WO2009154160A1 - Optical connector - Google Patents

Optical connector Download PDF

Info

Publication number
WO2009154160A1
WO2009154160A1 PCT/JP2009/060829 JP2009060829W WO2009154160A1 WO 2009154160 A1 WO2009154160 A1 WO 2009154160A1 JP 2009060829 W JP2009060829 W JP 2009060829W WO 2009154160 A1 WO2009154160 A1 WO 2009154160A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
sleeve
optical connector
light guide
Prior art date
Application number
PCT/JP2009/060829
Other languages
French (fr)
Japanese (ja)
Inventor
崇 松井
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2009154160A1 publication Critical patent/WO2009154160A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment

Definitions

  • the present invention relates to an optical connector for optical communication, and more particularly to an optical connector having an improved light transmission efficiency between an optical element such as a photodiode and an optical fiber.
  • Patent Document 1 As an optical connector in which the light transmission efficiency between an optical element such as a photodiode and an optical fiber is improved, there is a prior art described in, for example, Patent Document 1 below.
  • an optical element for light reception or light emission is disposed opposite to the end face on the smaller diameter side of the conical light guide, and the diameter dimension facing the end face of the optical fiber is A lens is integrally formed on the large side.
  • the diameter of the end face (light emitting surface side) of the light guide is formed smaller than the light receiving surface of the light receiving optical element (FIG. 7 of Patent Document 1).
  • the diameter of the end face (light receiving surface side) on the light guide side is formed to be larger than the light emitting surface of the light emitting optical element (FIG. 8 of Patent Document 1).
  • the optical connector shown in Patent Document 1 has the following problems.
  • the end surface of the light guide on which the light propagated while totally reflecting in the light guide is Out of the air into the outside air, and then enter the light receiving optical element.
  • the refractive index is generally larger in the light guide than in air in such a configuration.
  • the present invention is intended to solve the above-mentioned conventional problems, and it is an object of the present invention to provide an optical connector which can reduce the loss more than the conventional one and can improve the light transmission efficiency.
  • the present invention relates to an optical connector provided with an optical fiber for propagating light, an optical element for emitting or receiving light, and a sleeve for performing optical connection between the optical fiber and the optical element.
  • the sleeve is provided with a substantially frusto-conical light guide gradually expanding toward the optical element from one small diameter end, and the side of the light guide has a laterally projecting flange portion, and A convex lens is integrally formed on an end face of the sleeve facing the optical element;
  • the opening angle between the axial center line and the straight line connecting the base of the flange and the maximum outer diameter of the lens is 30 degrees. The above is characterized by being less than 90 degrees.
  • light leakage can be prevented particularly when a sleeve is adopted on the light receiving module side, so that an optical connector with high light transmission efficiency can be obtained.
  • the inclination angle of the side surface of the light guide path be 0.5 degrees or more and 1 degree or less.
  • the loss in the entire optical connector can be reduced, and the sleeve can be formed with high precision.
  • a substantially annular guide continuous with the flange portion be integrally formed. In the above means, it is not necessary to provide a special mounting structure in the housing for the light guide.
  • a convex lens be integrally formed on the end face of the sleeve facing the optical fiber.
  • the light transmission efficiency between the sleeve and the optical fiber can be enhanced, and it is particularly effective when applied to the light emitting module side.
  • a convex lens is provided on the light emitting surface or the light receiving surface of the optical element. In the above means, the light transmission efficiency between the optical element and the optical fiber can be enhanced.
  • light transmission efficiency can be enhanced in an optical connector provided with an optical fiber for propagating light and a sleeve for performing optical connection between an optical element for emitting or receiving light.
  • FIG. 1 is a cross-sectional view of an optical connector showing a first embodiment of the present invention
  • FIG. 2 is an enlarged cross-sectional view showing the relationship between an optical module, a sleeve and an optical fiber provided in the optical connector of FIG.
  • FIG. 3A is a cross-sectional view showing the sleeve on the light receiving module side
  • FIG. 3B is a graph showing the range of the optimum inclination angle of the light guide path of the light receiving module side sleeve.
  • the optical connector according to the present invention is employed, for example, in an automobile employing the Media Oriented Systems Transport (MOST), which is an in-vehicle network of an information system.
  • MOST Media Oriented Systems Transport
  • POF plastic optical fibers
  • the optical connector 1 for MOST has a pair of optical modules (a light emitting module 10 and a light receiving module 20) for light reception (for reception) and light emission (for transmission), These are comprised in the state accommodated in one housing 40.
  • FIG. 1 the optical connector 1 for MOST has a pair of optical modules (a light emitting module 10 and a light receiving module 20) for light reception (for reception) and light emission (for transmission), These are comprised in the state accommodated in one housing 40.
  • an open end 40A to which a plug (not shown) provided at an end of an optical fiber is attached is formed at an end of the housing 40 on the X2 side.
  • the light emitting module 10 fixing regions 41 and 42 for attaching the light receiving module 20, positioning recesses 43 and 44 for fixing the sleeve, and individual optical fibers in the plug Insertion recesses 45 and 46 and the like are provided for inserting ferrules (not shown) provided on the periphery of the connector.
  • the light emitting module 10 has a light emitting element (optical element) 11 and a sleeve 12
  • the light receiving module 20 has a light receiving element (optical element) 21 and a sleeve 22.
  • the light emitting element 11 in the present embodiment is formed of an LED
  • the light receiving element 21 is formed of a photodiode.
  • the light emitting element 11 and the light receiving element 21 are fixed in a state in which a transparent resin is coated on a semiconductor bare chip (not shown) on the upper surfaces (surfaces on the X2 side of FIG. 1) of the bases 11A and 21A formed of resin. It is done.
  • the convex lenses 13 and 23 may be fixed to face the sleeves 12 and 22 on the front surface of the semiconductor bare chip, respectively.
  • the outer shapes of the light emitting element 11 and the light receiving element 21 are formed in substantially the same shape, and only the types of semiconductor bare chips provided inside the bases 11A and 21A are different.
  • Frame-shaped ribs 11a and 21a for positioning are provided around the outer edge portions of the bases 11A and 21A, respectively.
  • a reflective film is laminated on the upper surfaces of the bases 11A and 21A, and the light emitting element 11 reflects light emitted from the semiconductor bare chip for light emission to the outside in the X2 direction in the figure, and the light receiving element 21 enters the base 21A. Can be focused on a semiconductor bare chip for light reception.
  • the sleeve 12 is integrally formed of, for example, a synthetic resin material of, for example, a polyolefin type which is excellent in transparency or light transmittance. It is preferable that the side surfaces of the sleeve 12 excluding the both end surfaces be covered with a cladding layer having a lower refractive index. However, when used in contact with air having a refractive index lower than that of a synthetic resin material, air is used as a clad layer (air clad) without being covered with a clad layer made of another material. Good.
  • the sleeve 12 has a light guide 12A whose longitudinal direction is the X direction shown in the drawing.
  • the light guide 12A is formed in a substantially frusto-conical shape in which the diameter dimension thereof becomes smaller toward the X2 side and expands toward the X1 side.
  • a convex lens 12B is integrally formed on one end face 12a on the side of the large diameter X1 in the drawing.
  • the other end face 12b on the side of the small diameter X2 in the drawing forms a plane perpendicular to the axial center line OO.
  • the end face 51 a of the optical fiber 51 is disposed opposite to the other end face 12 b of the light guide 12 A of the sleeve 12.
  • the end face 52a of the optical fiber 52 is disposed opposite to the other end face 22b of the light guide 22A of the sleeve 22.
  • a flange portion 12c that protrudes toward the side (Y direction) which is a direction orthogonal to the axial center line OO is formed.
  • a substantially annular guide portion 12C having a concentric axis with the axial center line OO is integrally formed.
  • the substantially annular guide portion 12C is formed as an annular or cylindrical portion, a positioning convex portion 12C1 is provided circumferentially at one end on the X1 side, and the other end 12C2 is extended in the X2 direction.
  • the substantially annular guide portion 12C is formed to have a constant diameter with respect to the axial center line OO. Furthermore, as shown in FIG.
  • a plurality of positioning ribs 12D having a convex shape extending in the longitudinal direction are integrally formed on the outer circumferential surface of the substantially annular guide portion 12C at predetermined intervals in the circumferential direction (FIG. 2) Omitted).
  • the sleeve 12 is generally formed with high dimensional accuracy by using an injection molding method.
  • FIG. 3B is a graph showing the optimum range of the inclination angle ⁇ of the side surface of the light guide 22A formed in a substantially frusto-conical shape when the sleeve 22 is adopted on the light receiving module 20 side.
  • the optical connector 1 for L2 L1 Change [dB] of the loss of the light guide 22A is shown for each inclination angle .delta.
  • L1 Change [dB] of the loss of the light guide 22A is shown for each inclination angle .delta.
  • the inclination angle ⁇ of the side surface of the light guide path 22A is better at 1 degree than 1.5 degrees, and further 1 degree It can be seen that 0.5 degrees is better than that.
  • a preferable range of the inclination angle ⁇ of the side surface of the light guide path 22A is 0.5 degrees or more and 1 degree or less.
  • the root portion P1 on the X2 side of the flange portion 22c protruding sideward from the side surface of the light guide 22A and the maximum outer diameter portion P2 of the lens 22B
  • the opening angle between the connecting straight line P and the axial center line OO is assumed to be ⁇ .
  • the opening angle ⁇ is preferably 30 degrees or more. Further, since the opening angle ⁇ does not exceed 90 degrees, the opening angle ⁇ is preferably less than 90 degrees.
  • the opening angle ⁇ is 30 degrees or more and less than 90 degrees
  • light emitted from the lens 22B is less leaked in the light receiving element 21 even in the vicinity of the maximum outer shape of the lens 22B separated from the axial center line OO. It becomes possible to detect in the state. For this reason, the fall of the transmission efficiency as the optical connector 1 whole can be prevented.
  • the sleeves 12 and 22 are attached to the inside of the housing 40 from the side of the illustration X1.
  • the sleeves 12 and 22 are mounted through the fixing regions 41 and 42 with the other end face 12b or 22b of the light guide path 12A or 22A facing in the X2 direction.
  • the other end face 12b, 22b side of the light guide path 12A, 22A is inserted into the through hole 47, 48 through the positioning recess 43, 44.
  • the substantially annular guide portion 12C is also inserted into the positioning recesses 43 and 44 simultaneously.
  • the other end 12C2 of the substantially annular guide portion 12C abuts on the bottom surface of the positioning recess 43, 44, the insertion of the sleeves 12, 22 is completed.
  • the plurality of positioning ribs 12D abut the inner surfaces of the positioning recesses 43 and 44 in each direction, it is possible to position the sleeves 12 and 22 with high accuracy in the X direction and the Z direction orthogonal thereto.
  • the other ends 12C2 and 22C2 of the substantially annular guide portions 12C and 22C abut on the bottom surfaces of the positioning recesses 43 and 44, whereby the sleeves 12 and 22 can be positioned with high accuracy in the Y direction. Therefore, the other end faces 12b and 22b of the light guide paths 12A and 22A can be set at a fixed position in the housing 40, and the other end faces 12b and 22b and the end faces of the optical fibers 51 and 52 on the plug side can be constantly used. It can be attached so as to provide the opposite spacing as designed between 51a and 52a. Therefore, an optical connector with high light transmission efficiency can be obtained.
  • the light emitting module 10 and the light receiving module 20 fix the fixing regions 41 and 42 in the housing 40.
  • the light emitting module 10 and the light receiving module 20 are attached with the frame shaped ribs 11a and 21a for positioning directed in the Y1 direction in the drawing. That is, as shown in FIG. 1, when the light emitting module 10 and the light receiving module 20 are attached, they are formed inside the frame shaped ribs 11a and 21a and on the surface of the bases 11A and 21A at one end of the sleeves 12 and 22 on the Y2 side.
  • the positioning convex portions 12C1 and 22C1 abut.
  • the light emitting module 10 and the light receiving module 20 are fixed in the fixing regions 41 and 42 in such a state of being in contact with each other.
  • the facing distance between the light emitting element 11 and the light receiving element 21 provided in the light emitting module 10 and the light receiving module 20 and the lenses 12B and 22B on the sleeve 12 and 22 side, or the case where the convex lenses 13 and 23 are provided. Can be mounted so that the facing distance between the convex lenses 13 and 23 and the lenses 12B and 22B on the sleeve 12 and 22 side is always constant. Therefore, an optical connector with high light transmission efficiency can be obtained.
  • the attachment accuracy of the sleeves 12 and 22, the light emitting module 10, the light receiving module 20 and the optical fibers 51 and 52 can be enhanced in the X axis direction, an optical connector with high light transmission efficiency is provided. be able to.
  • the said sleeves 12 and 22 can be shared to the light emission module 10 and the light reception module 20 with the same shape, it is also possible to reduce the manufacturing cost of an optical connector.
  • FIG. 8 of Patent Document 1 an aspect shown in FIG. 8 of Patent Document 1, that is, an optical connector for optically connecting a light emitting optical element and a fiber, and a diameter of the conical light guide path facing the end face of the optical fiber
  • the lens is integrally formed on the large size side
  • light is efficiently transmitted from the lens to the end face of the fiber in the vicinity of the central optical axis (central axis of the light guide), but larger than the core diameter of the optical fiber
  • the maximum diameter of the lens that is, the light emitted from the lens does not enter the end face of the fiber and becomes leaked light, which tends to reduce the transmission efficiency as a whole.
  • Means for solving the above problems are shown in the following second embodiment.
  • FIG. 4 shows a second embodiment of the present invention, and is an enlarged sectional view showing the relationship between an optical module, a sleeve and an optical fiber provided in an optical connector.
  • the configuration in the optical connector shown in FIG. 4 is the same as that of the first embodiment except for a part, and the diameter dimension of the light guide paths 12A and 22A forming the sleeves 12 and 22 is opposite to the end face of the optical fiber
  • the only difference is that convex lenses 12E and 22E are provided on the small end faces 12b and 22b. Further, the diameters of the convex lenses 12E and 22E are formed substantially the same as the core diameter of the optical fiber.
  • the convex lenses 12E and 22E are provided on the end faces of the light guide paths 12A and 22A facing the end faces 51a and 51a of the optical fibers 51 and 52, in the case of the light emitting module 10, in particular, the convex lenses 12E. Since it becomes easy to condense the light radiate
  • the configuration in which both the light emitting module 10 and the light receiving module 20 are included in one housing 40 has been described.
  • the present invention is not limited thereto. Alternatively, only one light emitting module 10 or only the other light receiving module 20 may be provided.
  • FIG. 2 is an enlarged sectional view showing the relationship between an optical module, a sleeve and an optical fiber provided in the optical connector of FIG. 1.
  • A is a cross-sectional view showing a sleeve on the light receiving module side
  • B is a graph showing the range of the optimum inclination angle of the light guide of the light receiving module side sleeve.
  • the expanded sectional view which shows the 2nd Embodiment of this invention, and shows the relationship of the optical module provided in an optical connector, a sleeve, and an optical fiber.
  • Optical connector 10 Light emitting module (optical module) 11 Light emitting element (optical element) 12 sleeve 12A light guide path 12B lens 12C guide portion 12D positioning rib 12E convex lens 12c flange portion 13 convex lens 20 light receiving module (optical module) 21 light receiving element (optical element) Reference Signs List 22 sleeve 22A light guide 22B lens 22C guide 22D guide rib 22E convex lens 22c flange 23 convex lens 40 housing 41, 42 fixed area 43, 44 positioning recess 45, 46 insertion recess 47, 48 through hole 51, 52 light Fiber 51a, 52a Optical fiber end face

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Disclosed is an optical connector with which there is reduced loss and increased light transmission efficiency. Taking a divergence angle between an axial centerline (O-O) and a straight line (P) connecting a base portion (P1) of a flange portion (22c) that projects sidewards from a side of a light conducting path (22A) formed as a sleeve (22) and a maximum outer dimension portion (P2) of a lens (22B) as (O), then when the divergence angle (O) is set at no less than 30º and less than 90º, light emitted from the lens (22B) can be detected by a photoreceptor (21) without leak therefrom even in proximity of the maximum outer dimension of the lens (22B) away from the axial centerline (O-O). Accordingly, the loss of the optical connector as a whole can be reduced and the transmission efficiency thereof can be increased.

Description

光コネクタOptical connector
 本発明は、光通信用の光コネクタに係わり、特にフォトダイオードなどの光学素子と光ファイバとの間の光伝送効率を高めた光コネクタに関する。 The present invention relates to an optical connector for optical communication, and more particularly to an optical connector having an improved light transmission efficiency between an optical element such as a photodiode and an optical fiber.
 フォトダイオードなどの光学素子と光ファイバとの間の光伝送効率を高めた光コネクタとしては、例えば以下の特許文献1に記載された先行技術が存在する。 As an optical connector in which the light transmission efficiency between an optical element such as a photodiode and an optical fiber is improved, there is a prior art described in, for example, Patent Document 1 below.
 特許文献1に記載された光コネクタは、円錐状の導光路のうち、径寸法の小さい側の端面に受光用または発光用の光学素子を対向配置し、光ファイバの端面と対向する径寸法の大きい側にレンズが一体に形成されている。 In the optical connector described in Patent Document 1, an optical element for light reception or light emission is disposed opposite to the end face on the smaller diameter side of the conical light guide, and the diameter dimension facing the end face of the optical fiber is A lens is integrally formed on the large side.
 また導光路の端面(発光面側)の径を受光用光学素子の受光面よりも小さな径で形成する(特許文献1の図7)。あるいは導光路側の端面(受光面側)の径を発光用光学素子の発光面よりも大きな径で形成するというものである(特許文献1の図8)。
特許第3958891号明細書
In addition, the diameter of the end face (light emitting surface side) of the light guide is formed smaller than the light receiving surface of the light receiving optical element (FIG. 7 of Patent Document 1). Alternatively, the diameter of the end face (light receiving surface side) on the light guide side is formed to be larger than the light emitting surface of the light emitting optical element (FIG. 8 of Patent Document 1).
Patent 3958891 Specification
 特許文献1に示す光コネクタは、以下に示すような問題がある。
 特許文献1の図7に示される態様、すなわち受光用光学素子とファイバとの間を光学的に接続する光コネクタでは、導光路内を全反射しながら伝播した光が導光路の出射側の端面から外部の空気中に抜け、次に受光用の光学素子に入射する構成である。また屈折率は、このような構成では導光路の方が空気よりも大きいことが一般的である。このため、導光路の出射側の端面から空気中に抜ける際の光の角度が、導光路の出射側の端面と空気との境界面における臨界角よりも大きい場合には、光が前記境界面で反射して導光路内に戻ってしまうことがあり、光コネクタ全体としての伝送効率が高め難いという問題がある。
The optical connector shown in Patent Document 1 has the following problems.
In the mode shown in FIG. 7 of Patent Document 1, that is, in the optical connector for optically connecting between the light receiving optical element and the fiber, the end surface of the light guide on which the light propagated while totally reflecting in the light guide is Out of the air into the outside air, and then enter the light receiving optical element. Also, the refractive index is generally larger in the light guide than in air in such a configuration. For this reason, when the angle of light passing through the end face on the exit side of the light guide into the air is larger than the critical angle at the interface between the end face on the exit side of the light guide and the air, the light is said interface And may be returned to the inside of the light guide, and there is a problem that it is difficult to improve the transmission efficiency of the entire optical connector.
 本発明は上記従来の課題を解決するためのものであり、従来以上に損失を低減して光の伝送効率を高めることができるようにした光コネクタを提供することを目的としている。 SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned conventional problems, and it is an object of the present invention to provide an optical connector which can reduce the loss more than the conventional one and can improve the light transmission efficiency.
 本発明は、光を伝播する光ファイバと、発光又は受光を行う光学素子と、前記光ファイバと前記光学素子との間の光学的接続を行うスリーブと、が設けられた光コネクタにおいて、
 前記スリーブは、径寸法の小さい一端から前記光学素子に向って徐々に拡大する略截頭円錐状の導光路を備え、該導光路の側部であって側方に突出するフランジ部と、前記光学素子と対向する前記スリーブの端面に凸状のレンズと、がそれぞれ一体に形成されており、
 前記スリーブの軸中心線を通る断面で見たときに、前記軸中心線と、前記フランジ部の付け根と前記レンズの最大外形部とを結ぶ直線とにより形成される間の開き角が、30度以上で且つ90度未満であることを特徴とするものである。
The present invention relates to an optical connector provided with an optical fiber for propagating light, an optical element for emitting or receiving light, and a sleeve for performing optical connection between the optical fiber and the optical element.
The sleeve is provided with a substantially frusto-conical light guide gradually expanding toward the optical element from one small diameter end, and the side of the light guide has a laterally projecting flange portion, and A convex lens is integrally formed on an end face of the sleeve facing the optical element;
When viewed in cross section passing through the axial center line of the sleeve, the opening angle between the axial center line and the straight line connecting the base of the flange and the maximum outer diameter of the lens is 30 degrees. The above is characterized by being less than 90 degrees.
 本発明では、特に受光モジュール側にスリーブを採用したときに、光の漏れを防止することができるため、光伝送効率の高い光コネクタとすることができる。 In the present invention, light leakage can be prevented particularly when a sleeve is adopted on the light receiving module side, so that an optical connector with high light transmission efficiency can be obtained.
 上記において、前記導光路の側面の傾斜角度が0.5度以上1度以下であるものが好ましい。 In the above, it is preferable that the inclination angle of the side surface of the light guide path be 0.5 degrees or more and 1 degree or less.
 前記光コネクタ全体における損失を低減することができるとともに、スリーブを高精度に形成することが可能となる。 The loss in the entire optical connector can be reduced, and the sleeve can be formed with high precision.
 上記において、前記フランジ部に連続する略環状のガイドが一体に形成されているものが好ましい。
 上記手段では、導光路のために、ハウジングに特別な取付構造を設ける必要ない。
In the above, it is preferable that a substantially annular guide continuous with the flange portion be integrally formed.
In the above means, it is not necessary to provide a special mounting structure in the housing for the light guide.
 上記において、前記光ファイバと対向する前記スリーブの端面に凸状のレンズが一体に形成されているものが好ましい。 In the above, it is preferable that a convex lens be integrally formed on the end face of the sleeve facing the optical fiber.
 上記手段では、スリーブと光ファイバとの間の光伝送効率を高めることができ、特に発光モジュール側に適用すると有効である。 In the above means, the light transmission efficiency between the sleeve and the optical fiber can be enhanced, and it is particularly effective when applied to the light emitting module side.
 また前記光学素子の発光面又は受光面に凸状のレンズが設けられているものが好ましい。
 上記手段では、光学素子と光ファイバとの間の光伝送効率を高めることができる。
It is preferable that a convex lens is provided on the light emitting surface or the light receiving surface of the optical element.
In the above means, the light transmission efficiency between the optical element and the optical fiber can be enhanced.
 本発明では、光を伝播する光ファイバと、発光又は受光を行う光学素子との間で光学的接続を行うスリーブとが設けられた光コネクタにおいて、光の伝送効率を高めることができる。 In the present invention, light transmission efficiency can be enhanced in an optical connector provided with an optical fiber for propagating light and a sleeve for performing optical connection between an optical element for emitting or receiving light.
 図1は本発明の第1の実施の形態を示す光コネクタの断面図、図2は図1の光コネクタ内に設けられる光モジュール、スリーブおよび光ファイバの関係を示す拡大断面図である。図3(A)は受光モジュール側のスリーブを示す断面図、(B)は受光モジュール側スリーブの導光路の最適な傾斜角度の範囲を示すグラフである。 FIG. 1 is a cross-sectional view of an optical connector showing a first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view showing the relationship between an optical module, a sleeve and an optical fiber provided in the optical connector of FIG. FIG. 3A is a cross-sectional view showing the sleeve on the light receiving module side, and FIG. 3B is a graph showing the range of the optimum inclination angle of the light guide path of the light receiving module side sleeve.
 本発明の光コネクタは、例えば情報系の車載ネットワークであるMOST(Media Oriented Systems Transport)を採用した自動車に採用されるものである。MOSTとは、プラスチック光ファイバ(POF)を使用したリング・トポロジを基本としたネットワークである。 The optical connector according to the present invention is employed, for example, in an automobile employing the Media Oriented Systems Transport (MOST), which is an in-vehicle network of an information system. MOST is a network based on a ring topology using plastic optical fibers (POF).
 図1に示すように、MOST用の光コネクタ1は、受光用(受信用)と発光用(送信用)からなる2ヶ一組の光モジュール(発光モジュール10,受光モジュール20)を有し、これらが1つのハウジング40内に収納された状態で構成される。 As shown in FIG. 1, the optical connector 1 for MOST has a pair of optical modules (a light emitting module 10 and a light receiving module 20) for light reception (for reception) and light emission (for transmission), These are comprised in the state accommodated in one housing 40. FIG.
 図1に示すように、ハウジング40の図示X2側の端部には光ファイバの端部に設けられたプラグ(図示せず)が装着される開口端40Aが形成されている。またハウジング40の図示X1側の端部には、発光モジュール10,受光モジュール20を取り付けるための固定領域41,42、スリーブを固定するための位置決め凹部43,44、およびプラグ内で個々の光ファイバの周囲に設けられたフェルール(図示せず)が挿着されるための挿着凹部45,46などが設けられている。 As shown in FIG. 1, an open end 40A to which a plug (not shown) provided at an end of an optical fiber is attached is formed at an end of the housing 40 on the X2 side. At the end on the X1 side of the housing 40, the light emitting module 10, fixing regions 41 and 42 for attaching the light receiving module 20, positioning recesses 43 and 44 for fixing the sleeve, and individual optical fibers in the plug Insertion recesses 45 and 46 and the like are provided for inserting ferrules (not shown) provided on the periphery of the connector.
 なお、位置決め凹部43と挿着凹部45との間、および位置決め凹部44と挿着凹部46との間には、後述するスリーブ12,22の導光路12A,22Aが挿入される貫通孔47,48が形成されている。 Through holes 47 and 48 into which light guide paths 12A and 22A of sleeves 12 and 22 described later are inserted between the positioning recess 43 and the insertion recess 45 and between the positioning recess 44 and the insertion recess 46, respectively. Is formed.
 図1に示すように、発光モジュール10は、発光素子(光学素子)11とスリーブ12を有し、受光モジュール20は受光素子(光学素子)21とスリーブ22とを有している。本実施の形態における発光素子11はLEDで形成され、受光素子21はフォトダイオードで形成されている。 As shown in FIG. 1, the light emitting module 10 has a light emitting element (optical element) 11 and a sleeve 12, and the light receiving module 20 has a light receiving element (optical element) 21 and a sleeve 22. The light emitting element 11 in the present embodiment is formed of an LED, and the light receiving element 21 is formed of a photodiode.
 発光素子11と受光素子21は、樹脂で形成されたベース11A,21Aの上面(図1のX2側の面)上に半導体ベアチップ(図示せず)上に透明な樹脂がコートされた状態で固定されている。あるいは、半導体ベアチップの正面に凸レンズ13,23がスリーブ12,22とそれぞれ対向するように固定された構成であってもよい。 The light emitting element 11 and the light receiving element 21 are fixed in a state in which a transparent resin is coated on a semiconductor bare chip (not shown) on the upper surfaces (surfaces on the X2 side of FIG. 1) of the bases 11A and 21A formed of resin. It is done. Alternatively, the convex lenses 13 and 23 may be fixed to face the sleeves 12 and 22 on the front surface of the semiconductor bare chip, respectively.
 発光素子11と受光素子21の外形はほぼ同一の形状で形成されており、ベース11A,21Aの内部に設けられた半導体ベアチップの種類が異なるだけである。ベース11A,21Aの外縁部には、位置決め用の枠状リブ11a,21aがそれぞれ周設されている。 The outer shapes of the light emitting element 11 and the light receiving element 21 are formed in substantially the same shape, and only the types of semiconductor bare chips provided inside the bases 11A and 21A are different. Frame- shaped ribs 11a and 21a for positioning are provided around the outer edge portions of the bases 11A and 21A, respectively.
 なお、ベース11A,21Aの上面には、反射膜が積層されており、発光素子11では発光用の半導体ベアチップから出射した光を図示X2方向の外部に反射させ、受光素子21ではベース21Aに入射した光を受光用の半導体ベアチップに集光させることができるようになっている。 A reflective film is laminated on the upper surfaces of the bases 11A and 21A, and the light emitting element 11 reflects light emitted from the semiconductor bare chip for light emission to the outside in the X2 direction in the figure, and the light receiving element 21 enters the base 21A. Can be focused on a semiconductor bare chip for light reception.
 本発明におけるスリーブ12とスリーブ22の構成は同一であるため、以下においては主に一方のスリーブ12を用いて説明する。なお、スリーブ12の各部位については12番台に符号を付加して説明するが、スリーブ22については22番台に対応する符号を付加するものとする。 Since the configurations of the sleeve 12 and the sleeve 22 in the present invention are the same, the following description will be made mainly using one sleeve 12. In addition, although each code | symbol is added and demonstrated to a 12th number about each site | part of the sleeve 12, the code | symbol corresponding to a 22nd number shall be added about the sleeve 22. FIG.
 スリーブ12は、例えば透明度又は光透過度に優れた例えばポリオレフィン系の合成樹脂材料により一体的に形成されている。スリーブ12の両端面を除く側面は、それよりも屈折率の低いクラッド層で覆われる構成が好ましい。ただし、合成樹脂材料よりも屈折率の低い空気に接する状態で使用される場合には、別材料からなるクラッド層で覆うことなく、空気をクラッド層(エア・クラッド)とする構成であってもよい。 The sleeve 12 is integrally formed of, for example, a synthetic resin material of, for example, a polyolefin type which is excellent in transparency or light transmittance. It is preferable that the side surfaces of the sleeve 12 excluding the both end surfaces be covered with a cladding layer having a lower refractive index. However, when used in contact with air having a refractive index lower than that of a synthetic resin material, air is used as a clad layer (air clad) without being covered with a clad layer made of another material. Good.
 図2(A)、(B)に示すように、スリーブ12は、図示X方向を長手方向とする導光路12Aを有している。導光路12Aは、その径寸法が、図示X2側に向かうほど小さく、図示X1側に向かうほど拡大する略截頭円錐形で形成されている。径寸法の大きな図示X1側の一方の端面12aには凸型のレンズ12Bが一体に形成されている。また径寸法の小さな図示X2側の他方の端面12bは、軸中心線O-Oに対して垂直な面を形成している。このスリーブ12の導光路12Aの他方の端面12bには、光ファイバ51の端面51aが対向配置される。なお、受光モジュール20側では、スリーブ22の導光路22Aの他方の端面22bに、光ファイバ52の端面52aが対向配置される。 As shown in FIGS. 2A and 2B, the sleeve 12 has a light guide 12A whose longitudinal direction is the X direction shown in the drawing. The light guide 12A is formed in a substantially frusto-conical shape in which the diameter dimension thereof becomes smaller toward the X2 side and expands toward the X1 side. A convex lens 12B is integrally formed on one end face 12a on the side of the large diameter X1 in the drawing. The other end face 12b on the side of the small diameter X2 in the drawing forms a plane perpendicular to the axial center line OO. The end face 51 a of the optical fiber 51 is disposed opposite to the other end face 12 b of the light guide 12 A of the sleeve 12. In the light receiving module 20 side, the end face 52a of the optical fiber 52 is disposed opposite to the other end face 22b of the light guide 22A of the sleeve 22.
 導光路12Aの側部で、発光素子側(X1側)には、軸中心線O-Oに直交する方向である側方(Y方向)に向かって突出するフランジ部12cが形成され、その先には軸中心線O-Oを同心軸とする略環状のガイド部12Cが一体に形成されている。略環状のガイド部12Cは環状ないしは筒状の部位として形成されており、X1側の一端には位置決め凸部12C1が周設され、他端12C2はX2方向に延出されている。略環状のガイド部12Cは、軸中心線O-Oに対して一定の径寸法で形成されている。さらに図1に示すように、略環状のガイド部12Cの外周面には長手方向に延びる凸状からなる複数の位置決めリブ12Dが周方向に所定の間隔で一体に形成されている(図2では省略)。スリーブ12は、射出成形法を用いることにより全体的に高い寸法精度で形成されている。 On the light emitting element side (X1 side) on the side portion of the light guide 12A, a flange portion 12c that protrudes toward the side (Y direction) which is a direction orthogonal to the axial center line OO is formed. A substantially annular guide portion 12C having a concentric axis with the axial center line OO is integrally formed. The substantially annular guide portion 12C is formed as an annular or cylindrical portion, a positioning convex portion 12C1 is provided circumferentially at one end on the X1 side, and the other end 12C2 is extended in the X2 direction. The substantially annular guide portion 12C is formed to have a constant diameter with respect to the axial center line OO. Furthermore, as shown in FIG. 1, a plurality of positioning ribs 12D having a convex shape extending in the longitudinal direction are integrally formed on the outer circumferential surface of the substantially annular guide portion 12C at predetermined intervals in the circumferential direction (FIG. 2) Omitted). The sleeve 12 is generally formed with high dimensional accuracy by using an injection molding method.
 ここで、図3(B)は、受光モジュール20側にスリーブ22を採用した場合における、略截頭円錐形に形成された導光路22Aの側面の傾斜角度δの最適な範囲を示すグラフである。図3(A)に示すように、導光路22Aの長手方向(X方向)の寸法をL1とし、フランジ部22cの幅寸法(X方向)をL2としたときの、L2:L1に対する光コネクタ1の損失の変化〔dB〕を導光路22Aの側面の傾斜角度δごとに示すものである。 Here, FIG. 3B is a graph showing the optimum range of the inclination angle δ of the side surface of the light guide 22A formed in a substantially frusto-conical shape when the sleeve 22 is adopted on the light receiving module 20 side. . As shown in FIG. 3A, when the dimension in the longitudinal direction (X direction) of the light guide path 22A is L1, and the width dimension (X direction) of the flange portion 22c is L2, the optical connector 1 for L2: L1 Change [dB] of the loss of the light guide 22A is shown for each inclination angle .delta. Of the side surface of the light guide 22A.
 図3(B)に示すように、受光モジュール20を構成するスリーブ22では、その導光路22Aの側面の傾斜角度δは1.5度よりも1度の方が優れており、さらには1度よりも0.5度の方が優れていることがわかる。 As shown in FIG. 3B, in the sleeve 22 constituting the light receiving module 20, the inclination angle δ of the side surface of the light guide path 22A is better at 1 degree than 1.5 degrees, and further 1 degree It can be seen that 0.5 degrees is better than that.
 ただし、傾斜角度δが0.5度未満であると、スリーブ22を金型内に入れて射出成形し、その後に硬化後のスリーブ22から金型を引き抜く際に、導光路22Aの部分が金型内から抜け難くなり、バリなどが発生する原因となりやすい。このため、導光路22Aの側面の傾斜角度δの好ましい範囲は0.5度以上であり、且つ1度以下である。 However, when the inclination angle δ is less than 0.5 degrees, the sleeve 22 is placed in a mold and injection molded, and then the portion of the light guide 22A is made of metal when the mold is pulled out from the sleeve 22 after curing. It becomes difficult to get out of the mold and it is easy to cause burrs and the like. Therefore, a preferable range of the inclination angle δ of the side surface of the light guide path 22A is 0.5 degrees or more and 1 degree or less.
 また図2(B)に示すように、受光モジュール20において、前記導光路22Aの側面から側方に突出するフランジ部22cの図示X2側の付け根部P1と前記レンズ22Bの最大外形部P2とを結ぶ直線Pと、軸中心線O-Oとの間の開き角をθとする。 Further, as shown in FIG. 2B, in the light receiving module 20, the root portion P1 on the X2 side of the flange portion 22c protruding sideward from the side surface of the light guide 22A and the maximum outer diameter portion P2 of the lens 22B The opening angle between the connecting straight line P and the axial center line OO is assumed to be θ.
 光が光ファイバの端面から出射する際の放射角φは、光ファイバの種類によっても異なるが概ね30度程度であるため、前記開き角θは30度以上が好ましい。また前記開き角θが90度を越えることはないため、前記開き角θは90度未満が好ましい。 Although the radiation angle φ when light is emitted from the end face of the optical fiber is approximately 30 degrees although it varies depending on the type of optical fiber, the opening angle θ is preferably 30 degrees or more. Further, since the opening angle θ does not exceed 90 degrees, the opening angle θ is preferably less than 90 degrees.
 このように、開き角θを30度以上90度未満とすると、前記軸中心線O-Oから離れたレンズ22Bの最大外形の近傍においてもレンズ22Bから出射した光を受光素子21において漏れの少ない状態で検出することが可能となる。このため、光コネクタ1全体としての伝送効率の低下を防止することができる。 As described above, when the opening angle θ is 30 degrees or more and less than 90 degrees, light emitted from the lens 22B is less leaked in the light receiving element 21 even in the vicinity of the maximum outer shape of the lens 22B separated from the axial center line OO. It becomes possible to detect in the state. For this reason, the fall of the transmission efficiency as the optical connector 1 whole can be prevented.
 図1,2に示すように、スリーブ12,22は図示X1側からハウジング40の内部に装着される。この際、スリーブ12,22は、導光路12A,22Aの他方の端面12b,22b側を図示X2方向に向けた状態で固定領域41,42を通じて装着される。導光路12A,22Aの他方の端面12b,22b側は、位置決め凹部43,44を通じて貫通孔47,48内に挿入される。この際、略環状のガイド部12Cも位置決め凹部43,44内に同時に挿入される。そして、略環状のガイド部12Cの他端12C2が位置決め凹部43,44の底面に当接すると、スリーブ12,22の挿入が完了する。 As shown in FIGS. 1 and 2, the sleeves 12 and 22 are attached to the inside of the housing 40 from the side of the illustration X1. At this time, the sleeves 12 and 22 are mounted through the fixing regions 41 and 42 with the other end face 12b or 22b of the light guide path 12A or 22A facing in the X2 direction. The other end face 12b, 22b side of the light guide path 12A, 22A is inserted into the through hole 47, 48 through the positioning recess 43, 44. At this time, the substantially annular guide portion 12C is also inserted into the positioning recesses 43 and 44 simultaneously. When the other end 12C2 of the substantially annular guide portion 12C abuts on the bottom surface of the positioning recess 43, 44, the insertion of the sleeves 12, 22 is completed.
 複数の位置決めリブ12Dが位置決め凹部43,44の内面に各方向から当たるため、スリーブ12,22をX方向およびこれと直交するZ方向に高精度に位置決めすることが可能である。また略環状のガイド部12C,22Cの他端12C2,22C2が位置決め凹部43,44の底面に当接することにより、スリーブ12,22をY方向に高精度に位置決めすることが可能である。このため、導光路12A,22Aの他方の端面12b、22bをハウジング40内の一定の位置に設定することが可能となり、常に前記他方の端面12b、22bとプラグ側の光ファイバ51,52の端面51a,52aとの間を設計通りの対向間隔となるように取り付けることができる。よって、光伝送効率の高い光コネクタとすることができる。 Since the plurality of positioning ribs 12D abut the inner surfaces of the positioning recesses 43 and 44 in each direction, it is possible to position the sleeves 12 and 22 with high accuracy in the X direction and the Z direction orthogonal thereto. Further, the other ends 12C2 and 22C2 of the substantially annular guide portions 12C and 22C abut on the bottom surfaces of the positioning recesses 43 and 44, whereby the sleeves 12 and 22 can be positioned with high accuracy in the Y direction. Therefore, the other end faces 12b and 22b of the light guide paths 12A and 22A can be set at a fixed position in the housing 40, and the other end faces 12b and 22b and the end faces of the optical fibers 51 and 52 on the plug side can be constantly used. It can be attached so as to provide the opposite spacing as designed between 51a and 52a. Therefore, an optical connector with high light transmission efficiency can be obtained.
 次に、発光モジュール10と受光モジュール20が、ハウジング40内の固定領域41,42の固定される。この際、発光モジュール10,受光モジュール20は位置決め用の枠状リブ11a,21aを図示Y1方向に向けた状態で取り付けられる。すなわち、図1に示すように発光モジュール10,受光モジュール20を取り付けると、枠状リブ11a,21aの内側で且つベース11A,21Aの表面にスリーブ12,22のY2側の一端にそれぞれ形成された位置決め凸部12C1,22C1が当接する。発光モジュール10,受光モジュール20は、このように当接させられた状態で固定領域41,42内に固定される。このため、発光モジュール10,受光モジュール20に設けられた発光素子11,受光素子21とスリーブ12,22側のレンズ12B,22Bとの間の対向距離、または凸レンズ13,23が設けられている場合にはこの凸レンズ13,23とスリーブ12,22側のレンズ12B,22Bとの間の対向距離が常に一定となるように取り付けることができる。よって、光伝送効率の高い光コネクタとすることができる。 Next, the light emitting module 10 and the light receiving module 20 fix the fixing regions 41 and 42 in the housing 40. At this time, the light emitting module 10 and the light receiving module 20 are attached with the frame shaped ribs 11a and 21a for positioning directed in the Y1 direction in the drawing. That is, as shown in FIG. 1, when the light emitting module 10 and the light receiving module 20 are attached, they are formed inside the frame shaped ribs 11a and 21a and on the surface of the bases 11A and 21A at one end of the sleeves 12 and 22 on the Y2 side. The positioning convex portions 12C1 and 22C1 abut. The light emitting module 10 and the light receiving module 20 are fixed in the fixing regions 41 and 42 in such a state of being in contact with each other. Therefore, the facing distance between the light emitting element 11 and the light receiving element 21 provided in the light emitting module 10 and the light receiving module 20 and the lenses 12B and 22B on the sleeve 12 and 22 side, or the case where the convex lenses 13 and 23 are provided. Can be mounted so that the facing distance between the convex lenses 13 and 23 and the lenses 12B and 22B on the sleeve 12 and 22 side is always constant. Therefore, an optical connector with high light transmission efficiency can be obtained.
 このように、本発明では、X軸方向において、スリーブ12,22、発光モジュール10,受光モジュール20および光ファイバ51,52の取り付け精度を高めることができるため、光伝送効率の高い光コネクタとすることができる。 As described above, according to the present invention, since the attachment accuracy of the sleeves 12 and 22, the light emitting module 10, the light receiving module 20 and the optical fibers 51 and 52 can be enhanced in the X axis direction, an optical connector with high light transmission efficiency is provided. be able to.
 なお、上記スリーブ12,22は同じ形状のままで、発光モジュール10と受光モジュール20に共用することができるため、光コネクタの製造コストを低減することも可能である。 In addition, since the said sleeves 12 and 22 can be shared to the light emission module 10 and the light reception module 20 with the same shape, it is also possible to reduce the manufacturing cost of an optical connector.
 また特許文献1の図8に示される態様、すなわち発光用光学素子とファイバとの間を光学的に接続する光コネクタであって、円錐状の導光路のうち、光ファイバの端面と対向する径寸法の大きい側にレンズが一体に形成されているものでは、中心光軸(導光路の中心軸)近傍ではレンズからファイバの端面に光が効率よく伝達されるが、光ファイバのコア径より大きい部分、すなわち、レンズの最大径近傍ではレンズから出射した光がファイバの端面に入射されずに漏れ光となり、全体としての伝送効率が低下しやすいといった問題がある。上記課題を解決するための手段を下記の第2の実施形態に示す。 Further, an aspect shown in FIG. 8 of Patent Document 1, that is, an optical connector for optically connecting a light emitting optical element and a fiber, and a diameter of the conical light guide path facing the end face of the optical fiber In the case where the lens is integrally formed on the large size side, light is efficiently transmitted from the lens to the end face of the fiber in the vicinity of the central optical axis (central axis of the light guide), but larger than the core diameter of the optical fiber In the vicinity of the maximum diameter of the lens, that is, the light emitted from the lens does not enter the end face of the fiber and becomes leaked light, which tends to reduce the transmission efficiency as a whole. Means for solving the above problems are shown in the following second embodiment.
 図4は本発明の第2の実施の形態を示し、光コネクタ内に設けられる光モジュール、スリーブおよび光ファイバの関係を示す拡大断面図である。 FIG. 4 shows a second embodiment of the present invention, and is an enlarged sectional view showing the relationship between an optical module, a sleeve and an optical fiber provided in an optical connector.
 図4に示す光コネクタ内の構成は、一部を除き上記第1の実施の形態と同様であり、スリーブ12,22を形成する導光路12A,22Aの光ファイバの端面と対向する径寸法の小さい側の端面12b,22bに凸型のレンズ12E,22Eを設けた点が唯一異なる部分である。また、凸型のレンズ12E,22Eの径は光ファイバのコア径と略同一に形成している。 The configuration in the optical connector shown in FIG. 4 is the same as that of the first embodiment except for a part, and the diameter dimension of the light guide paths 12A and 22A forming the sleeves 12 and 22 is opposite to the end face of the optical fiber The only difference is that convex lenses 12E and 22E are provided on the small end faces 12b and 22b. Further, the diameters of the convex lenses 12E and 22E are formed substantially the same as the core diameter of the optical fiber.
 このように、光ファイバ51,52の端面51a,51aと対向する導光路12A,22Aの端面に凸型のレンズ12E,22Eを設けると、特に発光モジュール10の場合には、凸型のレンズ12Eから出射する光を光ファイバ51の端面51a内に集光しやすくなるため、さらに光伝送効率を高めることが可能となる。 Thus, when the convex lenses 12E and 22E are provided on the end faces of the light guide paths 12A and 22A facing the end faces 51a and 51a of the optical fibers 51 and 52, in the case of the light emitting module 10, in particular, the convex lenses 12E. Since it becomes easy to condense the light radiate | emitted from these in the end surface 51a of the optical fiber 51, it becomes possible to improve light transmission efficiency further.
 なお、上記実施の形態の光コネクタでは、1つのハウジング40内に発光モジュール10と受光モジュール20の双方を有する構成を示して説明したが、本発明はこれに限られるものではなく、1つのハウジング内に一方の発光モジュール10のみ、または他方の受光モジュール20のみが設けられた構成であってもよい。 In the optical connector according to the above-described embodiment, the configuration in which both the light emitting module 10 and the light receiving module 20 are included in one housing 40 has been described. However, the present invention is not limited thereto. Alternatively, only one light emitting module 10 or only the other light receiving module 20 may be provided.
本発明の第1の実施の形態を示す光コネクタの断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the optical connector which shows the 1st Embodiment of this invention. 図1の光コネクタ内に設けられる光モジュール、スリーブおよび光ファイバの関係を示す拡大断面図。FIG. 2 is an enlarged sectional view showing the relationship between an optical module, a sleeve and an optical fiber provided in the optical connector of FIG. 1. (A)は受光モジュール側のスリーブを示す断面図、(B)は受光モジュール側スリーブの導光路の最適な傾斜角度の範囲を示すグラフ。(A) is a cross-sectional view showing a sleeve on the light receiving module side, and (B) is a graph showing the range of the optimum inclination angle of the light guide of the light receiving module side sleeve. 本発明の第2の実施の形態を示し、光コネクタ内に設けられる光モジュール、スリーブおよび光ファイバの関係を示す拡大断面図。The expanded sectional view which shows the 2nd Embodiment of this invention, and shows the relationship of the optical module provided in an optical connector, a sleeve, and an optical fiber.
1 光コネクタ
10 発光モジュール(光モジュール)
11 発光素子(光学素子)
12 スリーブ
12A 導光路
12B レンズ
12C ガイド部
12D 位置決めリブ
12E 凸型のレンズ
12c フランジ部
13 凸レンズ
20 受光モジュール(光モジュール)
21 受光素子(光学素子)
22 スリーブ
22A 導光路
22B レンズ
22C ガイド部
22D 位置決めリブ
22E 凸型のレンズ
22c フランジ部
23 凸レンズ
40 ハウジング
41,42 固定領域
43,44 位置決め凹部
45,46 挿着凹部
47,48 貫通孔
51,52 光ファイバ
51a,52a 光ファイバの端面
1 Optical connector 10 Light emitting module (optical module)
11 Light emitting element (optical element)
12 sleeve 12A light guide path 12B lens 12C guide portion 12D positioning rib 12E convex lens 12c flange portion 13 convex lens 20 light receiving module (optical module)
21 light receiving element (optical element)
Reference Signs List 22 sleeve 22A light guide 22B lens 22C guide 22D guide rib 22E convex lens 22c flange 23 convex lens 40 housing 41, 42 fixed area 43, 44 positioning recess 45, 46 insertion recess 47, 48 through hole 51, 52 light Fiber 51a, 52a Optical fiber end face

Claims (5)

  1.  光を伝播する光ファイバと、発光又は受光を行う光学素子と、前記光ファイバと前記光学素子との間の光学的接続を行うスリーブと、が設けられた光コネクタにおいて、
     前記スリーブは、径寸法の小さい一端から前記光学素子に向って徐々に拡大する略截頭円錐状の導光路を備え、該導光路の側部であって側方に突出するフランジ部と、前記光学素子と対向する前記スリーブの端面に凸状のレンズと、がそれぞれ一体に形成されており、
     前記スリーブの軸中心線を通る断面で見たときに、前記軸中心線と、前記フランジ部の付け根と前記レンズの最大外形部とを結ぶ直線とにより形成される間の開き角が、30度以上で且つ90度未満であることを特徴とする光コネクタ。
    In an optical connector provided with an optical fiber for propagating light, an optical element for emitting or receiving light, and a sleeve for optical connection between the optical fiber and the optical element,
    The sleeve is provided with a substantially frusto-conical light guide gradually expanding toward the optical element from one small diameter end, and the side of the light guide has a laterally projecting flange portion, and A convex lens is integrally formed on an end face of the sleeve facing the optical element;
    When viewed in cross section passing through the axial center line of the sleeve, the opening angle between the axial center line and the straight line connecting the base of the flange and the maximum outer diameter of the lens is 30 degrees. An optical connector characterized by the above and less than 90 degrees.
  2.  前記導光路の側面の傾斜角度が0.5度以上1度以下である請求項1記載の光コネクタ。 The optical connector according to claim 1, wherein an inclination angle of a side surface of the light guide path is 0.5 degrees or more and 1 degree or less.
  3.  前記フランジ部に連続する略環状のガイドが形成されている請求項1または2に記載の光コネクタ。 The optical connector according to claim 1 or 2, wherein a substantially annular guide continuous to the flange portion is formed.
  4.  前記光ファイバと対向する前記スリーブの端面に凸状のレンズが一体に形成されている請求項1ないし3のいずれかに記載の光コネクタ。 The optical connector according to any one of claims 1 to 3, wherein a convex lens is integrally formed on an end face of the sleeve facing the optical fiber.
  5.  前記光学素子の発光面又は受光面に凸状のレンズが設けられている請求項1ないし4のいずれかに記載の光コネクタ。 The optical connector according to any one of claims 1 to 4, wherein a convex lens is provided on a light emitting surface or a light receiving surface of the optical element.
PCT/JP2009/060829 2008-06-20 2009-06-15 Optical connector WO2009154160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-161733 2008-06-20
JP2008161733 2008-06-20

Publications (1)

Publication Number Publication Date
WO2009154160A1 true WO2009154160A1 (en) 2009-12-23

Family

ID=41434075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060829 WO2009154160A1 (en) 2008-06-20 2009-06-15 Optical connector

Country Status (1)

Country Link
WO (1) WO2009154160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093934A1 (en) * 2015-05-13 2016-11-16 Ricoh Company Ltd. Optical device and light irradiation apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014987A (en) * 2001-06-28 2003-01-15 Kyocera Corp Optical path converting body and its packaging structure and optical module
JP2003177286A (en) * 2001-12-11 2003-06-27 Hosiden Corp Optical component for bi-directional optical communication
WO2007013563A1 (en) * 2005-07-29 2007-02-01 Ccs Inc. Optical unit and light irradiating device
JP2007155973A (en) * 2005-12-02 2007-06-21 Seiko Epson Corp Alignment method of optical module and method of manufacturing the same
JP3958891B2 (en) * 1999-04-23 2007-08-15 矢崎総業株式会社 Optical connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958891B2 (en) * 1999-04-23 2007-08-15 矢崎総業株式会社 Optical connector
JP2003014987A (en) * 2001-06-28 2003-01-15 Kyocera Corp Optical path converting body and its packaging structure and optical module
JP2003177286A (en) * 2001-12-11 2003-06-27 Hosiden Corp Optical component for bi-directional optical communication
WO2007013563A1 (en) * 2005-07-29 2007-02-01 Ccs Inc. Optical unit and light irradiating device
JP2007155973A (en) * 2005-12-02 2007-06-21 Seiko Epson Corp Alignment method of optical module and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093934A1 (en) * 2015-05-13 2016-11-16 Ricoh Company Ltd. Optical device and light irradiation apparatus
US9859681B2 (en) 2015-05-13 2018-01-02 Ricoh Company, Ltd. Optical device and light irradiation apparatus

Similar Documents

Publication Publication Date Title
CN101652691B (en) Optical module
TWI544247B (en) Optical socket and its light module
WO2010007861A1 (en) Optical connector
JP2007256372A (en) Optical fiber connecting component
JP2016184106A (en) Ferrule with optical fiber, optical connector system, and method for manufacturing the ferrule with optical fiber
JP6291300B2 (en) Optical receptacle and optical module
WO2009154160A1 (en) Optical connector
JP2011145216A (en) Hot-line detection device
JP6207881B2 (en) Optical receptacle and optical module having the same
JP4898549B2 (en) Optical coupling element and optical coupling unit
JP2005300596A (en) Composite optical fiber, optical connector, and optical fiber with optical connector
WO2013011938A1 (en) Light receptacle and optical module equipped with same
JP4565076B2 (en) Optical path conversion device, optical transmission device manufacturing method, and manufacturing tool therefor
JP2018151416A (en) Optical connector
US20110211787A1 (en) Optical interconnect components
WO2018097072A1 (en) Optical module and manufacturing method for optical module
WO2020170821A1 (en) Optical receptacle and optical module
JPWO2016175126A1 (en) Optical transmission module
JP2018124418A (en) Optical connector
JP2005316295A (en) Optical fiber module
KR20240029853A (en) Jig for optical communication lens performance evaluation and method for evaluating lens performance using the same
JP2012198429A (en) Multicore optical fiber holder and holder body part
JP4127203B2 (en) Optical coupling structure and optical coupling device
JP5282988B2 (en) Optical connector
JP2009229503A (en) Ferrule for optical connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP