WO2009157044A1 - Nanopolymer clay cell and electrode material for the cell - Google Patents

Nanopolymer clay cell and electrode material for the cell Download PDF

Info

Publication number
WO2009157044A1
WO2009157044A1 PCT/JP2008/001687 JP2008001687W WO2009157044A1 WO 2009157044 A1 WO2009157044 A1 WO 2009157044A1 JP 2008001687 W JP2008001687 W JP 2008001687W WO 2009157044 A1 WO2009157044 A1 WO 2009157044A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
clay
battery
nanopolymer
polymer
Prior art date
Application number
PCT/JP2008/001687
Other languages
French (fr)
Japanese (ja)
Inventor
金慶植
Original Assignee
リンクロス株式会社
李教振
金榮眞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンクロス株式会社, 李教振, 金榮眞 filed Critical リンクロス株式会社
Priority to JP2008545110A priority Critical patent/JP4276697B1/en
Priority to PCT/JP2008/001687 priority patent/WO2009157044A1/en
Publication of WO2009157044A1 publication Critical patent/WO2009157044A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nanopolymer clay battery, an electrode material used in the nanopolymer clay battery, and a method for producing the nanopolymer clay battery.
  • nickel-cadmium batteries have been mainly used for AV backup of PCs, VTRs, etc., memory backup of information devices, and secondary batteries for these drive power supplies.
  • non-aqueous electrolyte type secondary batteries have attracted a great deal of attention as a battery that has the advantages of high voltage and high energy density and can be replaced with nickel-cadmium batteries in terms of excellent self-discharge characteristics.
  • Various products have been developed and prototyped, some of which have been commercialized.
  • non-aqueous electrolyte secondary batteries For example, more than half of notebook PCs and mobile phones are driven by non-aqueous electrolyte secondary batteries.
  • this non-aqueous electrolyte type secondary battery a large amount of carbon is used as a material for forming the cathode, and the risk of lithium generated on the surface is reduced, and a high driving voltage is increased.
  • various organic solvents are used as the electrolytic solution.
  • non-aqueous electrolyte secondary batteries for cameras use alkaline metal soot (especially lithium metal or lithium alloy) as the cathode material, the electrolyte usually contains aprotic organic solvents such as ester organic solvents. A solvent is used.
  • this non-aqueous electrolyte type secondary battery has high performance, it has the following problems in terms of safety.
  • alkali metal soot especially lithium metal or lithium alloy
  • the alkali metal is very active against moisture.
  • the moisture invades due to imperfect sealing of the cathode, there is a problem that the cathode material and water react with each other to generate hydrogen and ignite.
  • lithium metal has a low melting point (about 170 ° C)
  • a large amount of current flows suddenly when it is dropped it causes a very dangerous situation such as abnormal heating of the battery and melting of the battery. There was a problem.
  • an object of the present invention is to solve various problems of the above-described conventional chemical battery materials. More specifically, unlike conventional chemical batteries, there is no risk of electrical loss and damage due to heat generation, and it is used for nanopolymer clay batteries and nanopolymer clay batteries with extremely stable battery materials. An object of the present invention is to provide an electrode material and a method for producing the nanopolymer clay battery.
  • the present invention produces a battery material using polymer clay, water-soluble polyvinyl alcohol, dried birch (alum), sodium hydrogen carbonate (NaHCO3) and metal dioxide, or in addition to these, activated carbon powder, etc.
  • the present invention has been completed by discovering that the problems of the conventional chemical battery can be solved by applying a physical pressure to the battery to produce a physical battery.
  • a first aspect of the present invention includes a thin film or film made of an electrically negative polarity material and a thin film or film made of an electrically positive polarity material, and a thin film or film of an electrically negative polarity material,
  • a nanopolymer clay battery in which a thin film or a film of a positive polarity material is laminated and bonded
  • the electrically negative polar material includes polymer clay, water-soluble polyvinyl alcohol, dry white cocoon, sodium bicarbonate (NaHCO3) and metal dioxide
  • the electrical positive polarity material relates to a nano polymer clay battery, characterized in that it includes polymer clay, water-soluble polyvinyl alcohol, dry birch, sodium bicarbonate, metal dioxide and activated carbon powder.
  • the electrically negative polarity substance is 18 to 60% by weight of polymer clay and 18 to 60% by weight of water-soluble polyvinyl alcohol when the total amount of the electrically negative polarity substance is 100% by weight.
  • the electrically positive polar substance is a polymer clay of 18 to 60% by weight, a water-soluble polyvinyl alcohol of 18 to 60% by weight, a dry white rice cake of 0.25 to 2% by weight when the total amount of the electrically positive polar substance is 100% by weight, It preferably contains 0.25 to 2% by weight of sodium bicarbonate, 6 to 18% by weight of metal dioxide and 6 to 18% by weight of activated carbon powder.
  • an insulator is provided on both surfaces of the laminate / joint.
  • the insulator is preferably a silicone sealant.
  • the nanopolymer clay battery is any one of applied electric devices such as a mobile phone, a wireless mouse, a keyboard, an MP3 player, a camera, a notebook, a PDA, a robot, and an electronic tag. Nanopolymer clay batteries adapted for use in one.
  • a second aspect of the present invention is to provide a material for a nanopolymer clay battery. More specifically, the second aspect of the present invention relates to an electrically negative polarity substance for a nanopolymer clay battery, and a nanopolymer clay obtained from activated carbon powder in addition to the components of the electrically negative polarity substance for the nanopolymer clay battery. It is to provide an electrically positive polarity material for a battery.
  • a second aspect of the present invention relates to an electrically negative polarity material for a nanopolymer clay battery, which contains polymer clay, water-soluble polyvinyl alcohol, dry birch, sodium bicarbonate, and metal dioxide.
  • the electrical negative polarity material for nano polymer clay battery is preferably 18 to 60% by weight of polymer clay, 18 to 60% by weight of water-soluble polyvinyl alcohol, and 100% by weight of the electrical negative polarity material for polymer clay battery. Contains 0.25-2% by weight, sodium bicarbonate 0.25-2% by weight and metal dioxide 6-18% by weight.
  • the second aspect of the present invention is the polymer clay, water-soluble polyvinyl alcohol, and the like, which are further listed in the electrical negative polarity substance for nanopolymer clay battery of [2-1] of the second aspect of the present invention,
  • the present invention relates to an electrically positive polar substance for a nanopolymer clay battery, characterized by comprising dried white birch, sodium bicarbonate and metal dioxide, and further comprising activated carbon powder.
  • the electrical positive polarity material for nanopolymer clay battery is 100% by weight, preferably 18 to 60% by weight of polymer clay, 18 to 60% by weight of water-soluble polyvinyl alcohol, and dried. It contains 0.25-2% by weight of white birch, 0.25-2% by weight of sodium bicarbonate, 6-18% by weight of metal dioxide and 6-18% by weight of activated carbon powder.
  • a third aspect of the present invention relates to a method for producing a nanopolymer clay battery, and the method for producing the nanopolymer clay battery comprises: (1) mixing polymer clay and water-soluble polyvinyl alcohol; Adding the white birch and sodium bicarbonate to the mixture and mixing them; A step of producing an electrically negative polar substance including a step of adding and mixing metal dioxide into the obtained mixture; (2) mixing polymer clay and water-soluble polyvinyl alcohol; Adding the white birch and sodium bicarbonate to the mixture and mixing them; A step of producing an electrically positive polar substance including a step of adding and mixing metal dioxide and activated carbon powder into the obtained mixture; (3) processing the electrical negative polarity material and the electrical positive polarity material into a thin film or a film, respectively; (4) The method includes the step of joining the thin film or film of the electrically negative polar substance and the thin film or film of the electrically positive polar substance.
  • a roller press, a plate-like press, or the like can be appropriately used for processing the thin film
  • step (1) for producing an electrically negative polar substance polymer clay 18 to 60% by weight, water-soluble polyvinyl alcohol 18 to 60% by weight, dry birch 0.25 to 2% by weight, sodium hydrogen carbonate 0.25 to 2 % By weight, 6-18% by weight of metal dioxide
  • step (2) for producing an electrically positive polar substance polymer clay 18 to 60% by weight, water-soluble polyvinyl alcohol 18 to 60% by weight, dry white lees 0.25 to 2% by weight, sodium bicarbonate 0.25 to 2% by weight Is used.
  • the processing pressure at the stage of processing the electrical negative polarity material and the electrical positive polarity material into a thin film or film is 150 to 300 ton / m 2 .
  • the joining step further includes a step of providing an insulator on both surfaces of the nanopolymer clay battery obtained by joining.
  • the insulator is a silicone sealant.
  • the thickness of the insulator is 6 to 10 mm.
  • the battery of the physical method is different from the conventional chemical method of the battery. It provides a useful effect such as no danger and maximizing the stability of the battery material.
  • FIG. 2 is a schematic diagram showing a comparison between the structure of a general polymer molecule and an expanded polymer molecule, where the chain structure “A” of a “conventional” general polymer molecule is expanded with an expanding material and the chain structure “B” of an expanded polymer molecule. Indicates.
  • FIG. 2 is a schematic diagram showing the structure of an electrode material for a nanopolymer clay battery according to the present invention, showing a “stabilized molecular chain structure and a spin-hole chain structure by pressure” in the lower left, and “external "Spin-hole electron transfer phenomenon caused by twisting of molecular chain structure caused by atomic / electron vibration and pressure applied to matter”.
  • Polymer clay Polymer clay (Polymer-Clay, resin clay, the main component is an aromatic-aliphatic polyester resin) is one of a series of high-density compounds as a resin filler.
  • Polymer clay is used as a main raw material to have a hole and chain structure by conversion to an expanded polymer material in the battery material.
  • the polymer clay include a composition produced by mixing an aromatic-aliphatic polyester resin and polyvinyl chloride with a plasticizer (filler) as a vinyl chloride softening agent.
  • the mixing ratio of the aromatic-aliphatic polyester resin and the polyvinyl chloride is not particularly limited as long as the effect of the nanopolymer clay battery of the present invention can be achieved. You can choose.
  • an aromatic-aliphatic polyester resin for example, polyvinyl pyrrolidone K-30W of Nippon Shokubai can be mentioned.
  • the above polymer clay is a hole in the material when the blending ratio in the material for the nano polymer clay battery (the total amount of the material for the nano polymer clay battery is 100% by weight, the same applies hereinafter) is less than 18% by weight. If the amount exceeds 60% by weight, it is not easy to convert the expanded polymer with the expanding material. Therefore, the blending ratio is preferably 18 to 60% by weight, and 20 to 40% by weight. % Is more preferable, and most preferably 36% by weight.
  • expanding substance refers to a compound that is added to a polymer and forms holes in the polymer molecule, and the stable polymer substance is an unstable polymer substance. In the present invention, it refers to metal dioxide, sodium hydrogen carbonate, polyvinyl alcohol, alum, activated carbon powder and the like.
  • Water-soluble polyvinyl alcohol (Vinyl Polymer, derived from Poly Vinyl Acetate, CH3CHOH- (CH2-CHOH) n-) exhibits excellent binding strength to materials with hydrophilic surfaces, It combines with the polymer clay in the battery material to serve to maintain the flexibility and structure of the battery material.
  • the blending ratio is preferably 18 to 60% by weight, more preferably 30 to 50% by weight, and most preferably 39% by weight.
  • Dried white lees (Burnt alum, K2SO2Al2 (SO4) 3) is a light hygroscopic powder with a specific gravity of 1.97. Has properties.
  • the above-mentioned dried birch is less hygroscopic if the blending ratio is less than 0.25% by weight, and if it exceeds 2% by weight, the hygroscopicity becomes too strong, and the bond between polymer clay and water-soluble polyvinyl alcohol can be easily broken. Therefore, the blending ratio is preferably 0.25 to 2% by weight, and more preferably 0.5% by weight.
  • Sodium bicarbonate (NaHCO3) is a white crystal lump or crystalline powder. It is a battery material, and a polymer clay and water-soluble polyvinyl alcohol compound is expanded into an expanded polymer material. Play an important role in converting.
  • Sodium bicarbonate has a compounding ratio of less than 0.25% by weight, and the expansion power of the substance is reduced.If it exceeds 2% by weight, the electrical conductivity in the substance may be adversely affected. The ratio is preferably 0.25 to 2% by weight, more preferably 0.5% by weight.
  • the above-mentioned metal oxide refers to a metal oxide of the dioxide series, and is dispersed and mixed with the battery material in the size of nanoparticles, thereby imparting electrical polarity to the battery material.
  • a metal dioxide capable of emitting electrons it is not particularly limited.
  • Specific examples of the metal dioxide include zinc dioxide and copper dioxide.
  • the “size of the nanoparticle” means that the battery material is dispersed and mixed in the size of the nanoparticle to give an electric polarity to the battery material and emit electrons.
  • Non-limiting examples include nanoparticle sizes in the range of 10 nm ⁇ 5 nm to 40 nm ⁇ 5 nm, for example.
  • the soot blending ratio is preferably 6 to 18% by weight, more preferably 12% by weight.
  • the activated carbon powder (active carbon) is strongly adsorbent and is a substance in which most of the constituent substances are carbonaceous. Due to the absorption of radiation in the material and the impact of high-speed particle beams, atoms, molecules, or ions are in a high energy state, and the crystal lattice is likely to fluctuate. It has the property to do. As a result, the carbonaceous function is improved, and carbon can easily form a covalent bond with hydrogen, oxygen, nitrogen, etc., allowing single bond, double bond, triple bond, and chain-type and lattice-like structure. Can be formed.
  • the activated carbon powder is less likely to cause crystal lattice fluctuation inside the battery material if the blending ratio is less than 6% by weight, and if it exceeds 18% by weight, the chain structure with the compound inside the battery material may be destroyed. Therefore, the blending ratio is preferably 6 to 18% by weight, more preferably 10 to 15% by weight, and most preferably 12% by weight.
  • the particle size of the activated carbon powder is not particularly limited as long as it exhibits the above action, and examples thereof include nanoparticle sizes in the range of 20 nm ⁇ 5 nm to 40 nm ⁇ 5 nm.
  • the above activated carbon powder is used only for an electrically positive polarity material, but activated carbon particles are added to give a potential difference between the electrically positive polarity material and the electrically negative polarity material.
  • the type of activated carbon powder is not necessarily limited, and in order to improve the secondary processability of substances with two electrical polarities, the nanoparticles of metal dioxide and activated carbon powder are in the form of various intercalants. Can be modified and added.
  • the battery material having positive polarity includes polymer clay, water-soluble polyvinyl alcohol, dry white straw, sodium hydrogen carbonate, metal dioxide and activated carbon powder
  • the battery material having negative polarity is polymer clay, water-soluble polyvinyl alcohol. Contains alcohol, dry birch, sodium bicarbonate and metal dioxide.
  • the nano-polymer clay battery composed of the above positive and negative polar materials has physical system characteristics and can minimize the heat generation phenomenon and the risk of damage.
  • the method for producing the nanopolymer clay battery of the present invention comprises: (1) A step of mixing polymer clay and water-soluble polyvinyl alcohol, a step of adding and mixing dry white straw and sodium hydrogen carbonate into the above mixture, and a step of adding and mixing metal dioxide into the obtained mixture Producing a material with negative electrical polarity at (2) A step of mixing polymer clay and water-soluble polyvinyl alcohol, a step of adding and mixing dry white straw and sodium hydrogen carbonate into the above mixture, and adding and mixing metal dioxide and activated carbon powder into the resulting mixture A step of manufacturing a material having a positive polarity including a process; (3) processing the material having the negative electrical polarity and the material having the positive polarity into a thin film or a film, respectively; (4) The method includes the step of joining the material having the negative electrical polarity and the thin film or film of the material having the positive polarity.
  • a roller press, a plate-like press, or the like can be appropriately used for processing the thin film or film and joining the thin film or film
  • the present invention in order to manufacture a substance having an electrical negative polarity and a substance having an electrical positive polarity, a method for manufacturing a substance having an electrical negative polarity will be described first.
  • the present invention does not limit the production order of a material having an electrical negative polarity and a material having an electrical positive polarity.
  • the reason for blending polymer clay and water-soluble polyvinyl alcohol first is that the above polymer clay and water-soluble polyvinyl alcohol are used as the main raw materials of the expanded polymer substance having a hole and chain structure, so combining these This is because it is easy to make the flexibility and structure of the substance constant, but the present invention is not limited to this.
  • dry white rabbit and sodium hydrogen carbonate are added to the mixture and mixed to impart hygroscopicity to the mixture and to convert it into an expanded polymer.
  • Dry white birch and sodium bicarbonate can be added separately.
  • the above-mentioned “mixed by adding dried white birch and sodium hydrogen carbonate” also includes this case.
  • sodium bicarbonate (NaHCO 3) is added to the mixture and mixed to perform expansion polymer conversion.
  • a material for a nanopolymer clay battery having an electric negative polarity is produced by mixing metal dioxide with the obtained mixture.
  • the battery material having an electrical positive polarity is manufactured by the same method as the battery material having the electrical negative polarity, but the activated carbon powder is also mixed in the final stage of adding metal dioxide. In this case, the metal dioxide and activated carbon powder can be mixed separately.
  • the material is processed into a thin film or a film using a roller press or the like.
  • the pressure of the roller press or the like is desirably 150 to 300 ton / m 2 .
  • the thickness of the thin film or film is not particularly limited, but can be, for example, about 2 to 20 ⁇ m.
  • the pressure of the roller press or the like is less than 150 ton / m 2 , the electrical conductivity inside the substance cannot be sufficiently exerted, and if it exceeds 300 ton / m 2 , heat due to excessive pressure inside the substance This is not economical because it can break down the chain structure and lose electrical conductivity.
  • the thin film or film having a positive polarity and the thin film or film having a negative polarity are joined again using a roller press or the like.
  • the pressure of the roller press or the like is not particularly limited as long as each thin film or film can be bonded, but it is preferably 3 to 5 ton / m 2 .
  • an insulator can be provided on both surfaces of the battery by coating or lamination.
  • a silicone sealant can be used.
  • the insulator is preferably provided with a thickness of 6 to 10 mm on each side of the thin film element. If the thickness is less than 6 mm, it is not easy to produce a thin film or film and the productivity is reduced. If it exceeds 10 mm, the electron transfer of the quantum effect due to current is not easy, so the insulator layer is coated to a thickness of 6 to 10 mm Alternatively, it is desirable to provide a stacked layer. *
  • the nanopolymer clay battery produced as described above has a polymer clay of 18 to 60% by weight, a water-soluble polyvinyl alcohol of 18 to 60% by weight, a dry white rabbit of 0.25 to 2% by weight, a sodium bicarbonate of 0.25%.
  • Thin film or film of negatively polar material including ⁇ 2% by weight and metal dioxide 6-18%, polymer clay 18-60%, water-soluble polyvinyl alcohol 18-60%, dry white 0.25-2
  • nano-polymer clay battery that is bonded to each other by joining thin films of materials with electrical positive polarity including 5% by weight, sodium hydrogen carbonate 0.25-2% by weight, metal dioxide soot 6-18% by weight and activated carbon powder 6-18% by weight.
  • An insulator is coated or laminated on both sides.
  • the above-mentioned nanopolymer clay battery can generate electric energy by generating radio waves with an oscillator such as AP (Access Point), applying ions and radio waves to the nanopolymer clay battery and activating electrons inside the battery. it can.
  • an oscillator such as AP (Access Point)
  • ions and radio waves to the nanopolymer clay battery and activating electrons inside the battery. it can.
  • nano polymer clay battery is basically applicable to all products that require power, such as mobile phones, wireless mice, keyboards, MP3 players, cameras, notebooks, PDAs, robots, active RFI (Active RFI) It can be used for any electrical appliance such as a battery substitute, but it does not limit its application.
  • power such as mobile phones, wireless mice, keyboards, MP3 players, cameras, notebooks, PDAs, robots, active RFI (Active RFI) It can be used for any electrical appliance such as a battery substitute, but it does not limit its application.
  • a general polymer molecule has a stable molecular chain structure
  • an expanded polymer molecule has a stable molecular chain structure and holes.
  • the nanopolymer clay battery according to the present invention has a molecular chain structure destabilized by the binding and interaction of each compound and a spin hole chain structure by pressure.
  • the upper and lower three circles indicate a part of the chain structure of the molecule.
  • Figure 2 shows the Avalanche breakdown phenomenon, where carriers are accelerated and travel to collide with the lattice, creating new electrons and holes. The generated carriers also collide with other lattices to generate new carriers. This is repeated to generate countless number of electrons and holes, and avalanche breakdown occurs.
  • the nanopolymer clay battery according to the present invention has atomic bonds in the battery.
  • molecular orbital means that between the atoms and electrons inside the battery by applying external atoms, electron vibrations and pressure to the chain structure for the structurally distorted holes of the molecule. Attraction and repulsion act on each other. As a result, atoms and electrons vibrate with respect to the holes, so that free electrons move and electrons move in the battery.
  • Electron exchange energy by attractive and repulsive force has momentum (spin) by quantum mechanics.
  • the laminated battery material by spin polarization and spin-polarized electrons shows the phenomenon shown in FIG. 3, and electrons move in the battery material by attractive force and repulsive force.
  • a short vertical arrow indicates a state in which various atoms, electrons, ions, and other particles existing in the atmosphere collide with the original substance to generate vibration
  • a long vertical arrow indicates that Indicates that a spin Hall phenomenon has occurred, and a spin current (Spin Current) and a current (Electric Current) are generated.
  • long vertical arrows indicate input / output of external electrons.
  • FIG. 6 shows an embodiment of the nanopolymer clay battery of the present invention.
  • an insulator layer is provided on both sides of a laminate composed of an electrically negative polarity thin film or film and an electrically positive polarity thin film or film, and a metal is formed on the insulator layer.
  • Plate A copper plate
  • B zinc plate
  • FIG. Fig. 7 shows a state in which a pressure gauge (V) and an ammeter (A) are connected to the nanopolymer clay battery shown in Fig.
  • a positive polarity substance was prepared by blending 18 g of polymer clay, 20 g of water-soluble polyvinyl alcohol, 0.25 g of dried white rabbit, 0.25 g of sodium bicarbonate, 6 g of metal dioxide and 6 g of activated carbon powder.
  • 18 g of polymer clay, 20 g of water-soluble polyvinyl alcohol, 0.25 g of dried birch, 0.25 g of sodium bicarbonate, and 6 g of metal dioxide were blended to produce a negative polarity substance.
  • Each of the positive polar substance and the negative polar substance was formed into a film at a pressure of 200 ton / m 2 (nanopolymer clay battery (+) electrode, nanopolymer clay battery ( ⁇ ) electrode).
  • (4) After producing the film prepare an insulator and two metal plates (silicone sealant insulator, copper plate, zinc plate), nanopolymer clay battery (+) electrode, nanopolymer clay battery (-) The electrodes were joined to produce a nanopolymer clay battery of the present invention.
  • a copper plate, a silicone sealant insulator, a nanopolymer clay battery (+) electrode, a nanopolymer clay battery ( ⁇ ) electrode, a silicone sealant insulator, and a zinc plate were laminated in this order.
  • a voltmeter and an ammeter were respectively connected to the obtained nanopolymer clay battery, pressure was applied, and voltage and current were measured.
  • the measured values of voltage and current of the manufactured nanopolymer clay battery were 1.09 V and 5.95 mA (the voltage and current of the battery are proportional to the unit area).

Abstract

This invention provides a cell which has a structural stability realized by a physical method free from a risk of electrical loss and damage caused by heat generation. The nanopolymer clay cell comprises a thin film formed of an electrically negative polar material comprising a polymer clay, a water soluble polyvinyl alcohol, a natural exsiccated alum, sodium hydrogencarbonate, and a metal dioxide, and a thin film formed of an electrically positive polar material comprising an activated carbon powder in addition to the above constituents. Both the thin films have been laminated to and bonded to each other. Preferably, the contents of the polymer clay, the water soluble polyvinyl alcohol, the natural exsiccated alum, the sodium hydrogencarbonate, the metal dioxide, and the activated carbon powder are 18 to 60% by weight, 18 to 60% by weight, 0.25 to 2% by weight, 0.25 to 2% by weight, 6 to 18% by weight, and 6 to 18% by weight, respectively.

Description

ナノポリマークレイ電池及び同電池用電極物質Nanopolymer clay battery and electrode material for the same
 本発明は、ナノポリマークレイ電池、ナノポリマークレイ電池に使用する電極用物質、及び該ナノポリマークレイ電池の製造方法に関する。 The present invention relates to a nanopolymer clay battery, an electrode material used in the nanopolymer clay battery, and a method for producing the nanopolymer clay battery.
 従来、特にPC、VTRなどのAV、情報機器のメモリーバックアップやこれらの駆動電源用2次電池では、ニッケル-カドミウム電池が主流を成してきた。最近では、高電圧、高エネルギー密度という利点を有し、また優良な自己放電性を表す点でニッケル-カドミウム電池に代替できる電池として非水電解液型2次電池が非常に注目されており、多様な製品の開発・試作がなされており、その一部は商品化されている。 Conventionally, nickel-cadmium batteries have been mainly used for AV backup of PCs, VTRs, etc., memory backup of information devices, and secondary batteries for these drive power supplies. Recently, non-aqueous electrolyte type secondary batteries have attracted a great deal of attention as a battery that has the advantages of high voltage and high energy density and can be replaced with nickel-cadmium batteries in terms of excellent self-discharge characteristics. Various products have been developed and prototyped, some of which have been commercialized.
 例えば、note book PCや携帯電話などはその半分以上が非水電解液型2次電池によって駆動されている。この非水電解液型2次電池にあっては、陰極を形成する材料としてカーボンが大量に使われており、その表面にリチウムが生成された場合の危険性を低減し、高駆動電圧化をすることを目的として、電解液として種々の有機溶媒が使われている。また、カメラ用非水電解液型2次電池では陰極材料としてアルカリ金属 (特に、リチウム金属やリチウム合金)などが使われているので、その電解液では通常エステル系有機溶媒などの非プロトン性有機溶媒が使われている。 For example, more than half of notebook PCs and mobile phones are driven by non-aqueous electrolyte secondary batteries. In this non-aqueous electrolyte type secondary battery, a large amount of carbon is used as a material for forming the cathode, and the risk of lithium generated on the surface is reduced, and a high driving voltage is increased. For this purpose, various organic solvents are used as the electrolytic solution. Also, since non-aqueous electrolyte secondary batteries for cameras use alkaline metal soot (especially lithium metal or lithium alloy) as the cathode material, the electrolyte usually contains aprotic organic solvents such as ester organic solvents. A solvent is used.
 しかし、この非水電解液型2次電池は高性能であるが、安全性面から以下のような問題があった。先に、非水電解液型2次電池の陰極材料としてアルカリ金属 (特にリチウム金属やリチウム合金など)を使用した場合には、このアルカリ金属は水分に対して非常に活性が高いので、例えば電池の密封が不完全なため水分が侵入した場合には、陰極材料と水が反応して水素が発生し、発火するなどの危険性が高いという問題があった。 However, although this non-aqueous electrolyte type secondary battery has high performance, it has the following problems in terms of safety. First, when alkali metal soot (especially lithium metal or lithium alloy) is used as the cathode material of the non-aqueous electrolyte secondary battery, the alkali metal is very active against moisture. When the moisture invades due to imperfect sealing of the cathode, there is a problem that the cathode material and water react with each other to generate hydrogen and ignite.
 また、リチウム金属は低融点(約170℃)であるため、落下時などに大量の電流が急激に流れると、電池が異常に発熱して電池が溶融するなどの非常に危険な状況を惹起させるという問題があった。 In addition, since lithium metal has a low melting point (about 170 ° C), if a large amount of current flows suddenly when it is dropped, it causes a very dangerous situation such as abnormal heating of the battery and melting of the battery. There was a problem.
 そして電池の発熱によって前述した有機溶媒をベースにする電解液が気化、分解されてガスを発生したり、発生したガスによって電池の破裂、発火が起きるという問題があった。 Further, there has been a problem that the electrolyte based on the organic solvent described above is vaporized and decomposed due to heat generation of the battery to generate gas, and the generated gas causes rupture and ignition of the battery.
 従って本発明の目的は、上記した従来の化学的な電池物質が持つ諸般問題点を解決することを目的とする。より詳しくは、従来化学的な方式による電池とは異なり、熱発生による電気的損失と損傷の危険性がなく、電池物質を極めて安定なものとしたナノポリマークレイ電池、ナノポリマークレイ電池に使用する電極用物質、及び該ナノポリマークレイ電池の製造方法を提供することにある。 Accordingly, an object of the present invention is to solve various problems of the above-described conventional chemical battery materials. More specifically, unlike conventional chemical batteries, there is no risk of electrical loss and damage due to heat generation, and it is used for nanopolymer clay batteries and nanopolymer clay batteries with extremely stable battery materials. An object of the present invention is to provide an electrode material and a method for producing the nanopolymer clay battery.
 本発明は、ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬(明礬)、炭酸水素ナトリウム(NaHCO3)及び二酸化金属、あるいはこれらに加えて更に活性炭粉末などを利用して電池用物質を製造して、これらに圧力を加えて物理的な方式の電池を製造することで、従来の化学的な方式による電池の有する問題点を解決することができることを発見し、本発明を完成したものである。 The present invention produces a battery material using polymer clay, water-soluble polyvinyl alcohol, dried birch (alum), sodium hydrogen carbonate (NaHCO3) and metal dioxide, or in addition to these, activated carbon powder, etc. The present invention has been completed by discovering that the problems of the conventional chemical battery can be solved by applying a physical pressure to the battery to produce a physical battery.
[1] 本発明の第1の視点は、電気的マイナス極性物質からなる薄膜またはフィルムと、電気的プラス極性物質からなる薄膜またはフィルムとを含み、電気的マイナス極性物質の薄膜またはフィルムと、電気的プラス極性物質の薄膜またはフィルムとを積層・接合したナノポリマークレイ電池であって、
 該電気的マイナス極性物質は、ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム(NaHCO3)及び二酸化金属を含み、
 該電気的プラス極性物質は、ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム、二酸化金属及び活性炭粉末を含むことを特徴とするナノポリマークレイ電池に関する。
[1] A first aspect of the present invention includes a thin film or film made of an electrically negative polarity material and a thin film or film made of an electrically positive polarity material, and a thin film or film of an electrically negative polarity material, A nanopolymer clay battery in which a thin film or a film of a positive polarity material is laminated and bonded,
The electrically negative polar material includes polymer clay, water-soluble polyvinyl alcohol, dry white cocoon, sodium bicarbonate (NaHCO3) and metal dioxide,
The electrical positive polarity material relates to a nano polymer clay battery, characterized in that it includes polymer clay, water-soluble polyvinyl alcohol, dry birch, sodium bicarbonate, metal dioxide and activated carbon powder.
 上記ナノポリマークレイ電池においては、以下に好ましい態様を挙げる。
a) 上記ナノポリマークレイ電池において、該電気的マイナス極性物質は、電気的マイナス極性物質の全量を100重量%とした場合に、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2 重量%及び二酸化金属6~18重量%を含み、
 該電気的プラス極性物質は、電気的プラス極性物質の全量を100重量%とした場合に、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%、二酸化金属6~18重量%及び活性炭粉末6~18重量%を含むことが好ましい。
In the said nano polymer clay battery, a preferable aspect is mentioned below.
a) In the above-mentioned nanopolymer clay battery, the electrically negative polarity substance is 18 to 60% by weight of polymer clay and 18 to 60% by weight of water-soluble polyvinyl alcohol when the total amount of the electrically negative polarity substance is 100% by weight. , Including white birch 0.25-2% by weight, sodium bicarbonate 0.25-2% by weight and metal dioxide 6-18% by weight,
The electrically positive polar substance is a polymer clay of 18 to 60% by weight, a water-soluble polyvinyl alcohol of 18 to 60% by weight, a dry white rice cake of 0.25 to 2% by weight when the total amount of the electrically positive polar substance is 100% by weight, It preferably contains 0.25 to 2% by weight of sodium bicarbonate, 6 to 18% by weight of metal dioxide and 6 to 18% by weight of activated carbon powder.
b)上記ナノポリマークレイ電池において、好ましくは上記積層・接合体の両面に絶縁体が設けられている。 b) In the nanopolymer clay battery, preferably, an insulator is provided on both surfaces of the laminate / joint.
c) 上記ナノポリマークレイ電池において、上記絶縁体は好ましくはシリコーン・シーラントである。 c) In the nanopolymer clay battery, the insulator is preferably a silicone sealant.
d) 上記ナノポリマークレイ電池の実施態様としては、上記ナノポリマークレイ電池は携帯電話機 、無線マウス、キーボード、MP3プレーヤー、カメラ、ノートブック、PDA、ロボット及び電子タグ等の応用電気機器のいずれか一つへ使用するために適合させたナノポリマークレイ電池が挙げられる。 d) As an embodiment of the nanopolymer clay battery, the nanopolymer clay battery is any one of applied electric devices such as a mobile phone, a wireless mouse, a keyboard, an MP3 player, a camera, a notebook, a PDA, a robot, and an electronic tag. Nanopolymer clay batteries adapted for use in one.
[2] 本発明の第2の視点は、ナノポリマークレイ電池用物質を提供することにある。より詳しくは、本発明の第2の視点は、ナノポリマークレイ電池用電気的マイナス極性物質、および該ナノポリマークレイ電池用電気的マイナス極性物質の構成成分に加えて活性炭粉末から得られるナノポリマークレイ電池用電気的プラス極性物質を提供することにある。
[2-1]  本発明の第2の視点は、ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム及び二酸化金属を含むことを特徴とするナノポリマークレイ電池用電気的マイナス極性物質に関する。
[2] A second aspect of the present invention is to provide a material for a nanopolymer clay battery. More specifically, the second aspect of the present invention relates to an electrically negative polarity substance for a nanopolymer clay battery, and a nanopolymer clay obtained from activated carbon powder in addition to the components of the electrically negative polarity substance for the nanopolymer clay battery. It is to provide an electrically positive polarity material for a battery.
[2-1] A second aspect of the present invention relates to an electrically negative polarity material for a nanopolymer clay battery, which contains polymer clay, water-soluble polyvinyl alcohol, dry birch, sodium bicarbonate, and metal dioxide.
 上記ナノポリマークレイ電池用電気的マイナス極性物質は、ポリマークレイ電池用電気的マイナス極性物質を100重量%として、好ましくはポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%及び二酸化金属6~18重量%を含む。 The electrical negative polarity material for nano polymer clay battery is preferably 18 to 60% by weight of polymer clay, 18 to 60% by weight of water-soluble polyvinyl alcohol, and 100% by weight of the electrical negative polarity material for polymer clay battery. Contains 0.25-2% by weight, sodium bicarbonate 0.25-2% by weight and metal dioxide 6-18% by weight.
[2-2] 本発明の第2の視点は、さらに本発明の第2の視点の[2-1]のナノポリマークレイ電池用電気的マイナス極性物質に挙げたポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム及び二酸化金属を含み、更に活性炭粉末を含むことを特徴とするナノポリマークレイ電池用電気的プラス極性物質に関する。 [2-2] The second aspect of the present invention is the polymer clay, water-soluble polyvinyl alcohol, and the like, which are further listed in the electrical negative polarity substance for nanopolymer clay battery of [2-1] of the second aspect of the present invention, The present invention relates to an electrically positive polar substance for a nanopolymer clay battery, characterized by comprising dried white birch, sodium bicarbonate and metal dioxide, and further comprising activated carbon powder.
 ナノポリマークレイ電池用電気的プラス極性物質において、ナノポリマークレイ電池用電気的プラス極性物質を100重量%として、好ましくは、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%、二酸化金属6~18重量%及び活性炭粉末を6~18重量%含む。 In the electrical positive polarity material for nanopolymer clay battery, the electrical positive polarity material for nanopolymer clay battery is 100% by weight, preferably 18 to 60% by weight of polymer clay, 18 to 60% by weight of water-soluble polyvinyl alcohol, and dried. It contains 0.25-2% by weight of white birch, 0.25-2% by weight of sodium bicarbonate, 6-18% by weight of metal dioxide and 6-18% by weight of activated carbon powder.
[3] 本発明の第3の視点は、ナノポリマークレイ電池の製造方法に関し、該ナノポリマークレイ電池の製造方法は、
(1)ポリマークレイと水溶性ポリビニルアルコールを混合する工程と、
 上記混合物に乾燥白礬と炭酸水素ナトリウムを投入して混合する工程と、
 得られた混合物に二酸化金属を投入して混合する工程を含んで電気的マイナス極性物質を製造する段階と、
(2) ポリマークレイと水溶性ポリビニルアルコールを混合する工程と、
 上記混合物に乾燥白礬と炭酸水素ナトリウムを投入して混合する工程と、
 得られた混合物に二酸化金属と活性炭粉末を投入して混合する工程を含んで電気的プラス極性物質を製造する段階と、
(3)上記電気的マイナス極性物質と電気的プラス極性物質をそれぞれ薄膜またはフィルムに加工する段階と、
(4)上記電気的マイナス極性物質の薄膜またはフィルムと電気的プラス極性物質の薄膜またはフィルムを接合する段階を含むことを特徴とする。 上記薄膜またはフィルムへの加工、上記薄膜またはフィルムの接合には、ローラープレス、板状プレス等を適宜使用することができる。
[3] A third aspect of the present invention relates to a method for producing a nanopolymer clay battery, and the method for producing the nanopolymer clay battery comprises:
(1) mixing polymer clay and water-soluble polyvinyl alcohol;
Adding the white birch and sodium bicarbonate to the mixture and mixing them;
A step of producing an electrically negative polar substance including a step of adding and mixing metal dioxide into the obtained mixture;
(2) mixing polymer clay and water-soluble polyvinyl alcohol;
Adding the white birch and sodium bicarbonate to the mixture and mixing them;
A step of producing an electrically positive polar substance including a step of adding and mixing metal dioxide and activated carbon powder into the obtained mixture;
(3) processing the electrical negative polarity material and the electrical positive polarity material into a thin film or a film, respectively;
(4) The method includes the step of joining the thin film or film of the electrically negative polar substance and the thin film or film of the electrically positive polar substance. A roller press, a plate-like press, or the like can be appropriately used for processing the thin film or film and joining the thin film or film.
 ナノポリマークレイ電池の製造方法において、以下に好ましい態様をあげる。
a) 電気的マイナス極性物質を製造する段階(1)の工程において、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬 0.25~2重量%、炭酸水素ナトリウム0.25~2重量%、二酸化金属6~18重量%を用い、
  電気的プラス極性物質を製造する段階(2)の工程において、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%を用いる。 
In the method for producing a nanopolymer clay battery, preferred embodiments are listed below.
a) In the step (1) for producing an electrically negative polar substance, polymer clay 18 to 60% by weight, water-soluble polyvinyl alcohol 18 to 60% by weight, dry birch 0.25 to 2% by weight, sodium hydrogen carbonate 0.25 to 2 % By weight, 6-18% by weight of metal dioxide,
In the step (2) for producing an electrically positive polar substance, polymer clay 18 to 60% by weight, water-soluble polyvinyl alcohol 18 to 60% by weight, dry white lees 0.25 to 2% by weight, sodium bicarbonate 0.25 to 2% by weight Is used.
b)上記電気的マイナス極性物質と上記電気的プラス極性物質を薄膜またはフィルムに加工する段階の加工圧力が、150~300ton/mである。 b) The processing pressure at the stage of processing the electrical negative polarity material and the electrical positive polarity material into a thin film or film is 150 to 300 ton / m 2 .
c) 上記接合段階後、接合により得られたナノポリマークレイ電池の両面に絶縁体を設ける工程をさらに含む。 c) After the joining step, further includes a step of providing an insulator on both surfaces of the nanopolymer clay battery obtained by joining.
d) 上記絶縁体はシリコーン・シーラントである。 d) The insulator is a silicone sealant.
e) 上記絶縁体の厚さは6~10Åである。 e) The thickness of the insulator is 6 to 10 mm.
 ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム及び二酸化金属を含むナノポリマークレイ電池用電気的マイナス極性物質、及びこれらに加えて活性炭粉末を含むナノポリマークレイ電池用電気的プラス極性物質を製造して、これらのナノポリマークレイ電池用物質に圧力を加えて物理的な方式の電池を製造すると、従来化学的な方式による電池たちとは違って、熱発生による電気的な損失と損傷の危険性がなく、電池物質の安定性を最大化することができるなどの有用な効果を提供する。 Electrically negative polarity material for nanopolymer clay battery containing polymer clay, water-soluble polyvinyl alcohol, dry white rabbit, sodium hydrogen carbonate and metal dioxide, and in addition to this, electrically positive polarity material for nanopolymer clay battery containing activated carbon powder When manufactured and manufactured by applying pressure to these nanopolymer clay battery materials, the battery of the physical method is different from the conventional chemical method of the battery. It provides a useful effect such as no danger and maximizing the stability of the battery material.
一般ポリマー分子と膨張ポリマー分子の構造を比較して示す模式図であり、「従来の」一般ポリマー分子の鎖構造”A”を、膨張化物質で膨張させた膨張ポリマー分子の鎖構造”B”を示す。FIG. 2 is a schematic diagram showing a comparison between the structure of a general polymer molecule and an expanded polymer molecule, where the chain structure “A” of a “conventional” general polymer molecule is expanded with an expanding material and the chain structure “B” of an expanded polymer molecule. Indicates. 本発明によるナノポリマークレイ電池用電極物質の構造を示す模式図であり、左下には「不安定化された分子鎖構造と圧力によるスピン・ホール鎖構造」を示し、右下には「外部の原子・電子振動と物質への圧力の付加により分子鎖構造が捻じれることにより生ずるスピン・ホール電子移動現象」を示す。FIG. 2 is a schematic diagram showing the structure of an electrode material for a nanopolymer clay battery according to the present invention, showing a “stabilized molecular chain structure and a spin-hole chain structure by pressure” in the lower left, and “external "Spin-hole electron transfer phenomenon caused by twisting of molecular chain structure caused by atomic / electron vibration and pressure applied to matter". 大気中に存在する原子、電子、イオン等の様々な粒子により、本発明の積層ナノポリマークレイ電池においてスピン分極とスピン分極電子によるスピン電流(Spin Current)の発生及び電流(Electric Current)の発生現象を示す模式図である。Generation of spin current (Spin Current) and current (Electric Current) due to spin polarization and spin-polarized electrons in the laminated nanopolymer clay battery of the present invention due to various particles such as atoms, electrons and ions present in the atmosphere It is a schematic diagram which shows. 本発明による積層ナノポリマークレイ電池の電池用物質内の電子の移動を示す模式図であり、○マイナスは電子を、○±は電界の方向(+→-)を模式的に示す。It is a schematic diagram which shows the movement of the electron in the battery substance of the lamination | stacking nano polymer clay battery by this invention, (circle) minus shows an electron and (circle) ± shows the direction (+->-) of an electric field typically. 本発明に係るナノポリマークレイ電池の電池用物質内における相互電子間に現れる分子鎖構造の引力と斥力による電子運動のメカニズムを示す模式図である。It is a schematic diagram which shows the mechanism of the electron motion by the attractive force of the molecular chain structure which appears between the mutual electrons in the battery material of the nano polymer clay battery which concerns on this invention, and repulsive force. 本発明によるナノポリマークレイ電池の積層構造を分解して示す模式図である。It is a schematic diagram which decomposes | disassembles and shows the laminated structure of the nano polymer clay battery by this invention. 本発明によるナノポリマークレイ電池の電位差と電流移動現象を示す説明図である。It is explanatory drawing which shows the electrical potential difference and current transfer phenomenon of the nano polymer clay battery by this invention.
 以下、本発明を詳しく説明する。まず、本発明に使用されるそれぞれのナノポリマークレイ電池の電池用物質の構成成分を説明する。
(1) ポリマークレイ
 ポリマークレイ(Polymer-Clay、樹脂粘土、主成分は芳香族-脂肪族ポリエステル樹脂)は樹脂フィラー(Filler)として、一連の高密度化合物中の一つである。ポリマークレイは、電池物質内で膨張ポリマー物質への転換により正孔(Hole)と鎖構造を持つようにするための主原料として使われる。ポリマークレイとしては、芳香族-脂肪族ポリエステル樹脂とポリ塩化ビニルとを塩化ビニル柔軟剤としての可塑剤(充填剤)で混入して製造する組成物を例示できる。芳香族-脂肪族ポリエステル樹脂とポリ塩化ビニルとの混合比率は本発明のナノポリマークレイ電池の効果を達成することができるのであれば特に限定されず、また、当業者であれば適宜混合比率を選択できる。芳香族-脂肪族ポリエステル樹脂としては、例えば、日本触媒のポリビニルピロリドン K-30Wを挙げることができる。
The present invention will be described in detail below. First, the components of the battery material for each nanopolymer clay battery used in the present invention will be described.
(1) Polymer clay Polymer clay (Polymer-Clay, resin clay, the main component is an aromatic-aliphatic polyester resin) is one of a series of high-density compounds as a resin filler. Polymer clay is used as a main raw material to have a hole and chain structure by conversion to an expanded polymer material in the battery material. Examples of the polymer clay include a composition produced by mixing an aromatic-aliphatic polyester resin and polyvinyl chloride with a plasticizer (filler) as a vinyl chloride softening agent. The mixing ratio of the aromatic-aliphatic polyester resin and the polyvinyl chloride is not particularly limited as long as the effect of the nanopolymer clay battery of the present invention can be achieved. You can choose. As an aromatic-aliphatic polyester resin, for example, polyvinyl pyrrolidone K-30W of Nippon Shokubai can be mentioned.
 上記ポリマークレイは、ナノポリマークレイ電池用物質内の配合比(ナノポリマークレイ電池用物質の総量を100重量%とする、以下同じ)が18重量%未満になれば物質内の正孔(Hole)が不十分になり、60重量%を超過すれば膨張化物質での膨張ポリマー転換が容易ではない問題点があるので、その配合比を18~60重量%にすることが好ましく、20~40重量%がさらに好ましく、36重量%とすることが最も好ましい。
 なお、膨張化物質とは、ポリマー中に添加され、ポリマー分子中にホール(正孔)を形成する物質で、安定ポリマー物質を不安定ポリマー物質とする化合物をいう。本発明では、二酸化金属、炭酸水素ナトリウム、ポリビニルアルコール、明礬、活性炭粉末等を指す。
The above polymer clay is a hole in the material when the blending ratio in the material for the nano polymer clay battery (the total amount of the material for the nano polymer clay battery is 100% by weight, the same applies hereinafter) is less than 18% by weight. If the amount exceeds 60% by weight, it is not easy to convert the expanded polymer with the expanding material. Therefore, the blending ratio is preferably 18 to 60% by weight, and 20 to 40% by weight. % Is more preferable, and most preferably 36% by weight.
The term “expanding substance” refers to a compound that is added to a polymer and forms holes in the polymer molecule, and the stable polymer substance is an unstable polymer substance. In the present invention, it refers to metal dioxide, sodium hydrogen carbonate, polyvinyl alcohol, alum, activated carbon powder and the like.
(2) 水溶性ポリビニルアルコール
 水溶性ポリビニルアルコール(Vinyl Polymer, Poly Vinyl Acetateで誘導される,CH3CHOH-(CH2-CHOH)n-)は親水性表面を持つ材料に対してすぐれた結合力を示し、電池物質内のポリマークレイなどと結合して電池用物質の柔軟性と構造を一定に維持するための役目をする。
(2) Water-soluble polyvinyl alcohol Water-soluble polyvinyl alcohol (Vinyl Polymer, derived from Poly Vinyl Acetate, CH3CHOH- (CH2-CHOH) n-) exhibits excellent binding strength to materials with hydrophilic surfaces, It combines with the polymer clay in the battery material to serve to maintain the flexibility and structure of the battery material.
 上記水溶性ポリビニルアルコールは配合比が18重量%未満なら物質の柔軟性と構造を一定にするのが難しく、60重量%を超過すれば物質の合成された構造強度が大きくなり過ぎ柔軟性を失う恐れがあるので, その配合比を18~60重量%にすることが好ましく、30~50重量%とすることがより好ましく、 39重量%にすることが最も好ましい。  If the compounding ratio is less than 18% by weight, it is difficult to keep the flexibility and structure of the substance constant, and if it exceeds 60% by weight, the synthesized structural strength of the substance becomes too high and the flexibility is lost. Therefore, the blending ratio is preferably 18 to 60% by weight, more preferably 30 to 50% by weight, and most preferably 39% by weight.
(3) 乾燥白礬
 乾燥白礬(Burnt alum, K2SO2Al2(SO4)3)は比重が 1.97の吸湿性のある軽い粉末であり, ポリマークレイと水溶性ポリビニルアルコールなどが結合された物質内で水分を吸湿する性質を有する。上記 乾燥白礬は、その配合比が0.25重量%未満なら吸湿性が弱くなり、2重量%を超過すれば吸湿性が強くなりすぎ、ポリマークレイと水溶性ポリビニルアルコールの結合が容易に破壊される可能性があるので、その 配合比を0.25~2重量%にすることが好ましく、0.5 重量%とすることがさらに好ましい。
(3) Dried white lees Dried white lees (Burnt alum, K2SO2Al2 (SO4) 3) is a light hygroscopic powder with a specific gravity of 1.97. Has properties. The above-mentioned dried birch is less hygroscopic if the blending ratio is less than 0.25% by weight, and if it exceeds 2% by weight, the hygroscopicity becomes too strong, and the bond between polymer clay and water-soluble polyvinyl alcohol can be easily broken. Therefore, the blending ratio is preferably 0.25 to 2% by weight, and more preferably 0.5% by weight.
(4) 炭酸水素ナトリウム
 上記炭酸水素ナトリウム(Sodium Bicarbonate、NaHCO3)は白色の結晶塊または結晶性粉末であり、電池物質で、ポリマークレイと水溶性ポリビニルアルコールの化合物を膨張化物質で膨張ポリマー物質に転換させる際に重要な役割をする。炭酸水素ナトリウムは、その配合比が0.25重量%未満であると、物質の膨張力が低下され、2重量%を超過すれば物質内の電気伝導性に悪影響を与える可能性があるので、その配合比を0.25~2重量%にすることが好ましく、0.5重量%とすることがさらに好ましい。
(4) Sodium bicarbonate Sodium bicarbonate (NaHCO3) is a white crystal lump or crystalline powder. It is a battery material, and a polymer clay and water-soluble polyvinyl alcohol compound is expanded into an expanded polymer material. Play an important role in converting. Sodium bicarbonate has a compounding ratio of less than 0.25% by weight, and the expansion power of the substance is reduced.If it exceeds 2% by weight, the electrical conductivity in the substance may be adversely affected. The ratio is preferably 0.25 to 2% by weight, more preferably 0.5% by weight.
(5) 二酸化金属
 上記二酸化金属(dioxide metal)は、二酸化物系列の酸化金属を指し、電池用物質にナノ粒子の大きさで分散混合されることで、電池用物質に電気的極性を付与し、かつ電子の放出を可能とする二酸化金属であれば、特に限定されない。二酸化金属としては、具体的には、二酸化亜鉛、二酸化銅等を例示することができる。ここに、「ナノ粒子の大きさ」とは、電池用物質にナノ粒子の大きさで分散混合されることで電池用物質に電気的極性を付与し電子を放出することを可能とすれば特に限定されないが、例えば、10nm±5nm~40nm±5nmの範囲のナノ粒子サイズが例示される。
(5) Metal Dioxide The above-mentioned metal oxide refers to a metal oxide of the dioxide series, and is dispersed and mixed with the battery material in the size of nanoparticles, thereby imparting electrical polarity to the battery material. As long as it is a metal dioxide capable of emitting electrons, it is not particularly limited. Specific examples of the metal dioxide include zinc dioxide and copper dioxide. Here, the “size of the nanoparticle” means that the battery material is dispersed and mixed in the size of the nanoparticle to give an electric polarity to the battery material and emit electrons. Non-limiting examples include nanoparticle sizes in the range of 10 nm ± 5 nm to 40 nm ± 5 nm, for example.
 上記二酸化金属類(dioxide metal)の配合比が6重量%未満であると物質内の電気的極性の付与と電子の放出の特性が充分でなく、18重量%を超過すればナノポリマークレイ電池物質の電気伝導性を低下させるので、その 配合比を6~18重量%にすることが好ましく、12重量%とすることがさらに好ましい。 If the blending ratio of the above metal dioxides (dioxide 未 満 metal) is less than 6% by weight, the properties of imparting electrical polarity and electron emission in the material are not sufficient, and if it exceeds 18% by weight, the nanopolymer clay battery material In order to reduce the electrical conductivity, the soot blending ratio is preferably 6 to 18% by weight, more preferably 12% by weight.
(6) 活性炭粉末
 上記活性炭粉末(active Carbon)は吸着性が強く、大部分の構成物質が炭素質になった物質である。物質内で輻射の吸収や高速粒子線の衝撃などにより、原子や分子またはイオンなどが高エネルギー状態になって結晶格子に変動を起こしやすい状態となり、電池物質内で化合物と容易に安定的に結合する性質を有する。それにより、炭素質の機能が向上し、炭素は水素、酸素または窒素などと共有結合を容易に形成することができ、単結合、二重結合、三重結合を可能とし鎖型と格子状の構造を形成することができる。 
(6) Activated carbon powder The activated carbon powder (active carbon) is strongly adsorbent and is a substance in which most of the constituent substances are carbonaceous. Due to the absorption of radiation in the material and the impact of high-speed particle beams, atoms, molecules, or ions are in a high energy state, and the crystal lattice is likely to fluctuate. It has the property to do. As a result, the carbonaceous function is improved, and carbon can easily form a covalent bond with hydrogen, oxygen, nitrogen, etc., allowing single bond, double bond, triple bond, and chain-type and lattice-like structure. Can be formed.
 上記活性炭粉末は、その配合比が6重量%未満であれば電池物質内部の結晶格子変動を起こしにくく、18重量%を超過すれば電池物質内部の化合物との鎖構造を破壊する可能性があるので、その配合比を6~18重量%にすることが好ましく、10~15重量%とすることがさらに好ましく、12重量%とすることが最も好ましい。 The activated carbon powder is less likely to cause crystal lattice fluctuation inside the battery material if the blending ratio is less than 6% by weight, and if it exceeds 18% by weight, the chain structure with the compound inside the battery material may be destroyed. Therefore, the blending ratio is preferably 6 to 18% by weight, more preferably 10 to 15% by weight, and most preferably 12% by weight.
 活性炭粉末の粒子の大きさとしては、上記作用を発揮するのであれば特に限定されるものではないが、例えば、20nm±5nm~40nm±5nmの範囲のナノ粒子サイズが例示される。 The particle size of the activated carbon powder is not particularly limited as long as it exhibits the above action, and examples thereof include nanoparticle sizes in the range of 20 nm ± 5 nm to 40 nm ± 5 nm.
 上記活性炭粉末は電気的プラス極性物質にだけ使われるが、活性炭粒子は電気的プラス極性物質と電気的マイナス極性物質との間に電位差を与える為に加えられる。活性炭粉末の種類は必ずしも制限されるものではなく、二つの電気的極性を持つ物質の2次加工性を向上する為に、二酸化金属と活性炭粉末のナノ粒子は多様な挿入剤(Intercalant)の形に改質、添加することができる。 The above activated carbon powder is used only for an electrically positive polarity material, but activated carbon particles are added to give a potential difference between the electrically positive polarity material and the electrically negative polarity material. The type of activated carbon powder is not necessarily limited, and in order to improve the secondary processability of substances with two electrical polarities, the nanoparticles of metal dioxide and activated carbon powder are in the form of various intercalants. Can be modified and added.
 すなわち 上記プラス極性を持つ電池物質はポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム、二酸化金属及び活性炭粉末を含んでおり、一方、マイナス極性を持つ電池用物質はポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬 、炭酸水素ナトリウム及び二酸化金属を含んでいる。上記構成により、プラス極性物質とマイナス極性物質との間で電位差が現われる。 That is, the battery material having positive polarity includes polymer clay, water-soluble polyvinyl alcohol, dry white straw, sodium hydrogen carbonate, metal dioxide and activated carbon powder, while the battery material having negative polarity is polymer clay, water-soluble polyvinyl alcohol. Contains alcohol, dry birch, sodium bicarbonate and metal dioxide. With the above configuration, a potential difference appears between the positive polarity material and the negative polarity material.
 上記プラス極性物質とマイナス極性物質で構成されるナノポリマークレイ電池は、物理的な方式特徴を有し、発熱現象及び損傷の危険性を最小化することができる。 The nano-polymer clay battery composed of the above positive and negative polar materials has physical system characteristics and can minimize the heat generation phenomenon and the risk of damage.
  以下に、上記ナノポリマークレイ電池用物質を利用してナノポリマークレイ電池を製造する方法に対して説明する。以下に述べるナノポリマークレイ電池の製造方法は、本発明の好適な製造例を示すもので、本発明のナノポリマークレイ電池を製造する方法は、これに限定されるものではない。 Hereinafter, a method for producing a nanopolymer clay battery using the above-mentioned material for a nanopolymer clay battery will be described. The method for producing the nanopolymer clay battery described below shows a preferred production example of the present invention, and the method for producing the nanopolymer clay battery of the present invention is not limited thereto.
 本発明のナノポリマークレイ電池の製造方法は、
(1) ポリマークレイと水溶性ポリビニルアルコールを混合する工程と、上記混合物に乾燥白礬 と炭酸水素ナトリウムを投入して混合する工程と、得られた混合物に二酸化金属を投入して混合する工程を含んで電気的マイナス極性を持つ物質を製造する段階と、
(2)  ポリマークレイと水溶性ポリビニルアルコールを混合する工程と、上記混合物に乾燥白礬と炭酸水素ナトリウムを投入して混合する工程と、得られた混合物に二酸化金属と活性炭粉末を投入して混合する工程を含んで電気的プラス極性を持つ物質を製造する段階と、
(3) 上記 電気的なマイナス極性を持つ物質とプラス極性を持つ物質をそれぞれ薄膜またはフィルムに加工する段階と、
(4) 上記 電気的なマイナス極性を持つ物質とプラス極性を持つ物質の薄膜またはフィルムを接合する段階を含むことを特徴とする。上記薄膜またはフィルムへの加工、上記薄膜またはフィルムの接合には、ローラープレス、板状プレス等を適宜使用することができる。
The method for producing the nanopolymer clay battery of the present invention comprises:
(1) A step of mixing polymer clay and water-soluble polyvinyl alcohol, a step of adding and mixing dry white straw and sodium hydrogen carbonate into the above mixture, and a step of adding and mixing metal dioxide into the obtained mixture Producing a material with negative electrical polarity at
(2) A step of mixing polymer clay and water-soluble polyvinyl alcohol, a step of adding and mixing dry white straw and sodium hydrogen carbonate into the above mixture, and adding and mixing metal dioxide and activated carbon powder into the resulting mixture A step of manufacturing a material having a positive polarity including a process;
(3) processing the material having the negative electrical polarity and the material having the positive polarity into a thin film or a film, respectively;
(4) The method includes the step of joining the material having the negative electrical polarity and the thin film or film of the material having the positive polarity. A roller press, a plate-like press, or the like can be appropriately used for processing the thin film or film and joining the thin film or film.
 具体的な好適条件については、上記[3]のa)~e)に述べたのでその説明を省略する The specific preferred conditions have been described in [3] a) to e) above, so the explanation is omitted.
 本発明では電気的マイナス極性を持つ物質と電気的プラス極性を持つ物質をそれぞれ製造するのに、先に電気的マイナス極性を持つ物質の製造方法を説明する。しかし、本発明で電気的マイナス極性を持つ物質と電気的プラス極性を持つ物質の製造順序を制限するのではない。 In the present invention, in order to manufacture a substance having an electrical negative polarity and a substance having an electrical positive polarity, a method for manufacturing a substance having an electrical negative polarity will be described first. However, the present invention does not limit the production order of a material having an electrical negative polarity and a material having an electrical positive polarity.
 先に、ポリマークレイと水溶性ポリビニルアルコールを始めに配合する理由は、上記ポリマークレイと水溶性ポリビニルアルコールが正孔と鎖の構造を持つ膨張ポリマー物質の主原料として使われるので、これらを組み合わせ配合することにより物質の柔軟性と構造を一定化するのが容易なためであるが, 本発明はこれに限定されない。 First, the reason for blending polymer clay and water-soluble polyvinyl alcohol first is that the above polymer clay and water-soluble polyvinyl alcohol are used as the main raw materials of the expanded polymer substance having a hole and chain structure, so combining these This is because it is easy to make the flexibility and structure of the substance constant, but the present invention is not limited to this.
 上記配合の完了後、混合物に乾燥白礬と炭酸水素ナトリウムを投入して混合し、混合物に吸湿性を付与するとともに、膨張ポリマーに転換させる。 乾燥白礬と炭酸水素ナトリウムは、別々に加えることもできる。上記「乾燥白礬と炭酸水素ナトリウムを投入して混合し」にはこの場合も含む。別々に加える場合、乾燥白礬の配合が完了後、混合物に炭酸水素ナトリウム(NaHCO3)を投入して混合して膨張ポリマー転換を行う。 後 After completion of the above blending, dry white rabbit and sodium hydrogen carbonate are added to the mixture and mixed to impart hygroscopicity to the mixture and to convert it into an expanded polymer. Dry white birch and sodium bicarbonate can be added separately. The above-mentioned “mixed by adding dried white birch and sodium hydrogen carbonate” also includes this case. When added separately, after the blending of the dry birch is completed, sodium bicarbonate (NaHCO 3) is added to the mixture and mixed to perform expansion polymer conversion.
 得られた混合物に二酸化金属を混合することで、電気的マイナス極性を持つナノポリマークレイ電池用物質を製造する。 ∙ A material for a nanopolymer clay battery having an electric negative polarity is produced by mixing metal dioxide with the obtained mixture.
 電気的プラス極性を持つ電池物質は、上記電気的マイナス極性を持つ電池用物質を製造する方法と同一方法で製造するが、二酸化金属を加える最終段階で活性炭粉末も混合する。この場合、二酸化金属と活性炭粉末を別々に混合することもできる。 The battery material having an electrical positive polarity is manufactured by the same method as the battery material having the electrical negative polarity, but the activated carbon powder is also mixed in the final stage of adding metal dioxide. In this case, the metal dioxide and activated carbon powder can be mixed separately.
 上記のような電気的マイナス極性を持つ物質と電気的プラス極性を持つ物質の製造が完了後、ローラープレス等を利用してそれぞれ薄膜またはフィルムの形態に加工する。上記ローラープレス等の圧力は150~300ton/mとすることが望ましい。薄膜またはフィルムの厚さは特に限定されないが、たとえば2~20μm程度とすることができる。 After the production of the material having the electrical negative polarity and the material having the electrical positive polarity as described above is completed, the material is processed into a thin film or a film using a roller press or the like. The pressure of the roller press or the like is desirably 150 to 300 ton / m 2 . The thickness of the thin film or film is not particularly limited, but can be, for example, about 2 to 20 μm.
 上記ローラープレス等の圧力が150ton/m2未満であると、物質内部の電気的な伝導性が充分に発揮されることができず、300ton/m2を超過すると物質内部に過度な圧力による熱が発生して鎖型の構造を破壊して電気的伝導性が失われる可能性があるので 経済的ではない。 If the pressure of the roller press or the like is less than 150 ton / m 2 , the electrical conductivity inside the substance cannot be sufficiently exerted, and if it exceeds 300 ton / m 2 , heat due to excessive pressure inside the substance This is not economical because it can break down the chain structure and lose electrical conductivity.
 上記それぞれの薄膜またはフィルムを作製後、再びローラープレス等を利用してプラス極性を持つ薄膜またはフィルムとマイナス極性を持つ薄膜またはフィルムとを接合する。 上記ローラープレス等の圧力はそれぞれの薄膜またはフィルムを接合可能とするのであれば、特に制限されないが、3~5ton/m2が望ましい。 After producing each of the thin films or films, the thin film or film having a positive polarity and the thin film or film having a negative polarity are joined again using a roller press or the like. The pressure of the roller press or the like is not particularly limited as long as each thin film or film can be bonded, but it is preferably 3 to 5 ton / m 2 .
 接合が完了後、上記電池の両面に絶縁体をコーティングあるいは積層により設けることができる。上記絶縁体としては、シリコーン・シーラント(Silicone Sealant)を用いることができる。また、上記絶縁体は、薄膜素子の両面のそれぞれに6~10Åの膜厚で設けることが望ましい。厚さが6Å未満になれば薄膜またはフィルムの製造が容易ではなく生産性が落ち、10Åを超過すれば電流による量子効果の電子移動が易くないので、絶縁体層を厚さ6~10Åにコーティングあるいは積層して設けることが望ましい。  After the joining is completed, an insulator can be provided on both surfaces of the battery by coating or lamination. As the insulator, a silicone sealant can be used. The insulator is preferably provided with a thickness of 6 to 10 mm on each side of the thin film element. If the thickness is less than 6 mm, it is not easy to produce a thin film or film and the productivity is reduced. If it exceeds 10 mm, the electron transfer of the quantum effect due to current is not easy, so the insulator layer is coated to a thickness of 6 to 10 mm Alternatively, it is desirable to provide a stacked layer. *
 すなわち、上記のように製造されるナノポリマークレイ電池は、好ましい実施態様として、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%及び二酸化金属 6~18重量%を含む電気的マイナス極性を持つ物質の薄膜またはフィルムと、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%、二酸化金属 6~18重量%及び活性炭粉末6~18重量%を含む電気的プラス極性を持つ物質の薄膜を相互接合し、接合したナノポリマークレイ電池の両面に絶縁体をコーティングあるいは積層して設ける。 That is, in a preferred embodiment, the nanopolymer clay battery produced as described above has a polymer clay of 18 to 60% by weight, a water-soluble polyvinyl alcohol of 18 to 60% by weight, a dry white rabbit of 0.25 to 2% by weight, a sodium bicarbonate of 0.25%. Thin film or film of negatively polar material including ~ 2% by weight and metal dioxide 6-18%, polymer clay 18-60%, water-soluble polyvinyl alcohol 18-60%, dry white 0.25-2 Of nano-polymer clay battery that is bonded to each other by joining thin films of materials with electrical positive polarity including 5% by weight, sodium hydrogen carbonate 0.25-2% by weight, metal dioxide soot 6-18% by weight and activated carbon powder 6-18% by weight. An insulator is coated or laminated on both sides.
 上記ナノポリマークレイ電池はAP(Access Point)のような発振器で電波を発生させることにより、ナノポリマークレイ電池にイオンや電波を付与し電池内部の電子を活性化させ、電気エネルギーを発生させることができる。 The above-mentioned nanopolymer clay battery can generate electric energy by generating radio waves with an oscillator such as AP (Access Point), applying ions and radio waves to the nanopolymer clay battery and activating electrons inside the battery. it can.
 上記ナノポリマークレイ電池は基本的には電源が必要なすべての製品に適用可能であり、例えば携帯電話機、無線マウス、キーボード、MP3プレーヤー、カメラ、ノートブック、PDA、ロボット、アクティブRFI(Active RFI)バッテリ代用等のあらゆる電化製品に使うことができるが、その用途を制限するものではない。 The above-mentioned nano polymer clay battery is basically applicable to all products that require power, such as mobile phones, wireless mice, keyboards, MP3 players, cameras, notebooks, PDAs, robots, active RFI (Active RFI) It can be used for any electrical appliance such as a battery substitute, but it does not limit its application.
 以下、添付図面を参照して本発明を説明する。
 図1に示すように、一般のポリマー分子は安定した分子鎖構造を持っており、膨張ポリマー分子は安定した分子鎖構造と正孔を持つ。一方、図2に示すように、本発明によるナノポリマークレイ電池はそれぞれの化合物の結合・相互作用により不安定化された分子鎖構造と圧力によるスピン・ホール(Spin hole)鎖構造を有する。上下の3つの○は分子の鎖構造の一部を示す。図2は、アバランチェ・ブレークダウン(Avalanche breakdown)現象を示し、キャリアが加速されて進行して格子と衝突を起こして新しい電子とホールが生成される。またその生成されたキャリアがまた他の格子と衝突を起こして新しいキャリアを生成させる. これが繰り返されて無数に多い電子とホールが生成されてアバランチェ・ブレークダウンが発生する。
Hereinafter, the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, a general polymer molecule has a stable molecular chain structure, and an expanded polymer molecule has a stable molecular chain structure and holes. On the other hand, as shown in FIG. 2, the nanopolymer clay battery according to the present invention has a molecular chain structure destabilized by the binding and interaction of each compound and a spin hole chain structure by pressure. The upper and lower three circles indicate a part of the chain structure of the molecule. Figure 2 shows the Avalanche breakdown phenomenon, where carriers are accelerated and travel to collide with the lattice, creating new electrons and holes. The generated carriers also collide with other lattices to generate new carriers. This is repeated to generate countless number of electrons and holes, and avalanche breakdown occurs.
 本発明によるナノポリマークレイ電池は、電池内で、原子結合(atomic bond) をしている。また、分子軌道(molecular orbital)とは、分子の構造的に拗じれた正孔に対する鎖構造に対して、外部原子、電子振動および圧力が付与されることによって、電池内部の原子, 電子の間にお互いに引力と斥力が作用する。その結果、原子と電子がその正孔に対して振動をして, 自由電子が動いて電子が電池内を移動するようになる。引力と斥力による電子交換エネルギーは量子力学によって運動量(スピン)を持つ。  The nanopolymer clay battery according to the present invention has atomic bonds in the battery. In addition, molecular orbital means that between the atoms and electrons inside the battery by applying external atoms, electron vibrations and pressure to the chain structure for the structurally distorted holes of the molecule. Attraction and repulsion act on each other. As a result, atoms and electrons vibrate with respect to the holes, so that free electrons move and electrons move in the battery. Electron exchange energy by attractive and repulsive force has momentum (spin) by quantum mechanics. *
 また、スピン分極とスピン分極電子による積層電池物質は図3のような現象を示し、引力、斥力により電子が電池物質内を移動する。図3において、上下方向の短い矢印は大気の中に存在するさまざまな原子, 電子及びイオン等の粒子が元の物質と衝突して振動を発生する状態を示し、上下方向の長い矢印は、それによってスピンホール現象が発生していることを示し、スピン電流(Spin Current)、電流(Electric Current)が発生する。図中、上下方向の長い矢印は外部電子の入出力を表す。 In addition, the laminated battery material by spin polarization and spin-polarized electrons shows the phenomenon shown in FIG. 3, and electrons move in the battery material by attractive force and repulsive force. In FIG. 3, a short vertical arrow indicates a state in which various atoms, electrons, ions, and other particles existing in the atmosphere collide with the original substance to generate vibration, and a long vertical arrow indicates that Indicates that a spin Hall phenomenon has occurred, and a spin current (Spin Current) and a current (Electric Current) are generated. In the figure, long vertical arrows indicate input / output of external electrons.
 電子の移動をよく見れば、図4及び図5のような現象が現れる。図6に、本発明のナノポリマークレイ電池の一実施態様を示す。図6に示すように、該ナノポリマークレイ電池では、電気的マイナス極性薄膜またはフィルムと電気的プラス極性薄膜またはフィルムからなる積層体の両面に絶縁体の層を設け、絶縁体層の上に金属板A(銅板),B(亜鉛板)を設けて、これらを一体に積層・結合している。図7参照。図7のナノポリマークレイ電池に対して、圧力計(V)と電流計(A)とを接続した状態を示す(実際は、圧力計は並列接続し、電流計は直列接続をするが、簡単化のため圧力計V及び電流計Aの接続構造を図7に示す)。図7に示す状態で、上、下に圧力を加えると、図7に示すように、ナノポリマークレイ電池積層体から電子の放出が誘導され、回路中に電流が流れ、電位差と電流移動現象が現われる。  If you look closely at the movement of electrons, the phenomenon shown in Fig. 4 and Fig. 5 appears. FIG. 6 shows an embodiment of the nanopolymer clay battery of the present invention. As shown in FIG. 6, in the nanopolymer clay battery, an insulator layer is provided on both sides of a laminate composed of an electrically negative polarity thin film or film and an electrically positive polarity thin film or film, and a metal is formed on the insulator layer. Plate A (copper plate) and B (zinc plate) are provided, and these are laminated and bonded together. See FIG. Fig. 7 shows a state in which a pressure gauge (V) and an ammeter (A) are connected to the nanopolymer clay battery shown in Fig. 7 (actually, the pressure gauge is connected in parallel and the ammeter is connected in series, but simplified. Therefore, the connection structure of the pressure gauge V and the ammeter A is shown in FIG. In the state shown in FIG. 7, when pressure is applied to the top and bottom, as shown in FIG. 7, electron emission is induced from the nanopolymer clay battery laminate, current flows in the circuit, and the potential difference and current transfer phenomenon occur. Appear.
 以下に、本発明を実施例に基づいて説明する。
(1)ポリマークレイ18g、水溶性ポリビニルアルコール20g、乾燥白礬0.25g、炭酸水素ナトリウム0.25g、二酸化金属6g及び活性炭粉末6gを配合してプラス極性物質を製造した。
(2)次に、ポリマークレイ18g、水溶性ポリビニルアルコール20g、乾燥白礬0.25g、炭酸水素ナトリウム0.25g、二酸化金属 6gを配合してマイナス極性物質を製造した。
Hereinafter, the present invention will be described based on examples.
(1) A positive polarity substance was prepared by blending 18 g of polymer clay, 20 g of water-soluble polyvinyl alcohol, 0.25 g of dried white rabbit, 0.25 g of sodium bicarbonate, 6 g of metal dioxide and 6 g of activated carbon powder.
(2) Next, 18 g of polymer clay, 20 g of water-soluble polyvinyl alcohol, 0.25 g of dried birch, 0.25 g of sodium bicarbonate, and 6 g of metal dioxide were blended to produce a negative polarity substance.
(3)プラス極性物質及びマイナス極性物質のそれぞれを200ton/mの圧力でフィルム状とした(ナノポリマークレイ電池(+)極、ナノポリマークレイ電池(-)極)。
(4)フィルムを製造した後、絶縁体と2枚の金属板を準備して(シリコーン・シーラント絶縁体、銅板、亜鉛板)、ナノポリマークレイ電池(+)極、ナノポリマークレイ電池(-)極を接合して本発明のナノポリマークレイ電池を製造した。ナノポリマークレイ電池は、銅板、シリコーン・シーラント絶縁体、ナノポリマークレイ電池(+)極、ナノポリマークレイ電池(-)極、シリコーン・シーラント絶縁体、亜鉛板をこの順番で積層した。銅版0.3mm, 絶縁体数十Å、各電極0.5mm, 絶縁体、数十Å、亜鉛版0.3mm. いずれも縦横、50mm x 50mmとした。
(3) Each of the positive polar substance and the negative polar substance was formed into a film at a pressure of 200 ton / m 2 (nanopolymer clay battery (+) electrode, nanopolymer clay battery (−) electrode).
(4) After producing the film, prepare an insulator and two metal plates (silicone sealant insulator, copper plate, zinc plate), nanopolymer clay battery (+) electrode, nanopolymer clay battery (-) The electrodes were joined to produce a nanopolymer clay battery of the present invention. In the nanopolymer clay battery, a copper plate, a silicone sealant insulator, a nanopolymer clay battery (+) electrode, a nanopolymer clay battery (−) electrode, a silicone sealant insulator, and a zinc plate were laminated in this order. Copper plate 0.3 mm, insulator several tens of millimeters, each electrode 0.5 mm, insulator, several tens of millimeters, zinc plate 0.3 mm. Both were vertical and horizontal, 50 mm x 50 mm.
(5)得られたナノポリマークレイ電池にそれぞれ電圧計と電流計を接続し、圧力を付与し、電圧と電流とを測定した。上記製造されたナノポリマークレイ電池の電圧値と電流の測定値は、1.09V及び5.95mAであった (電池の電圧と電流の値は単位面積と比例)。 (5) A voltmeter and an ammeter were respectively connected to the obtained nanopolymer clay battery, pressure was applied, and voltage and current were measured. The measured values of voltage and current of the manufactured nanopolymer clay battery were 1.09 V and 5.95 mA (the voltage and current of the battery are proportional to the unit area).
(6)上記ナノポリマークレイ電池を電子計算機(カシオ製、DW-20ET型(12桁表示)、DC1.5V、内蔵電池LR44x1)に適用したところ、電源が入ることが確認された。 (6) When the nanopolymer clay battery was applied to an electronic computer (Casio, DW-20ET type (12-digit display), DC1.5V, built-in battery LR44x1), it was confirmed that the power was turned on.
 以上で 本発明を、上記で実施した例に限って説明したが、本発明は上記した実施例に限定されるものではない。本発明の範疇と思想を抜け出さない範囲内で多様な変形実施が可能であることは言うまでもない。 As described above, the present invention has been described only with the examples implemented above, but the present invention is not limited to the above-described examples. Needless to say, various modifications can be made without departing from the scope and spirit of the present invention.

Claims (15)

  1.  電気的マイナス極性物質からなる薄膜またはフィルムと、電気的プラス極性物質からなる薄膜またはフィルムとを含み、電気的マイナス極性物質の薄膜またはフィルムと、電気的プラス極性物質の薄膜またはフィルムとを積層・接合したナノポリマークレイ電池であって、
     該電気的マイナス極性物質は、ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム及び二酸化金属を含み、
     該電気的プラス極性物質は、ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム、二酸化金属及び活性炭粉末を含むことを特徴とするナノポリマークレイ電池。
    It includes a thin film or film made of an electrically negative polarity substance and a thin film or film made of an electrically positive polarity substance, and a thin film or film made of an electrically negative polarity substance and a thin film or film made of an electrically positive polarity substance are laminated. A joined nanopolymer clay battery,
    The electrically negative polar material includes polymer clay, water-soluble polyvinyl alcohol, dry white cocoon, sodium bicarbonate and metal dioxide,
    The electrically positive polar substance includes a polymer clay, water-soluble polyvinyl alcohol, dry birch, sodium hydrogen carbonate, metal dioxide, and activated carbon powder.
  2.  請求項第1項において、該電気的マイナス極性物質は、電気的マイナス極性物質の全量を100重量%とした場合に、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2 重量%及び二酸化金属6~18重量%を含み、
     該電気的プラス極性物質は、電気的プラス極性物質の全量を100重量%とした場合に、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%、二酸化金属6~18重量%及び活性炭粉末6~18重量%を含むことを特徴とするナノポリマークレイ電池。
    2. The electrically negative polar substance according to claim 1, wherein the electrically negative polar substance is 18 to 60% by weight polymer clay, 18 to 60% by weight water-soluble polyvinyl alcohol, and 100% by weight when the total amount of the electrically negative polar substance is 100% by weight. White birch 0.25-2% by weight, sodium bicarbonate 0.25-2% by weight and metal dioxide 6-18% by weight,
    The electrically positive polar substance is a polymer clay of 18 to 60% by weight, a water-soluble polyvinyl alcohol of 18 to 60% by weight, a dry white rice cake of 0.25 to 2% by weight when the total amount of the electrically positive polar substance is 100% by weight, A nanopolymer clay battery comprising 0.25 to 2% by weight of sodium hydrogen carbonate, 6 to 18% by weight of metal dioxide, and 6 to 18% by weight of activated carbon powder.
  3.  請求項第1項または第2項において、上記積層・接合体の両面に絶縁体層が設けられていることを特徴とするナノポリマークレイ電池。 3. The nanopolymer clay battery according to claim 1 or 2, wherein an insulator layer is provided on both surfaces of the laminate / joint.
  4.  請求項第3項にあって、上記絶縁体はシリコーン・シーラントであることを特徴とするナノポリマークレイ電池。 4. The nanopolymer clay battery according to claim 3, wherein the insulator is a silicone sealant.
  5.  請求項第1項乃至第4項のいずれか1項において、上記ナノポリマークレイ電池は携帯電話機 、無線マウス、キーボード、MP3プレーヤー、カメラ、ノートブック、PDA、ロボット及び電子タグ等の応用電気機器のいずれか一つへ使用するために適合させたことを特徴とするナノポリマークレイ電池。 5. The nano-polymer clay battery according to claim 1, wherein the nano polymer clay battery is a cell phone, a wireless mouse, a keyboard, an MP3 player, a camera, a notebook, a PDA, a robot, an electronic tag, and other applied electric devices. A nanopolymer clay battery adapted for use in any one of the above.
  6.  ポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム及び二酸化金属を含むことを特徴とするナノポリマークレイ電池用電気的マイナス極性物質。 Electrically negative polarity material for nano polymer clay battery, characterized by containing polymer clay, water-soluble polyvinyl alcohol, dried white birch, sodium bicarbonate and metal dioxide.
  7.  請求項第6項において、ナノポリマークレイ電池物質を100重量%として、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%及び二酸化金属6~18重量%を含むことを特徴とするナノポリマークレイ電池用電気的マイナス極性物質。 7. The polymer polymer battery according to claim 6, wherein the nanopolymer clay battery material is 100% by weight, the polymer clay is 18 to 60% by weight, the water-soluble polyvinyl alcohol is 18 to 60% by weight, the dry birch is 0.25 to 2% by weight, and the sodium hydrogen carbonate is 0.25 to 2%. An electrically negative polarity material for a nanopolymer clay battery, comprising: wt% and 6 to 18 wt% metal dioxide.
  8.  請求項第6項に挙げたポリマークレイ、水溶性ポリビニルアルコール、乾燥白礬、炭酸水素ナトリウム及び二酸化金属を含み、更に活性炭粉末を含むことを特徴とするナノポリマークレイ電池用電気的プラス極性物質。 An electrically positive polarity substance for a nanopolymer clay battery, comprising the polymer clay, water-soluble polyvinyl alcohol, dried white birch, sodium hydrogen carbonate and metal dioxide listed in claim 6, and further comprising activated carbon powder.
  9.  請求項第8項において、ナノポリマークレイ電池用電気的プラス物質を100重量%として、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%、二酸化金属6~18重量%及び活性炭粉末を6~18重量%含むことを特徴とするナノポリマークレイ電池用プラス極性物質。 9. The positive polymer material for nanopolymer clay battery according to claim 8, wherein the polymer plus is 100% by weight, polymer clay is 18 to 60% by weight, water-soluble polyvinyl alcohol is 18 to 60% by weight, dry white rabbit is 0.25 to 2% by weight, hydrogen carbonate A positive polarity material for a nanopolymer clay battery, comprising 0.25 to 2% by weight of sodium, 6 to 18% by weight of metal dioxide, and 6 to 18% by weight of activated carbon powder.
  10. (1) ポリマークレイと水溶性ポリビニルアルコールを混合する工程と、
     上記混合物に乾燥白礬と炭酸水素ナトリウムを投入して混合する工程と、
     得られた混合物に二酸化金属を投入して混合する工程を含んで電気的マイナス極性物質を製造する段階と、
    (2) ポリマークレイと水溶性ポリビニルアルコールを混合する工程と、
     上記混合物に乾燥白礬と炭酸水素ナトリウムを投入して混合する工程と、
     得られた混合物に二酸化金属と活性炭粉末を投入して混合する工程を含んで電気的プラス極性物質を製造する段階と、
    (3)上記電気的マイナス極性物質と電気的プラス極性物質をそれぞれ薄膜またはフィルムに加工する段階と、
    (4)上記電気的マイナス極性物質の薄膜またはフィルムと電気的プラス極性物質の薄膜またはフィルムを接合する段階を含むことを特徴とするナノポリマークレイ電池の製造方法。 
    (1) mixing polymer clay and water-soluble polyvinyl alcohol;
    Adding the white birch and sodium bicarbonate to the mixture and mixing them;
    A step of producing an electrically negative polar substance including a step of adding and mixing metal dioxide into the obtained mixture;
    (2) mixing polymer clay and water-soluble polyvinyl alcohol;
    Adding the white birch and sodium bicarbonate to the mixture and mixing them;
    A step of producing an electrically positive polar substance including a step of adding and mixing metal dioxide and activated carbon powder into the obtained mixture;
    (3) processing the electrical negative polarity material and the electrical positive polarity material into a thin film or a film, respectively;
    (4) A method for producing a nanopolymer clay battery, comprising the step of joining the thin film or film of the electrically negative polar substance and the thin film or film of the electrically positive polar substance.
  11.  請求項第10項において、
     電気的マイナス極性物質を製造する段階(1)の工程において、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬 0.25~2重量%、炭酸水素ナトリウム0.25~2重量%、二酸化金属6~18重量%を用い、
     電気的プラス極性物質を製造する段階(2)の工程において、ポリマークレイ18~60重量%、水溶性ポリビニルアルコール18~60重量%、乾燥白礬0.25~2重量%、炭酸水素ナトリウム0.25~2重量%を用いることを特徴とするナノポリマークレイ電池の製造方法。 
    In claim 10,
    In the step (1) of producing an electrically negative polar substance, polymer clay 18 to 60% by weight, water-soluble polyvinyl alcohol 18 to 60% by weight, dry white 0.25 to 2% by weight, sodium hydrogen carbonate 0.25 to 2% by weight , Using 6-18% by weight of metal dioxide,
    In the step (2) for producing an electrically positive polar substance, polymer clay 18 to 60% by weight, water-soluble polyvinyl alcohol 18 to 60% by weight, dry white lees 0.25 to 2% by weight, sodium bicarbonate 0.25 to 2% by weight The manufacturing method of the nano polymer clay battery characterized by using.
  12.  請求項第10項または第11項において、上記電気的マイナス極性物質と上記電気的プラス極性物質の各々を薄膜またはフィルムで加工する段階のプレス圧力が、150~300ton/mであることを特徴とするナノポリマークレイ電池の製造方法。 12. The press pressure at the stage of processing each of the electrical negative polarity material and the electrical positive polarity material with a thin film or film according to claim 10 or 11, is 150 to 300 ton / m 2. A method for producing a nanopolymer clay battery.
  13.  請求項第10項乃至第12項のいずれか1項において、上記接合する段階後、接合により得られたナノポリマークレイ電池の両面に絶縁体を設ける工程をさらに含むことを特徴とするナノポリマークレイ電池の製造方法。 The nanopolymer clay according to any one of claims 10 to 12, further comprising a step of providing an insulator on both sides of the nanopolymer clay battery obtained by joining after the joining step. Battery manufacturing method.
  14.  請求項第15項において、上記絶縁体はシリコーン・シーラントであることを特徴とするナノポリマークレイ電池の製造方法。 16. The method for producing a nanopolymer clay battery according to claim 15, wherein the insulator is a silicone sealant.
  15.  請求項第13項または第14項において、上記絶縁体の厚さは6~10Åであることを特徴とするナノポリマークレイ電池の製造方法。 The method for producing a nanopolymer clay battery according to claim 13 or 14, wherein the insulator has a thickness of 6 to 10 mm.
PCT/JP2008/001687 2008-06-27 2008-06-27 Nanopolymer clay cell and electrode material for the cell WO2009157044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008545110A JP4276697B1 (en) 2008-06-27 2008-06-27 Nanopolymer clay battery and electrode material for the same
PCT/JP2008/001687 WO2009157044A1 (en) 2008-06-27 2008-06-27 Nanopolymer clay cell and electrode material for the cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001687 WO2009157044A1 (en) 2008-06-27 2008-06-27 Nanopolymer clay cell and electrode material for the cell

Publications (1)

Publication Number Publication Date
WO2009157044A1 true WO2009157044A1 (en) 2009-12-30

Family

ID=40821560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001687 WO2009157044A1 (en) 2008-06-27 2008-06-27 Nanopolymer clay cell and electrode material for the cell

Country Status (2)

Country Link
JP (1) JP4276697B1 (en)
WO (1) WO2009157044A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257697A (en) * 1997-03-12 1998-09-25 Hitachi Electron Service Co Ltd Power supply device with space floating electromagnetic wave and electric wave as energy sources
JP2000195492A (en) * 1998-12-25 2000-07-14 Toshiba Battery Co Ltd Separator for battery and polymer battery
JP2002531675A (en) * 1998-12-07 2002-09-24 イーストマン ケミカル カンパニー Polymer / clay nanocomposites containing functionalized polymers or oligomers and methods of making the same
JP2007174797A (en) * 2005-12-21 2007-07-05 Sony Corp Charger and portable electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257697A (en) * 1997-03-12 1998-09-25 Hitachi Electron Service Co Ltd Power supply device with space floating electromagnetic wave and electric wave as energy sources
JP2002531675A (en) * 1998-12-07 2002-09-24 イーストマン ケミカル カンパニー Polymer / clay nanocomposites containing functionalized polymers or oligomers and methods of making the same
JP2000195492A (en) * 1998-12-25 2000-07-14 Toshiba Battery Co Ltd Separator for battery and polymer battery
JP2007174797A (en) * 2005-12-21 2007-07-05 Sony Corp Charger and portable electronic equipment

Also Published As

Publication number Publication date
JP4276697B1 (en) 2009-06-10
JPWO2009157044A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Yang et al. Heterostructured nanocube‐shaped binary sulfide (SnCo) S2 interlaced with S‐doped graphene as a high‐performance anode for advanced Na+ batteries
Gong et al. An iodine quantum dots based rechargeable sodium–iodine battery
Yuan et al. A review of biomass materials for advanced lithium–sulfur batteries
Jeong et al. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes
Wang et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
CA2678593C (en) Anode active material comprising spinel-type lithium titanium oxide for lithium secondary battery
Yan et al. Rational design of the robust janus shell on silicon anodes for high-performance lithium-ion batteries
JP5524202B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
Zhang et al. Bacteria-inspired fabrication of Fe3O4-carbon/graphene foam for lithium-ion battery anodes
KR101211568B1 (en) Active material for Anode, Method for manufacturing the same, And Secondary Battery and Super Capacitor including the Same
Kebede Tin oxide–based anodes for both lithium-ion and sodium-ion batteries
JP2009231234A (en) Carbon material for negative electrode, electric power storage device, and product having mounted thereon electric power storage device
Deng et al. Roll to roll manufacturing of fast charging, mechanically robust 0D/2D nanolayered Si-graphene anode with well-interfaced and defect engineered structures
Amiri et al. Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors
Zhang et al. Modified secondary lithium metal batteries with the polyaniline–carbon nanotube composite buffer layer
Zhou et al. Dopamine-assisted synthesis of MoS2 nanosheets on carbon nanotube for improved lithium and sodium storage properties
Guo et al. Topotactic conversion-derived Li 4 Ti 5 O 12–rutile TiO 2 hybrid nanowire array for high-performance lithium ion full cells
Chen et al. CNTs–C@ TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries
WO2014073468A1 (en) All-solid-state battery and method for producing same
Wang et al. Porous NaTi2 (PO4) 3 nanocubes anchored on porous carbon nanosheets for high performance sodium-ion batteries
Ryu et al. Synergistic composite coating for separators in lithium metal batteries
Zhang et al. Rational design of fly ash-based composites for sustainable lithium-ion battery anodes
Yan et al. Fabricating tunable metal sulfides embedded with honeycomb-structured N-doped carbon matrices for high-performance lithium-ion capacitors
Wang et al. Ball-milled silicon with amorphous Al2O3/C hybrid coating embedded in graphene/graphite nanosheets with a boosted lithium storage capability
Wei et al. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008545110

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08776757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08776757

Country of ref document: EP

Kind code of ref document: A1