WO2009157179A1 - Method and apparatus for manufacturing a semiconductor having a wired structure - Google Patents

Method and apparatus for manufacturing a semiconductor having a wired structure Download PDF

Info

Publication number
WO2009157179A1
WO2009157179A1 PCT/JP2009/002848 JP2009002848W WO2009157179A1 WO 2009157179 A1 WO2009157179 A1 WO 2009157179A1 JP 2009002848 W JP2009002848 W JP 2009002848W WO 2009157179 A1 WO2009157179 A1 WO 2009157179A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
raw material
semiconductor
wire
manufacturing
Prior art date
Application number
PCT/JP2009/002848
Other languages
French (fr)
Japanese (ja)
Inventor
太田裕朗
斧高一
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2010517754A priority Critical patent/JPWO2009157179A1/en
Publication of WO2009157179A1 publication Critical patent/WO2009157179A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a semiconductor having a wire-like structure, and more particularly to a technique for mass-producing a semiconductor having a wire-like structure.
  • Semiconductors formed in “nanowires” having a wire-like structure of a size smaller than 1 ⁇ m exhibit physical properties different from those of bulk materials, so FETs, thermoelectric elements, PRAMs, solar cells, sensors, light emitting devices, etc. It is expected to be applied to various electronic parts.
  • VLS method As a method for producing nanowires, a vapor-liquid-solid method (hereinafter referred to as “VLS method”) is known.
  • the basic principle of the VLS method is as schematically shown in the explanatory diagram of FIG.
  • a thin film 110 of a catalytic metal for example, Ni
  • a catalytic metal for example, Ni
  • the temperature is raised and the catalyst metal of the thin film 110 is melted to form minute droplets 112 of the catalyst metal on the surface 102 of the substrate 100 as shown in FIG.
  • a vapor phase semiconductor raw material for example, Ga and N
  • a columnar microstructure that is, a nanowire 140 in which a liquid catalyst metal tip portion 130 into which a semiconductor raw material is taken in is arranged on the surface 102 of the substrate 100 is indicated by an arrow 150. Grows upward as shown.
  • the tip portion 132 of the liquid catalyst metal into which the semiconductor raw material is taken becomes gradually smaller, and the nanowire 142 grows in the radial direction indicated by the arrow 152. May gradually grow and grow upward as indicated by an arrow 154 to have a substantially conical shape.
  • the thickness and height of the nanowire changes or bends.
  • Au or In is used as a catalyst metal and SiH 4 is diluted with He as a source gas and supplied, a Si wire portion is formed at the front end portion of Au.
  • the two-zone furnace When forming nanowires by the VLS method, an electric furnace apparatus called two-zone furnace shown in the schematic diagram of FIG. 3 is generally used. As shown in FIG. 3, the two-zone furnace includes a cylindrical tube 160 formed of ceramic or quartz so that the upstream region 162 and the downstream region 164 can be heated at different temperatures. It has become.
  • a source gas and a dilution gas for example, Ar, H 2
  • a source gas and a dilution gas for example, Ar, H 2
  • a dilution gas for example, Ar, H 2
  • the raw material 170 that is a powdery solid is stored, and the upstream region 162 is heated to, for example, 1000 ° K to evaporate the raw material 170 as indicated by an arrow 162a.
  • the substrate 100 having a thin film formed on the surface is accommodated, heated to a temperature at which the metal of the thin film formed on the substrate 100 melts, for example, 500 ° K, and as indicated by an arrow 164a,
  • the raw material evaporated in the upstream region 162 is absorbed by the molten metal on the substrate 100.
  • Patent Document 1 discloses that a copper nanowire is formed by producing a microstructure using copper oxide and reducing the microstructured copper oxide using plasma. This copper nanowire is not formed by precipitation of the raw material absorbed by the catalyst metal, and is manufactured by a method different from the VLS method.
  • Patent Document 2 discloses that a catalytic metal formed on a substrate is irradiated with plasma, the catalytic metal is scattered as fragments, and nanostructures are formed by chemical vapor deposition using nanoparticles scattered on the substrate as nuclei. Is disclosed. This nanostructure is not formed by precipitation of the raw material absorbed by the catalyst metal, and is manufactured by a method different from the VLS method.
  • Patent Document 3 discloses that when SiO 2 and Si powder are heated with a laser or the like to form a gas phase of SiO and then cooled, nanowires in which Si is partially connected to the solidified SiOx surface are formed. Has been. This method does not use a catalytic metal and is manufactured by a method different from the VLS method.
  • nanowires by the VSL method Although making nanowires by the VSL method has been studied, only a small amount is manufactured using a small-diameter substrate (wafer) at the laboratory level. For practical application of products using nanowires such as FETs, thermoelectric elements, PRAMs, solar cells, sensors, light emitting devices, etc., it is necessary to be able to manufacture nanowires efficiently in large quantities using a large-diameter substrate (wafer). .
  • the present invention can efficiently and uniformly supply a raw material for producing nanowires by a VLS method to a large-diameter substrate, and can efficiently mass-produce nanowires. It is an object of the present invention to provide a method and an apparatus for manufacturing a semiconductor having
  • the present invention provides a method for manufacturing a semiconductor having a wire-like structure configured as follows.
  • a method for manufacturing a semiconductor having a wire-like structure includes: (i) a first step of forming fine droplets containing a catalytic metal on a main surface of a substrate; and (ii) supplying a raw material toward the substrate.
  • a metal thin film or metal nanoparticles applied on a semiconductor substrate becomes liquid when the temperature rises (for example, 150 ° C. or higher).
  • This metal liquid partially contains a semiconductor component and can be made into fine droplets smaller than 1 ⁇ m.
  • these minute droplets contain a catalytic metal and the semiconductor material is supplied, the semiconductor material is absorbed into the minute droplets.
  • the semiconductor raw material absorbed in the droplet is saturated, the semiconductor is deposited on the substrate as crystals.
  • absorption and deposition of the semiconductor raw material are repeated, a nanowire having a columnar microstructure with an outer diameter smaller than 1 ⁇ m is formed on the substrate.
  • the main surface of the substrate is a surface having a metal serving as a catalyst, a surface that receives a raw material supply, and a surface on which nanowires grow.
  • the raw material when the raw material is supplied by sputtering, the raw material can be easily supplied to a large-diameter substrate.
  • supplying the raw material gas by flow it is necessary to heat the solid raw material and keep the raw material gas at a high temperature, and exhaust the raw material and dilution gas, which is wasteful, but when supplying the raw material by sputtering It is not necessary to heat for supplying the raw material, it is possible to supply the raw material at a low temperature, and there is little waste of the raw material and dilution gas.
  • the raw material when supplied by sputtering, it is easier to make the growth conditions of the nanowires the same at any location on the substrate, compared to the case where the raw material gas is supplied by a flow. Uniform nanowires can be easily manufactured.
  • the solid source sputtered in the second step includes a plurality of components in a predetermined ratio.
  • the ratio of the plurality of components contained in the nanowire can be made substantially the same as the component ratio of the solid source.
  • the solid source sputtered in the second step includes an impurity component in addition to the main component.
  • nanowires of p / n semiconductor can be manufactured.
  • the catalyst metal is supplied toward the substrate by sputtering during the second step.
  • At least one of a Cl mixed plasma, a hydrogen mixed plasma, and an Ar mixed plasma is used for the sputtering in the second step.
  • the sputtered Si can be converted into a compound species such as SiCl X or SiH X by enhancing the sputtering or causing a gas phase reaction in the plasma.
  • Ar mixed plasma can supply a raw material stably from a solid source.
  • a part of the raw material or impurities contained in the nanowire is supplied by gas.
  • raw materials or impurities that can be easily supplied in the gas phase can be supplied as they are in the gas phase.
  • gas phase BCl 3 or phosphine is supplied by gas.
  • minute droplets containing the catalytic metal are formed only in a partial area of the main surface of the substrate.
  • the nanowire grows in the area where the thin film has been formed on the main surface of the substrate in advance, but the nanowire does not grow in the other area. it can.
  • a product different from the solid source generated by reacting constituent elements ejected from the solid source by sputtering in plasma is supplied as the raw material toward the substrate.
  • the substrate is irradiated with plasma.
  • the present invention provides a semiconductor manufacturing apparatus having a wire structure configured as follows.
  • a semiconductor manufacturing apparatus having a wire-like structure includes: (a) a sputtering mechanism having a raw material support portion that supports a solid source so as to contact plasma; and (b) a substrate disposed adjacent to the sputtering mechanism. A substrate supporting unit that supports the substrate, and (c) a heating unit that heats the substrate supported by the substrate supporting unit.
  • the raw material separated from the solid source in the sputtering mechanism is supplied toward the substrate supported by the substrate support, and semiconductor nanowires are formed on the main surface of the substrate.
  • the raw material when a raw material is supplied by sputtering, the raw material can be easily supplied to a large-diameter substrate.
  • supplying the raw material gas by flow it is necessary to heat the solid raw material and keep the raw material gas at a high temperature, and exhaust the raw material and dilution gas, which is wasteful, but when supplying the raw material by sputtering It is not necessary to heat for supplying the raw material, it is possible to supply the raw material at a low temperature, and there is little waste of the raw material and dilution gas.
  • the raw material when supplied by sputtering, it is easier to make the growth conditions of the nanowires the same at any location on the substrate, compared to the case where the raw material gas is supplied by a flow. Uniform nanowires can be easily manufactured.
  • the sputtering mechanism further includes a magnetic field unit that applies a magnetic field to the plasma.
  • a magnetron sputtering type sputtering mechanism can be used.
  • the diameter can be increased and ions can be concentrated in a magnetic field, so that a high sputtering rate can be obtained and efficiency is high.
  • the sputtering mechanism applies a magnetic field to the plasma to cause a cyclotron motion
  • a microwave irradiation unit irradiates the magnetic field with a microwave having the same frequency as a cyclotron frequency in the magnetic field. And further comprising.
  • an ECR (electron cyclotron resonance) sputtering type sputtering mechanism can be used.
  • plasma can be generated at a location distant from the substrate, which facilitates device design. Since the plasma density can be increased, a high sputtering rate can be obtained and efficiency is high.
  • the solid source supported by the raw material support portion and the main surface of the substrate supported by the substrate support portion are arranged to face each other.
  • the solid source and the substrate face each other, it becomes easy to control the supply of the raw material to the substrate, so that the substrate can be easily enlarged.
  • waste of raw materials is reduced and the use efficiency of raw materials is high.
  • the raw material can be uniformly supplied to the substrate.
  • the raw material support portion supports the flat plate-shaped solid source in parallel with the substrate supported by the substrate support portion.
  • the raw material can be uniformly supplied to the substrate, the use efficiency of the raw material can be increased, and it is suitable for increasing the diameter of the substrate.
  • the solid source supported by the raw material support part and the substrate supported by the substrate support part are opposed to each other and have a distance of 5 cm or less.
  • the raw material can be supplied uniformly toward the substrate, the use efficiency of the raw material can be increased, and it is suitable for increasing the diameter of the substrate. .
  • the diameter of the substrate supported by the substrate support portion is 3 inches or more.
  • nanowires can be efficiently manufactured using a substrate having a large diameter of 3 inches or more.
  • the semiconductor manufacturing apparatus having a wire-like structure includes a first voltage application unit for applying a voltage to the solid source supported by the raw material support unit, and the substrate supported by the substrate support unit. And a second voltage application unit for applying a voltage to the power supply.
  • the solid source and the substrate can be separately biased.
  • the substrate side may be applied with a bias suitable for nanowire growth or zero bias by the second voltage application unit. it can.
  • the semiconductor manufacturing apparatus having a wire-like structure further includes a control unit that controls voltages applied by the first and second voltage application units.
  • ions in the plasma can be drawn to the substrate side on which the nanowire is formed.
  • etching or sputtering can be caused to align the directivity of the nanowire.
  • the first and second voltage application units apply a DC voltage when the material is supplied toward the substrate.
  • the raw material when a DC voltage is applied, the raw material can be supplied at a high speed and the supply of the raw material can be easily controlled, so that the nanowire can be stably and efficiently grown.
  • the heating part can be heated to at least 150 ° C. or higher.
  • the nanowire can be manufactured by the VLS method by melting the thin film formed on the surface of the substrate by heating at 150 ° C. or higher.
  • a raw material for producing a nanowire by the VLS method can be efficiently and uniformly supplied to a large-diameter substrate, and the nanowire can be efficiently used. Can be mass-produced well.
  • Example 1 It is a block diagram of the manufacturing apparatus of the semiconductor which has a wire-like structure.
  • Example 2 It is a block diagram of the manufacturing apparatus of the semiconductor which has a wire-like structure.
  • Example 2 It is a block diagram of an electric furnace apparatus.
  • Conventional example It is explanatory drawing of the manufacturing method of the nanowire by VLS method. (Conventional example)
  • Example 1 A semiconductor manufacturing method and manufacturing apparatus having a wire structure according to Example 1 will be described with reference to FIG.
  • FIG. 1 is a configuration diagram schematically showing the basic configuration of the manufacturing apparatus 10.
  • the manufacturing apparatus 10 includes a raw material support unit 14 that supports a solid source (target) 4 and a substrate support unit 16 that supports a substrate (wafer) 8 in a chamber 12.
  • a valve 12s connected to a gas supply source (not shown)
  • gas is supplied into the chamber 12 from the gas inlet 12a as indicated by an arrow 12x, and from the gas outlet 12b as indicated by an arrow 12y.
  • the gas is exhausted by the vacuum pump 12t.
  • a magnetic field portion 15 including a permanent magnet is disposed adjacent to the raw material support portion 14 so as to apply a magnetic field parallel to the surface 4 a of the solid source 4 supported by the raw material support portion 14.
  • the magnetic field unit 15 is configured to correspond to the magnetron sputtering method.
  • the magnet of the magnetic field unit 15 is configured to rotate with respect to the disk-shaped solid source 4 supported by the raw material support unit 14, and the target utilization rate You may make it improve.
  • the magnetic field portion 15 may include a solenoid coil, and the magnetic field may be supplementarily formed to improve the target utilization rate.
  • the substrate support unit 16 is provided with a heating unit 18 and can heat the substrate 8 supported by the substrate support unit 16.
  • the heating unit 18 needs to be heated to about 200 ° C. for an In thin film and to about several hundred degrees C for an Au thin film.
  • the droplet containing the catalytic metal is formed on the surface 8a of 8, and the nanowire can be manufactured by the VLS method.
  • the first voltage application unit 22 is connected to the raw material support unit 14 so that the solid source 4 supported by the raw material support unit 14 can be set to a predetermined potential.
  • a second voltage application unit 24 is connected to the substrate support unit 16 so that the substrate 8 supported by the substrate support unit 16 can be set to a predetermined potential.
  • the solid source 4 and the substrate 8 can be separately biased.
  • the second voltage application unit 24 causes the substrate 8 side to apply a bias or zero bias suitable for nanowire growth.
  • the voltage application units 22 and 24 may be direct current or alternating current. In addition, it is accompanied by a circuit including a capacitor as required.
  • valve 12s, the vacuum pump 12t, the temperature adjusting device 20, the first voltage applying unit 22, the second voltage applying unit 24, and the like are connected to the control device 30 as indicated by a chain line, and the manufacturing device The operation of the entire 10 is controlled.
  • the raw material support portion 14 and the substrate support portion 16 are arranged to face each other, and the surface 4a of the solid source 4 supported by the raw material support portion 14 and the surface 8a of the substrate 8 supported by the substrate support portion 16 face each other.
  • the supply of the raw material to the substrate 8 can be easily controlled, so that the substrate 8 can be easily enlarged.
  • waste of raw materials is reduced and the use efficiency of raw materials is high.
  • the raw material can be uniformly supplied to the substrate 8.
  • the solid source 4 and the substrate 8 have a flat plate shape and are supported in parallel by the raw material support portion 14 and the substrate support portion 16. By arranging the solid source 4 and the substrate 8 in parallel, the raw material can be uniformly supplied to the substrate 8, the use efficiency of the raw material can be increased, and it is suitable for increasing the diameter of the substrate 8.
  • the solid source 4 supported by the raw material support part 14 and the substrate 8 supported by the substrate support part 16 face each other and have a distance of 5 cm or less.
  • the distance between the solid source 4 and the substrate 8 within 5 cm the raw material can be supplied uniformly toward the substrate 8, the use efficiency of the raw material can be increased, and the substrate 8 has a large diameter. It is suitable for.
  • the substrate support portion 16 is preferably configured to support a substrate (wafer) 8 having a diameter of 3 inches or more.
  • a substrate (wafer) 8 having a diameter of 3 inches or more.
  • nanowires can be efficiently manufactured using a substrate 8 having a large diameter of 3 inches or more.
  • a raw material exchange mechanism for exchanging the solid source 4 supported by the raw material support portion 14 and a substrate exchange mechanism for exchanging the substrate 8 supported by the substrate support portion 16 may be provided.
  • the substrate 8 is supported on the substrate 8 on which the thin film containing the catalyst metal is previously formed on the surface 8a, the substrate 8 is heated by the heating unit 18, and the thin film formed on the surface 8a of the substrate 8 is melted. , Forming fine droplets containing catalytic metal.
  • a substrate such as Si, SiO 2 , Al 2 O 3 , ZnO, or C can be used, which may be a conductive substrate or an insulating substrate.
  • a substrate having a multilayer structure in which Si is deposited on SiO 2 may be used.
  • nanowires are grown on a Si substrate, a device fused with conventional Si technology becomes possible. It is also possible to grow nanowires on a multilayer substrate such as a substrate obtained by depositing thin film Si on a transparent substrate such as SiO 2 , which can be applied to solar cells and the like.
  • the catalyst metal As the catalyst metal, Au, In, Ga, or the like can be used, and an alloy may be used. Au is often used. When In or Ga is used, the melting point is low, and the temperature at which nanowires are grown can be kept low.
  • the catalyst metal may be arranged in the form of metal fine particles or nanoparticles on the surface 8a of the substrate 8. In this case, the outer diameter of the nanowire is uniformly controlled. Easy to do.
  • An area having a catalyst metal and an area having no catalyst metal may be formed on the surface 8a of the substrate 8. Nanowires grow in areas with catalytic metal, and no nanowires grow in areas without catalytic metal. This makes it possible to control where the nanowires are grown. For example, after forming a thin film on the surface 8a of the substrate 8, the substrate on which the area having the catalytic metal and the area not having the catalytic metal are heated by using a normal lithography technique or etching technique, Minute droplets can be formed only in areas having
  • the substrate 8 may be irradiated with plasma.
  • the energy by the plasma for performing the sputtering is positively used, so that the heat supply from the outside can be reduced or eliminated.
  • the raw material is supplied to the fine droplets containing the catalytic metal formed on the surface 8a of the substrate 8 by sputtering, and the raw materials are absorbed into the droplets.
  • the raw material is deposited on the surface 8 a side of the substrate 8.
  • the solid columnar portion is extended by the raw material deposited on the surface 8a side of the substrate 8, and a nanowire having a catalyst metal droplet disposed at the tip of the columnar portion is formed.
  • the solid source 4 is supported by the raw material support 14, and a gas (for example, Ar, for example) is contained in the chamber 12 with the substrate 8 having a thin film containing a catalytic metal formed on the surface 8 a supported by the substrate support 16.
  • a gas for example, Ar, for example
  • a high-frequency voltage is applied between the raw material support 14 and the substrate support 16 by the first and second voltage application units 22 and 24 to generate glow discharge, and the introduced gas is Plasma is generated to generate ions 2.
  • the substrate 8 supported by the substrate support unit 16 is heated by using the heat generated by plasma irradiation or by the heating unit 18 to melt the thin film formed on the surface 8a of the substrate 8, and the catalyst metal fine liquid is melted. Drops are formed on the surface of the substrate.
  • the bias is set by the first and second voltage application units 22 and 24 so that the solid source 4 supported by the raw material support unit 14 becomes a cathode and the substrate 8 supported by the substrate support unit 16 becomes an anode.
  • the ions 2 generated by the glow discharge are attracted to and collide with the surface 4 a of the solid source 4, and the constituent elements 6 of the solid source 4 released from the surface 4 a of the solid source 4 by this collision are directed toward the substrate 8. Supplied.
  • the magnetic field unit 15 generates a magnetic field parallel to the surface 4a of the solid source 4 and strikes the surface of the solid source 4 from the surface 4a as the ions 2 generated by glow discharge collide with the surface 4a of the solid source 4.
  • the emitted secondary electrons are captured by the Lorentz force and moved in a cyclotron motion, thereby promoting ionization of a gas such as Ar.
  • the raw material (constituent element 6) supplied to the substrate 8 by magnetron sputtering in this way is absorbed by the fine droplets formed on the surface 8a of the substrate 8, and precipitates when saturated to form nanowires. That is, nanowires are formed by the VLS method.
  • the solid source 4 can contain one or more of Si, Ge, Te, Sb and the like. SiGe, GeTe, SbTe, ZnO, MgO, MgZnO, or the like may be included.
  • the ratio of the multiple components contained in the nanowire can be substantially the same as the component ratio of the solid source.
  • Si has various applications such as solar cells and nanowire FETs.
  • SiGe can be used for thermoelectric elements and GeTe can be used for PRAM.
  • SiH 4 , GeH 4 when supplying in a gas phase (SiH 4 , GeH 4 ), it is very explosive and toxic, which places a burden on the gas supply and exhaust equipment. For solid sources, such risks can be significantly reduced.
  • the solid source 4 may contain impurities in addition to the main component.
  • the solid source 4 contains impurities, p-type and n-type semiconductor nanowires can be manufactured.
  • the main component is any one of Si, SiGe, and Ge, and the impurity is B or P.
  • the catalyst metal component used for producing the nanowire may be included in the solid source 4.
  • a catalyst metal is replenished to the droplet disposed at the tip of the nanowire, thereby preventing the droplet from becoming smaller as the nanowire grows and forming an elongated nanowire with a constant outer diameter. Can do.
  • a plasma gas for example, a Cl mixed gas, a hydrogen mixed gas, or an Ar mixed gas is supplied to a space between the raw material support 14 and the substrate support 16 in the chamber 12, and a Cl mixed plasma or a hydrogen mixed plasma is supplied. , Ar mixed plasma is generated.
  • Ar plasma is a plasma often used in sputtering. When plasma containing Cl or H is used, sputtering can be enhanced, or the sputtered Si can be converted into a compound such as SiCl X or SiH X by a gas phase reaction in the plasma.
  • a part of the raw material or impurities contained in the nanowire may be supplied by gas.
  • gas For example, when Ge is supplied from the solid source 4 by sputtering and a gas of SiCl 4 is supplied, SiGe nanowires can be grown. Materials that are difficult to be supplied in the gas phase are supplied from the solid source 4, and materials that are easily supplied in the gas phase are supplied as they are in the gas phase.
  • BCl 3 and phosphine may be supplied in the gas phase.
  • supplying BCl 3 forms p-Si nanowires doped with boron.
  • a product different from the solid source 4 generated by the reaction of the constituent element 6 ejected from the solid source 4 by sputtering in the plasma may be supplied to the surface 8 a of the substrate 8.
  • Si sputtered from a Si fixed source may be supplied to the substrate 8 after reacting with SiCl X in chlorine plasma.
  • the control device 30 controls the first voltage application unit 22 and the second voltage application unit 24 to apply a DC voltage when supplying the raw material from the fixed source 4 to the substrate 8 by sputtering.
  • a DC voltage When a DC voltage is applied, the raw material can be supplied at a high speed and the supply of the raw material can be easily controlled, so that the nanowire can be stably and efficiently grown.
  • Example 1 Since the manufacturing apparatus 10 of Example 1 supplies the raw material by magnetron sputtering, it can easily cope with the substrate 8 having a large diameter. In addition, since ions can be concentrated in a magnetic field, a high sputtering rate can be obtained and efficiency is high.
  • the solid source 4 and the substrate 8 can be separately biased.
  • the solid source 4 is sputtered by applying a high bias to the solid source 4 by the first voltage application unit 22, while the substrate side 8 has a bias suitable for nanowire growth or zero bias by the second voltage application unit 24. Can be added.
  • the first voltage application unit 22 controls the voltage applied to the substrate 8 by the first voltage application unit 22, it is possible to draw ions in the plasma to the substrate 8 side on which the nanowire is formed. Etching or sputtering can be caused to align the directivity of the nanowire. For example, ions are made to collide with the raw material deposited around the nanowire on the substrate 8 and the raw material deposited around the nanowire is repelled and removed. It is possible to remove those that are insufficient.
  • Example 2 The manufacturing apparatus 10a of Example 2 will be described with reference to FIG.
  • FIG. 2 is a configuration diagram schematically showing the basic configuration of the manufacturing apparatus 10a.
  • a ring-shaped solid source 4 is supported by a raw material support portion 14a provided between a plasma generation chamber 13a and a sample chamber 13b that communicate with each other.
  • the solid source 4 is negatively biased by the first voltage application unit 22a.
  • gas is supplied to the plasma generation chamber 13a and exhausted from the sample chamber 13b as indicated by an arrow 13y.
  • a substrate support portion 16a that supports the substrate 8 is provided in the sample chamber 13b.
  • the substrate support portion 16a is provided with a heating portion 18a for heating the substrate 8 supported by the substrate support portion 16a.
  • a coil 40 for generating a magnetic field in the plasma generation chamber 13a and a microwave irradiation unit for irradiating the plasma generation chamber 13a with microwaves are provided outside the plasma generation chamber 13a.
  • the coil 40 applies a magnetic field to the gas supplied into the plasma generation chamber 13a to cause a cyclotron motion.
  • the irradiation unit 42 irradiates a microwave having the same frequency as the cyclotron frequency of the plasma, thereby causing electron cyclotron resonance, turning the gas into a plasma, and being guided along the magnetic field emanating from the plasma generation chamber 13a.
  • Sputtering is performed by causing plasma to collide with the solid source 4, and the raw material 6 ejected is supplied toward the substrate 8 supported by the substrate support 16a of the sample chamber 13b.
  • the manufacturing apparatus 10a can form nanowires in the same process as in the first embodiment.
  • the substrate 8 on which the thin film is formed in advance on the surface 8a is supported by the substrate support portion 16a, and the substrate 8 is heated by the heating portion 18a to form minute droplets of catalyst metal on the surface 8a of the substrate 8.
  • the raw material is supplied from the solid source 4 to the substrate 8 by ECR (electron cyclotron resonance) sputtering to form nanowires.
  • Example 2 Since the manufacturing apparatus 10a of Example 2 supplies the raw material by sputtering of an ECR (electron cyclotron resonance) sputtering method, it is possible to generate plasma at a place away from the substrate, and the apparatus design becomes easy. In addition, since the plasma density can be increased, a high sputtering rate can be obtained and efficiency is high.
  • ECR electron cyclotron resonance
  • the raw material when a raw material is supplied by sputtering, the raw material can be easily supplied even to a large-diameter substrate.
  • supplying the raw material gas by flow it is necessary to heat the solid raw material and keep the raw material gas at a high temperature, and exhaust the raw material and dilution gas, which is wasteful, but when supplying the raw material by sputtering It is not necessary to heat for supplying the raw material, it is possible to supply the raw material at a low temperature, and there is little waste of the raw material and dilution gas.
  • the raw material when supplied by sputtering, it is easier to make the growth conditions of the nanowires the same at any location on the substrate, compared to the case where the raw material gas is supplied by a flow. Uniform nanowires can be easily manufactured.
  • the raw material may be supplied by sputtering other than magnetron sputtering or ECR (electron cyclotron resonance) sputtering.
  • the plasma for sputtering may be generated by a method other than glow discharge, such as an ion gun.
  • sputtering may be performed by supplying plasma generated in another space to the space between the raw material support portion and the substrate support portion.

Abstract

Provided are a method and an apparatus for manufacturing a semiconductor having a wired structure, which can feed a raw material for manufacturing a nanowire by a vapor-liquid-solid method, efficiently and homogeneously to a substrate of a large diameter, thereby to manufacture the nanowire efficiently and massively.  The manufacturing apparatus (10) comprises (a) a sputtering mechanism having a material supporting unit (14) for supporting a solid source (4) to contact a plasma, (b) a substrate supporting unit (16) for supporting a substrate (8) so as to face the sputtering mechanism, and (c) a heating unit (18) for heating the substrate supported by the substrate supporting unit (16).  The manufacturing method heats the substrate (8) by the heating unit (18) thereby to form minute liquid droplets containing a catalytic metal over the principal face (8a) of the substrate (8), sputters the solid source (4) to feed a raw material (6) toward the substrate (8), and causes the liquid droplets to absorb the raw material (6) thereby to form the nanowire over the principal face (8a) of the substrate (8).

Description

ワイヤー状構造をもつ半導体の製造方法及び製造装置Manufacturing method and manufacturing apparatus of semiconductor having wire structure
 本発明は、ワイヤー状構造をもつ半導体の製造方法及び製造装置に関し、詳しくは、ワイヤー状構造をもつ半導体を量産するための技術に関する。 The present invention relates to a method and an apparatus for manufacturing a semiconductor having a wire-like structure, and more particularly to a technique for mass-producing a semiconductor having a wire-like structure.
 1μmより小さいサイズのワイヤー状構造をもつ「ナノワイヤ」に形成された半導体は、バルク材の状態とは異なる物理特性を発揮することから、FET、熱電素子、PRAM、太陽電池、センサ、発光デバイスなど、種々の電子部品に応用することが期待されている。 Semiconductors formed in “nanowires” having a wire-like structure of a size smaller than 1 μm exhibit physical properties different from those of bulk materials, so FETs, thermoelectric elements, PRAMs, solar cells, sensors, light emitting devices, etc. It is expected to be applied to various electronic parts.
 ナノワイヤを製造する方法として、Vapor-liquid-solid法(以下、「VLS法」という。)が知られている。VLS法の基本原理は、図4の説明図に模式的に示すとおりである。 As a method for producing nanowires, a vapor-liquid-solid method (hereinafter referred to as “VLS method”) is known. The basic principle of the VLS method is as schematically shown in the explanatory diagram of FIG.
 すなわち、まず、図4(a)に示すように基板100の表面102に触媒金属(例えば、Ni)の薄膜110を形成する。次いで、温度を上げ、薄膜110の触媒金属が溶融させて、図4(b)に示すように、基板100の表面102に触媒金属の微小な液滴112を形成する。次いで、図4(c)において矢印118で示すように、気相の半導体原料(例えば、GaとN)を供給すると、触媒金属の液滴112は半導体原料を吸収する。 That is, first, as shown in FIG. 4A, a thin film 110 of a catalytic metal (for example, Ni) is formed on the surface 102 of the substrate 100. Next, the temperature is raised and the catalyst metal of the thin film 110 is melted to form minute droplets 112 of the catalyst metal on the surface 102 of the substrate 100 as shown in FIG. Next, as shown by an arrow 118 in FIG. 4C, when a vapor phase semiconductor raw material (for example, Ga and N) is supplied, the catalytic metal droplet 112 absorbs the semiconductor raw material.
 半導体原料の供給を続けると、触媒金属の液滴112に吸収された半導体原料が飽和状態になり、基板100の表面102側に半導体が結晶として(例えば、GaN)析出する。これによって、図4(d)に示すように、基板100の表面102には、半導体原料が取り込まれる液状触媒金属の先端部130が配置された柱状の微小構造、すなわちナノワイヤ140が、矢印150で示すように上向きに成長する。 When the supply of the semiconductor raw material is continued, the semiconductor raw material absorbed in the catalyst metal droplets 112 becomes saturated, and the semiconductor is precipitated as crystals (for example, GaN) on the surface 102 side of the substrate 100. As a result, as shown in FIG. 4D, a columnar microstructure, that is, a nanowire 140 in which a liquid catalyst metal tip portion 130 into which a semiconductor raw material is taken in is arranged on the surface 102 of the substrate 100 is indicated by an arrow 150. Grows upward as shown.
 さらに長時間半導体原料の供給を続けると、図4(e)に示すように、半導体原料が取り込まれる液状触媒金属の先端部132が次第に小さくなり、ナノワイヤ142は、矢印152で示す径方向の成長が次第に小さくなりながら、矢印154で示すように上向きに成長し、略円錐形状になる場合もある。 If the supply of the semiconductor raw material is continued for a long time, as shown in FIG. 4E, the tip portion 132 of the liquid catalyst metal into which the semiconductor raw material is taken becomes gradually smaller, and the nanowire 142 grows in the radial direction indicated by the arrow 152. May gradually grow and grow upward as indicated by an arrow 154 to have a substantially conical shape.
 材料の組み合わせ、成長時の温度や原料ガスの圧力などの条件を変えると、ナノワイヤは、太さや高さが変わったり、折れ曲がったりする。例えば、触媒金属にAuやInなどを用い、原料ガスとしてSiHをHeで希釈して供給すると、Auの先端部にSiのワイヤー部が形成される。 When the conditions such as the combination of materials, growth temperature and source gas pressure are changed, the thickness and height of the nanowire changes or bends. For example, when Au or In is used as a catalyst metal and SiH 4 is diluted with He as a source gas and supplied, a Si wire portion is formed at the front end portion of Au.
 つまり、VLS法では、気相(Vapor)の半導体原料を、液状(Liquid)の触媒金属の微小な液滴に吸収させた後に、液滴の下に半導体共晶物の固体(Solid)を析出させる。 In other words, in the VLS method, after vapor phase semiconductor raw material is absorbed in fine droplets of liquid catalytic metal, a solid (solid) of a semiconductor eutectic is deposited under the droplets. Let
 VLS法でナノワイヤを形成する場合、一般には、図3の模式図に示すtwo-zone furnaceと呼ばれる電気炉装置が用いられている。two-zone furnaceは、図3に示すように、セラミックや石英で形成された筒状の管160を備え、上流側の領域162と下流側の領域164を異なる温度で加熱することができるようになっている。 When forming nanowires by the VLS method, an electric furnace apparatus called two-zone furnace shown in the schematic diagram of FIG. 3 is generally used. As shown in FIG. 3, the two-zone furnace includes a cylindrical tube 160 formed of ceramic or quartz so that the upstream region 162 and the downstream region 164 can be heated at different temperatures. It has become.
 ナノワイヤを形成する場合には、矢印160aで示すように一方から原料ガスと希釈ガス(例えば、Ar,H)を供給し、矢印160bで示すように他端から排気する。上流側の領域162には、粉状の固体である原料170を収納し、上流側の領域162を例えば1000°Kに加熱して、矢印162aで示すように、原料170を蒸発させる。下流側の領域164には、表面に薄膜が形成された基板100を収納し、基板100に形成された薄膜の金属が溶融する温度、例えば500°Kに加熱し、矢印164aで示すように、上流側領域162で蒸発させた原料を、基板100上の溶融した金属に吸収させる。 When forming the nanowire, a source gas and a dilution gas (for example, Ar, H 2 ) are supplied from one side as indicated by an arrow 160a and exhausted from the other end as indicated by an arrow 160b. In the upstream region 162, the raw material 170 that is a powdery solid is stored, and the upstream region 162 is heated to, for example, 1000 ° K to evaporate the raw material 170 as indicated by an arrow 162a. In the downstream region 164, the substrate 100 having a thin film formed on the surface is accommodated, heated to a temperature at which the metal of the thin film formed on the substrate 100 melts, for example, 500 ° K, and as indicated by an arrow 164a, The raw material evaporated in the upstream region 162 is absorbed by the molten metal on the substrate 100.
 特許文献1には、酸化銅を用いて微小構造を作製し、この微小構造の酸化銅を、プラズマを用いて還元することにより、銅ナノワイヤを形成することが開示されている。この銅ナノワイヤは、触媒金属に吸収された原料が析出することにより形成されたものではなく、VLS法とは異なる手法で製造されている。 Patent Document 1 discloses that a copper nanowire is formed by producing a microstructure using copper oxide and reducing the microstructured copper oxide using plasma. This copper nanowire is not formed by precipitation of the raw material absorbed by the catalyst metal, and is manufactured by a method different from the VLS method.
 特許文献2には、基板上に形成した触媒金属にプラズマを照射し、触媒金属を断片として散乱させ、基板上に散乱させたナノ粒子を核として、化学気相成長法によりナノ構造体を形成することが開示されている。このナノ構造体は、触媒金属に吸収された原料が析出することにより形成されたものではなく、VLS法とは異なる手法で製造されている。 Patent Document 2 discloses that a catalytic metal formed on a substrate is irradiated with plasma, the catalytic metal is scattered as fragments, and nanostructures are formed by chemical vapor deposition using nanoparticles scattered on the substrate as nuclei. Is disclosed. This nanostructure is not formed by precipitation of the raw material absorbed by the catalyst metal, and is manufactured by a method different from the VLS method.
 特許文献3には、SiOとSiのパウダーをレーザー等で加熱し、SiOの気相にした後、冷却すると、凝固したSiOxの表面に部分的にSiがつながったナノワイヤを形成することが開示されている。この手法は、触媒金属を用いておらず、VLS法とは異なる手法で製造されている。 Patent Document 3 discloses that when SiO 2 and Si powder are heated with a laser or the like to form a gas phase of SiO and then cooled, nanowires in which Si is partially connected to the solidified SiOx surface are formed. Has been. This method does not use a catalytic metal and is manufactured by a method different from the VLS method.
特開2004-214196号公報JP 2004-214196 A 特表2006-518543号公報JP 2006-518543 A 米国特許第6313015号公報US Pat. No. 6,313,015
 触媒金属を含む液滴に吸収された原料が析出することによりナノワイヤが形成されるVLS法では、従来は、two-zone furnaceのような加熱炉装置を用いて蒸発させた原料が、触媒金属を含む液滴に供給されている。 In the VLS method in which nanowires are formed by depositing a raw material absorbed in droplets containing a catalytic metal, conventionally, the raw material evaporated using a heating furnace such as two-zone furnace is used as the catalytic metal. Supplied to the containing droplets.
 VSL法によりナノワイヤを作ることは研究されているものの、実験室レベルで、小口径の基板(ウエハ)を用いて少量のものが製造されているに過ぎなかった。FET、熱電素子、PRAM、太陽電池、センサ、発光デバイスなど、ナノワイヤを応用した製品の実用化のためには、大口径の基板(ウエハ)を用いて大量に効率よくナノワイヤを製造できる必要がある。 Although making nanowires by the VSL method has been studied, only a small amount is manufactured using a small-diameter substrate (wafer) at the laboratory level. For practical application of products using nanowires such as FETs, thermoelectric elements, PRAMs, solar cells, sensors, light emitting devices, etc., it is necessary to be able to manufacture nanowires efficiently in large quantities using a large-diameter substrate (wafer). .
 しかし、原料を加熱して蒸発させ、ガスに載せて触媒金属に供給する従来の方法では、大口径の基板を用いて大量に効率よくナノワイヤを製造することが困難である。例えば、大口径の基板に対応するために、従来のtwo-zone furnaceを単純に大きくしただけでは、熱容量が大きくなり、昇温に時間がかかり、加熱に必要なエネルギーも膨大になる。また、原料や希釈ガスの無駄も多くなる。原料ガスを基板上に均一に供給することも困難であり、製品の歩留まりが悪くなる。 However, it is difficult to efficiently produce nanowires in large quantities using a large-diameter substrate by the conventional method in which the raw material is heated and evaporated, and is placed on a gas and supplied to the catalyst metal. For example, in order to cope with a large-diameter substrate, simply increasing the conventional two-zone furnace increases the heat capacity, takes time to raise the temperature, and enormous energy is required for heating. In addition, waste of raw materials and dilution gas increases. It is also difficult to uniformly supply the source gas onto the substrate, resulting in poor product yield.
 本発明は、かかる実情に鑑み、VLS法でナノワイヤを作るための原料を、大口径の基板に効率よく、かつ均一に供給することができ、ナノワイヤを効率よく量産することができる、ワイヤー状構造をもつ半導体の製造方法及び製造装置を提供しようとするものである。 In view of such circumstances, the present invention can efficiently and uniformly supply a raw material for producing nanowires by a VLS method to a large-diameter substrate, and can efficiently mass-produce nanowires. It is an object of the present invention to provide a method and an apparatus for manufacturing a semiconductor having
 本発明は、上記課題を解決するために、以下のように構成したワイヤー状構造をもつ半導体の製造方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a semiconductor having a wire-like structure configured as follows.
 ワイヤー状構造をもつ半導体の製造方法は、(i)基板の主面上に触媒金属を含む微小な液滴を形成する、第1の工程と、(ii)前記基板に向けて原料を供給し、前記原料を前記液滴に吸収させて、前記基板の前記主面上にナノワイヤを形成する第2の工程とを備える。前記第2の工程において、前記原料をスパッタリングにより供給する。 A method for manufacturing a semiconductor having a wire-like structure includes: (i) a first step of forming fine droplets containing a catalytic metal on a main surface of a substrate; and (ii) supplying a raw material toward the substrate. A second step of forming the nanowire on the main surface of the substrate by absorbing the raw material into the droplet. In the second step, the raw material is supplied by sputtering.
 例えば、半導体基板上に塗布された金属薄膜または金属ナノ粒子は、温度が上昇(例えば、150℃以上)すると液体となる。この金属液体には、一部半導体成分が含有され、1μmより小さい微小な液滴にすることができる。この微小な液滴が触媒金属を含み、半導体原料が供給されると、半導体原料が微小な液滴に吸収される。液滴に吸収された半導体原料が飽和状態になると、半導体が結晶として基板上に析出する。半導体原料の吸収、析出を繰り返すと、やがて、外径が1μmより小さい柱状の微小構造であるナノワイヤが、基板上に形成される。基板の主面は、触媒となる金属を有する面であり、原料供給を受ける面であり、ナノワイヤが成長する面である。 For example, a metal thin film or metal nanoparticles applied on a semiconductor substrate becomes liquid when the temperature rises (for example, 150 ° C. or higher). This metal liquid partially contains a semiconductor component and can be made into fine droplets smaller than 1 μm. When these minute droplets contain a catalytic metal and the semiconductor material is supplied, the semiconductor material is absorbed into the minute droplets. When the semiconductor raw material absorbed in the droplet is saturated, the semiconductor is deposited on the substrate as crystals. When absorption and deposition of the semiconductor raw material are repeated, a nanowire having a columnar microstructure with an outer diameter smaller than 1 μm is formed on the substrate. The main surface of the substrate is a surface having a metal serving as a catalyst, a surface that receives a raw material supply, and a surface on which nanowires grow.
 上記方法において、スパッタリングにより原料を供給すると、大口径の基板にも、容易に原料を供給することができる。原料ガスをフローで運んで供給する場合には固体原料を加熱し、原料ガスを高温に保つ必要があり、原料や希釈ガスを排気するため、無駄が多いが、スパッタリングで原料を供給する場合には、原料供給のために加熱する必要はなく、低温での原料供給が可能であり、原料や希釈ガスの無駄も少ない。 In the above method, when the raw material is supplied by sputtering, the raw material can be easily supplied to a large-diameter substrate. When supplying the raw material gas by flow, it is necessary to heat the solid raw material and keep the raw material gas at a high temperature, and exhaust the raw material and dilution gas, which is wasteful, but when supplying the raw material by sputtering It is not necessary to heat for supplying the raw material, it is possible to supply the raw material at a low temperature, and there is little waste of the raw material and dilution gas.
 また、原料ガスをフローで運んで供給する場合には、基板が大口径化すると原料ガスの濃度分布を均一にすることが難しくなるのに対して、スパッタリングで原料を供給する場合には、大口径の基板に均一に原料を供給することが容易である。 In addition, when the source gas is supplied by a flow, it is difficult to make the concentration distribution of the source gas uniform when the substrate has a large diameter. It is easy to uniformly supply a raw material to a substrate having a diameter.
 また、スパッタリングで原料を供給すると、原料ガスをフローで運んで供給する場合に比べ、基板上のどの場所でもナノワイヤの成長条件が同一になるようにすることも容易であるため、寸法・形状が均一なナノワイヤを容易に製造できる。 In addition, when the raw material is supplied by sputtering, it is easier to make the growth conditions of the nanowires the same at any location on the substrate, compared to the case where the raw material gas is supplied by a flow. Uniform nanowires can be easily manufactured.
 さらに、スパッタリングにより、ガスとして供給することが難しい原料を供給することができる。また、気相では反応性が乏しい材料を、スパッタリングによって、直接、供給することができる。 Furthermore, it is possible to supply a raw material that is difficult to supply as a gas by sputtering. In addition, a material having low reactivity in the gas phase can be directly supplied by sputtering.
 好ましくは、前記第2の工程においてスパッタリングされる固体ソースは、複数の成分を所定の比率で含む。 Preferably, the solid source sputtered in the second step includes a plurality of components in a predetermined ratio.
 この場合、ナノワイヤに含まれる複数成分の比率を、固体ソースの成分比率と略同一とすることができる。 In this case, the ratio of the plurality of components contained in the nanowire can be made substantially the same as the component ratio of the solid source.
 好ましくは、前記第2の工程においてスパッタリングされる固体ソースは、主成分のほか、不純物成分を含む。 Preferably, the solid source sputtered in the second step includes an impurity component in addition to the main component.
 この場合、p/n半導体のナノワイヤの製造が可能である。 In this case, nanowires of p / n semiconductor can be manufactured.
 好ましくは、前記第2の工程の途中に、前記触媒金属をスパッタリングにより、前記基板に向けた供給する。 Preferably, the catalyst metal is supplied toward the substrate by sputtering during the second step.
 ナノワイヤの成長に伴って触媒金属の液滴が小さくなったときに、スパッタリングによって触媒金属を補充する。これによって、外径が略一定で長いナノワイヤの製造が可能となる。 ∙ When the catalyst metal droplets become smaller as the nanowire grows, the catalyst metal is replenished by sputtering. This makes it possible to produce nanowires having a substantially constant outer diameter.
 好ましくは、前記第2工程のスパッタリングの際に、Cl混合プラズマ、水素混合プラズマ、Ar混合プラズマの少なくとも一つを用いる。 Preferably, at least one of a Cl mixed plasma, a hydrogen mixed plasma, and an Ar mixed plasma is used for the sputtering in the second step.
 Cl混合プラズマ、水素混合プラズマを用いると、スパッタリングをエンハンスしたり、またプラズマ中で気相反応させたりすることによって、スパッタリングされたSiをSiClやSiHなどの化合物種に変換することができる。Ar混合プラズマは、固体ソースから原料を安定して供給することができる。 When Cl mixed plasma or hydrogen mixed plasma is used, the sputtered Si can be converted into a compound species such as SiCl X or SiH X by enhancing the sputtering or causing a gas phase reaction in the plasma. . Ar mixed plasma can supply a raw material stably from a solid source.
 好ましくは、前記第2の工程において、ナノワイヤに含まれる原料又は不純物の一部が、気体によって供給される。 Preferably, in the second step, a part of the raw material or impurities contained in the nanowire is supplied by gas.
 この場合、気相で容易に供給できる原料又は不純物は、そのまま気相で供給することができる。 In this case, raw materials or impurities that can be easily supplied in the gas phase can be supplied as they are in the gas phase.
 好ましくは、前記第2の工程において、気相のBCl、又はホスフィンが、気体によって供給される。 Preferably, in the second step, gas phase BCl 3 or phosphine is supplied by gas.
 この場合、BClの供給によりボロンがドーピングされたナノワイヤを、ホスフィンの供給によりリンがドーピングされたナノワイヤを製造できる。 In this case, it is possible to produce a nanowire doped with boron by supplying BCl 3 and a nanowire doped with phosphorus by supplying phosphine.
 好ましくは、前記第1の工程において、前記基板の前記主面の一部の区域にのみ前記触媒金属を含む微小な液滴を形成する。 Preferably, in the first step, minute droplets containing the catalytic metal are formed only in a partial area of the main surface of the substrate.
 この場合、第2の工程において、基板の主面上の予め薄膜が形成されていた区域ではナノワイヤが成長するが、他の区域ではナノワイヤが成長しないため、ナノワイヤを成長させる場所を制御することができる。 In this case, in the second step, the nanowire grows in the area where the thin film has been formed on the main surface of the substrate in advance, but the nanowire does not grow in the other area. it can.
 好ましくは、前記第2の工程において、スパッタリングにより固体ソースからはじき出された構成元素がプラズマ中で反応して生成された前記固体ソースと異なる生成物が、前記原料として前記基板に向けて供給される。 Preferably, in the second step, a product different from the solid source generated by reacting constituent elements ejected from the solid source by sputtering in plasma is supplied as the raw material toward the substrate. .
 この場合、プラズマの化学種や条件を変えることで、ナノワイヤの原料となる先駆物質を制御することによって、反応条件のさらなる制御が可能である。 In this case, it is possible to further control the reaction conditions by changing the chemical species and conditions of the plasma to control the precursor that is the raw material of the nanowire.
 好ましくは、前記第1の工程において、プラズマを前記基板に照射する。 Preferably, in the first step, the substrate is irradiated with plasma.
 この場合、基板を加熱するために、第2の工程でスパッタリングを行うためのプラズマによるエネルギーを積極的に利用することで、外部からの熱供給を減らす、又は除外することができる。 In this case, in order to heat the substrate, it is possible to reduce or eliminate the heat supply from the outside by positively using the energy by the plasma for performing sputtering in the second step.
 また、本発明は、以下のように構成したワイヤー状構造をもつ半導体の製造装置を提供する。 Also, the present invention provides a semiconductor manufacturing apparatus having a wire structure configured as follows.
 ワイヤー状構造をもつ半導体の製造装置は、(a)プラズマに接触するように固体ソースを支持する原料支持部を有する、スパッタリング機構と、(b)前記スパッタリング機構に隣接して配置され、基板を支持する、基板支持部と、(c)前記基板支持部に支持された基板を加熱する、加熱部とを備える。前記スパッタリング機構において前記固体ソースから分離された原料が、前記基板支持部に支持された前記基板に向けて供給され、前記基板の主面上に半導体のナノワイヤが形成される。 A semiconductor manufacturing apparatus having a wire-like structure includes: (a) a sputtering mechanism having a raw material support portion that supports a solid source so as to contact plasma; and (b) a substrate disposed adjacent to the sputtering mechanism. A substrate supporting unit that supports the substrate, and (c) a heating unit that heats the substrate supported by the substrate supporting unit. The raw material separated from the solid source in the sputtering mechanism is supplied toward the substrate supported by the substrate support, and semiconductor nanowires are formed on the main surface of the substrate.
 上記構成において、スパッタリングにより原料を供給すると、大口径の基板にも、容易に原料を供給することができる。原料ガスをフローで運んで供給する場合には固体原料を加熱し、原料ガスを高温に保つ必要があり、原料や希釈ガスを排気するため、無駄が多いが、スパッタリングで原料を供給する場合には、原料供給のために加熱する必要はなく、低温での原料供給が可能であり、原料や希釈ガスの無駄も少ない。 In the above configuration, when a raw material is supplied by sputtering, the raw material can be easily supplied to a large-diameter substrate. When supplying the raw material gas by flow, it is necessary to heat the solid raw material and keep the raw material gas at a high temperature, and exhaust the raw material and dilution gas, which is wasteful, but when supplying the raw material by sputtering It is not necessary to heat for supplying the raw material, it is possible to supply the raw material at a low temperature, and there is little waste of the raw material and dilution gas.
 また、原料ガスをフローで運んで供給する場合には、基板が大口径化すると原料ガスの濃度分布を均一にすることが難しくなるのに対して、スパッタリングで原料を供給する場合には、大口径の基板に均一に原料を供給することが容易である。 In addition, when the source gas is supplied by a flow, it is difficult to make the concentration distribution of the source gas uniform when the substrate has a large diameter. It is easy to uniformly supply a raw material to a substrate having a diameter.
 また、スパッタリングで原料を供給すると、原料ガスをフローで運んで供給する場合に比べ、基板上のどの場所でもナノワイヤの成長条件が同一になるようにすることも容易であるため、寸法・形状が均一なナノワイヤを容易に製造できる。 In addition, when the raw material is supplied by sputtering, it is easier to make the growth conditions of the nanowires the same at any location on the substrate, compared to the case where the raw material gas is supplied by a flow. Uniform nanowires can be easily manufactured.
 さらに、スパッタリングにより、ガスとして供給することが難しい原料を供給することができる。また、気相では反応性が乏しい材料を、スパッタリングによって、直接、供給することができる。 Furthermore, it is possible to supply a raw material that is difficult to supply as a gas by sputtering. In addition, a material having low reactivity in the gas phase can be directly supplied by sputtering.
 好ましくは、前記スパッタリング機構は、前記プラズマに磁場を与える磁界部をさらに備える。 Preferably, the sputtering mechanism further includes a magnetic field unit that applies a magnetic field to the plasma.
 この場合、マグネトロンスパッタリング方式のスパッタリング機構を用いることができる。マグネトロンスパッタ方式は、大口径化が可能であり、磁場でイオンを集中することができるので、高いスパッタリングレートを得ることができ、効率がよい。 In this case, a magnetron sputtering type sputtering mechanism can be used. In the magnetron sputtering method, the diameter can be increased and ions can be concentrated in a magnetic field, so that a high sputtering rate can be obtained and efficiency is high.
 好ましくは、前記スパッタリング機構は、前記プラズマに磁場を与え、サイクロトロン運動をさせる磁界部と、前記プラズマに、前記磁場におけるサイクロトロン周波数と同一の周波数を有するマイクロ波を前記磁場に照射するマイクロ波照射部とをさらに備える。 Preferably, the sputtering mechanism applies a magnetic field to the plasma to cause a cyclotron motion, and a microwave irradiation unit irradiates the magnetic field with a microwave having the same frequency as a cyclotron frequency in the magnetic field. And further comprising.
 この場合、ECR(電子サイクロトロン共鳴)スパッタ方式のスパッタリング機構を用いることができる。ECRスパッタリング方式は、基板から離れた場所でプラズマを生成することが可能であり、装置設計が容易になる。プラズマ密度を高くすることができるため、高いスパッタリングレートを得ることができ、効率がよい。 In this case, an ECR (electron cyclotron resonance) sputtering type sputtering mechanism can be used. In the ECR sputtering method, plasma can be generated at a location distant from the substrate, which facilitates device design. Since the plasma density can be increased, a high sputtering rate can be obtained and efficiency is high.
 好ましくは、前記原料支持部に支持された前記固体ソースと、前記基板支持部に支持される前記基板の前記主面とが対向するように配置される。 Preferably, the solid source supported by the raw material support portion and the main surface of the substrate supported by the substrate support portion are arranged to face each other.
 この場合、固体ソースと基板とが対向することで、基板への原料供給の制御が容易になるため、基板の大口径化が容易である。また、原料の無駄が少なくなり、原料の使用効率が高い。さらに、基板に均一に原料を供給することができる。 In this case, since the solid source and the substrate face each other, it becomes easy to control the supply of the raw material to the substrate, so that the substrate can be easily enlarged. In addition, waste of raw materials is reduced and the use efficiency of raw materials is high. Furthermore, the raw material can be uniformly supplied to the substrate.
 好ましくは、前記原料支持部は、平板形状の前記固体ソースを、前記基板支持部に支持された前記基板と平行に支持する。 Preferably, the raw material support portion supports the flat plate-shaped solid source in parallel with the substrate supported by the substrate support portion.
 この場合、固体ソースと基板とを平行に配置することで、原料を均一に基板に供給でき、原料の使用効率を高くすることができ、基板の大口径化に好適である。 In this case, by arranging the solid source and the substrate in parallel, the raw material can be uniformly supplied to the substrate, the use efficiency of the raw material can be increased, and it is suitable for increasing the diameter of the substrate.
 好ましくは、前記原料支持部に支持された前記固体ソースと、前記基板支持部に支持された前記基板とは、互いに対向し、かつ互いの距離が5cm以内である。 Preferably, the solid source supported by the raw material support part and the substrate supported by the substrate support part are opposed to each other and have a distance of 5 cm or less.
 この場合、固体ソースと基板の間の距離を5cm以内にすることで、原料を均一に基板に向けて供給でき、原料の使用効率を高くすることができ、基板の大口径化に好適である。 In this case, by setting the distance between the solid source and the substrate within 5 cm, the raw material can be supplied uniformly toward the substrate, the use efficiency of the raw material can be increased, and it is suitable for increasing the diameter of the substrate. .
 好ましくは、前記基板支持部に支持される前記基板の直径が3インチ以上である。 Preferably, the diameter of the substrate supported by the substrate support portion is 3 inches or more.
 この場合、3インチ以上の大口径の基板を用いて、効率よくナノワイヤを製造することができる。 In this case, nanowires can be efficiently manufactured using a substrate having a large diameter of 3 inches or more.
 好ましくは、ワイヤー状構造をもつ半導体の製造装置は、前記原料支持部に支持された前記固体ソースに電圧を印加するための第1の電圧印加部と、前記基板支持部に支持された前記基板に電圧を印加するための第2の電圧印加部とをさらに備える。 Preferably, the semiconductor manufacturing apparatus having a wire-like structure includes a first voltage application unit for applying a voltage to the solid source supported by the raw material support unit, and the substrate supported by the substrate support unit. And a second voltage application unit for applying a voltage to the power supply.
 この場合、固体ソースと基板に別個独立にバイアスをかけることができる。例えば、第1の電圧印加部により固体ソースには高バイアスをかけてスパッタリングを行う一方、第2の電圧印加部により、基板側は、ナノワイヤの成長に適したバイアス又は0バイアスを付加することができる。 In this case, the solid source and the substrate can be separately biased. For example, while applying a high bias to the solid source by the first voltage application unit to perform sputtering, the substrate side may be applied with a bias suitable for nanowire growth or zero bias by the second voltage application unit. it can.
 好ましくは、ワイヤー状構造をもつ半導体の製造装置は、前記第1及び第2の電圧印加部がそれぞれ印加する電圧を制御する制御部をさらに備える。 Preferably, the semiconductor manufacturing apparatus having a wire-like structure further includes a control unit that controls voltages applied by the first and second voltage application units.
 この場合、基板に印加する電圧を制御することで、プラズマ中のイオンを、ナノワイヤを形成する基板側に引き込むことができる。これによって、エッチング乃至スパッタリングを起こさせて、ナノワイヤの指向性を揃えることができる。例えば、基板上のナノワイヤの周囲に堆積した原料にイオンを衝突させて、ナノワイヤの周囲に堆積した原料をはじき飛ばして除去したり、基板上のナノワイヤのうち、斜めに成長したものや、成長が不十分なものを除去したりすることが可能である。 In this case, by controlling the voltage applied to the substrate, ions in the plasma can be drawn to the substrate side on which the nanowire is formed. Thereby, etching or sputtering can be caused to align the directivity of the nanowire. For example, ions collide with the raw material deposited around the nanowires on the substrate, and the raw material deposited around the nanowires can be removed and removed, or the nanowires on the substrate grown diagonally or not grown. It is possible to remove enough.
 好ましくは、前記第1及び第2の電圧印加部は、前記材料が前記基板に向けて供給されるときに、直流電圧を印加する。 Preferably, the first and second voltage application units apply a DC voltage when the material is supplied toward the substrate.
 この場合、直流電圧を印加すると原料を高速に供給でき、また、原料供給の制御もしやすいため、ナノワイヤを安定して効率よく成長させることができる。 In this case, when a DC voltage is applied, the raw material can be supplied at a high speed and the supply of the raw material can be easily controlled, so that the nanowire can be stably and efficiently grown.
 好ましくは、加熱部は、少なくとも150℃以上に昇温できる。 Preferably, the heating part can be heated to at least 150 ° C. or higher.
 この場合、150℃以上の昇温により基板の表面に形成された薄膜を溶融させ、VLS法でナノワイヤを製造することができる。 In this case, the nanowire can be manufactured by the VLS method by melting the thin film formed on the surface of the substrate by heating at 150 ° C. or higher.
 本発明のワイヤー状構造をもつ半導体の製造方法及び製造装置によれば、VLS法でナノワイヤを作るための原料を、大口径の基板に効率よく、かつ均一に供給することができ、ナノワイヤを効率よく量産することができる。 According to the manufacturing method and manufacturing apparatus of a semiconductor having a wire-like structure of the present invention, a raw material for producing a nanowire by the VLS method can be efficiently and uniformly supplied to a large-diameter substrate, and the nanowire can be efficiently used. Can be mass-produced well.
ワイヤー状構造をもつ半導体の製造装置の構成図である。(実施例1)It is a block diagram of the manufacturing apparatus of the semiconductor which has a wire-like structure. (Example 1) ワイヤー状構造をもつ半導体の製造装置の構成図である。(実施例2)It is a block diagram of the manufacturing apparatus of the semiconductor which has a wire-like structure. (Example 2) 電気炉装置の構成図である。(従来例)It is a block diagram of an electric furnace apparatus. (Conventional example) VLS法によるナノワイヤの製造方法の説明図である。(従来例)It is explanatory drawing of the manufacturing method of the nanowire by VLS method. (Conventional example)
 以下、本発明の実施の形態について、図1及び図2を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2.
 <実施例1> 実施例1のワイヤー状構造をもつ半導体の製造方法及び製造装置について、図1を参照しながら説明する。 Example 1 A semiconductor manufacturing method and manufacturing apparatus having a wire structure according to Example 1 will be described with reference to FIG.
 まず、ワイヤー状構造をもつ半導体の製造装置10の概要について説明する。図1は、製造装置10の基本構成を模式的に示す構成図である。 First, an outline of a semiconductor manufacturing apparatus 10 having a wire-like structure will be described. FIG. 1 is a configuration diagram schematically showing the basic configuration of the manufacturing apparatus 10.
 図1に示すように、製造装置10は、チャンバー12内に、固体ソース(ターゲット)4を支持する原料支持部14と、基板(ウエハ)8を支持する基板支持部16とを備える。ガス供給源(図示せず)に接続されたバルブ12sを開くことにより、チャンバー12内には、ガス導入口12aから矢印12xで示すようにガスが供給され、ガス排出口12bから矢印12yで示すように、真空ポンプ12tでガスが排気される。 As shown in FIG. 1, the manufacturing apparatus 10 includes a raw material support unit 14 that supports a solid source (target) 4 and a substrate support unit 16 that supports a substrate (wafer) 8 in a chamber 12. By opening a valve 12s connected to a gas supply source (not shown), gas is supplied into the chamber 12 from the gas inlet 12a as indicated by an arrow 12x, and from the gas outlet 12b as indicated by an arrow 12y. As described above, the gas is exhausted by the vacuum pump 12t.
 原料支持部14に隣接して、永久磁石を含む磁界部15が配置され、原料支持部14に支持された固体ソース4の表面4aに平行な磁界を与えるようになっている。 A magnetic field portion 15 including a permanent magnet is disposed adjacent to the raw material support portion 14 so as to apply a magnetic field parallel to the surface 4 a of the solid source 4 supported by the raw material support portion 14.
 磁界部15は、マグネトロンスパッタリングの方式に対応して構成する。例えば、平板(プレーナー)型マグネトロンスパッタリング法の場合には、原料支持部14に支持された円板状の固体ソース4に対して、磁界部15の磁石が回転するように構成し、ターゲット利用率を向上するようにしてもよい。磁界圧着型マグネトロンスパッタリング法の場合には、磁界部15がソレノイドコイルを含み、補助的に磁場を形成することで、ターゲット利用率を向上するようにしてもよい。 The magnetic field unit 15 is configured to correspond to the magnetron sputtering method. For example, in the case of a flat plate type magnetron sputtering method, the magnet of the magnetic field unit 15 is configured to rotate with respect to the disk-shaped solid source 4 supported by the raw material support unit 14, and the target utilization rate You may make it improve. In the case of the magnetic field compression type magnetron sputtering method, the magnetic field portion 15 may include a solenoid coil, and the magnetic field may be supplementarily formed to improve the target utilization rate.
 基板支持部16は、には加熱部18が設けられ、基板支持部16に支持された基板8を加熱できる。加熱部18は、例えば、Inの薄膜では200℃程度、Auの薄膜では数百℃程度に昇温する必要があるので、少なくとも150℃以上に昇温でき、基板支持部16に支持された基板8の表面8aに触媒金属を含む液滴を形成し、VLS法でナノワイヤを製造することができるようにする。 The substrate support unit 16 is provided with a heating unit 18 and can heat the substrate 8 supported by the substrate support unit 16. For example, the heating unit 18 needs to be heated to about 200 ° C. for an In thin film and to about several hundred degrees C for an Au thin film. The droplet containing the catalytic metal is formed on the surface 8a of 8, and the nanowire can be manufactured by the VLS method.
 原料支持部14には第1の電圧印加部22が接続され、原料支持部14に支持された固体ソース4を所定の電位にすることができる。また、基板支持部16には第2の電圧印加部24が接続され、基板支持部16に支持された基板8を所定の電位にすることができる。これによって、固体ソース4と基板8に別個独立にバイアスをかけることができる。例えば、第1の電圧印加部22により固体ソース4には高バイアスをかけてスパッタリングを行う一方、第2の電圧印加部24により、基板8側は、ナノワイヤの成長に適したバイアス又は0バイアスを付加することができる。電圧印加部22,24は、直流でも交流でもよい。また、必要に応じてコンデンサーなどを含む回路を伴う。 The first voltage application unit 22 is connected to the raw material support unit 14 so that the solid source 4 supported by the raw material support unit 14 can be set to a predetermined potential. In addition, a second voltage application unit 24 is connected to the substrate support unit 16 so that the substrate 8 supported by the substrate support unit 16 can be set to a predetermined potential. Thereby, the solid source 4 and the substrate 8 can be separately biased. For example, while applying a high bias to the solid source 4 by the first voltage application unit 22 to perform sputtering, the second voltage application unit 24 causes the substrate 8 side to apply a bias or zero bias suitable for nanowire growth. Can be added. The voltage application units 22 and 24 may be direct current or alternating current. In addition, it is accompanied by a circuit including a capacitor as required.
 バルブ12s、真空ポンプ12t、温度調整装置20、第1の電圧印加部22及び第2の電圧印加部24等は、鎖線で示すように、制御装置30に接続され、制御装置30によって、製造装置10全体の動作が制御されるようになっている。 The valve 12s, the vacuum pump 12t, the temperature adjusting device 20, the first voltage applying unit 22, the second voltage applying unit 24, and the like are connected to the control device 30 as indicated by a chain line, and the manufacturing device The operation of the entire 10 is controlled.
 原料支持部14と基板支持部16とは対向して配置され、原料支持部14に支持された固体ソース4の表面4aと、基板支持部16に支持された基板8の表面8aとが対向するように配置される。固体ソース4と基板8とが対向することで、基板8への原料供給の制御が容易になるため、基板8の大口径化が容易である。また、原料の無駄が少なくなり、原料の使用効率が高い。さらに、基板8に均一に原料を供給することができる。 The raw material support portion 14 and the substrate support portion 16 are arranged to face each other, and the surface 4a of the solid source 4 supported by the raw material support portion 14 and the surface 8a of the substrate 8 supported by the substrate support portion 16 face each other. Are arranged as follows. Since the solid source 4 and the substrate 8 face each other, the supply of the raw material to the substrate 8 can be easily controlled, so that the substrate 8 can be easily enlarged. In addition, waste of raw materials is reduced and the use efficiency of raw materials is high. Furthermore, the raw material can be uniformly supplied to the substrate 8.
 固体ソース4と基板8とは平板形状であり、原料支持部14及び基板支持部16によって、互いに平行に支持される。固体ソース4と基板8とを平行に配置することで、原料を均一に基板8に供給でき、原料の使用効率を高くすることができ、基板8の大口径化に好適である。 The solid source 4 and the substrate 8 have a flat plate shape and are supported in parallel by the raw material support portion 14 and the substrate support portion 16. By arranging the solid source 4 and the substrate 8 in parallel, the raw material can be uniformly supplied to the substrate 8, the use efficiency of the raw material can be increased, and it is suitable for increasing the diameter of the substrate 8.
 原料支持部14に支持された固体ソース4と、基板支持部16に支持された基板8とは、互いに対向し、かつ互いの距離が5cm以内であることが好ましい。この場合、固体ソース4と基板8の間の距離を5cm以内にすることで、原料を均一に基板8に向けて供給でき、原料の使用効率を高くすることができ、基板8の大口径化に好適である。 It is preferable that the solid source 4 supported by the raw material support part 14 and the substrate 8 supported by the substrate support part 16 face each other and have a distance of 5 cm or less. In this case, by making the distance between the solid source 4 and the substrate 8 within 5 cm, the raw material can be supplied uniformly toward the substrate 8, the use efficiency of the raw material can be increased, and the substrate 8 has a large diameter. It is suitable for.
 また、基板支持部16は、直径が3インチ以上の基板(ウエハ)8が支持できるよう構成することが好ましい。この場合、3インチ以上の大口径の基板8を用いて、効率よくナノワイヤを製造することができる。 Further, the substrate support portion 16 is preferably configured to support a substrate (wafer) 8 having a diameter of 3 inches or more. In this case, nanowires can be efficiently manufactured using a substrate 8 having a large diameter of 3 inches or more.
 なお、図示していないが、原料支持部14に支持される固体ソース4を交換する原料交換機構や、基板支持部16に支持される基板8を交換する基板交換機構を設けるようにしてもよい。 Although not shown, a raw material exchange mechanism for exchanging the solid source 4 supported by the raw material support portion 14 and a substrate exchange mechanism for exchanging the substrate 8 supported by the substrate support portion 16 may be provided. .
 次に、製造装置10を用いてナノワイヤを製造する方法について説明する。 Next, a method for manufacturing nanowires using the manufacturing apparatus 10 will be described.
 まず、基板支持部16に、表面8aに触媒金属を含む薄膜が予め形成された基板8を支持し、加熱部18によって基板8を加熱し、基板8の表面8aに形成された薄膜を溶融し、触媒金属を含む微小な液滴を形成する。 First, the substrate 8 is supported on the substrate 8 on which the thin film containing the catalyst metal is previously formed on the surface 8a, the substrate 8 is heated by the heating unit 18, and the thin film formed on the surface 8a of the substrate 8 is melted. , Forming fine droplets containing catalytic metal.
 基板8には、例えば、Si、SiO、Al、ZnO、Cなどの基板(ウエハ)を用いることができ、導電性基板でも絶縁性基板でもよい。SiO上にSiを堆積した多層構造の基板でもよい。Si基板の上にナノワイヤを成長させると、従来のSiテクノロジーと融合したデバイスが可能となる。SiOのような透明基板の上に薄膜Siを堆積した基板など、多層基板の上にナノワイヤを成長させることも可能であり、太陽電池などへ応用できる。 For the substrate 8, for example, a substrate (wafer) such as Si, SiO 2 , Al 2 O 3 , ZnO, or C can be used, which may be a conductive substrate or an insulating substrate. A substrate having a multilayer structure in which Si is deposited on SiO 2 may be used. When nanowires are grown on a Si substrate, a device fused with conventional Si technology becomes possible. It is also possible to grow nanowires on a multilayer substrate such as a substrate obtained by depositing thin film Si on a transparent substrate such as SiO 2 , which can be applied to solar cells and the like.
 触媒金属には、Au、In、Gaなどを用いることができ、合金でもよい。Auはよく用いられる。InやGaにすると、融点が低く、ナノワイヤを成長させるときの温度を低く抑えることができる。 As the catalyst metal, Au, In, Ga, or the like can be used, and an alloy may be used. Au is often used. When In or Ga is used, the melting point is low, and the temperature at which nanowires are grown can be kept low.
 触媒金属は、基板8の表面8aに薄膜に形成する代わりに、基板8の表面8aに金属微粒子やナノ粒子の状態で配置してもよく、この場合には、ナノワイヤの外径を均一に制御することが容易である。 Instead of forming the catalyst metal as a thin film on the surface 8a of the substrate 8, the catalyst metal may be arranged in the form of metal fine particles or nanoparticles on the surface 8a of the substrate 8. In this case, the outer diameter of the nanowire is uniformly controlled. Easy to do.
 基板8の表面8aに、触媒金属を有する区域と、触媒金属を有さない区域とを形成してもよい。触媒金属を有する区域ではナノワイヤが成長し、触媒金属を有さない区域ではナノワイヤが成長しない。このことによって、ナノワイヤを成長させる場所を制御することができる。例えば、基板8の表面8aに薄膜を形成した後、通常のリソグラフィー技術やエッチング技術を用いて、触媒金属を有する区域と触媒金属を有さない区域とを形成した基板を加熱して、触媒金属を有する区域にのみ微小な液滴を形成することができる。 An area having a catalyst metal and an area having no catalyst metal may be formed on the surface 8a of the substrate 8. Nanowires grow in areas with catalytic metal, and no nanowires grow in areas without catalytic metal. This makes it possible to control where the nanowires are grown. For example, after forming a thin film on the surface 8a of the substrate 8, the substrate on which the area having the catalytic metal and the area not having the catalytic metal are heated by using a normal lithography technique or etching technique, Minute droplets can be formed only in areas having
 基板8にプラズマを照射してもよい。この場合、基板支持部16に支持された基板8を加熱するために、スパッタリングを行うためのプラズマによるエネルギーを積極的に利用することで、外部からの熱供給を減らす、又は除外することができる。 The substrate 8 may be irradiated with plasma. In this case, in order to heat the substrate 8 supported by the substrate support portion 16, the energy by the plasma for performing the sputtering is positively used, so that the heat supply from the outside can be reduced or eliminated. .
 次いで、基板8の表面8aに形成された触媒金属を含む微小な液滴に、原料をスパッタリングにより供給し、原料を液滴に吸収させる。原料の吸収が進み、液滴中で原料が飽和すると、原料が基板8の表面8a側に析出する。原料の吸収、析出が進むと、基板8の表面8a側に析出した原料により固体の柱状部が伸び、柱状部の先端に触媒金属の液滴が配置されたナノワイヤが形成される。 Next, the raw material is supplied to the fine droplets containing the catalytic metal formed on the surface 8a of the substrate 8 by sputtering, and the raw materials are absorbed into the droplets. When the absorption of the raw material proceeds and the raw material is saturated in the droplet, the raw material is deposited on the surface 8 a side of the substrate 8. As the raw material is absorbed and deposited, the solid columnar portion is extended by the raw material deposited on the surface 8a side of the substrate 8, and a nanowire having a catalyst metal droplet disposed at the tip of the columnar portion is formed.
 詳しくは、固体ソース4が原料支持部14に支持され、触媒金属を含む薄膜が表面8aに形成された基板8が基板支持部16に支持された状態で、チャンバー12内にガス(例えば、Arガス)を導入し、第1及び第2の電圧印加部22,24により原料支持部14と基板支持部16との間に高周波の電圧を印加して、グロー放電を発生させ、導入したガスをプラズマ化して、イオン2を生成させる。 Specifically, the solid source 4 is supported by the raw material support 14, and a gas (for example, Ar, for example) is contained in the chamber 12 with the substrate 8 having a thin film containing a catalytic metal formed on the surface 8 a supported by the substrate support 16. Gas), a high-frequency voltage is applied between the raw material support 14 and the substrate support 16 by the first and second voltage application units 22 and 24 to generate glow discharge, and the introduced gas is Plasma is generated to generate ions 2.
 プラズマ照射による熱を利用して、あるいは、加熱部18により、基板支持部16に支持された基板8を加熱し、基板8の表面8aに形成された薄膜を溶融させ、触媒金属の微小な液滴を基板の表面に形成する。 The substrate 8 supported by the substrate support unit 16 is heated by using the heat generated by plasma irradiation or by the heating unit 18 to melt the thin film formed on the surface 8a of the substrate 8, and the catalyst metal fine liquid is melted. Drops are formed on the surface of the substrate.
 そして、第1及び第2の電圧印加部22,24により、原料支持部14に支持された固体ソース4が陰極に、基板支持部16に支持された基板8が陽極になるようにバイアスを設定する。これにより、グロー放電で発生したイオン2が固体ソース4の表面4aに引き寄せられて衝突し、この衝突により固体ソース4の表面4aから放出された固体ソース4の構成元素6が、基板8に向かって供給される。 Then, the bias is set by the first and second voltage application units 22 and 24 so that the solid source 4 supported by the raw material support unit 14 becomes a cathode and the substrate 8 supported by the substrate support unit 16 becomes an anode. To do. Thereby, the ions 2 generated by the glow discharge are attracted to and collide with the surface 4 a of the solid source 4, and the constituent elements 6 of the solid source 4 released from the surface 4 a of the solid source 4 by this collision are directed toward the substrate 8. Supplied.
 このとき、磁界部15は、固体ソース4の表面4aに平行な磁界を発生させ、グロー放電により発生したイオン2の固体ソース4の表面4aへの衝突に伴って固体ソース4の表面4aからたたき出された二次電子を、ローレンツ力で捕らえてサイクロトロン運動させることにより、Ar等のガスのイオン化を促進する。 At this time, the magnetic field unit 15 generates a magnetic field parallel to the surface 4a of the solid source 4 and strikes the surface of the solid source 4 from the surface 4a as the ions 2 generated by glow discharge collide with the surface 4a of the solid source 4. The emitted secondary electrons are captured by the Lorentz force and moved in a cyclotron motion, thereby promoting ionization of a gas such as Ar.
 このようにマグネトロンスパッタリングによって基板8に向けて供給された原料(構成元素6)は、基板8の表面8aに形成された微小な液滴に吸収され、飽和すると析出し、ナノワイヤが形成される。つまり、VLS法でナノワイヤが形成される。 The raw material (constituent element 6) supplied to the substrate 8 by magnetron sputtering in this way is absorbed by the fine droplets formed on the surface 8a of the substrate 8, and precipitates when saturated to form nanowires. That is, nanowires are formed by the VLS method.
 固体ソース4には、Si、Ge、Te、Sbなどの1又は2以上を含ませることができる。SiGe、GeTe、SbTe、ZnO、MgO、MgZnOなどを含ませてもよい。ナノワイヤに含まれる複数成分の比率は、固体ソースの成分比率と略同一とすることができる。 The solid source 4 can contain one or more of Si, Ge, Te, Sb and the like. SiGe, GeTe, SbTe, ZnO, MgO, MgZnO, or the like may be included. The ratio of the multiple components contained in the nanowire can be substantially the same as the component ratio of the solid source.
 Siは太陽電池、ナノワイヤFETなど、応用が多岐にわたる。SiGeは熱電素子に、GeTeはPRAM用に用いることができる。いずれも、気相(SiH、GeH)で供給する場合、非常に爆発性、毒性が強いので、ガス供給や排気設備に負担がかかる。固体ソースでは、そのような危険性は著しく抑えることができる。 Si has various applications such as solar cells and nanowire FETs. SiGe can be used for thermoelectric elements and GeTe can be used for PRAM. In any case, when supplying in a gas phase (SiH 4 , GeH 4 ), it is very explosive and toxic, which places a burden on the gas supply and exhaust equipment. For solid sources, such risks can be significantly reduced.
 固体ソース4中には、主成分のほか、不純物を含むようにしてもよい。固体ソース4が不純物を含むとp型やn型の半導体ナノワイヤの製造が可能である。例えば、主成分がSi、SiGe、Geのいずれかであり、不純物がB又はPであるようにする。 The solid source 4 may contain impurities in addition to the main component. When the solid source 4 contains impurities, p-type and n-type semiconductor nanowires can be manufactured. For example, the main component is any one of Si, SiGe, and Ge, and the impurity is B or P.
 固体ソース4中に、ナノワイヤを製造するために用いる触媒金属成分が含まれるようにしてもよい。この場合、ナノワイヤの成長中に、ナノワイヤの先端に配置される液滴に触媒金属を補充し、ナノワイヤの成長に伴って液滴が小さくなるのを防ぎ、一定外径の細長いナノワイヤを形成することができる。 The catalyst metal component used for producing the nanowire may be included in the solid source 4. In this case, during the growth of the nanowire, a catalyst metal is replenished to the droplet disposed at the tip of the nanowire, thereby preventing the droplet from becoming smaller as the nanowire grows and forming an elongated nanowire with a constant outer diameter. Can do.
 プラズマ用のガスとして、例えば、Cl混合ガス、水素混合ガス、Ar混合ガスを、チャンバー12内の原料支持部14と基板支持部16との間の空間に供給し、Cl混合プラズマ、水素混合プラズマ、Ar混合プラズマを発生させる。Arプラズマは、スパッタリングでよく利用されるプラズマである。ClやHを含むプラズマを用いると、スパッタリングをエンハンストしたり、あるいは、プラズマ中の気相反応によって、スパッタリングされたSiをSiClやSiHなどの化合物に変換したりすることができる。 As a plasma gas, for example, a Cl mixed gas, a hydrogen mixed gas, or an Ar mixed gas is supplied to a space between the raw material support 14 and the substrate support 16 in the chamber 12, and a Cl mixed plasma or a hydrogen mixed plasma is supplied. , Ar mixed plasma is generated. Ar plasma is a plasma often used in sputtering. When plasma containing Cl or H is used, sputtering can be enhanced, or the sputtered Si can be converted into a compound such as SiCl X or SiH X by a gas phase reaction in the plasma.
 ナノワイヤに含まれる原料又は不純物の一部を、気体によって供給してもよい。例えば、固体ソース4からスパッタリングによりGeを供給するとともに、SiClのガスを供給すると、SiGeのナノワイヤを成長させることができる。気相での供給が難しい材料を固体ソース4から供給し、気相供給が容易なものは、そのまま気相で供給する。 A part of the raw material or impurities contained in the nanowire may be supplied by gas. For example, when Ge is supplied from the solid source 4 by sputtering and a gas of SiCl 4 is supplied, SiGe nanowires can be grown. Materials that are difficult to be supplied in the gas phase are supplied from the solid source 4, and materials that are easily supplied in the gas phase are supplied as they are in the gas phase.
 気相にてBCl、ホスフィンを供給してもよい。例えば、Siナノワイヤを成長させる場合、BClを供給すると、ボロンがドーピングされたp-Siナノワイヤが形成される。 BCl 3 and phosphine may be supplied in the gas phase. For example, when Si nanowires are grown, supplying BCl 3 forms p-Si nanowires doped with boron.
 スパッタリングにより固体ソース4からはじき出された構成元素6がプラズマ中で反応して生成された固体ソース4とは異なる生成物を、基板8の表面8aに供給してもよい。例えば、Siの固定ソースからスパッタリングされたSiが、塩素プラズマ中でSiClと反応した後、基板8に供給されるようにしてもよい。プラズマの化学種や条件を変えることで、ナノワイヤの原料となる先駆物質を制御することができ、反応条件のさらなる制御が可能である。 A product different from the solid source 4 generated by the reaction of the constituent element 6 ejected from the solid source 4 by sputtering in the plasma may be supplied to the surface 8 a of the substrate 8. For example, Si sputtered from a Si fixed source may be supplied to the substrate 8 after reacting with SiCl X in chlorine plasma. By changing the chemical species and conditions of the plasma, it is possible to control the precursor that is the raw material of the nanowire, and further control of the reaction conditions is possible.
 制御装置30は、スパッタリングにより固定ソース4から基板8に向けて原料を供給するときに、第1の電圧印加部22と第2の電圧印加部24が直流電圧を印加するように制御する。直流電圧を印加すると原料を高速に供給でき、また、原料供給の制御もしやすいため、ナノワイヤを安定して効率よく成長させることができる。 The control device 30 controls the first voltage application unit 22 and the second voltage application unit 24 to apply a DC voltage when supplying the raw material from the fixed source 4 to the substrate 8 by sputtering. When a DC voltage is applied, the raw material can be supplied at a high speed and the supply of the raw material can be easily controlled, so that the nanowire can be stably and efficiently grown.
 実施例1の製造装置10は、マグネトロンスパッタリング方式のスパッタリングにより原料を供給するため、基板8を大口径化しても容易に対応できる。また、磁場でイオンを集中することができるので、高いスパッタリングレートを得ることができ、効率がよい。 Since the manufacturing apparatus 10 of Example 1 supplies the raw material by magnetron sputtering, it can easily cope with the substrate 8 having a large diameter. In addition, since ions can be concentrated in a magnetic field, a high sputtering rate can be obtained and efficiency is high.
 制御装置30により第1の電圧印加部22と第2の電圧印加部24とを制御することで、固体ソース4と基板8に別個独立にバイアスをかけることができる。例えば、第1の電圧印加部22により固体ソース4には高バイアスをかけてスパッタリングを行う一方、第2の電圧印加部24により、基板側8は、ナノワイヤの成長に適したバイアス又は0バイアスを付加することができる。 By controlling the first voltage application unit 22 and the second voltage application unit 24 by the control device 30, the solid source 4 and the substrate 8 can be separately biased. For example, the solid source 4 is sputtered by applying a high bias to the solid source 4 by the first voltage application unit 22, while the substrate side 8 has a bias suitable for nanowire growth or zero bias by the second voltage application unit 24. Can be added.
 また、第1の電圧印加部22が基板8に印加する電圧を制御することで、プラズマ中のイオンを、ナノワイヤを形成する基板8側に引き込むことができることを利用し、基板8側でプラズマによるエッチング乃至スパッタリングを起こさせて、ナノワイヤの指向性を揃えることができる。例えば、基板8上のナノワイヤの周囲に堆積した原料にイオンを衝突させて、ナノワイヤの周囲に堆積した原料をはじき飛ばして除去したり、基板8上のナノワイヤのうち、斜めに成長したものや、成長が不十分なものを除去したりすることが可能である。 In addition, by controlling the voltage applied to the substrate 8 by the first voltage application unit 22, it is possible to draw ions in the plasma to the substrate 8 side on which the nanowire is formed. Etching or sputtering can be caused to align the directivity of the nanowire. For example, ions are made to collide with the raw material deposited around the nanowire on the substrate 8 and the raw material deposited around the nanowire is repelled and removed. It is possible to remove those that are insufficient.
 <実施例2> 実施例2の製造装置10aについて、図2を参照しながら説明する。図2は、製造装置10aの基本構成を模式的に示す構成図である。 <Example 2> The manufacturing apparatus 10a of Example 2 will be described with reference to FIG. FIG. 2 is a configuration diagram schematically showing the basic configuration of the manufacturing apparatus 10a.
 図2に示すように、製造装置10aは、連通するプラズマ生成室13aと試料室13bとの間に設けられた原料支持部14aに、リング状の固体ソース4が支持される。固体ソース4は、第1の電圧印加部22aによって、負のバイアスがかけられている。矢印13xで示すように、ガスがプラズマ生成室13aに供給され、矢印13yで示すように、試料室13bから排気される。試料室13bには、基板8を支持する基板支持部16aが設けられている。基板支持部16aには、基板支持部16aに支持された基板8を加熱するための加熱部18aが設けられている。 As shown in FIG. 2, in the manufacturing apparatus 10a, a ring-shaped solid source 4 is supported by a raw material support portion 14a provided between a plasma generation chamber 13a and a sample chamber 13b that communicate with each other. The solid source 4 is negatively biased by the first voltage application unit 22a. As indicated by an arrow 13x, gas is supplied to the plasma generation chamber 13a and exhausted from the sample chamber 13b as indicated by an arrow 13y. In the sample chamber 13b, a substrate support portion 16a that supports the substrate 8 is provided. The substrate support portion 16a is provided with a heating portion 18a for heating the substrate 8 supported by the substrate support portion 16a.
 プラズマ生成室13aの外側には、プラズマ生成室13aに磁界を発生させるためのコイル40と、プラズマ生成室13aにマイクロ波を照射するマイクロ波照射部とを備える。 Outside the plasma generation chamber 13a, a coil 40 for generating a magnetic field in the plasma generation chamber 13a and a microwave irradiation unit for irradiating the plasma generation chamber 13a with microwaves are provided.
 コイル40は、プラズマ生成室13a内に供給されたガスに磁場を与え、サイクロトロン運動をさせる。照射部42により、プラズマのサイクロトロン周波数と同一の周波数を有するマイクロ波をマイクロ波照射することで、電子サイクロトロン共鳴を起こし、ガスをプラズマ化し、プラズマ生成室13aから発散する磁界に沿って導き出されたプラズマを固体ソース4に衝突させてスパッタリングし、はじき出された原料6を、試料室13bの基板支持部16aに支持された基板8に向けて供給する。 The coil 40 applies a magnetic field to the gas supplied into the plasma generation chamber 13a to cause a cyclotron motion. The irradiation unit 42 irradiates a microwave having the same frequency as the cyclotron frequency of the plasma, thereby causing electron cyclotron resonance, turning the gas into a plasma, and being guided along the magnetic field emanating from the plasma generation chamber 13a. Sputtering is performed by causing plasma to collide with the solid source 4, and the raw material 6 ejected is supplied toward the substrate 8 supported by the substrate support 16a of the sample chamber 13b.
 製造装置10aは、実施例1と同様の工程で、ナノワイヤを形成することができる。 The manufacturing apparatus 10a can form nanowires in the same process as in the first embodiment.
 すなわち、表面8aに予め薄膜が形成された基板8を基板支持部16aに支持し、基板8を加熱部18aで加熱して、基板8の表面8aに触媒金属の微小な液滴を形成した状態にする。この状態で、ECR(電子サイクロトロン共鳴)スパッタリングにより固体ソース4から基板8に向けて原料を供給し、ナノワイヤを形成する。 That is, the substrate 8 on which the thin film is formed in advance on the surface 8a is supported by the substrate support portion 16a, and the substrate 8 is heated by the heating portion 18a to form minute droplets of catalyst metal on the surface 8a of the substrate 8. To. In this state, the raw material is supplied from the solid source 4 to the substrate 8 by ECR (electron cyclotron resonance) sputtering to form nanowires.
 実施例2の製造装置10aは、ECR(電子サイクロトロン共鳴)スパッタ方式のスパッタリングにより原料を供給するため、基板から離れた場所でプラズマを生成することが可能であり、装置設計が容易になる。また、プラズマ密度を高くすることができるため、高いスパッタリングレートを得ることができ、効率がよい。 Since the manufacturing apparatus 10a of Example 2 supplies the raw material by sputtering of an ECR (electron cyclotron resonance) sputtering method, it is possible to generate plasma at a place away from the substrate, and the apparatus design becomes easy. In addition, since the plasma density can be increased, a high sputtering rate can be obtained and efficiency is high.
 <まとめ> 以上のように、スパッタリングにより原料を供給してナノワイヤを製造すると、VLS法でナノワイヤを作るための原料を、大口径の基板に効率よく、かつ均一に供給することができ、ナノワイヤを効率よく量産することができる。 <Summary> As described above, when a raw material is supplied by sputtering to produce a nanowire, the raw material for making the nanowire by the VLS method can be efficiently and uniformly supplied to a large-diameter substrate. It can be mass-produced efficiently.
 すなわち、スパッタリングにより原料を供給すると、大口径の基板にも、容易に原料を供給することができる。原料ガスをフローで運んで供給する場合には固体原料を加熱し、原料ガスを高温に保つ必要があり、原料や希釈ガスを排気するため、無駄が多いが、スパッタリングで原料を供給する場合には、原料供給のために加熱する必要はなく、低温での原料供給が可能であり、原料や希釈ガスの無駄も少ない。 That is, when a raw material is supplied by sputtering, the raw material can be easily supplied even to a large-diameter substrate. When supplying the raw material gas by flow, it is necessary to heat the solid raw material and keep the raw material gas at a high temperature, and exhaust the raw material and dilution gas, which is wasteful, but when supplying the raw material by sputtering It is not necessary to heat for supplying the raw material, it is possible to supply the raw material at a low temperature, and there is little waste of the raw material and dilution gas.
 また、原料ガスをフローで運んで供給する場合には、基板が大口径化すると原料ガスの濃度分布を均一にすることが難しくなるのに対して、スパッタリングで原料を供給する場合には、大口径の基板に均一に原料を供給することが容易である。 In addition, when the source gas is supplied by a flow, it is difficult to make the concentration distribution of the source gas uniform when the substrate has a large diameter. It is easy to uniformly supply a raw material to a substrate having a diameter.
 また、スパッタリングで原料を供給すると、原料ガスをフローで運んで供給する場合に比べ、基板上のどの場所でもナノワイヤの成長条件が同一になるようにすることも容易であるため、寸法・形状が均一なナノワイヤを容易に製造できる。 In addition, when the raw material is supplied by sputtering, it is easier to make the growth conditions of the nanowires the same at any location on the substrate, compared to the case where the raw material gas is supplied by a flow. Uniform nanowires can be easily manufactured.
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications.
 例えば、マグネトロンスパッタリングやECR(電子サイクロトロン共鳴)スパッタリング以外の方式のスパッタリングによって、原料を供給してもよい。また、スパッタリングのためのプラズマは、イオンガンなど、グロー放電以外の方法でプラズマを発生させてもよい。また、原料支持部と基板支持部との間の空間に、別の空間で発生させたプラズマを供給して、スパッタリングを行うようにしてもよい。 For example, the raw material may be supplied by sputtering other than magnetron sputtering or ECR (electron cyclotron resonance) sputtering. The plasma for sputtering may be generated by a method other than glow discharge, such as an ion gun. Alternatively, sputtering may be performed by supplying plasma generated in another space to the space between the raw material support portion and the substrate support portion.
  2 イオン
  4 固体ソース
  6 構成元素
  8 基板
  8a 表面(主面)
 10,10a 製造装置
 12 チャンバー
 13a プラズマ生成室
 13b 試料室
 14,14a 原料支持部
 16,16a 基板支持部
 18 加熱部
 22 第1の電圧印加部
 24 第2の電圧印加部
 30 制御装置(制御部)
2 Ion 4 Solid source 6 Constituent elements 8 Substrate 8a Surface (main surface)
DESCRIPTION OF SYMBOLS 10, 10a Manufacturing apparatus 12 Chamber 13a Plasma generation chamber 13b Sample chamber 14, 14a Raw material support part 16, 16a Substrate support part 18 Heating part 22 1st voltage application part 24 2nd voltage application part 30 Control apparatus (control part)

Claims (21)

  1.  基板の主面上に触媒金属を含む微小な液滴を形成する、第1の工程と、
     前記基板に向けて原料を供給し、前記原料を前記液滴に吸収させて、前記基板の前記主面上にナノワイヤを形成する第2の工程と、
    を備えたワイヤー状構造をもつ半導体の製造方法であって、
     前記第2の工程において、前記原料をスパッタリングにより供給することを特徴とする、ワイヤー状構造をもつ半導体の製造方法。
    A first step of forming minute droplets containing a catalytic metal on a main surface of a substrate;
    A second step of supplying a raw material toward the substrate, absorbing the raw material into the droplets, and forming nanowires on the main surface of the substrate;
    A method of manufacturing a semiconductor having a wire-like structure comprising:
    In the second step, the raw material is supplied by sputtering, and the method for manufacturing a semiconductor having a wire structure.
  2.  前記第2の工程においてスパッタリングされる固体ソースは、複数の成分を所定の比率で含むことを特徴とする、請求項1に記載のワイヤー状構造をもつ半導体の製造方法。 The method for producing a semiconductor having a wire-like structure according to claim 1, wherein the solid source sputtered in the second step includes a plurality of components in a predetermined ratio.
  3.  前記第2の工程においてスパッタリングされる固体ソースは、主成分のほか、不純物成分を含むことを特徴とする、請求項1又は2に記載のワイヤー状構造をもつ半導体の製造方法。 3. The method for manufacturing a semiconductor having a wire-like structure according to claim 1, wherein the solid source sputtered in the second step includes an impurity component in addition to the main component.
  4.  前記第2の工程の途中に、前記触媒金属をスパッタリングにより、前記基板に向けた供給することを特徴とする、請求項1、2又は3に記載のワイヤー状構造をもつ半導体の製造方法。 4. The method for manufacturing a semiconductor having a wire-like structure according to claim 1, wherein the catalyst metal is supplied to the substrate by sputtering in the middle of the second step.
  5.  前記第2工程のスパッタリングの際に、Cl混合プラズマ、水素混合プラズマ、Ar混合プラズマの少なくとも一つを用いることを特徴とする、請求項1乃至4のいずれか一つに記載のワイヤー状構造をもつ半導体の製造方法。 5. The wire-like structure according to claim 1, wherein at least one of a Cl mixed plasma, a hydrogen mixed plasma, and an Ar mixed plasma is used in the sputtering in the second step. A method for manufacturing a semiconductor.
  6.  前記第2の工程において、ナノワイヤに含まれる原料又は不純物の一部が、気体によって供給されることを特徴とする、請求項1乃至5のいずれか一つに記載のワイヤー状構造をもつ半導体の製造方法。 The semiconductor having a wire-like structure according to any one of claims 1 to 5, wherein in the second step, a part of the raw material or impurities contained in the nanowire is supplied by gas. Production method.
  7.  前記第2の工程において、気相のBCl、又はホスフィンが、気体によって供給されることを特徴とする、請求項6に記載のワイヤー状構造をもつ半導体の製造方法。 The method for manufacturing a semiconductor having a wire-like structure according to claim 6, wherein in the second step, gas phase BCl 3 or phosphine is supplied by a gas.
  8.  前記第1の工程において、前記第1の工程において、前記基板の前記主面の一部の区域にのみ前記触媒金属を含む微小な液滴を形成することを特徴とする、請求項1乃至7のいずれか一つに記載のワイヤー状構造をもつ半導体の製造方法。 In the first step, in the first step, minute droplets containing the catalytic metal are formed only in a partial area of the main surface of the substrate. The manufacturing method of the semiconductor which has a wire-shaped structure as described in any one of these.
  9.  前記第2の工程において、スパッタリングにより固体ソースからはじき出された構成元素がプラズマ中で反応して生成された前記固体ソースと異なる生成物が、前記原料として前記基板に向けて供給されることを特徴とする、請求項1乃至8のいずれか一つに記載のワイヤー状構造をもつ半導体の製造方法。 In the second step, a product different from the solid source generated by reaction of constituent elements ejected from the solid source by sputtering in plasma is supplied to the substrate as the raw material. A method for manufacturing a semiconductor having a wire-like structure according to any one of claims 1 to 8.
  10.  前記第1の工程において、プラズマを前記基板に照射することを特徴とする、請求項1乃至9のいずれか一つに記載にワイヤー状構造をもつ半導体の製造方法。 10. The method for manufacturing a semiconductor having a wire-like structure according to claim 1, wherein in the first step, the substrate is irradiated with plasma.
  11.  プラズマに接触するように固体ソースを支持する原料支持部を有する、スパッタリング機構と、
     前記スパッタリング機構に対向するように基板を支持する、基板支持部と、
     前記基板支持部に支持された基板を加熱する、加熱部と、
    を備え、
     前記スパッタリング機構において前記固体ソースから分離された原料が、前記基板支持部に支持された前記基板に向けて供給され、前記基板の主面上に半導体のナノワイヤが形成されることを特徴とする、ワイヤー状構造をもつ半導体の製造装置。
    A sputtering mechanism having a source support that supports a solid source in contact with the plasma;
    A substrate support part for supporting the substrate so as to face the sputtering mechanism;
    A heating unit for heating the substrate supported by the substrate support unit;
    With
    The raw material separated from the solid source in the sputtering mechanism is supplied toward the substrate supported by the substrate support, and semiconductor nanowires are formed on the main surface of the substrate. Semiconductor manufacturing equipment with wire-like structure.
  12.  前記スパッタリング機構は、
     前記プラズマに磁場を与える磁界部をさらに備えたことを特徴とする、請求項11に記載にワイヤー状構造をもつ半導体の製造装置。
    The sputtering mechanism is
    The apparatus for manufacturing a semiconductor having a wire-like structure according to claim 11, further comprising a magnetic field unit that applies a magnetic field to the plasma.
  13.  前記スパッタリング機構は、
     前記プラズマに磁場を与え、サイクロトロン運動をさせる磁界部と、
     前記プラズマに、前記磁場におけるサイクロトロン周波数と同一の周波数を有するマイクロ波を前記磁場に照射するマイクロ波照射部と、
    をさらに備えたことを特徴とする、請求項11に記載にワイヤー状構造をもつ半導体の製造装置。
    The sputtering mechanism is
    A magnetic field unit that applies a magnetic field to the plasma and causes a cyclotron motion;
    A microwave irradiation unit that irradiates the plasma with microwaves having the same frequency as the cyclotron frequency in the magnetic field;
    The apparatus for manufacturing a semiconductor having a wire-like structure according to claim 11, further comprising:
  14.  前記原料支持部に支持された前記固体ソースと、前記基板支持部に支持される前記基板の前記主面とが対向するように配置されたことを特徴とする、請求項11、12又は13に記載にワイヤー状構造をもつ半導体の製造装置。 The solid source supported by the raw material support part and the main surface of the substrate supported by the substrate support part are arranged so as to face each other. Semiconductor manufacturing equipment with wire-like structure in the description.
  15.  前記原料支持部は、平板形状の前記固体ソースを、前記基板支持部に支持された前記基板と平行に支持することを特徴とする、請求項11乃至13のいずれか一つに記載にワイヤー状構造をもつ半導体の製造装置。 14. The wire form according to claim 11, wherein the raw material support part supports the flat solid source in parallel with the substrate supported by the substrate support part. Semiconductor manufacturing equipment with structure.
  16.  前記原料支持部に支持された前記固体ソースと、前記基板支持部に支持された前記基板とは、互いに対向し、かつ互いの距離が5cm以内であることを特徴とする、請求項15に記載にワイヤー状構造をもつ半導体の製造装置。 The solid source supported by the raw material support part and the substrate supported by the substrate support part face each other and have a distance of 5 cm or less. Semiconductor manufacturing equipment with a wire-like structure.
  17.  前記基板支持部に支持される前記基板の直径が3インチ以上であることを特徴とする、請求項11乃至16のいずれか一つに記載にワイヤー状構造をもつ半導体の製造装置。 The semiconductor manufacturing apparatus having a wire-like structure according to any one of claims 11 to 16, wherein a diameter of the substrate supported by the substrate support portion is 3 inches or more.
  18.  前記原料支持部に支持された前記固体ソースに電圧を印加するための第1の電圧印加部と、
     前記基板支持部に支持された前記基板に電圧を印加するための第2の電圧印加部と、
    をさらに備えたことを特徴とする、請求項11乃至17のいずれか一つに記載にワイヤー状構造をもつ半導体の製造装置。
    A first voltage application unit for applying a voltage to the solid source supported by the raw material support unit;
    A second voltage application unit for applying a voltage to the substrate supported by the substrate support unit;
    The apparatus for manufacturing a semiconductor having a wire-like structure according to claim 11, further comprising:
  19.  前記第1及び第2の電圧印加部がそれぞれ印加する電圧を制御する制御部をさらに備えたことを特徴とする、請求項19に記載にワイヤー状構造をもつ半導体の製造装置。 20. The semiconductor manufacturing apparatus having a wire-like structure according to claim 19, further comprising a control unit that controls a voltage applied by each of the first and second voltage application units.
  20.  前記第1及び第2の電圧印加部は、前記材料が前記基板に向けて供給されるときに、直流電圧を印加することを特徴とする、請求項18又は19に記載にワイヤー状構造をもつ半導体の製造装置。 The wire structure according to claim 18 or 19, wherein the first and second voltage application units apply a direct current voltage when the material is supplied toward the substrate. Semiconductor manufacturing equipment.
  21.  前記加熱部は、少なくとも150℃以上に昇温することを特徴とする、請求項11乃至20のいずれか一つに記載にワイヤー状構造をもつ半導体の製造装置。 21. The semiconductor manufacturing apparatus having a wire-like structure according to claim 11, wherein the heating unit raises the temperature to at least 150 ° C. or higher.
PCT/JP2009/002848 2008-06-26 2009-06-23 Method and apparatus for manufacturing a semiconductor having a wired structure WO2009157179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010517754A JPWO2009157179A1 (en) 2008-06-26 2009-06-23 Manufacturing method and manufacturing apparatus of semiconductor having wire structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008167172 2008-06-26
JP2008-167172 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009157179A1 true WO2009157179A1 (en) 2009-12-30

Family

ID=41444252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002848 WO2009157179A1 (en) 2008-06-26 2009-06-23 Method and apparatus for manufacturing a semiconductor having a wired structure

Country Status (2)

Country Link
JP (1) JPWO2009157179A1 (en)
WO (1) WO2009157179A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260170A (en) * 2009-04-28 2010-11-18 Commissariat A L'energie Atomique & Aux Energies Alternatives Method for fabricating silicon and/or germanium nanowire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066499A (en) * 2001-08-30 2003-03-05 Murata Mfg Co Ltd Optical device and method of manufacturing the same
JP2004196588A (en) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal boron nano-belt
JP2006303508A (en) * 2005-04-22 2006-11-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Superlattice nanodevice and manufacturing method thereof
JP2007046124A (en) * 2005-08-11 2007-02-22 Hitachi Zosen Corp Magnetron sputtering system, and thin film deposition method
JP2008135740A (en) * 2006-11-15 2008-06-12 General Electric Co <Ge> Amorphous-crystalline tandem nanostructured solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066499A (en) * 2001-08-30 2003-03-05 Murata Mfg Co Ltd Optical device and method of manufacturing the same
JP2004196588A (en) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal boron nano-belt
JP2006303508A (en) * 2005-04-22 2006-11-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Superlattice nanodevice and manufacturing method thereof
JP2007046124A (en) * 2005-08-11 2007-02-22 Hitachi Zosen Corp Magnetron sputtering system, and thin film deposition method
JP2008135740A (en) * 2006-11-15 2008-06-12 General Electric Co <Ge> Amorphous-crystalline tandem nanostructured solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. JI ET AL.: "SILICON NANOSTRUCTURES BY METAL INDUCED GROWTH (MIG) FOR SOLAR CELL EMITTERS", PROC. IEEE, 2002, pages 1314 - 1317 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260170A (en) * 2009-04-28 2010-11-18 Commissariat A L'energie Atomique & Aux Energies Alternatives Method for fabricating silicon and/or germanium nanowire

Also Published As

Publication number Publication date
JPWO2009157179A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
Heitmann et al. Silicon nanocrystals: size matters
CN101506095B (en) Apparatus and method for manufacturing carbon structure
Tudose et al. Chemical and physical methods for multifunctional nanostructured interface fabrication
KR101353348B1 (en) Nanoparticle Synthesizing Apparatus and Nanoparticle Synthesizing Method
JP2006297549A (en) Method for arranged vapor deposition of metal nanoparticle and method for growing carbon nanotube using metal nanoparticle
Wang et al. Toward wafer‐scale production of 2D transition metal chalcogenides
US20150294866A1 (en) Plasma processing device, and plasma processing method
KR102219134B1 (en) Manufacturing method of nanopowder using DC arc plasma and apparatus for manufacturing the same
KR101084495B1 (en) Methods for silicon thin film deposition with energetic beam irradiation
JP2010116287A (en) Amorphous carbon semiconductor and production method of the same
WO2009157179A1 (en) Method and apparatus for manufacturing a semiconductor having a wired structure
JP2010056483A (en) Method of manufacturing film
US20150140232A1 (en) Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires
JP5246938B2 (en) Carbon nanotube growth substrate, transistor, and method of manufacturing carbon nanotube growth substrate
JP2006253122A (en) Plasma source, ion source, and ion generation method
JP2014034698A (en) Film deposition method and apparatus
JP2008044828A (en) Carbon nanotube forming device and carbon nanotube forming method
US20110129671A1 (en) Method of producing quantum confined indium nitride structures
CN110904389B (en) Multifunctional integrated Fe-Al-Ta eutectic composite material and preparation method thereof
RU2769751C1 (en) Device for deposition of ultra-thick layers of polycrystalline silicon
JP2010163662A (en) Dry process apparatus
JP2005211730A (en) Method for manufacturing nanoparticle and nanoparticle manufacturing apparatus
Wu A Review of Nanowire Growth via Vapour Deposition
KR20200105835A (en) System and method for additive manufacturing for deposition of metal and ceramic materials
Rao Growth & Characterization of Silicon Nanowires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517754

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769889

Country of ref document: EP

Kind code of ref document: A1