WO2009157484A1 - Annealing apparatus - Google Patents

Annealing apparatus Download PDF

Info

Publication number
WO2009157484A1
WO2009157484A1 PCT/JP2009/061518 JP2009061518W WO2009157484A1 WO 2009157484 A1 WO2009157484 A1 WO 2009157484A1 JP 2009061518 W JP2009061518 W JP 2009061518W WO 2009157484 A1 WO2009157484 A1 WO 2009157484A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
annealing apparatus
laser
wafer
processed
Prior art date
Application number
PCT/JP2009/061518
Other languages
French (fr)
Japanese (ja)
Inventor
智博 鈴木
昌剛 米田
繁 河西
和広 大矢
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008304468A external-priority patent/JP2010129861A/en
Priority claimed from JP2008310112A external-priority patent/JP2010034491A/en
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN2009801123218A priority Critical patent/CN101999160A/en
Priority to US13/001,357 priority patent/US20110174790A1/en
Publication of WO2009157484A1 publication Critical patent/WO2009157484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Definitions

  • the present invention relates to an annealing apparatus that performs an annealing process on an object to be processed such as a semiconductor wafer, and more particularly to an annealing apparatus that performs an annealing process by irradiating heating light from a laser element or an LED (Light Emitting Diode) element.
  • a laser element or an LED (Light Emitting Diode) element.
  • LED Light Emitting Diode
  • the wafer is heated using a halogen lamp or the like.
  • a halogen lamp or the like it takes at least about 1 second until the halogen lamp is lit and stabilized as a heat source. Therefore, recently, an annealing process using an LED element that is superior in switching responsiveness and capable of increasing and lowering the temperature faster than a halogen lamp as a heating source has been proposed (Japanese Patent Publication No. 2005-536045). .
  • the light emission efficiency is about 10 to 30%, which is considerably lower than the light emission efficiency of the laser element of about 40 to 50%. That is, there is a problem that energy efficiency is lower than in the case of a laser element.
  • the heating light is monochromatic light (single wavelength)
  • the temperature distribution is uneven (nonuniform) depending on the structure and surface state of the wafer surface to be heated.
  • the absorptance is different for a specific wavelength.
  • An object of the present invention is to provide an annealing apparatus capable of heating an object to be processed in a short time and with a uniform in-plane temperature and having high energy conversion efficiency and contributing to energy saving. is there.
  • the present invention provides an annealing apparatus that performs an annealing process on a target object, a processing container in which the target object is accommodated, a support unit that supports the target object in the processing container, Gas supply means for supplying a processing gas to the apparatus, exhaust means for exhausting the atmosphere in the processing container, and back surface side heating means having a plurality of laser elements that irradiate heating light toward the entire back surface of the object to be processed.
  • an annealing apparatus characterized by comprising:
  • the object to be processed by irradiating the object to be processed from the back surface of the object to be processed having a uniform surface state using laser light as heating light, the object to be processed can be obtained in a state where the in-plane temperature is uniform in a short time. Can be heated.
  • the high energy conversion efficiency by the laser element can contribute to energy saving.
  • the plurality of laser elements are arranged over an area having a size capable of covering at least the entire back surface of the object to be processed.
  • the laser element is a semiconductor laser element, a solid-state laser element, or a gas laser element.
  • the heating light emitted from the laser element has a wavelength band that can selectively heat the silicon substrate.
  • either one of the support means and the back surface side heating means is supported rotatably.
  • a surface-side heating unit that is disposed to face the back-side heating unit and irradiates heating light toward the surface of the object to be processed is further provided.
  • the surface side heating means includes a plurality of LED (LightLEDEmitting Diode) elements or SLDs (Super Luminescent Diode) arranged over a region that can cover at least the entire surface of the object to be processed. It has an element.
  • LED LightLEDEmitting Diode
  • SLDs Super Luminescent Diode
  • the surface side heating means when an LED element or an SLD element is used as the surface side heating means, it is possible to irradiate heating light having a wide emission wavelength from the surface side of the object to be processed. Thereby, the said to-be-processed object can be heated in a state with a uniform in-plane temperature for a short time, without depending on the surface state of a to-be-processed object.
  • At least one of the back side heating unit and the front side heating unit is provided with a cooling mechanism for cooling with a refrigerant.
  • the cooling mechanism has a refrigerant passage for flowing the refrigerant, and the refrigerant passage is set so that a cross-sectional area of the flow passage gradually decreases from the refrigerant inlet to the refrigerant outlet. Has been.
  • the amount of heat per unit length of the refrigerant passage taken by the refrigerant from the object to be cooled can be made constant.
  • the temperature of the cooling object can be made uniform along the length direction of the refrigerant passage.
  • the width of the refrigerant passage is constant, and the height of the refrigerant passage is determined based on the flow rate of the refrigerant, the specific heat of the refrigerant, the density of the refrigerant, and the distance from the refrigerant inlet. .
  • the cooling mechanism is provided with a plurality of heat pipes that promote cooling.
  • a reflection surface is formed on the back surface side heating means.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of an annealing apparatus according to the present invention.
  • FIG. 2A is a plan view showing the surface (lower surface) of the surface-side heating means.
  • FIG. 2B is an enlarged plan view of a part (one LED module) of the surface (lower surface) of the surface side heating means.
  • FIG. 3 is an enlarged sectional view showing a part A in FIG. 1 which is a part of the surface side heating means.
  • FIG. 4 is a plan view showing the surface (upper surface) of the back surface side heating means.
  • FIG. 5 is an explanatory diagram for explaining a light emission state of the semiconductor laser element.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of an annealing apparatus according to the present invention.
  • FIG. 2A is a plan view showing the surface (lower surface) of the surface-side heating means.
  • FIG. 2B is an enlarged plan view of a part
  • FIG. 6 is a schematic view showing an irradiation state of laser light (heating light) from the laser element.
  • FIG. 7 is an enlarged perspective view showing one refrigerant passage in the upper cooling mechanism of the element mounting head.
  • FIG. 8 is a partial configuration diagram showing a lower part of a processing vessel including a supporting unit according to a modified embodiment of the annealing apparatus of the present invention.
  • FIG. 9 is a schematic diagram for obtaining the temperature change of the refrigerant in a minute section in the length direction of the refrigerant passage.
  • FIG. 10 is a graph showing the height function f (x) of the refrigerant passage.
  • FIG. 11 is a diagram illustrating an example of the height change of the cross-sectional shape of the refrigerant passage.
  • FIG. 12 is a plan view showing an arrangement state of the laser units of the heating means and the semiconductor laser elements.
  • FIG. 13 is a graph showing the distribution of heating light (light output) output from the heating means shown in FIG.
  • FIG. 14 is an enlarged perspective view showing the laser unit.
  • 15A and 15B are graphs showing how the light spots output from the semiconductor laser element spread.
  • FIG. 16 is a plan view showing an example of a modified embodiment of the arrangement state of the laser units of the heating means.
  • FIG. 17 is a graph showing the distribution of heating light (light output) output from the heating means shown in FIG.
  • FIG. 18 is an enlarged perspective view showing an example of a modified embodiment of the laser unit.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of an annealing apparatus according to the present invention.
  • FIG. 2A is a plan view showing the surface (lower surface) of the surface-side heating means.
  • FIG. 2B is an enlarged plan view of a part of the surface (lower surface) of the surface side heating means.
  • FIG. 3 is an enlarged sectional view showing a part A in FIG. 1 which is a part of the surface side heating means.
  • FIG. 4 is a plan view showing the surface (upper surface) of the back surface side heating means.
  • FIG. 5 is an explanatory diagram for explaining a light emission state of the semiconductor laser element.
  • FIG. 6 is a schematic view showing an irradiation state of laser light (heating light) from the laser element.
  • a semiconductor wafer made of a silicon substrate is used as the object to be processed. An example in which impurities are implanted into the surface and the wafer is annealed will be described.
  • the annealing apparatus 2 of this embodiment has a processing vessel 4 made of aluminum or an aluminum alloy and having a hollow interior.
  • the processing container 4 includes a cylindrical side wall 4A, a ceiling plate 4B joined to the upper end of the side wall 4A, and a bottom plate 4C joined to the bottom of the side wall 4A.
  • a loading / unloading port 6 having a size capable of loading / unloading a semiconductor wafer W as an object to be processed is formed.
  • a gate valve 8 that can be opened and closed is attached to the carry-in / out port 6.
  • support means 10 for supporting the wafer W is provided.
  • the support means 10 has a plurality of, for example, three support pins 12 (only two are shown in FIG. 1) and a lifting arm 14 connected to the lower end of each support pin 12. .
  • Each of the elevating arms 14 can be moved up and down by an actuator (not shown), and can move up and down with the wafer W supported by the upper end portion of the support pins 12.
  • a gas supply means 16 is formed in a part of the peripheral part of the ceiling plate 4B.
  • the gas supply means 16 includes a gas introduction port 18 formed in the ceiling plate 4B and a gas pipe 20 connected to the gas introduction port 18, and illustrates a necessary processing gas into the processing container 4. It can introduce
  • N 2 gas or a rare gas such as Ar or He can be used as the processing gas.
  • the ceiling plate 4B is formed with an upper refrigerant passage 19 through which a refrigerant for cooling the ceiling plate 4B flows.
  • a gas exhaust port 22 is formed in a part of the peripheral portion of the bottom plate 4C.
  • the gas exhaust port 22 is provided with exhaust means 24 for exhausting the atmosphere in the processing container 4.
  • the exhaust means 24 has a gas exhaust pipe 26 connected to the gas exhaust port 22, and a pressure regulating valve 28 and an exhaust pump 30 are sequentially provided in the gas exhaust pipe 26.
  • the bottom plate 4C is formed with a lower refrigerant passage 31 through which a refrigerant for cooling the bottom plate 4C flows.
  • a large-diameter opening is formed in the center of the ceiling plate 4B, and the surface side heating means 32 is provided in the opening so that the surface (upper surface) of the wafer W can be heated.
  • a large-diameter opening is also formed in the central portion of the bottom plate 4C, and a back-side heating unit 34, which is a feature of the present invention, is provided in the opening so as to face the front-side heating unit 32.
  • the back surface (lower surface) of the wafer W can be heated.
  • the surface of the wafer W refers to a surface on which devices and the like are formed by performing various processes such as film formation and etching.
  • the back surface of the wafer W refers to a surface on the side opposite to the wafer surface where no device or the like is formed. Moreover, when the heating amount of the back surface side heating means 34 is sufficiently large, it can be omitted without providing the front surface side heating means 32.
  • the surface side heating means 32 has an element mounting head 36 that is fitted into the opening of the ceiling plate 4B with a slight gap.
  • the element mounting head 36 is made of a material having high thermal conductivity such as aluminum or aluminum alloy.
  • the element mounting head 36 is a portion of a circular ring-shaped mounting flange 36A formed on the upper side of the element mounting head 36, with a thermal insulator 38 made of polyetherimide or the like interposed between the ceiling plate 4B and the ceiling plate 4B. It is supported by the plate 4B.
  • a sealing material 40 made of an O-ring or the like is interposed on the upper and lower sides of the thermal insulator 38 so that the airtightness of this portion can be maintained.
  • An element mounting recess 42 having a diameter slightly larger than the diameter of the wafer W is formed on the lower surface of the element mounting head 36.
  • a plurality of LED modules 44 are provided in a plane (flat) portion of the element mounting recess 42 over a region that can cover at least the entire surface of the wafer W.
  • a light transmission plate 45 made of, for example, a quartz plate is attached to the opening portion of the element attachment recess 42.
  • the LED modules 44 are formed in, for example, a regular hexagonal shape with one side of about 25 mm, and are arranged close to each other or closely arranged so that adjacent sides are substantially in contact with each other. For example, when the diameter of the wafer W is 300 mm, about 80 LED modules 44 are provided.
  • FIG. 2B shows an enlarged plan view of one LED module. As shown in FIGS. 2B and 3, each LED module 44 is configured by arranging a large number of LED elements 46 vertically and horizontally on the surface thereof. In this case, the size of each LED element 46 is about 0.5 mm ⁇ 0.5 mm, and about 1000 to 2000 LED elements 46 are mounted on one LED module 44.
  • the LED elements 46 are grouped into a plurality of groups within one LED module 44, and the LED elements 46 in the same group are connected in series.
  • FIG.1 and FIG.3 the upper side cooling mechanism 48 is provided above the LED module 44.
  • FIG. The upper cooling mechanism 48 has a refrigerant passage 50 having a rectangular cross section provided in the element mounting head 36.
  • a refrigerant inlet pipe 50A is connected to the refrigerant inlet 51 at one end of the refrigerant passage 50, and a refrigerant discharge pipe 50B is connected to the refrigerant outlet 53 at the other end.
  • the LED module 44 can be cooled by flowing the refrigerant through the refrigerant passage 50 and taking away the heat generated from the LED module 44.
  • Fluorinert, Galden (trade name) or the like can be used as the refrigerant.
  • the coolant passage 50 is formed so as to be folded back in a meandering manner over substantially the entire surface of the element mounting head 36 so as to efficiently remove heat from the upper surface side of the LED module 44 and cool it. It has become.
  • heat pipes 52 each having a U-shape extending in the vertical direction are embedded in both side wall portions of each refrigerant passage 50. Thereby, the LED module 44 can be cooled more efficiently.
  • a power supply control box 54 is provided above the ceiling plate 4B, and a control board 56 corresponding to each LED module 44 is provided there.
  • a power supply line 58 extends from the control board 56 to each LED module 44 so that power can be supplied to each LED module 44.
  • a thick light transmission plate 62 made of, for example, a transparent quartz glass plate is airtightly attached to the opening of the bottom plate 4C by a fixture 66 through a seal member 64 such as an O-ring.
  • the back surface side heating means 34 has a plurality of laser modules 60 arranged below the light transmission plate 62. Specifically, a laser mounting casing 61 is attached so as to cover the lower part of the light transmission plate 62 provided in the opening of the bottom plate 4C, and a plurality of laser modules 60 are attached and fixed to the laser mounting casing 61. Has been.
  • the laser modules 60 are distributed substantially evenly over the entire area of a size that can cover at least the entire back surface of the wafer W.
  • the size of one laser module 60 is set to a size of, for example, about 50 mm ⁇ 60 mm ⁇ 25 mm, which is considerably larger than the LED module 44, and the output of one laser module 60 is also large. Unlike the LED module 44, it is not necessary to provide it as closely packed.
  • each laser module 60 has one laser element 68 and a cooling unit 70 as a cooling mechanism. Therefore, the laser element 68 is arranged over a region that can cover the entire back surface of the wafer W.
  • the laser element 68 includes a light emitting layer 72 sandwiched between two electrodes, and an irradiation area of laser light emitted from the light emitting layer 72, that is, the heating light L1.
  • 74 is an ellipse having a major axis in a direction perpendicular to the extending direction of the light emitting layer 72.
  • the spreading angle of the heating light L1 in the major axis direction is about 30 to 50 degrees, and the spreading angle in the minor axis direction is 10 degrees or less. Therefore, in order to realize in-plane uniform heating on the back surface of the wafer W, the major axis direction of the elliptical irradiation area 74 is set to be the radial direction of the wafer W as shown in FIG. It is preferable to do.
  • the emission wavelength of the laser element 68 is a specific wavelength in the range of ultraviolet light to near-infrared light, for example, in the range of 360 to 1000 nm, particularly in the range of 800 to 970 nm, which has a high absorption rate for the wafer W of the silicon substrate.
  • the laser element 68 for example, a semiconductor laser element using GaAs can be used.
  • the arrangement of the laser modules 60 shown in FIG. 4 is merely an example, and the present invention is not limited to this.
  • a power supply line 76 is connected to each laser element 68 of the laser module 60 so that power is supplied.
  • the cooling units 70 of the laser module 60 are connected in series with each other through a refrigerant passage 78.
  • a cooling medium introduction pipe 80 is connected to the cooling section 70 on the most upstream side, and a cooling medium discharge pipe 82 is connected to the cooling section 70 on the most downstream side.
  • this refrigerant water, Fluorinert or Galden (trade name) can be used.
  • a reflection surface 84 that has been subjected to a surface treatment or the like is formed on the inner side surface of the laser mounting casing 61. Thereby, the heating light reflected by the back surface side of the wafer W can be reflected upward again.
  • the laser module 60 in which the laser element 68 and the cooling unit 70 are integrated is described as an example, but a structure in which both are separated and provided separately may be employed.
  • the overall operation control of the annealing apparatus 2 formed as described above, for example, various controls such as process temperature, process pressure, gas flow rate, on / off of the front side heating means 32 and the back side heating means 34 are performed by, for example, a computer. This is performed by the control unit 86.
  • a computer-readable program necessary for this control is normally stored in the storage medium 88.
  • the storage medium 88 for example, a flexible disk, a CD (Compact Disc), a CD-ROM, a hard disk, a flash memory, a DVD, or the like is used.
  • a semiconductor wafer W made of, for example, a silicon substrate is previously brought into a reduced-pressure atmosphere through a gate valve 8 opened from a load-lock chamber, a transfer chamber, or the like (not shown) that has been previously in a reduced-pressure atmosphere by a transfer mechanism (not shown). Is carried into the processing container 4.
  • amorphous silicon, a metal, an oxide film, or the like as described above is formed, and a surface state in which various fine regions having different absorptances with respect to the wavelength of the heating light are formed. ing.
  • the loaded wafer W is transferred onto the support pins 12 provided on the lift arm 14 by driving the lift arm 14 up and down. Thereafter, the transfer mechanism is retracted, the gate valve 8 is closed, and the inside of the processing container 4 is sealed.
  • a processing gas for example, N 2 gas or Ar gas
  • a processing gas for example, N 2 gas or Ar gas
  • the front side heating means 32 provided on the ceiling plate 4B and the back side heating means 34 provided on the bottom plate 4C are both turned on, and the LED element 46 and the back side heating means of the front side heating means 32 are turned on.
  • Both of the 34 laser elements 68 are turned on and irradiated with heating light. Thereby, the wafer W is heated from both the upper and lower surfaces and annealed.
  • the process pressure is, for example, about 100 to 10000 Pa
  • the process temperature is, for example, about 800 to 1100 ° C.
  • the lighting times of the LED element 46 and the laser element 68 are about 1 to 10 seconds, respectively.
  • the surface (upper surface) of the wafer W is heated by the heating light having a certain emission width emitted from each LED element 46, the surface side of the wafer W is not dependent on the surface state of the wafer W. Can be heated to a state in which the in-plane temperature is substantially uniform.
  • monochromatic heating light is radiated from the laser elements 68 to the back surface (lower surface) of the wafer W.
  • this radiated light as shown in FIG. 6, an elliptical irradiation area 74 is formed on the back surface of the wafer W in a state of being distributed substantially evenly over the entire back surface of the wafer.
  • the heating light L1 (see FIG. 5) emitted from the laser element 68 is monochromatic light, but the back surface of the wafer W is in a uniform state with silicon or silicon oxide.
  • the wavelength of L1 is set to a wavelength having a high absorption rate for silicon or silicon oxide, for example, a specific wavelength in the range of 360 to 1000 nm, more preferably a specific wavelength in the range of 800 to 970 nm. Therefore, the back surface side of the wafer can be heated to a state in which the in-plane temperature is substantially uniform. That is, the wafer W can be heated evenly and quickly in a short time with a high uniformity of in-plane temperature from the front side and the back side.
  • the laser element 68 (light conversion efficiency: 40 to 50%) used for the back surface side heating means 34 is more than the LED element 46 (light conversion efficiency: 10 to 30%) used for the surface side heating means 32. High energy conversion efficiency. Therefore, it can be said that it can contribute to energy saving as compared with the case where the LED element is used as the back surface side heating means.
  • front surface side heating means 32 and the back surface side heating means 34 are heated from the front and back (upper and lower) surfaces of the wafer W, there is almost no deviation in temperature distribution in the thickness direction of the wafer W. As a result, it is possible to prevent the wafer W from warping due to the temperature difference between the front and back surfaces of the wafer W.
  • the element mounting head 36 is heated by a large amount of heat generated in the surface side heating means 32, but this is caused by flowing a refrigerant through the refrigerant passage 50 of the upper cooling mechanism 48 provided in the element mounting head 36. It can be cooled efficiently. Further, in this case, since the heat pipe 52 is provided along the height direction of the refrigerant passage 50 as shown in FIGS. 1 and 3, the heat conversion efficiency in this portion is increased, and the element mounting head is correspondingly increased. The cooling efficiency of 36 can be further increased.
  • the thermal conductivity is 300 to 350 W / m ⁇ deg, whereas by providing the heat pipe 52, the thermal conductivity is 400 to 600 W / m ⁇ deg. deg can be improved.
  • each laser element 68 can be efficiently cooled.
  • both the front surface side heating means 32 and the back surface side heating means 34 are provided.
  • the front surface side heating means 32 may not be provided, and only the back surface side heating means 34 may be provided. Good.
  • the rate of temperature rise is slightly lower than when both the heating means 32 and 34 are provided, but in this case as well, the entire wafer W is rapidly heated in a state where the in-plane temperature is highly uniform. can do.
  • the back surface side heating unit 34 having the plurality of laser elements 68 is provided, and the laser light is used as the heating light L1 to obtain the surface state.
  • the object to be processed can be heated in a state where the in-plane temperature is uniform in a short time.
  • the high energy conversion efficiency by the laser element can contribute to energy saving.
  • each laser module 60 has one laser element. However, here, a plurality of laser elements 68, more specifically, three laser elements are grouped into lasers.
  • the laser module 160 is unitized by being mounted on the module 160, and a plurality of the laser modules 160 are installed in combination in a planar manner. As shown in FIG. 14, the laser module 160 has a housing 194 formed in a regular polygon, that is, a regular hexagonal cylinder, and the three laser elements are disposed in the housing 194. 68 are installed so as to be parallel to each other, and laser light can be output as heating light from the upper end surface side of the housing 194.
  • FIG. 12 shows an elliptical irradiation area 74 formed by laser light, which is heating light output from each laser element 68.
  • the three laser elements 68 are mounted in parallel so that their length directions are orthogonal to a line segment connecting a pair of opposing angles.
  • the three laser elements 68 are electrically connected in series with each other internally, and two power supply lines 76 extend from the laser module 160 to supply power.
  • a cooling unit 70 is integrally provided in the laser module 160 in order to cool the heat generated from the laser element 68, and the cooling unit 70 has flexibility for circulating a refrigerant.
  • a refrigerant inflow pipe 202 and a refrigerant outflow pipe 204 are provided (see FIG. 14). The refrigerant inflow pipe 202 and the refrigerant outflow pipe 204 are connected in series between the adjacent laser modules 160 so that the refrigerant flows in series across the cooling units 70 of all the laser modules 160. Yes.
  • a refrigerant introduction pipe 80 is connected to the cooling unit 70 on the most upstream side, and a refrigerant discharge pipe 82 is connected to the cooling unit 70 on the most downstream side (see FIG. 1), and the refrigerant flows therethrough. As a result, the laser module 160 is cooled.
  • this refrigerant water, Fluorinert or Galden (trade name) can be used.
  • the regular hexagonal laser module 160 is concentrically arranged in a region having a size that can cover the entire back surface of the semiconductor wafer W.
  • Each laser module 160 is individually detachable from the laser mounting casing 61 so as to be detachable, and the mounting angle can be adjusted individually.
  • the spreading angle of the heating light L1 in the minor axis direction is ⁇ 10 degrees or less as shown in FIG. 15A
  • the spreading angle in the major axis direction is about ⁇ 15 to ⁇ 25 degrees as shown in FIG. 15B. It is. Therefore, here, in order to uniformly heat the back surface of the wafer W in the plane, the major axis direction of the elliptical irradiation area 74 is set so as to be as close as possible to the circumferential direction of the wafer W as shown in FIG. Yes.
  • the laser modules 160 are concentrically arranged here, and are concentrically divided into four zones here.
  • the innermost zone is composed of one laser module 160 located in the center
  • the outer middle zone is composed of six laser modules 160
  • the outer inner zone is 12 outside.
  • the outermost outermost zone is composed of 18 laser modules 160.
  • Each laser module 160 is detachable so that the mounting angle (rotational position) can be adjusted, and the major axis of the elliptical irradiation area 74 formed by the mounted laser element 68 is as much as possible.
  • the mounting angle (rotation position) is adjusted and mounted so as to align along the circumferential direction of the wafer W.
  • the housing 194 of the laser module 160 is a regular hexagon, the mounting angle can be adjusted in units of 60 degrees.
  • the laser module 160 in each of the four zones has to be attached so that the major axis direction of the irradiation area 74 does not completely coincide with the circumferential direction of the wafer W.
  • the position of the laser module 160 is adjusted by rotating the mounting angle of the laser module 160 by 60 degrees, for example, so that the angle formed by the circumferential direction (tangential direction) of the wafer W and the major axis direction is as small as possible. Install.
  • the mounting angle is not limited due to its characteristics, and the spread of the irradiation area with respect to the outer inner / inner peripheral zone is the same regardless of the direction.
  • FIG. 13 shows the relationship between the radial direction of the wafer W having a diameter of 300 mm, the light output from each zone, and the total light output of each zone.
  • the curve A1 indicates the light output from the innermost zone
  • the curve A2 indicates the light output from the middle inner zone
  • the curve A3 indicates the light output from the outer inner zone
  • the curve A4 indicates the light output from the outermost peripheral zone
  • the curve A0 indicates the total light output obtained by adding the curves A1 to A4.
  • the light output for each zone is shown with a steep peak, the directivity of the heating light for each zone is high, and the spreading of the heating light to the adjacent zones is very large. It is running low. Therefore, as shown by the curve A0, the total light output is substantially constant light output from the center of the semiconductor wafer over the entire radial region, and the in-plane of the irradiation amount of the heating light is obtained. It can be seen that the uniformity can be set high.
  • the emission wavelength of the laser element 68 is a specific wavelength in the range of ultraviolet light to near infrared light, for example, in the range of 360 to 1000 nm, in particular, 800 to 970 nm, which has a high absorption rate on the wafer W of the silicon substrate. It is preferable to use a specific wavelength (monochromatic light) within the range.
  • the laser element 68 for example, a semiconductor laser element using GaAs can be used.
  • the arrangement of the laser modules 160 shown in FIG. 12 is merely an example, and the present invention is not limited to this.
  • the power is controlled individually for each of the four zones, and the major axis direction of the elliptical irradiation area 74 with high directivity is in the circumferential direction of the wafer W. Therefore, the spread of the irradiation area 74 in the radial direction of the wafer W becomes very small, and the temperature controllability is improved for each zone as shown in FIG. 13. As a result, as shown in FIG. As the total light output shown by the curve A0, the irradiation amount from the center to the peripheral part of the wafer W can be made relatively uniform, so that the in-plane temperature uniformity of the wafer W can be improved.
  • the irradiation is performed so that the major axis direction of the elliptical irradiation area 74 is along the circumferential direction of the wafer W, light leakage to the outside of the wafer W is reduced, and the light energy is reduced accordingly. It can be used efficiently.
  • the laser module 160 corresponding to the corresponding part is attached to the laser mounting casing.
  • the distribution of the irradiation amount of the heating light L1 can be adjusted to be optimum by individually extracting from 61 and rotating the mounting angle by, for example, 60 degrees to change the mounting angle.
  • each laser module 160 is mounted such that irradiation is performed so that the major axis direction of the elliptical irradiation area 74 is as close to the circumferential direction of the wafer W as possible.
  • the present invention is not limited to this, and the irradiation area 74 may be arranged so that irradiation is performed such that the major axis direction of the irradiation area 74 is along the radial direction of the wafer.
  • FIG. 16 is a plan view showing an example of a modified embodiment of the arrangement state of the laser modules of the back surface side back surface heating means
  • FIG. 17 shows the distribution of the heating light (light output) output from the back surface side heating means shown in FIG. It is a graph to show.
  • the mounting angle is such that the major axis of the elliptical irradiation area 74 formed by the laser element 68 of each laser module 160 of the back surface side heating means 34 is aligned along the radial direction of the wafer W as much as possible. (Rotation position) is adjusted.
  • the laser modules 160 in each of the four zones include a part of the laser modules 160 that must be mounted so that the major axis direction of the irradiation area 74 does not completely coincide with the radial direction of the wafer W. Occurs in
  • the distribution of the light output from each zone of the heating / reverse heating means 34 at this time is shown in FIG. 17, where the curve B1 indicates the light output from the innermost zone and the curve B2 from the middle inner zone.
  • the light output is shown, the curve B3 shows the light output from the outer and inner peripheral zone, the curve B4 shows the light output from the outermost peripheral zone, and the curve B0 shows the total light output including the curves B1 to B4. .
  • the light output is expressed in a state where the peak is gentle for each zone as compared with the case shown in FIG.
  • the curve B0 the total light output is gradually decreased as the central portion of the semiconductor wafer is considerably large and goes in the radial direction. Accordingly, in this case, the in-plane uniformity of the irradiation amount of the heating light is deteriorated as compared with the case described with reference to FIGS. It can be seen that the sex can be increased to some extent.
  • the mounting angles of the respective laser modules 160 in FIGS. 12 and 16 show the extreme cases, and are merely examples, and it is needless to say that the mounting angles are not limited to these mounting angles. .
  • the three laser elements 68 mounted on the laser module 160 are arranged in parallel so that their length directions are perpendicular to a line segment connecting a pair of opposing angles.
  • the present invention is not limited to this, and the length direction of the three laser elements 68 may be orthogonal to the line segments orthogonal to the pair of opposing sides.
  • FIG. 18 is an enlarged perspective view showing an example of a modified embodiment of such a laser module.
  • the three laser elements 68 mounted on the laser module 160 are mounted so that their length directions are orthogonal to the line segments orthogonal to the pair of opposing sides. Yes.
  • the laser modules 160 formed in this way may be arranged in a state as shown in FIG.
  • the laser module 160 as shown in FIG. 14 and the laser module 160 as shown in FIG. 18 may be mixed and provided in combination.
  • the laser module 160 shown in FIG. 14 is applied to all the inner and inner peripheral zones, and the major axis direction of the irradiation area 74 in the outer and outer peripheral zones is the peripheral direction of the wafer W.
  • the laser modules 160 shown in FIG. 18 may be applied to portions that are greatly different. According to this, since the amount of the heating light spreading in the radial direction of the wafer W can be further reduced, the light energy can be used more efficiently correspondingly.
  • the shape of the laser module 160 is a regular hexagon, but is not limited to this, and may be a regular polygon such as a regular triangle, a regular pentagon, or a regular octagon.
  • the heat pipe 52 provided in the element mounting head 36 is provided so as to be completely embedded outside the refrigerant passage 50 as shown in FIG. 3, but is not limited thereto.
  • you may comprise as shown in FIG. FIG. 7 is an enlarged perspective view showing one refrigerant passage in the upper cooling mechanism of the element mounting head.
  • the upper end portion of the heat pipe 52 formed in a U-shape is exposed in the upper portion of the refrigerant passage 50.
  • a plurality (many) of such heat pipes 52 are arranged at substantially equal pitches along the flow direction of the refrigerant passage 50. According to this aspect, since the upper end portion of the heat pipe 52 is in direct contact with the refrigerant, the heat exchange rate for cooling can be further improved, and the cooling efficiency can be increased accordingly.
  • FIG. 8 is a partial configuration diagram showing a lower part of a processing vessel including a supporting unit in a modified embodiment of such an annealing apparatus.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the support means 10 that supports the semiconductor wafer W is attached to the rotation mechanism 89 and is rotated.
  • the support means 10 that supports the wafer W is configured integrally with the rotating levitating body 90 that forms part of the rotating mechanism 89.
  • the base end portion of each lifting arm 14 of the support means 10 is attached and fixed to a ring-shaped member 92.
  • a plurality of strip-shaped support pillars 93 extending in the vertical direction are arranged at an equal pitch along the circumferential direction of the virtual cylinder, and their upper ends are connected to a cylindrical floating upper ferromagnetic body 94.
  • a ring-shaped member 92 is further connected to the floating upper ferromagnetic body 94.
  • each support column 93 is connected to a circular ring-shaped floating upper lower ferromagnetic body 96.
  • the circular ring-shaped floating lower ferromagnetic member 96 extends in a flange shape in the horizontal direction.
  • the bottom plate 4C of the lower portion of the processing container 4 has a double cylindrical body in which a space that can accommodate the rotary levitating body 90 and can move the rotary levitating body 90 up and down by a predetermined stroke amount is formed.
  • the floating housing 98 of the structure is connected.
  • the lower region of the floating housing portion 98 is a horizontal housing portion 100 that accommodates the floating upper lower ferromagnetic member 96 and is large enough to move the floating upper lower ferromagnetic member 96 up and down by a predetermined stroke amount. .
  • a plurality of levitation electromagnet assemblies 102 are arranged at a predetermined pitch along the circumferential direction on the upper surface side of the upper partition wall 100A that partitions the horizontal housing portion 100.
  • a ferromagnetic body 104 is attached to the lower surface side of the upper partition wall 100A.
  • the vertical position sensor 106 is disposed on the inner surface side (upper surface side) of the lower partition wall 100B that partitions the horizontal housing portion 100 so that the floating lower ferromagnetic member 96 is sandwiched between the lower ferromagnetic member 104 and the ferromagnetic member 104. Is attached.
  • the support means 10 is set to an arbitrary height by adjusting the electromagnetic force of the levitation electromagnet assembly 102 while detecting the height position of the levitation lower lower ferromagnetic body 96 by the vertical position sensor 106. Can be done.
  • a plurality of vertical position sensors 106 are provided along the circumferential direction to prevent tilting of the rotating levitated body 90.
  • rotation control is performed with the position where, for example, 2 mm has been raised from the state in which the rotating levitated body 90 is in contact with the bottom plate side as a fixed position.
  • a position that is raised by 10 mm, for example, from this fixed position is a transfer position at which the wafer W is transferred.
  • a plurality of rotating electromagnet assemblies 108 are arranged at a predetermined pitch along the circumferential direction on the outer side of the outer peripheral wall 98A of the levitation accommodating portion 98.
  • a ferromagnetic body 110 is attached to the inner side of the outer peripheral wall 98A.
  • a horizontal position sensor 112 is attached to the outer peripheral side of the inner peripheral wall 98B of the levitation accommodating portion 98 so as to sandwich the floating upper ferromagnetic material 94 with the ferromagnetic material 110.
  • the wafer W can be rotated while being supported on the rotating levitated body 90, an elliptical irradiation area 74 irradiated on the back surface of the wafer W as shown in FIG.
  • the wafer W can be relatively rotated in the circumferential direction of the wafer W. Thereby, the uniformity of the in-plane temperature of the wafer W can be further improved.
  • the uniformity of the in-plane temperature of the wafer W can be further improved.
  • the configuration of the rotation mechanism 89 is merely an example, and is not limited to this.
  • a rotation mechanism disclosed in Japanese Patent Laid-Open No. 2002-280318 may be used.
  • the semiconductor wafer W side is rotated here, but instead, the back surface side heating means 34 side may be rotated.
  • the cooling efficiency changes along the flow direction of the refrigerant passage 50. For this reason, there is a concern that the temperature distribution becomes uneven depending on the arrangement position of the LED modules 44 that are the objects to be cooled, and the temperature becomes non-uniform. That is, the LED modules 44 arranged on the upstream side of the refrigerant passage 50 are efficiently cooled, whereas the LED modules 44 arranged on the downstream side are not efficiently cooled, and the LED modules 44 are not efficiently cooled. There is a concern that the temperature distribution will be uneven.
  • the cross-sectional area of the flow path is set so as to gradually decrease from the refrigerant inlet 51 to the refrigerant outlet 53 of the refrigerant passage 50.
  • FIG. 9 is a schematic diagram for obtaining the temperature change of the refrigerant in a minute section in the length direction of the refrigerant passage.
  • the horizontal axis “x” indicates the distance from the refrigerant inlet 51 to the refrigerant outlet 53
  • the vertical axis “y” indicates the height “f (x)” of the refrigerant passage 50.
  • the heat transfer coefficient h of the refrigerant is expressed as the following Expression 1.
  • h 0.664 ( ⁇ 1/2 ) ( ⁇ ⁇ 1/6 ) (cp 1/3 ) (k 2/3 ) (L ⁇ 1/2 ) (u 1/2 ) (1)
  • each symbol is as follows.
  • the height function f (x) of the refrigerant passage 50 depends on the temperature change T (x) of the refrigerant. In other words, if the temperature change is determined, the height of the refrigerant passage 50 is naturally determined.
  • Equation 5 when substituting into Equation 4 above, Equation 5 is obtained.
  • Specific numerical examples are as follows.
  • Target temperature To: 100 ° C
  • Refrigerant passage width 10mm Length of refrigerant passage: 5m
  • Medium inlet temperature: -50 ° C, medium outlet temperature: -40 ° C (Assuming that the temperature change changes linearly, “T (x) 2 ⁇ x ⁇ 50”)
  • Specific heat of refrigerant cp 1000 J / kg ⁇ K
  • Refrigerant density ⁇ 1800 kg / m 3
  • Constant A 230
  • f (x) is multiplied by 1/100 to convert this into the width of the refrigerant passage of 10 mm.
  • f (x) 230 2 ⁇ [100 ⁇ (2 ⁇ x ⁇ 50)] 2 / [(2 ⁇ 10 ⁇ 3 / 60) ⁇ 1000 2 ⁇ 1800 2 ⁇ 2 2 ⁇ 100] (5)
  • the above equation 5 is represented in a graph as shown in FIG. That is, at the refrigerant inlet 51 of the refrigerant passage 50, the height of the refrigerant passage 50 is set to about 27.6 mm, and the height of the refrigerant passage 50 is sequentially reduced according to the distance from the refrigerant inlet 51 to reduce the flow passage cross-sectional area. Then, the refrigerant outlet 53 corresponds to an aspect in which the height of the refrigerant passage 50 is set to about 24 mm.
  • FIG. 11 shows an example of the change in the height of the cross-sectional shape of the refrigerant passage 50 corresponding to this aspect.
  • the height of the refrigerant passage 50 is gradually decreased toward the downstream side.
  • the flow rate of the refrigerant gradually increases as it goes downstream.
  • the width of the refrigerant passage 50 is made constant.
  • the width of the refrigerant passage 50 is gradually reduced to gradually increase the cross-sectional area of the flow path. Can be narrowed.
  • the above numerical examples are merely examples, and the present invention is not limited thereto.
  • the unit of the refrigerant passage 50 taken by the refrigerant from the object to be cooled for example, the LED module 44.
  • the amount of heat per length can be made constant.
  • the temperature of the cooling target can be made uniform along the length direction of the refrigerant passage 50.
  • the semiconductor laser using GaAs has been described as an example of the laser element 68, the present invention is not limited to this, and other solid-state laser elements such as a YAG laser element and a garnet laser element can of course be used. . Furthermore, a gas laser element can also be used. Although the case where the LED element 46 is used as the surface side heating unit 32 has been described as an example here, the present invention is not limited to this, and an SLD (Super Luminescent Diode) element can also be used.
  • SLD Super Luminescent Diode
  • a semiconductor wafer is described as an example of the object to be processed, but this semiconductor wafer includes a silicon substrate and a compound semiconductor substrate such as GaAs, SiC, and GaN.
  • the present invention is not limited to these substrates, and the present invention can also be applied to glass substrates, ceramic substrates, and the like used in liquid crystal display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Provided is an annealing apparatus which anneals a subject to be processed.  The annealing apparatus is provided with: a processing container wherein the subject to be processed is stored; a supporting means which supports the subject to be processed in the processing chamber; a gas supply means which supplies a processing gas into the processing container; an air-releasing means which releases the atmosphere from the processing container; and a rear-side heating means having a plurality of laser elements which radiate heating light toward the entire rear surface of the subject to be processed.

Description

アニール装置Annealing equipment
 本発明は、半導体ウエハ等の被処理体に対してアニール処理を施すアニール装置に係り、特にレーザ素子やLED(Light Emitting Diode)素子からの加熱光を照射してアニール処理を行うアニール装置に関する。 The present invention relates to an annealing apparatus that performs an annealing process on an object to be processed such as a semiconductor wafer, and more particularly to an annealing apparatus that performs an annealing process by irradiating heating light from a laser element or an LED (Light Emitting Diode) element.
 一般に、半導体集積回路を製造するためには、シリコン基板等の半導体ウエハに対して、成膜処理、酸化拡散処理、改質処理、エッチング処理、アニール処理等の各種の処理が繰り返し行われる。それら処理のうち、イオンプランテーション後にウエハ中にドープされた不純物原子を活性化させるためのアニール処理においては、不純物の拡散を最小限に抑制するために、半導体ウエハをより高速で昇降温させる必要がある。 Generally, in order to manufacture a semiconductor integrated circuit, various processes such as a film formation process, an oxidation diffusion process, a modification process, an etching process, and an annealing process are repeatedly performed on a semiconductor wafer such as a silicon substrate. Among these processes, in the annealing process for activating impurity atoms doped in the wafer after ion plantation, it is necessary to raise and lower the temperature of the semiconductor wafer at a higher speed in order to minimize impurity diffusion. is there.
 従来のアニール装置では、ハロゲンランプ等を用いてウエハの加熱を行っていた。しかしながら、ハロゲンランプは点灯してから熱源として安定するまでに少なくとも1秒程度を要してしまう。そこで、最近にあっては、スイッチングの応答性により優れ、ハロゲンランプよりも更に高速昇降温が可能なLED素子を加熱源として用いたアニール処理が提案されている(特表2005-536045号公報)。 In the conventional annealing apparatus, the wafer is heated using a halogen lamp or the like. However, it takes at least about 1 second until the halogen lamp is lit and stabilized as a heat source. Therefore, recently, an annealing process using an LED element that is superior in switching responsiveness and capable of increasing and lowering the temperature faster than a halogen lamp as a heating source has been proposed (Japanese Patent Publication No. 2005-536045). .
 また、他の加熱源として、レーザ素子を用いて、このレーザ素子より発生する加熱光をウエハ表面にスキャンしつつウエハを加熱する技術も提案されている(例えば、特開2005-244191号公報)。 In addition, a technique has been proposed in which a laser element is used as another heating source, and the wafer is heated while scanning the surface of the wafer with heating light generated from the laser element (for example, JP-A-2005-244191). .
 これらのように、加熱源としてLED素子やレーザ素子を用いる場合には、ウエハに対する高速昇降温操作が比較的可能である、という利点を有する。さらにLED素子の場合には、加熱光の波長がある程度の幅をもっているので、ウエハの表面状態に依存せずに面内均一に加熱できる、という利点を有している。 As described above, when an LED element or a laser element is used as a heating source, there is an advantage that a high-speed heating / cooling operation on the wafer is relatively possible. Further, in the case of the LED element, since the wavelength of the heating light has a certain width, it has an advantage that it can be heated uniformly in the plane without depending on the surface state of the wafer.
 しかしながら、LED素子を用いる場合には、発光効率が10~30%程度であって、レーザ素子の発光効率である40~50%程度よりもかなり低い。すなわち、レーザ素子の場合と比較してエネルギー効率が低い、という問題がある。 However, when an LED element is used, the light emission efficiency is about 10 to 30%, which is considerably lower than the light emission efficiency of the laser element of about 40 to 50%. That is, there is a problem that energy efficiency is lower than in the case of a laser element.
 これに対して、レーザ素子の場合は、上述のようにLED素子よりも発光効率の点では優れる。しかしながら、加熱光が単色光である(単一波長である)ために、加熱対象であるウエハ表面の構造や表面状態によって、温度分布の偏り(不均一)が生じてしまう、という問題がある。例えば、ウエハ表面にアモルファス部分やメタル部分や絶縁膜部分等が混在している場合、これらはその材料に依存して主たる光の吸収波長が異なる(特定の波長に対しては吸収率が異なる)。従って、これらに単色光であるレーザ光(加熱光)を照射すると、当該波長に対応する吸収率の材料間の相違に起因して、ウエハ表面に不均一な温度分布が生じてしまう。 On the other hand, in the case of the laser element, as described above, it is superior in terms of light emission efficiency than the LED element. However, since the heating light is monochromatic light (single wavelength), there is a problem that the temperature distribution is uneven (nonuniform) depending on the structure and surface state of the wafer surface to be heated. For example, when an amorphous part, a metal part, an insulating film part, etc. are mixed on the wafer surface, these have different main light absorption wavelengths depending on the material (the absorptance is different for a specific wavelength). . Accordingly, when these are irradiated with laser light (heating light) that is monochromatic light, a non-uniform temperature distribution is generated on the wafer surface due to the difference between the materials having the absorptance corresponding to the wavelength.
発明の要旨Summary of the Invention
 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、被処理体を短時間で且つ面内温度が均一な状態で加熱することができ、また、エネルギー変換効率も高く省エネルギーに寄与することができるというアニール装置を提供することにある。 The present invention has been devised to pay attention to the above problems and to effectively solve them. An object of the present invention is to provide an annealing apparatus capable of heating an object to be processed in a short time and with a uniform in-plane temperature and having high energy conversion efficiency and contributing to energy saving. is there.
 本発明は、被処理体に対してアニール処理を施すアニール装置において、前記被処理体が収容される処理容器と、前記処理容器内で前記被処理体を支持する支持手段と、前記処理容器内へ処理ガスを供給するガス供給手段と、前記処理容器内の雰囲気を排気する排気手段と、前記被処理体の裏面全体に向けて加熱光を照射する複数のレーザ素子を有する裏面側加熱手段と、を備えたことを特徴とするアニール装置である。 The present invention provides an annealing apparatus that performs an annealing process on a target object, a processing container in which the target object is accommodated, a support unit that supports the target object in the processing container, Gas supply means for supplying a processing gas to the apparatus, exhaust means for exhausting the atmosphere in the processing container, and back surface side heating means having a plurality of laser elements that irradiate heating light toward the entire back surface of the object to be processed. And an annealing apparatus characterized by comprising:
 本発明によれば、レーザ光を加熱光として、表面状態が均一な被処理体の裏面から被処理体に照射することによって、当該被処理体を短時間で且つ面内温度が均一な状態で加熱することができる。また、レーザ素子によるエネルギー変換効率が高いことにより、省エネルギーに寄与することもできる。 According to the present invention, by irradiating the object to be processed from the back surface of the object to be processed having a uniform surface state using laser light as heating light, the object to be processed can be obtained in a state where the in-plane temperature is uniform in a short time. Can be heated. In addition, the high energy conversion efficiency by the laser element can contribute to energy saving.
 好ましくは、前記複数のレーザ素子は、前記被処理体の少なくとも裏面全体をカバーできる大きさの領域に亘って配置されている。 Preferably, the plurality of laser elements are arranged over an area having a size capable of covering at least the entire back surface of the object to be processed.
 また、例えば、前記レーザ素子は、半導体レーザ素子、固体レーザ素子または気体レーザ素子よりなる。 For example, the laser element is a semiconductor laser element, a solid-state laser element, or a gas laser element.
 また、好ましくは、前記レーザ素子から照射される前記加熱光は、シリコン基板を選択的に加熱することができる波長帯域を有する。 Also preferably, the heating light emitted from the laser element has a wavelength band that can selectively heat the silicon substrate.
 また、好ましくは、前記支持手段と前記裏面側加熱手段の内のいずれか一方は、回転可能に支持されている。 Preferably, either one of the support means and the back surface side heating means is supported rotatably.
 また、好ましくは、前記裏面側加熱手段に対向して配置されて前記被処理体の表面に向けて加熱光を照射する表面側加熱手段が更に設けられる。 Preferably, a surface-side heating unit that is disposed to face the back-side heating unit and irradiates heating light toward the surface of the object to be processed is further provided.
 この場合、好ましくは、前記表面側加熱手段は、前記被処理体の少なくとも表面全体をカバーできる大きさの領域に亘って配置された複数のLED(Light Emitting Diode)素子またはSLD(Super Luminescent Diode)素子を有する。 In this case, preferably, the surface side heating means includes a plurality of LED (LightLEDEmitting Diode) elements or SLDs (Super Luminescent Diode) arranged over a region that can cover at least the entire surface of the object to be processed. It has an element.
 このように、表面側加熱手段としてLED素子やSLD素子を用いれば、被処理体の表面側から発光波長に幅のある加熱光を照射することができる。これにより、被処理体の表面状態に依存することなく、更に短時間で且つ面内温度が均一な状態で当該被処理体を加熱することができる。 Thus, when an LED element or an SLD element is used as the surface side heating means, it is possible to irradiate heating light having a wide emission wavelength from the surface side of the object to be processed. Thereby, the said to-be-processed object can be heated in a state with a uniform in-plane temperature for a short time, without depending on the surface state of a to-be-processed object.
 また、好ましくは、前記裏面側加熱手段と前記表面側加熱手段の内の少なくともいずれか一方には、冷媒によって冷却を行う冷却機構が設けられている。 Preferably, at least one of the back side heating unit and the front side heating unit is provided with a cooling mechanism for cooling with a refrigerant.
 この場合、好ましくは、前記冷却機構は、前記冷媒を流すための冷媒通路を有しており、前記冷媒通路は、冷媒入口から冷媒出口に向けてその流路断面積が順次小さくなるように設定されている。 In this case, preferably, the cooling mechanism has a refrigerant passage for flowing the refrigerant, and the refrigerant passage is set so that a cross-sectional area of the flow passage gradually decreases from the refrigerant inlet to the refrigerant outlet. Has been.
 このように、冷媒入口から冷媒出口に向けて冷媒通路の流路面積を順次小さくなるように設定することにより、冷媒が冷却対象物から奪う冷媒通路の単位長さ当たりの熱量を一定にできる。この結果、冷媒通路の長さ方向に沿って冷却対象物の温度を均一化させることが可能となる。 As described above, by setting the flow passage area of the refrigerant passage to be gradually reduced from the refrigerant inlet to the refrigerant outlet, the amount of heat per unit length of the refrigerant passage taken by the refrigerant from the object to be cooled can be made constant. As a result, the temperature of the cooling object can be made uniform along the length direction of the refrigerant passage.
 この場合、好ましくは、前記冷媒通路の幅は一定であり、前記冷媒通路の高さは、前記冷媒の流量、前記冷媒の比熱、前記冷媒の密度及び前記冷媒入口からの距離に基づいて定められる。更にこの場合、好ましくは、前記冷媒通路の高さf(x)が、次の式
   f(x)=
   A・(To-T(x))/(Q・cp2・ρ・(T’(x))2 
     A:熱伝達率を求める際の定数
     Q:冷媒の流量
     cp:冷媒の比熱
     ρ:冷媒の密度
     x:冷媒入口からの距離
     T(x):距離xの時の冷媒の温度(関数)
     T’(x):関数T(x)の微分
     To:目標とする温度
で与えられる。
In this case, preferably, the width of the refrigerant passage is constant, and the height of the refrigerant passage is determined based on the flow rate of the refrigerant, the specific heat of the refrigerant, the density of the refrigerant, and the distance from the refrigerant inlet. . Furthermore, in this case, preferably, the height f (x) of the refrigerant passage is expressed by the following equation: f (x) =
A 2 · (To−T (x)) 2 / (Q · cp2 2 · ρ 2 · (T ′ (x)) 2 )
A: Constant for obtaining heat transfer coefficient Q: Flow rate of refrigerant cp: Specific heat of refrigerant ρ: Density of refrigerant x: Distance from refrigerant inlet T (x): Temperature (function) of refrigerant at distance x
T ′ (x): differentiation of the function T (x) To: given by the target temperature.
 また、好ましくは、前記冷却機構には、冷却を促進させる複数のヒートパイプが設けられている。 Preferably, the cooling mechanism is provided with a plurality of heat pipes that promote cooling.
 また、好ましくは、前記裏面側加熱手段には、反射面が形成されている。 Preferably, a reflection surface is formed on the back surface side heating means.
図1は、本発明に係るアニール装置の一実施形態の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of an annealing apparatus according to the present invention. 図2Aは、表面側加熱手段の表面(下面)を示す平面図である。図2Bは、表面側加熱手段の表面(下面)の一部(1つのLEDモジュール)の拡大平面図である。FIG. 2A is a plan view showing the surface (lower surface) of the surface-side heating means. FIG. 2B is an enlarged plan view of a part (one LED module) of the surface (lower surface) of the surface side heating means. 図3は、表面側加熱手段の一部である図1中のA部を示す拡大断面図である。FIG. 3 is an enlarged sectional view showing a part A in FIG. 1 which is a part of the surface side heating means. 図4は、裏面側加熱手段の表面(上面)を示す平面図である。FIG. 4 is a plan view showing the surface (upper surface) of the back surface side heating means. 図5は、半導体レーザ素子の発光状態を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a light emission state of the semiconductor laser element. 図6は、レーザ素子からのレーザ光(加熱光)の照射状態を示す模式図である。FIG. 6 is a schematic view showing an irradiation state of laser light (heating light) from the laser element. 図7は、素子取付ヘッドの上側冷却機構の内の1つの冷媒通路を示す拡大斜視である。FIG. 7 is an enlarged perspective view showing one refrigerant passage in the upper cooling mechanism of the element mounting head. 図8は、本発明のアニール装置の変形実施形態の、支持手段を含む処理容器の下部を示す部分構成図である。FIG. 8 is a partial configuration diagram showing a lower part of a processing vessel including a supporting unit according to a modified embodiment of the annealing apparatus of the present invention. 図9は、冷媒通路の長さ方向における微小区間の冷媒の温度変化を求めるための模式図である。FIG. 9 is a schematic diagram for obtaining the temperature change of the refrigerant in a minute section in the length direction of the refrigerant passage. 図10は、冷媒通路の高さ関数f(x)を示すグラフである。FIG. 10 is a graph showing the height function f (x) of the refrigerant passage. 図11は、冷媒通路の断面形状の高さ変化の一例を示す図である。FIG. 11 is a diagram illustrating an example of the height change of the cross-sectional shape of the refrigerant passage. 図12は、加熱手段のレーザユニットと半導体レーザ素子の配列状態を示す平面図である。FIG. 12 is a plan view showing an arrangement state of the laser units of the heating means and the semiconductor laser elements. 図13は、図12に示す加熱手段から出力される加熱光(光出力)の分布を示すグラフである。FIG. 13 is a graph showing the distribution of heating light (light output) output from the heating means shown in FIG. 図14は、レーザユニットを示す拡大斜視図である。FIG. 14 is an enlarged perspective view showing the laser unit. 図15A及び図15Bは、半導体レーザ素子から出力される光スポットの広がり方を示すグラフである。15A and 15B are graphs showing how the light spots output from the semiconductor laser element spread. 図16は、加熱手段のレーザユニットの配列状態の変形実施形態の一例を示す平面図である。FIG. 16 is a plan view showing an example of a modified embodiment of the arrangement state of the laser units of the heating means. 図17は、図16に示す加熱手段から出力される加熱光(光出力)の分布を示すグラフである。FIG. 17 is a graph showing the distribution of heating light (light output) output from the heating means shown in FIG. 図18は、レーザユニットの変形実施形態の一例を示す拡大斜視図である。FIG. 18 is an enlarged perspective view showing an example of a modified embodiment of the laser unit.
 以下に、本発明に係るアニール装置の一実施形態を添付図面に基づいて詳述する。図1は、本発明に係るアニール装置の一実施形態の概略構成を示す断面図である。図2Aは、表面側加熱手段の表面(下面)を示す平面図である。図2Bは、表面側加熱手段の表面(下面)の一部の拡大平面図である。図3は、表面側加熱手段の一部である図1中のA部を示す拡大断面図である。図4は、裏面側加熱手段の表面(上面)を示す平面図である。図5は、半導体レーザ素子の発光状態を説明するための説明図である。図6は、レーザ素子からのレーザ光(加熱光)の照射状態を示す模式図である。ここでは、被処理体として、シリコン基板よりなる半導体ウエハが用いられる。そして、その表面には不純物が注入されていて、当該ウエハをアニールする場合が例として説明される。 Hereinafter, an embodiment of an annealing apparatus according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of an annealing apparatus according to the present invention. FIG. 2A is a plan view showing the surface (lower surface) of the surface-side heating means. FIG. 2B is an enlarged plan view of a part of the surface (lower surface) of the surface side heating means. FIG. 3 is an enlarged sectional view showing a part A in FIG. 1 which is a part of the surface side heating means. FIG. 4 is a plan view showing the surface (upper surface) of the back surface side heating means. FIG. 5 is an explanatory diagram for explaining a light emission state of the semiconductor laser element. FIG. 6 is a schematic view showing an irradiation state of laser light (heating light) from the laser element. Here, a semiconductor wafer made of a silicon substrate is used as the object to be processed. An example in which impurities are implanted into the surface and the wafer is annealed will be described.
 図1に示すように、本実施形態のアニール装置2は、アルミニウム或いはアルミニウム合金製で内部が中空状になされた処理容器4を有している。この処理容器4は、筒体状の側壁4Aと、当該側壁4Aの上端部に接合された天井板4Bと、側壁4Aの底部に接合された底板4Cと、によって構成されている。側壁4Aには、被処理体である半導体ウエハWを搬出入できる大きさの搬出入口6が形成されている。この搬出入口6には、開閉可能になされたゲートバルブ8が取り付けられている。 As shown in FIG. 1, the annealing apparatus 2 of this embodiment has a processing vessel 4 made of aluminum or an aluminum alloy and having a hollow interior. The processing container 4 includes a cylindrical side wall 4A, a ceiling plate 4B joined to the upper end of the side wall 4A, and a bottom plate 4C joined to the bottom of the side wall 4A. On the side wall 4A, a loading / unloading port 6 having a size capable of loading / unloading a semiconductor wafer W as an object to be processed is formed. A gate valve 8 that can be opened and closed is attached to the carry-in / out port 6.
 また、処理容器4内には、上記ウエハWを支持する支持手段10が設けられている。この支持手段10は、複数本、例えば3本、の支持ピン12(図1中では2本のみ記す)と、各支持ピン12の下端部に連結された昇降アーム14と、を有している。各昇降アーム14は、図示されないアクチュエータによって昇降され得るようになっていて、支持ピン12の上端部にウエハWを支持させた状態でそれらの全体を昇降できるようになっている。 In the processing container 4, support means 10 for supporting the wafer W is provided. The support means 10 has a plurality of, for example, three support pins 12 (only two are shown in FIG. 1) and a lifting arm 14 connected to the lower end of each support pin 12. . Each of the elevating arms 14 can be moved up and down by an actuator (not shown), and can move up and down with the wafer W supported by the upper end portion of the support pins 12.
 また、天井板4Bの周辺部の一部には、ガス供給手段16が形成されている。このガス供給手段16は、天井板4Bに形成されたガス導入口18と、当該ガス導入口18に連結されたガス管20と、からなっており、処理容器4内へ必要な処理ガスを図示されない流量制御器を介して流量制御しつつ導入できるようになっている。ここでは、処理ガスとして、N2 ガスやAr、He等の希ガスを用いることができる。そして、天井板4Bには、これを冷却する冷媒を流す上側冷媒通路19が形成されている。 A gas supply means 16 is formed in a part of the peripheral part of the ceiling plate 4B. The gas supply means 16 includes a gas introduction port 18 formed in the ceiling plate 4B and a gas pipe 20 connected to the gas introduction port 18, and illustrates a necessary processing gas into the processing container 4. It can introduce | transduce, controlling flow volume via the flow controller which is not performed. Here, N 2 gas or a rare gas such as Ar or He can be used as the processing gas. The ceiling plate 4B is formed with an upper refrigerant passage 19 through which a refrigerant for cooling the ceiling plate 4B flows.
 また、底板4Cの周辺部の一部には、ガス排気口22が形成されている。このガス排気口22には、処理容器4内の雰囲気を排気する排気手段24が設けられている。排気手段24は、ガス排気口22に接続されたガス排気管26を有しており、当該ガス排気管26に、圧力調整弁28及び排気ポンプ30が順次介設されている。また、底板4Cには、これを冷却する冷媒を流す下側冷媒通路31が形成されている。 Further, a gas exhaust port 22 is formed in a part of the peripheral portion of the bottom plate 4C. The gas exhaust port 22 is provided with exhaust means 24 for exhausting the atmosphere in the processing container 4. The exhaust means 24 has a gas exhaust pipe 26 connected to the gas exhaust port 22, and a pressure regulating valve 28 and an exhaust pump 30 are sequentially provided in the gas exhaust pipe 26. The bottom plate 4C is formed with a lower refrigerant passage 31 through which a refrigerant for cooling the bottom plate 4C flows.
 そして、天井板4Bの中央に、大口径の開口が形成されており、この開口に表面側加熱手段32が設けられており、ウエハWの表面(上面)を加熱できるようになっている。また、底板4Cの中央部にも、大口径の開口が形成されており、この開口に、表面側加熱手段32に対向させるように、本発明の特徴とする裏面側加熱手段34が設けられており、ウエハWの裏面(下面)を加熱できるようになっている。ここで、ウエハWの表面とは、成膜やエッチング等の各種の処理が施されデバイス等が形成される面を指す。一方、ウエハWの裏面とは、ウエハ表面とは反対側の面でデバイス等が形成されない面を指す。また、裏面側加熱手段34の加熱量が十分に大きい場合には、表面側加熱手段32を設けないで省略することもできる。 A large-diameter opening is formed in the center of the ceiling plate 4B, and the surface side heating means 32 is provided in the opening so that the surface (upper surface) of the wafer W can be heated. In addition, a large-diameter opening is also formed in the central portion of the bottom plate 4C, and a back-side heating unit 34, which is a feature of the present invention, is provided in the opening so as to face the front-side heating unit 32. Thus, the back surface (lower surface) of the wafer W can be heated. Here, the surface of the wafer W refers to a surface on which devices and the like are formed by performing various processes such as film formation and etching. On the other hand, the back surface of the wafer W refers to a surface on the side opposite to the wafer surface where no device or the like is formed. Moreover, when the heating amount of the back surface side heating means 34 is sufficiently large, it can be omitted without providing the front surface side heating means 32.
<表面側加熱手段の説明>
 次に、表面側加熱手段32について説明する。表面側加熱手段32は、天井板4Bの開口に僅かな隙間を隔てて嵌め込まれる素子取付ヘッド36を有している。この素子取付ヘッド36は、アルミニウムやアルミニウム合金等の熱伝導性の高い材料によって形成されている。この素子取付ヘッド36は、その上方側に形成された円形リング状の取付フランジ36Aの部分で、天井板4Bとの間にポリエーテルイミド等よりなる熱絶縁体38を介在させた状態で、天井板4Bに支持されている。
<Description of surface side heating means>
Next, the surface side heating means 32 will be described. The surface side heating means 32 has an element mounting head 36 that is fitted into the opening of the ceiling plate 4B with a slight gap. The element mounting head 36 is made of a material having high thermal conductivity such as aluminum or aluminum alloy. The element mounting head 36 is a portion of a circular ring-shaped mounting flange 36A formed on the upper side of the element mounting head 36, with a thermal insulator 38 made of polyetherimide or the like interposed between the ceiling plate 4B and the ceiling plate 4B. It is supported by the plate 4B.
 また、熱絶縁体38の上下側には、Oリング等よりなるシール材40が介設されており、この部分の気密性を保持できるようになっている。そして、素子取付ヘッド36の下面には、ウエハWの直径よりも少し大きい直径の素子取付凹部42が形成されている。この素子取付凹部42の平面(平坦)部分に、ウエハWの少なくとも表面全体をカバーできる大きさの領域に亘って、複数のLEDモジュール44が設けられている。また、素子取付凹部42の開口部分には、例えば石英板よりなる光透過板45が取り付けられている。 Further, a sealing material 40 made of an O-ring or the like is interposed on the upper and lower sides of the thermal insulator 38 so that the airtightness of this portion can be maintained. An element mounting recess 42 having a diameter slightly larger than the diameter of the wafer W is formed on the lower surface of the element mounting head 36. A plurality of LED modules 44 are provided in a plane (flat) portion of the element mounting recess 42 over a region that can cover at least the entire surface of the wafer W. In addition, a light transmission plate 45 made of, for example, a quartz plate is attached to the opening portion of the element attachment recess 42.
 図2Aに示すように、LEDモジュール44は、ここでは例えば一辺が25mm程度の正六角形状になされており、隣り合う辺が略接するような状態まで互いに接近ないし密集されて配置されている。LEDモジュール44の数は、ウエハWの直径が300mmの場合には、例えば80個程度設けられる。そして、図2Bは、1つのLEDモジュールの拡大平面図を示している。図2B及び図3に示すように、各LEDモジュール44は、その表面に多数のLED素子46を縦横に配列することで構成されている。この場合、各LED素子46の寸法は、0.5mm×0.5mm程度であり、1台のLEDモジュール44に1000~2000個程度のLED素子46が搭載されている。このLED素子46は、1つのLEDモジュール44内で複数にグループ分けされて、同一グループ内のLED素子46同士は直列接続されている。 As shown in FIG. 2A, here, the LED modules 44 are formed in, for example, a regular hexagonal shape with one side of about 25 mm, and are arranged close to each other or closely arranged so that adjacent sides are substantially in contact with each other. For example, when the diameter of the wafer W is 300 mm, about 80 LED modules 44 are provided. FIG. 2B shows an enlarged plan view of one LED module. As shown in FIGS. 2B and 3, each LED module 44 is configured by arranging a large number of LED elements 46 vertically and horizontally on the surface thereof. In this case, the size of each LED element 46 is about 0.5 mm × 0.5 mm, and about 1000 to 2000 LED elements 46 are mounted on one LED module 44. The LED elements 46 are grouped into a plurality of groups within one LED module 44, and the LED elements 46 in the same group are connected in series.
 そして、図1及び図3に示すように、LEDモジュール44の上方に上側冷却機構48が設けられている。この上側冷却機構48は、素子取付ヘッド36内に設けられた断面矩形状の冷媒通路50を有している。この冷媒通路50の一端の冷媒入口51には、冷媒導入管50Aが接続されており、他端の冷媒出口53には、冷媒排出管50Bが接続されている。これにより、冷媒通路50に冷媒を流して、LEDモジュール44から発生した熱を奪うことによって、LEDモジュール44を冷却し得るようになっている。冷媒としては、フロリナートやガルデン(商品名)等を用いることができる。ここで、冷媒通路50は、素子取付ヘッド36の略全面に亘って、例えば蛇行状に折り返すように形成されて、LEDモジュール44の上面側から効率的に熱を奪ってこれを冷却するようになっている。 And as shown in FIG.1 and FIG.3, the upper side cooling mechanism 48 is provided above the LED module 44. FIG. The upper cooling mechanism 48 has a refrigerant passage 50 having a rectangular cross section provided in the element mounting head 36. A refrigerant inlet pipe 50A is connected to the refrigerant inlet 51 at one end of the refrigerant passage 50, and a refrigerant discharge pipe 50B is connected to the refrigerant outlet 53 at the other end. Thereby, the LED module 44 can be cooled by flowing the refrigerant through the refrigerant passage 50 and taking away the heat generated from the LED module 44. Fluorinert, Galden (trade name) or the like can be used as the refrigerant. Here, the coolant passage 50 is formed so as to be folded back in a meandering manner over substantially the entire surface of the element mounting head 36 so as to efficiently remove heat from the upper surface side of the LED module 44 and cool it. It has become.
 そして、図1及び図3に示すように、各冷媒通路50の両側壁部分には、上下方向に延びるコ字状になされたヒートパイプ52が埋め込むようにして設けられている。これにより、LEDモジュール44を更に効率的に冷却し得るようになっている。 As shown in FIGS. 1 and 3, heat pipes 52 each having a U-shape extending in the vertical direction are embedded in both side wall portions of each refrigerant passage 50. Thereby, the LED module 44 can be cooled more efficiently.
 更に、天井板4Bの上方には、給電用の制御ボックス54が設けられていて、そこに各LEDモジュール44に対応した制御ボード56が設けられている。そして、制御ボード56からは各LEDモジュール44に対して給電線58が延びており、各LEDモジュール44に電力を供給できるようになっている。 Furthermore, a power supply control box 54 is provided above the ceiling plate 4B, and a control board 56 corresponding to each LED module 44 is provided there. A power supply line 58 extends from the control board 56 to each LED module 44 so that power can be supplied to each LED module 44.
<裏面側加熱手段の説明>
 次に、裏面側加熱手段34について説明する。底板4Cの開口に、例えば透明な石英ガラス板よりなる厚い光透過板62が、Oリング等のシール部材64を介して、固定具66によって気密に取り付けられている。裏面側加熱手段34は、当該光透過板62の下方に配置された複数のレーザモジュール60を有している。具体的には、底板4Cの開口に設けられた光透過板62の下方を覆うようにして、レーザ取付ケーシング61が取り付けられており、このレーザ取付ケーシング61に、複数のレーザモジュール60が取り付け固定されている。
<Description of backside heating means>
Next, the back surface side heating means 34 will be described. A thick light transmission plate 62 made of, for example, a transparent quartz glass plate is airtightly attached to the opening of the bottom plate 4C by a fixture 66 through a seal member 64 such as an O-ring. The back surface side heating means 34 has a plurality of laser modules 60 arranged below the light transmission plate 62. Specifically, a laser mounting casing 61 is attached so as to cover the lower part of the light transmission plate 62 provided in the opening of the bottom plate 4C, and a plurality of laser modules 60 are attached and fixed to the laser mounting casing 61. Has been.
 レーザモジュール60は、図4に示すように、ウエハWの少なくとも裏面全体をカバーできる大きさの領域の全面に亘って、略均等に分散配置されている。この場合、1つのレーザモジュール60の寸法は、例えば50mm×60mm×25mm程度の大きさに設定されており、LEDモジュール44と比較するとかなり大きく、また、1つのレーザモジュール60の出力も大きいので、LEDモジュール44のように密集させて設ける必要はない。 As shown in FIG. 4, the laser modules 60 are distributed substantially evenly over the entire area of a size that can cover at least the entire back surface of the wafer W. In this case, the size of one laser module 60 is set to a size of, for example, about 50 mm × 60 mm × 25 mm, which is considerably larger than the LED module 44, and the output of one laser module 60 is also large. Unlike the LED module 44, it is not necessary to provide it as closely packed.
 従って、ウエハWの直径が300mmの場合、レーザモジュール60は50~100個程度設けられる。各レーザモジュール60は、1つのレーザ素子68と冷却機構としての冷却部70を有している。従って、レーザ素子68が、ウエハWの裏面全体をカバーできる大きさの領域に亘って配置されていることになる。レーザ素子68は、図5に示すように、2つの電極に挟まれてサンドイッチ状態になされた発光層72を有しており、当該発光層72から射出されるレーザ光すなわち加熱光L1の照射エリア74は、発光層72の延在方向に対して垂直な方向に長軸を持つ楕円形である。 Therefore, when the diameter of the wafer W is 300 mm, about 50 to 100 laser modules 60 are provided. Each laser module 60 has one laser element 68 and a cooling unit 70 as a cooling mechanism. Therefore, the laser element 68 is arranged over a region that can cover the entire back surface of the wafer W. As shown in FIG. 5, the laser element 68 includes a light emitting layer 72 sandwiched between two electrodes, and an irradiation area of laser light emitted from the light emitting layer 72, that is, the heating light L1. 74 is an ellipse having a major axis in a direction perpendicular to the extending direction of the light emitting layer 72.
 この場合、加熱光L1の長軸方向への広がり角度は、30~50度程度であり、短軸方向への広がり角度は、10度以下である。従って、ウエハWの裏面に対して面内均一な加熱を実現するためには、図6に示すように、当該楕円形の照射エリア74の長軸方向がウエハWの半径方向になるように設定することが好ましい。レーザ素子68の発光波長は、紫外光~近赤外光の範囲、例えば360~1000nmの範囲、の特定の波長、特には、シリコン基板のウエハWにとって吸収率が高い800~970nmの範囲内の特定の波長(単色光)、を用いるのがよい。具体的には、レーザ素子68として、例えばGaAsを用いた半導体レーザ素子を用いることができる。ここで、図4に示すレーザモジュール60の配列は、単に一例を示したに過ぎず、本発明はこれに限定されない。 In this case, the spreading angle of the heating light L1 in the major axis direction is about 30 to 50 degrees, and the spreading angle in the minor axis direction is 10 degrees or less. Therefore, in order to realize in-plane uniform heating on the back surface of the wafer W, the major axis direction of the elliptical irradiation area 74 is set to be the radial direction of the wafer W as shown in FIG. It is preferable to do. The emission wavelength of the laser element 68 is a specific wavelength in the range of ultraviolet light to near-infrared light, for example, in the range of 360 to 1000 nm, particularly in the range of 800 to 970 nm, which has a high absorption rate for the wafer W of the silicon substrate. It is preferable to use a specific wavelength (monochromatic light). Specifically, as the laser element 68, for example, a semiconductor laser element using GaAs can be used. Here, the arrangement of the laser modules 60 shown in FIG. 4 is merely an example, and the present invention is not limited to this.
 図1に戻って、レーザモジュール60の各レーザ素子68には、給電ライン76が接続されており、給電が行われるようになっている。また、レーザモジュール60の各冷却部70は、互いに冷媒通路78で直列に接続されている。そして、最上流側の冷却部70には冷媒導入管80が接続されると共に、最下流側の冷却部70には冷媒排出管82が接続されており、これに冷媒を流すことによってレーザモジュール60を冷却できるようになっている。この冷媒としては、水やフロリナートやガルデン(商品名)を用いることができる。 Referring back to FIG. 1, a power supply line 76 is connected to each laser element 68 of the laser module 60 so that power is supplied. The cooling units 70 of the laser module 60 are connected in series with each other through a refrigerant passage 78. A cooling medium introduction pipe 80 is connected to the cooling section 70 on the most upstream side, and a cooling medium discharge pipe 82 is connected to the cooling section 70 on the most downstream side. Can be cooled. As this refrigerant, water, Fluorinert or Galden (trade name) can be used.
 また、レーザ取付ケーシング61の内側面には、表面処理等が施された反射面84が形成されている。これにより、ウエハWの裏面側によって反射された加熱光を、再度上方に向けて反射できるようになっている。尚、ここでは、レーザ素子68と冷却部70とが一体化されたレーザモジュール60を例にとって説明しているが、両者を分離して別々に設けた構造が採用されてもよい。 Further, a reflection surface 84 that has been subjected to a surface treatment or the like is formed on the inner side surface of the laser mounting casing 61. Thereby, the heating light reflected by the back surface side of the wafer W can be reflected upward again. Here, the laser module 60 in which the laser element 68 and the cooling unit 70 are integrated is described as an example, but a structure in which both are separated and provided separately may be employed.
 以上のように形成されたアニール装置2の全体の動作制御、例えばプロセス温度、プロセス圧力、ガス流量、表面側加熱手段32や裏面側加熱手段34のオン・オフ等の各種制御は、例えばコンピュータよりなる制御部86により行われる。この制御に必要なコンピュータ読み取り可能なプログラムは、通常、記憶媒体88に記憶されている。記憶媒体88としては、例えばフレキシブルディスク、CD(Compact Disc)、CD-ROM、ハードディスク、フラッシュメモリ或いはDVD等が用いられる。 The overall operation control of the annealing apparatus 2 formed as described above, for example, various controls such as process temperature, process pressure, gas flow rate, on / off of the front side heating means 32 and the back side heating means 34 are performed by, for example, a computer. This is performed by the control unit 86. A computer-readable program necessary for this control is normally stored in the storage medium 88. As the storage medium 88, for example, a flexible disk, a CD (Compact Disc), a CD-ROM, a hard disk, a flash memory, a DVD, or the like is used.
 次に、以上のように構成されたアニール装置2を用いて行われるアニール処理について説明する。まず、図示されない搬送機構により、予め減圧雰囲気になされた図示されないロードロック室やトランスファチャンバ等から、開放されたゲートバルブ8を介して、例えばシリコン基板よりなる半導体ウエハWが、予め減圧雰囲気になされた処理容器4内へ搬入される。 Next, an annealing process performed using the annealing apparatus 2 configured as described above will be described. First, a semiconductor wafer W made of, for example, a silicon substrate is previously brought into a reduced-pressure atmosphere through a gate valve 8 opened from a load-lock chamber, a transfer chamber, or the like (not shown) that has been previously in a reduced-pressure atmosphere by a transfer mechanism (not shown). Is carried into the processing container 4.
 このウエハWの表面には、前述したようなアモルファスシリコンやメタルや酸化膜等が形成されており、加熱光の波長に対して異なる吸収率を有する各種の微細領域が形成された表面状態となっている。搬入された当該ウエハWは、昇降アーム14を昇降駆動させることによって、昇降アーム14に設けられた支持ピン12上に移載される。その後、搬送機構が退避され、ゲートバルブ8が閉じられて、処理容器4内が密閉される。 On the surface of the wafer W, amorphous silicon, a metal, an oxide film, or the like as described above is formed, and a surface state in which various fine regions having different absorptances with respect to the wavelength of the heating light are formed. ing. The loaded wafer W is transferred onto the support pins 12 provided on the lift arm 14 by driving the lift arm 14 up and down. Thereafter, the transfer mechanism is retracted, the gate valve 8 is closed, and the inside of the processing container 4 is sealed.
 次に、ガス供給手段16のガス管20から、処理ガス、ここでは例えばN2 ガスやArガス等、が流量制御されつつ流されて、処理容器4内が所定の圧力に維持される。これと同時に、天井板4Bに設けられた表面側加熱手段32及び底板4Cに設けられた裏面側加熱手段34が共にオン状態とされて、表面側加熱手段32のLED素子46及び裏面側加熱手段34のレーザ素子68が共に点灯されて、それぞれから加熱光が照射される。これにより、ウエハWがその上下の両面から加熱されてアニール処理される。この場合のプロセス圧力は、例えば100~10000Pa程度、プロセス温度(ウエハ温度)は、例えば800~1100℃程度であり、LED素子46及びレーザ素子68の点灯時間は、それぞれ1~10sec程度である。 Next, a processing gas, for example, N 2 gas or Ar gas, is flowed from the gas pipe 20 of the gas supply means 16 while the flow rate is controlled, and the inside of the processing container 4 is maintained at a predetermined pressure. At the same time, the front side heating means 32 provided on the ceiling plate 4B and the back side heating means 34 provided on the bottom plate 4C are both turned on, and the LED element 46 and the back side heating means of the front side heating means 32 are turned on. Both of the 34 laser elements 68 are turned on and irradiated with heating light. Thereby, the wafer W is heated from both the upper and lower surfaces and annealed. In this case, the process pressure is, for example, about 100 to 10000 Pa, the process temperature (wafer temperature) is, for example, about 800 to 1100 ° C., and the lighting times of the LED element 46 and the laser element 68 are about 1 to 10 seconds, respectively.
 ウエハWの表面(上面)は、各LED素子46から放射される、ある程度の幅を有する発光波長の加熱光によって加熱されるので、ウエハWの表面状態に依存することなく、ウエハWの表面側をその面内温度が略均一な状態に加熱することができる。 Since the surface (upper surface) of the wafer W is heated by the heating light having a certain emission width emitted from each LED element 46, the surface side of the wafer W is not dependent on the surface state of the wafer W. Can be heated to a state in which the in-plane temperature is substantially uniform.
 また、ウエハWの裏面(下面)には、各レーザ素子68から単色光の加熱光が放射される。この放射光により、ウエハWの裏面には、図6に示すように、楕円形状の照射エリア74がウエハの裏面全体に略均等になるように分散された状態で形成される。この場合、上述のように、レーザ素子68から照射される加熱光L1(図5参照)は単色光であるが、ウエハWの裏面はシリコンや酸化シリコンで均一な状態となっていて、加熱光L1の波長はシリコンや酸化シリコンにとって吸収率の高い波長、例えば360~1000nmの範囲内の特定波長、より好ましくは800~970nmの範囲内の特定波長、に設定されている。従って、ウエハの裏面側をその面内温度が略均一な状態に加熱することができる。すなわち、ウエハWは、表面側及び裏面側のそれぞれから面内温度の均一性が高い状態で、均等に且つ短時間で迅速に加熱されることができる。 Further, monochromatic heating light is radiated from the laser elements 68 to the back surface (lower surface) of the wafer W. With this radiated light, as shown in FIG. 6, an elliptical irradiation area 74 is formed on the back surface of the wafer W in a state of being distributed substantially evenly over the entire back surface of the wafer. In this case, as described above, the heating light L1 (see FIG. 5) emitted from the laser element 68 is monochromatic light, but the back surface of the wafer W is in a uniform state with silicon or silicon oxide. The wavelength of L1 is set to a wavelength having a high absorption rate for silicon or silicon oxide, for example, a specific wavelength in the range of 360 to 1000 nm, more preferably a specific wavelength in the range of 800 to 970 nm. Therefore, the back surface side of the wafer can be heated to a state in which the in-plane temperature is substantially uniform. That is, the wafer W can be heated evenly and quickly in a short time with a high uniformity of in-plane temperature from the front side and the back side.
 また、裏面側加熱手段34に用いられるレーザ素子68(光変換効率:例えば40~50%)は、表面側加熱手段32に用いられるLED素子46(光変換効率:例えば10~30%)よりも、エネルギー変換効率が高い。従って、裏面側加熱手段にLED素子を用いる場合と比較すれば、省エネルギーに寄与することができると言える。 Further, the laser element 68 (light conversion efficiency: 40 to 50%) used for the back surface side heating means 34 is more than the LED element 46 (light conversion efficiency: 10 to 30%) used for the surface side heating means 32. High energy conversion efficiency. Therefore, it can be said that it can contribute to energy saving as compared with the case where the LED element is used as the back surface side heating means.
 更に、表面側加熱手段32と裏面側加熱手段34とによってウエハWの表裏(上下)の両面側から加熱するようにしたので、ウエハWの厚み方向における温度分布の偏りもほとんど生じない。これにより、ウエハWの表裏面の温度差に起因するウエハWの反り返り等の発生を防止することができる。 Furthermore, since the front surface side heating means 32 and the back surface side heating means 34 are heated from the front and back (upper and lower) surfaces of the wafer W, there is almost no deviation in temperature distribution in the thickness direction of the wafer W. As a result, it is possible to prevent the wafer W from warping due to the temperature difference between the front and back surfaces of the wafer W.
 また、表面側加熱手段32において発生する多量の熱により、素子取付ヘッド36は加熱されるが、素子取付ヘッド36に設けられた上側冷却機構48の冷媒通路50に冷媒を流すことによって、これを効率的に冷却することができる。また、この場合、冷媒通路50の高さ方向に沿って、図1及び図3に示すようにヒートパイプ52を設けているので、この部分における熱変換効率が上昇し、その分、素子取付ヘッド36の冷却効率を更に上げることができる。例えば、素子取付ヘッド36の素材として銅を用いた場合は、熱伝導率は300~350W/m・degであるに対して、ヒートパイプ52を設けることによって熱伝導率を400~600W/m・degまで向上させることができる。 Further, the element mounting head 36 is heated by a large amount of heat generated in the surface side heating means 32, but this is caused by flowing a refrigerant through the refrigerant passage 50 of the upper cooling mechanism 48 provided in the element mounting head 36. It can be cooled efficiently. Further, in this case, since the heat pipe 52 is provided along the height direction of the refrigerant passage 50 as shown in FIGS. 1 and 3, the heat conversion efficiency in this portion is increased, and the element mounting head is correspondingly increased. The cooling efficiency of 36 can be further increased. For example, when copper is used as the material of the element mounting head 36, the thermal conductivity is 300 to 350 W / m · deg, whereas by providing the heat pipe 52, the thermal conductivity is 400 to 600 W / m · deg. deg can be improved.
 また同様に、裏面側加熱手段34においても多量に熱が発生して、レーザ素子68は熱くなるが、各レーザモジュール60に設けられた冷却機構としての冷却部70に冷媒を流すことにより、当該熱は除去されて、各レーザ素子68を効率的に冷却することができる。 Similarly, a large amount of heat is generated also in the back surface side heating means 34, and the laser element 68 becomes hot, but by flowing a coolant through the cooling unit 70 as a cooling mechanism provided in each laser module 60, The heat is removed, and each laser element 68 can be efficiently cooled.
 尚、ここでは、表面側加熱手段32と裏面側加熱手段34との両方を設けているが、前述したように、表面側加熱手段32を設けないで、裏面側加熱手段34のみを設けてもよい。この場合には、両加熱手段32、34を設けた場合よりも昇温速度は少し低下するが、この場合にも、ウエハWの全体をその面内温度の均一性が高い状態で迅速に加熱することができる。 Here, both the front surface side heating means 32 and the back surface side heating means 34 are provided. However, as described above, the front surface side heating means 32 may not be provided, and only the back surface side heating means 34 may be provided. Good. In this case, the rate of temperature rise is slightly lower than when both the heating means 32 and 34 are provided, but in this case as well, the entire wafer W is rapidly heated in a state where the in-plane temperature is highly uniform. can do.
 このように、被処理体、例えば半導体ウエハW、に対してアニール処理を施すアニール装置において、複数のレーザ素子68を有する裏面側加熱手段34を設けて、レーザ光を加熱光L1として、表面状態が均一な被処理体の裏面から被処理体に照射することによって、当該被処理体を短時間で且つ面内温度が均一な状態で加熱することができる。また、レーザ素子によるエネルギー変換効率が高いことにより、省エネルギーに寄与することもできる。 As described above, in the annealing apparatus that performs the annealing process on the object to be processed, for example, the semiconductor wafer W, the back surface side heating unit 34 having the plurality of laser elements 68 is provided, and the laser light is used as the heating light L1 to obtain the surface state. By irradiating the object to be processed from the back surface of the object to be processed, the object to be processed can be heated in a state where the in-plane temperature is uniform in a short time. In addition, the high energy conversion efficiency by the laser element can contribute to energy saving.
<裏面側加熱手段の変形例>
 上記裏面側加熱手段の説明では、各レーザモジュール60は1つのレーザ素子を有していたが、ここでは上記各レーザ素子68は、複数個ずつ、具体的には3個ずつグループ化されてレーザモジュール160に搭載されてユニット化されており、このレーザモジュール160は密集させて複数個平面的に組み合わせて設置されている。上記レーザモジュール160は、図14にも示すように正多角形、すなわちここでは正六角形状の筒状になされた筐体194を有しており、この筐体194内に上記3個のレーザ素子68を互いに平行になるように設置して、筐体194の上端面側から加熱光としてレーザ光を出力し得るようになっている。
<Modification of backside heating means>
In the description of the back surface side heating means, each laser module 60 has one laser element. However, here, a plurality of laser elements 68, more specifically, three laser elements are grouped into lasers. The laser module 160 is unitized by being mounted on the module 160, and a plurality of the laser modules 160 are installed in combination in a planar manner. As shown in FIG. 14, the laser module 160 has a housing 194 formed in a regular polygon, that is, a regular hexagonal cylinder, and the three laser elements are disposed in the housing 194. 68 are installed so as to be parallel to each other, and laser light can be output as heating light from the upper end surface side of the housing 194.
 図12に示す場合には、全部で37個の正六角形状のレーザモジュール160が、各辺が隣り合わせになるようにして略同心円状に密集させて配置されている。従って、レーザ素子68は、111個設けられている。また図12には、各レーザ素子68から出力される加熱光であるレーザ光が形成する楕円形状の照射エリア74が記載されている。 In the case shown in FIG. 12, a total of 37 regular hexagonal laser modules 160 are arranged densely in a substantially concentric manner so that the sides are adjacent to each other. Therefore, 111 laser elements 68 are provided. FIG. 12 also shows an elliptical irradiation area 74 formed by laser light, which is heating light output from each laser element 68.
 ここでは図14にも示すように、上記3つのレーザ素子68は、一対の対向角を結ぶ線分に対してその長さ方向が直交するようにして並列的に配置して搭載されている。上記3つのレーザ素子68は、電気的には内部で互いに直列的に接続されており、このレーザモジュール160からは2本の給電ライン76が延びて、給電を行うようになっている。 Here, as shown in FIG. 14, the three laser elements 68 are mounted in parallel so that their length directions are orthogonal to a line segment connecting a pair of opposing angles. The three laser elements 68 are electrically connected in series with each other internally, and two power supply lines 76 extend from the laser module 160 to supply power.
 また、このレーザモジュール160内には、レーザ素子68からの発熱を冷却するため冷却部70が一体化して設けられており、この冷却部70には、冷媒を流通させるための可撓性のある冷媒流入管202及び冷媒流出管204がそれぞれ設けられている(図14参照)。これらの冷媒流入管202及び冷媒流出管204は、隣り合うレーザモジュール160間で互いに直列に接続されており、全てのレーザモジュール160の冷却部70に亘って冷媒を直列的に流すようになっている。 In addition, a cooling unit 70 is integrally provided in the laser module 160 in order to cool the heat generated from the laser element 68, and the cooling unit 70 has flexibility for circulating a refrigerant. A refrigerant inflow pipe 202 and a refrigerant outflow pipe 204 are provided (see FIG. 14). The refrigerant inflow pipe 202 and the refrigerant outflow pipe 204 are connected in series between the adjacent laser modules 160 so that the refrigerant flows in series across the cooling units 70 of all the laser modules 160. Yes.
 そして、最上流側の冷却部70には冷媒導入管80が接続されると共に、最下流側の冷却部70には冷媒排出管82が接続されており(図1参照)、これに冷媒を流すことによってレーザモジュール160を冷却するようになっている。この冷媒としては、水やフロリナートやガルデン(商品名)を用いることができる。 A refrigerant introduction pipe 80 is connected to the cooling unit 70 on the most upstream side, and a refrigerant discharge pipe 82 is connected to the cooling unit 70 on the most downstream side (see FIG. 1), and the refrigerant flows therethrough. As a result, the laser module 160 is cooled. As this refrigerant, water, Fluorinert or Galden (trade name) can be used.
 ここで先に図12を参照して説明したように、正六角形状のレーザモジュール160は、半導体ウエハWの裏面全面をカバーできる大きさの領域に同心円状に密集させて配置されている。各レーザモジュール160は、レーザ取付ケーシング61に対してそれぞれ個別に引き抜いて着脱可能になされており、その実装角度の調整が個別にできるようになっている。 Here, as described above with reference to FIG. 12, the regular hexagonal laser module 160 is concentrically arranged in a region having a size that can cover the entire back surface of the semiconductor wafer W. Each laser module 160 is individually detachable from the laser mounting casing 61 so as to be detachable, and the mounting angle can be adjusted individually.
 この場合、加熱光L1の短軸方向への広がり角度は、図15Aに示すように±10度以下であり、長軸方向への広がり角度は図15Bに示すように±15~±25度程度である。従って、ここではウエハWの裏面に対して面内均一に加熱するために図12に示すように上記楕円形の照射エリア74の長軸方向がウエハWの周方向にできるだけ沿うように設定されている。 In this case, the spreading angle of the heating light L1 in the minor axis direction is ± 10 degrees or less as shown in FIG. 15A, and the spreading angle in the major axis direction is about ± 15 to ± 25 degrees as shown in FIG. 15B. It is. Therefore, here, in order to uniformly heat the back surface of the wafer W in the plane, the major axis direction of the elliptical irradiation area 74 is set so as to be as close as possible to the circumferential direction of the wafer W as shown in FIG. Yes.
 具体的には、前述したように、ここでは各レーザモジュール160は同心円状に配置され、ここでは同心円状に4つのゾーンに区画されている。最内周のゾーンは、中心部に位置する1つのレーザモジュール160で構成され、その外側の中内周のゾーンは6個のレーザモジュール160で構成され、その外側の外内周のゾーンは12個のレーザモジュール160で構成され、更にその外側の最外周のゾーンは18個のレーザモジュール160で構成される。 Specifically, as described above, the laser modules 160 are concentrically arranged here, and are concentrically divided into four zones here. The innermost zone is composed of one laser module 160 located in the center, the outer middle zone is composed of six laser modules 160, and the outer inner zone is 12 outside. The outermost outermost zone is composed of 18 laser modules 160.
 そして、各レーザモジュール160は、実装角度(回転位置)の調整ができるように着脱が可能になされており、搭載されているレーザ素子68により形成される楕円形状の照射エリア74の長軸ができるだけウエハWの周方向に沿って揃うように実装角度(回転位置)が調整されて装着されている。この場合、レーザモジュール160の筐体194は正六角形なので、60度単位で実装角度を調整することができる。 Each laser module 160 is detachable so that the mounting angle (rotational position) can be adjusted, and the major axis of the elliptical irradiation area 74 formed by the mounted laser element 68 is as much as possible. The mounting angle (rotation position) is adjusted and mounted so as to align along the circumferential direction of the wafer W. In this case, since the housing 194 of the laser module 160 is a regular hexagon, the mounting angle can be adjusted in units of 60 degrees.
 従って、上記4つの各ゾーンのレーザモジュール160には、その照射エリア74の長軸方向がウエハWの周方向とは完全には一致しないように取り付けざるを得ないレーザモジュール160が、全体的に、或いは一部において生じるが、ウエハWの周方向(接線方向)と上記長軸方向とがなす角度ができるだけ小さくなるようにレーザモジュール160の実装角度を、例えば60度ずつ回転させて位置調整して装着する。尚、最内周ゾーンのレーザモジュール160に対しては、その特性上、実装角度は限定されず、どの方向を向いてもその外側の中内周ゾーンに対する照射エリアの広がりは同じである。 Therefore, the laser module 160 in each of the four zones has to be attached so that the major axis direction of the irradiation area 74 does not completely coincide with the circumferential direction of the wafer W. Alternatively, the position of the laser module 160 is adjusted by rotating the mounting angle of the laser module 160 by 60 degrees, for example, so that the angle formed by the circumferential direction (tangential direction) of the wafer W and the major axis direction is as small as possible. Install. For the laser module 160 in the innermost peripheral zone, the mounting angle is not limited due to its characteristics, and the spread of the irradiation area with respect to the outer inner / inner peripheral zone is the same regardless of the direction.
 図13に直径が300mmのウエハWの半径方向と各ゾーンからの光出力及び各ゾーンの総合光出力との関係が示されている。図13のグラフ中において、曲線A1が最内周ゾーンからの光出力を示し、曲線A2が中内周ゾーンからの光出力を示し、曲線A3が外内周ゾーンからの光出力を示し、曲線A4が最外周ゾーンからの光出力を示し、曲線A0が上記曲線A1~A4を加えた総合光出力を示している。 FIG. 13 shows the relationship between the radial direction of the wafer W having a diameter of 300 mm, the light output from each zone, and the total light output of each zone. In the graph of FIG. 13, the curve A1 indicates the light output from the innermost zone, the curve A2 indicates the light output from the middle inner zone, the curve A3 indicates the light output from the outer inner zone, and the curve A4 indicates the light output from the outermost peripheral zone, and the curve A0 indicates the total light output obtained by adding the curves A1 to A4.
 このグラフから明らかなように、各ゾーン毎に光出力はピークが急峻な状態で表われており、各ゾーン毎の加熱光の指向性が高くなって隣接ゾーンへの加熱光の広がりが非常に少なくなっている。従って、曲線A0に示すように、総合光出力は半導体ウエハの中心から半径方向の全ての領域に亘ってそれ程変化のない略一定の光出力が得られており、加熱光の照射量の面内均一性を高く設定できるようになっているのが判る。 As is clear from this graph, the light output for each zone is shown with a steep peak, the directivity of the heating light for each zone is high, and the spreading of the heating light to the adjacent zones is very large. It is running low. Therefore, as shown by the curve A0, the total light output is substantially constant light output from the center of the semiconductor wafer over the entire radial region, and the in-plane of the irradiation amount of the heating light is obtained. It can be seen that the uniformity can be set high.
 ここで上記レーザ素子68の発光波長は、紫外光~近赤外光の範囲、例えば360~1000nmの範囲内の特定の波長、特に、シリコン基板のウエハWに体する吸収率が高い800~970nmの範囲内の特定の波長(単色光)を用いるのがよい。上記レーザ素子68としては、例えばGaAsを用いた半導体レーザ素子を用いることができる。ここで図12に示すレーザモジュール160の配列は単に一例を示したに過ぎず、これに限定されない。 Here, the emission wavelength of the laser element 68 is a specific wavelength in the range of ultraviolet light to near infrared light, for example, in the range of 360 to 1000 nm, in particular, 800 to 970 nm, which has a high absorption rate on the wafer W of the silicon substrate. It is preferable to use a specific wavelength (monochromatic light) within the range. As the laser element 68, for example, a semiconductor laser element using GaAs can be used. Here, the arrangement of the laser modules 160 shown in FIG. 12 is merely an example, and the present invention is not limited to this.
 しかも、3つのレーザ素子68を搭載したレーザモジュール160は、4つの各ゾーン毎に個別に電力が制御され、指向性の高い楕円形状の照射エリア74の長軸方向がウエハWの円周方向に沿うように照射されるので、照射エリア74のウエハWの半径方向への広がりが非常に少なくなって、図13に示すように各ゾーン毎に温度制御性が向上し、この結果、図13の曲線A0に示す総合光出力のように、ウエハWの中心から周辺部までの照射量を比較的に均一化させることができるので、ウエハWの面内温度の均一性を向上させることができる。 Moreover, in the laser module 160 equipped with the three laser elements 68, the power is controlled individually for each of the four zones, and the major axis direction of the elliptical irradiation area 74 with high directivity is in the circumferential direction of the wafer W. Therefore, the spread of the irradiation area 74 in the radial direction of the wafer W becomes very small, and the temperature controllability is improved for each zone as shown in FIG. 13. As a result, as shown in FIG. As the total light output shown by the curve A0, the irradiation amount from the center to the peripheral part of the wafer W can be made relatively uniform, so that the in-plane temperature uniformity of the wafer W can be improved.
 また上述のように、楕円形状の照射エリア74の長軸方向がウエハWの円周方向に沿うように照射されるので、ウエハWの外側への光漏れが少なくなり、その分、光エネルギーを効率的に使用することができる。 Further, as described above, since the irradiation is performed so that the major axis direction of the elliptical irradiation area 74 is along the circumferential direction of the wafer W, light leakage to the outside of the wafer W is reduced, and the light energy is reduced accordingly. It can be used efficiently.
 また、長期間の使用等によりウエハ面内の温度分布が変化したり、或いは異なる熱処理を行うために温度分布を微調整したりする場合には、該当部分に対応するレーザモジュール160をレーザ取付ケーシング61より個別に抜き出して、これを例えば60度回転して再度取り付けるようにして実装角度を変えることによって加熱光L1の照射量の分布が最適になるように調整することができる。 In addition, when the temperature distribution in the wafer surface changes due to long-term use or the like, or when the temperature distribution is finely adjusted to perform different heat treatment, the laser module 160 corresponding to the corresponding part is attached to the laser mounting casing. The distribution of the irradiation amount of the heating light L1 can be adjusted to be optimum by individually extracting from 61 and rotating the mounting angle by, for example, 60 degrees to change the mounting angle.
<レーザモジュールの配列状態の変形実施形態>
 次に裏面側加熱手段のレーザモジュールの配列状態の変形実施形態について説明する。先に説明した実施形態では、図12に示したように、楕円形状の照射エリア74の長軸方向ができるだけウエハWの周方向に沿うようにして照射がなされるように各レーザモジュール160の実装角度を調整したが、これに限定されず、照射エリア74の長軸方向がウエハの半径方向に沿うようにして照射がなされるように配置してもよい。
<Modified Embodiment of Laser Module Arrangement>
Next, a modified embodiment of the arrangement state of the laser modules of the back surface side heating means will be described. In the embodiment described above, as shown in FIG. 12, each laser module 160 is mounted such that irradiation is performed so that the major axis direction of the elliptical irradiation area 74 is as close to the circumferential direction of the wafer W as possible. Although the angle is adjusted, the present invention is not limited to this, and the irradiation area 74 may be arranged so that irradiation is performed such that the major axis direction of the irradiation area 74 is along the radial direction of the wafer.
 図16は裏面側裏面側加熱手段のレーザモジュールの配列状態の変形実施形態の一例を示す平面図、図17は図16に示す裏面側加熱手段から出力される加熱光(光出力)の分布を示すグラフである。上述したように、ここでは、裏面側加熱手段34の各レーザモジュール160のレーザ素子68により形成される楕円形状の照射エリア74の長軸ができるだけウエハWの半径方向に沿って揃うように実装角度(回転位置)が調整されている。この場合にも、4つの各ゾーンのレーザモジュール160には、その照射エリア74の長軸方向がウエハWの半径方向とは完全には一致しないように取り付けざるを得ないレーザモジュール160が一部において生ずる。 16 is a plan view showing an example of a modified embodiment of the arrangement state of the laser modules of the back surface side back surface heating means, and FIG. 17 shows the distribution of the heating light (light output) output from the back surface side heating means shown in FIG. It is a graph to show. As described above, here, the mounting angle is such that the major axis of the elliptical irradiation area 74 formed by the laser element 68 of each laser module 160 of the back surface side heating means 34 is aligned along the radial direction of the wafer W as much as possible. (Rotation position) is adjusted. Also in this case, the laser modules 160 in each of the four zones include a part of the laser modules 160 that must be mounted so that the major axis direction of the irradiation area 74 does not completely coincide with the radial direction of the wafer W. Occurs in
 この時の加裏面側加熱手段34の各ゾーンからの光出力の分布は図17に示されており、曲線B1が最内周ゾーンからの光出力を示し、曲線B2が中内周ゾーンからの光出力を示し、曲線B3が外内周ゾーンからの光出力を示し、曲線B4が最外周ゾーンからの光出力を示し、曲線B0が上記曲線B1~B4を加えた総合光出力を示している。 The distribution of the light output from each zone of the heating / reverse heating means 34 at this time is shown in FIG. 17, where the curve B1 indicates the light output from the innermost zone and the curve B2 from the middle inner zone. The light output is shown, the curve B3 shows the light output from the outer and inner peripheral zone, the curve B4 shows the light output from the outermost peripheral zone, and the curve B0 shows the total light output including the curves B1 to B4. .
 このグラフから明らかなように、図13に示す場合と比較して各ゾーン毎に光出力はピークがなだらかな状態で表われており、各ゾーン毎の加熱光の指向性が低くなって隣接ゾーンへの加熱光の広がりがかなり発生している。従って、曲線B0に示すように、総合光出力は半導体ウエハの中心部がかなり大きくて半径方向へ行くに従ってなだらかに小さくなっている。従って、この場合には、先に図12及び図13を参照して説明した場合よりは、加熱光の照射量の面内均一性は劣化するが、それでも、加熱光の照射量の面内均一性をある程度は高くすることができることが判る。 As is clear from this graph, the light output is expressed in a state where the peak is gentle for each zone as compared with the case shown in FIG. There is considerable spread of heating light. Therefore, as shown by the curve B0, the total light output is gradually decreased as the central portion of the semiconductor wafer is considerably large and goes in the radial direction. Accordingly, in this case, the in-plane uniformity of the irradiation amount of the heating light is deteriorated as compared with the case described with reference to FIGS. It can be seen that the sex can be increased to some extent.
 このような図12及び図16における各レーザモジュール160の実装角度は両極端の場合をそれぞれ示したものであってそれぞれ単に一例を示したに過ぎず、これらの実装角度に限定されないのは勿論である。 The mounting angles of the respective laser modules 160 in FIGS. 12 and 16 show the extreme cases, and are merely examples, and it is needless to say that the mounting angles are not limited to these mounting angles. .
<レーザモジュールの変形実施形態>
 次にレーザモジュール160の変形実施形態について説明する。図14に示す先のレーザモジュール160にあっては、これに搭載される3つのレーザ素子68は、一対の対向角を結ぶ線分に対してその長さ方向が直交するようにして並列的に配置したが、これに限定されず、3つのレーザ素子68を、一対の対向辺と直交する線分に対してその長さ方向が直交するようにしてもよい。
<Modified Embodiment of Laser Module>
Next, a modified embodiment of the laser module 160 will be described. In the laser module 160 shown in FIG. 14, the three laser elements 68 mounted on the laser module 160 are arranged in parallel so that their length directions are perpendicular to a line segment connecting a pair of opposing angles. However, the present invention is not limited to this, and the length direction of the three laser elements 68 may be orthogonal to the line segments orthogonal to the pair of opposing sides.
 図18はこのようなレーザモジュールの変形実施形態の一例を示す拡大斜視図である。図18に示すように、ここではレーザモジュール160に搭載される3つのレーザ素子68は、一対の対向辺と直交する線分に対してその長さ方向が直交するように配置して搭載されている。このように形成したレーザモジュール160を図12又は図16に示すような状態で配列させるようにしてもよい。 FIG. 18 is an enlarged perspective view showing an example of a modified embodiment of such a laser module. As shown in FIG. 18, here, the three laser elements 68 mounted on the laser module 160 are mounted so that their length directions are orthogonal to the line segments orthogonal to the pair of opposing sides. Yes. The laser modules 160 formed in this way may be arranged in a state as shown in FIG.
 更には、図14に示すようなレーザモジュール160と図18に示すようなレーザモジュール160とを混在させて組み合わせて設けるようにしてもよい。例えば、図12において、中内周ゾーンには全て図14に示すレーザモジュール160を適用し、外内周ゾーン及び最外周ゾーンの内の照射エリア74の長軸方向がウエハWの周方向とは大きく異なる部分に図18に示すレーザモジュール160をそれぞれ適用するようにしてもよい。これによれば、ウエハWの半径方向へ広がる加熱光の量を更に少なくすることができるので、その分、光エネルギーを更に効率的に利用することができる。 Furthermore, the laser module 160 as shown in FIG. 14 and the laser module 160 as shown in FIG. 18 may be mixed and provided in combination. For example, in FIG. 12, the laser module 160 shown in FIG. 14 is applied to all the inner and inner peripheral zones, and the major axis direction of the irradiation area 74 in the outer and outer peripheral zones is the peripheral direction of the wafer W. The laser modules 160 shown in FIG. 18 may be applied to portions that are greatly different. According to this, since the amount of the heating light spreading in the radial direction of the wafer W can be further reduced, the light energy can be used more efficiently correspondingly.
 尚、以上の各実施形態では、1つのレーザモジュール160に搭載したレーザ素子68の数が3個の場合を例にとって説明したが、この数に限定されないのは勿論である。また、ここではレーザモジュール160の形状は正六角形としたが、これに限定されず、正三角形、正五角形、正八角形等の正多角形にしてもよい。 In each of the above embodiments, the case where the number of laser elements 68 mounted on one laser module 160 is three has been described as an example, but it is needless to say that the number is not limited thereto. Here, the shape of the laser module 160 is a regular hexagon, but is not limited to this, and may be a regular polygon such as a regular triangle, a regular pentagon, or a regular octagon.
<ヒートパイプの変形例>
 上記実施形態では、素子取付ヘッド36に設けられたヒートパイプ52は、図3に示すように、冷媒通路50の外側に完全に埋め込まれるようにして設けられているが、これに限定されない。例えば、図7に示すように構成してもよい。図7は、素子取付ヘッドの上側冷却機構のうちの1つの冷媒通路を示す拡大斜視図である。
<Modification of heat pipe>
In the above embodiment, the heat pipe 52 provided in the element mounting head 36 is provided so as to be completely embedded outside the refrigerant passage 50 as shown in FIG. 3, but is not limited thereto. For example, you may comprise as shown in FIG. FIG. 7 is an enlarged perspective view showing one refrigerant passage in the upper cooling mechanism of the element mounting head.
 この場合、コ字状に成形されたヒートパイプ52の上端部が、冷媒通路50内の上部に露出されている。そして、このようなヒートパイプ52が、冷媒通路50の流れ方向に沿って、略等ピッチで複数(多数)個配列されている。この態様によれば、ヒートパイプ52の上端部が冷媒と直接的に接するので、冷却のための熱交換率を更に良好にでき、その分、冷却効率を高めることができる。 In this case, the upper end portion of the heat pipe 52 formed in a U-shape is exposed in the upper portion of the refrigerant passage 50. A plurality (many) of such heat pipes 52 are arranged at substantially equal pitches along the flow direction of the refrigerant passage 50. According to this aspect, since the upper end portion of the heat pipe 52 is in direct contact with the refrigerant, the heat exchange rate for cooling can be further improved, and the cooling efficiency can be increased accordingly.
<変形実施形態>
 次に、本発明に係るアニール装置の変形実施形態について説明する。先の実施形態では、半導体ウエハWの裏面に照射される照射エリア74の位置が固定的になっているため、ウエハWの面内方向に僅かに温度分布が生ずる恐れがあると言える。そこで、この変形実施形態では、上記照射エリア74が相対的に走査(移動)できるように構成され、面内方向におけるウエハ温度の均一性を更に向上させるようになっている。図8は、このようなアニール装置の変形実施形態の、支持手段を含む処理容器の下部を示す部分構成図である。図8では、図1に示す構成部分と同一構成部分については同一参照符号を付して、その説明は省略する。
<Modified Embodiment>
Next, a modified embodiment of the annealing apparatus according to the present invention will be described. In the previous embodiment, since the position of the irradiation area 74 irradiated on the back surface of the semiconductor wafer W is fixed, it can be said that a slight temperature distribution may occur in the in-plane direction of the wafer W. Therefore, in this modified embodiment, the irradiation area 74 can be relatively scanned (moved), and the uniformity of the wafer temperature in the in-plane direction is further improved. FIG. 8 is a partial configuration diagram showing a lower part of a processing vessel including a supporting unit in a modified embodiment of such an annealing apparatus. In FIG. 8, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
 照射エリア74を相対的に走査(移動)させるために、ここでは、半導体ウエハWを支持する支持手段10が回転機構89に取り付けられ、回転されるようになっている。すなわち、ここでは、ウエハWを支持する支持手段10が、回転機構89の一部を構成する回転浮上体90と一体的に構成されている。支持手段10の各昇降アーム14の基端部が、リング状の部材92に取り付け固定されている。一方、上下方向に延びる複数の短冊状の支柱93が、仮想筒体の周方向に沿って等ピッチで配置され、これらの上端側が筒体状の浮上側上部強磁性体94に連結されており、当該浮上側上部強磁性体94に更にリング状の部材92が接続されている。 In order to relatively scan (move) the irradiation area 74, here, the support means 10 that supports the semiconductor wafer W is attached to the rotation mechanism 89 and is rotated. In other words, here, the support means 10 that supports the wafer W is configured integrally with the rotating levitating body 90 that forms part of the rotating mechanism 89. The base end portion of each lifting arm 14 of the support means 10 is attached and fixed to a ring-shaped member 92. On the other hand, a plurality of strip-shaped support pillars 93 extending in the vertical direction are arranged at an equal pitch along the circumferential direction of the virtual cylinder, and their upper ends are connected to a cylindrical floating upper ferromagnetic body 94. A ring-shaped member 92 is further connected to the floating upper ferromagnetic body 94.
 また、各支柱93の下端側は、円形リング状の浮上側下部強磁性体96に連結されている。当該円形リング状の浮上側下部強磁性体96は、水平方向にフランジ状に延びている。このような構成により、後述するように、回転浮上体90を浮上させた状態で上下動させることができ、これによってウエハWを支持する支持ピン12を昇降できるようになっている。 Also, the lower end side of each support column 93 is connected to a circular ring-shaped floating upper lower ferromagnetic body 96. The circular ring-shaped floating lower ferromagnetic member 96 extends in a flange shape in the horizontal direction. With such a configuration, as will be described later, the rotary levitator 90 can be moved up and down while being lifted, whereby the support pins 12 that support the wafer W can be raised and lowered.
 そして、処理容器4の下部の底板4Cには、回転浮上体90を収容し当該回転浮上体90を上下方向に所定のストローク量だけ昇降できる大きさの空間が内部に形成された2重円筒体構造の浮上用収容部98が、連結されている。浮上用収容部98の下部領域は、浮上側下部強磁性体96を収容し当該浮上側下部強磁性体96を上下方向に所定のストローク量だけ昇降できる大きさの水平収容部100となっている。 The bottom plate 4C of the lower portion of the processing container 4 has a double cylindrical body in which a space that can accommodate the rotary levitating body 90 and can move the rotary levitating body 90 up and down by a predetermined stroke amount is formed. The floating housing 98 of the structure is connected. The lower region of the floating housing portion 98 is a horizontal housing portion 100 that accommodates the floating upper lower ferromagnetic member 96 and is large enough to move the floating upper lower ferromagnetic member 96 up and down by a predetermined stroke amount. .
 そして、水平収容部100を区画する上側区画壁100Aの上面側に、その周方向に沿って、浮上用電磁石アッセンブリ102が所定のピッチで複数個配列されている。また、上側区画壁100Aの下面側に、強磁性体104が取り付けられている。また、水平収容部100を区画する下側区画壁100Bの内面側(上面側)には、強磁性体104との間で浮上側下部強磁性体96を間に挟むように、垂直位置センサ106が取り付けられている。 A plurality of levitation electromagnet assemblies 102 are arranged at a predetermined pitch along the circumferential direction on the upper surface side of the upper partition wall 100A that partitions the horizontal housing portion 100. A ferromagnetic body 104 is attached to the lower surface side of the upper partition wall 100A. In addition, the vertical position sensor 106 is disposed on the inner surface side (upper surface side) of the lower partition wall 100B that partitions the horizontal housing portion 100 so that the floating lower ferromagnetic member 96 is sandwiched between the lower ferromagnetic member 104 and the ferromagnetic member 104. Is attached.
 これにより、垂直位置センサ106によって浮上側下部強磁性体96の高さ位置を検出しながら、浮上用電磁石アッセンブリ102の電磁力を調整することによって、支持手段10を任意の高さに設定することができるようになっている。この場合、垂直位置センサ106は周方向に沿って複数個設けられて、回転浮上体90の傾きを防止するようになっている。 Thus, the support means 10 is set to an arbitrary height by adjusting the electromagnetic force of the levitation electromagnet assembly 102 while detecting the height position of the levitation lower lower ferromagnetic body 96 by the vertical position sensor 106. Can be done. In this case, a plurality of vertical position sensors 106 are provided along the circumferential direction to prevent tilting of the rotating levitated body 90.
 ここでは、回転浮上体90が底板側に接触した状態から例えば2mm上昇した位置を定位置として、回転制御が行われるようになっている。そして、この定位置より例えば10mm上昇した位置が、ウエハWの受け渡しを行う移載位置とされている。 Here, rotation control is performed with the position where, for example, 2 mm has been raised from the state in which the rotating levitated body 90 is in contact with the bottom plate side as a fixed position. A position that is raised by 10 mm, for example, from this fixed position is a transfer position at which the wafer W is transferred.
 また、浮上用収容部98の外周壁98Aの外側に、回転用電磁石アッセンブリ108が、その周方向に沿って所定のピッチで複数個配列されている。また、この外周壁98Aの内側に、強磁性体110が取り付けられている。また、浮上用収容部98の内周壁98Bの外周側には、強磁性体110との間で浮上側上部強磁性体94を間に挟むように、水平位置センサ112が取り付けられている。これにより、水平位置センサ112によって浮上側上部強磁性体94の水平位置を検出しながら、回転用電磁石アッセンブリ108に回転磁界を加えることにより、回転浮上体90を定位置に位置させつつ回転させることができるようになっている。 Also, a plurality of rotating electromagnet assemblies 108 are arranged at a predetermined pitch along the circumferential direction on the outer side of the outer peripheral wall 98A of the levitation accommodating portion 98. A ferromagnetic body 110 is attached to the inner side of the outer peripheral wall 98A. In addition, a horizontal position sensor 112 is attached to the outer peripheral side of the inner peripheral wall 98B of the levitation accommodating portion 98 so as to sandwich the floating upper ferromagnetic material 94 with the ferromagnetic material 110. As a result, while the horizontal position sensor 112 detects the horizontal position of the floating upper ferromagnetic body 94, a rotating magnetic field is applied to the rotating electromagnet assembly 108, thereby rotating the rotating levitating body 90 in a fixed position. Can be done.
 以上のように、回転浮上体90上にウエハWを支持させた状態で、これを回転させることができるので、図6に示すようなウエハWの裏面に照射される楕円形状の照射エリア74が、ウエハWの周方向へ相対的に回転移動することができる。これにより、ウエハWの面内温度の均一性を一層向上させることができる。 As described above, since the wafer W can be rotated while being supported on the rotating levitated body 90, an elliptical irradiation area 74 irradiated on the back surface of the wafer W as shown in FIG. The wafer W can be relatively rotated in the circumferential direction of the wafer W. Thereby, the uniformity of the in-plane temperature of the wafer W can be further improved.
 また、このようにウエハWを回転させることにより、処理容器4の内壁面の周方向における熱的コンディションの不均一性をもキャンセルすることができる。この点からも、ウエハWの面内温度の均一性を更に向上させることができる。上記の回転機構89の構成は、単に一例を示したに過ぎず、これに限定されるものではない。例えば、特開平2002-280318号公報等に開示された回転機構が用いられてもよい。更には、ここでは半導体ウエハW側を回転させるようにしたが、これに替えて、裏面側加熱手段34側を回転させるようにしてもよい。 Further, by rotating the wafer W in this way, it is possible to cancel the nonuniformity of the thermal condition in the circumferential direction of the inner wall surface of the processing container 4. From this point, the uniformity of the in-plane temperature of the wafer W can be further improved. The configuration of the rotation mechanism 89 is merely an example, and is not limited to this. For example, a rotation mechanism disclosed in Japanese Patent Laid-Open No. 2002-280318 may be used. Furthermore, the semiconductor wafer W side is rotated here, but instead, the back surface side heating means 34 side may be rotated.
<冷却機構の変形例>
 前述した上側冷却機構48にあっては、その冷媒通路50に冷媒を流すことによってLEDモジュール44の上面側から熱を奪って、これを冷却するようにしている。そして、冷媒通路50の断面矩形状の流路断面積は、冷媒通路50の流れ方向に沿って一定となるように設定されている。このため、冷媒入口に近い部分では、冷媒が冷却対象物であるLEDモジュール44側から熱を十分に奪って冷却が効率的に行われるが、冷媒が下流側に流下して行くに従って冷媒の温度が上昇するので冷却効率が少しずつ低下して行くことが考えられる。
<Modification of cooling mechanism>
In the above-described upper cooling mechanism 48, heat is taken from the upper surface side of the LED module 44 by flowing the refrigerant through the refrigerant passage 50, thereby cooling it. The flow passage cross-sectional area of the refrigerant passage 50 having a rectangular cross section is set to be constant along the flow direction of the refrigerant passage 50. For this reason, in the part close to the refrigerant inlet, the refrigerant sufficiently takes heat from the LED module 44 side, which is the object to be cooled, and cooling is performed efficiently. However, as the refrigerant flows down to the downstream side, the temperature of the refrigerant It is conceivable that the cooling efficiency gradually decreases as the temperature rises.
 すなわち、冷媒通路50の流れ方向に沿って冷却効率が変化することになる。このため、冷却対象物であるLEDモジュール44の配列位置に応じて温度分布の偏りが生じて、温度が不均一になるという危惧がある。すなわち、冷媒通路50の上流側に配列されたLEDモジュール44は効率的に冷却されるのに対して、下流側に配置されたLEDモジュール44は効率的に冷却されずに、LEDモジュール44間で温度分布の不均一が生じる、という危惧がある。 That is, the cooling efficiency changes along the flow direction of the refrigerant passage 50. For this reason, there is a concern that the temperature distribution becomes uneven depending on the arrangement position of the LED modules 44 that are the objects to be cooled, and the temperature becomes non-uniform. That is, the LED modules 44 arranged on the upstream side of the refrigerant passage 50 are efficiently cooled, whereas the LED modules 44 arranged on the downstream side are not efficiently cooled, and the LED modules 44 are not efficiently cooled. There is a concern that the temperature distribution will be uneven.
 そこで、この冷却機構の変形例では、上記危惧を取り除くために、冷媒通路50の冷媒入口51から冷媒出口53に向けてその流路断面積が順次小さくなるように設定されている。これにより、冷媒通路50の流れ方向に沿って冷却効率が一定になるようにして、冷却対象物の全体の温度を一定に維持し、温度の不均一が生じないようにしている。 Therefore, in this modification of the cooling mechanism, in order to remove the fear, the cross-sectional area of the flow path is set so as to gradually decrease from the refrigerant inlet 51 to the refrigerant outlet 53 of the refrigerant passage 50. Thereby, the cooling efficiency is made constant along the flow direction of the refrigerant passage 50, the temperature of the entire cooling object is kept constant, and the temperature non-uniformity does not occur.
 ここで、冷媒通路50の流れ方向に沿って冷却効率を一定にして冷却対象物の温度を一定にするための原理について説明する。図9は、冷媒通路の長さ方向における微小区間の冷媒の温度変化を求めるための模式図である。ここでは、本発明の理解を容易にするために、冷媒通路の幅を一定(単位長=1m)とし、冷媒通路の高さを”f(x)”なる関数として表してシミュレーションを行った。図9中において、横軸”x”は、冷媒入口51から冷媒出口53に向かう距離を示し、縦軸”y”は冷媒通路50の高さ”f(x)”を示している。 Here, the principle for making the temperature of the cooling object constant by making the cooling efficiency constant along the flow direction of the refrigerant passage 50 will be described. FIG. 9 is a schematic diagram for obtaining the temperature change of the refrigerant in a minute section in the length direction of the refrigerant passage. Here, in order to facilitate understanding of the present invention, the simulation was performed with the width of the refrigerant passage being constant (unit length = 1 m) and the height of the refrigerant passage being expressed as a function of “f (x)”. In FIG. 9, the horizontal axis “x” indicates the distance from the refrigerant inlet 51 to the refrigerant outlet 53, and the vertical axis “y” indicates the height “f (x)” of the refrigerant passage 50.
 そして、冷媒が流量”Q”で冷媒入口51より冷媒出口53に向けて流れているものとする。そして、距離”x”の位置における冷媒の温度を”T(x)”として表している。ここで、x軸に沿った冷媒通路50の底面の温度がToで一定となるような条件を満たせば、冷媒通路50の流れ方向に沿って冷却対象物の温度を一定に維持できることになる。 It is assumed that the refrigerant is flowing from the refrigerant inlet 51 toward the refrigerant outlet 53 at a flow rate “Q”. And the temperature of the refrigerant | coolant in the position of distance "x" is represented as "T (x)." Here, if the condition that the temperature of the bottom surface of the refrigerant passage 50 along the x-axis is constant at To is satisfied, the temperature of the object to be cooled can be maintained constant along the flow direction of the refrigerant passage 50.
 まず、冷媒の熱伝達率hは、以下の式1のように表される。 
 h=0.664(ρ1/2)(μ-1/6)(cp1/3 )(k2/3 )(L-1/2)(u1/2 )…(1)
ここで、各記号は以下の通りである。
 ρ:冷媒の密度(kg/m
 μ:冷媒の粘度(kg/m・sec)
 cp:冷媒の比熱(J/kg・K)
 k:冷媒熱伝導率(W/m・K)
 L:冷却部長さ(m)
 u:冷媒の速度(m/sec)
 温度変化がさほど無いと考えれば、冷媒の速度以外は定数Aと置くことができ、冷媒の速度のみの関数とみなせることになる。すなわち、下記のように定数Aを定義する。 
 0.664(ρ1/2)(μ-1/6)(cp1/3 )(k2/3 )(L-1/2
=A(定数)
First, the heat transfer coefficient h of the refrigerant is expressed as the following Expression 1.
h = 0.664 (ρ 1/2 ) (μ −1/6 ) (cp 1/3 ) (k 2/3 ) (L −1/2 ) (u 1/2 ) (1)
Here, each symbol is as follows.
ρ: Density of refrigerant (kg / m 3 )
μ: Viscosity of refrigerant (kg / m · sec)
cp: Specific heat of refrigerant (J / kg · K)
k: Refrigerant thermal conductivity (W / m · K)
L: Cooling part length (m)
u: Refrigerant speed (m / sec)
If it is considered that there is not much temperature change, it can be set as a constant A except for the speed of the refrigerant, and can be regarded as a function only of the speed of the refrigerant. That is, the constant A is defined as follows.
0.664 (ρ 1/2 ) (μ −1/6 ) (cp 1/3 ) (k 2/3 ) (L −1/2 )
= A (constant)
 そして、図9中において、冷媒がΔxだけ進んだ時に冷媒に流入する熱量を”W”とすると、以下の式2のように表される。 
 W={T(x+Δx)-T(x)}・cp・ρ・Δx・f(x)
  =A・Δx・(To-T(x))・Δt√u(x)……(2)
 cp:冷媒の比熱
 ρ:冷媒の密度
 u(x):位置xの時の冷媒流速
 Δt:冷媒がΔx進むのに要した時間
 A:熱伝達率を求める際の定数
 ここで、Δt/Δx=1/u(x)、u(x)=Q/f(x)として上記式をまとめると、以下の式3のようになる。 
 cp・ρ・(T(x+Δx)-T(x))/Δx=A・(To-T(x))/√(Q・f(x))……(3)
 上記式3を整理すると、以下の式4のようになる。 
 f(x)=A・(To-T(x))/(Q・cp・ρ・(T’(x)))……(4)
 なお、”T’(x)=(T(x+Δx)-T(x))/Δx”である。
In FIG. 9, when the amount of heat flowing into the refrigerant when the refrigerant advances by Δx is “W”, the following equation 2 is obtained.
W = {T (x + Δx) −T (x)} · cp · ρ · Δx · f (x)
= A · Δx · (To−T (x)) · Δt√u (x) (2)
cp: Specific heat of refrigerant ρ: Refrigerant density u (x): Refrigerant flow velocity at position x Δt: Time required for refrigerant to advance by Δx A: Constant for obtaining heat transfer coefficient where Δt / Δx = Summarizing the above equations as 1 / u (x), u (x) = Q / f (x), the following equation 3 is obtained.
cp · ρ · (T (x + Δx) −T (x)) / Δx = A · (To−T (x)) / √ (Q · f (x)) (3)
If the above formula 3 is arranged, the following formula 4 is obtained.
f (x) = A 2 · (To−T (x)) 2 / (Q · cp 2 · ρ 2 · (T ′ (x)) 2 ) (4)
Note that “T ′ (x) = (T (x + Δx) −T (x)) / Δx”.
 このように、冷媒通路50の高さ関数f(x)は、冷媒の温度変化T(x)に依存する形になる。換言すれば、温度変化を決定すれば、冷媒通路50の高さも自ずと決定されることになる。 Thus, the height function f (x) of the refrigerant passage 50 depends on the temperature change T (x) of the refrigerant. In other words, if the temperature change is determined, the height of the refrigerant passage 50 is naturally determined.
 ここで、具体的な数値例を用いて、上記式4に代入すると、式5のようになる。具体的な数値例は、以下の通りである。 
 冷媒流量Q:2リットル/min(=2×10-3/60 m /sec)
 目標温度To:100℃
 冷媒通路の幅:10mm
 冷媒通路の長さ:5m
 媒体入口温度:-50℃、媒体出口温度:-40℃
 (温度変化は一次的に変化すると仮定すると、”T(x)=2・x-50”となる。)
 冷媒の比熱cp:1000J/kg・K
 冷媒の密度ρ:1800kg/m
 定数A:230
 ここで、単位及び冷媒通路の幅を考慮して、冷媒流量Qは単位[m3 /sec]に換算することとし、また、前述のシミュレーションでは冷媒通路の幅を単位長1m(=1000mm)に設定したので、これを10mmの冷媒通路の幅に換算するために、f(x)を1/100倍する。 
 f(x)=230・[100-(2・x-50)]/[(2×10-3/60)×1000×1800×2×100]……(5)
 ここで、上記式5をグラフに表すと、図10のようになる。すなわち、冷媒通路50の冷媒入口51では、冷媒通路50の高さを27.6mm程度に設定し、冷媒入口51からの距離に従って冷媒通路50の高さを順次低くして流路断面積を小さくし、冷媒出口53では冷媒通路50の高さを24mm程度に設定する、という態様に対応する。
Here, using a specific numerical example, when substituting into Equation 4 above, Equation 5 is obtained. Specific numerical examples are as follows.
Refrigerant flow rate Q: 2 liter / min (= 2 × 10 −3 / 60 m 3 / sec)
Target temperature To: 100 ° C
Refrigerant passage width: 10mm
Length of refrigerant passage: 5m
Medium inlet temperature: -50 ° C, medium outlet temperature: -40 ° C
(Assuming that the temperature change changes linearly, “T (x) = 2 · x−50”)
Specific heat of refrigerant cp: 1000 J / kg · K
Refrigerant density ρ: 1800 kg / m 3
Constant A: 230
Here, in consideration of the unit and the width of the refrigerant passage, the refrigerant flow rate Q is converted to a unit [m 3 / sec], and in the above-described simulation, the width of the refrigerant passage is set to a unit length of 1 m (= 1000 mm). Since it is set, f (x) is multiplied by 1/100 to convert this into the width of the refrigerant passage of 10 mm.
f (x) = 230 2 · [100− (2 · x−50)] 2 / [(2 × 10 −3 / 60) × 1000 2 × 1800 2 × 2 2 × 100] (5)
Here, the above equation 5 is represented in a graph as shown in FIG. That is, at the refrigerant inlet 51 of the refrigerant passage 50, the height of the refrigerant passage 50 is set to about 27.6 mm, and the height of the refrigerant passage 50 is sequentially reduced according to the distance from the refrigerant inlet 51 to reduce the flow passage cross-sectional area. Then, the refrigerant outlet 53 corresponds to an aspect in which the height of the refrigerant passage 50 is set to about 24 mm.
 この態様に対応する冷媒通路50の断面形状の高さ変化の一例が、図11に示される。この場合、冷媒通路50の高さが、下流側に行くに従って順次低くなっている。この場合、冷媒の流速は、下流に行く程次第に速くなっているのは勿論である。 FIG. 11 shows an example of the change in the height of the cross-sectional shape of the refrigerant passage 50 corresponding to this aspect. In this case, the height of the refrigerant passage 50 is gradually decreased toward the downstream side. In this case, of course, the flow rate of the refrigerant gradually increases as it goes downstream.
 このように、冷媒通路50の高さを下流側に行くに従って順次低くなるように設定することにより(冷媒通路50の幅が一定の場合)、冷媒通路50の下面の温度を100℃(=To)に一定に維持できることが判る。 In this manner, by setting the height of the refrigerant passage 50 to gradually decrease toward the downstream side (when the width of the refrigerant passage 50 is constant), the temperature of the lower surface of the refrigerant passage 50 is set to 100 ° C. (= To ) Can be kept constant.
 上記具体例では、冷媒通路50の幅を一定にした場合について説明したが、冷媒通路50の高さを一定にした場合には、冷媒通路50の幅を順次小さくして流路断面積を次第に狭くすることができる。尚、上記数値例は単に一例を示したに過ぎず、これに限定されないのは勿論である。 In the above specific example, the case where the width of the refrigerant passage 50 is made constant has been described. However, when the height of the refrigerant passage 50 is made constant, the width of the refrigerant passage 50 is gradually reduced to gradually increase the cross-sectional area of the flow path. Can be narrowed. Of course, the above numerical examples are merely examples, and the present invention is not limited thereto.
 このように、冷媒入口51から冷媒出口53に向けて冷媒通路50の流路面積が順次小さくなるように設定することにより、冷媒が冷却対象物、例えばLEDモジュール44、から奪う冷媒通路50の単位長さ当たりの熱量を一定にできる。この結果、冷媒通路50の長さ方向に沿って冷却対象物の温度を均一化させることが可能となる。 Thus, by setting the flow passage area of the refrigerant passage 50 to be gradually reduced from the refrigerant inlet 51 toward the refrigerant outlet 53, the unit of the refrigerant passage 50 taken by the refrigerant from the object to be cooled, for example, the LED module 44. The amount of heat per length can be made constant. As a result, the temperature of the cooling target can be made uniform along the length direction of the refrigerant passage 50.
 尚、レーザ素子68として、GaAsを用いた半導体レーザを例にとって説明したが、これに限定されず、YAGレーザ素子、ガーネットレーザ素子等の他の固体レーザ素子を用いることができるのは勿論である。さらに、気体レーザ素子も用いることができる。また、ここでは、表面側加熱手段32としてLED素子46を用いた場合を例にとって説明したが、これに限定されず、SLD(Super Luminescent Diode)素子を用いることもできる。 Although the semiconductor laser using GaAs has been described as an example of the laser element 68, the present invention is not limited to this, and other solid-state laser elements such as a YAG laser element and a garnet laser element can of course be used. . Furthermore, a gas laser element can also be used. Although the case where the LED element 46 is used as the surface side heating unit 32 has been described as an example here, the present invention is not limited to this, and an SLD (Super Luminescent Diode) element can also be used.
 また、ここでは、被処理体として半導体ウエハを例にとって説明したが、この半導体ウエハには、シリコン基板やGaAs、SiC、GaNなどの化合物半導体基板も含まれる。更には、これらの基板に限定されず、液晶表示装置に用いられるガラス基板やセラミック基板等にも本発明を適用することができる。 In addition, here, a semiconductor wafer is described as an example of the object to be processed, but this semiconductor wafer includes a silicon substrate and a compound semiconductor substrate such as GaAs, SiC, and GaN. Furthermore, the present invention is not limited to these substrates, and the present invention can also be applied to glass substrates, ceramic substrates, and the like used in liquid crystal display devices.

Claims (18)

  1.  被処理体に対してアニール処理を施すアニール装置において、
     前記被処理体が収容される処理容器と、
     前記処理容器内で前記被処理体を支持する支持手段と、
     前記処理容器内へ処理ガスを供給するガス供給手段と、
     前記処理容器内の雰囲気を排気する排気手段と、
     前記被処理体の裏面全体に向けて加熱光を照射する複数のレーザ素子を有する裏面側加熱手段と、
    を備えたことを特徴とするアニール装置。
    In an annealing apparatus that performs an annealing process on a workpiece,
    A processing container in which the object to be processed is accommodated;
    A support means for supporting the object to be processed in the processing container;
    Gas supply means for supplying a processing gas into the processing container;
    Exhaust means for exhausting the atmosphere in the processing vessel;
    Back surface side heating means having a plurality of laser elements that irradiate heating light toward the entire back surface of the object to be processed;
    An annealing apparatus comprising:
  2.  前記複数のレーザ素子は、前記被処理体の少なくとも裏面全体をカバーできる大きさの領域に亘って配置されている
    ことを特徴とする請求項1に記載のアニール装置。
    2. The annealing apparatus according to claim 1, wherein the plurality of laser elements are arranged over a region having a size capable of covering at least the entire back surface of the object to be processed.
  3.  前記レーザ素子は、半導体レーザ素子、固体レーザ素子または気体レーザ素子よりなる
    ことを特徴とする請求項1または2に記載のアニール装置。
    The annealing apparatus according to claim 1, wherein the laser element includes a semiconductor laser element, a solid-state laser element, or a gas laser element.
  4.  前記レーザ素子から照射される前記加熱光は、シリコン基板を選択的に加熱することができる波長帯域を有する
    ことを特徴とする請求項1乃至3のいずれか一項に記載のアニール装置。
    The annealing apparatus according to any one of claims 1 to 3, wherein the heating light emitted from the laser element has a wavelength band capable of selectively heating the silicon substrate.
  5.  前記支持手段と前記裏面側加熱手段の内のいずれか一方は、回転可能に支持されている
    ことを特徴とする請求項1乃至4のいずれか一項に記載のアニール装置。
    5. The annealing apparatus according to claim 1, wherein any one of the support unit and the back surface side heating unit is rotatably supported. 6.
  6.  前記裏面側加熱手段に対向して配置され、前記被処理体の表面に向けて加熱光を照射する表面側加熱手段
    を更に備えたことを特徴とする請求項1乃至5のいずれか一項に記載のアニール装置。
    6. The apparatus according to claim 1, further comprising a surface-side heating unit that is disposed to face the back-side heating unit and irradiates heating light toward the surface of the object to be processed. The annealing apparatus as described.
  7.  前記表面側加熱手段は、前記被処理体の少なくとも表面全体をカバーできる大きさの領域に亘って配置された複数のLED(Light Emitting Diode)素子またはSLD(Super Luminescent Diode)素子を有する
    ことを特徴とする請求項6に記載のアニール装置。
    The surface-side heating means has a plurality of LED (Light Emitting Diode) elements or SLD (Super Luminescent Diode) elements arranged over a region that can cover at least the entire surface of the object to be processed. An annealing apparatus according to claim 6.
  8.  前記裏面側加熱手段と前記表面側加熱手段の内の少なくともいずれか一方には、冷媒によって冷却を行う冷却機構が設けられている
    ことを特徴とする請求項6または7に記載のアニール装置。
    The annealing apparatus according to claim 6 or 7, wherein at least one of the back surface side heating means and the front surface side heating means is provided with a cooling mechanism for cooling with a refrigerant.
  9.  前記冷却機構は、前記冷媒を流すための冷媒通路を有しており、
     前記冷媒通路は、冷媒入口から冷媒出口に向けてその流路断面積が順次小さくなるように設定されている
    ことを特徴とする請求項8に記載のアニール装置。
    The cooling mechanism has a refrigerant passage for flowing the refrigerant,
    The annealing apparatus according to claim 8, wherein the refrigerant passage is set such that a cross-sectional area of the flow path gradually decreases from a refrigerant inlet toward a refrigerant outlet.
  10.  前記冷媒通路の幅は一定であり、前記冷媒通路の高さは、前記冷媒の流量、前記冷媒の比熱、前記冷媒の密度及び前記冷媒入口からの距離に基づいて定められることを特徴とする請求項9記載のアニール装置。 The width of the refrigerant passage is constant, and the height of the refrigerant passage is determined based on the flow rate of the refrigerant, the specific heat of the refrigerant, the density of the refrigerant, and the distance from the refrigerant inlet. Item 10. An annealing apparatus according to Item 9.
  11.  前記冷媒通路の高さf(x)が、次の式
       f(x)=
       A・(To-T(x))/(Q・cp2・ρ・(T’(x))2 
         A:熱伝達率を求める際の定数
         Q:冷媒の流量
         cp:冷媒の比熱
         ρ:冷媒の密度
         x:冷媒入口からの距離
         T(x):距離xの時の冷媒の温度(関数)
         T’(x):関数T(x)の微分
         To:目標とする温度
    で与えられることを特徴とする請求項10記載のアニール装置。
    The height f (x) of the refrigerant passage is given by the following formula f (x) =
    A 2 · (To−T (x)) 2 / (Q · cp2 2 · ρ 2 · (T ′ (x)) 2 )
    A: Constant for obtaining heat transfer coefficient Q: Flow rate of refrigerant cp: Specific heat of refrigerant ρ: Density of refrigerant x: Distance from refrigerant inlet T (x): Temperature (function) of refrigerant at distance x
    The annealing apparatus according to claim 10, wherein T ′ (x): differentiation of the function T (x) is given at a target temperature.
  12.  前記冷却機構には、冷却を促進させる複数のヒートパイプが設けられている
    ことを特徴とする請求項8乃至11のいずれか一項に記載のアニール装置。
    The annealing apparatus according to any one of claims 8 to 11, wherein the cooling mechanism includes a plurality of heat pipes that promote cooling.
  13.  前記裏面側加熱手段には、反射面が形成されている
    ことを特徴とする請求項1乃至12のいずれか一項に記載のアニール装置。
    The annealing apparatus according to any one of claims 1 to 12, wherein a reflective surface is formed on the back surface side heating means.
  14.  前記各レーザ素子から出力される加熱光は、楕円形状の照射エリアを有しており、
     前記各レーザ素子は、前記楕円形状の照射エリアの長軸方向が前記被処理体の周方向に沿うように配置されている
    ことを特徴とする請求項1記載のアニール装置。
    The heating light output from each laser element has an elliptical irradiation area,
    2. The annealing apparatus according to claim 1, wherein each of the laser elements is arranged such that a major axis direction of the elliptical irradiation area is along a circumferential direction of the object to be processed.
  15.  前記複数のレーザ素子は、同心円状に複数のゾーンにグループ化されており、各グループ毎に制御可能になされている
    ことを特徴とする請求項14記載のアニール装置。
    The annealing apparatus according to claim 14, wherein the plurality of laser elements are grouped into a plurality of zones concentrically and are controllable for each group.
  16.  前記レーザ素子は、複数個ずつまとめて複数のレーザモジュールに搭載されてユニット化されている
    ことを特徴とする請求項14または15に記載のアニール装置。
    The annealing apparatus according to claim 14 or 15, wherein a plurality of the laser elements are collectively mounted on a plurality of laser modules and unitized.
  17.  前記レーザモジュールは、正多角形状に形成されている
    ことを特徴とする請求項16記載のアニール装置。
    The annealing apparatus according to claim 16, wherein the laser module is formed in a regular polygon shape.
  18.  前記レーザモジュールは、位置調整ができるように着脱可能に取り付けられている
    ことを特徴とする請求項16または17に記載のアニール装置。
    The annealing apparatus according to claim 16 or 17, wherein the laser module is detachably attached so that position adjustment is possible.
PCT/JP2009/061518 2008-06-25 2009-06-24 Annealing apparatus WO2009157484A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801123218A CN101999160A (en) 2008-06-25 2009-06-24 Annealing apparatus
US13/001,357 US20110174790A1 (en) 2008-06-25 2009-06-24 Annealing apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-165733 2008-06-25
JP2008165733 2008-06-25
JP2008304468A JP2010129861A (en) 2008-11-28 2008-11-28 Thermal processing apparatus
JP2008-304468 2008-11-28
JP2008-310112 2008-12-04
JP2008310112A JP2010034491A (en) 2008-06-25 2008-12-04 Annealing apparatus

Publications (1)

Publication Number Publication Date
WO2009157484A1 true WO2009157484A1 (en) 2009-12-30

Family

ID=41444548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061518 WO2009157484A1 (en) 2008-06-25 2009-06-24 Annealing apparatus

Country Status (1)

Country Link
WO (1) WO2009157484A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509143A (en) * 2014-01-17 2017-03-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Heating system with semiconductor light source
JP2017220653A (en) * 2016-06-10 2017-12-14 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor device
JP7470190B2 (en) 2019-11-14 2024-04-17 アプライド マテリアルズ インコーポレイテッド Modular LED Heater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270531A (en) * 2001-03-14 2002-09-20 Tokyo Electron Ltd Lamp with reflector and thermal treatment apparatus
JP2003077852A (en) * 2001-09-03 2003-03-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and method
JP2003077857A (en) * 2001-09-03 2003-03-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and method
JP2005536045A (en) * 2002-08-09 2005-11-24 エーエスエム アメリカ インコーポレイテッド LED heating lamp array for CVD heating
JP2006059931A (en) * 2004-08-18 2006-03-02 Canon Anelva Corp Rapid heat treatment equipment
WO2008029742A1 (en) * 2006-09-05 2008-03-13 Tokyo Electron Limited Annealing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270531A (en) * 2001-03-14 2002-09-20 Tokyo Electron Ltd Lamp with reflector and thermal treatment apparatus
JP2003077852A (en) * 2001-09-03 2003-03-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and method
JP2003077857A (en) * 2001-09-03 2003-03-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and method
JP2005536045A (en) * 2002-08-09 2005-11-24 エーエスエム アメリカ インコーポレイテッド LED heating lamp array for CVD heating
JP2006059931A (en) * 2004-08-18 2006-03-02 Canon Anelva Corp Rapid heat treatment equipment
WO2008029742A1 (en) * 2006-09-05 2008-03-13 Tokyo Electron Limited Annealing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509143A (en) * 2014-01-17 2017-03-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Heating system with semiconductor light source
JP2017220653A (en) * 2016-06-10 2017-12-14 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor device
JP7470190B2 (en) 2019-11-14 2024-04-17 アプライド マテリアルズ インコーポレイテッド Modular LED Heater

Similar Documents

Publication Publication Date Title
KR20110009187A (en) Annealing device
JP5526876B2 (en) Heating device and annealing device
KR101633653B1 (en) Rapid thermal processing chamber with shower head
JP5473206B2 (en) Rapid conduction cooling using a secondary processing plane
US9240341B2 (en) Top wafer rotation and support
US8041197B2 (en) Heating apparatus, heat treatment apparatus, computer program and storage medium
US11495479B2 (en) Light pipe window structure for thermal chamber applications and processes
JP2012191158A (en) Microwave irradiation device
JP2010034491A (en) Annealing apparatus
JP2005101237A (en) Heat treatment equipment
KR20120054636A (en) Heat treatment apparatus
JP2008182228A (en) Temperature measurement and control of wafer support in thermal processing chamber
WO2014038667A1 (en) Substrate processing device, semiconductor-device manufacturing method, and recording medium
KR101699690B1 (en) Quartz window having gas feed and processing equipment incorporating same
JP2017521874A (en) Light pipe structure window for low pressure heat treatment
JP2003515950A (en) Single wafer furnace with resistance heating
WO2009157484A1 (en) Annealing apparatus
KR20200023987A (en) Plasma processing apparatus
US20180254206A1 (en) Rotor cover
JP2010129861A (en) Thermal processing apparatus
TW202021011A (en) Optically transparent pedestal for fluidly supporting a substrate
TW201946182A (en) Substrate processing device capable of enhancing temperature distribution uniformity along line width direction of heater
TWI823437B (en) Heat treatment device
KR102271250B1 (en) Diffuser for lamp heating assembly
JP2005159377A (en) Heat treatment apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112321.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026632

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13001357

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09770194

Country of ref document: EP

Kind code of ref document: A1