WO2009157914A1 - Éolienne - Google Patents

Éolienne Download PDF

Info

Publication number
WO2009157914A1
WO2009157914A1 PCT/US2008/009803 US2008009803W WO2009157914A1 WO 2009157914 A1 WO2009157914 A1 WO 2009157914A1 US 2008009803 W US2008009803 W US 2008009803W WO 2009157914 A1 WO2009157914 A1 WO 2009157914A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
turbine rotor
support
wind
gear
Prior art date
Application number
PCT/US2008/009803
Other languages
English (en)
Inventor
Ed Mazur
Original Assignee
Ed Mazur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/215,232 external-priority patent/US20090324383A1/en
Priority claimed from US12/215,233 external-priority patent/US8513826B2/en
Application filed by Ed Mazur filed Critical Ed Mazur
Publication of WO2009157914A1 publication Critical patent/WO2009157914A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0472Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor
    • F03D3/049Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the field of invention relates to a wind turbine having one or more sets of magnets for reducing friction between a turbine rotor and a turbine support.
  • Wind turbines harness the kinetic energy of the wind and convert it into mechanical or electric power.
  • Traditional wind turbines have a horizontal spinning axis that allowed blades of the wind turbine to rotate around the axis. As wind engages the blades, the blades move around the horizontal spinning axis of the wind turbine. The relative rotation of the blades to the horizontal axis may then be converted into energy.
  • Recently vertical axis wind turbines have been used to harness the kinetic energy of the wind. Vertical axis wind turbines operate in the same manner as horizontal axis wind turbines; however, the axis is a vertical plane and the blades spin around the vertical axis. During the operation of the horizontal axis and vertical axis wind turbines, energy is lost during the process as the mechanical pieces of the windmill lose energy to friction forces. Further, the friction between the moving parts create maintenance problems which require frequent and costly repairs.
  • the present invention increases the efficiency of a wind turbine because the friction occurring between the parts of a wind turbine is significantly reduced.
  • the wind turbine of this invention comprise a turbine rotor, a turbine support, one or more blades coupled to the turbine rotor, the one or more blades configured to move the turbine rotor relative to the turbine support.
  • the significant improvement in efficiency is attributed to one or more magnet sets located between the turbine support and the turbine rotor.
  • the one or more magnet sets create a space between at least a portion of the turbine rotor and a portion of the turbine support. Alternatively, the space created by the magnets is between the entire turbine rotor and the entire turbine support.
  • the rotational movement of the turbine rotor is essentially frictionless and minimal energy is expended during rotation of the turbine blades.
  • the energy output produced by the turbine rotor is transmitted to one or more generators that are configured to generate electric power from the rotational movement of the turbine rotor.
  • a wind turbine comprises a vertical turbine rotor for rotating around a core axis, the turbine rotor comprising a central axis.
  • a vertical turbine support lies within and concentric to the turbine support for rotating in relation to the turbine rotor, the turbine support comprising a support shaft.
  • the support shaft is positioned radially inside the central axis.
  • One or more blades coupled to the turbine rotor, the one or more blades configured to capture wind energy to rotate the turbine rotor relative to the turbine support.
  • one or more sets of magnets positioned on a side of the turbine support adjacent the turbine rotor and one or more sets of magnets are positioned on a side of the central axis adjacent the turbine support.
  • the turbine support magnets comprise like poles adjacent the turbine rotor magnets thereby creating a repelling force between them.
  • a space is defined between at least a portion of the turbine rotor and a portion of the turbine support, wherein the space is created by the repelling forces of the one or more magnet sets.
  • the space helps to reduce the friction between the rotating turbine rotor and the turbine support.
  • One or more generators are configured to generate electric power in response to the movement of the turbine rotor relative to the turbine support.
  • the turbine support further comprises a support shaft and a base.
  • the base further comprises a platform located substantially under a bottom of the turbine rotor.
  • One or more magnet sets further comprise one or more levitation magnet sets, wherein the one or more levitation magnet sets are configured to form the space between the platform of the turbine support and the bottom of the turbine rotor.
  • the one or more magnet sets can comprise one or more stabilization magnet sets.
  • the one or more stabilization magnet sets are configured to form the space between the support shaft and the turbine rotor.
  • the one or more generators have a generator gear; and a turbine gear, wherein the turbine gear is configured to move the generator gear.
  • a magnetic gear connection is present between the generator gear and the turbine gear.
  • the magnetic gear connection is configured to move the generator gear without friction between the turbine gear and the generator gear.
  • the one or more generators can comprise at least one linear synchronous generator.
  • the turbine rotor comprises a central axis, a bottom; and a top. In one embodiment of this invention, the bottom and the top extend substantially radially away from the central axis.
  • One or more blades may comprise a poly-carbon material and extend substantially between the top and the bottom of the turbine rotor.
  • the wind turbine comprises a turbine rotor, a turbine support; and one or more blades coupled to the turbine rotor, the one or more blades configured to move the turbine rotor relative to the turbine support in response to wind engaging and rotating the one or more blades.
  • This embodiment of the wind turbine also comprises one or more magnet sets located between the turbine support and the turbine rotor, the one or more magnets positioned on the turbine support and/or the turbine rotor to create a space between the turbine support and the turbine rotor thereby reducing friction between the turbine support and the turbine rotor.
  • One or more generators are configured to generate electric power in response to the relative rotational movement between the turbine rotor and the turbine support frame.
  • the turbine support frame further comprises a base located below the turbine rotor, a support shaft located along a central axis of the turbine rotor and a top configured to cover a substantial portion of the turbine rotor and the one or more blades.
  • the wind turbine of this embodiment has a top that further comprises an observation deck for one or more persons to access.
  • the support shaft has an interior access way configured to allow the one or more persons to travel to and from the observation deck.
  • the interior access way can comprises an elevator for easy access.
  • the wind turbine may have a transport device located beneath the turbine support and configured to move the wind turbine to and from remote sites.
  • the transport device may comprise a trailer.
  • the method comprises lifting a vertical turbine rotor off of a turbine support using one or more sets of magnets thereby reducing the friction between the vertical turbine rotor and the turbine support.
  • the vertical turbine rotor rotates relative to the turbine support and the mechanical energy of the moving vertical turbine rotor is converted into electric power using a generator.
  • the one or more sets of magnets are used to create a space between the vertical turbine rotor and the turbine support.
  • the turbine support further comprises a support shaft and a base, the base further comprising a platform located substantially under a bottom of the turbine rotor and the method further comprises: using one or more levitation magnet sets positioned on the platform adjacent the bottom of the turbine rotor and one or more levitation magnet sets positioned on the bottom of the turbine rotor adjacent to the platform , wherein the one or more levitation magnet sets on the platform and the one or more levitation magnet sets on the bottom of the turbine rotor comprise like poles so that a repelling force is created between the platform and the bottom of the turbine rotor, the repelling force forming a space between the platform and the bottom of the turbine rotor when the turbine rotor rotates in relation to the platform.
  • a turbine gear is mechanically coupled to the vertical turbine rotor that is proximate a generator gear and mechanically coupled to the generator.
  • the rotation of the turbine gear is transmitted to the generator gear causing the generator gear to rotate, rotating the generator gear.
  • a magnetic force is created between the turbine gear and the generator gear, the magnetic force comprising a repelling force that creates a space between the turbine gear and the generator gear thereby reducing friction between as the rotation of the the turbine gear is transmitted to the generator gear.
  • a set of dipolar magnets is coupled to a turbine rotor and a turbine support.
  • the set of dipolar magnets is used to create a space between the turbine rotor and turbine support thereby reducing the friction force between the turbine rotor and the turbine support. In this way, the mechanical energy of the moving turbine rotor is converted into electric power using a generator with greater efficiency resulting in a significant increase in electrical power by each wind turbine.
  • Figure IA is a schematic cross-sectional view of a wind turbine according to one embodiment.
  • Figure IB is a schematic top view of a wind turbine according to one embodiment.
  • Figure 2 is a schematic cross-sectional view of a wind turbine according to one embodiment.
  • Figure 3 is a schematic side view of a wind turbine according to one embodiment.
  • Figure 4 is a schematic top view of a wind turbine according to one embodiment.
  • Figure IA is a schematic cross sectional view of a wind turbine 100, according to one embodiment.
  • the wind turbine 100 as shown, is a vertical axis wind turbine. Therefore, a core axis 102 of the wind turbine 100 is substantially in a vertical plane relative to the Earth.
  • the wind turbine 100 may have a turbine rotor 104 and a turbine support 106 within and concentric to the turbine rotor 104.
  • the turbine rotor 104 rotates around the core axis 102 of the turbine support 106 in response to wind engaging one or more blades 108, shown schematically.
  • the kinetic energy from the wind is captured by the blades 108 thereby rotating the turbine rotor 104.
  • the turbine core support 106 may remain stationary as the turbine rotor 104 rotates around the axis 102.
  • one or more sets of magnets 110 are used to reduce the weight force of the turbine rotor 104 acting on the turbine support 106.
  • a generator 1 12 may be located proximate the wind turbine 100 in order to convert the mechanical energy of the rotating turbine rotor 104 into electric power.
  • the turbine rotor 104 as shown in Figure IA, comprises a central axis 1 13 that is substantially centered around the axis 102.
  • the turbine rotor- 104 may include a top 114 and a bottom 116 extending out from the central axis 113.
  • the central axis 113 supports the top 1 14 and the bottom 1 16.
  • the top 114 and/or the bottom 116 as shown, extends radially away from the central axis 1 13.
  • a top view of the wind turbine 100 is shown. The top view shows the top 1 14 extending a first radius Rl away from the axis 102.
  • the bottom 116 may extend the same distance as the top 114 from the axis 102; however, it should be appreciated that the distance the top 114 and bottom 1 16 extend from the axis 102 may vary depending on design conditions.
  • the top 114 as shown in Figures IA and IB, extends over the top of a support shaft 1 18 of the turbine support 106; however, it should be appreciated that other suitable configurations for the top 1 14 may be used.
  • the turbine rotor 104 may have alternative designs to the one shown in Figure IA. For example, the turbine rotor 104 may not cover the top of the support shaft 1 18, as shown in Figure 2. Further, the turbine rotor 104 may simply include the top 114 and the bottom 116 and be held together by the blades 108.
  • top 114 and/or the bottom 116 may not be shaped in a circular pattern, but instead may extend as supports over each of the blades 108 in an effort to save money on materials and reduce the weight of the turbine rotor 104.
  • the turbine rotor 104 may have any suitable design capable of supporting the blades 108 and rotating around the axis 102.
  • the bottom 1 16 of the turbine rotor 104 may include one or more of the magnets 1 10.
  • the one or more magnets 1 10 located in the bottom 1 16 of the turbine rotor 104 provide an opposing or repelling force against one or more magnets 1 10 located on the turbine support 106.
  • the turbine support 106 may be any suitable shape capable of supporting the weight of the turbine rotor 104 and stabilizing the turbine rotor 104 as it rotates about the axis 102.
  • the turbine support 106 includes a base 120 and the support shaft 118.
  • the base 120 may rest under the bottom 116 of the turbine rotor 104.
  • the base 120 typically acts as a support between a surface 124, such as the ground or bed rock, and the turbine rotor 104.
  • the base 120 may include a platform 122 adjacent the turbine rotor 104 and a bottom member 123 adjacent the surface 124.
  • the base 120 may be any suitable shape so long as the base is capable of supporting the weight of the turbine rotor 104.
  • the surface 124 is the ground; however, it should be appreciated that the surface 124 may be any suitable surface for supporting the base 120 including, but not limited to, a trailer, a boat, a rail car as illustrated in Fig. 3, a top of a building, a top of a parking garage, a top of a stadium, offshore platforms, islands (man- made or otherwise) and the like.
  • the platform 122 typically provides support for the weight of the turbine rotor 104.
  • the platform 122 may include one or more magnets HOA which provide a repelling force against the one or more magnets HOB located on the bottom 116 of the turbine rotor 104, as will be described in more detail below.
  • the base 120 and/or the platform 122 may extend the same radial distance from the axis 102 as the turbine rotor 104.
  • the base 120 may extend a shorter radial distance from the axis 102 than the turbine rotor 104, or, in another alternative embodiment, may extend a longer radial distance from the axis 102 than the turbine rotor 104.
  • the platform 122 may be any suitable shape capable of providing a vertical support surface for the turbine rotor 104.
  • the support shaft 1 18 of the turbine support 106 may provide for stabilization of the turbine rotor 104.
  • the support shaft 118 as shown in figures IA and IB is located radially inside the central axis 113 of the turbine rotor 104.
  • Figure IA shows the support shaft 1 18 as a substantially solid shaft which is slightly smaller than the interior of the central axis 1 13 of the turbine rotor 104.
  • the support shaft 118 may define an opening that allows for an interior access way 202.
  • the support shaft 1 18 allows the turbine rotor 104 to rotate in response to the wind while preventing the turbine rotor 104 from moving substantially in the direction perpendicular to the core axis 102.
  • the support shaft 1 18 may include one or more magnets 1 1OC which provide an opposing or repelling force against one or more magnets 1 1OD located on the central axis 1 13 of the turbine rotor 104.
  • the magnet 1 1OC located on the support shaft 1 18 may act to stabilize the turbine rotor as will be discussed in more detail below.
  • the wind turbine 100 may include a connector 126, shown schematically in Figs. IA and 3.
  • the connector 126 may secure the turbine rotor 104 to the turbine support 106 while allowing the turbine rotor 104 to rotate.
  • Figure IA shows the connector 126 as a pin type connection which is secured to the support shaft 118 and penetrates an opening in the top 1 14 of the turbine rotor 104.
  • a head of the pin may rest on the top 1 14 of the turbine rotor 104.
  • the opening may be large enough to not engage the pin as the turbine rotor 104 rotates about the turbine support 106.
  • the head may simply provide an upward travel limit for the turbine rotor 104.
  • typically the turbine rotor 104 may not engage the connector 126; however, in the event that the turbine rotor 104 lifts off of the turbine support 106, the head will stop it from becoming detached from the wind turbine 100. It should be appreciated that any suitable arrangement for securing the turbine rotor 104 to the turbine support 106 may be used.
  • the one or more sets of magnets 1 1OC, HOD reduce friction between the turbine support 104 and the turbine rotor 106 by creating a space between the turbine support 104 and the turbine rotor 106 due to the repelling forces of the magnets.
  • the magnets replace the role of roller bearings in prior wind turbines.
  • the one or more magnets 11OA, HOB positioned on the bottom 1 16 of the turbine rotor 104 and the platform 122 of the turbine support may include one or more levitation magnets and one or more stabilization magnets. The levitation magnets supply an opposing or repelling force between the bottom 116 of the turbine rotor 104 and the platform 122.
  • the opposing force created by the levitation magnets may create a force on the turbine rotor 104 substantially opposite to a gravitational force on the turbine rotor 104.
  • the levitation magnets can provide a large enough opposing force to lift the turbine rotor 104 off of the platform 122 thereby eliminating friction between the platform 122 and the turbine rotor 104.
  • a space may be created between the platform 122 and the bottom 116 of the turbine rotor 104 as a result of the opposing force.
  • the opposing force created by the levitation magnets may only negate a portion of the gravitational force, so that the friction force between the platform 122 and the turbine rotor 104 is reduced.
  • the stabilization magnets 110D, HOC, as shown in Figure IA, are designed to provide an opposing force between the central axis 1 13 and the support shaft 118.
  • the stabilization magnets may be located directly on the interior of the central axis 1 13 and the exterior of the support shaft 1 18.
  • the stabilization magnets may maintain a space between the inner diameter of the central axis 113 and the outer diameter of the support shaft 1 18. Therefore, during rotation of the turbine rotor 104 there may be no friction between the central axis 1 13 of the turbine rotor 104 and the support shaft 1 18. It should be appreciated that other means of reducing the friction between central central axis 113 and the support shaft 1 18 may be used including, but not limited to, a bearing.
  • Friction may be eliminated between the turbine rotor 104 and the turbine support 106 using both the levitation magnets and stabilization magnets.
  • the one or more sets of magnets 1 10 may be any magnets suitable for creating an opposing force including but not limited to a permanent magnet, an electromagnet, permanent rare earth magnet, ferromagnetic materials, permanent magnet materials, magnet wires and the like.
  • a permanent rare earth magnet may include samarium cobalt (SmCo) and/or neodymium (NdFEB).
  • the one or more magnets 110 may be arranged in any suitable manner so long as they reduce the friction between the turbine rotor 104 and the turbine support 106.
  • Figures IA, 2, and 3 show the one or more sets of magnets 110 as a series of permanent magnets spaced apart from one another; however, it should be appreciated that an electromagnet may be used in order to magnetize a portion of the turbine rotor 104 and the turbine support 106. Further, in an alternative embodiment, a portion of the turbine rotor 104 and the turbine support 106 may be magnetized to provide the opposing force. Thus in an alternative embodiment, the entire platform 122 and/or base 120 may be magnetized to provide an opposing force on the bottom 116 of the turbine rotor 104 which may also be magnetized. [0032]
  • the blades 108 may be any suitable blade capable of converting the kinetic energy of the wind into mechanical energy.
  • the blades 108 are made from a polycomposite material, however, it should be appreciated that blades may be any suitable material including, but not limited to, a poly-carbon, a fabric, a synthetic material, a metallic alloy and any combinations thereof.
  • the blades 108 may be fixed to the turbine rotor 104 in a static position.
  • the blades 108 may be moveably attached to the turbine rotor 104.
  • a connection between the blades 108 and the turbine rotor 104 may allow the angle of the blades 108 to adjust in relation to the turbine rotor 104. The angle may adjust manually or automatically in response to the wind conditions at the location.
  • the turbine rotor 104 provides mechanical energy for the one or more generators 1 12 as the turbine rotor 104 rotates about the axis 102.
  • a generator gear 128 is moved by a portion of the turbine rotor 104 as the turbine rotor 104 rotates.
  • an outer edge 130 of the gear 128 may be proximate an edge of the turbine rotor 104.
  • the gear 128 engages the turbine rotor 104 with a traditional gear and/or transmission device capable of transferring rotation to the gear 128.
  • the gear 128 may be a magnetic gear.
  • the magnetic gear is a gear that moves in response to a magnetic force between the turbine rotor 104 and the magnetic gear. At least one of the gear 128 and/or the proximate portion of the turbine rotor 104 may be magnetized. Thus, as the turbine rotor 104 rotates proximate the gear 128 the magnetic force moves the gear 128 in response to the turbine rotor 104 rotation.
  • the magnetic gear allows the turbine rotor 104 to rotate the gear 128 without any friction between the two components.
  • Figure 3 shows the magnetic gear according to one embodiment.
  • a rotor gear component 300 may protrude from the outer surface of the turbine rotor 104.
  • the rotor gear component 300 may extend beyond the outer diameter of the turbine rotor 103 and rotate with the turbine rotor 104. As shown, the rotor gear component 300 is a plate extending around an outer diameter of the turbine rotor 104; however, it should be appreciated that any suitable configuration for the rotor gear component 300 may be used.
  • the gear 128 may include one or more gear wheels 302 which extend from the gear to a location proximate the rotor gear component 300. As shown in Figure 3, there are two gear wheels 302 which are located above and below a portion of the rotor gear component 300. As the turbine rotor 104 rotates, the rotor gear component 300 rotates. A portion of the rotor gear component 300 may pass in between two portions of one or more gear wheels 302.
  • any of the rotor gear component 300, and the one or more gear wheels 302 may be magnetized.
  • the type of magnet used to produce the magnetic force for the magnetic gear may be any magnet described herein.
  • the magnetic force between the components of the magnetic gear move the gear 128 thereby generating electricity and/or power in the generator 1 12.
  • the generators 1 12 may be located at various locations proximate the turbine rotor 104.
  • Figure IB shows three generators 112 located around the perimeter of the turbine rotor 104. It should be appreciated that any suitable number of generators 1 12 may be used around the perimeter of the turbine rotor 104. Further, the generator 112 may be located at other locations proximate the turbine rotor including, but not limited to, proximate the shaft 102 of the turbine rotor, in line with the axis 102 above and/or below the turbine rotor 104, and the like.
  • the generator 1 12 may be any suitable generator for converting mechanical energy into power including, but not limited to, electric generators, motors, linear generators, and the like.
  • one or more of the generators 1 12 is a linear synchronous motor (LSM).
  • LSM linear synchronous motor
  • the LSM motor may advance the turbine support 120 and may double as a braking system.
  • the power generated by the generator may be fed directly to a power grid.
  • the power may alternatively or additionally be used on site or stored.
  • the stored power may be used at a later date when demand for the power is higher.
  • Examples of power storage units include, but are not limited to, batteries and generating stored compressed air, a flywheel system, a magnetically levitated flywheel system, hydraulic accumulators, capacitors, super capacitors, a combination thereof, and the like.
  • the one or more magnets 110 reduce and potentially eliminate friction between the turbine rotor 104 and the turbine support 106.
  • This friction reduction allows the scale of the wind turbine 100 to be much larger than a conventional wind turbine.
  • the wind turbine may have an outer diameter of 1000ft.
  • Known wind turbines prior to this invention typically have diameters of up to approximately 300ft.
  • a fixed wind turbine 200 as shown in Figure 2, has an outer diameter of about 600ft. and is capable of producing more than 1 GWh of power.
  • a smaller portable wind turbine 304 may be adapted to transport to remote locations.
  • the portable version may have a diameter of greater than 15ft. and a height of greater than 15ft.
  • the portable version has an outer diameter within a range of about 30ft. to 120ft. and a height within a range of about 25ft. to 100ft. and is capable of producing 50 MWh of power.
  • the size and scale of the wind turbine may vary depending on a customers need. Further, it should be appreciated that more than one wind turbine may be located on the same portable transports system, and/or at one fixed location.
  • the embodiment shown in Figure 2 shows the fixed wind turbine 200, according to one embodiment.
  • the fixed wind turbine 200 may have a turbine support 106 which extends over the turbine rotor 104.
  • the one or more magnets 1 10 may be on an upper portion 201 of the turbine support 106 in addition to the locations described above.
  • the fixed wind turbine 200 may include an interior access way 202, according to one embodiment. It should be appreciated that any of the wind turbines 100, 200 and 304 may include an interior access way 202.
  • the interior access way 202 allows a person to access the interior of the turbine support 104.
  • the interior access way 202 may extend above and/or below the turbine rotor 106 in order to give the person access to various locations in the fixed wind turbine 200.
  • the interior access way 202 may allow a person to perform maintenance on the magnets 110 and other components of the wind turbine 100, 200, and 304. Further, the interior access way 202 may have a means for transporting persons up and down the interior access way 202.
  • the means for transporting persons may be any suitable item including, but not limited to, an elevator, a cable elevator, a hydraulic elevator, a magnetic elevator, a stair, a spiral staircase, an escalator, a ladder, a rope, a fireman pole, a spiral elevator, and the like.
  • the spiral elevator is an elevator that transports one or more persons up and down the interior access way 202 in a spiral fashion around the interior of the interior access way 202.
  • the spiral elevator may travel in a similar path to a spiral staircase.
  • the elevator and/or spiral elevator may use magnetic levitation to lift the elevator up and down.
  • the upper portion 201 of the turbine support 106 may include an observation deck 204.
  • the observation deck 204 may extend around the perimeter of the wind turbine 100, 200 and/or 304, thereby allowing a person to view the surrounding area from the observation deck 204.
  • the observation deck 204 may also serve as a location for an operator to control various features of the wind turbine, as will be discussed in more detail below.
  • the upper portion 201 of the turbine support 106 may further include a helipad 206.
  • the helipad 202 allows persons to fly to the wind turbine 100, 200, and/or 304 and land a helicopter (not shown) directly on the wind turbine. This may be particularly useful in remote locations, or locations with limited access including, but not limited to, the ocean, a lake, a industrial area, a tundra, a desert, and the like.
  • the upper portion 201 of the turbine support 106 may further have one or more cranes 208.
  • the cranes 208 allow an operator to lift heavy equipment.
  • the crane 208 may be a tandem crane capable of rotating around the diameter of the wind turbine. The crane may assist in the construction of the wind turbine 100.
  • FIG 4 shows a top view of the wind turbine 100 in conjunction with one or more wind compressors 400.
  • the wind compressors 400 are each an obstruction configured to channel the wind toward the wind turbine 100.
  • a wind compressor 400 is positioned on either side of the wind turbine 500 so as to redirect the flow of wind towards the wind turbine 500.
  • the wind compressor 400 funnels the wind 506 into the wind turbine 500.
  • the convergence of the winds towards the wind turbine 500 creates a venturi effect thereby increasing the speed and force of the winds upon the wind turbine 500.
  • This venturi effect on the wind turbines increases the rpms or rotation speed of the rotors which translates into increased electrical energy produced by the generators 112 (Fig. IA).
  • This increase in wind energy and force upon the turbine blades 108 is thus translated from the wind turbine 500 to the generator 112 resulting in an increased output of electricity.
  • This invention 400 increases the efficiency and ultimate output of the wind turbine 100, 500 up to, beyond 1000-2000 megawatts per hour (MWh) or 1 gigawatt per hour (GWh).
  • MWh megawatts per hour
  • GWh gigawatt per hour
  • Known wind turbines produce between 2 - 4 MGW/hour.
  • the wind compressor 400 may be any suitable obstruction capable of re- channeling the natural flow of wind towards the wind turbines 100, 400.
  • Suitable wind compressors include, but are not limited to, a sail, a railroad car, a trailer truck body, a structure, and the like. Structurally the obstructions comprises a shape and size to capture and redirect a body of wind towards the wind turbine.
  • an obstruction such as a sail, which comprises a large area in two dimensions but is basically a flat object, must be anchored to avoid displacement by the force of the wind.
  • Other obstructions, such as the rail road car or trailer truck should have enough weight to avoid wind displacement.
  • Each of the wind compressors 400 may be moveably coupled to a transporter 403, or transport device to move the compressor 400 to a location or position that captures the wind flow as the direction of wind changes and directs the wind flow towards the wind turbine.
  • the transporter may be any suitable transporter 403 capable of moving the wind compressor 400 including, but not limited to, a locomotive to move a rail car, a automobile, a truck, a trailer, a boat, a Sino trailer, a heavy duty self propelled modular transporter 403 and the like.
  • Each of the transporters 403 may include an engine or motor capable of propelling the transporter 403.
  • the location of each of the wind compressors 400 may be adjusted to suit the prevailing wind pattern at a particular location.
  • the location of the wind compressors 400 may be automatically and/or manually changed to suit shifts in the wind direction.
  • the transporter 403 may include a drive member for moving the transporter 403.
  • the transporter 403 may be in communication with a controller, for manipulating the location of each of the transporters 403 in response to the wind direction.
  • a separate controller may be located within each of the transporters 403.
  • One or more pathways 402, shown in Figure 4 may guide transporters 403 as they carry the wind compressors 400 to a new location around the wind turbine 100.
  • the one or more pathways 402 may be any suitable pathway for guiding the transporters including, but not limited to, a railroad, a monorail, a roadway, a waterway, and the like.
  • the one or more pathways 402 are a series of increasingly larger circles which extend around the entire wind turbine 100. It should be appreciated that any suitable configuration for the pathways 402 may be used. As described above, the size of the wind turbine 100 may be greatly increased due to the minimized friction between the turbine rotor 104 and the turbine support 106. Thus, the pathways 402 may encompass a large area around the wind turbine 100.
  • the wind compressors 400 as a group may extend out any distance from the wind turbine 100, only limited by the land use in the area. Thus, a large area of wind may be channeled directly toward the wind turbine 100 thereby increasing the amount of wind engaging the blades 108.
  • the controller may be a single controller 404 capable of controlling each of the transporters 403 from an onsite or remote location.
  • the controller(s) 404 may be in wired or wireless communication with the transporters 403.
  • the controller(s) 404 may initiate an actuator thereby controlling the engine, motor or drive member of the transporter 403.
  • the controlled s) may comprise a central processing unit (CPU), support circuits and memory.
  • the CPU may comprise a general processing computer, microprocessor, or digital signal processor of a type that is used for signal processing.
  • the support circuits may comprise well known circuits such as cache, clock circuits, power supplies, input/output circuits, and the like.
  • the memory may comprise read only memory, random access memory, disk drive memory, removable storage and other forms of digital memory in various combinations.
  • the memory stores control software and signal processing software.
  • the control software is generally used to provide control of the systems of the wind turbine including the location of the transporters 403, the blade direction, the amount of power being stored versus sent to the power grid, and the like.
  • the processor may be capable of calculating the optimal location of each of the wind compressors based on data from the sensors.
  • One or more sensors 310 shown in Fig. 3, may be located on the wind turbines 100, 200, 304 and/or 500 and/or in the area surrounding the wind turbines. The sensors 310 may detect the current wind direction and/or strength and send the information to a controller 312.
  • the sensors 310 may also detect the speed of rotation of the turbine rotor 104.
  • the controller 312 may receive information regarding any of the components and/or sensors associated with the wind turbines. The controller 312 may then send instructions to various components of the wind turbines, the wind compressors and/or the generators in order to optimize the efficiency of the wind turbines.
  • the controller 312 may be located inside the base of the tower, at the concrete foundation, a remote location, or in the control room at the top of the tower.
  • the wind compressors may be used in conjunction with any number and type of wind turbine, or wind farms.
  • the wind compressors 400 may be used with one or more horizontal wind turbines, traditional vertical wind turbines, the wind turbines described herein and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

éolienne comprenant un ou plusieurs ensemble(s) d’aimants opposés pour créer une force de répulsion entre un support de turbine et un rotor de turbine qui est suffisamment puissante pour former un espace entre ceux-ci, réduisant ainsi le frottement entre le support de turbine et un rotor de turbine. La réduction du frottement entre le rotor de turbine et le support de turbine permet une augmentation de la production d’énergie et de la taille des éoliennes.
PCT/US2008/009803 2008-06-26 2008-08-15 Éolienne WO2009157914A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/215,232 2008-06-26
US12/215,232 US20090324383A1 (en) 2008-06-26 2008-06-26 Wind compressor
US12/215,233 US8513826B2 (en) 2008-06-26 2008-06-26 Wind turbine
US12/215,233 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009157914A1 true WO2009157914A1 (fr) 2009-12-30

Family

ID=40348120

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2008/009803 WO2009157914A1 (fr) 2008-06-26 2008-08-15 Éolienne
PCT/US2008/009801 WO2009157913A1 (fr) 2008-06-26 2008-08-15 Compresseur de vent

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2008/009801 WO2009157913A1 (fr) 2008-06-26 2008-08-15 Compresseur de vent

Country Status (1)

Country Link
WO (2) WO2009157914A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513826B2 (en) 2008-06-26 2013-08-20 Ed Mazur Wind turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667024A1 (fr) * 2012-05-24 2013-11-27 Alcatel Lucent Générateur d'électricité éolienne/solaire avec lévitation horizontale

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436810A1 (de) * 1983-10-08 1985-04-25 Reinhard 2211 Echlak Erdloff Vorrichtung zur erzeugung von elektrischer energie mittels windkraft
EP1096144A2 (fr) * 1999-11-01 2001-05-02 Masaharu Miyake Eolienne
US20070098563A1 (en) * 2005-10-31 2007-05-03 Rowan James A Magnetic vertical axis wind turbine
WO2007061150A1 (fr) * 2005-11-25 2007-05-31 Byung-Sue Ryu Variateur de production d'energie pour eolienne
WO2008046272A1 (fr) * 2006-10-13 2008-04-24 Pui To Lok Éolienne à suspension magnétique de type à rotor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29907289U1 (de) * 1999-04-24 1999-08-05 Goroll, Peter, 65388 Schlangenbad Windkraftrad mit Thermikstufenflügeln
CA2290196A1 (fr) * 1999-09-29 2001-03-29 Denis Guay Turbine actionnee par un courant liquide orientable
US6984899B1 (en) * 2004-03-01 2006-01-10 The United States Of America As Represented By The Secretary Of The Navy Wind dam electric generator and method
US7056082B1 (en) * 2005-02-10 2006-06-06 Taylor John B Four cycle wind implosion engine
US7488150B2 (en) * 2005-12-29 2009-02-10 Krippene Brett C Vertical wind turbine system with adjustable inlet air scoop and exit drag curtain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436810A1 (de) * 1983-10-08 1985-04-25 Reinhard 2211 Echlak Erdloff Vorrichtung zur erzeugung von elektrischer energie mittels windkraft
EP1096144A2 (fr) * 1999-11-01 2001-05-02 Masaharu Miyake Eolienne
US20070098563A1 (en) * 2005-10-31 2007-05-03 Rowan James A Magnetic vertical axis wind turbine
WO2007061150A1 (fr) * 2005-11-25 2007-05-31 Byung-Sue Ryu Variateur de production d'energie pour eolienne
WO2008046272A1 (fr) * 2006-10-13 2008-04-24 Pui To Lok Éolienne à suspension magnétique de type à rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513826B2 (en) 2008-06-26 2013-08-20 Ed Mazur Wind turbine

Also Published As

Publication number Publication date
WO2009157913A1 (fr) 2009-12-30

Similar Documents

Publication Publication Date Title
US8513826B2 (en) Wind turbine
US9803624B2 (en) System and methodology for wind compression
US9470210B2 (en) Magnet configurations for magnetic levitation of wind turbines and other apparatus
KR100813875B1 (ko) 풍력발전용 풍차
US20110080004A1 (en) Renewable energy generation eco system
US9797383B1 (en) Magnet configurations for magnetic levitation of wind turbines and other apparatus
US20090250938A1 (en) Wind turbine incorporated in an electric transmission tower
CN101397975A (zh) N层球形空腔涡轮式风力发电机
WO2009157914A1 (fr) Éolienne
CN206694188U (zh) 混合悬浮气隙调整型风机偏航装置
US8471421B2 (en) Magnetic motor generator having a rolling configuration
CN210317601U (zh) 一种带磁悬浮承重结构的垂直轴风力发电机
WO2009092191A1 (fr) Éolienne ascendante de grande hauteur et générateur à turbine
CN219549022U (zh) 风力涡轮机以及风力发电设备
US11837938B2 (en) Magnetic torque convertor for utility applications
CN117846881A (zh) 一种自适应风速和风向的永磁悬浮升降风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08795385

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08795385

Country of ref document: EP

Kind code of ref document: A1