  • Sports performance refers to the ability of the athlete's muscles to perform when participating in sports activities. Enhanced sports performance, strength, speed and endurance are measured by an increase in muscular contraction strength, increase in amplitude of muscle contraction, shortening of muscle reaction time between stimulation and contraction.
  • Athlete refers to an individual who participates in sports at any level and who seeks to achieve an improved level of strength, speed and endurance in their performance, such as, for example, body builders, bicyclists, long distance runners, short distance runners, etc.
  • An athlete may be hard training, that is, sports activities intensely more than three days a week or for competition.
  • An athlete may also be a fitness enthusiast who seeks to improve general health and well-being, 5 improve energy levels, who works out for about 1-2 hours about 3 times a week.
  • Amino acids including branched-chain amino acids, are released from muscles followed by their deamination to elevate serum ammonia and local oxidation as muscle fuel sources, which augments metabolic acidosis.
  • protein catabolism is initiated where rate of protein synthesis is decreased coupled with an increase in the degradation of non-contractible protein.
  • mitochondrial dysfunction is a well-known correlate of age-related muscle wasting (sarcopenia) and free radical damage has been suggested, though poorly investigated, as a contributing factor (reviewed in Navarro, A.; Lopez-Cepero, J. M.; Sanchez del Pino, M. L. Front. Biosci. 6: D26-44; 2001).
  • Other indications include acute sarcopenia, for example muscle atrophy and/or cachexia associated with burns, bed rest, limb immobilization, or major thoracic, abdominal, and/or orthopedic surgery. It is contemplated that the methods of the present invention will also be effective in the treatment of muscle related pathological conditions.
  • the invention provides novel dietary compositions comprising HAT modulators, a method for their preparation, and a method of using the compositions for improvement of sports performance. Accordingly, provided are therapeutic compositions, foods and beverages that have actions of improving physical endurance and/or inhibiting physical fatigues for those people involved in broadly- defined exercises including sports requiring endurance and labors requiring repeated muscle exertions. Such dietary compositions may additional comprise electrolytes, caffeine, vitamins, carbohydrates, etc.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be used for treating or preventing viral infections (such as infections by influenza, herpes or papilloma virus) or as antifungal agents.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered as part of a combination drug therapy with another therapeutic agent for the treatment of viral diseases, including, for example, acyclovir, ganciclovir and zidovudine, hi another embodiment, HAT-modulating compounds that decrease the level and/or activity of a HAT may be administered as part of a combination drug therapy with another anti-fungal agent including, for example, topical anti-fungals such as ciclopirox, clotrimazole, econazole, miconazole, nystatin, oxiconazole, terconazole, and tomaftate, or systemic anti-fungal such as fluconazole (Diflucan), itraconazole (Sporanox
  • Subjects that may be treated as described herein include eukaryotes, such as mammals, e.g., humans, ovines, bovines, equines, porcines, canines, felines, non- human primate, mice, and rats.
  • Cells that may be treated include eukaryotic cells, e.g., from a subject described above, or plant cells, yeast cells and prokaryotic cells, e.g., - bacterial cells.
  • modulating compounds may be administered to farm animals to improve their ability to withstand farming conditions longer.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may also be used to increase lifespan, stress resistance, and resistance to apoptosis in plants.
  • a compound is applied to plants, e.g., on a periodic basis, or to fungi.
  • plants are genetically modified to produce a compound.
  • plants and fruits are treated with a compound prior to picking and shipping to increase resistance to damage during shipping. Plant seeds may also be contacted with compounds described herein, e.g., to preserve them.
  • HAT- modulating compounds that decrease the level and/or activity of a HAT may be used for modulating lifespan in yeast cells.
  • Situations in which it may be desirable to extend the lifespan of yeast cells include any process in which yeast is used, e.g., the making of beer, yogurt, and bakery items, e.g., bread.
  • Use of yeast having an extended lifespan can result in using less yeast or in having the yeast be active for longer periods of time.
  • Yeast or other mammalian cells used for recombinantly producing proteins may also be treated as described herein.
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may also be used to increase lifespan, stress resistance and resistance to apoptosis in insects.
  • compounds would be applied to useful insects, e.g., bees and other insects that are involved in pollination of plants.
  • a compound would be applied to bees involved in the production of honey.
  • the methods described herein may be applied to any organism, e.g., eukaryote, that may have commercial importance. For example, they can be applied to fish (aquaculture) and birds (e.g., chicken and fowl).
  • HAT-modulating compounds that decrease the level and/or activity of a HAT may also be used as a pesticide by interfering with the regulation of silenced genes and the regulation of apoptosis during development.
  • a compound may be applied to plants using a method known in the art that ensures the compound is bio-available to insect larvae, and not to plants.
  • HAT- modulating compounds that increase the level and/or activity of a sirtuin protein can be applied to affect the reproduction of organisms such as insects, animals and microorganisms.
  • the HAT-modulating compounds described herein may be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients.
  • sirtuin-modulating compounds and their physiologically acceptable salts and solvates may be formulated for administration by, for example, injection (e.g. SubQ, IM, IP), inhalation or insufflation (either through the mouth or the nose) or oral, buccal, sublingual, transdermal, nasal, parenteral or rectal administration.
  • a HAT-modulating compound may be administered locally, at the site where the target cells are present, i.e., in a specific tissue, organ, or fluid (e.g., blood, cerebrospinal fluid, etc.).
  • HAT-modulating compounds can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, Meade Publishing Co., Easton, PA.
  • parenteral administration injection is preferred, including intramuscular, intravenous, intraperitoneal, and subcutaneous.
  • the compounds can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution.
  • the compounds may be formulated in solid form and redis solved or suspended immediately prior to use. Lyophilized forms are also included.
  • the pharmaceutical compositions may take the form of, for example, tablets, lozanges, or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate).
  • binding agents e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose
  • fillers e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate
  • lubricants e.g., magnesium stearate, talc or silica
  • disintegrants e.g
  • Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
  • Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., ationd oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p- hydroxybenzoates or sorbic acid).
  • the preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.
  • Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
  • HAT-modulating compounds may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • Capsules and cartridges of e.g., gelatin, for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • HAT-modulating compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
  • the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
  • HAT-modulating compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • HAT-modulating compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • HAT-modulating compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • Controlled release formula also includes patches.
  • the compounds described herein can be formulated for delivery to the central nervous system (CNS) (reviewed in Begley, Pharmacology & Therapeutics 104: 29-45 (2004)).
  • CNS central nervous system
  • neurosurgical strategies e.g., intracerebral injection or intracerebroventricular infusion
  • molecular manipulation of the agent e.g., production of a chimeric fusion protein that comprises a transport peptide that has an affinity for an endothelial cell surface molecule in combination with an agent that is itself incapable of crossing the BBB
  • pharmacological strategies designed to increase the lipid solubility of an agent (e.g., conjugation of water-soluble agents to lipid or cholesterol carriers)
  • the transitory disruption of the integrity of the BBB by hyperosmotic disruption resulting from the infusion of a mannitol solution into the carotid artery or the use of a biologically active agent such as an angiotensin peptide).
  • Nanoparticles can be administrated as powder, as a powder mixture with added excipients or as suspensions. Colloidal suspensions of nanoparticles can easily be administrated through a cannula with small diameter.
  • Nanoparticles are particles with a diameter from about 5 nm to up to about 1000 nm.
  • the term “nanoparticles” as it is used hereinafter refers to particles formed by a polymeric matrix in which the active compound is dispersed, also known as “nanospheres”, and also refers to nanoparticles which are composed of a core containing the active compound which is surrounded by a polymeric membrane, also known as “nanocapsules”.
  • nanoparticles are preferred having a 5 diameter from about 50 nm to about 500 nm, in particular from about 100 nm to about 200 nm.
  • Nanoparticles can be prepared by in situ polymerization of dispersed monomers or by using preformed polymers. Since polymers prepared in situ are often not biodegradable and/or contain toxicological serious byproducts, nanoparticles from preformed polymers are preferred. Nanoparticles from preformed polymers can be prepared by different techniques, e.g., by emulsion evaporation, solvent displacement, salting-out, mechanical grinding, microprecipitation, and by emulsification diffusion. With the methods described above, nanoparticles can be formed with various types of polymers. For use in the method of the present invention, nanoparticles made from biocompatible polymers are preferred. The term “biocompatible” refers to material that after introduction into a biological environment has no serious effects to the biological environment. From biocompatible polymers those polymers are especially preferred which are also biodegradable. The term “biodegradable” refers to material that after introduction into a biological environment is enzymatically or chemically degraded into smaller molecules, which can be eliminated subsequently.
  • polyesters from hydroxycarboxylic acids such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), polycaprolactone (PCL), copolymers of lactic acid and glycolic acid (PLGA), copolymers of lactic acid and caprolactone, polyepsilon caprolactone, polyhyroxy butyric acid and poly(ortho)esters, polyure thanes, polyanhydrides, polyacetals, polydihydropyrans, polycyanoacrylates, natural polymers such as alginate and other polysaccharides including dextran and cellulose, collagen and albumin.
  • hydroxycarboxylic acids such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), polycaprolactone (PCL), copolymers of lactic acid and glycolic acid (PLGA), copolymers of lactic acid and caprolactone, polyepsilon caprolactone, polyhyroxy butyric acid and poly(orth
  • Suitable surface modifiers can preferably be selected from known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low molecular weight oligomers, natural products and surfactants. Preferred surface modifiers include nonionic and ionic surfactants.
  • surface modifiers include gelatin, casein, lecithin (phosphatides), gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, e.g., macrogol ethers such as cetomacrogol 1000, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, e.g., the commercially available TweensTM, polyethylene glycols, polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxy propylcellulose, hydroxypropylmethylcellulose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamiiie
  • the active compounds can also be administered in the form of a liposome delivery system.
  • Liposomes are well-known by a person skilled in the art. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine of phosphatidylcholines. Liposomes being usable for the method of invention encompass all types of liposomes including, but not limited to, small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
  • Liposomes are used for a variety of therapeutic purposes, and in particular, for carrying therapeutic agents to target cells.
  • liposome-drug formulations offer the potential of improved drug-delivery properties, which include, for example, controlled drug release.
  • An extended circulation time is often needed for liposomes to reach a target region, cell or site. In particular, this is necessary where the target region, cell or site is not located near the site of administration.
  • a hydrophilic agent for example, a coating of hydrophilic polymer chains such as polyethylene glycol (PEG) to extend the blood circulation lifetime of the liposomes.
  • PEG polyethylene glycol
  • One surface modification to a liposome is the attachment of PEG chains, typically having a molecular weight from about 1000 daltons (Da) to about 5000 Da, and to about 5 mole percent (%) of the lipids making up the liposomes (see, for example, Stealth Liposomes, CRC Press, Lasic, D. and Martin, F., eds., Boca Raton, FIa., (1995)), and the cited references therein.
  • the pharmacokinetics exhibited by such liposomes are characterized by a dose-independent reduction in uptake of liposomes by 5 the liver and spleen via the mononuclear phagocyte system (MPS), and significantly prolonged blood circulation time, as compared to non-surface- modif[iota]ed liposomes, which tend to be rapidly removed from the blood and accumulated in the liver and spleen.
  • MPS mononuclear phagocyte system
  • the complex is shielded to increase the circulatory half- life of the complex or shielded to increase the resistance of nucleic acid to degradation, for example degradation by nucleases.
  • shielding refers to the ability of "shielding moieties” to reduce the non-specific interaction of the complexes described herein with serum complement or with other species present in serum in vitro or in vivo. Shielding moieties may decrease the complex interaction with or binding to these species through one or more mechanisms, including, for example, non-specific steric or non-specific electronic interactions. Examples of such interactions include non-specific electrostatic interactions, charge interactions, Van der Waals interactions, steric-hindrance and the like.
  • the mechanism or mechanisms by which it may reduce interaction with, association with or binding to the serum complement or other species does not have to be identified. One can determine whether a moiety can act as a shielding moiety by determining whether or to what extent a complex binds serum species.
  • shielding moieties can be multifunctional.
  • a shielding moiety may also function as, for example, a targeting factor.
  • a shielding moiety may also be referred to as multifunctional with respect to the mechanism(s) by which it shields the complex.
  • examples of such a multifunctional shielding moiety are pH sensitive endosomal membrane-disruptive synthetic polymers, such as PPAA or PEAA. Certain poly(alkyl acrylic acids) have been shown to disrupt endosomal membranes while leaving the-outer cell surface membrane intact (Stayton et al. (2000) J. Contrail. Release 65:203-220; Murthy et al. (1999) J. Contrail.
  • cyclodextrin is meant [alpha]-, [beta]-, or [gamma] -cyclodextrin. Cyclodextrins are described in detail in Pitha et al., U.S. Pat. No. 4,727,064, which is incorporated herein by reference.
  • Cyclodextrins are cyclic oligomers of glucose; these compounds form inclusion complexes with any drug whose molecule can fit into the lipophile- seeking cavities of the cyclodextrin molecule.
  • the cyclodextrin of the compositions according to the invention may be [alpha]-, [beta]-, or [gamma] -cyclodextrin.
  • [alpha] -cyclodextrin contains six glucopyranose units;
  • [beta] -cyclodextrin contains seven glucopyranose units; and
  • [gamma] -cyclodextrin contains eight glucopyranose units.
  • the molecule is believed to form a truncated cone having a core opening of 4.7- 5.3 angstroms, 6.0-6.5 angstroms, and 7.5-8.3 angstroms in [alpha]-, [beta]-, or [gamma] -cyclodextrin respectively.
  • the composition according to the invention may comprise a mixture of two or more of the [alpha]-, [beta]-, or [gamma] -cyclodextrins. Typically, however, the composition according to the invention will comprise only one of the [alpha]-, [beta]-, or [gamma] - cyclodextrins.
  • cyclodextrins in the compositions according to the invention are amorphous cyclodextrin compounds.
  • amorphous cyclodextrin is meant noncrystalline mixtures of cyclodextrins wherein the mixture is prepared from [alpha]-, [beta]-, or [gamma]- cyclodextrin.
  • the amorphous cyclodextrin is prepared by non-selective alkylation of the desired cyclodextrin species. Suitable alkylation agents for this purpose include but are not limited to propylene oxide, glycidol, iodoacetarnide, chloroacetate, and 2-diethylaminoethlychloride.
  • amorphous cyclodextrins suitable for compositions according to the invention are hydroxypropyl, hydroxyethyl, glucosyl, maltosyl and maltotriosyl 30 derivatives of [beta] -cyclodextrin, carboxyamidomethyl-[beta]- cyclodextrin, carboxymethyl-[beta]- cyclodextrin, hydroxypropyl- [beta] -cyclodextrin and diethylamino- [beta] -cyclodextrin.
  • resveratrol dissolved in the presence of a cyclodextrin is provided in Marier et al., J. Pharmacol.
  • compositions of matter of the invention comprise an aqueous preparation of preferably substituted amorphous cyclodextrin and one or more HAT modulators.
  • HAT modulators and cyclodextrin will vary depending upon the relative amount of each of the HAT modulators and the effect of the cyclodextrin on the compound.
  • the ratio of the weight of compound of the HAT modulators to the weight of cyclodextrin compound will be in a range between 1: 1 and 1:100.
  • a weight to weight ratio in a range of 1:5 to 1:50 and more preferably in a range of 1: 10 to 1:20 of the compound selected from HAT modulators to cyclodextrin are believed to be the most effective for increased circulating availability of the HAT modulator.
  • a cyclodextrin will be substantially free of pyrogenic contaminants.
  • Various forms of cyclodextrin such as forms of amorphous cyclodextrin, maybe purchased from a number of vendors including Sigma- Aldrich, Inc. (St. Louis, Mo., USA).
  • a method for the production of hydroxypropyl- [beta] -cyclodextrin is disclosed in Pitha et al., U.S. Pat. No. 4,727,064 which is incorporated herein by reference. Additional description of the use of cyclodextrin for solubilizing compounds can be found in US 2005/0026849, the contents of which are incorporated herein by reference.
  • Rapidly disintegrating or dissolving dosage forms are useful for the rapid absorption, particularly buccal and sublingual absorption, of pharmaceutically active agents.
  • Fast melt dosage forms are beneficial to patients, such as aged and pediatric patients, who have difficulty in swallowing typical solid dosage forms, such as caplets and tablets. Additionally, fast melt dosage forms circumvent drawbacks associated with, for example, chewable dosage forms, wherein the length of time an active agent remains in a patient's mouth plays an important role in determining the amount of taste masking and the extent to which a patient may object to throat grittiness of the active agent.
  • fast melt tablet preparation granules for fast melt tablets made by either the spray drying or pre-compacting processes are mixed with excipients and compressed into tablets using conventional tablet making machinery.
  • the granules can be combined with a variety of carriers including low density, high moldability saccharides, low moldability saccharides, polyol combinations, and then directly compressed into a tablet that exhibits an improved dissolution and disintegration profile.
  • the tablets according to the present invention typically have a hardness of about 2 to about 6 Strong-Cobb units (scu). Tablets within this hardness range disintegrate or dissolve rapidly when chewed. Additionally, the tablets rapidly disentegrate in water. On average, a typical 1.1 to 1.5 gram tablet disintegrates in 1-3 minutes without stirring. This rapid disintegration facilitates delivery of the active material.
  • the granules used to make the tablets can be, for example, mixtures of low density alkali earth metal salts or carbohydrates.
  • a mixture of alkali earth metal salts includes a combination of calcium carbonate and magnesium hydroxide.
  • a fast melt tablet can be prepared according to the methods of the present invention that incorporates the use of A) spray dried extra light calcium carbonate/maltodextrin, B) magnesium hydroxide and C) a eutectic polyol combination including Sorbitol Instant, xylitol and mannitol. These materials have been combined to produce a low density tablet that dissolves very readily and promotes the fast disintegration of the active ingredient. Additionally, the pre- compacted and spray dried granules can be combined in the same tablet.
  • a HAT modulator useful in the present invention can be in a form such as solid, particulate, granular, crystalline, oily or solution.
  • the HAT modulator for use in the present invention may be a spray dried product or an adsorbate that has been pre-compacted to a harder granular form that reduces the medicament taste.
  • a pharmaceutical active ingredient for use in the present invention may be spray dried with a carrier that prevents the active ingredient from being easily extracted from the tablet when chewed.
  • the medicament drug itself can be processed by the pre-compaction process to achieve an increased density prior to being incorporated into the formulation.
  • the pre-compaction process used in the present invention can be used to deliver poorly soluble pharmaceutical materials so as to improve the release of such pharmaceutical materials over traditional dosage forms. This could allow for the use of lower dosage levels to deliver equivalent bioavailable levels of drug and thereby lower toxicity levels of both currently marketed drug and new chemical entities. Poorly soluble pharmaceutical materials can be used in the form of nanoparticles, which are nanometer- sized particles.
  • the fast melt tablets can be formulated using conventional carriers or excipients and well established pharmaceutical techniques.
  • Conventional carriers or excipients include, but are not limited to, diluents, binders, adhesives (i.e., cellulose derivatives and acrylic derivatives), lubricants (i.e., magnesium or calcium stearate, vegetable oils, polyethylene glycols, talc, sodium lauryl sulphate, polyoxy ethylene monostearate), disintegrants, colorants, flavorings, preservatives, sweeteners and miscellaneous materials such as buffers and adsorbents. Additional description of the preparation of fast melt tablets can be found, for example, in U.S. Pat. No. 5,939,091, the contents of which are incorporated herein by reference.
  • compositions may comprise from about 0.00001 to 100% such as from 0.001 to 10% or from 0.1% to 5% by weight of one or more HAT-modulating compounds described herein.
  • a HAT-modulating compound described herein is incorporated into a topical formulation containing a topical carrier that is generally suited to topical drug administration and comprising any such material known in the art.
  • the topical carrier may be selected so as to provide the composition in the desired form, e.g., as an ointment, lotion, cream, microemulsion, gel, oil, solution, or the like, and may be comprised of a material of either naturally occurring or synthetic origin.
  • topical carriers for use herein include water, alcohols and other nontoxic organic solvents, glycerin, mineral oil, silicone, petroleum jelly, lanolin, fatty acids, vegetable oils, parabens, waxes, and the like.
  • Formulations may be colorless, odorless ointments, lotions, creams, microemulsions and gels.
  • HAT-modulating compounds may be incorporated into ointments, which generally are semisolid preparations which are typically based on petrolatum or other petroleum derivatives.
  • the specific ointment base to be used is one that will provide for optimum drug delivery, and, preferably, will provide for other desired characteristics as well, e.g., emolliency or the like.
  • an ointment base should be inert, stable, nonirritating and nonsensitizing.
  • ointment bases may be grouped in four classes: oleaginous bases; emulsifiable bases; emulsion bases; and water-soluble bases.
  • Oleaginous ointment bases include, for example, vegetable oils, fats obtained from animals, and semisolid hydrocarbons obtained from petroleum.
  • Emulsifiable ointment bases also known as absorbent ointment bases, contain little or no water and include, for example, hydroxystearin sulfate, anhydrous lanolin and hydrophilic petrolatum.
  • Emulsion ointment bases are either water-in-oil (W/O) emulsions or oil-in-water (OAV) emulsions, and include, for example, cetyl alcohol, glyceryl monostearate, lanolin and stearic acid.
  • Exemplary water-soluble ointment bases are prepared from polyethylene glycols (PEGs) of varying molecular weight; again, reference may be had to Remington's, supra, for further information.
  • HAT-modulating compounds may be incorporated into lotions, which generally are preparations to be applied to the skin surface without friction, and are typically liquid or semiliquid preparations in which solid particles, including the active agent, are present in a water or alcohol base.
  • Lotions are usually suspensions of solids, and may comprise a liquid oily emulsion of the oil-in- water type. Lotions are preferred formulations for treating large body areas, because of the ease of applying a more fluid composition. It is generally necessary that the insoluble matter in a lotion be finely divided. Lotions will typically contain suspending agents to produce better dispersions as well as compounds useful for localizing and holding the active agent in contact with the skin, e.g., methylcellulose, sodium carboxymethylcellulose, or the like.
  • An exemplary lotion formulation for use in conjunction with the present method contains propylene glycol mixed with a hydrophilic petrolatum such as that which may be obtained under the trademark Aquaphor®(TM) from Beiersdorf, Inc. (Norwalk, Conn.).
  • HAT-modulating compounds may be incorporated into creams, which generally are viscous liquid or semisolid emulsions, either oil-in-water or water-in-oil.
  • Cream bases are water- washable, and contain an oil phase, an emulsifier and an aqueous phase.
  • the oil phase is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant.
  • the emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant.
  • HAT-modulating compounds may be incorporated into microemulsions, which generally are thermodynamically stable, isotropically clear dispersions of two immiscible liquids, such as oil and water, stabilized by an interfacial film of surfactant molecules (Encyclopedia of Pharmaceutical Technology (New York: Marcel Dekker, 1992), volume 9).
  • surfactant emulsifier
  • co- surfactant co-emulsifier
  • an oil phase and a water phase are necessary.
  • Suitable surfactants include any surfactants that are useful in the preparation of emulsions, e.g., emulsifiers that are typically used in the preparation of creams.
  • the co-surfactant is generally selected from the group of polyglycerol derivatives, glycerol derivatives and fatty alcohols.
  • Preferred emulsifier/co-emulsifier combinations are generally although not necessarily selected from the group consisting of: glyceryl monostearate and polyoxyethylene stearate; polyethylene glycol and ethylene glycol palmitostearate; and caprilic and capric triglycerides and oleoyl macrogolglycerides.
  • the water phase includes not only water but also, typically, buffers, glucose, propylene glycol, polyethylene glycols, preferably lower molecular weight polyethylene glycols (e.g., PEG 300 and PEG 400), and/or glycerol, and the like, while the oil phase will generally comprise, for example, fatty acid esters, modified vegetable oils, silicone oils, mixtures of mono- di- and triglycerides, mono- and di-esters of PEG (e.g., oleoyl macrogol glycerides), etc.
  • buffers glucose, propylene glycol, polyethylene glycols, preferably lower molecular weight polyethylene glycols (e.g., PEG 300 and PEG 400), and/or glycerol, and the like
  • the oil phase will generally comprise, for example, fatty acid esters, modified vegetable oils, silicone oils, mixtures of mono- di- and triglycerides, mono- and di-esters of PEG (e.g., ole
  • HAT-modulating compounds may be incorporated into gel formulations, which generally are semisolid systems consisting of either suspensions made up of small inorganic particles (two-phase systems) or large organic molecules distributed substantially uniformly throughout a carrier liquid (single phase gels).
  • Single phase gels can be made, for example, by combining the active agent, a carrier liquid and a suitable gelling agent such as tragacanth (at 2 to 5%), sodium alginate (at 2-10%), gelatin (at 2-15%), methylcellulose (at 3-5%), sodium carboxymethylcellulose (at 2- 5%), carbomer (at 0.3-5%) or polyvinyl alcohol (at 10-20%) together and mixing until a characteristic semisolid product is produced.
  • suitable gelling agents include methylhydroxycellulose, polyoxyethylene-polyoxypropylene, hydroxyethylcellulose and gelatin.
  • additives may be included in formulations, e.g., topical formulations.
  • additives include, but are not limited to, solubilizers, skin permeation enhancers, opacifiers, preservatives (e.g., antioxidants), gelling agents, buffering agents, surfactants (particularly nonionic and amphoteric surfactants), emulsifiers, emollients, thickening agents, stabilizers, humectants, colorants, fragrance, and the like.
  • solubilizers and/or skin permeation enhancers is particularly preferred, along with emulsifiers, emollients and preservatives.
  • An optimum topical formulation comprises approximately: 2 wt. % to 60 wt. %, preferably 2 wt. % to 50 wt. %, solubilizer and/or skin permeation enhancer; 2 wt. % to 50 wt. %, preferably 2 wt. % to 20 wt. %, emulsifiers; 2 wt. % to 20 wt. % emollient; and 0.01 to 0.2 wt. % preservative, with the active agent and carrier (e.g., water) making of the remainder of the formulation.
  • the active agent and carrier e.g., water
  • a skin permeation enhancer serves to facilitate passage of therapeutic levels of active agent to pass through a reasonably sized area of unbroken skin.
  • Suitable enhancers include, for example: lower alkanols such as methanol ethanol and 2-propanol; alkyl methyl sulfoxides such as dimethylsulfoxide (DMSO), decylmethylsulfoxide (ClO MSO) and tetradecylmethyl sulfboxide; pyrrolidones such as 2-pyrrolidone, N-methyl-2-pyrrolidone and N-(- hydroxyethyl)pyrrolidone; urea; N,N-diethyl-m-toluamide; C2 -C6 alkanediols; miscellaneous solvents such as dimethyl formamide (DMF), N,N-dimethylacetamide (DMA) and tetrahydrofurfuryl alcohol; and the 1 -substituted
  • solubilizers include, but are not limited to, the following: hydrophilic ethers such as diethylene glycol monoethyl ether (ethoxydiglycol, available commercially as Transcutol®TM) and diethylene glycol monoethyl ether oleate (available commercially as Softcutol®TM); polyethylene castor oil derivatives such as polyoxy castor oil, polyoxy hydro genated castor oil, etc.; polyethylene glycol, particularly lower molecular weight polyethylene glycols such as PEG 300 and PEG 400, and polyethylene glycol derivatives such as PEG-8 caprylic/capric glycerides (available commercially as Labrasol®TM); alkyl methyl sulfoxides such as DMSO; pyrrolidones such as 2-pyrrolidone and N-methyl-2-pyrrolidone; and DMA. Many solubilizers can also act as absorption enhancers. A single solubilizer may be incorporated into the formulation, or a mixture of solub
  • Suitable emulsifiers and co-emulsifiers include, without limitation, those emulsiflers and co-emulsifiers described with respect to microemulsion formulations.
  • Emollients include, for example, propylene glycol, glycerol, isopropyl myristate, polypropylene glycol-2(PPG-2) myristyl ether propionate, and the like.
  • sunscreen formulations e.g., other antiinflammatory agents, analgesics, antimicrobial agents, antifungal agents, antibiotics, vitamins, antioxidants, and sunblock agents commonly found in sunscreen formulations including, but not limited to, anthranilates, benzophenones (particularly benzophenone-3), camphor derivatives, cinnamates (e.g., octyl methoxycinnamate), dibenzoyl methanes (e.g., butyl methoxydibenzoyl methane), p-aminobenzoic acid (PABA) and derivatives thereof, and salicylates (e.g., octyl salicylate).
  • sunscreen formulations including, but not limited to, anthranilates, benzophenones (particularly benzophenone-3), camphor derivatives, cinnamates (e.g., octyl methoxycinnamate), dibenzoyl methanes (e.g., but
  • the active agent is present in an amount in the range of approximately 0.25 wt. % to 75 wt. % of the formulation, preferably in the range of approximately 0.25 wt. % to 30 wt. % of the formulation, more preferably in the range of approximately 0.5 wt. % to 15 wt. % of the formulation, and most preferably in the range of approximately 1.0 wt. % to 10 wt. % of the formulation.
  • Topical skin treatment compositions can be packaged in a suitable container to suit its viscosity and intended use by the consumer.
  • a lotion or cream can be packaged in a bottle or a roll-ball applicator, or a propellant-driven aerosol device or a container fitted with a pump suitable for finger operation.
  • a cream it can simply be stored in a non-deformable bottle or squeeze container, such as a tube or a lidded jar.
  • the composition may also be included in capsules such as those described in U.S. Pat. No. 5,063,507. Accordingly, also provided are closed containers containing a cosmetically acceptable composition as herein defined.
  • a pharmaceutical formulation for oral or parenteral administration, in which case the formulation may comprises a modulating compound-containing microemulsion as described above, but may contain alternative pharmaceutically acceptable carriers, vehicles, additives, etc. particularly suited to oral or parenteral drug administration.
  • a modulating compound-containing microemulsion may be administered orally or parenterally substantially as described above, without modification.
  • Phospholipids complexes e.g., resveratrol-phospholipid complexes, and their preparation are described in U.S. Patent Application Publication No. 2004/116386.
  • Methods for stabilizing active components using polyol/polymer microcapsules, and their preparation are described in US20040108608.
  • Processes for dissolving lipophilic compounds in aqueous solution with amphiphilic block copolymers are described in WO 04/035013.
  • Conditions of the eye can be treated or prevented by, e.g., systemic, topical, intraocular injection of a HAT-modulating compound, or by insertion of a sustained release device that releases a sirtuin-modulating compound.
  • a HAT-modulating compound that increases or decreases the level and/or activity of a HAT may be delivered in a pharmaceutically acceptable ophthalmic vehicle, such that the compound is maintained in contact with the ocular surface for a sufficient time period to allow the compound to penetrate the corneal and internal regions of the eye, as for example the anterior chamber, posterior chamber, vitreous body, aqueous humor, vitreous humor, cornea, iris/ciliary, lens, choroid/retina and sclera.
  • the pharmaceutically-acceptable ophthalmic vehicle may, for example, be an ointment, vegetable oil or an encapsulating material.
  • the compounds of the invention may be injected directly into the vitreous and aqueous humour.
  • the compounds may be administered systemically, such as by intravenous infusion or injection, for treatment of the eye.
  • HAT-modulating compounds described herein may be stored in oxygen free environment according to methods in the art.
  • resveratrol or analog thereof can be prepared in an airtight capsule for oral administration, such as Capsugel from Pfizer, Inc.
  • Cells e.g., treated ex vivo with a HAT-modulating compound, can be administered according to methods for administering a graft to a subject, which may be accompanied, e.g., by administration of an immunosuppressant drug, e.g., cyclosporin A.
  • an immunosuppressant drug e.g., cyclosporin A.
  • the reader is referred to Cell Therapy. Stem Cell Transplantation, Gene Therapy, and Cellular Immunotherapy, by G. Morstyn & W. Sheridan eds, Cambridge University Press, 1996; and Hematopoietic Stem Cell Therapy, E. D. Ball, J. Lister & P. Law, Churchill Livingstone, 2000.
  • Toxicity and therapeutic efficacy of HAT-modulating compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals.
  • the LD 50 is the dose lethal to 50% of the population.
  • the ED 50 is the dose therapeutically effective in 50% of the population.
  • the dose ratio between toxic and therapeutic effects (LD 50 /ED 50 ) is the therapeutic index.
  • HAT-modulating compounds that exhibit large therapeutic indexes are preferred. While HAT- modulating compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
  • the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
  • the dosage of such compounds may lie within a range of circulating concentrations that include the EDso with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the ICso (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture.
  • ICso i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms
  • levels in plasma may be measured, for example, by high performance liquid chromatography. Kits
  • kits e.g., kits for therapeutic potposes or kits for modulating the lifespan of cells or modulating apoptosis.
  • a kit may comprise one or more HAT- modulating compounds, e.g., in premeasured doses.
  • a kit may optionally comprise devices for contacting cells with the compounds and instructions for use. Devices include syringes, stents and other devices for introducing a HAT-modulating compound into a subject (e.g., the blood vessel of a subject) or applying it to the skin of a subject.
  • kits for identifying HAT-modulating compounds contain (1) a HAT or HAT-containing material and (2) a HAT-modulating compound of the invention, which are in separate vessels.
  • kits can be used, for example, to perform a competition-type assay to test other compounds (typically provided by the user) for HAT-modulating activity.
  • these kits further comprise means for determining HAT activity.
  • the invention provides a composition of matter comprising a HAT modulator of this invention and another therapeutic agent [the same ones used in combination therapies and combination compositions] in separate dosage forms, but associated with one another.
  • a HAT modulator of this invention and another therapeutic agent [the same ones used in combination therapies and combination compositions] in separate dosage forms, but associated with one another.
  • the term "associated with one another" as used herein means that the separate dosage forms are packaged together or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered as part of the same regimen.
  • the agent and the HAT modulator are preferably packaged together in a blister pack or other multi-chamber package, or as connected, separately sealed containers (such as foil pouches or the like) that can be separated by the user (e.g., by tearing on score lines between the two containers).
  • the invention provides a kit comprising in separate vessels, a) a HAT modulator of this invention; and b) another another therapeutic agent such as those described elsewhere in the specification.
  • a compound can be tested for HAT activity using a variety of methods known in the art.
  • Compounds 1 and 2 were evaluated for HAT activity using a fluorescent HAT assay kit (Fluorescent) version B, (catalog No. 56100) purchased from ACTIVE MOTIF.
  • the assay included recombinant active p300 catalytic domain protein, histone H3 and H4 N-terminal substrate peptides, anacardic acid, and buffers. Using this assay, it was determined that both Compounds 1 and 2 had an IC50 of less than 15 ⁇ M.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention porte sur des procédés d'utilisation de composés qui sont des inhibiteurs d'un HAT.
PCT/US2009/048911 2008-06-27 2009-06-26 Composés thérapeutiques et procédés d'utilisation apparentés WO2009158646A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7647708P 2008-06-27 2008-06-27
US61/076,477 2008-06-27

Publications (2)

Publication Number Publication Date
WO2009158646A1 true WO2009158646A1 (fr) 2009-12-30
WO2009158646A8 WO2009158646A8 (fr) 2010-03-25

Family

ID=41444983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/048911 WO2009158646A1 (fr) 2008-06-27 2009-06-26 Composés thérapeutiques et procédés d'utilisation apparentés

Country Status (1)

Country Link
WO (1) WO2009158646A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053427B1 (en) 2010-10-21 2011-11-08 Galderma R&D SNC Brimonidine gel composition
US8513249B2 (en) 2010-03-26 2013-08-20 Galderma Laboratories, L.P. Methods and compositions for safe and effective treatment of erythema
US8586586B2 (en) 2003-05-27 2013-11-19 Galderma Laboratories Inc. Methods and compositions for treating or preventing erythema
US8916562B2 (en) 2010-03-26 2014-12-23 Galderma Research & Development Snc Methods and compositions for safe and effective treatment of telangiectasia
WO2018078922A1 (fr) * 2016-10-24 2018-05-03 国立大学法人福井大学 Agent de prévention de la cataracte, agent thérapeutique, et application d'inhibiteur de hat destiné à fabriquer ceux-ci
US10201517B2 (en) 2010-10-21 2019-02-12 Galderma Laboratories, L.P. Brimonidine gel compositions and methods of use
CN114599231A (zh) * 2019-10-31 2022-06-07 出光兴产株式会社 反刍动物的胰岛素抵抗性抑制剂
WO2024054523A1 (fr) * 2022-09-07 2024-03-14 Ph Science Holdings Inc. Procédé et composition pour augmenter la biogenèse mitochondriale

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217723B2 (en) * 2004-02-02 2007-05-15 Eisai Co., Ltd. Heterocyclic compound having oxime group
US20070161650A1 (en) * 2005-09-27 2007-07-12 Henrietta Dehmlow Novel thiophene derivatives which are HM74A agonists
US7250514B1 (en) * 2002-10-21 2007-07-31 Takeda San Diego, Inc. Histone deacetylase inhibitors
US20070213392A1 (en) * 2003-10-09 2007-09-13 Miller Thomas A Thiophene and Benzothiophene Hydroxamic Acid Derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250514B1 (en) * 2002-10-21 2007-07-31 Takeda San Diego, Inc. Histone deacetylase inhibitors
US20070213392A1 (en) * 2003-10-09 2007-09-13 Miller Thomas A Thiophene and Benzothiophene Hydroxamic Acid Derivatives
US7217723B2 (en) * 2004-02-02 2007-05-15 Eisai Co., Ltd. Heterocyclic compound having oxime group
US20070161650A1 (en) * 2005-09-27 2007-07-12 Henrietta Dehmlow Novel thiophene derivatives which are HM74A agonists

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586586B2 (en) 2003-05-27 2013-11-19 Galderma Laboratories Inc. Methods and compositions for treating or preventing erythema
US8513249B2 (en) 2010-03-26 2013-08-20 Galderma Laboratories, L.P. Methods and compositions for safe and effective treatment of erythema
US8513247B2 (en) 2010-03-26 2013-08-20 Galderma Laboratories, L.P. Methods and compositions for safe and effective treatment of erythema
US8916562B2 (en) 2010-03-26 2014-12-23 Galderma Research & Development Snc Methods and compositions for safe and effective treatment of telangiectasia
US9861632B2 (en) 2010-03-26 2018-01-09 Galderma Laboratories, L.P. Methods and compositions for safe and effective treatment of erythema
US9861631B2 (en) 2010-03-26 2018-01-09 Galderma Laboratories, L.P. Methods and compositions for safe and effective treatment of erythema
US10201517B2 (en) 2010-10-21 2019-02-12 Galderma Laboratories, L.P. Brimonidine gel compositions and methods of use
US8163725B1 (en) 2010-10-21 2012-04-24 Galderma R&D SNC Gel compositions and methods of use
US8053427B1 (en) 2010-10-21 2011-11-08 Galderma R&D SNC Brimonidine gel composition
WO2018078922A1 (fr) * 2016-10-24 2018-05-03 国立大学法人福井大学 Agent de prévention de la cataracte, agent thérapeutique, et application d'inhibiteur de hat destiné à fabriquer ceux-ci
WO2018079149A1 (fr) * 2016-10-24 2018-05-03 国立大学法人福井大学 Agent de prévention de la cataracte, agent thérapeutique, et application d'inhibiteur de hat destiné à fabriquer ceux-ci
JPWO2018079149A1 (ja) * 2016-10-24 2019-09-12 国立大学法人福井大学 白内障の予防剤、治療剤、およびこれらを製造するためのhat阻害剤の使用
JP7033317B2 (ja) 2016-10-24 2022-03-10 国立大学法人福井大学 白内障の予防剤、治療剤、およびこれらを製造するためのhat阻害剤の使用
CN114599231A (zh) * 2019-10-31 2022-06-07 出光兴产株式会社 反刍动物的胰岛素抵抗性抑制剂
EP4052708A4 (fr) * 2019-10-31 2023-11-08 Sds Biotech K.K. Inhibiteur de résistance à l'insuline pour animaux ruminants
WO2024054523A1 (fr) * 2022-09-07 2024-03-14 Ph Science Holdings Inc. Procédé et composition pour augmenter la biogenèse mitochondriale

Also Published As

Publication number Publication date
WO2009158646A8 (fr) 2010-03-25

Similar Documents

Publication Publication Date Title
US7998974B2 (en) Fused heterocyclic compounds and their use as sirtuin modulators
US20100168084A1 (en) Therapeutic compounds and related methods of use
EP1910362B9 (fr) Dérivés de l'imidazopyridine en tant qu'agents modulant la sirtuine
US20110009496A1 (en) Resveratrol formulations
US20090069301A1 (en) Acridine and Quinoline Derivatives as Sirtuin Modulators
US20090163476A1 (en) N-Phenyl Benzamide Derivatives as Sirtuin Modulators
WO2006094209A2 (fr) Modulateurs de sirtuine a amide n-benzimidazolylalkyle substitue
AU2006269459B2 (en) Methods and related compositions for treating or preventing obesity, insulin resistance disorders, and mitochondrial-associated disorders
WO2006094210A2 (fr) Modulateurs de sirtuine de tetrahydroquinoxalinone
CN101316853B (zh) 作为sirtuin调节剂的苯并噻唑和噻唑并吡啶
WO2008073451A2 (fr) Composés modulateurs de la sirtuine
WO2006094246A2 (fr) Modulateurs de sirtuine a base de n-arylmethyl benzamide
WO2007102861A2 (fr) Modulateurs de kinases de type cdc2 (clks) et leurs procédés d'utilisation
WO2006094233A1 (fr) Modulateurs de sirtuine isothiourée n,n’-dicyclique
WO2006078941A2 (fr) Nouveaux composes d'activation de la sirtuine et procedes d'utilisation associes
WO2009158646A1 (fr) Composés thérapeutiques et procédés d'utilisation apparentés
WO2009085226A2 (fr) Inhibiteurs des kinases de type cdc2 (clk) et leurs procédés d'utilisation
WO2006094248A1 (fr) Modulateurs de sirtuine cycliques a substitution aryle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09771177

Country of ref document: EP

Kind code of ref document: A1