WO2009154115A1 - Two-wire electromagnetic flow meter - Google Patents
Two-wire electromagnetic flow meter Download PDFInfo
- Publication number
- WO2009154115A1 WO2009154115A1 PCT/JP2009/060607 JP2009060607W WO2009154115A1 WO 2009154115 A1 WO2009154115 A1 WO 2009154115A1 JP 2009060607 W JP2009060607 W JP 2009060607W WO 2009154115 A1 WO2009154115 A1 WO 2009154115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- excitation
- current
- output
- power supply
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
- G01F1/58—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
- G01F1/60—Circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
- G01F1/58—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
- G01F1/582—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters without electrodes
Definitions
- the present invention relates to a two-wire electromagnetic flow meter that detects a flow rate of a fluid to be detected by a capacitance method.
- the electromagnetic flow meter generates an electromotive force proportional to the flow velocity of the detected fluid by flowing the detected fluid in the magnetic field, and calculates the flow rate based on the electromotive force detected by the electrode.
- Such an electromagnetic flow meter is roughly classified into two types, a wetted electrode type and a non-wetted electrode type.
- a wetted electrode type electromagnetic flow meter is also called a wetted type or an electrode type electromagnetic flow meter, and the electrode is in direct contact with the fluid to be detected and directly detects the electromotive force generated in the fluid to be detected.
- non-wetted electrode type electromagnetic flowmeters are also called (electrostatic) capacity type electromagnetic flowmeters, and the electrodes do not directly contact the fluid to be detected, and the electromotive force generated in the fluid to be detected is It detects through the electrostatic capacitance between electrodes.
- a liquid contact electrode type electromagnetic flow meter In a liquid contact electrode type electromagnetic flow meter, the electrode is always in contact with the liquid of the fluid to be detected, so that the electrode needs to be a liquid that does not corrode. In addition, there are problems such as an insulating deposit or an oil film contained in the liquid adhering to the electrode to increase resistance, rusting of the electrode, and the need for a waterproof structure in the electrode arrangement portion. In contrast, a capacitive electromagnetic flow meter generates an electromotive force that is proportional to the product of the strength of the applied magnetic field and the fluid flow velocity when a conductive fluid to be detected flows perpendicular to the magnetic field.
- FIG. 52 shows an example of a block diagram of a capacitive electromagnetic flow meter.
- an electrode 930 is attached to the outside of a measurement tube 910 through which a fluid to be detected flows, and a capacitor is formed with the pipe thickness of the measurement tube 910.
- a pair of exciting coils 922 are arranged in a direction orthogonal to the electric field detected by the electrodes 930, and an alternating magnetic field is generated by the exciting circuit 924.
- the electrode 930 since the electrode 930 does not come into contact with the fluid to be detected, it is difficult to be affected by the insulating deposit, and it is not necessary to consider the deterioration of the electrode or the waterproof structure, and maintenance is easy. There is an advantage that even a low-conductivity fluid can be used to eliminate the generation factor.
- the internal circuit has a high impedance and is also susceptible to noise.
- FIG. 53 shows the two-wire electromagnetic flow meter disclosed in Patent Document 1.
- the two-wire electromagnetic flow meter shown in this figure includes a wetted electrode 572 in a measurement tube 571, and a current output circuit 575 for adjusting the current flowing through the excitation circuit 573, the transmission line 574, and the excitation coil to be constant.
- an analog circuit such as a signal processing circuit 576 such as a CPU.
- the excitation circuit 573 and the signal processing circuit 576 for calculating the flow rate are connected in series, and the transmission line 574 is connected to the excitation circuit 573 side that consumes the most current.
- the excitation circuit 573 is first energized, and then the current output from the excitation circuit 573 is used for other circuits connected in series. To do.
- the output current is directly supplied to the excitation circuit, it is difficult to flow an excitation current higher than the output current, and thus it is necessary to prepare an additional power supply circuit.
- the capacity type electromagnetic flow meter is a two-wire type
- the voltage signal is weaker than the liquid contact type because of the structure in which the electrode is not in direct contact with the fluid to be detected. For this reason, in order to accurately detect the flow rate, it is necessary to increase the amount of current in the excitation circuit according to the ampere-turn law.
- the amount of current that can be energized is limited as described above. I had a problem that I could not do.
- the power supply voltage needs to be equal to or higher than the voltage required for the excitation circuit and the voltage required for the signal processing circuit, the power supply voltage must be increased to some extent.
- a voltage higher than (voltage required for the excitation circuit) + (voltage required for the signal processing circuit) depending on the circuit operating state is wasted and voltage loss There was also a problem of growing.
- the current that is not used for excitation becomes heat of the transistor in the constant voltage circuit, it is necessary to discard the useless current as heat.
- FIG. 1 a two-wire electromagnetic flow meter disclosed in Patent Document 2 is shown in FIG.
- This two-wire electromagnetic flow meter also has a liquid contact type electrode 582 in the measuring tube 581, an excitation circuit 583, a current output circuit 585 for adjusting the amount of current applied to the transmission line 584 to a range of 4 mA-20 mA, A signal processing circuit 586 is provided.
- an excitation circuit 583, a signal processing circuit 586, and a current output circuit 585 are connected in parallel.
- an insulating circuit 588 for insulating the analog amplifier circuit 587 and the signal processing circuit 586 is required.
- the insulated signal is vulnerable to noise, and there is a problem that the flow rate measurement cannot be performed at all if the data of the flow rate signal is corrupted.
- a non-wetted type electromagnetic flow meter has a higher impedance than the wetted type, and thus is relatively vulnerable to noise and is susceptible to such data corruption. Further, even in this method, since the output current is supplied to the excitation circuit as it is, it is difficult to flow an excitation current higher than the output current.
- a method of increasing the excitation current by increasing / decreasing the voltage of the excitation circuit is also conceivable.
- an extra power supply circuit for step-up / step-down is required, and there is a problem that the circuit becomes complicated.
- a DC / DC conversion circuit 599 for driving the current output circuit 595 is disposed before the excitation circuit 593 to once step down / boost, and further the excitation circuit
- the DC / DC conversion circuit 560 for the signal processing circuit 596 is disposed at the subsequent stage of the signal 593 to further perform step-down / boost, and two extra power supply circuits are required.
- An object of the present invention is to provide a two-wire electromagnetic flow meter capable of realizing a capacitive electromagnetic flow meter with a two-wire type.
- the flow rate of the fluid to be detected is detected, and signal transmission and power supply of the detected flow rate are shared by two transmissions.
- a two-wire electromagnetic flow meter performed by a wire at least a pair of excitation coils disposed so as to be orthogonal to the flow path of the measurement pipe, a measurement pipe that constitutes a flow path through which a fluid to be detected passes, and the excitation coil
- the excitation circuit and a calculation means capable of outputting a power control signal for controlling the driving state of the power supply unit to the power supply unit, respectively, and a secondary side output of the power supply unit to the excitation circuit,
- a detection circuit is connected, and the calculation means can be configured to control the amount of current from the transmission line supplied to the primary side input of the power supply unit according to the calculated flow rate of the fluid to be detected.
- the primary side input current value is changed according to the flow rate of the fluid to be detected, while the excitation circuit is driven by the secondary side output of the power supply unit insulated from the primary side output.
- the current can be adjusted separately from the primary-side input current value, and the voltage signal detected by increasing the drive current without increasing the power supply voltage can be increased to achieve highly accurate detection.
- the common potential between the primary side input of the power supply unit and the calculation unit is further separated from the calculation unit to the power supply unit.
- a control signal insulation circuit for sending a power control signal is provided, and the computing means is arranged at the secondary output of the power supply unit and can be connected to the output side of the detection circuit.
- the analog voltage signal detected by the detection circuit can be input to the arithmetic means without being insulated, and the insulation circuit therebetween can be eliminated.
- the calculation means and the excitation circuit are arranged on the same secondary side output, the excitation control signal from the calculation means to the excitation circuit can also be output without passing through the insulation circuit, and the insulation circuit between them is unnecessary. As a result, it is sufficient to arrange the insulating circuit only between the arithmetic means and the power supply unit, so that the number of necessary power supply units can be reduced and the circuit configuration can be simplified.
- the power supply unit can control a primary side input current value for energizing the transmission line based on a power supply control signal from the calculation means.
- a switching circuit that is controlled by the current output circuit and that can convert the DC power of the primary side input current supplied from the transmission line into predetermined power and output it to the secondary side.
- the secondary side output current insulated from the primary side by the switching circuit can be arbitrarily set, and the excitation current of the excitation coil is within the range of 4 mA to 20 mA as in the conventional two-wire electromagnetic flowmeter. Since a higher excitation current can be supplied without being restricted, a high voltage signal can be obtained, and accurate flow rate detection can be realized.
- the switching circuit further serves as a secondary side output for exciting circuit output for generating driving power for driving the exciting circuit, and the calculation. And an output for calculating means for generating drive power for driving the means.
- the detection circuit can be constituted by an analog signal amplification circuit that amplifies a voltage signal detected by the electrode.
- the output voltage value for exciting the excitation coil is adjusted and supplied in parallel with the excitation circuit and in series with the excitation coil.
- a possible constant voltage power supply and a charge charge monitor circuit for instructing a voltage required to supply an excitation current to the excitation circuit by the constant voltage power supply can be provided.
- FIG. 1 is an external perspective view showing a two-wire electromagnetic flow meter according to Embodiment 1 of the present invention.
- FIG. 2 is a front view of the two-wire electromagnetic flow meter of FIG. 1.
- FIG. 2 is a side view of the two-wire electromagnetic flow meter of FIG. 1.
- FIG. 2 is a block diagram of the two-wire electromagnetic flow meter of FIG. 1. It is a circuit diagram which shows the state which connected the 2-wire type electromagnetic flowmeter to the external power supply. It is a circuit diagram which shows the circuit example of a current output circuit. It is a circuit diagram which shows the circuit example of the switching circuit of a power supply part. It is a circuit diagram which shows the circuit example of an excitation circuit.
- FIG. 5 is a block diagram showing a two-wire electromagnetic flow meter according to Embodiment 2.
- FIG. It is a block diagram which shows the example which comprised the power supply part with the insulation type switching power supply. It is a block diagram which shows the example which comprised the power supply part with the non-insulated type power supply. It is a wave form diagram which shows operation
- charge charge monitor circuit 28 ... excitation polarity switching circuit 29 ... exciting constant current circuit 30 ... electrode; 31 ... adder circuit; 33 ... amplifier mode switching 34 ... Detection circuit; 34C ... Signal amplification circuit 341 ... Buffer circuit; 342 ... Differential amplifier; 343 ... Differential amplifier 344 ... Offset compensation circuit; 38 ... A / D converter 40 ... Calculation means; 41 ... Addition / subtraction instruction circuit; 42 ... Memory unit; 43 ... Reference voltage switching circuit 44 ... Damping unit; 45 ... Auto mode switching unit 50 ... Display unit; 51 ... Display unit; 52 ... Display screen; 54 ... Operation panel 60 ... Output unit; 80 ... setting unit 110 ... main body; 111 ...
- Converter 609 ... Calculation unit; 610 ... Conversion circuit 611 ... Integrated pulse alarm output circuit 900 ... Capacitive electromagnetic flow meter; 910 ... Measurement tube; 922 ... Excitation coil; 924 ... Excitation circuit 930 ... Electrode DL ... Transmission line; PL ... Power line; OL ... Output line L ... Coil Ro ... Output current detection resistor; RE ... Excitation current detection resistor; Ra , Rb , Rc ... Resistor C C ... charge capacitor; C C2 ... second charge capacitor C S1 ... smoothing capacitor; C 01 , C 02 ... hold capacitors Tr, Tr 5 , Tr 6 ... transistors; Tr 1 to Tr 4 ...
- each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
- Example 1
- FIG. 1 is an external perspective view of a two-wire electromagnetic flow meter
- FIG. 2 is a front view of the two-wire electromagnetic flow meter of FIG. 1
- FIG. 3 is a side view
- FIG. 5 shows circuit diagrams in a state where the two-wire electromagnetic flow meter 100 is connected to an external power source.
- This electromagnetic flow meter is a non-wetted capacity type. (appearance)
- the two-wire electromagnetic flow meter shown in FIGS. 1 to 3 includes a main body 110 that constitutes a two-wire electromagnetic flow meter main body and a display unit 50.
- This two-wire electromagnetic flow meter allows the fluid to be detected to pass through the flow passage port 111 opened at both end faces of the main body 110, detects the flow rate, outputs it through the transmission line DL, and displays it as necessary. Display on the unit 50.
- the main body 110 may be made of metal or made of PPS resin or the like.
- the main body 110 is provided with a flange-like flange portion on a cylindrical end surface, and opens a screw hole for screwing with a pipe such as a pipe and a screw.
- the flange portion is preferably formed integrally with the main body 110 and metal.
- the flow path port 111 opened in the flange portion forms a flow path with the measurement tube 10 built in the main body 110.
- the diameter of the flow path is set to substantially the same diameter from one end to the other end of the flow path port 111 to reduce loss when the detected fluid flows in one direction in the flow path.
- the display unit 50 is fixed to the upper surface of the main body 110 so as to be orthogonal as shown in FIG. By fixing the display surface of the display unit in a posture orthogonal to the cylindrical main body, the flow rate can be easily seen from the side surface through which the fluid to be detected flows through the pipe-shaped measuring tube 10. (Display unit 50)
- the display unit 50 is a member for displaying information such as the flow rate of the fluid to be detected, and includes a display screen 52 as the display unit 51 as shown in FIG.
- a 7-segment display is used as a numerical display area for displaying numerical values on the display screen 52, and the flow rate and the like are displayed numerically.
- the 7-segment display displays numerical values such as instantaneous flow rate and integrated flow rate for the detected flow rate.
- the display screen 52 shown in this figure includes two stages of 7-segment displays, and can display the integrated flow rate and the set value simultaneously.
- a 7-segment display may be provided for only one screen so that the display of the integrated flow rate, instantaneous flow rate, set value, and the like can be switched.
- a display screen using liquid crystal or organic EL can be used instead of the segment-type display screen 52 using LEDs or the like. In this way, the display screen 52 can display not only numerical values such as flow rate but also figures and images such as arrows or alternatively, and can easily display the detected flow rate information to the user. Can be displayed.
- the display unit 50 includes an operation panel 54 as a setting unit 80 for performing various settings.
- the operation panel 54 includes keys and buttons for performing various settings.
- a 4-digit 7-segment display is arranged in two stages on the display screen 52, an operation panel 54 is provided below, and buttons are arranged.
- the setting unit 80 functions as a reset setting unit for setting an initial value of the integrated flow rate or a predetermined reset value.
- the display circuit that displays the display screen 52 incorporates a calculation means 40 that is connected to the detection circuit 34 and the excitation circuit 24 and controls them.
- the calculation means can be constituted by individual members and incorporated in the main body 110. It is also possible to integrate a calculation means, a detection circuit, an excitation circuit, and the like.
- the display unit 50 can include an input unit.
- the input unit is an interface for inputting an input signal from an external device such as a temperature sensor, a reset signal for resetting the integrated value, and various setting information.
- a communication unit capable of data communication, an I / O terminal, a memory card, or the like can be used as the input unit.
- the display unit 50 is separated from the main body 110.
- the display unit 50 may be integrated with the main body 110.
- the display unit does not need to be fixed to the main body case 110, and may be a separation type in which the display unit is arranged at another position.
- This two-wire electromagnetic flow meter can output an analog current corresponding to the measured instantaneous flow rate, integrated flow rate, etc., with the current value of the transmission line DL as an analog output.
- an analog current is output in the range of 4 mA to 20 mA.
- an analog current output circuit 16 is provided as an output unit. Analog currents have better noise immunity than voltage signals, and can be used for data recording and analysis by outputting them externally.
- a two-wire electromagnetic flow meter 100 is wound around a measurement tube 10 that passes a detection fluid and a pole piece, and applies a magnetic field to the detection fluid from the outside of the measurement tube 10.
- the calculation means 40 functions as a flow rate calculation unit capable of calculating the integrated flow rate based on the flow rate of the fluid to be detected detected by the main body case 110 constituting the flow rate detection means. Further, the calculation means 40 includes a memory unit 42 for adding or integrating the instantaneous flow rate calculated with the flow rate calculation value and holding the integrated flow rate. The integrated flow rate is updated by sequentially adding the newly measured instantaneous flow rate to the integrated flow rate, and the updated integrated value is held in the memory unit 42 as needed. Further, as necessary, an output unit 60 for outputting an output signal, an input unit 70 for inputting various input signals such as an external reset signal, a setting unit 80 for performing various settings, and the like are provided. Also good. The calculation means 40, the display unit 51, the output unit 60, the input unit 70, the setting unit 80, and the like are configured as a unit that is a separate member from the main body case 110 as the display unit 50. (Measurement tube 10)
- the measuring tube 10 is an insulating lining that allows a fluid to be detected to pass through the inside of the tube.
- the measuring tube 10 is required to have excellent chemical resistance as a pipe through which a fluid to be detected passes and electrical characteristics for constituting a capacitor.
- the measuring tube 10 is a strength matrix that bears the force of tension or compression based on the expansion and contraction of the pipe due to pressure and temperature changes of the fluid to be detected, and the required inner diameter, thickness, and length to withstand it.
- the electrode 30 is made of a material having a high dielectric constant in order to enhance the capacitive coupling between the electrode 30 attached around the measuring tube 10 and the fluid to be detected and to improve the S / N ratio.
- a material can be made of ceramics, plastic, or PPS resin mixed with ceramics. In particular, the latter is relatively strong and can secure molding accuracy and high dielectric properties. PPS resin is excellent in oil resistance and chemical resistance. A lining is applied to the inner surface of the measuring tube 10 as necessary.
- the fluid to be detected is water or a non-corrosive liquid, and a liquid having a predetermined conductivity.
- non-wetted electromagnetic flowmeters measure even liquids that corrode electrodes that could not be used in the past because the electrode 30 is not in direct contact with the fluid to be detected. it can.
- it can respond to various to-be-detected fluids by selecting the material of the measuring tube 10.
- FIG. the material of the measuring tube 10 can be selected according to the dielectric constant required in accordance with the measurement accuracy and the resistance to the fluid to be detected.
- the two-wire electromagnetic flowmeter uses the measuring tube 10 as a separate member from the main body 110, so that only the measuring tube 10 is changed and other components are shared, so that two-wires with various specifications are used.
- a type electromagnetic flow meter can be configured, which is advantageous in terms of product preparation.
- the measurement tube 10 is a separate member from the main body case 110.
- condenser can be selected for the member which comprises the measurement pipe
- FIG. On the other hand, a resin that can be easily molded into a complicated shape can be used for the main body 110.
- the measuring tube 10 by making the measuring tube 10 a separate member from the main body 110, it can be configured by a member suitable for each.
- the high dielectric material constituting the measuring tube is generally expensive, only necessary portions are made of expensive members, and the other members can be made of less expensive materials to reduce the overall cost.
- the measuring tube 10 made of an appropriate material can be selected according to the accuracy required for the two-wire electromagnetic flow meter.
- a measuring tube made of an appropriate material can be selected according to the detection purpose and application of the two-wire electromagnetic flow meter, the required specifications and cost. Further, by making it possible to set a plurality of measuring tubes on one 2-wire electromagnetic flow meter, the members of various types of 2-wire electromagnetic flow meters can be shared and provided at low cost. (Electrode 30)
- the electrode 30 is disposed around the measuring tube 10.
- an insulating tape such as polyimide coated with a copper foil can be used.
- the electrode 30 is a planar conductor that is curved along the outer periphery of the cylindrical measurement tube 10, and the pair of electrodes 30 are disposed so as to face each other with the measurement tube 10 interposed therebetween.
- Each electrode 30 is affixed to the outer periphery of the measuring tube 10 without a gap. Tape or adhesive can be used for pasting.
- the electrode 30 is preferably made of a flexible member and can be fixed to the outer surface of the measuring tube 10 without a gap.
- the conductor is preferably covered with an insulating layer.
- a pair of electrodes is used in this example, two or more sets of electrodes can be used.
- the positions of the electrodes are adjusted so that the electric field detected by each electrode is orthogonal to the magnetic field.
- the measuring tube 10 that guides the fluid to be detected is generated by a pair of exciting coils 22 disposed on the left and right sides of the measuring tube 10 and is disposed so as to be orthogonal to the substantially parallel magnetic field guided to the pole piece.
- the pair of electrodes 30 arranged to face the upper and lower surfaces of the measuring tube 10 are arranged so as to detect the electromotive force generated in the direction perpendicular to the magnetic field generated by the exciting coil 22 and the direction of passage of the fluid to be detected. Has been.
- the moving speed (flow velocity) of the fluid to be detected is increased according to Faraday's law of electromagnetic induction. Proportional electromotive force is generated. At this time, the electromotive force is proportional to the product of the magnetic flux density, the flow velocity, and the measurement tube diameter according to Faraday's law.
- the electrode 30 faces the fluid to be detected through the tube wall of the measuring tube 10 made of a derivative and is capacitively coupled, and functions to electrically extract an electromotive force generated in the fluid. The extracted electromotive force is transmitted to the calculation means 40, converted into a flow rate signal, displayed on the display unit 51, or output as an electrical signal.
- a pair of excitation coils 22 are arranged apart from each other, and the excitation coil 24 is energized and excited by an excitation circuit 24 to generate a magnetic field between the excitation coils.
- an electromotive force is generated in a direction orthogonal to the direction of movement of the liquid.
- two excitation coils 22 are used and are provided on the left and right sides of the measurement tube 10.
- the excitation coil may be one.
- the output unit 60 can function as an integrated value output unit or an instantaneous value output unit. Note that the output unit may omit any of the control output, analog output, and timeout output, or may include another output terminal. Furthermore, you may provide the output indicator lamp which shows the output state of each output terminal.
- a two-wire electromagnetic flow meter 100 shown in this figure detects a measurement tube 10, an electrode 30, an excitation coil 22, an excitation circuit 24 for exciting the excitation coil 22, and an analog signal detected by the electrode 30. And an A / D converter 38 for A / D converting the analog signal detected by the detection circuit 34, an arithmetic means 40, a control signal insulation circuit 12, and a power supply unit 14. Since members having the same names as those described above can be basically used, detailed description thereof is omitted. Further, only one excitation coil 22 is shown for the sake of simplicity, but it goes without saying that one pair or more may be used as described above.
- a charge capacitor CC is connected in parallel to the secondary side output of the transformer 20 of the power supply unit 14 as a charging means for charging the electric charge from the power supply unit 14. Further the power supply unit 14 based on the power control signal from the operation means 40, primary-side input current for energizing the transmission line DL (the output current I O) capable of controlling the current output circuit 16, the current output circuit 16 And a switching circuit 18 capable of converting the DC power of the primary side input current supplied from the transmission line DL into a predetermined power and outputting it to the secondary side.
- the secondary side output current IO isolated from the primary side by the switching circuit 18 can be arbitrarily set, and the excitation current IE of the excitation coil 22 can be set as the output current as in a conventional two-wire electromagnetic flow meter. Since a higher excitation current IE can be supplied without being restricted by I O or less, a high voltage signal can be obtained, and accurate flow rate detection can be realized. (Power supply unit 14)
- the power supply unit 14 is connected to two transmission lines DL for the external power supply.
- the power supply unit 14 includes a primary side input capable of connecting two transmission lines DL, and a secondary side output insulated from the primary side input.
- the power supply unit 14 converts the DC power supplied from the transmission line DL into predetermined power and outputs it from the secondary output.
- An excitation circuit 24, a detection circuit 34, and the like are connected to the secondary side output of the power supply unit 14. That is, the excitation circuit 24 and the detection circuit 34 are insulated from the current output circuit 16 arranged on the primary side input side by the power supply unit 14, and the power supply unit 14 can also be used as an insulation circuit.
- the two transmission lines DL are composed of a pair of a HIGH-side first power supply line and a LOW-side first common line.
- a measurement tube 10 that allows the fluid to be detected to pass through, an excitation coil 22 that is wound around the pole piece and applies a magnetic field to the fluid to be detected from the outside of the measurement tube 10, and excitation
- An excitation circuit 24 for generating an alternating magnetic field in the coil 22, an electrode 30 for detecting an electromotive force generated by the detected fluid passing through the magnetic field generated in the excitation coil 22, and the electrode 30
- a detection circuit 34 for detecting an electromotive force
- an A / D converter 38 for converting an analog signal obtained by the detection circuit 34 into a digital signal
- Arithmetic means 40 for sending a power supply control signal to the power supply unit 14 is arranged so that the primary side input current value corresponding to the flow rate is obtained from the detected signal.
- the power supply unit 14 is an insulating switching power supply that DC / DC converts power supplied from an external power supply via the transmission line DL, and includes an output current detection resistor Ro , a current output circuit 16, and a switching circuit 18. Is done.
- the current output circuit 16 controls the primary side input current value for energizing the transmission line DL based on the power supply control signal from the calculation means 40.
- the switching circuit 18 includes a switching control circuit 19 and a transformer 20, and is controlled by the current output circuit 16, and a DC voltage obtained from the primary side input current supplied from the transmission line DL is converted into a predetermined voltage by DC / DC.
- the converter circuit 17 performs DC / DC conversion, and outputs it to the secondary side of the transformer 20.
- the power supply unit 14 shown in FIG. 5 is provided with an excitation circuit output connected to the excitation circuit 24 and a calculation means output connected to the calculation means 40 as secondary outputs of the transformer 20.
- the number of turns for the primary winding can be adjusted and adjusted individually to the power required for driving the excitation circuit 24 and the calculation means 40.
- the secondary side output may be shared, and the excitation circuit 24 and the arithmetic unit 40 may be connected and driven in parallel on the circuit. In this case, since the excitation circuit 24 and the computing means 40 are connected to the same second power supply line, a design such that both members can be driven at the same potential, or a voltage is divided by a resistor can be used.
- the DC / DC conversion circuit 17 can be used to generate the minimum required output voltage, and the excitation circuit 24 with very little power loss can be configured.
- the DC / DC conversion circuit 17 is a step-down converter that performs a switching operation, and there is little power loss when performing voltage conversion, and an advantage that power loss can be extremely reduced is obtained.
- this configuration is different from the configuration in which the calculation means 40 such as a CPU, the excitation circuit 24, and the detection circuit 34 such as an analog signal amplification circuit are arranged on the primary side.
- the calculation means 40 such as a CPU
- the excitation circuit 24, and the detection circuit 34 such as an analog signal amplification circuit are arranged on the primary side.
- Arrangement on the side, that is, the exciting coil 22 side insulated from the input current has various advantages. Specifically, the electromotive force detected by the analog signal amplifier circuit can be directly input to the CPU as a flow rate analog signal without insulation. Therefore, the insulation circuit between them, which has been conventionally required, becomes unnecessary, and the problem of signal corruption caused by insulation can be avoided.
- the number of power supply circuits can be reduced by using the power supply unit 14 in which an insulated power supply for an analog signal detection circuit and a power supply for an excitation circuit, which are conventionally required, are integrated. In other words, it is possible to simplify the configuration by reducing the number of power supply circuits by sharing the essential insulated power supply for the analog signal amplifier circuit also for the excitation circuit.
- the control circuit isolation circuit 12 that separates the common potential (ground) between the CPU and the current output circuit 16 of the power supply unit 14 is sufficient.
- the circuit configuration can be further simplified in that the number of insulating circuits can be reduced.
- the switching circuit 18 and the current output circuit 16 exist on the primary side of the transformer 20 in the configuration of FIG. 5, it is possible to deal with a wide range of power supply voltages with respect to the external power supply on the input side.
- the secondary voltage can be boosted by increasing the duty ratio of the switching circuit 18 or increasing the number of turns of the transformer 20. Therefore, even if it is difficult to operate in the past, such as when the voltage required for driving the excitation circuit 24 is higher than the external power supply voltage, the operation is boosted by the isolated switching power supply according to the present embodiment. Can be made.
- the circuit configuration is simplified when excitation is performed by the intermittent excitation method. That is, if the excitation current is increased with a conventional two-wire electromagnetic flow meter having an excitation circuit on the primary side, it is conceivable to perform intermittent excitation instead of continuous excitation. In this case, since the fluctuation of the primary side input current value according to the flow rate is large, the fluctuation of the consumption current in the excitation circuit is also large, and a large-capacity capacitor is required to keep the output current constant, There is a problem that the load on the current output circuit becomes large. In the configuration of FIG.
- the current output circuit 16 is connected in parallel with the switching circuit 18 between the two transmission lines DL, that is, between the HIGH-side first power supply line and the LOW-side first common line. ing.
- a circuit example of such a current output circuit 16 is shown in FIG.
- the output current adjustment circuit 166 includes an operational amplifier 167, a transistor 168, and a resistor. The + input terminal of the operational amplifier 167 is grounded, and the output is connected to the base side of the transistor 168.
- the emitter of the transistor 168 is grounded to the first common line, and is connected to the output current detection resistor Ro through the first common line.
- an arithmetic means (not shown in FIG. 6) sends an output current instruction signal as a power supply control signal to the current output circuit 16 via the control signal insulation circuit 12 in the PWM method.
- the current output circuit 16 converts the PWM signal into an output current instruction voltage V p using a low-pass filter LPF and an operational amplifier 162.
- the adder 164 and the output current adjustment circuit 166 adjust the output current I O to the instructed current value.
- the switching circuit 18 of the power supply unit 14 in FIG. 5 includes a switching control circuit 19 and a transformer 20.
- a circuit example of the switching control circuit 19 is shown in FIG.
- the switching control circuit 19 shown in this figure includes a smoothing capacitor C S1 connected in parallel to the primary side of the transformer 20, and a switching connected to the first common line side between the smoothing capacitor C S1 and the transformer 20.
- An element 181 and an oscillation circuit 182 connected to the switching element 181 are provided.
- a power MOSFET or the like can be used for the switching element 181.
- the oscillation circuit 182 includes an operational amplifier, a resistor, and a capacitor.
- the switching circuit 18 generates a driving pulse by the oscillation circuit 182, and inputs the driving pulse to the gate of the transistor Tr to perform ON / OFF switching, thereby driving the transformer 20 and adjusting the output on the secondary side.
- the power supply unit 14 that drives the switching element 181 with the switching control circuit 19 to control the power ON / OFF and stabilize the output can be configured to be small and light. (Measurement tube 10)
- the measuring tube 10 constitutes a flow path through which the fluid to be detected passes.
- a pair of exciting coils 22 and electrodes 30 are arranged so as to be orthogonal to the flow path of the measuring tube 10.
- the excitation coil 22 and the electrode 30 are fixed to each other so that the pair of the excitation coil 22 and the electrode 30 face each other so that the measurement tube 10 is sandwiched therebetween.
- the electrode 30 is fixed to the outside of the measuring tube 10 and is isolated from the fluid to be detected and does not come into contact.
- the computing means 40 computes the flow rate of the fluid to be detected that passes through the flow path of the measuring tube 10 based on the voltage signal detected by the detection circuit 34.
- the computing means 40 outputs an excitation control signal for controlling the drive state of the excitation circuit 24 to the excitation circuit 24, and further outputs a power supply control signal for controlling the drive state of the power supply unit 14 to the power supply unit 14. Based on these signals, the calculation means 40 controls the amount of current from the transmission line DL supplied to the primary side input of the power supply unit 14 according to the calculated flow rate of the fluid to be detected.
- the computing means 40 is composed of a CPU or the like. (Control signal insulation circuit 12)
- the control signal insulation circuit 12 sends a power control signal from the computing means 40 to the power supply unit 14 while separating the common potential between the primary side input and the computing means 40.
- the calculation means 40 since the calculation means 40 is disposed at the secondary output of the power supply unit 14, it can be connected to the output side of the detection circuit 34. As a result, the excitation circuit 24 and the calculation means 40 can be arranged on the secondary side output and insulated from the primary side input with the transmission line DL. An insulation circuit can be eliminated. Further, the power supply unit 14 can be controlled from the calculation unit 40 with high reliability in a state where the calculation unit 40 and the power supply unit 14 are insulated from the common potential. Furthermore, since the number of parts to be insulated can be reduced, the number of necessary insulation circuits can also be reduced. (Detection circuit 34)
- the detection circuit 34 shown in FIG. 5 includes an analog signal amplification circuit that amplifies the voltage signal detected by the electrode 30.
- the analog signal amplifier circuit includes a buffer circuit 341 connected to each electrode 30, a differential amplifier 342 that inputs an output of the buffer circuit 341, and an amplifier 343 that inputs an output of the differential amplifier 342.
- the buffer circuit 341 constitutes a preamplifier that amplifies the signal detected by the electrode 30.
- the capacitive coupling between the electrode 30 and the fluid to be detected is generally as small as several tens of pF, the impedance of the resistance when providing a filter for passing an electrical signal is extremely high. For this reason, the buffer circuit 341 is connected to each electrode 30 to reduce the impedance.
- the electric signals detected by the electrodes 30 are respectively input to the inputs of the differential amplifier 342 via the buffer circuit 341, and after the difference is amplified by the amplifier 343, the arithmetic means 40 via the A / D converter 38. Is output.
- the analog signal amplifier circuit may be provided with a periodic reset circuit as necessary as a circuit for resetting a voltage detected by receiving a reset signal periodically sent from the computing means 40. (Excitation circuit 24)
- an exciting circuit 24 is used.
- Power supply unit 14 as a constant voltage power supply for driving the excitation circuit 24, a low voltage V L and the high voltage V H.
- the excitation circuit 24 connects a low voltage V L and a high voltage V H of a constant voltage power source and an excitation constant current circuit 29 (described later) to the excitation coil 22 via an excitation polarity switching circuit.
- a constant current is generated by the excitation constant current circuit 29 by a constant DC voltage supplied from the low voltage V L and the high voltage V H , and switching is performed by an excitation polarity switching circuit having a switch connected in a bridge shape to generate an alternating current.
- An alternating current is passed through the coil 22.
- the excitation circuit 24 is connected to a second power supply line of the secondary side output of the power supply unit 14.
- FIG. 8 shows an example of the excitation circuit 24.
- Excitation circuit 24 shown in this figure the transistors Tr1 ⁇ 4 which are connected like a bridge, and the exciting coil 22 connected to the center of the bridge, the coil current I L to be energized exciting coil 22 to a constant value
- the excitation constant current circuit 29 is provided.
- the coil current I L is a current that is passed through the excitation coil 22 and is an alternating current
- the excitation current I E is a current that is passed from the excitation coil 22 through the bridge circuit to the excitation constant current circuit 29. It is a direct current. That excitation current I E is equal to the absolute value of the coil current I L.
- the exciting coil 22 is disposed in the center of the bridge for the sake of explanation. However, in an actual apparatus, the exciting coil 22 is disposed in the vicinity of the measuring tube 10 as shown in FIG. (Excitation constant current circuit 29)
- Exciting the constant current circuit 29 includes transistors Tr 5, an operational amplifier A 2, and the reference voltage V ref1, constituted by the excitation current detecting resistor R E.
- the inverting input ( ⁇ ) of the operational amplifier A 2 is connected to the exciting current detection resistor R E
- the non-inverting input (+) is connected to the reference voltage V ref1
- the output side is input to the gate of the transistor Tr 5 .
- the excitation current I E is detected by the excitation current detection resistor R E , converted into the excitation current detection voltage V RE and input to the inverting input ( ⁇ ) of the operational amplifier A 2 .
- the operational amplifier A 2 controls the transistor Tr 5 so that the excitation current detection voltage V RE becomes equal to the reference voltage V ref1 .
- the gates of the bridge transistors Tr 1 to Tr 4 are connected to the calculation means 40 (not shown in FIG. 8), and each bridge transistor is used as an excitation control signal sent from the calculation means 40 by an excitation timing signal SET. Tr 1 to Tr 4 are driven ON / OFF.
- the calculating means 40 controls the timing of causing the coil current IL to flow through the exciting coil 22 by the bridge transistors Tr 1 to Tr 4 by the excitation timing signal S ET .
- the operational amplifier A 2 controls the transistor Tr 5 so that the excitation current detection voltage V RE becomes equal to the reference voltage V ref1 , thereby making the excitation current IE constant.
- FIG. 9 shows an example of a waveform pattern of the coil current I L and the excitation current I E flowing through the excitation coil 22.
- (a) is a bridge transistor Tr 1 , Tr 4
- (b) is a bridge transistor Tr 2 , Tr 3
- (c) is a coil current I L
- (d) is a waveform pattern of an excitation current IE.
- the direction of the coil current I L flowing through the exciting coil 22 is changed by alternately turning on / off the bridge transistors Tr 1 , Tr 4 and Tr 2 , Tr 3 of FIG.
- An alternating magnetic field can be generated by changing in the directions of A and B shown in FIG. Thereby, the AC coil current IL can be obtained from the DC excitation current IE .
- FIG. 10 An example of such a circuit is shown in FIG. 10 as a two-wire electromagnetic flow meter 200 according to the second embodiment.
- the two-wire electromagnetic flow meter 200 shown in this figure can use the same configuration as that in FIG. 5 on the primary side.
- the member similar to FIG. 5 can be utilized also for the member of a secondary side, these detailed description is abbreviate
- the excitation circuit 24 connects the excitation circuit 24 to the excitation circuit power supply line which is the second power supply line of the secondary side output of the power supply unit 14. Further, the calculation means 40 and the A / D converter 38 are connected in series with the excitation circuit 24 and then connected to the circuit common line of the secondary output. The arithmetic means 40 and the A / D converter 38 are connected in parallel, and are connected to the excitation circuit common line via the excitation circuit 24. Therefore, the excitation circuit common line becomes a circuit power supply line other than the excitation circuit, such as the arithmetic means 40 and the A / D converter 38.
- the circuit common line other than the excitation circuit such as the arithmetic unit 40 is different from the excitation circuit common line. For this reason, since the level of the excitation control signal sent from the arithmetic means 40 to the excitation circuit 24, that is, the excitation timing signal SET is different, it is necessary to insulate them. Therefore, an excitation signal insulation circuit 12B is provided on the excitation timing signal line between the excitation circuit 24 and the calculation means 40. (Power supply unit 14)
- the two-wire electromagnetic flow meter shown in this figure shows a simplified configuration of the secondary output of the power supply unit 14.
- the DC / DC conversion circuit 17 and the current output circuit 16 are integrated as an insulating switching power supply, and the secondary output and the output current IO are adjusted.
- the power supply unit 14 shown in this figure includes a switching element 181, an oscillation circuit 182 that controls ON / OFF of the switching element 181, an output current detection resistor Ro , a transformer 20, and a smoothing capacitor C S1 .
- the power supply unit 14 performs a switching operation using the switching element 181 and smoothes it with the smoothing capacitor C S1 .
- a power transistor Tr such as a MOSFET can be used as the switching element 181.
- the oscillation circuit 182 can change the switching pattern of the switching element 181 by adjusting the oscillation frequency and the duty.
- the output current I O is adjusted by changing the switching pattern of the switching element 181 by the oscillation circuit 182.
- the power supply unit 14 does not have a configuration in which the excess current that cannot be consumed in the circuit as in the prior art is applied to the transistor and consumed as heat so as to match the book. Instead, the oscillation circuit 182 adjusts the duty of the transistor Tr so that the instructed output current I O is obtained, and the power sent to the secondary side of the switching power source is made variable, so that the output current I O is reduced. It is adjusted. As a result, it is resistant to fluctuations in the power supply voltage and output current IO , and can be maintained at a high efficiency with a wide power supply voltage and output current. In particular, any power supply voltage or output current is DC / DC converted so that power is sent to the secondary side with a switching power supply as much as possible, so no extra power is generated and consumed as heat.
- the excitation power circuit consumes the largest amount of power, so a circuit for intermittent excitation with a constant excitation current (described later) or a circuit for dynamically changing the excitation current. Even in the configuration, highly efficient operation can be realized.
- FIG. 12 shows such a two-wire electromagnetic flow meter as a modification.
- the power supply unit of the two-wire electromagnetic flow meter shown in this figure includes a smoothing capacitor C S1 , a switching element 181B, a coil L, a charge capacitor C C, and an oscillation circuit 182B.
- this two-wire electromagnetic flow meter is almost the same as that of the above-described isolated switching power supply, and by operating the oscillation circuit 182B so that the output current I O becomes a value indicated by the output current instruction signal, Adjust the output current IO .
- FIG. 13 shows an operation when the output current I O is reduced
- FIG. 14 shows an operation when the output current I O is increased
- FIG. 15 shows an operation when the power supply voltage is increased
- FIG. 16 shows a decrease.
- V AI3 indicates the gate voltage of the transistor Tr shown in FIG. 11, and V T1 also indicates the primary voltage of the transformer 20.
- the output current I O is changed by changing the duty ratio for switching the primary side of the transformer 20.
- the method of changing the output current is not limited to this configuration, and the same change can be realized by changing the switching frequency, for example.
- the switching power supply also functions as a stabilized power supply that maintains a stable output even when the power supply voltage of the external power supply fluctuates. For example, as shown in FIG. 15, when the power supply voltage increases, the primary side voltage V T1 of the transformer 20 also increases and the amplitude value increases. In this case, the power that can be transmitted by switching the transformer 20 once increases. In other words, the current consumption for switching the transformer 20 once increases. Therefore, the oscillation circuit 182 works so as to lengthen the off time Toff for switching the transformer 20, so that the current can be relatively reduced and the output current IO can be maintained at the indicated value.
- the switching power supply can respond to the change even when the power supply voltage changes.
- the output current IO can be kept constant, and the output can be stabilized and the reliability can be improved.
- the switching power supply can perform the maximum switching with respect to the power supply voltage that is currently supplied and the output current IO that is currently output, and the power can be efficiently transferred to the output side of the switching power supply at all times.
- the oscillation circuit 182 performs switching so that the output current value is determined according to the detected flow rate, unnecessary current consumption is eliminated, and the efficiency is improved with the instructed output current value. Switching can be performed well. For this reason, compared with the conventional system, there is no part which converts electric power into heat and is consumed, and it is excellent in efficiency. In particular, this feature is beneficial because the two-wire electromagnetic flowmeter originally has less power available. In addition, a strong advantage is obtained against fluctuations in the power supply voltage, and even if the power supply voltage fluctuates, the switching duty can be adjusted so that the indicated current value is obtained at the power supply voltage. (Surplus current adjustment circuit 185)
- This two-wire electromagnetic flow meter includes a DC / DC conversion circuit 17 as an insulating switching power supply, an oscillation circuit 182 including a duty adjustment circuit, a surplus current adjustment circuit 185 including a transistor Tr 6 and a resistor, a transistor Tr 6 includes a transistor control circuit 184 for controlling 6 , an output current detection resistor Ro, and a control signal insulation circuit 12.
- the two-wire electromagnetic flow meter shown in this figure uses a current output circuit 16B similar to the conventional one in combination with the switching power supply described above. That is, when the power that can be transmitted by a switching power supply has reached the upper limit, the excess current regulating circuit 185 for consumption by energizing the surplus current to the transistor Tr 6, is provided on the primary side of the transformer 20 .
- the surplus current adjustment circuit 185 can also be arranged on the output side of the switching power supply.
- FIG. 18 is a graph showing the relationship between the flow rate and the output current IO .
- the surplus current adjusting circuit 185 consumes the surplus current in the range equal to or higher than the switching power transmission upper limit indicated by cross hatching in FIG. That is, the transistor Tr 6 is turned ON, and the surplus is consumed by the resistor and the transistor Tr 6 .
- Example 3 Excitation circuit that performs intermittent excitation
- an excitation circuit with variable power can be used on the output side of the switching power supply.
- a two-wire electromagnetic flow meter using such an excitation circuit is shown in FIG.
- a two-wire electromagnetic flow meter 300 shown in this figure includes a power supply unit 14 including a DC / DC conversion circuit 17, an excitation circuit 24 connected to the secondary side of the power supply unit 14, and a charge voltage supplied to the excitation circuit 24.
- a charge charge monitoring circuit 26 which monitors the V c
- calculation means for outputting the excitation timing signal S ET instructing excitation start of excitation circuit 24 receives the charging completion signal from the charge charge monitoring circuit 26 to the excitation circuit 24 40, a constant voltage power supply 25 for supplying power to the arithmetic means 40 and performing signal amplification, a measuring tube 10, an electrode 30, a detection circuit 34, and an A / D converter 38.
- the members having the same names as those described above are basically the same as those in the above-described embodiment, and detailed description thereof will be omitted.
- the excitation circuit 24 maintains the coil current I L for exciting the excitation coil 22 substantially constant. If the coil current is changed as in a conventional electromagnetic flow meter, the linearity of the signal may deteriorate. However, by keeping the coil current constant at an appropriate value without changing the coil current, the linearity is improved and the flow rate is highly accurate. Detection can be realized. Further, when the output current value is made constant, setting of the value is important. In other words, if the current value is set low, it is necessary to design the excitation circuit so that the excitation coil can be excited with the low current value. However, if the output current value is high in this design, the current that is not consumed by the excitation circuit increases. It is wasted due to heat and the like.
- the current value is not set to the lowest current value but is set to a higher current value.
- intermittent excitation is performed in this range to temporarily stop the excitation.
- the specific current value is set to a current value at a flow rate of 50% (12 mA when the output current IO is in the range of 4-20 mA).
- continuous excitation can be performed in a current range of 50% or more, and highly accurate flow rate detection can be stably performed.
- the current range of 50% or less by performing as intermittent excitation described above, it maintains the coil current I L at a constant value. Further, the rising characteristics are improved by using the charging of the rising voltage (high voltage V H ) of the exciting coil 22 described later without throwing away the surplus current even in the region of 50% or more.
- the power exceeding the power required for circuit drive is stored during the excitation pause period, and when the excitable power is obtained, the pause period is switched to the excitation period. Start.
- the excitation period is again switched to the rest period, and switching from discharging to charging is performed. Specifically, charging of the power to the charge capacitor is started at the timing when the excitation current is turned off.
- a constant voltage power supply 25 and a charge charge monitor circuit 26 are connected in parallel with the excitation circuit 24.
- the constant voltage power supply 25 performs DC / DC conversion on the electric power received from the power supply unit 14, and adjusts and supplies it to a voltage value for driving the computing means 40.
- charge the charge monitor circuit 26 monitors the voltage necessary to supply the coil current I L to the excitation circuit 24. Time Specifically, the when the charge voltage instruction signal from the excitation circuit 24 to the charge charge monitoring circuit 26 during the intermittent excitation is instructed, the start of the charge to the charge capacitor C C, a predetermined voltage is charged To supply the charge voltage V c to the excitation circuit 24.
- FIG. 20 shows a two-wire electromagnetic flow meter that constitutes such an excitation circuit.
- the two-wire electromagnetic flow meter shown in this figure shows an excitation circuit 24 and its peripheral circuit in the secondary side portion of the power supply unit 14.
- the two-wire electromagnetic flow meter includes a switching control circuit 19, a transformer 20, a charge capacitor C C that generates a voltage for exciting the excitation coil 22 on the secondary side of the power supply circuit, and a charge capacitor C as a charging means.
- the calculating means 40 for delivering the excitation timing signal S ET to indicate the timing of the excitation on the basis of the monitoring result of the charge charge monitor circuit 26, the excitation circuit 24 as, an exciting coil 22, an exciting polarity switching circuit 28 for switching the polarity of the excitation of the exciting coil 22, an exciting constant current circuit 29 to keep the coil current I L flowing through the exciting coil 22 constant, the residual voltage detection circuit 180 Is provided.
- an excitation circuit 24 using a charge charge monitor circuit 26 is provided on the secondary side of the power supply unit 14 which is a switching power supply, and intermittent excitation is performed.
- Charge charge monitor circuit 26 monitors the charge is charged from the power supply unit 14 during the excitation dead time to charge the capacitor C C, when the prescribed power is able to charge, and sends a charging completion signal CHG_COMP to computing means 40 .
- Computing means 40 upon receiving the charge completion signal CHG_COMP, each bridge switches SW B1 ⁇ SW B4 constituting a bridge-like excitation polarity switching circuit 28 sends an excitation timing signal S ET, starts excitation.
- the arithmetic means 40 sends a residual voltage detection timing signal S RV to the residual voltage detection circuit 180 and maintains the residual voltage of the exciting coil 22 constant.
- the exciting constant current circuit 29, the residual voltage is caused by the voltage drop of the transistor Tr 5 and the exciting current detection resistor R E. In particular the voltage drop of the transistor Tr 5 causes fever becomes the power loss.
- This residual voltage is detected by the residual voltage detection circuit 180 and controlled so that the residual voltage becomes small.
- the residual voltage detection circuit 180 sends a charge voltage instruction signal for instructing the charge voltage V c to the charge charge monitor circuit 26 so that the current consumption in the excitation constant current circuit 29 is reduced.
- the charge charge monitor circuit 26 monitors the amount of charge stored in the charge capacitor C C with the charge voltage V c .
- the charge voltage V c for determining that excitation can be started is set so that the residual voltage of the excitation coil 22 becomes constant.
- the charge voltage V c corresponding to the excitation coil 22 is set and the power is adjusted to an appropriate power regardless of the size and characteristics of the excitation coil, so that wasteful current consumption can be reduced to a minimum.
- the charge voltage V c is the same as the low voltage V L described above. (Intermittent excitation)
- the excitation polarity switching circuit 28 of FIG. 20 includes four bridge switches SW B1-B4 connected in a bridge shape with the central excitation coil 22 interposed therebetween.
- a pair of bridge switches SW B1 and SW B4 and SW B2 and SW B3 positioned obliquely with respect to the exciting coil 22 are simultaneously turned ON / OFF, and these sets are alternately turned ON / OFF, thereby exciting the pair.
- the coil 22 is energized the coil current I L alternately in forward and reverse directions.
- the coil current I L P side excitation the excitation of the forward (rightward in FIG. 8), the reverse excitation of the N side exciting.
- FIG. 21 shows a pattern of continuous excitation, in which P-side excitation and N-side excitation are alternately repeated.
- FIG. 22 repeats the operation of performing the P-side excitation and the N-side excitation again after the P-side excitation and the N-side excitation are continuously excited as a set, and then a pause period is provided.
- intermittent excitation is not limited to this pattern.
- FIG. 23 after an odd number of excitations such as P-side excitation, N-side excitation, P-side excitation, N-side excitation, and P-side excitation are continued, And starts from N-side excitation when restarting.
- the polarity of the excitation that is initially performed at every excitation can be alternately switched, and excitation can be performed in a well-balanced manner.
- FIG. 24A shows the basic period of excitation
- FIG. 24B shows the voltage across the excitation coil 22
- FIG. 24C shows the coil current I L
- FIG. 24D shows the excitation current detection voltage.
- V RE shows the power supply switching signal S VH output from the computing means 40
- FIG. 24F shows the low voltage V L
- FIG. 24G shows the charge completion signal output from the charge charge monitor circuit 26.
- CHG_COMP and FIG. 24H show the waveforms of the residual voltage detection timing signal S RV , respectively.
- FIG. 24A shows the basic period of excitation
- FIG. 24B shows the voltage across the excitation coil 22
- FIG. 24C shows the coil current I L
- FIG. 24D shows the excitation current detection voltage.
- V RE shows the power supply switching signal S VH output from the computing means 40
- FIG. 24F shows the low voltage V L
- FIG. 24G shows the charge completion signal output from the charge charge monitor circuit 26.
- CHG_COMP and FIG. 24H show the waveform
- FIG. 24A shows the timing for alternately performing P-side excitation and N-side excitation in intermittent excitation with a pause period.
- SW B1 -B4 of the excitation polarity switching circuit 28 provided with the excitation coil 22 shown in FIG. 20
- SW B1 and SW B4 and SW B2 and SW B3 are alternately paired, and the lower right part of FIG. It is to oN / OFF by the excitation timing signal S ET from the calculating means 40 shown, energized alternately an alternating current to the exciting coil 22 generates an alternating magnetic field.
- FIG. 24 illustrates an example in which the excitation with the excitation period of one (odd number) is repeated, in which the P-side excitation is performed once and then the N-side excitation is performed once with a pause period in between.
- Excitation is started by instructing the excitation timing signal SET from the calculation means 40 to the bridge switches SW B1 to SW B4 .
- a voltage is applied to the exciting coil 22
- the power source switching signal S VH is turned off and the power source switching switch 192 is turned off as shown in FIG.
- the voltage is switched to the low voltage V L and applied to the exciting coil 22.
- the coil current I L becomes a substantially constant value as shown in FIG.
- the broken line shown in FIG. 24C indicates that the coil current I L increases when the low voltage V L is applied from the beginning.
- the excitation coil 22 has poor rise characteristics. Therefore, by increasing the applied voltage at the time of voltage application, it becomes possible to obtain a stable excitation in a short time with a sharp rise.
- the residual voltage detection circuit 180 is set so that the excitation coil residual voltage becomes a predetermined value when the excitation coil starts up and shifts to a normal constant current. Has been adjusted. Further, when the charge completion signal CHG_COMP charge charge monitor circuit 26 of FIG. 24 (g) is inputted to the arithmetic unit 40, is output excitation timing signal S ET from the arithmetic unit 40 to the excitation polarity switching circuit 28, FIG. 24 ( Excitation is started as shown in a).
- the pause period during intermittent excitation is not constant, and the circuit performs the excitation by determining that the pause period is as short as possible.
- the most efficient excitation can be performed within the supplied power.
- the CPU constituting the calculation means 40 also reduces power consumption and performs only a minimum operation.
- a method of reducing the power consumption of the CPU a method of lowering the operating frequency such as clock division and having a sub clock separately from the main clock can be used.
- Each bridge switches SW B1-B4 of the excitation polarity switching circuit 28 is constituted by bridge transistors Tr 1 ⁇ Tr 4, the ON / OFF control by the excitation timing signal S ET from the calculating means 40, not shown. (Charge Charge Monitor Circuit 26)
- FIG. 26 shows a waveform pattern for controlling the pause period by the charge charge monitor circuit 26 during intermittent excitation.
- 26A shows the excitation timing
- FIG. 26B shows the charge voltage V c
- FIG. 26C shows the waveform of the charge completion signal CHG_COMP.
- the excitation period the flows excitation current I E, Vc due to the discharge of the charge capacitor C C is reduced.
- the excitation is ended quiescent period, the exciting current I E is stopped, the charge to the charge capacitor C C is started.
- Vc rises, and reaches the charge voltage command voltage V 2, is output from the operation unit 40 shown in FIG. 20 the excitation timing signal S ET bridge switches SW B1-B4, again exciting current I E is the excitation coil 22 is energized. Power stored in the charge capacitor C C in this way, is consumed by the excitation coil 22 to the exciting period, it is charged from the power supply unit 14 to pause.
- the excitation circuit 24, without the pause period is constant, dynamically changes according to the charge amount of the charge voltage command voltage V 2 and a charge capacitor C C. That is, since the rapidly energized upon reaching the charge voltage command voltage V 2 which is instructed is started, the charging of the charge capacitor C C is completed earlier, is shortened rest period by that amount. The shorter the pause period, the longer the period of excitation, which can contribute to improved flow rate detection accuracy and stable operation.
- FIG. 27 shows an operation example in the case where the output current I O increases and the continuous excitation can be maintained.
- (a) shows the excitation timing
- (b) shows the charge voltage V c
- (c) shows the waveform of the charge completion signal CHG_COMP.
- the exciting current I E Can be continuously excited to maintain the current. For this reason, by adding an output current in an amplifier mode, which will be described later, continuous excitation can be maintained without performing intermittent excitation, and highly accurate flow rate detection can be performed.
- the charge charge monitor circuit 26 determines the timing of intermittent excitation. Although it is conceivable that the intermittent excitation cycle is defined by the output current value, in this method, it is necessary to consider an offset or the like, and the current is wasted. In this embodiment the contrary, to monitor the amount of charge charge charge monitoring circuit 26 is stored in the charge capacitor C C, because it configured to discharge when it becomes chargeable voltage, the charge amount of the actual It is possible to operate in accordance with high efficiency driving without wasting current. In this method, since the actual voltage value is monitored, the actual charge amount can always be monitored and the excitation possible timing can be determined even if the characteristics of the excitation coil etc. are changed. The advantage is also obtained.
- FIG. 28 shows an example of charging means for generating a voltage V H higher than the normal low voltage V L as the voltage at the time of starting up the coil.
- This charging means includes a plurality of coils, rectifier diodes, and charge capacitors CC having different turns on the secondary side of the power supply unit 14 so as to supply a high voltage V H and a low voltage V L.
- a second charge capacitor C C2 is further stacked on the charge voltage V c to obtain a high voltage V H.
- V H since the high voltage V H is generated based on the charge voltage V C , V H also fluctuates up and down together with the up and down fluctuation of Vc.
- a charge voltage V c that is a normal voltage (low voltage V L ) and a high voltage V H for starting up the exciting coil.
- V L normal voltage
- V H high voltage
- the bridge transistors Tr 1 to Tr 4 constituting the bridge switches SW B1 to B4 of the excitation polarity switching circuit 28 are a combination of Tr 1 ⁇ Tr 4 and Tr 2 ⁇ Tr 3 , and apply both positive and negative excitation voltages to the excitation coil 22. As a result, an alternating current flows through the exciting coil 22.
- FIG. 1 The bridge transistors Tr 1 to Tr 4 constituting the bridge switches SW B1 to B4 of the excitation polarity switching circuit 28 are a combination of Tr 1 ⁇ Tr 4 and Tr 2 ⁇ Tr 3 , and apply both positive and negative excitation voltages to the excitation coil 22. As a result, an alternating current flows through the exciting coil 22.
- the excitation constant current circuit 29 includes an operational amplifier A 2 , a transistor Tr 5 , an excitation current detection resistor R E , and a reference voltage V ref1 .
- the non-inverting input of the operational amplifier A 2 and the reference voltage V ref1, inverting input and between the exciting current detection resistor R E and the transistor Tr 5, are connected, and the output side is connected to the transistor Tr 5.
- the excitation constant current circuit 29 controls the transistor Tr 5 so that the excitation current detection voltage V RE approaches the reference voltage V ref1 . Specifically, when the excitation current detection voltage V RE is lower than a predetermined reference value, the excitation coil 22 is driven by the high voltage V H by turning on the transistor Tr 6 constituting the power supply switch 192. Conversely, when it is high, the transistor Tr 6 is turned off and the exciting coil 22 is driven by the charge voltage V c .
- the electromagnetic flow meter can also have an amplifier mode switching function for switching to an amplifier mode in which the output current is increased in order to improve measurement accuracy.
- the amplifier mode for example, by operating at 24-40 mA, which is a 4-20 mA consumption current plus an additional current (base current) of 20 mA, the excitation current IE is increased and the electromotive force is increased, resulting in more stable performance. It will be obtained. As a result, it is possible to reduce or eliminate the pause period of intermittent excitation and realize stable measurement with continuous excitation.
- FIG. 400 An electromagnetic flow meter having such an amplifier mode switching function is shown in FIG.
- the electromagnetic flow meter 400 shown in this figure has substantially the same configuration as the electromagnetic flow meter 300 in FIG. 19 except that the calculation means 40 functions as a mode switching means, and detailed description of the same members as those in FIG. 19 is omitted.
- Calculation means 40 outputs the normal mode, the amplifier mode instruction signal S AP instructing switching of adding a predetermined additional current to the output current to the amplifier mode to output, to the power unit 14 and the excitation circuit 24.
- Power supply unit 14 and the excitation circuit 24 receives the amplifier mode instruction signal S AP, the process proceeds to the operation of the amplifier mode with add additional current.
- the output current I O is increased, so that an external device that receives the output current also needs a mechanism for detecting the flow rate corresponding to the increase in current.
- the converter corresponding to amplifier mode is connected and it converts into the flow volume which considered the increase in electric current appropriately.
- the amplifier mode switching means may also be configured to automatically detect that it is connected to an amplifier mode compatible external device such as a converter and switch to the amplifier mode.
- FIG. 31 shows an example of an output current adjusting circuit of an electromagnetic flow meter having an amplifier mode switching function.
- the electromagnetic flow meter shown in this figure includes a DC / DC conversion circuit 17 that is an insulating switching power supply, and an oscillation circuit 182 that includes a duty adjustment circuit as a switching control circuit 19 that performs switching control of the DC / DC conversion circuit 17; Low-pass filter LPF, calculation means 40, control signal insulation circuit 12 that insulates the power supply control signal from calculation means 40 and sends it to the current output circuit 16, and amplifier mode from calculation means 40 that includes amplifier mode switching means 33 an instruction signal S amp mode changeover switch for switching the ON / OFF at AP, and the instruction signal insulation circuit 12C for insulating the amplifier mode instruction signal S AP, as an additional programmable current output circuit an additional current without lowering the resolution, additional the output current I o and Anpumo so as to be able to effectively take advantage of the current consumption and the amplifier mode An adding circuit 31 for adding the reference voltage V a at the time.
- the calculation means 40 serves also as an amplifier mode switching means 33 switches the reference voltage at the amplifier mode instruction signal S AP. Specifically, the two controls are switched so as to stabilize the operation of the electromagnetic flowmeter by raising the excitation current IE and the excitation voltage by changing the reference voltage. That is, (A) the threshold value of timing for switching the excitation voltage of the excitation coil 22 from V H to V L is switched. (B) to switch the range of the excitation current I E, to increase the partial excitation current I E plus additional current.
- the amplifier mode instruction signal S AP from the amplifier mode switching means 33 switches the ON / OFF of the amplifier mode switch.
- the amplifier mode selector switch is OFF, the normal mode is selected, and when it is ON, the amplifier mode is selected.
- the output current adjusting circuit in the amplifier mode by sending the amp mode instruction signal S AP to the arithmetic unit 40 is the adding circuit 31, by shifting the current range 24-40MA, remains current consumption maintaining the resolution It is configured to allow base up.
- the voltage input to the duty adjustment circuit is V p , and is a voltage suitable for PWM control of the duty adjustment circuit through the low-pass filter LPF.
- the amplifier mode is set for operation. Since the obtained signal has an additional current of 20 mA, it is necessary to subtract 20 mA on the signal receiving side.
- a dedicated converter corresponding to the amplifier mode operation is used. In such a dedicated converter, the obtained signal is received by a resistor of, for example, 250 ⁇ , and converted to a voltage signal of 6-10V. That is, by subtracting the voltage of 5 V corresponding to the additional current of 20 mA, it can be converted into a voltage signal of 1-5 V. This 1-5V voltage signal is a commonly used voltage signal and can be easily processed.
- the excitation current can be secured to a certain level regardless of the output current.
- the 30 mA excitation current IE can be intermittently supplied.
- the excitation current can be set to any value, but if intermittent excitation is performed, the number of excitations in a fixed time is smaller than that in continuous excitation, so the amplifier mode is used more frequently and requires high accuracy. Set the excitation current so that continuous excitation is possible with the output current value.
- the offset compensation circuit In intermittent excitation, the offset compensation circuit is used and offset compensation is performed by an analog circuit in order to remove the low frequency offset component without increasing the number of A / D conversions as much as possible.
- a reference setting function for adding half-period excitation for setting the reference may be provided.
- Conventional offset compensation circuits cannot be used as they are because accuracy is deteriorated in intermittent excitation.
- odd-numbered half-period excitation is performed, and sampling is not performed by the first one-time excitation, and only the offset compensation circuit is driven, thereby enabling offset compensation without reducing accuracy. Yes.
- the electromagnetic flow meter shown in this figure includes an exciting coil 22, an exciting circuit 24, a measuring tube 10, an electrode 30, a signal amplifying circuit 34C, an A / D converter 38, and a computing means 40.
- the signal amplification circuit 34C includes an offset compensation circuit 344 between the differential amplifier 342 and the differential amplifier 343 of the detection circuit.
- the offset compensation circuit 344 includes switches SW O1 and SW O2 , resistors R O1 and R O2 , and hold capacitors C O1 and C O2 .
- the reason why the offset compensation circuit 344 has two charging / discharging paths in this way is to correspond to P-side excitation and N-side excitation, respectively.
- the output V S of the differential amplifier 342 is connected to the inverting input of the differential amplifier 343.
- the switch SW O1 of the offset compensation circuit 344 is connected to the output V S of the differential amplifier 342, and the switch SW O2 is connected to the non-inverting input of the differential amplifier 343. That is, the offset compensation circuit 344 receives the output V S of the differential amplifier 342, charges one of the hold capacitors C O1 and C O2 , and outputs it to discharge the non-inverting input of the differential amplifier 343. .
- the calculation means 40 outputs the reference voltage switching signal S refs to the offset compensation circuit 344, and switches the switches SW O1 and SW O2 . As shown in FIG. 33, the switches SW O1 and SW O2 are turned ON / OFF so that one is connected to the hold capacitor C O1 and the other is connected to the hold capacitor C O2 . As a result, a sample-and-hold circuit is configured in which the output of the differential amplifier 342 is charged and held in one of the hold capacitors C O1 and C O2 , and the comparison result with the output V S of the previous stage is output from the differential amplifier 343. Is done.
- sampling is always performed in the order of P-side excitation ⁇ N-side excitation.
- the polarity is alternately changed every excitation period.
- N-side excitation ⁇ P-side excitation Set the polarity of the excitation to be started to be reversed.
- the P-side excitation and the N-side excitation can be handled equally.
- half-period excitation is generated an odd number of times in the excitation period.
- FIG. 34A shows the timing of the excitation pattern
- FIG. 34B shows the reference voltage switching signal S refs output from the calculation means 40
- FIG. 34C shows the output V S of the differential amplifier 342 (ie, the offset compensation circuit 344)
- (D) is the inverting input V refo of the differential amplifier 343 (ie, the output of the offset compensation circuit 344)
- (e) is the output V OS of the differential amplifier 343
- (f) is the calculation means 40.
- the timing for sampling the detection signal is shown. In this example, it is assumed that there is an offset portion linearly inclined as shown in FIG. 34C in the output V S of the differential amplifier 342 which is an analog circuit.
- the first half-cycle excitation is the reference excitation, and no signal sampling is performed as shown in FIG.
- the output V refo of the offset compensation circuit 344 is offset because of sample hold.
- the last voltage before a half cycle is output even in the idle period. This situation is shown in the table of FIG. If the excitation periods of PNP ⁇ NPN ⁇ PNP... Are expressed as 1, 2, 3,..., 2n,.
- the voltage Vs in the k-th state is expressed as Vs (k).
- differential amplification can be performed regardless of the offset component.
- a half-cycle excitation is added to the pair of signals on the P-side excitation and the N-side excitation first as a reference excitation, so that a total of three half-cycle excitations are performed within the excitation period. . Further, since a half cycle may be added to the even number of times of excitation such as P ⁇ N ⁇ P ⁇ N, the total may be 5 or 7 times.
- signal sampling is actually performed 2n times excluding the first reference excitation, and thus signal sampling is not performed at a rate of 1 / (2n + 1). Therefore, it is desirable to take n as large as possible from the viewpoint of efficiency. Therefore, it is preferable to perform sampling of the maximum number possible in a charge amount accumulated in the charge capacitor C C. Thereby, even if an offset occurs on either the P side or the N side, it can be effectively eliminated.
- FIG. 36 is a circuit diagram of an analog reset circuit
- FIG. 37 shows operation waveforms when continuous excitation is performed in this circuit.
- 37A shows the input waveform of the analog detection signal
- FIG. 37B shows the waveform of the reset signal AN_RES_T1
- FIG. 37B shows the waveform of the reset signal AN_RES_T2.
- the circuit in FIG. 36 has a sample hold circuit dedicated to P side excitation and N side excitation, respectively, as in FIG. 33.
- Each sample hold circuit includes hold capacitors C 01 and C 02 and is operated via a switch. Connected to the non-inverting input of amplifier 343. The switch can be switched ON / OFF by a reset signal.
- each analog switch shows a low state
- the P side is connected to the non-inverting input side of the operational amplifier 343.
- the hold capacitors C 01 and C 02 can be charged even during signal sampling.
- the N-side excitation value before the half cycle is used as a reference
- the P-side excitation before the half cycle is used.
- the value of as a reference As a result, as shown in FIG. 37, one hold capacitor is charged during each A / D sampling period, and at the same time, the voltage of the other hold capacitor is maintained, thereby enabling a reference operation. (Modification)
- FIG. 38 shows an example of such a driving method.
- FIG. 38A when intermittent excitation of P ⁇ N ⁇ pause ⁇ P ⁇ N is performed, signal sampling is performed using the circuit of FIG. An output as shown in FIG. 38 (b) is obtained.
- FIG. 38 (b) the number of excitations and the number of signal samplings are the same, so that unnecessary excitation current is eliminated and efficient excitation can be performed with low consumption.
- FIG. 39 shows a waveform pattern in the case where odd-numbered half-period excitations such as P ⁇ N ⁇ P ⁇ pause ⁇ N ⁇ P ⁇ N are continued by this method as in FIG. Also in FIG. 39, (a) shows the timing of the excitation pattern, (b) shows the reference voltage switching signal S refs output by the computing means 40, (c) shows the output V S of the differential amplifier 342, and (d). Is the inverting input V refo of the differential amplifier 343, (e) is the output V OS of the differential amplifier 343, and (f) is the timing at which the computing means 40 samples the detection signal. Also in this example, it is assumed that the output V S of the differential amplifier 342 which is an analog circuit has a linearly inclined offset as shown in FIG. 39C.
- the signal of the first one out of the odd number of half-period excitations is halved. Since the offset compensation circuit 344 has a gain, the gain is lowered because there is no signal before the half cycle in the first excitation after the pause period. Therefore, this can be dealt with by performing an operation with gain only for the first signal, or by performing an operation with the first signal set as P and N. For example, when an odd number of half-period excitations such as P ⁇ N ⁇ P ⁇ pause ⁇ N ⁇ P ⁇ N are continued as shown in FIG. 40 (a), each excitation period is shown in FIG. 40 (b). The low gains A and B appearing at the beginning of the signal are combined into one signal. This makes it possible to compensate for a gain that is halved, and it can be handled in the same way as an excitation signal for a normal half cycle.
- the offset compensation method is not limited to the above method, and for example, offset compensation can also be realized by a method in which the output voltage of the amplifier 343 is fed back and used as an input reference. (converter)
- FIG. 41 shows an example of a two-wire electromagnetic flow meter system in which a converter is connected to such a two-wire electromagnetic flow meter.
- the converter 500 shown in this figure includes a step-up power supply 501, an insulation transformer 502, an insulation type switching control circuit 503, a current detection resistor 504, a voltage subtraction circuit 505, an insulation type pulse transformer 506, and an output circuit 507. Is provided.
- the converter 500 converts the power received from the external DC power source DC through the power line PL by a switching method, and supplies the converted power to the two-wire electromagnetic flow meter 400 through the transmission line DL, while the two-wire electromagnetic flow rate.
- the output current I O corresponding to the flow rate detected by the total 400 is converted into an output voltage V O and output from the output circuit as a 1-5 V voltage signal via the output line OL.
- FIG. 42 shows an example of another two-wire electromagnetic flow meter system.
- This converter 600 is a high-functional type provided with an integrated pulse alarm output that outputs an integrated pulse of flow rate in addition to a normal voltage output.
- the converter 600 includes a step-up switching power supply 601, a current detection resistor 604, a voltage subtraction circuit 605, an A / D converter 608, a calculation unit 609, a DC / DC conversion circuit 602, and an F / V conversion circuit 610. And an integrated pulse alarm output circuit 611.
- the converter 600 subtracts the additional voltage from the output current I O corresponding to the flow detected by the two-wire electromagnetic flow meter 400 by the voltage subtracting circuit 605, and then the A / D converter 608.
- the A / D converted signal is sent to the calculation unit 609.
- the calculation unit 609 calculates the flow rate based on the detected digital signal, and outputs the digital signal whose frequency is changed according to the flow rate to the F / V conversion circuit 610 and the integrated pulse alarm output circuit 611.
- the F / V conversion circuit 610 performs frequency / voltage conversion and outputs a voltage signal of 1-5V corresponding to the flow rate.
- the integrated pulse alarm output circuit 611 outputs the integrated value of the flow rate signal as a transistor output. Thereby, an alarm output is obtained based on the integrated value of the flow signal. (Amplifier mode switching function)
- These two-wire electromagnetic flow meters can be switched to an amplifier mode in which an additional current is added in order to improve measurement accuracy in addition to the normal mode in which the output current I O is operated at 4-20 mA. Switching between the normal mode and the amplifier mode is performed by the amplifier mode switching means 33.
- Amp mode switching unit 33 outputs the amp mode instruction signal S AP, instructs the switching of the normal mode and the amp mode.
- an additional current of 20 mA is added to the output current in the amplifier mode.
- the converter switches the output signal according to the presence / absence of the amplifier mode or ON / OFF.
- the output voltage is subtracted by an additional voltage (for example, 5V) by the voltage subtracting circuit and insulated via the pulse transformer, and then the output circuit 1-5V, a voltage signal of 1-5V corresponding to the flow rate is output in both the normal mode and the amplifier mode.
- FIG. 1 An example of a two-wire electromagnetic flow meter having such an amplifier mode switching function is shown in FIG.
- the two-wire electromagnetic flow meter shown in this figure is connected to an external DC power source DC by a pair of transmission lines DL, and a current output circuit 16 is provided between the transmission lines DL.
- the current output circuit 16 includes an operational amplifier A 6 and a transistor.
- the current output circuit 16 is connected to the addition / subtraction instruction circuit 41.
- the addition / subtraction instruction circuit 41 includes an operational amplifier A 7 and a resistor.
- the switch SW 7 is connected to the inverting input of the operational amplifier A 7 via a resistor.
- Switch SW 7 is switched to ON / OFF the amplifier mode instruction signal S AP output from the amplifier mode switching means 33 of the internal circuit.
- the inverting input of the operational amplifier A 7 is connected to the internal circuit via a further resistor. As a result, the output current instruction signal SVO output from the internal circuit is input to the inverting side input side via the resistor
- the internal circuit of FIG. 43 is designed to consume 4-20 mA in accordance with the flow rate range in the normal mode.
- an additional current is added. In this case, for example, if 20 mA is simply added as an additional current, an instruction circuit that consumes 4-40 mA is required for the flow rate range, and the resolution is lowered.
- the amplifier mode switch SW 7 by an amplifier mode instructing signal S AP is ON or OFF, to change the reference voltage of the subtraction instruction circuit 41.
- the operation of the current output circuit 16 is switched to operate so that the output current I O changes in a range of 24-40 mA instead of 4-40 mA. In this way, the current offset can be added without reducing the resolution of the output current instruction signal SVO by the addition / subtraction instruction circuit 41 in the amplifier mode.
- FIG. 44 shows an example of an excitation circuit having an excitation control function capable of controlling the excitation current and voltage corresponding to such an amplifier mode.
- the excitation circuit 24 switches between three controls in order to realize a stable operation of the electromagnetic flow meter. That is, (1) the excitation current IE is switched. (2) The timing for switching the excitation voltage of the excitation coil 22 is switched. Here, the threshold value of the timing for switching the excitation voltage from V H to V L is switched by the excitation constant current circuit 29. (3) The voltage supplied to the exciting coil 22 is increased. In other words, the excitation current IE is changed. When the excitation current IE is changed, the residual voltage needs to be changed. As a result of changing the residual voltage, the charge voltage instruction signal V ref from the residual voltage detection circuit 180 to the charge charge monitor circuit 26 changes. And control charge charge monitoring circuit 26, changes the charge voltage command voltage V 2. As a result, the coil voltage V L increases. With such a configuration, the efficiency can be further improved by adjusting the excitation timing in addition to the switching operation to the amplifier mode. (Damping function)
- this electromagnetic flow meter has a damping function to stabilize the signal.
- damping is weighting of averaging in the moving averaging process or the like
- FIG. 45 shows an outline of the damping process (averaging process).
- the output value after the damping process for the input value is output as shown in FIG. 45 (c) when the input changes stepwise as shown in FIG. 45 (b). Is defined as the time to reach 63%.
- FIG. 46 shows an example of an electromagnetic flow meter having such a damping function.
- the electromagnetic flow meter 700 shown in this figure further includes a damping means 44 and an auto mode switching means 45, and is further connected to a setting unit 80 for performing these settings.
- the damping means 44 is a member for performing a damping calculation based on the set damping amount.
- the auto mode switching means 45 is a means for switching between manual mode and auto mode.
- the setting unit 80 is a member that sets a damping amount, an auto mode switching timing, and the like, and includes a console, a display monitor, a communication port, and the like as necessary.
- the damping unit 44 and the auto mode switching unit 45 are integrated with a calculation unit 40 that performs flow rate calculation.
- the damping means 44 and / or the auto mode switching means 45 can be provided separately from the calculation means.
- the damping unit 44 performs a damping process and the auto mode switching unit 45 can switch between a manual mode and an auto mode.
- the manual mode is a mode in which the damping unit 44 maintains the damping amount for performing the damping calculation at a predetermined value
- one auto mode is a mode in which the damping unit 44 changes the damping amount according to the flow rate. It is a mode to make it.
- the electromagnetic flow meter can perform stable measurement by switching the damping amount from a fixed value to a variable value and increasing the damping amount by the automatic mode switching means 45 switching from the manual mode to the automatic mode according to the predetermined conditions. The result can be obtained.
- this process will be described in detail. (Damping calculation)
- the damping amount is typically a damping time constant indicating the time for performing the averaging process, and is variable in the range of 0.5 s to 30 s, for example.
- the reference for making the damping amount variable that is, the timing for switching from the manual mode to the auto mode is determined by the auto mode switching means 45.
- the reference for switching is an area where the damping process needs to be increased, and the flow rate, output current, etc. can be used. For example, when the calculated flow velocity is in the low flow velocity range (0 m / s to 0.5 m / s, etc.), the signal value is small, so stabilization is necessary. Even in the range where the analog output of the output current IO is 4 to 12 mA, the excitation current is small, so the detection signal is also small, and similarly stabilization by damping processing is necessary.
- the auto mode and the manual mode may be switched at an arbitrary timing designated by the user.
- the mode can be shifted to the auto mode, and the stability can be improved by increasing the damping amount as the flow rate decreases.
- the damping amount increases, it is possible to reduce the averaging process and increase the responsiveness to changes in the flow rate, thereby making it possible to maintain both measurement accuracy and improve stability.
- Fig. 49 shows an image for setting the damping.
- a setting screen displayed on the monitor of the setting unit 80 is shown, and the user sets each item from the console. From this screen, the damping time constant in the manual mode can be switched between 0.5 s, 1.0 s, and 1.5 s as the setting of the damping amount that the damping means 44 performs the damping process. It is not limited to the selection of such a fixed value, but the user may be able to specify an arbitrary value.
- the operation of the auto mode switching means 45 is selected from specified conditions (level 1, 2, 3, etc.). Each level is defined by, for example, a flow velocity value, an excitation current value, or the like. It is also possible to select the operation in the manual mode in which the auto mode is turned off, that is, the damping amount is maintained at a constant value without being limited to the flow velocity.
- the span is a flow velocity or a flow rate when outputting 20 mA that is the maximum value of the analog output of the output current IO .
- the user can also assign the auto mode switching threshold.
- FIG. 50 shows an example of such a span setting and a change in analog output with respect to the flow velocity.
- the analog output linearly changes from 4 mA to 20 mA from the flow velocity 0 toward the span flow velocity value.
- Such a span can be set in units of a flow rate (m / s), a flow rate (L / min), a mass flow rate (kg / s), or the like.
- An example of setting such a span is shown in FIG.
- This example also shows a setting screen image of the setting unit 80 as in FIG.
- a span is selected as a setting item, and the user can select a desired value from choices (for example, a flow rate of 500 L / min, a flow rate of 2 m / s, and a mass flow rate of 100 kg / h).
- the two-wire electromagnetic flow meter of the present invention can be suitably applied as a capacitive electromagnetic flow meter that detects the flow rate of a conductive liquid in a non-wetted state.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
A capacitive electromagnetic flow meter is realized by the two-wire method. Provision is made for: a power supply unit (14) which is provided with a primary side input capable of connecting two transmission lines DL, and a secondary side output insulated from the primary side input, and can convert the DC power supplied from the transmission lines DL to the specified power and output the power from the secondary side output; and a calculation means which calculates the flow of the target fluid for detection flowing through the flow path of a measuring tube based on the voltage signal detected by a detection circuit (34) and can output an excitation control signal for controlling the drive state of an excitation circuit (24) to the excitation circuit (24), and a power supply control signal for controlling the drive state of the power supply unit (14) to the power supply unit (14). The excitation circuit (24) and the detection circuit (34) are connected to the secondary side output of the power supply unit (14). The calculation means controls the current flow from the transmission lines DL supplied to the primary side input of the power supply unit (14) in response to the calculated flow rate of the target fluid for detection.
Description
本発明は、静電容量方式で被検出流体の流量を検出する2線式電磁流量計に関する。
The present invention relates to a two-wire electromagnetic flow meter that detects a flow rate of a fluid to be detected by a capacitance method.
電磁流量計は、被検出流体を磁界中に流すことで、被検出流体の流速に比例した起電力を発生させて、電極で検出した起電力に基づいて流量を演算する。このような電磁流量計には、大別して接液電極形と非接液電極形の2種類が存在する。接液電極形の電磁流量計は接液式あるいは電極式電磁流量計等とも呼ばれ、電極が被検出流体と直接接触し、被検出流体に発生する起電力を直接検出する。一方、非接液電極形の電磁流量計は(静電)容量式電磁流量計等とも呼ばれ、電極が被検出流体と直接接触せず、被検出流体に発生する起電力を被検出流体と電極間の静電容量を介して検出する。
The electromagnetic flow meter generates an electromotive force proportional to the flow velocity of the detected fluid by flowing the detected fluid in the magnetic field, and calculates the flow rate based on the electromotive force detected by the electrode. Such an electromagnetic flow meter is roughly classified into two types, a wetted electrode type and a non-wetted electrode type. A wetted electrode type electromagnetic flow meter is also called a wetted type or an electrode type electromagnetic flow meter, and the electrode is in direct contact with the fluid to be detected and directly detects the electromotive force generated in the fluid to be detected. On the other hand, non-wetted electrode type electromagnetic flowmeters are also called (electrostatic) capacity type electromagnetic flowmeters, and the electrodes do not directly contact the fluid to be detected, and the electromotive force generated in the fluid to be detected is It detects through the electrostatic capacitance between electrodes.
接液電極形の電磁流量計では、常に電極を被検出流体の液体と接液させるため、電極を腐蝕しない液体であることが必要となる。また液中に含まれる絶縁性付着物や油膜が電極に付着して抵抗が増したり、電極が錆びる等の問題、電極の配置部分で防水構造が必要となる等の問題がある。これに対して容量式電磁流量計は、磁界に直交して導電性の被検出流体が流れると、印加した磁界の強さと流体の流速との積に比例する起電力が発生し、この起電力を、被検出流体の流れる測定管の外面に付着し、被検出流体に非接触な一対の電極で静電容量式に検出することにより、流量を測定できる原理に基づく。図52に、容量式電磁流量計のブロック図の一例を示す。この容量式電磁流量計900は、被検出流体を流す測定管910の外側に電極930を貼付し、測定管910のパイプ厚さでコンデンサを形成している。この電極930で検出する電界と直交する方向に一対の励磁コイル922を配置し、励磁回路924により交番磁界を発生させる。この構成では、電極930が被検出流体に接液しないので、絶縁性付着物の影響を受け難く、電極の劣化や防水構造を考慮する必要がなくメンテナンスが容易である、被検出流体のリークの発生要因を解消できる、低導電率の流体でも利用可能といった利点がある。反面、内部の回路が高インピーダンスとなり、ノイズに弱いという特徴もある。
In a liquid contact electrode type electromagnetic flow meter, the electrode is always in contact with the liquid of the fluid to be detected, so that the electrode needs to be a liquid that does not corrode. In addition, there are problems such as an insulating deposit or an oil film contained in the liquid adhering to the electrode to increase resistance, rusting of the electrode, and the need for a waterproof structure in the electrode arrangement portion. In contrast, a capacitive electromagnetic flow meter generates an electromotive force that is proportional to the product of the strength of the applied magnetic field and the fluid flow velocity when a conductive fluid to be detected flows perpendicular to the magnetic field. Is attached to the outer surface of the measuring tube through which the fluid to be detected flows, and is detected based on the principle that the flow rate can be measured by detecting the capacitance with a pair of electrodes that are not in contact with the fluid to be detected. FIG. 52 shows an example of a block diagram of a capacitive electromagnetic flow meter. In this capacitive electromagnetic flow meter 900, an electrode 930 is attached to the outside of a measurement tube 910 through which a fluid to be detected flows, and a capacitor is formed with the pipe thickness of the measurement tube 910. A pair of exciting coils 922 are arranged in a direction orthogonal to the electric field detected by the electrodes 930, and an alternating magnetic field is generated by the exciting circuit 924. In this configuration, since the electrode 930 does not come into contact with the fluid to be detected, it is difficult to be affected by the insulating deposit, and it is not necessary to consider the deterioration of the electrode or the waterproof structure, and maintenance is easy. There is an advantage that even a low-conductivity fluid can be used to eliminate the generation factor. On the other hand, the internal circuit has a high impedance and is also susceptible to noise.
一方で、このような電磁流量計の接続方式として、電源ラインと信号ラインを分離した4線式と、電源ラインに信号を統合した2線式が知られている。2線式電磁流量計は、線数が少ないことから遠距離に敷設する場合等に適している。ただ、2線式の場合は伝送線に通電される電流量を4mA-20mAの範囲に制限し、電流量で流量情報を伝達する形式となるため、流量が少ない場合は供給電流も小さくなり、励磁コイルを励磁するための励磁回路に十分な電流量を供給できないという問題がある。この問題を解決するために特許文献1、2の2線式電磁流量計が提案されている。
特公平7-9375号公報
特開2002-340638号公報
On the other hand, as a connection method of such an electromagnetic flow meter, a four-wire system in which a power line and a signal line are separated and a two-wire system in which a signal is integrated into the power line are known. A two-wire electromagnetic flow meter is suitable for laying a long distance because of the small number of wires. However, in the case of the 2-wire type, the amount of current supplied to the transmission line is limited to the range of 4 mA to 20 mA, and the flow rate information is transmitted by the amount of current. Therefore, when the flow rate is low, the supply current is also reduced. There is a problem that a sufficient amount of current cannot be supplied to the excitation circuit for exciting the excitation coil. In order to solve this problem, the two-wire electromagnetic flowmeters of Patent Documents 1 and 2 have been proposed.
Japanese Patent Publication No. 7-9375 JP 2002-340638 A
特許文献1の2線式電磁流量計を、図53に示す。この図に示す2線式電磁流量計は、測定管571内に接液式の電極572を備え、励磁回路573、伝送線574、励磁コイルに流れる電流を一定するように調整する電流出力回路575、CPU等の信号処理回路576等のアナログ回路で構成される。この2線式電磁流量計では、励磁回路573と、流量を演算する信号処理回路576を直列接続とし、最も電流を消費する励磁回路573側に伝送線574を接続している。具体的には、伝送線574から供給された電流を有効利用するために、先に励磁回路573に通電し、その後直列に接続した他の回路に対して、励磁回路573から出た電流を使用するものである。
FIG. 53 shows the two-wire electromagnetic flow meter disclosed in Patent Document 1. The two-wire electromagnetic flow meter shown in this figure includes a wetted electrode 572 in a measurement tube 571, and a current output circuit 575 for adjusting the current flowing through the excitation circuit 573, the transmission line 574, and the excitation coil to be constant. , And an analog circuit such as a signal processing circuit 576 such as a CPU. In this two-wire electromagnetic flow meter, the excitation circuit 573 and the signal processing circuit 576 for calculating the flow rate are connected in series, and the transmission line 574 is connected to the excitation circuit 573 side that consumes the most current. Specifically, in order to effectively use the current supplied from the transmission line 574, the excitation circuit 573 is first energized, and then the current output from the excitation circuit 573 is used for other circuits connected in series. To do.
しかしながらこの方式では、励磁回路573と信号処理回路576のコモン電位が異なるため、これらの間で信号を絶縁するための絶縁回路が必要となり、構造の複雑化や高コスト化を招くという問題がある。すなわち2線式電磁流量計では、測定管等の配管と外部電源コモン電位が異なることが多い。一般に信号増幅回路は配管の電位をコモン電位としており、電流出力回路は外部電源をコモン電位としているため、信号増幅回路には必ず絶縁回路が必要になる。図53の回路例では信号処理回路576中に絶縁電源を設けている。
However, in this method, since the common potentials of the excitation circuit 573 and the signal processing circuit 576 are different, an insulation circuit for insulating the signal between them is necessary, which causes a problem that the structure is complicated and the cost is increased. . That is, in a two-wire electromagnetic flow meter, the common potential of the external power supply is often different from piping such as a measurement tube. In general, since the signal amplifier circuit uses the common potential of the pipe and the current output circuit uses the external power source as the common potential, the signal amplifier circuit always requires an insulation circuit. In the circuit example of FIG. 53, an insulating power source is provided in the signal processing circuit 576.
また出力電流をそのまま励磁回路に供給する構造のため、出力電流以上の励磁電流を流すことが困難であり、このため追加の電源回路を用意する必要があった。特に容量式の電磁流量計を2線式とする場合は、電極を被検出流体に直接接触させない構造上、接液式に比べ電圧信号が微弱になる。このため正確な流量検出を行うには、アンペアターンの法則に従って励磁回路の電流量を多くする必要があるところ、2線式では上述の通り通電できる電流量が制限されるとため、十分な励磁を行えないという問題を抱えていた。さらに電源電圧を、励磁回路に必要な電圧に、信号処理回路に必要な電圧を加算した電圧以上にする必要があるため、電源電圧をある程度高くとらなければならない。その一方で、高い電源電圧を供給できる場合でも、回路の動作状態に応じて(励磁回路に必要な電圧)+(信号処理回路に必要な電圧)以上の電圧は無駄となって、電圧の損失が大きくなるという問題もあった。さらに、励磁に使用しない電流は定電圧回路でトランジスタの熱になることで、無駄な電流を熱として廃棄することが必要となる。
In addition, since the output current is directly supplied to the excitation circuit, it is difficult to flow an excitation current higher than the output current, and thus it is necessary to prepare an additional power supply circuit. In particular, when the capacity type electromagnetic flow meter is a two-wire type, the voltage signal is weaker than the liquid contact type because of the structure in which the electrode is not in direct contact with the fluid to be detected. For this reason, in order to accurately detect the flow rate, it is necessary to increase the amount of current in the excitation circuit according to the ampere-turn law. However, in the 2-wire system, the amount of current that can be energized is limited as described above. I had a problem that I could not do. Furthermore, since the power supply voltage needs to be equal to or higher than the voltage required for the excitation circuit and the voltage required for the signal processing circuit, the power supply voltage must be increased to some extent. On the other hand, even when a high power supply voltage can be supplied, a voltage higher than (voltage required for the excitation circuit) + (voltage required for the signal processing circuit) depending on the circuit operating state is wasted and voltage loss There was also a problem of growing. Furthermore, since the current that is not used for excitation becomes heat of the transistor in the constant voltage circuit, it is necessary to discard the useless current as heat.
一方特許文献2に開示される2線式電磁流量計を図54に示す。この2線式電磁流量計も測定管581内に接液式の電極582と、励磁回路583と、伝送線584に通電される電流量を4mA-20mAの範囲に調整する電流出力回路585と、信号処理回路586を備える。この2線式電磁流量計では、励磁回路583と信号処理回路586と電流出力回路585を並列に接続している。しかしながらこの方式でも、アナログ増幅回路587と信号処理回路586を絶縁するための絶縁回路588が必要となる。またこのように絶縁された信号はノイズに弱く、万一流量信号にデータ化けが生じると流量測定が全くできなくなってしまうという問題もあった。特に非接液式の電磁流量計では、接液式と比べ内部が高インピーダンスとなるため、相対的にノイズに弱くなり、このようなデータ化けの影響を受けやすい。さらにこの方式でも出力電流をそのまま励磁回路に供給するため、出力電流以上の励磁電流を流すことが難しい。
On the other hand, a two-wire electromagnetic flow meter disclosed in Patent Document 2 is shown in FIG. This two-wire electromagnetic flow meter also has a liquid contact type electrode 582 in the measuring tube 581, an excitation circuit 583, a current output circuit 585 for adjusting the amount of current applied to the transmission line 584 to a range of 4 mA-20 mA, A signal processing circuit 586 is provided. In this two-wire electromagnetic flow meter, an excitation circuit 583, a signal processing circuit 586, and a current output circuit 585 are connected in parallel. However, even in this method, an insulating circuit 588 for insulating the analog amplifier circuit 587 and the signal processing circuit 586 is required. In addition, the insulated signal is vulnerable to noise, and there is a problem that the flow rate measurement cannot be performed at all if the data of the flow rate signal is corrupted. In particular, a non-wetted type electromagnetic flow meter has a higher impedance than the wetted type, and thus is relatively vulnerable to noise and is susceptible to such data corruption. Further, even in this method, since the output current is supplied to the excitation circuit as it is, it is difficult to flow an excitation current higher than the output current.
さらにいずれの方式においても、励磁回路の電圧を昇圧/降圧して励磁電流を増やす手法も考えられる。しかしながらこの場合は、昇圧/降圧のための電源回路が余分に必要になり、回路が複雑化するという問題がある。例えば図55に示す2線式電磁流量計の回路例では、励磁回路593の前段に電流出力回路595の駆動用のDC/DC変換回路599を配置して一旦降圧/昇圧を行い、さらに励磁回路593の後段でも信号処理回路596用のDC/DC変換回路560を配置してさらに降圧/昇圧を行っており、余分な電源回路が2つ必要となっている。
Furthermore, in either method, a method of increasing the excitation current by increasing / decreasing the voltage of the excitation circuit is also conceivable. However, in this case, an extra power supply circuit for step-up / step-down is required, and there is a problem that the circuit becomes complicated. For example, in the circuit example of the two-wire electromagnetic flow meter shown in FIG. 55, a DC / DC conversion circuit 599 for driving the current output circuit 595 is disposed before the excitation circuit 593 to once step down / boost, and further the excitation circuit The DC / DC conversion circuit 560 for the signal processing circuit 596 is disposed at the subsequent stage of the signal 593 to further perform step-down / boost, and two extra power supply circuits are required.
また休止期間を設けてその間にコンデンサに電荷を充電し、それを間欠的に放電して、必要な電流を供給する方式も考えられる。ただ、このような間欠方式の励磁を行うと、励磁回路での消費電力が動的に変化するため、出力電流の変動が大きくなり、これを回避するためには大容量のコンデンサが必要となる。このようなことから、静電容量式電磁流量計を2線式で実現することは、従来困難とされていた。
It is also conceivable to provide a required current by providing a rest period and charging the capacitor during that period and discharging it intermittently. However, when such intermittent excitation is performed, the power consumption in the excitation circuit changes dynamically, resulting in large fluctuations in the output current, and a large capacity capacitor is required to avoid this. . For these reasons, it has been conventionally difficult to realize a capacitive electromagnetic flow meter with a two-wire system.
本発明は、従来のこのような問題点を解決するためになされたものである。本発明の一の目的は、容量式電磁流量計を2線式で実現可能な2線式電磁流量計を提供することにある。
The present invention has been made to solve such conventional problems. An object of the present invention is to provide a two-wire electromagnetic flow meter capable of realizing a capacitive electromagnetic flow meter with a two-wire type.
以上の目的を達成するために、第1発明に係る2線式電磁流量計によれば、被検出流体の流量を検出し、検出された流量の信号伝送と電源供給を共通の2本の伝送線で行う2線式電磁流量計において、被検出流体を通過させる流路を構成する測定管と、前記測定管の流路と直交するように配置された少なくとも一対の励磁コイルと、前記励磁コイルを励磁するための励磁回路と、前記一対の励磁コイル間を結ぶ直線、及び前記測定管の流路と相互に直交するように配置される少なくとも一対の電極と、前記電極で検出された電圧信号を検出可能な検出回路と、2本の伝送線を接続可能な1次側入力と、前記1次側入力と絶縁された2次側出力とを備え、伝送線から供給される直流電力を所定の電力に変換して2次側出力から出力可能な電源部と、前記検出回路で検出された電圧信号に基づいて、前記測定管の流路を通過する被検出流体の流量を演算すると共に、前記励磁回路の駆動状態を制御するための励磁制御信号を前記励磁回路に、及び前記電源部の駆動状態を制御する電源制御信号を前記電源部に、それぞれ出力可能な演算手段と、を備えており、前記電源部の2次側出力に、前記励磁回路、検出回路を接続しており、前記演算手段が、演算された被検出流体の流量に応じて前記電源部の1次側入力に供給される伝送線からの電流量を制御するよう構成できる。これにより、被検出流体の流量に応じて1次側入力電流値を変化させる一方で、1次側出力と絶縁された電源部の2次側出力で励磁回路を駆動するため、励磁回路の駆動電流を1次側入力電流値と個別に調整でき、電源電圧を高くすることなく駆動電流を大きくして検出される電圧信号を高め、高精度な検出を実現できる。
In order to achieve the above object, according to the two-wire electromagnetic flow meter according to the first invention, the flow rate of the fluid to be detected is detected, and signal transmission and power supply of the detected flow rate are shared by two transmissions. In a two-wire electromagnetic flow meter performed by a wire, at least a pair of excitation coils disposed so as to be orthogonal to the flow path of the measurement pipe, a measurement pipe that constitutes a flow path through which a fluid to be detected passes, and the excitation coil An at least pair of electrodes arranged so as to be orthogonal to the flow path of the measuring tube, and a voltage signal detected by the electrodes Detection circuit, a primary side input capable of connecting two transmission lines, and a secondary side output insulated from the primary side input, and the DC power supplied from the transmission line is predetermined. Power that can be converted into power from the secondary side and output from the secondary output And calculating the flow rate of the fluid to be detected that passes through the flow path of the measurement tube based on the voltage signal detected by the detection circuit, and an excitation control signal for controlling the drive state of the excitation circuit. The excitation circuit and a calculation means capable of outputting a power control signal for controlling the driving state of the power supply unit to the power supply unit, respectively, and a secondary side output of the power supply unit to the excitation circuit, A detection circuit is connected, and the calculation means can be configured to control the amount of current from the transmission line supplied to the primary side input of the power supply unit according to the calculated flow rate of the fluid to be detected. As a result, the primary side input current value is changed according to the flow rate of the fluid to be detected, while the excitation circuit is driven by the secondary side output of the power supply unit insulated from the primary side output. The current can be adjusted separately from the primary-side input current value, and the voltage signal detected by increasing the drive current without increasing the power supply voltage can be increased to achieve highly accurate detection.
また第2発明に係る2線式電磁流量計によれば、さらに、前記電源部の1次側入力と前記演算手段との間のコモン電位を分離しつつ、前記演算手段から前記電源部への電源制御信号を送出するための制御信号絶縁回路を備え、前記演算手段が、前記電源部の2次側出力に配置されて、前記検出回路の出力側に接続できる。これにより、検出回路で検出されたアナログの電圧信号を絶縁することなく演算手段に入力できるようになり、この間の絶縁回路を不要にできる。また演算手段と励磁回路が同じ2次側出力に配置されるため、演算手段から励磁回路への励磁制御信号も、絶縁回路を介さずに出力でき、この間の絶縁回路も不要となる。この結果、絶縁回路は演算手段と電源部との間にのみ配置すれば足り、必要な電源部数を削減でき、回路構成の簡素化が図られる。
Further, according to the two-wire electromagnetic flow meter according to the second aspect of the present invention, the common potential between the primary side input of the power supply unit and the calculation unit is further separated from the calculation unit to the power supply unit. A control signal insulation circuit for sending a power control signal is provided, and the computing means is arranged at the secondary output of the power supply unit and can be connected to the output side of the detection circuit. As a result, the analog voltage signal detected by the detection circuit can be input to the arithmetic means without being insulated, and the insulation circuit therebetween can be eliminated. In addition, since the calculation means and the excitation circuit are arranged on the same secondary side output, the excitation control signal from the calculation means to the excitation circuit can also be output without passing through the insulation circuit, and the insulation circuit between them is unnecessary. As a result, it is sufficient to arrange the insulating circuit only between the arithmetic means and the power supply unit, so that the number of necessary power supply units can be reduced and the circuit configuration can be simplified.
さらに第3発明に係る2線式電磁流量計によれば、前記電源部が、前記演算手段からの電源制御信号に基づいて、伝送線を通電する1次側入力電流値を制御可能な電流出力回路と、前記電流出力回路で制御され該伝送線から供給される1次側入力電流の直流電力を所定の電力に変換して2次側に出力可能なスイッチング回路と、を備えることができる。これにより、スイッチング回路によって1次側と絶縁された2次側の出力電流を任意に設定でき、従来の2線式電磁流量計のように励磁コイルの励磁電流を4mA-20mAの範囲内とする制約を受けることなく、より高い励磁電流を供給できるため、高い電圧信号を得ることが可能となり、正確な流量検出が実現できる。
Furthermore, according to the two-wire electromagnetic flow meter according to the third aspect of the invention, the power supply unit can control a primary side input current value for energizing the transmission line based on a power supply control signal from the calculation means. And a switching circuit that is controlled by the current output circuit and that can convert the DC power of the primary side input current supplied from the transmission line into predetermined power and output it to the secondary side. As a result, the secondary side output current insulated from the primary side by the switching circuit can be arbitrarily set, and the excitation current of the excitation coil is within the range of 4 mA to 20 mA as in the conventional two-wire electromagnetic flowmeter. Since a higher excitation current can be supplied without being restricted, a high voltage signal can be obtained, and accurate flow rate detection can be realized.
さらにまた第4発明に係る2線式電磁流量計によれば、前記スイッチング回路がさらに、2次側出力として、前記励磁回路を駆動する駆動電力を生成するための励磁回路用出力と、前記演算手段を駆動する駆動電力を生成するための演算手段用出力とを備えることができる。これにより、励磁回路と演算手段に対して個別に適切な駆動電力を供給でき、同時にこれらとの間の絶縁も図ることができる。
Furthermore, according to the two-wire electromagnetic flow meter according to the fourth aspect of the invention, the switching circuit further serves as a secondary side output for exciting circuit output for generating driving power for driving the exciting circuit, and the calculation. And an output for calculating means for generating drive power for driving the means. As a result, appropriate driving power can be individually supplied to the excitation circuit and the calculation means, and at the same time, insulation between them can be achieved.
さらにまた第5発明に係る2線式電磁流量計によれば、前記検出回路を、前記電極で検出される電圧信号を増幅するアナログ信号増幅回路で構成できる。
Furthermore, according to the two-wire electromagnetic flow meter according to the fifth invention, the detection circuit can be constituted by an analog signal amplification circuit that amplifies a voltage signal detected by the electrode.
さらにまた第6発明に係る2線式電磁流量計によれば、さらに、前記励磁回路と並列に、前記励磁コイルと直列に接続されて、前記励磁コイルを励起する出力電圧値を調整して供給可能な定電圧電源と、前記定電圧電源で前記励磁回路に励磁電流を供給するために必要な電圧を指示するためのチャージ電荷モニタ回路とを備えることができる。
Furthermore, according to the two-wire electromagnetic flow meter according to the sixth aspect of the invention, the output voltage value for exciting the excitation coil is adjusted and supplied in parallel with the excitation circuit and in series with the excitation coil. A possible constant voltage power supply and a charge charge monitor circuit for instructing a voltage required to supply an excitation current to the excitation circuit by the constant voltage power supply can be provided.
100、200、300、400、700…電磁流量計
500、600…変換器
10…測定管
12…制御信号絶縁回路;12B…励磁信号絶縁回路;12C…指示信号絶縁回路
14…電源部
16、16B…電流出力回路
162…演算増幅器;164…加算器;166…出力電流調整回路;167…演算増幅器
168…トランジスタ
17…DC/DC変換回路
18…スイッチング回路
181、181B…スイッチング素子;182、182B…発振回路
184…トランジスタ制御回路;185…余剰電流調整回路
19…スイッチング制御回路
20…変圧器
22…励磁コイル;24…励磁回路
25…定電圧電源
26…チャージ電荷モニタ回路
28…励磁極性切替回路
29…励磁定電流回路
30…電極;31…加算回路;33…アンプモード切替手段
34…検出回路;34C…信号増幅回路
341…バッファ回路;342…差動増幅器;343…差動増幅器
344…オフセット補償回路;38…A/D変換器
40…演算手段;41…加減算指示回路;42…メモリ部;43…基準電圧切替回路
44…ダンピング手段;45…オートモード切替手段
50…表示ユニット;51…表示部;52…表示画面;54…操作パネル
60…出力部;70…入力部;80…設定部
110…本体;111…流路口
180…残留電圧検出回路;192…電源切替スイッチ
501…昇圧電源;502…絶縁トランス;503…絶縁型スイッチング制御回路
504…電流検出抵抗;505…電圧減算回路;506…パルストランス
507…出力回路
560…変換回路;571…測定管;572…電極;573…励磁回路;574…伝送線
575…電流出力回路;576…信号処理回路;581…測定管;582…電極
583…励磁回路;584…伝送線;585…電流出力回路;586…信号処理回路
587…アナログ増幅回路;588…絶縁回路;593…励磁回路
595…電流出力回路;596…信号処理回路;599…変換回路
601…昇圧スイッチング電源;602…変換回路;604…電流検出抵抗
605…電圧減算回路;608…コンバータ;609…演算部;610…変換回路
611…積算パルス警報出力回路
900…容量式電磁流量計;910…測定管;922…励磁コイル;924…励磁回路
930…電極
DL…伝送線;PL…電力線;OL…出力線
L…コイル
Ro…出力電流検出抵抗;RE…励磁電流検出抵抗;Ra、Rb、Rc…抵抗
CC…チャージコンデンサ;CC2…第2チャージコンデンサ
CS1…平滑コンデンサ;C01、C02…ホールドコンデンサ
Tr、Tr5、Tr6…トランジスタ;Tr1~Tr4…ブリッジトランジスタ
A2、A6、A7…演算増幅器
AE1…エラーアンプ
LPF…ローパスフィルタ
DC…外部直流電源
SWB1、SWB2、SWB3、SWB4…ブリッジスイッチ;SWO1、SWO2、SW7…スイッチ
SWVref…基準電圧切替スイッチ
Vref1、Vref3、Vref4…基準電圧;Vrefc…チャージ電圧指示電圧
Vrefo…差動増幅器の反転入力;VRE…励磁電流検出電圧
VL…低電圧;VH…高電圧
VO…出力電圧;VIO…出力電流指示電圧;Vp…出力電流指示電圧
Vc…チャージ電圧;V2…チャージ電圧指示電圧;VS…差動増幅器の出力;VOS…差動増幅器の出力
VAI3…トランジスタのゲート電圧;VT1…変圧器の1次側電圧
Vn…エラーアンプの反転入力に入力される電圧
VTr…トランジスタTr5のドレイン電圧
IE…励磁電流
IL…コイル電流
IO…出力電流
Iadd…付加電流
Toff…オフ時間
Ton…充電時間
CHG_COMP…チャージ完了信号
AN_RES_T1、AN_RES_T2…リセット信号
SRV…残留電圧検出タイミング信号
SVH…電源切替信号
SET…励磁タイミング信号
Srefs…基準電圧切替信号
SVO…出力電流指示信号
SAP…アンプモード指示信号 100, 200, 300, 400, 700 ... electromagnetic flowmeter 500, 600 ... converter 10 ... measuring tube 12 ... control signal insulation circuit; 12B ... excitation signal insulation circuit; 12C ... indication signal insulation circuit 14 ... power supply unit 16, 16B ... current output circuit 162 ... operational amplifier; 164 ... adder; 166 ... output current adjustment circuit; 167 ... operational amplifier 168 ... transistor 17 ... DC / DC conversion circuit 18 ... switching circuits 181 and 181B ... switching elements; 182 and 182B ... Oscillation circuit 184 ... transistor control circuit; 185 ... excess current adjustment circuit 19 ... switching control circuit 20 ... transformer 22 ... excitation coil; 24 ... excitation circuit 25 ... constant voltage power supply 26 ... charge charge monitor circuit 28 ... excitation polarity switching circuit 29 ... exciting constant current circuit 30 ... electrode; 31 ... adder circuit; 33 ... amplifier mode switching 34 ... Detection circuit; 34C ... Signal amplification circuit 341 ... Buffer circuit; 342 ... Differential amplifier; 343 ... Differential amplifier 344 ... Offset compensation circuit; 38 ... A / D converter 40 ... Calculation means; 41 ... Addition / subtraction instruction circuit; 42 ... Memory unit; 43 ... Reference voltage switching circuit 44 ... Damping unit; 45 ... Auto mode switching unit 50 ... Display unit; 51 ... Display unit; 52 ... Display screen; 54 ... Operation panel 60 ... Output unit; 80 ... setting unit 110 ... main body; 111 ... flow path port 180 ... residual voltage detection circuit; 192 ... power supply switch 501 ... step-up power supply; 502 ... insulation transformer; 503 ... insulation type switching control circuit 504 ... current detection resistor; Voltage subtraction circuit; 506, pulse transformer 507, output circuit 560, conversion circuit, 571, measuring tube, 572, electrode, 573, excitation Circuit: 574 Transmission line 575 Current output circuit 576 Signal processing circuit 581 Measuring tube 582 Electrode 583 Excitation circuit 584 Transmission line 585 Current output circuit 586 Signal processing circuit 587 Analog Amplifier circuit 588 Insulating circuit 593 Excitation circuit 595 Current output circuit 596 Signal processing circuit 599 Conversion circuit 601 Boost switching power supply 602 Conversion circuit 604 Current detection resistor 605 Voltage subtraction circuit 608 ... Converter; 609 ... Calculation unit; 610 ... Conversion circuit 611 ... Integrated pulse alarm output circuit 900 ... Capacitive electromagnetic flow meter; 910 ... Measurement tube; 922 ... Excitation coil; 924 ... Excitation circuit 930 ... Electrode DL ... Transmission line; PL ... Power line; OL ... Output line L ... Coil Ro ... Output current detection resistor; RE ... Excitation current detection resistor; Ra , Rb , Rc ... Resistor C C ... charge capacitor; C C2 ... second charge capacitor C S1 ... smoothing capacitor; C 01 , C 02 ... hold capacitors Tr, Tr 5 , Tr 6 ... transistors; Tr 1 to Tr 4 ... bridge transistors A 2 , A 6 , A 7 ... operational amplifier A E1 ... error amplifier LPF ... low pass filter DC ... external DC power supply SW B1 , SW B2 , SW B3 , SW B4 ... bridge switch; SW O1 , SW O2 , SW 7 ... switch SW Vref ... reference Voltage selector switches V ref1 , V ref3 , V ref4 ... Reference voltage; V refc ... Charge voltage instruction voltage V refo ... Inverted input of differential amplifier; V RE ... Excitation current detection voltage V L ... Low voltage; V H ... High voltage V O ... Output voltage; V IO ... Output current instruction voltage; V p ... Output current instruction voltage V c ... Charge voltage; V 2 ... Charge voltage instruction voltage; V S ... Output of differential amplifier; OS ... differential amplifier output V AI3 ... gate voltage of the transistor; the drain voltage of V T1 ... voltage V Tr ... transistor Tr 5 is input to the inverting input of the primary voltage V n ... error amplifier transformer I E ... Excitation current I L ... Coil current I O ... Output current I add ... Additional current T off ... Off time T on ... Charging time CHG_COMP ... Charge completion signal AN_RES_T1, AN_RES_T2 ... Reset signal S RV ... Residual voltage detection timing signal S VH ... Power supply Switching signal S ET ... Excitation timing signal S refs ... Reference voltage switching signal S VO ... Output current instruction signal S AP ... Amplifier mode instruction signal
500、600…変換器
10…測定管
12…制御信号絶縁回路;12B…励磁信号絶縁回路;12C…指示信号絶縁回路
14…電源部
16、16B…電流出力回路
162…演算増幅器;164…加算器;166…出力電流調整回路;167…演算増幅器
168…トランジスタ
17…DC/DC変換回路
18…スイッチング回路
181、181B…スイッチング素子;182、182B…発振回路
184…トランジスタ制御回路;185…余剰電流調整回路
19…スイッチング制御回路
20…変圧器
22…励磁コイル;24…励磁回路
25…定電圧電源
26…チャージ電荷モニタ回路
28…励磁極性切替回路
29…励磁定電流回路
30…電極;31…加算回路;33…アンプモード切替手段
34…検出回路;34C…信号増幅回路
341…バッファ回路;342…差動増幅器;343…差動増幅器
344…オフセット補償回路;38…A/D変換器
40…演算手段;41…加減算指示回路;42…メモリ部;43…基準電圧切替回路
44…ダンピング手段;45…オートモード切替手段
50…表示ユニット;51…表示部;52…表示画面;54…操作パネル
60…出力部;70…入力部;80…設定部
110…本体;111…流路口
180…残留電圧検出回路;192…電源切替スイッチ
501…昇圧電源;502…絶縁トランス;503…絶縁型スイッチング制御回路
504…電流検出抵抗;505…電圧減算回路;506…パルストランス
507…出力回路
560…変換回路;571…測定管;572…電極;573…励磁回路;574…伝送線
575…電流出力回路;576…信号処理回路;581…測定管;582…電極
583…励磁回路;584…伝送線;585…電流出力回路;586…信号処理回路
587…アナログ増幅回路;588…絶縁回路;593…励磁回路
595…電流出力回路;596…信号処理回路;599…変換回路
601…昇圧スイッチング電源;602…変換回路;604…電流検出抵抗
605…電圧減算回路;608…コンバータ;609…演算部;610…変換回路
611…積算パルス警報出力回路
900…容量式電磁流量計;910…測定管;922…励磁コイル;924…励磁回路
930…電極
DL…伝送線;PL…電力線;OL…出力線
L…コイル
Ro…出力電流検出抵抗;RE…励磁電流検出抵抗;Ra、Rb、Rc…抵抗
CC…チャージコンデンサ;CC2…第2チャージコンデンサ
CS1…平滑コンデンサ;C01、C02…ホールドコンデンサ
Tr、Tr5、Tr6…トランジスタ;Tr1~Tr4…ブリッジトランジスタ
A2、A6、A7…演算増幅器
AE1…エラーアンプ
LPF…ローパスフィルタ
DC…外部直流電源
SWB1、SWB2、SWB3、SWB4…ブリッジスイッチ;SWO1、SWO2、SW7…スイッチ
SWVref…基準電圧切替スイッチ
Vref1、Vref3、Vref4…基準電圧;Vrefc…チャージ電圧指示電圧
Vrefo…差動増幅器の反転入力;VRE…励磁電流検出電圧
VL…低電圧;VH…高電圧
VO…出力電圧;VIO…出力電流指示電圧;Vp…出力電流指示電圧
Vc…チャージ電圧;V2…チャージ電圧指示電圧;VS…差動増幅器の出力;VOS…差動増幅器の出力
VAI3…トランジスタのゲート電圧;VT1…変圧器の1次側電圧
Vn…エラーアンプの反転入力に入力される電圧
VTr…トランジスタTr5のドレイン電圧
IE…励磁電流
IL…コイル電流
IO…出力電流
Iadd…付加電流
Toff…オフ時間
Ton…充電時間
CHG_COMP…チャージ完了信号
AN_RES_T1、AN_RES_T2…リセット信号
SRV…残留電圧検出タイミング信号
SVH…電源切替信号
SET…励磁タイミング信号
Srefs…基準電圧切替信号
SVO…出力電流指示信号
SAP…アンプモード指示信号 100, 200, 300, 400, 700 ...
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための2線式電磁流量計を例示するものであって、本発明は2線式電磁流量計を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(実施例1) Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a two-wire electromagnetic flow meter for embodying the technical idea of the present invention, and the present invention specifies the two-wire electromagnetic flow meter as follows. do not do. Further, the present specification by no means specifies the members shown in the claims as the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It is just an example. In addition, the size, positional relationship, and the like of members illustrated in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and reference numeral indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
Example 1
(実施例1) Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a two-wire electromagnetic flow meter for embodying the technical idea of the present invention, and the present invention specifies the two-wire electromagnetic flow meter as follows. do not do. Further, the present specification by no means specifies the members shown in the claims as the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It is just an example. In addition, the size, positional relationship, and the like of members illustrated in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and reference numeral indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
Example 1
図1~図5に、本発明の実施例1に係る2線式電磁流量計100を示す。これらの図において、図1は2線式電磁流量計の外観斜視図、図2は図1の2線式電磁流量計の正面図、図3は側面図を、図4はブロック図を、図5は2線式電磁流量計100を外部電源に接続した状態の回路図を、それぞれ示す。この電磁流量計は、非接液式の容量式としている。
(外観) 1 to 5 show a two-wireelectromagnetic flow meter 100 according to Embodiment 1 of the present invention. In these drawings, FIG. 1 is an external perspective view of a two-wire electromagnetic flow meter, FIG. 2 is a front view of the two-wire electromagnetic flow meter of FIG. 1, FIG. 3 is a side view, FIG. 5 shows circuit diagrams in a state where the two-wire electromagnetic flow meter 100 is connected to an external power source. This electromagnetic flow meter is a non-wetted capacity type.
(appearance)
(外観) 1 to 5 show a two-wire
(appearance)
図1~図3に示す2線式電磁流量計は、2線式電磁流量計本体を構成する本体110と、表示ユニット50とで構成される。この2線式電磁流量計は、本体110の両端面に開口された流路口111から被検出流体を内部に通過させ、その流量を検出して伝送線DLを通じて出力し、また必要に応じて表示ユニット50に表示する。この本体110は金属製とする他、PPS樹脂等で構成してもよい。本体110は、円筒状の端面に鍔状のフランジ部を設けており、パイプ等の配管と螺子で螺号するための螺子孔を開口している。螺合により配管する際の機械的強度を確保するために、好ましくはフランジ部を本体110と金属で一体形成する。またフランジ部に開口された流路口111は、本体110に内蔵される測定管10とで流路を構成する。流路の口径は、流路口111の一端から他端までほぼ同じ直径として、この流路に被検出流体を一方向に流す際の損失を低減する。また本体110の上面には、図1に示すように表示ユニット50を直交させるように固定される。表示ユニットの表示面を、円筒状本体と直交姿勢で固定することで、パイプ状の測定管10に被検出流体を流す側面から、流量を視認し易くできる。
(表示ユニット50) The two-wire electromagnetic flow meter shown in FIGS. 1 to 3 includes amain body 110 that constitutes a two-wire electromagnetic flow meter main body and a display unit 50. This two-wire electromagnetic flow meter allows the fluid to be detected to pass through the flow passage port 111 opened at both end faces of the main body 110, detects the flow rate, outputs it through the transmission line DL, and displays it as necessary. Display on the unit 50. The main body 110 may be made of metal or made of PPS resin or the like. The main body 110 is provided with a flange-like flange portion on a cylindrical end surface, and opens a screw hole for screwing with a pipe such as a pipe and a screw. In order to ensure the mechanical strength when piping by screwing, the flange portion is preferably formed integrally with the main body 110 and metal. Further, the flow path port 111 opened in the flange portion forms a flow path with the measurement tube 10 built in the main body 110. The diameter of the flow path is set to substantially the same diameter from one end to the other end of the flow path port 111 to reduce loss when the detected fluid flows in one direction in the flow path. Further, the display unit 50 is fixed to the upper surface of the main body 110 so as to be orthogonal as shown in FIG. By fixing the display surface of the display unit in a posture orthogonal to the cylindrical main body, the flow rate can be easily seen from the side surface through which the fluid to be detected flows through the pipe-shaped measuring tube 10.
(Display unit 50)
(表示ユニット50) The two-wire electromagnetic flow meter shown in FIGS. 1 to 3 includes a
(Display unit 50)
表示ユニット50は被検出流体の流量等の情報を表示するための部材であり、図4に示すように表示部51として表示画面52を備える。図2の例では表示画面52に数値を表示する数値表示領域として、7セグメント式表示器を使用しており、流量等を数値で表示する。7セグメント式表示器には、検出した流量について、瞬時流量や積算流量等の数値を表示する。この図に示す表示画面52は、7セグメント式表示器を2段備えており、積算流量と設定値とを同時に表示可能としている。ただ、7セグメント式表示器を1画面のみ設けて、積算流量や瞬時流量、設定値等の表示を切り替え可能としてもよい。さらに、LED等を使用したセグメント式の表示画面52に代わって、液晶や有機EL等を使用した表示画面とすることも可能である。このように表示画面52には、流量等の数値のみならず矢印等の図形やイメージを併せて、あるいは択一的に表示させることができ、検出した流量等の情報をユーザに視認しやすい形で表示できる。
The display unit 50 is a member for displaying information such as the flow rate of the fluid to be detected, and includes a display screen 52 as the display unit 51 as shown in FIG. In the example of FIG. 2, a 7-segment display is used as a numerical display area for displaying numerical values on the display screen 52, and the flow rate and the like are displayed numerically. The 7-segment display displays numerical values such as instantaneous flow rate and integrated flow rate for the detected flow rate. The display screen 52 shown in this figure includes two stages of 7-segment displays, and can display the integrated flow rate and the set value simultaneously. However, a 7-segment display may be provided for only one screen so that the display of the integrated flow rate, instantaneous flow rate, set value, and the like can be switched. Furthermore, instead of the segment-type display screen 52 using LEDs or the like, a display screen using liquid crystal or organic EL can be used. In this way, the display screen 52 can display not only numerical values such as flow rate but also figures and images such as arrows or alternatively, and can easily display the detected flow rate information to the user. Can be displayed.
また表示ユニット50は、各種の設定を行う設定部80として操作パネル54を備えている。操作パネル54は、各種の設定を行うためのキーやボタンを備えている。図2等の例では、表示画面52に4桁の7セグメント式表示器を2段に配置し、さらに下方に操作パネル54を設け、ボタン類を配置している。この設定部80は、積算流量の初期値や所定のリセット値を設定するためのリセット設定部等として機能する。
The display unit 50 includes an operation panel 54 as a setting unit 80 for performing various settings. The operation panel 54 includes keys and buttons for performing various settings. In the example of FIG. 2 and the like, a 4-digit 7-segment display is arranged in two stages on the display screen 52, an operation panel 54 is provided below, and buttons are arranged. The setting unit 80 functions as a reset setting unit for setting an initial value of the integrated flow rate or a predetermined reset value.
なお、この例では表示画面52を表示する表示回路に、検出回路34及び励磁回路24と接続されてこれらを制御する演算手段40を組み込んでいる。ただ、演算手段を個別の部材で構成し、本体110内に組み込むことも可能であることは言うまでもない。また演算手段や検出回路、励磁回路等を統合することも可能である。
In this example, the display circuit that displays the display screen 52 incorporates a calculation means 40 that is connected to the detection circuit 34 and the excitation circuit 24 and controls them. However, it goes without saying that the calculation means can be constituted by individual members and incorporated in the main body 110. It is also possible to integrate a calculation means, a detection circuit, an excitation circuit, and the like.
さらに表示ユニット50は入力部を備えることもできる。入力部は、温度センサ等の外部機器からの入力信号や、積算値をリセットするためのリセット信号、各種設定情報等を入力するためのインターフェースである。入力部としては、データ通信可能な通信ユニットやI/O端子、メモリカード等が利用できる。また図1の例では、表示ユニット50を本体110と別体としているが、表示ユニット50を本体110に組み込んだ一体型とすることもできる。また、表示ユニットは、本体ケース110と固定する必要はなく、別の位置に表示ユニットを配置する分離型としてもよい。
Further, the display unit 50 can include an input unit. The input unit is an interface for inputting an input signal from an external device such as a temperature sensor, a reset signal for resetting the integrated value, and various setting information. As the input unit, a communication unit capable of data communication, an I / O terminal, a memory card, or the like can be used. In the example of FIG. 1, the display unit 50 is separated from the main body 110. However, the display unit 50 may be integrated with the main body 110. Further, the display unit does not need to be fixed to the main body case 110, and may be a separation type in which the display unit is arranged at another position.
この2線式電磁流量計は、伝送線DLの電流値をアナログ出力として、測定された瞬時流量や積算流量等に応じたアナログ電流を出力できる。この例では、瞬時流量が0~定格値の範囲で変化すると、4mA~20mAの範囲でアナログ電流を出力する。このため出力部として、アナログ電流の電流出力回路16を備える。アナログ電流は電圧信号に比べてノイズ耐性に優れており、これを外部に出力することで、データの記録や解析に利用できる。
(ブロック図) This two-wire electromagnetic flow meter can output an analog current corresponding to the measured instantaneous flow rate, integrated flow rate, etc., with the current value of the transmission line DL as an analog output. In this example, when the instantaneous flow rate changes in the range of 0 to the rated value, an analog current is output in the range of 4 mA to 20 mA. For this purpose, an analogcurrent output circuit 16 is provided as an output unit. Analog currents have better noise immunity than voltage signals, and can be used for data recording and analysis by outputting them externally.
(Block Diagram)
(ブロック図) This two-wire electromagnetic flow meter can output an analog current corresponding to the measured instantaneous flow rate, integrated flow rate, etc., with the current value of the transmission line DL as an analog output. In this example, when the instantaneous flow rate changes in the range of 0 to the rated value, an analog current is output in the range of 4 mA to 20 mA. For this purpose, an analog
(Block Diagram)
次に2線式電磁流量計の構成を、図4のブロック図に基づいて説明する。この図に示すように、2線式電磁流量計100は、被検出流体を通過させる測定管10と、ポールピースの周囲に巻回され、測定管10の外部から被検出流体に磁場を印加する励磁コイル22と、励磁コイル22で交番磁界を発生させるための励磁回路24と、励磁コイル22で発生される磁界中を被検出流体が通過して発生される起電力を検出するための電極30と、電極30を介して起電力を検出する検出回路34と、励磁回路24及び検出回路34を駆動制御し、さらに検出された信号から流量を演算するための演算手段40と、演算手段40で演算された流量を表示する表示部51とを備える。この演算手段40は、流量検出手段を構成する本体ケース110で検出された被検出流体の流量に基づき、積算流量を演算可能な流量演算部として機能する。また演算手段40は、流量演算値で演算された瞬時流量を加算あるいは積算して積算流量を保持するためのメモリ部42を備えている。新たに測定された瞬時流量を順次積算流量に加算することで積算流量を更新し、更新された積算値をメモリ部42に随時保持する。さらに必要に応じて、出力信号を出力するための出力部60や、外部からのリセット信号等の各種入力信号を入力するための入力部70、各種設定を行うための設定部80等を設けてもよい。これら演算手段40、表示部51、出力部60、入力部70、設定部80等は、表示ユニット50として、本体ケース110と別部材のユニット状に構成される。
(測定管10) Next, the configuration of the two-wire electromagnetic flow meter will be described based on the block diagram of FIG. As shown in this figure, a two-wireelectromagnetic flow meter 100 is wound around a measurement tube 10 that passes a detection fluid and a pole piece, and applies a magnetic field to the detection fluid from the outside of the measurement tube 10. An excitation coil 22, an excitation circuit 24 for generating an alternating magnetic field by the excitation coil 22, and an electrode 30 for detecting an electromotive force generated by the detected fluid passing through the magnetic field generated by the excitation coil 22. A detection circuit 34 for detecting an electromotive force via the electrode 30, an excitation circuit 24 and a detection circuit 34, and a calculation means 40 for calculating a flow rate from the detected signal, and a calculation means 40. And a display unit 51 for displaying the calculated flow rate. The calculation means 40 functions as a flow rate calculation unit capable of calculating the integrated flow rate based on the flow rate of the fluid to be detected detected by the main body case 110 constituting the flow rate detection means. Further, the calculation means 40 includes a memory unit 42 for adding or integrating the instantaneous flow rate calculated with the flow rate calculation value and holding the integrated flow rate. The integrated flow rate is updated by sequentially adding the newly measured instantaneous flow rate to the integrated flow rate, and the updated integrated value is held in the memory unit 42 as needed. Further, as necessary, an output unit 60 for outputting an output signal, an input unit 70 for inputting various input signals such as an external reset signal, a setting unit 80 for performing various settings, and the like are provided. Also good. The calculation means 40, the display unit 51, the output unit 60, the input unit 70, the setting unit 80, and the like are configured as a unit that is a separate member from the main body case 110 as the display unit 50.
(Measurement tube 10)
(測定管10) Next, the configuration of the two-wire electromagnetic flow meter will be described based on the block diagram of FIG. As shown in this figure, a two-wire
(Measurement tube 10)
測定管10は、管状の内部に被検出流体を通過させる絶縁性ライニングである。測定管10には、被検出流体を通過させるパイプとしての優れた耐薬品性能と、コンデンサを構成するための電気的特性とが要求される。機械的特性の面からは、測定管10は、被検出流体の圧力、温度変化による配管の伸縮に基づく引張又は圧縮の力を担う強度母体とし、かつそれに耐える所要の内径、肉厚、長さを有する剛構造部材とする。一方、電気的特性の面からは、測定管10は非磁性の絶縁性部材として誘電体材料であることが望まれる。特に測定管10の周囲に貼付される電極30と被検出流体との静電容量結合を高めS/N比を改善するために、誘電率の高い材質で構成する。このような材質としてはセラミックスやプラスチックや、セラミックスを混入したPPS樹脂で構成できる。特に後者は、比較的強度があり、且つ成形精度と高誘電性を確保できる。PPS樹脂は、耐油、耐薬品性等に優れる。また測定管10の内面には必要に応じてライニングが施工される。
The measuring tube 10 is an insulating lining that allows a fluid to be detected to pass through the inside of the tube. The measuring tube 10 is required to have excellent chemical resistance as a pipe through which a fluid to be detected passes and electrical characteristics for constituting a capacitor. From the viewpoint of mechanical characteristics, the measuring tube 10 is a strength matrix that bears the force of tension or compression based on the expansion and contraction of the pipe due to pressure and temperature changes of the fluid to be detected, and the required inner diameter, thickness, and length to withstand it. A rigid structural member having On the other hand, from the viewpoint of electrical characteristics, the measuring tube 10 is desirably a dielectric material as a nonmagnetic insulating member. In particular, the electrode 30 is made of a material having a high dielectric constant in order to enhance the capacitive coupling between the electrode 30 attached around the measuring tube 10 and the fluid to be detected and to improve the S / N ratio. Such a material can be made of ceramics, plastic, or PPS resin mixed with ceramics. In particular, the latter is relatively strong and can secure molding accuracy and high dielectric properties. PPS resin is excellent in oil resistance and chemical resistance. A lining is applied to the inner surface of the measuring tube 10 as necessary.
被検出流体は、水や非腐食性の液体であり、所定の導電率を備える液体である。非接液式の電磁流量計は、接液式の電磁流量計と異なり、電極30を被検出流体に直接接触させないため、従来は使用できなかった電極を腐食するような液体であっても測定できる。また、測定管10の材質を選択することによって、様々な被検出流体に対応できる。特に、測定精度等に対応して要求される誘電率と、被検出流体に対する耐性に応じて、測定管10の材質を選択できる。特に本実施の形態に係る2線式電磁流量計は、測定管10を本体110と別部材としているので、測定管10のみを変更し、他の構成部品を共通化して様々な仕様の2線式電磁流量計を構成でき、製品仕込みの上で有利なものとなる。
The fluid to be detected is water or a non-corrosive liquid, and a liquid having a predetermined conductivity. Unlike wetted electromagnetic flowmeters, non-wetted electromagnetic flowmeters measure even liquids that corrode electrodes that could not be used in the past because the electrode 30 is not in direct contact with the fluid to be detected. it can. Moreover, it can respond to various to-be-detected fluids by selecting the material of the measuring tube 10. FIG. In particular, the material of the measuring tube 10 can be selected according to the dielectric constant required in accordance with the measurement accuracy and the resistance to the fluid to be detected. In particular, the two-wire electromagnetic flowmeter according to the present embodiment uses the measuring tube 10 as a separate member from the main body 110, so that only the measuring tube 10 is changed and other components are shared, so that two-wires with various specifications are used. A type electromagnetic flow meter can be configured, which is advantageous in terms of product preparation.
測定管10は、本体ケース110と別部材とする。これにより、測定管10を構成する部材にはコンデンサに適した材質を選択できる。一方で本体110は、複雑な形状にも容易に成型可能な樹脂が使用できる。このように、測定管10を本体110と別部材とすることにより、各々に適した部材で構成できる。特に測定管を構成する高誘電材料は一般に高価であるため、必要な部分のみを高価な部材で構成し、他の部材はより安価な材質として全体のコストを低減できる。また、2線式電磁流量計に要求される精度等に応じて、適切な材質の測定管10を選定できる。さらに、口径の異なる測定管に交換することもできる。このように、2線式電磁流量計の検出目的や用途、求められる仕様やコストに応じて、適切な材質の測定管を選定することができる。また、複数の測定管を一の2線式電磁流量計にセット可能とすることで、多品種の2線式電磁流量計の部材を共通化して、安価に提供できる。
(電極30) Themeasurement tube 10 is a separate member from the main body case 110. Thereby, the material suitable for a capacitor | condenser can be selected for the member which comprises the measurement pipe | tube 10. FIG. On the other hand, a resin that can be easily molded into a complicated shape can be used for the main body 110. Thus, by making the measuring tube 10 a separate member from the main body 110, it can be configured by a member suitable for each. In particular, since the high dielectric material constituting the measuring tube is generally expensive, only necessary portions are made of expensive members, and the other members can be made of less expensive materials to reduce the overall cost. Further, the measuring tube 10 made of an appropriate material can be selected according to the accuracy required for the two-wire electromagnetic flow meter. Further, it can be replaced with a measuring tube having a different diameter. Thus, a measuring tube made of an appropriate material can be selected according to the detection purpose and application of the two-wire electromagnetic flow meter, the required specifications and cost. Further, by making it possible to set a plurality of measuring tubes on one 2-wire electromagnetic flow meter, the members of various types of 2-wire electromagnetic flow meters can be shared and provided at low cost.
(Electrode 30)
(電極30) The
(Electrode 30)
測定管10の周囲には電極30が配置される。電極30は、ポリイミド等の絶縁テープに銅箔をコーティングしたものが使用できる。この電極30は、円筒状の測定管10の外周に沿うように湾曲された面状の導電体であり、一対の電極30を測定管10を挟んで対向するように配置する。このように一対の電極30と被検出流体との静電結合により、流体中に発生した起電力を測定管10から外部に取り出して、流量を検出できる。各電極30は、測定管10の外周に隙間なく貼付される。貼付にはテープや接着剤等が利用できる。電極30は、好ましくは可撓性部材で構成することにより、測定管10の外面に隙間なく固定できる。
The electrode 30 is disposed around the measuring tube 10. As the electrode 30, an insulating tape such as polyimide coated with a copper foil can be used. The electrode 30 is a planar conductor that is curved along the outer periphery of the cylindrical measurement tube 10, and the pair of electrodes 30 are disposed so as to face each other with the measurement tube 10 interposed therebetween. Thus, by electrostatic coupling between the pair of electrodes 30 and the fluid to be detected, the electromotive force generated in the fluid can be taken out from the measuring tube 10 and the flow rate can be detected. Each electrode 30 is affixed to the outer periphery of the measuring tube 10 without a gap. Tape or adhesive can be used for pasting. The electrode 30 is preferably made of a flexible member and can be fixed to the outer surface of the measuring tube 10 without a gap.
また面状の導電体である電極の腐食や結露による一対の電極間の導通を防止するために、導電体は絶縁層で被覆することが好ましい。なおこの例では一対の電極を使用したが、2組以上の電極を使用することも可能である。複数組の電極を使用する場合、各電極で検出する電界が磁界と直交するように、電極の位置は調整される。
In order to prevent conduction between a pair of electrodes due to corrosion or condensation of the electrode which is a planar conductor, the conductor is preferably covered with an insulating layer. Although a pair of electrodes is used in this example, two or more sets of electrodes can be used. When a plurality of sets of electrodes are used, the positions of the electrodes are adjusted so that the electric field detected by each electrode is orthogonal to the magnetic field.
この2線式電磁流量計100の動作原理を、図4に基づいて説明する。被検出流体を導く測定管10は、測定管10の左右に配置された一対の励磁コイル22により発生し、ポールピースに導かれたほぼ平行な磁界と直交するよう配置されている。また、測定管10の上下面に対向して配置された一対の電極30は、励磁コイル22で発生される磁界及び被検出流体の通過方向と直交する方向に発生する起電力を検出するよう配置されている。この構成において、測定管10内に被検出流体が流れる、すなわち磁界と直交する方向に導電性流体が移動すると、ファラデーの電磁誘導の法則に従い被検出流体中には、その移動速度(流速)に比例した起電力が発生する。このとき起電力はファラデーの法則により磁束密度、流速及び測定管径の積に比例する。電極30は、誘導体からなる測定管10の管壁を介して被検出流体と対向し、静電容量結合されており、流体内部に発生した起電力を電気的に取り出す働きをする。取り出された起電力は、演算手段40に伝達され、流量信号に変換されて表示部51に表示され、あるいは電気信号として出力される。
The operation principle of the two-wire electromagnetic flow meter 100 will be described with reference to FIG. The measuring tube 10 that guides the fluid to be detected is generated by a pair of exciting coils 22 disposed on the left and right sides of the measuring tube 10 and is disposed so as to be orthogonal to the substantially parallel magnetic field guided to the pole piece. The pair of electrodes 30 arranged to face the upper and lower surfaces of the measuring tube 10 are arranged so as to detect the electromotive force generated in the direction perpendicular to the magnetic field generated by the exciting coil 22 and the direction of passage of the fluid to be detected. Has been. In this configuration, when the fluid to be detected flows in the measuring tube 10, that is, when the conductive fluid moves in a direction orthogonal to the magnetic field, the moving speed (flow velocity) of the fluid to be detected is increased according to Faraday's law of electromagnetic induction. Proportional electromotive force is generated. At this time, the electromotive force is proportional to the product of the magnetic flux density, the flow velocity, and the measurement tube diameter according to Faraday's law. The electrode 30 faces the fluid to be detected through the tube wall of the measuring tube 10 made of a derivative and is capacitively coupled, and functions to electrically extract an electromotive force generated in the fluid. The extracted electromotive force is transmitted to the calculation means 40, converted into a flow rate signal, displayed on the display unit 51, or output as an electrical signal.
この2線式電磁流量計は、一対の励磁コイル22を離間して配置し、励磁回路24で励磁コイル22に通電して励磁して、励磁コイル間に磁界を生じさせる。これにより、測定管10に対して、被検出流体として導電率を有する液体を流すと、液体の運動方向と直交する方向に起電力を生じさせる。なお図4の例では、励磁コイル22を2つ使用し、測定管10の左右に設けているが、励磁コイルを一とすることもできる。
In this two-wire electromagnetic flow meter, a pair of excitation coils 22 are arranged apart from each other, and the excitation coil 24 is energized and excited by an excitation circuit 24 to generate a magnetic field between the excitation coils. As a result, when a liquid having conductivity as a fluid to be detected is caused to flow through the measurement tube 10, an electromotive force is generated in a direction orthogonal to the direction of movement of the liquid. In the example of FIG. 4, two excitation coils 22 are used and are provided on the left and right sides of the measurement tube 10. However, the excitation coil may be one.
出力部60は積算値出力部や瞬時値出力部として機能できる。なお出力部は、上記の制御出力、アナログ出力、タイムアウト出力のいずれかを省略したり、あるいはさらに別の出力端子を備えてもよい。さらに、各出力端子の出力状態を示す出力表示灯を設けてもよい。
The output unit 60 can function as an integrated value output unit or an instantaneous value output unit. Note that the output unit may omit any of the control output, analog output, and timeout output, or may include another output terminal. Furthermore, you may provide the output indicator lamp which shows the output state of each output terminal.
次に図5に基づいて、2線式電磁流量計の動作の詳細について説明する。この図に示す2線式電磁流量計100は、測定管10と、電極30と、励磁コイル22と、励磁コイル22を励磁するための励磁回路24と、電極30で検出されるアナログ信号を検出する検出回路34と、検出回路34で検出されたアナログ信号をA/D変換するA/D変換器38と、演算手段40と、制御信号絶縁回路12と、電源部14とを備える。上述した部材と同一名称の部材は基本的に同一のものが利用できるため、詳細説明を省略する。また励磁コイル22は、説明を簡略化するため一のみ図示しているが、上記と同様1対もしくはそれ以上を使用できることは言うまでもない。
Next, the details of the operation of the two-wire electromagnetic flow meter will be described with reference to FIG. A two-wire electromagnetic flow meter 100 shown in this figure detects a measurement tube 10, an electrode 30, an excitation coil 22, an excitation circuit 24 for exciting the excitation coil 22, and an analog signal detected by the electrode 30. And an A / D converter 38 for A / D converting the analog signal detected by the detection circuit 34, an arithmetic means 40, a control signal insulation circuit 12, and a power supply unit 14. Since members having the same names as those described above can be basically used, detailed description thereof is omitted. Further, only one excitation coil 22 is shown for the sake of simplicity, but it goes without saying that one pair or more may be used as described above.
電源部14の変圧器20の2次側出力には、電源部14からの電荷をチャージするチャージ手段としてチャージコンデンサCCが並列に接続されている。さらに電源部14は、演算手段40からの電源制御信号に基づいて、伝送線DLを通電する1次側入力電流値(出力電流IO)を制御可能な電流出力回路16と、電流出力回路16で制御され該伝送線DLから供給される1次側入力電流の直流電力を所定の電力に変換して2次側に出力可能なスイッチング回路18とを備える。これにより、スイッチング回路18によって1次側と絶縁された2次側の出力電流IOを任意に設定でき、従来の2線式電磁流量計のように励磁コイル22の励磁電流IEを出力電流IO以下とする制約を受けることなく、より高い励磁電流IEを供給できるため、高い電圧信号を得ることが可能となり、正確な流量検出が実現できる。
(電源部14) A charge capacitor CC is connected in parallel to the secondary side output of thetransformer 20 of the power supply unit 14 as a charging means for charging the electric charge from the power supply unit 14. Further the power supply unit 14 based on the power control signal from the operation means 40, primary-side input current for energizing the transmission line DL (the output current I O) capable of controlling the current output circuit 16, the current output circuit 16 And a switching circuit 18 capable of converting the DC power of the primary side input current supplied from the transmission line DL into a predetermined power and outputting it to the secondary side. As a result, the secondary side output current IO isolated from the primary side by the switching circuit 18 can be arbitrarily set, and the excitation current IE of the excitation coil 22 can be set as the output current as in a conventional two-wire electromagnetic flow meter. Since a higher excitation current IE can be supplied without being restricted by I O or less, a high voltage signal can be obtained, and accurate flow rate detection can be realized.
(Power supply unit 14)
(電源部14) A charge capacitor CC is connected in parallel to the secondary side output of the
(Power supply unit 14)
電源部14は、外部電源に対する2本の伝送線DLと接続されている。この電源部14は、2本の伝送線DLを接続可能な1次側入力と、1次側入力と絶縁された2次側出力とを備える。電源部14は、伝送線DLから供給される直流電力を所定の電力に変換して2次側出力から出力する。電源部14の2次側出力には、励磁回路24、検出回路34等が接続される。すなわち、電源部14により励磁回路24や検出回路34は、1次側入力側に配置された電流出力回路16と絶縁されており、電源部14で絶縁回路を兼用できる。
The power supply unit 14 is connected to two transmission lines DL for the external power supply. The power supply unit 14 includes a primary side input capable of connecting two transmission lines DL, and a secondary side output insulated from the primary side input. The power supply unit 14 converts the DC power supplied from the transmission line DL into predetermined power and outputs it from the secondary output. An excitation circuit 24, a detection circuit 34, and the like are connected to the secondary side output of the power supply unit 14. That is, the excitation circuit 24 and the detection circuit 34 are insulated from the current output circuit 16 arranged on the primary side input side by the power supply unit 14, and the power supply unit 14 can also be used as an insulation circuit.
2本の伝送線DLは、図5に示すようにHIGH側の第1電源ラインと、LOW側の第1コモンラインとの対で構成される。2線式とすることで、数kmといった遠距離に電磁流量計を配置することも可能となる。
As shown in FIG. 5, the two transmission lines DL are composed of a pair of a HIGH-side first power supply line and a LOW-side first common line. By using a two-wire system, it is possible to dispose an electromagnetic flow meter at a long distance of several kilometers.
電源部14の2次側には、被検出流体を通過させる測定管10と、ポールピースの周囲に巻回され、測定管10の外部から被検出流体に磁場を印加する励磁コイル22と、励磁コイル22で交番磁界を発生させるための励磁回路24と、励磁コイル22で発生される磁界中を被検出流体が通過して発生される起電力を検出するための電極30と、電極30を介して起電力を検出する検出回路34と、検出回路34で得られたアナログ信号をデジタル信号に変換するためのA/D変換器38と、A/D変換器38のデジタル信号を入力して、検出された信号から流量に対応する1次側入力電流値となるよう、電源部14に対して電源制御信号を送出するための演算手段40が配置される。
On the secondary side of the power supply unit 14, a measurement tube 10 that allows the fluid to be detected to pass through, an excitation coil 22 that is wound around the pole piece and applies a magnetic field to the fluid to be detected from the outside of the measurement tube 10, and excitation An excitation circuit 24 for generating an alternating magnetic field in the coil 22, an electrode 30 for detecting an electromotive force generated by the detected fluid passing through the magnetic field generated in the excitation coil 22, and the electrode 30 A detection circuit 34 for detecting an electromotive force, an A / D converter 38 for converting an analog signal obtained by the detection circuit 34 into a digital signal, and a digital signal of the A / D converter 38, Arithmetic means 40 for sending a power supply control signal to the power supply unit 14 is arranged so that the primary side input current value corresponding to the flow rate is obtained from the detected signal.
電源部14は、外部電源から伝送線DLを介して供給される電力をDC/DC変換する絶縁型スイッチング電源であり、出力電流検出抵抗Roと、電流出力回路16と、スイッチング回路18で構成される。電流出力回路16は、演算手段40からの電源制御信号に基づいて、伝送線DLを通電する1次側入力電流値を制御する。またスイッチング回路18は、スイッチング制御回路19と変圧器20を含み、電流出力回路16で制御され該伝送線DLから供給される1次側入力電流から得られる直流電圧を所定の電圧にDC/DC変換回路17でDC/DC変換して、変圧器20の2次側に出力する。これにより、2次側に接続された励磁回路24および演算手段40、検出回路34等の駆動電力が供給される。特に図5に示す電源部14は、変圧器20の2次側出力として、励磁回路24と接続する励磁回路用出力と、演算手段40と接続する演算手段用出力とを個別に設けている。これにより、1次側巻き線に対する巻数を調整し、励磁回路24及び演算手段40の駆動に必要な電力に個別に調整できる。ただ、2次側出力を共通として、励磁回路24と演算手段40とを回路上で並列に接続して駆動させる構成としてもよい。この場合は、同一の第2電源ラインに励磁回路24と演算手段40を接続するため、同じ電位で両部材が駆動できるような設計としたり、抵抗で分圧する等の方法が利用できる。
The power supply unit 14 is an insulating switching power supply that DC / DC converts power supplied from an external power supply via the transmission line DL, and includes an output current detection resistor Ro , a current output circuit 16, and a switching circuit 18. Is done. The current output circuit 16 controls the primary side input current value for energizing the transmission line DL based on the power supply control signal from the calculation means 40. Further, the switching circuit 18 includes a switching control circuit 19 and a transformer 20, and is controlled by the current output circuit 16, and a DC voltage obtained from the primary side input current supplied from the transmission line DL is converted into a predetermined voltage by DC / DC. The converter circuit 17 performs DC / DC conversion, and outputs it to the secondary side of the transformer 20. As a result, drive power is supplied to the excitation circuit 24, the arithmetic means 40, the detection circuit 34, etc. connected to the secondary side. In particular, the power supply unit 14 shown in FIG. 5 is provided with an excitation circuit output connected to the excitation circuit 24 and a calculation means output connected to the calculation means 40 as secondary outputs of the transformer 20. As a result, the number of turns for the primary winding can be adjusted and adjusted individually to the power required for driving the excitation circuit 24 and the calculation means 40. However, the secondary side output may be shared, and the excitation circuit 24 and the arithmetic unit 40 may be connected and driven in parallel on the circuit. In this case, since the excitation circuit 24 and the computing means 40 are connected to the same second power supply line, a design such that both members can be driven at the same potential, or a voltage is divided by a resistor can be used.
またDC/DC変換回路17を使用して必要最小限度の出力電圧を生成し、電力損失の極めて少ない励磁回路24を構成できる。特にDC/DC変換回路17は、スイッチング動作する降圧コンバータであり、電圧変換する際の電力損失が少なく、電力損失を極減できる利点が得られる。
In addition, the DC / DC conversion circuit 17 can be used to generate the minimum required output voltage, and the excitation circuit 24 with very little power loss can be configured. In particular, the DC / DC conversion circuit 17 is a step-down converter that performs a switching operation, and there is little power loss when performing voltage conversion, and an advantage that power loss can be extremely reduced is obtained.
この構成は、従来の2線式電磁流量計のように1次側にCPU等の演算手段40や励磁回路24、アナログ信号増幅回路等の検出回路34を配置する構成と異なり、これらを2次側、すなわち入力電流と絶縁された励磁コイル22側に配置することで、様々な利点を有する。具体的には、アナログ信号増幅回路で検出された起電力を、絶縁することなく流量アナログ信号としてそのままCPUに入力できる。よって、従来は必要とされていたこの間の絶縁回路が不要となり、また絶縁によって生じていた信号化けの問題も回避できる。
Unlike the conventional two-wire electromagnetic flow meter, this configuration is different from the configuration in which the calculation means 40 such as a CPU, the excitation circuit 24, and the detection circuit 34 such as an analog signal amplification circuit are arranged on the primary side. Arrangement on the side, that is, the exciting coil 22 side insulated from the input current has various advantages. Specifically, the electromotive force detected by the analog signal amplifier circuit can be directly input to the CPU as a flow rate analog signal without insulation. Therefore, the insulation circuit between them, which has been conventionally required, becomes unnecessary, and the problem of signal corruption caused by insulation can be avoided.
また、従来より必要であったアナログ信号検出回路用の絶縁電源と、励磁回路用の電源とを一体に統合した電源部14とすることで、電源回路の個数を低減できる。換言すると、本質的に必要となるアナログ信号増幅回路用の絶縁電源を励磁回路用にも共用することで、電源回路数を少なくした構成に簡素化できる。
In addition, the number of power supply circuits can be reduced by using the power supply unit 14 in which an insulated power supply for an analog signal detection circuit and a power supply for an excitation circuit, which are conventionally required, are integrated. In other words, it is possible to simplify the configuration by reducing the number of power supply circuits by sharing the essential insulated power supply for the analog signal amplifier circuit also for the excitation circuit.
さらに励磁回路24とCPUとの間でも絶縁が不要となり、励磁回路24の駆動制御を行う励磁制御信号をCPUから直接出力できる。よって、この構成では絶縁回路は、CPUと電源部14の電流出力回路16との間でコモン電位(グラウンド)を分離する制御信号絶縁回路12のみで足りる。このように絶縁回路の数を低減できる点においても、回路構成を一層簡素化できる。
Furthermore, no insulation is required between the excitation circuit 24 and the CPU, and an excitation control signal for controlling the drive of the excitation circuit 24 can be directly output from the CPU. Therefore, in this configuration, the control circuit isolation circuit 12 that separates the common potential (ground) between the CPU and the current output circuit 16 of the power supply unit 14 is sufficient. Thus, the circuit configuration can be further simplified in that the number of insulating circuits can be reduced.
さらにまた、図5の構成で変圧器20の1次側に存在するのは、スイッチング回路18と電流出力回路16のみであるため、入力側の外部電源に対して幅広い範囲の電源電圧に対応できる利点も得られる。例えば、外部電源の電圧が低い場合でも、スイッチング回路18のデューティ比を大きくしたり、変圧器20の巻き数を大きくすることで2次側の電圧を昇圧できる。よって、例えば励磁回路24の駆動に要する電圧が外部電源電圧よりも高いような、従来では動作させることが困難であった場合でも、本実施の形態によれば絶縁型スイッチング電源によって昇圧して動作させることができる。
Furthermore, since only the switching circuit 18 and the current output circuit 16 exist on the primary side of the transformer 20 in the configuration of FIG. 5, it is possible to deal with a wide range of power supply voltages with respect to the external power supply on the input side. There are also benefits. For example, even when the voltage of the external power supply is low, the secondary voltage can be boosted by increasing the duty ratio of the switching circuit 18 or increasing the number of turns of the transformer 20. Therefore, even if it is difficult to operate in the past, such as when the voltage required for driving the excitation circuit 24 is higher than the external power supply voltage, the operation is boosted by the isolated switching power supply according to the present embodiment. Can be made.
加えて、間欠励磁方式で励磁する場合の回路構成が簡単になる利点も得られる。すなわち、1次側に励磁回路を配置した従来の2線式電磁流量計で励磁電流を増やそうとすれば、連続励磁でなく間欠励磁を行うことが考えられる。この場合は、流量に応じた1次側入力電流値の変動が大きいため、励磁回路での消費電流の変動も大きくなり、出力電流を一定に保つために大容量のコンデンサが必要になったり、電流出力回路の負担が大きくなる問題があった。これに対して図5の構成では、1次側に消費電流の変動が大きい回路がないため、内部の消費電力が変動しても出力電流IOの変動が大きくなったり、出力電流IOの変動を抑えるために大容量のコンデンサを設ける必要がない。よって2次側平滑化部分に大容量のチャージコンデンサCCを用い、そのチャージ電荷量をモニタすることで、励磁に必要な電荷が蓄えられたタイミングで励磁を行い、無駄のない高効率な間欠励磁が可能となる(詳細は後述)。このように、励磁電流を増やすために間欠励磁方式の回路とする場合の回路構成を非常に簡素化でき、電流を無駄にする部分がなく高効率にできる利点が得られる。
(電流出力回路16) In addition, there is an advantage that the circuit configuration is simplified when excitation is performed by the intermittent excitation method. That is, if the excitation current is increased with a conventional two-wire electromagnetic flow meter having an excitation circuit on the primary side, it is conceivable to perform intermittent excitation instead of continuous excitation. In this case, since the fluctuation of the primary side input current value according to the flow rate is large, the fluctuation of the consumption current in the excitation circuit is also large, and a large-capacity capacitor is required to keep the output current constant, There is a problem that the load on the current output circuit becomes large. In the configuration of FIG. 5 with respect to this, because fluctuations in the supply current to the primary side is not larger circuit, or even greater fluctuations in the output current I O internal power consumption is varied, the output current I O It is not necessary to provide a large-capacitance capacitor to suppress fluctuations. Therefore using a charge capacitor C C a large capacity on the secondary side smoothing part, by monitoring the charge amount of charge, perform excitation at a timing charge necessary for excitation stored, lean efficient intermittent Excitation is possible (details will be described later). In this way, the circuit configuration in the case of the intermittent excitation system circuit for increasing the excitation current can be greatly simplified, and there is an advantage that there is no waste of current and the efficiency can be increased.
(Current output circuit 16)
(電流出力回路16) In addition, there is an advantage that the circuit configuration is simplified when excitation is performed by the intermittent excitation method. That is, if the excitation current is increased with a conventional two-wire electromagnetic flow meter having an excitation circuit on the primary side, it is conceivable to perform intermittent excitation instead of continuous excitation. In this case, since the fluctuation of the primary side input current value according to the flow rate is large, the fluctuation of the consumption current in the excitation circuit is also large, and a large-capacity capacitor is required to keep the output current constant, There is a problem that the load on the current output circuit becomes large. In the configuration of FIG. 5 with respect to this, because fluctuations in the supply current to the primary side is not larger circuit, or even greater fluctuations in the output current I O internal power consumption is varied, the output current I O It is not necessary to provide a large-capacitance capacitor to suppress fluctuations. Therefore using a charge capacitor C C a large capacity on the secondary side smoothing part, by monitoring the charge amount of charge, perform excitation at a timing charge necessary for excitation stored, lean efficient intermittent Excitation is possible (details will be described later). In this way, the circuit configuration in the case of the intermittent excitation system circuit for increasing the excitation current can be greatly simplified, and there is an advantage that there is no waste of current and the efficiency can be increased.
(Current output circuit 16)
電流出力回路16は、図5に示すように2本の伝送線DLの間、すなわちHIGH側の第1電源ラインとLOW側の第1コモンラインとの間で、スイッチング回路18と並列に接続されている。このような電流出力回路16の回路例を、図6に示す。この図に示す電流出力回路16は、ローパスフィルタLPFと、演算増幅器162と、加算器164と、出力電流調整回路166を直列に接続している。また出力電流調整回路166は演算増幅器167とトランジスタ168、抵抗で構成され、演算増幅器167の+入力端子をグランドとし、出力をトランジスタ168のベース側に接続している。トランジスタ168のエミッタを第1コモンラインに接地し、第1コモンラインで出力電流検出抵抗Roと接続される。出力電流検出抵抗Roは、第1コモンラインを通じて外部電源に返される出力電流IOを出力電流検出電圧Vo(負電圧)に変換する。よってVo=-IORoの関係が成立する。
As shown in FIG. 5, the current output circuit 16 is connected in parallel with the switching circuit 18 between the two transmission lines DL, that is, between the HIGH-side first power supply line and the LOW-side first common line. ing. A circuit example of such a current output circuit 16 is shown in FIG. In the current output circuit 16 shown in this figure, a low-pass filter LPF, an operational amplifier 162, an adder 164, and an output current adjustment circuit 166 are connected in series. The output current adjustment circuit 166 includes an operational amplifier 167, a transistor 168, and a resistor. The + input terminal of the operational amplifier 167 is grounded, and the output is connected to the base side of the transistor 168. The emitter of the transistor 168 is grounded to the first common line, and is connected to the output current detection resistor Ro through the first common line. The output current detection resistor R o converts the output current I O returned to the external power source through the first common line into an output current detection voltage V o (negative voltage). Therefore, the relationship of V o = -I O R o is established.
この電流出力回路16の動作を図6に基づいて説明する。まず演算手段(図6に図示せず)が電源制御信号として出力電流指示信号をPWM方式で、制御信号絶縁回路12を介して電流出力回路16に送る。電流出力回路16は、そのPWM信号をローパスフィルタLPFと演算増幅器162で出力電流指示電圧Vpに変換する。さらに加算器164と出力電流調整回路166で、出力電流IOを指示された電流値に調整する。ここでは、加算器164と出力電流調整回路166はVp/R1+Vo/R2=0となるように動作する。上式において、Vo=-IoRoであるから、Io=-Vo/Ro={R2/(RoR1)}×Vpとなる。
(スイッチング回路18) The operation of thecurrent output circuit 16 will be described with reference to FIG. First, an arithmetic means (not shown in FIG. 6) sends an output current instruction signal as a power supply control signal to the current output circuit 16 via the control signal insulation circuit 12 in the PWM method. The current output circuit 16 converts the PWM signal into an output current instruction voltage V p using a low-pass filter LPF and an operational amplifier 162. Further, the adder 164 and the output current adjustment circuit 166 adjust the output current I O to the instructed current value. Here, the adder 164 and the output current adjustment circuit 166 operate so that V p / R 1 + V o / R 2 = 0. In the above equation, since V o = −I o R o , I o = −V o / R o = {R 2 / (R o R 1 )} × V p .
(Switching circuit 18)
(スイッチング回路18) The operation of the
(Switching circuit 18)
図5の電源部14のスイッチング回路18は、スイッチング制御回路19と変圧器20で構成される。スイッチング制御回路19の回路例を図7に示す。この図に示すスイッチング制御回路19は、変圧器20の1次側に並列に接続された平滑コンデンサCS1と、平滑コンデンサCS1と変圧器20の間で第1コモンライン側に接続されたスイッチング素子181と、スイッチング素子181に接続された発振回路182とを備える。スイッチング素子181にはパワーMOSFET等が使用できる。発振回路182は、演算増幅器と抵抗とコンデンサで構成される。このスイッチング回路18は発振回路182で駆動パルスを生成し、この駆動パルスをトランジスタTrのゲートに入力してON/OFFスイッチングすることで変圧器20を駆動し、2次側の出力を調整する。このようにスイッチング制御回路19でスイッチング素子181を駆動して電力をON/OFF制御し、出力を安定化させる電源部14は、小型、軽量に構成できる。
(測定管10) The switchingcircuit 18 of the power supply unit 14 in FIG. 5 includes a switching control circuit 19 and a transformer 20. A circuit example of the switching control circuit 19 is shown in FIG. The switching control circuit 19 shown in this figure includes a smoothing capacitor C S1 connected in parallel to the primary side of the transformer 20, and a switching connected to the first common line side between the smoothing capacitor C S1 and the transformer 20. An element 181 and an oscillation circuit 182 connected to the switching element 181 are provided. A power MOSFET or the like can be used for the switching element 181. The oscillation circuit 182 includes an operational amplifier, a resistor, and a capacitor. The switching circuit 18 generates a driving pulse by the oscillation circuit 182, and inputs the driving pulse to the gate of the transistor Tr to perform ON / OFF switching, thereby driving the transformer 20 and adjusting the output on the secondary side. Thus, the power supply unit 14 that drives the switching element 181 with the switching control circuit 19 to control the power ON / OFF and stabilize the output can be configured to be small and light.
(Measurement tube 10)
(測定管10) The switching
(Measurement tube 10)
測定管10は被検出流体を通過させる流路を構成する。この測定管10の流路と直交するように、一対の励磁コイル22及び電極30が各々配置される。励磁コイル22と電極30は、間に測定管10を挟むように一対の励磁コイル22及び電極30が互いに対向姿勢で固定される。また電極30は、測定管10の外部に固定され、被検出流体と隔離されて接触しない。これら励磁コイル22、電極30、測定管10とが相互に直交するように配置されることで、上述の通り起電力が発生し流量の検出が可能となる。検出回路34は、電極30で検出された起電力の電圧信号を検出する。
(演算手段40) The measuringtube 10 constitutes a flow path through which the fluid to be detected passes. A pair of exciting coils 22 and electrodes 30 are arranged so as to be orthogonal to the flow path of the measuring tube 10. The excitation coil 22 and the electrode 30 are fixed to each other so that the pair of the excitation coil 22 and the electrode 30 face each other so that the measurement tube 10 is sandwiched therebetween. The electrode 30 is fixed to the outside of the measuring tube 10 and is isolated from the fluid to be detected and does not come into contact. By arranging the exciting coil 22, the electrode 30, and the measuring tube 10 so as to be orthogonal to each other, an electromotive force is generated as described above, and the flow rate can be detected. The detection circuit 34 detects the voltage signal of the electromotive force detected by the electrode 30.
(Calculation means 40)
(演算手段40) The measuring
(Calculation means 40)
演算手段40は、検出回路34で検出された電圧信号に基づいて、測定管10の流路を通過する被検出流体の流量を演算する。また演算手段40は、励磁回路24の駆動状態を制御するための励磁制御信号を励磁回路24に出力し、さらに電源部14の駆動状態を制御する電源制御信号を電源部14に出力する。これらの信号によって演算手段40は、演算された被検出流体の流量に応じて電源部14の1次側入力に供給される伝送線DLからの電流量を制御する。この演算手段40は、CPU等で構成される。
(制御信号絶縁回路12) The computing means 40 computes the flow rate of the fluid to be detected that passes through the flow path of the measuringtube 10 based on the voltage signal detected by the detection circuit 34. The computing means 40 outputs an excitation control signal for controlling the drive state of the excitation circuit 24 to the excitation circuit 24, and further outputs a power supply control signal for controlling the drive state of the power supply unit 14 to the power supply unit 14. Based on these signals, the calculation means 40 controls the amount of current from the transmission line DL supplied to the primary side input of the power supply unit 14 according to the calculated flow rate of the fluid to be detected. The computing means 40 is composed of a CPU or the like.
(Control signal insulation circuit 12)
(制御信号絶縁回路12) The computing means 40 computes the flow rate of the fluid to be detected that passes through the flow path of the measuring
(Control signal insulation circuit 12)
制御信号絶縁回路12は、1次側入力と演算手段40との間のコモン電位を分離しつつ、演算手段40から電源部14への電源制御信号を送出する。一方で演算手段40が、電源部14の2次側出力に配置されているので、検出回路34の出力側に接続できる。これにより、励磁回路24と演算手段40を2次側出力に配置して、伝送線DLのある1次側入力と絶縁できるため、従来必要であった検出回路34と演算手段40との間の絶縁回路を不要にできる。また演算手段40を電源部14とコモン電位を絶縁した状態で、信頼性高く演算手段40から電源部14を制御できる。さらに絶縁すべき箇所を低減できるので、必要な絶縁回路の数も低減できる。
(検出回路34) The controlsignal insulation circuit 12 sends a power control signal from the computing means 40 to the power supply unit 14 while separating the common potential between the primary side input and the computing means 40. On the other hand, since the calculation means 40 is disposed at the secondary output of the power supply unit 14, it can be connected to the output side of the detection circuit 34. As a result, the excitation circuit 24 and the calculation means 40 can be arranged on the secondary side output and insulated from the primary side input with the transmission line DL. An insulation circuit can be eliminated. Further, the power supply unit 14 can be controlled from the calculation unit 40 with high reliability in a state where the calculation unit 40 and the power supply unit 14 are insulated from the common potential. Furthermore, since the number of parts to be insulated can be reduced, the number of necessary insulation circuits can also be reduced.
(Detection circuit 34)
(検出回路34) The control
(Detection circuit 34)
図5に示す検出回路34は、電極30で検出される電圧信号を増幅するアナログ信号増幅回路で構成される。アナログ信号増幅回路は、各電極30に各々接続されるバッファ回路341と、バッファ回路341の出力を入力する差動増幅器342と、差動増幅器342の出力を入力する増幅器343を備える。バッファ回路341は、電極30で検出された信号を増幅するプリアンプを構成する。2線式電磁流量計においては、電極30と被検出流体との静電容量結合が一般に数十pF程度と小さいため、電気信号を通すためのフィルタを設ける際の抵抗のインピーダンスが極めて高くなる。このため、各電極30にバッファ回路341を接続してインピーダンスを下げている。各電極30で検出された電気信号は、バッファ回路341を介して差動増幅器342の入力に各々入力され、差分を増幅器343で増幅された後、A/D変換器38を介して演算手段40に出力される。なおアナログ信号増幅回路には、演算手段40から周期的に送られるリセット信号を受けて検出された電圧をリセットするための回路として、周期性リセット回路を必要に応じて設けてもよい。
(励磁回路24) Thedetection circuit 34 shown in FIG. 5 includes an analog signal amplification circuit that amplifies the voltage signal detected by the electrode 30. The analog signal amplifier circuit includes a buffer circuit 341 connected to each electrode 30, a differential amplifier 342 that inputs an output of the buffer circuit 341, and an amplifier 343 that inputs an output of the differential amplifier 342. The buffer circuit 341 constitutes a preamplifier that amplifies the signal detected by the electrode 30. In a two-wire electromagnetic flow meter, since the capacitive coupling between the electrode 30 and the fluid to be detected is generally as small as several tens of pF, the impedance of the resistance when providing a filter for passing an electrical signal is extremely high. For this reason, the buffer circuit 341 is connected to each electrode 30 to reduce the impedance. The electric signals detected by the electrodes 30 are respectively input to the inputs of the differential amplifier 342 via the buffer circuit 341, and after the difference is amplified by the amplifier 343, the arithmetic means 40 via the A / D converter 38. Is output. The analog signal amplifier circuit may be provided with a periodic reset circuit as necessary as a circuit for resetting a voltage detected by receiving a reset signal periodically sent from the computing means 40.
(Excitation circuit 24)
(励磁回路24) The
(Excitation circuit 24)
励磁コイル22を励磁して交番磁界を発生させるためには、励磁回路24を利用する。電源部14は、励磁回路24を駆動するための定電圧電源として、低電圧VLと高電圧VHを備えている。励磁回路24は、励磁コイル22に励磁極性切替回路を介して、定電圧電源の低電圧VL、高電圧VHと励磁定電流回路29(後述)を接続している。低電圧VL、高電圧VHから供給される直流定電圧により、励磁定電流回路29で定電流を発生させると共に、ブリッジ状にスイッチを接続した励磁極性切替回路でスイッチングして交流化し、励磁コイル22に交流電流を通電する。
In order to generate the alternating magnetic field by exciting the exciting coil 22, an exciting circuit 24 is used. Power supply unit 14, as a constant voltage power supply for driving the excitation circuit 24, a low voltage V L and the high voltage V H. The excitation circuit 24 connects a low voltage V L and a high voltage V H of a constant voltage power source and an excitation constant current circuit 29 (described later) to the excitation coil 22 via an excitation polarity switching circuit. A constant current is generated by the excitation constant current circuit 29 by a constant DC voltage supplied from the low voltage V L and the high voltage V H , and switching is performed by an excitation polarity switching circuit having a switch connected in a bridge shape to generate an alternating current. An alternating current is passed through the coil 22.
励磁回路24は、電源部14の2次側出力の第2電源ラインに接続される。図8に、励磁回路24の一例を示す。この図に示す励磁回路24は、ブリッジ状に接続されたトランジスタTr1~4と、ブリッジの中央に接続された励磁コイル22と、励磁コイル22に通電されるコイル電流ILを一定値とするための励磁定電流回路29とを備える。ここで、コイル電流ILとは、励磁コイル22に通電される電流であって交番電流であり、励磁電流IEとは励磁コイル22からブリッジ回路を経て励磁定電流回路29に通電される電流であり、直流電流である。すなわち励磁電流IEはコイル電流ILの絶対値と等しい。なお図8では、説明のため励磁コイル22はブリッジの中央に配置しているが、実際の装置では図5に示すように励磁コイル22は測定管10の近傍に配置される。
(励磁定電流回路29) Theexcitation circuit 24 is connected to a second power supply line of the secondary side output of the power supply unit 14. FIG. 8 shows an example of the excitation circuit 24. Excitation circuit 24 shown in this figure, the transistors Tr1 ~ 4 which are connected like a bridge, and the exciting coil 22 connected to the center of the bridge, the coil current I L to be energized exciting coil 22 to a constant value The excitation constant current circuit 29 is provided. Here, the coil current I L is a current that is passed through the excitation coil 22 and is an alternating current, and the excitation current I E is a current that is passed from the excitation coil 22 through the bridge circuit to the excitation constant current circuit 29. It is a direct current. That excitation current I E is equal to the absolute value of the coil current I L. In FIG. 8, the exciting coil 22 is disposed in the center of the bridge for the sake of explanation. However, in an actual apparatus, the exciting coil 22 is disposed in the vicinity of the measuring tube 10 as shown in FIG.
(Excitation constant current circuit 29)
(励磁定電流回路29) The
(Excitation constant current circuit 29)
励磁定電流回路29は、トランジスタTr5と、演算増幅器A2と、基準電圧Vref1と、励磁電流検出抵抗REで構成される。演算増幅器A2の反転入力(-)は励磁電流検出抵抗REと、非反転入力(+)は基準電圧Vref1と、それぞれ接続され、また出力側はトランジスタTr5のゲートに入力されている。この励磁定電流回路29では、励磁電流検出抵抗REで励磁電流IEを検出し、これを励磁電流検出電圧VREに変換して演算増幅器A2の反転入力(-)に入力している。この励磁電流検出電圧VREが基準電圧Vref1と等しくなるよう、演算増幅器A2がトランジスタTr5を制御する。すなわち励磁電流検出電圧VREと基準電圧Vref1との差分がトランジスタTr5のゲートに入力され、トランジスタTr5の出力を調整することで、励磁電流IEを調整するフィードバック制御を行っている。またブリッジトランジスタTr1~Tr4のゲートは、それぞれ演算手段40に接続されており(図8に図示せず)、演算手段40から送られる励磁制御信号として励磁タイミング信号SETにより、各ブリッジトランジスタTr1~Tr4がON/OFF駆動される。演算手段40は、励磁タイミング信号SETによりブリッジトランジスタTr1~Tr4で励磁コイル22にコイル電流ILを流すタイミングを制御する。そして励磁電流検出電圧VREが基準電圧Vref1と等しくなるよう、演算増幅器A2がトランジスタTr5を制御することで、励磁電流IEを定電流とする。
Exciting the constant current circuit 29 includes transistors Tr 5, an operational amplifier A 2, and the reference voltage V ref1, constituted by the excitation current detecting resistor R E. The inverting input (−) of the operational amplifier A 2 is connected to the exciting current detection resistor R E , the non-inverting input (+) is connected to the reference voltage V ref1, and the output side is input to the gate of the transistor Tr 5 . . In this excitation constant current circuit 29, the excitation current I E is detected by the excitation current detection resistor R E , converted into the excitation current detection voltage V RE and input to the inverting input (−) of the operational amplifier A 2 . . The operational amplifier A 2 controls the transistor Tr 5 so that the excitation current detection voltage V RE becomes equal to the reference voltage V ref1 . That the difference between the exciting current detection voltage V RE and the reference voltage V ref1 is input to the gate of the transistor Tr 5, by adjusting the output of the transistor Tr 5, feedback control is performed for adjusting the excitation current I E. The gates of the bridge transistors Tr 1 to Tr 4 are connected to the calculation means 40 (not shown in FIG. 8), and each bridge transistor is used as an excitation control signal sent from the calculation means 40 by an excitation timing signal SET. Tr 1 to Tr 4 are driven ON / OFF. The calculating means 40 controls the timing of causing the coil current IL to flow through the exciting coil 22 by the bridge transistors Tr 1 to Tr 4 by the excitation timing signal S ET . The operational amplifier A 2 controls the transistor Tr 5 so that the excitation current detection voltage V RE becomes equal to the reference voltage V ref1 , thereby making the excitation current IE constant.
図9に、励磁コイル22に流れるコイル電流IL及び励磁電流IEの波形パターンの一例を示す。図9において(a)はブリッジトランジスタTr1、Tr4、(b)はブリッジトランジスタTr2、Tr3、(c)はコイル電流IL、(d)は励磁電流IEの波形パターンをそれぞれ示している。この図に示すように、ブリッジ状に配置した図8のブリッジトランジスタTr1、Tr4及びTr2、Tr3を交互にON/OFFすることで、励磁コイル22を流れるコイル電流ILの向きを図8に示すA、Bの方向に変化させ、交番磁界を生成できる。これにより直流の励磁電流IEから交流のコイル電流ILを得ることができる。
FIG. 9 shows an example of a waveform pattern of the coil current I L and the excitation current I E flowing through the excitation coil 22. In FIG. 9, (a) is a bridge transistor Tr 1 , Tr 4 , (b) is a bridge transistor Tr 2 , Tr 3 , (c) is a coil current I L , and (d) is a waveform pattern of an excitation current IE. ing. As shown in this figure, the direction of the coil current I L flowing through the exciting coil 22 is changed by alternately turning on / off the bridge transistors Tr 1 , Tr 4 and Tr 2 , Tr 3 of FIG. An alternating magnetic field can be generated by changing in the directions of A and B shown in FIG. Thereby, the AC coil current IL can be obtained from the DC excitation current IE .
なお一般に、励磁コイルには電圧を印加しても直ちにはコイル電流が流れず、これが定電流域に達するまでにある程度の時間を要する。よって、図9に示すように、コイル電流ILの向きを切り替える際にはなだらかな電流変化が生じる。この部分を改善するためには、励磁コイル22にコイル電流ILを通電する際には励磁コイル22に高電圧VHを印加し、定電流になった後には低電圧VLに切り替えるよう、図8に示す第2電源ラインを切替制御することが好ましい(詳細は後述)。
(実施例2) In general, even when a voltage is applied to the exciting coil, a coil current does not flow immediately, and a certain amount of time is required for this to reach a constant current range. Therefore, as shown in FIG. 9, it occurs gentle current change when switching the direction of the coil current I L. In order to improve this part, a high voltage V H is applied to theexciting coil 22 when the coil current I L is applied to the exciting coil 22 and switched to the low voltage V L after the constant current is reached. It is preferable to switch and control the second power supply line shown in FIG. 8 (details will be described later).
(Example 2)
(実施例2) In general, even when a voltage is applied to the exciting coil, a coil current does not flow immediately, and a certain amount of time is required for this to reach a constant current range. Therefore, as shown in FIG. 9, it occurs gentle current change when switching the direction of the coil current I L. In order to improve this part, a high voltage V H is applied to the
(Example 2)
以上の図5では、電源部14の2次側出力に励磁回路24と演算手段40を並列に接続する例を説明した。ただ、この構成に限られず、2次側に配置した励磁回路24及びその他の回路は、直列接続とすることもできる。このような回路例を、実施例2に係る2線式電磁流量計200として図10に示す。この図に示す2線式電磁流量計200も、1次側は図5と同様の構成が利用できる。また2次側の部材も、図5と同様の部材が利用できるため、これらの詳細説明を省略する。図10の2線式電磁流量計200は、電源部14の2次側出力の第2電源ラインである励磁回路電源ラインに励磁回路24を接続する。さらに励磁回路24と直列に演算手段40及びA/D変換器38を接続した上で、2次側出力の回路コモンラインと接続している。また演算手段40とA/D変換器38とは並列とし、励磁回路24を経て励磁回路コモンラインと接続される。よって励磁回路コモンラインが、演算手段40やA/D変換器38等、励磁回路以外の回路電源ラインとなる。
In the above FIG. 5, the example in which the excitation circuit 24 and the computing means 40 are connected in parallel to the secondary side output of the power supply unit 14 has been described. However, the present invention is not limited to this configuration, and the excitation circuit 24 and other circuits arranged on the secondary side can be connected in series. An example of such a circuit is shown in FIG. 10 as a two-wire electromagnetic flow meter 200 according to the second embodiment. The two-wire electromagnetic flow meter 200 shown in this figure can use the same configuration as that in FIG. 5 on the primary side. Moreover, since the member similar to FIG. 5 can be utilized also for the member of a secondary side, these detailed description is abbreviate | omitted. The two-wire electromagnetic flow meter 200 of FIG. 10 connects the excitation circuit 24 to the excitation circuit power supply line which is the second power supply line of the secondary side output of the power supply unit 14. Further, the calculation means 40 and the A / D converter 38 are connected in series with the excitation circuit 24 and then connected to the circuit common line of the secondary output. The arithmetic means 40 and the A / D converter 38 are connected in parallel, and are connected to the excitation circuit common line via the excitation circuit 24. Therefore, the excitation circuit common line becomes a circuit power supply line other than the excitation circuit, such as the arithmetic means 40 and the A / D converter 38.
ただこの構成では、演算手段40等励磁回路以外の回路コモンラインと、励磁回路コモンラインが異なることになる。このため、演算手段40から励磁回路24に送出する励磁制御信号すなわち励磁タイミング信号SETのレベルが異なるため、これらの間を回路上絶縁する必要がある。このため、励磁回路24と演算手段40との間の励磁タイミング信号線に、励磁信号絶縁回路12Bを設けている。
(電源部14) However, in this configuration, the circuit common line other than the excitation circuit such as thearithmetic unit 40 is different from the excitation circuit common line. For this reason, since the level of the excitation control signal sent from the arithmetic means 40 to the excitation circuit 24, that is, the excitation timing signal SET is different, it is necessary to insulate them. Therefore, an excitation signal insulation circuit 12B is provided on the excitation timing signal line between the excitation circuit 24 and the calculation means 40.
(Power supply unit 14)
(電源部14) However, in this configuration, the circuit common line other than the excitation circuit such as the
(Power supply unit 14)
次に、電源部14の構成例を図11に基づいて説明する。この図に示す2線式電磁流量計は、電源部14の2次側出力の構成を簡素化して図示している。ここでは絶縁型スイッチング電源として、DC/DC変換回路17と、電流出力回路16が統合されており、2次側出力と出力電流IOが調整される。この図に示す電源部14は、スイッチング素子181と、スイッチング素子181のON/OFFを制御する発振回路182と、出力電流検出抵抗Roと、変圧器20と、平滑コンデンサCS1を備える。この電源部14は、スイッチング素子181を用いてスイッチング動作を行い、これを平滑コンデンサCS1で平滑化する。スイッチング素子181はMOSFET等のパワートランジスタTrが利用できる。発振回路182は、発振周波数とデューティを調整して、スイッチング素子181のスイッチングパターンを変化させることができる。発振回路182でスイッチング素子181のスイッチングパターンを変化させることで、出力電流IOを調節する。
Next, a configuration example of the power supply unit 14 will be described with reference to FIG. The two-wire electromagnetic flow meter shown in this figure shows a simplified configuration of the secondary output of the power supply unit 14. Here, the DC / DC conversion circuit 17 and the current output circuit 16 are integrated as an insulating switching power supply, and the secondary output and the output current IO are adjusted. The power supply unit 14 shown in this figure includes a switching element 181, an oscillation circuit 182 that controls ON / OFF of the switching element 181, an output current detection resistor Ro , a transformer 20, and a smoothing capacitor C S1 . The power supply unit 14 performs a switching operation using the switching element 181 and smoothes it with the smoothing capacitor C S1 . As the switching element 181, a power transistor Tr such as a MOSFET can be used. The oscillation circuit 182 can change the switching pattern of the switching element 181 by adjusting the oscillation frequency and the duty. The output current I O is adjusted by changing the switching pattern of the switching element 181 by the oscillation circuit 182.
この電源部14は、従来のように回路内部で消費し切れない余剰電流をトランジスタに通電して熱として消費することで帳尻を合わせる構成としない。これに代わって、指示された出力電流IOになるよう、発振回路182がトランジスタTrのデューティを調整し、スイッチング電源の2次側に送出する電力を可変にすることで、出力電流IOを調整している。これにより、電源電圧、出力電流IOの変動に強く、広い電源電圧・出力電流で高効率に維持できる。特に、どのような電源電圧あるいは出力電流であっても、最大限スイッチング電源で2次側に電力を送出するようにDC/DC変換させるため、余分な電力等が発生せず、熱として消費させる必要がない利点が得られる。また電源電圧が上昇した場合であっても、その上昇分の電力を無駄に消費することなく内部回路で有効活用できる利点は、他の回路形式では得られない優れた特長である。また2線式電磁流量計の場合、最も消費電力が大きいのは励磁回路であるため、励磁電流を一定にして間欠励磁を行う場合(後述)や、励磁電流を動的に変化させる場合の回路構成においても、高効率な動作が実現できる。
The power supply unit 14 does not have a configuration in which the excess current that cannot be consumed in the circuit as in the prior art is applied to the transistor and consumed as heat so as to match the book. Instead, the oscillation circuit 182 adjusts the duty of the transistor Tr so that the instructed output current I O is obtained, and the power sent to the secondary side of the switching power source is made variable, so that the output current I O is reduced. It is adjusted. As a result, it is resistant to fluctuations in the power supply voltage and output current IO , and can be maintained at a high efficiency with a wide power supply voltage and output current. In particular, any power supply voltage or output current is DC / DC converted so that power is sent to the secondary side with a switching power supply as much as possible, so no extra power is generated and consumed as heat. There is an advantage that is not necessary. In addition, even when the power supply voltage rises, the advantage that it can be effectively used in the internal circuit without wastefully consuming the increased power is an excellent feature that cannot be obtained by other circuit formats. In the case of a two-wire electromagnetic flow meter, the excitation power circuit consumes the largest amount of power, so a circuit for intermittent excitation with a constant excitation current (described later) or a circuit for dynamically changing the excitation current. Even in the configuration, highly efficient operation can be realized.
なお、図11の例では変圧器を用いた絶縁型スイッチング電源を説明したが、これに限定されるものでなく、例えば変圧器を使用しない非絶縁型の電源でも利用できる。このような2線式電磁流量計を変形例として図12に示す。この図に示す2線式電磁流量計の電源部は、平滑コンデンサCS1と、スイッチング素子181Bと、コイルLと、チャージコンデンサCCと、発振回路182Bとを備える。この2線式電磁流量計の回路動作は、上述した絶縁型スイッチング電源とほぼ同じであり、出力電流IOが出力電流指示信号で指示された値になるよう発振回路182Bを動作させることで、出力電流IOを調整する。
In the example of FIG. 11, the insulated switching power supply using a transformer has been described. However, the present invention is not limited to this, and for example, a non-insulated power supply that does not use a transformer can be used. FIG. 12 shows such a two-wire electromagnetic flow meter as a modification. The power supply unit of the two-wire electromagnetic flow meter shown in this figure includes a smoothing capacitor C S1 , a switching element 181B, a coil L, a charge capacitor C C, and an oscillation circuit 182B. The circuit operation of this two-wire electromagnetic flow meter is almost the same as that of the above-described isolated switching power supply, and by operating the oscillation circuit 182B so that the output current I O becomes a value indicated by the output current instruction signal, Adjust the output current IO .
次に、発振回路182を用いて、トランジスタTrのスイッチング速度を変化させる様子を、図13~図16の波形パターンに基づいて説明する。これらの図において、図13は出力電流IOを小さくする場合の動作、図14は出力電流IOを大きくする場合の動作、図15は電源電圧が上がった場合の動作、図16は下がった場合の動作を、それぞれ示している。また各図において、VAI3は図11に示すトランジスタTrのゲート電圧、VT1は同じく変圧器20の1次側電圧を、それぞれ示している。
Next, how the switching speed of the transistor Tr is changed using the oscillation circuit 182 will be described based on the waveform patterns of FIGS. In these figures, FIG. 13 shows an operation when the output current I O is reduced, FIG. 14 shows an operation when the output current I O is increased, FIG. 15 shows an operation when the power supply voltage is increased, and FIG. 16 shows a decrease. The operation of each case is shown. In each figure, V AI3 indicates the gate voltage of the transistor Tr shown in FIG. 11, and V T1 also indicates the primary voltage of the transformer 20.
まず、出力電流IOを小さくする場合は、演算手段40から出力される出力電量指示信号としての出力電流指示電圧VIOを低くする。充電時間Tonを一定とした場合、VAI3の休止時間のみが長くなってデューティが相対的に小さくなるため、トランジスタTrのスイッチングデューティが小さくなり、出力電流IOは減少する。
First, the case of reducing the output current I O, the lower the output current command voltage V IO as the output coulometric instruction signal outputted from the operation means 40. If a constant charging time T on, since the duty is relatively smaller only downtime V AI3 is long, the switching duty of the transistor Tr becomes smaller, the output current I O is reduced.
一方、出力電流IOを大きくする場合は、出力電流指示電圧VIOを高くする。すると図14に示すようにVAI3のデューティが大きくなるため、トランジスタTrのスイッチングデューティが大きくなり、出力電流IOは増加する。
On the other hand, when increasing the output current I O is to increase the output current indicating voltage V IO. Then, as shown in FIG. 14, since the duty of V AI3 increases, the switching duty of the transistor Tr increases, and the output current I O increases.
このように、変圧器20の1次側をスイッチングするデューティ比を変化させることで、出力電流IOを変化させている。なお、出力電流を変化させる方式はこの構成に限られず、例えばスイッチングの周波数を変化させることでも同様の変化を実現できる。
In this way, the output current I O is changed by changing the duty ratio for switching the primary side of the transformer 20. The method of changing the output current is not limited to this configuration, and the same change can be realized by changing the switching frequency, for example.
またスイッチング電源は、外部電源の電源電圧が変動しても安定した出力を維持する安定化電源としても機能する。例えば、図15に示すように電源電圧が上がると、変圧器20の1次側電圧VT1も増加し、振幅値が大きくなる。この場合は、1回の変圧器20のスイッチングで伝送できる電力が増加する。いいかえると、1回の変圧器20のスイッチングでの消費電流が増加することになる。そこで、変圧器20をスイッチングするオフ時間Toffを長くするように発振回路182が働くことで、相対的に電流を低下させ、出力電流IOを指示値に維持することができる。
The switching power supply also functions as a stabilized power supply that maintains a stable output even when the power supply voltage of the external power supply fluctuates. For example, as shown in FIG. 15, when the power supply voltage increases, the primary side voltage V T1 of the transformer 20 also increases and the amplitude value increases. In this case, the power that can be transmitted by switching the transformer 20 once increases. In other words, the current consumption for switching the transformer 20 once increases. Therefore, the oscillation circuit 182 works so as to lengthen the off time Toff for switching the transformer 20, so that the current can be relatively reduced and the output current IO can be maintained at the indicated value.
逆に電源電圧が低下した場合は、1回の変圧器20のスイッチングで伝送できる電力が減少することになる。いいかえると、1回の変圧器20のスイッチングでの消費電流が減少する。このため、図16に示すように変圧器20のスイッチングのオフ時間Toffを短くするように発振回路182が働くことで、相対的にオン時間を長く、すなわち電流値を大きくして、出力電流IOを指示値に維持することができる。
On the other hand, when the power supply voltage decreases, the power that can be transmitted by switching the transformer 20 once decreases. In other words, the current consumed by switching the transformer 20 once is reduced. Therefore, by working the oscillation circuit 182 so as to shorten the off time T off of the switching transformer 20 as shown in FIG. 16, relatively on time long, namely by increasing the current value, the output current I O can be maintained at the indicated value.
このように、出力電流IOを所望の指示値に維持するように、スイッチングのデューティや周波数を変化させる方式を採用することで、電源電圧が変化した場合でもスイッチング電源がその変化分に対応して出力電流IOを一定に維持することができ、出力の安定化と信頼性の向上が図られる。これによりスイッチング電源は、現在供給されている電源電圧や、現在出力する出力電流IOにおける最大限のスイッチングを行い、常時スイッチング電源の出力側に高効率に電力伝送ができる利点が得られる。
In this way, by adopting a method of changing the switching duty and frequency so as to maintain the output current IO at a desired indication value, the switching power supply can respond to the change even when the power supply voltage changes. Thus, the output current IO can be kept constant, and the output can be stabilized and the reliability can be improved. As a result, the switching power supply can perform the maximum switching with respect to the power supply voltage that is currently supplied and the output current IO that is currently output, and the power can be efficiently transferred to the output side of the switching power supply at all times.
以上のように、検出された流量に応じて決定される出力電流値となるように発振回路182がスイッチングを行っているため、無駄な消費電流を排除して、指示された出力電流値で効率よくスイッチングを行うことができる。このため、従来の方式と比べて、電力を熱に変換して消費させる部分がなく、効率面で優れる。特に2線式の電磁流量計は元来利用可能な電力が少ないため、この特長は有益である。また電源電圧の変動に強い利点も得られ、電源電圧が変動しても、その電源電圧で指示電流値になるようにスイッチングのデューティが調整できる。
(余剰電流調整回路185) As described above, since theoscillation circuit 182 performs switching so that the output current value is determined according to the detected flow rate, unnecessary current consumption is eliminated, and the efficiency is improved with the instructed output current value. Switching can be performed well. For this reason, compared with the conventional system, there is no part which converts electric power into heat and is consumed, and it is excellent in efficiency. In particular, this feature is beneficial because the two-wire electromagnetic flowmeter originally has less power available. In addition, a strong advantage is obtained against fluctuations in the power supply voltage, and even if the power supply voltage fluctuates, the switching duty can be adjusted so that the indicated current value is obtained at the power supply voltage.
(Surplus current adjustment circuit 185)
(余剰電流調整回路185) As described above, since the
(Surplus current adjustment circuit 185)
なお、デューティや周波数を可変としたスイッチング電源においても、変動できる消費電力には制限がある。すなわち、スイッチング電源で伝送できる消費電力が上限に達すると、残りの電力を消費することができない。そこで、このような場合にも対応できるよう、余剰の電流を消費するための余剰電流調整回路を付加した2線式電磁流量計の例を、変形例として図17に示す。この2線式電磁流量計は、絶縁型スイッチング電源としてDC/DC変換回路17と、デューティ調整回路を含む発振回路182と、トランジスタTr6と抵抗で構成される余剰電流調整回路185と、トランジスタTr6を制御するトランジスタ制御回路184と、出力電流検出抵抗Roと、制御信号絶縁回路12とを備える。この図に示す2線式電磁流量計は、上述したスイッチング電源に、従来と同様の電流出力回路16Bを併用している。すなわち、スイッチング電源で伝送できる消費電力が上限に達した場合に、余剰分の電流をトランジスタTr6に通電して消費するため余剰電流調整回路185を、変圧器20の1次側に設けている。また余剰電流調整回路185は、スイッチング電源の出力側に配置することもできる。図18に、流量と出力電流IOの関係を示したグラフを示す。この図に示すように、出力電流IOを4mAから20mAの範囲で変化させる際、電流値がスイッチング電源で伝送できる上限までの範囲では、スイッチング電源で伝送し、回路内部で電流を消費する。一方、図18にクロスハッチングで示すスイッチング電源伝送上限以上の範囲では、余剰分の電流を余剰電流調整回路185にて消費する。すなわちトランジスタTr6をONとし、抵抗とトランジスタTr6で余剰分を消費する。
(実施例3 間欠励磁を行う励磁回路) Even in a switching power supply with variable duty and frequency, the power consumption that can be varied is limited. That is, when the power consumption that can be transmitted by the switching power supply reaches the upper limit, the remaining power cannot be consumed. In view of this, an example of a two-wire electromagnetic flow meter to which a surplus current adjusting circuit for consuming surplus current is added so as to cope with such a case is shown in FIG. 17 as a modified example. This two-wire electromagnetic flow meter includes a DC /DC conversion circuit 17 as an insulating switching power supply, an oscillation circuit 182 including a duty adjustment circuit, a surplus current adjustment circuit 185 including a transistor Tr 6 and a resistor, a transistor Tr 6 includes a transistor control circuit 184 for controlling 6 , an output current detection resistor Ro, and a control signal insulation circuit 12. The two-wire electromagnetic flow meter shown in this figure uses a current output circuit 16B similar to the conventional one in combination with the switching power supply described above. That is, when the power that can be transmitted by a switching power supply has reached the upper limit, the excess current regulating circuit 185 for consumption by energizing the surplus current to the transistor Tr 6, is provided on the primary side of the transformer 20 . The surplus current adjustment circuit 185 can also be arranged on the output side of the switching power supply. FIG. 18 is a graph showing the relationship between the flow rate and the output current IO . As shown in this figure, when the output current I O is changed in the range of 4 mA to 20 mA, the current is transmitted by the switching power supply in the range up to the upper limit that can be transmitted by the switching power supply, and the current is consumed inside the circuit. On the other hand, the surplus current adjusting circuit 185 consumes the surplus current in the range equal to or higher than the switching power transmission upper limit indicated by cross hatching in FIG. That is, the transistor Tr 6 is turned ON, and the surplus is consumed by the resistor and the transistor Tr 6 .
Example 3 Excitation circuit that performs intermittent excitation
(実施例3 間欠励磁を行う励磁回路) Even in a switching power supply with variable duty and frequency, the power consumption that can be varied is limited. That is, when the power consumption that can be transmitted by the switching power supply reaches the upper limit, the remaining power cannot be consumed. In view of this, an example of a two-wire electromagnetic flow meter to which a surplus current adjusting circuit for consuming surplus current is added so as to cope with such a case is shown in FIG. 17 as a modified example. This two-wire electromagnetic flow meter includes a DC /
Example 3 Excitation circuit that performs intermittent excitation
さらに、スイッチング電源の出力側に、電力可変とした励磁回路を用いることもできる。このような励磁回路を用いた2線式電磁流量計を実施例3として図19に示す。この図に示す2線式電磁流量計300は、DC/DC変換回路17を含む電源部14と、電源部14の2次側に接続される励磁回路24と、励磁回路24に供給するチャージ電圧Vcをモニタするチャージ電荷モニタ回路26と、チャージ電荷モニタ回路26からチャージ完了信号を受信して励磁回路24の励磁開始を指示する励磁タイミング信号SETを励磁回路24に出力するための演算手段40と、演算手段40への電源供給と信号増幅を行うための定電圧電源25と、測定管10と、電極30と、検出回路34と、A/D変換器38とを備える。各部材の内、上述した部材と同一名称の部材は、基本的に上記実施例のものと同様であり、詳細説明を省略する。
Furthermore, an excitation circuit with variable power can be used on the output side of the switching power supply. A two-wire electromagnetic flow meter using such an excitation circuit is shown in FIG. A two-wire electromagnetic flow meter 300 shown in this figure includes a power supply unit 14 including a DC / DC conversion circuit 17, an excitation circuit 24 connected to the secondary side of the power supply unit 14, and a charge voltage supplied to the excitation circuit 24. a charge charge monitoring circuit 26 which monitors the V c, calculation means for outputting the excitation timing signal S ET instructing excitation start of excitation circuit 24 receives the charging completion signal from the charge charge monitoring circuit 26 to the excitation circuit 24 40, a constant voltage power supply 25 for supplying power to the arithmetic means 40 and performing signal amplification, a measuring tube 10, an electrode 30, a detection circuit 34, and an A / D converter 38. Of the members, the members having the same names as those described above are basically the same as those in the above-described embodiment, and detailed description thereof will be omitted.
この励磁回路24は、励磁コイル22を励磁するためのコイル電流ILをほぼ一定に維持している。従来の電磁流量計のようにコイル電流を変更すると、信号の直線性が悪くなることがあるが、コイル電流を変化させず適切な値で一定に保つことにより、直線性を高め高精度な流量検出が実現できる。また、出力電流値を一定にする場合は、その値の設定が重要となる。すなわち電流値を低く設定すると、該低い電流値で励磁コイルを励磁できるように励磁回路を設計する必要があるが、この設計において出力電流値が高い場合は、励磁回路で消費されない電流が増えて熱等で無駄に消費されることとなる。そこで本実施例においては、電流値を最低の電流値に設定せず、これよりも高い電流値としている。この場合、電流値が低い流量範囲では励磁できないので、この範囲では励磁を一時的に休止する間欠励磁を行っている。具体的な電流値の設定は、流量50%での電流値に設定している(出力電流IOの範囲が4-20mAの場合は12mA)。これにより、50%以上の電流範囲では連続励磁を行え、高精度の流量検出を安定して行える。また50%以下の電流範囲では、上記の通り間欠励磁を行うことで、コイル電流ILを一定値に維持している。さらに、50%以上の領域においても余剰電流を捨てることなく、後述する励磁コイル22の立ち上がり電圧(高電圧VH)の充電に利用して立ち上がり特性を改善している。
The excitation circuit 24 maintains the coil current I L for exciting the excitation coil 22 substantially constant. If the coil current is changed as in a conventional electromagnetic flow meter, the linearity of the signal may deteriorate. However, by keeping the coil current constant at an appropriate value without changing the coil current, the linearity is improved and the flow rate is highly accurate. Detection can be realized. Further, when the output current value is made constant, setting of the value is important. In other words, if the current value is set low, it is necessary to design the excitation circuit so that the excitation coil can be excited with the low current value. However, if the output current value is high in this design, the current that is not consumed by the excitation circuit increases. It is wasted due to heat and the like. Therefore, in this embodiment, the current value is not set to the lowest current value but is set to a higher current value. In this case, since excitation cannot be performed in the flow range where the current value is low, intermittent excitation is performed in this range to temporarily stop the excitation. The specific current value is set to a current value at a flow rate of 50% (12 mA when the output current IO is in the range of 4-20 mA). Thereby, continuous excitation can be performed in a current range of 50% or more, and highly accurate flow rate detection can be stably performed. In the current range of 50% or less, by performing as intermittent excitation described above, it maintains the coil current I L at a constant value. Further, the rising characteristics are improved by using the charging of the rising voltage (high voltage V H ) of the exciting coil 22 described later without throwing away the surplus current even in the region of 50% or more.
間欠励磁の実行中は、励磁の休止期間中に、回路の駆動に必要な電力を超える電力を蓄えておき、励磁可能な電力が得られた時点で休止期間から励磁期間に移行し、励磁を開始する。また励磁開始後、電力が消費されて励磁の継続が不能となった時点で、再び励磁期間から休止期間に移行して放電から充電に切り替える。具体的には、励磁電流がOFFされたタイミングで、電力のチャージコンデンサへのチャージを開始する。図19の例では、励磁回路24と並列に、定電圧電源25とチャージ電荷モニタ回路26とが接続される。定電圧電源25は電源部14から受けた電力をDC/DC変換して、演算手段40を駆動する電圧値に調整して供給する。一方チャージ電荷モニタ回路26は、励磁回路24にコイル電流ILを供給するために必要な電圧をモニタする。具体的には、間欠励磁の際に励磁回路24からチャージ電荷モニタ回路26にチャージ電圧指示信号が指示されると、チャージコンデンサCCへのチャージを開始して、所定の電圧がチャージされた時点で励磁回路24に対しチャージ電圧Vcを供給する。
During intermittent excitation, the power exceeding the power required for circuit drive is stored during the excitation pause period, and when the excitable power is obtained, the pause period is switched to the excitation period. Start. In addition, after the start of excitation, when electric power is consumed and the continuation of excitation becomes impossible, the excitation period is again switched to the rest period, and switching from discharging to charging is performed. Specifically, charging of the power to the charge capacitor is started at the timing when the excitation current is turned off. In the example of FIG. 19, a constant voltage power supply 25 and a charge charge monitor circuit 26 are connected in parallel with the excitation circuit 24. The constant voltage power supply 25 performs DC / DC conversion on the electric power received from the power supply unit 14, and adjusts and supplies it to a voltage value for driving the computing means 40. On the other hand charge the charge monitor circuit 26 monitors the voltage necessary to supply the coil current I L to the excitation circuit 24. Time Specifically, the when the charge voltage instruction signal from the excitation circuit 24 to the charge charge monitoring circuit 26 during the intermittent excitation is instructed, the start of the charge to the charge capacitor C C, a predetermined voltage is charged To supply the charge voltage V c to the excitation circuit 24.
次に、このような励磁回路を構成した2線式電磁流量計を図20に示す。この図に示す2線式電磁流量計は、電源部14の2次側部分の励磁回路24及びその周辺回路を示している。この2線式電磁流量計は、スイッチング制御回路19と、変圧器20と、チャージ手段として、電源回路の2次側で励磁コイル22を励磁する電圧を生成するチャージコンデンサCCと、チャージコンデンサCCに蓄えられたチャージ電荷をモニタするチャージ電荷モニタ回路26と、チャージ電荷モニタ回路26のモニタ結果に基づいて励磁のタイミングを指示する励磁タイミング信号SETを送出する演算手段40と、励磁回路24として、励磁コイル22と、励磁コイル22の励磁の極性を切り替える励磁極性切替回路28と、励磁コイル22に流れるコイル電流ILを一定に維持する励磁定電流回路29と、残留電圧検出回路180とを備える。
Next, FIG. 20 shows a two-wire electromagnetic flow meter that constitutes such an excitation circuit. The two-wire electromagnetic flow meter shown in this figure shows an excitation circuit 24 and its peripheral circuit in the secondary side portion of the power supply unit 14. The two-wire electromagnetic flow meter includes a switching control circuit 19, a transformer 20, a charge capacitor C C that generates a voltage for exciting the excitation coil 22 on the secondary side of the power supply circuit, and a charge capacitor C as a charging means. a charge charge monitoring circuit 26 for monitoring the charge charge stored and C, the calculating means 40 for delivering the excitation timing signal S ET to indicate the timing of the excitation on the basis of the monitoring result of the charge charge monitor circuit 26, the excitation circuit 24 as, an exciting coil 22, an exciting polarity switching circuit 28 for switching the polarity of the excitation of the exciting coil 22, an exciting constant current circuit 29 to keep the coil current I L flowing through the exciting coil 22 constant, the residual voltage detection circuit 180 Is provided.
図20の回路では、スイッチング電源である電源部14の2次側に、チャージ電荷モニタ回路26を用いた励磁回路24を備えており、間欠励磁を行う。チャージ電荷モニタ回路26は励磁休止期間中に電源部14からチャージコンデンサCCにチャージされる電荷をモニタし、規定の電力がチャージできた時点で、演算手段40に対しチャージ完了信号CHG_COMPを送出する。演算手段40は、チャージ完了信号CHG_COMPを受領すると、ブリッジ状の励磁極性切替回路28を構成する各ブリッジスイッチSWB1~SWB4に励磁タイミング信号SETを送り、励磁を開始する。
In the circuit of FIG. 20, an excitation circuit 24 using a charge charge monitor circuit 26 is provided on the secondary side of the power supply unit 14 which is a switching power supply, and intermittent excitation is performed. Charge charge monitor circuit 26 monitors the charge is charged from the power supply unit 14 during the excitation dead time to charge the capacitor C C, when the prescribed power is able to charge, and sends a charging completion signal CHG_COMP to computing means 40 . Computing means 40, upon receiving the charge completion signal CHG_COMP, each bridge switches SW B1 ~ SW B4 constituting a bridge-like excitation polarity switching circuit 28 sends an excitation timing signal S ET, starts excitation.
また一方で演算手段40は、残留電圧検出タイミング信号SRVを残留電圧検出回路180に送出し、励磁コイル22の残留電圧を一定に維持する。励磁定電流回路29には、トランジスタTr5と励磁電流検出抵抗REの電圧降下により残留電圧が生じる。特にトランジスタTr5の電圧降下分は電力損失となって発熱の原因となる。この残留電圧を残留電圧検出回路180で検出して、残留電圧が小さくなるように制御する。
On the other hand, the arithmetic means 40 sends a residual voltage detection timing signal S RV to the residual voltage detection circuit 180 and maintains the residual voltage of the exciting coil 22 constant. The exciting constant current circuit 29, the residual voltage is caused by the voltage drop of the transistor Tr 5 and the exciting current detection resistor R E. In particular the voltage drop of the transistor Tr 5 causes fever becomes the power loss. This residual voltage is detected by the residual voltage detection circuit 180 and controlled so that the residual voltage becomes small.
このようにして残留電圧検出回路180は、励磁定電流回路29内の消費電流が少なくなるようにチャージ電圧Vcを指示するチャージ電圧指示信号をチャージ電荷モニタ回路26に送る。チャージ電荷モニタ回路26は、チャージコンデンサCCに蓄えられる電荷量をチャージ電圧Vcでモニタする。また、励磁を開始できると判断するチャージ電圧Vcは、励磁コイル22の残留電圧が一定になるように設定される。これにより、励磁コイル22に応じたチャージ電圧Vcに設定され、どのようなサイズ、特性の励磁コイルを使用しても適切な電力に調整されるため、無駄な電流消費を極減できる。なお、ここでのチャージ電圧Vcは、上述した低電圧VLと同様のものである。
(間欠励磁) In this way, the residualvoltage detection circuit 180 sends a charge voltage instruction signal for instructing the charge voltage V c to the charge charge monitor circuit 26 so that the current consumption in the excitation constant current circuit 29 is reduced. The charge charge monitor circuit 26 monitors the amount of charge stored in the charge capacitor C C with the charge voltage V c . In addition, the charge voltage V c for determining that excitation can be started is set so that the residual voltage of the excitation coil 22 becomes constant. As a result, the charge voltage V c corresponding to the excitation coil 22 is set and the power is adjusted to an appropriate power regardless of the size and characteristics of the excitation coil, so that wasteful current consumption can be reduced to a minimum. Here, the charge voltage V c is the same as the low voltage V L described above.
(Intermittent excitation)
(間欠励磁) In this way, the residual
(Intermittent excitation)
図20の励磁極性切替回路28は、中央の励磁コイル22を挟んでブリッジ状に接続された4つのブリッジスイッチSWB1-B4を備える。励磁コイル22に対して斜めに位置するブリッジスイッチSWB1とSWB4及びSWB2とSWB3の対を一組として同時にON/OFFさせると共に、これらの組を交互にON/OFFすることで、励磁コイル22にコイル電流ILを正逆方向に交互に通電する。なおコイル電流ILの通電方向を区別するために、コイル電流ILが順方向(図8において右向き)の励磁をP側励磁、逆方向の励磁をN側励磁と呼ぶ。ここで図21~図23に基づいて、連続励磁及び間欠励磁のパターンを説明する。図21は連続励磁のパターンを示しており、交互にP側励磁、N側励磁を繰り返している。一方図22はP側励磁、N側励磁を一組として連続して励磁した後、休止期間を設け、再度P側励磁、N側励磁を行う動作を繰り返している。また間欠励磁はこのパターンに限られず、例えば図23に示すように、P側励磁、N側励磁、P側励磁、N側励磁、P側励磁という奇数回の励磁を連続させた後、休止期間を設け、再開時にはN側励磁から開始している。これにより、励磁の度に最初に行われる励磁の極性を交互に入れ替えることができ、バランス良く励磁を行うことができる。
The excitation polarity switching circuit 28 of FIG. 20 includes four bridge switches SW B1-B4 connected in a bridge shape with the central excitation coil 22 interposed therebetween. A pair of bridge switches SW B1 and SW B4 and SW B2 and SW B3 positioned obliquely with respect to the exciting coil 22 are simultaneously turned ON / OFF, and these sets are alternately turned ON / OFF, thereby exciting the pair. the coil 22 is energized the coil current I L alternately in forward and reverse directions. We note in order to distinguish the current direction of the coil current I L, called the coil current I L P side excitation the excitation of the forward (rightward in FIG. 8), the reverse excitation of the N side exciting. Here, the pattern of continuous excitation and intermittent excitation will be described with reference to FIGS. FIG. 21 shows a pattern of continuous excitation, in which P-side excitation and N-side excitation are alternately repeated. On the other hand, FIG. 22 repeats the operation of performing the P-side excitation and the N-side excitation again after the P-side excitation and the N-side excitation are continuously excited as a set, and then a pause period is provided. In addition, intermittent excitation is not limited to this pattern. For example, as shown in FIG. 23, after an odd number of excitations such as P-side excitation, N-side excitation, P-side excitation, N-side excitation, and P-side excitation are continued, And starts from N-side excitation when restarting. As a result, the polarity of the excitation that is initially performed at every excitation can be alternately switched, and excitation can be performed in a well-balanced manner.
さらに、図20の回路で励磁コイル22の間欠励磁を行う場合の動作例を、図24の波形パターンに示す。この図において図24(a)は励磁の基本周期を示し、図24(b)は励磁コイル22の両端電圧、図24(c)はコイル電流IL、図24(d)は励磁電流検出電圧VRE、図24(e)は演算手段40が出力する電源切替信号SVH、図24(f)は低電圧VL、図24(g)はチャージ電荷モニタ回路26から出力されるチャージ完了信号CHG_COMP、図24(h)は残留電圧検出タイミング信号SRVの波形を、それぞれ示している。図24(a)は、休止期間を設けた間欠励磁でP側励磁とN側励磁を交互に行うタイミングを示している。図20に示す励磁コイル22を設けた励磁極性切替回路28の4つのブリッジスイッチSWB1-B4の内、SWB1とSWB4、SWB2とSWB3を対にして交互に、図20右下に示す演算手段40からの励磁タイミング信号SETでON/OFFさせることで、励磁コイル22に交流電流を交互に通電し、交番磁界を発生させる。図24では、P側励磁を1回行った後、休止期間を挟んでN側励磁を1回行うという、励磁期間を1回(奇数回)とする励磁を繰り返す例を説明している。
Further, an example of operation when the exciting coil 22 is intermittently excited in the circuit of FIG. 20 is shown in the waveform pattern of FIG. 24A shows the basic period of excitation, FIG. 24B shows the voltage across the excitation coil 22, FIG. 24C shows the coil current I L , and FIG. 24D shows the excitation current detection voltage. V RE , FIG. 24E shows the power supply switching signal S VH output from the computing means 40, FIG. 24F shows the low voltage V L , and FIG. 24G shows the charge completion signal output from the charge charge monitor circuit 26. CHG_COMP and FIG. 24H show the waveforms of the residual voltage detection timing signal S RV , respectively. FIG. 24A shows the timing for alternately performing P-side excitation and N-side excitation in intermittent excitation with a pause period. Of the four bridge switches SW B1 -B4 of the excitation polarity switching circuit 28 provided with the excitation coil 22 shown in FIG. 20, SW B1 and SW B4 and SW B2 and SW B3 are alternately paired, and the lower right part of FIG. It is to oN / OFF by the excitation timing signal S ET from the calculating means 40 shown, energized alternately an alternating current to the exciting coil 22 generates an alternating magnetic field. FIG. 24 illustrates an example in which the excitation with the excitation period of one (odd number) is repeated, in which the P-side excitation is performed once and then the N-side excitation is performed once with a pause period in between.
励磁の開始は、演算手段40から励磁タイミング信号SETをブリッジスイッチSWB1~SWB4に指示して行われる。励磁コイル22への電圧印加時は、コイル電流ILを流れ易くするために高い電圧を印加することが好ましい。よって図24(e)に示すように演算手段40の出力(電源切替信号SVH)をHIGHとし、電源切替スイッチ192をONとして、図24(b)に示すように励磁コイル電源の高電圧VHを印加する。その後励磁コイル22にコイル電流ILが流れ始めると、図24(d)に示すように励磁定電流回路29の励磁電流検出電圧VREが次第に高くなる。そして励磁電流検出電圧VREが所定の閾値を超えると、図24(e)に示すように電源切替信号SVHがOFFとなり、電源切替スイッチ192がOFFとなる結果、図24(b)に示すように低電圧VLに切り替えられて励磁コイル22に印加される。この状態で、コイル電流ILは図24(c)に示すようにほぼ一定値となる。なお図24(c)に示す破線は、当初から低電圧VLを印加した場合にコイル電流ILが増加する様子を示している。破線で示すように励磁コイル22は立ち上がり特性が悪いため、電圧投入時の投入電圧を高くすることで、立ち上がりを急峻にして安定した励磁を短時間で得ることができるようになる。
Excitation is started by instructing the excitation timing signal SET from the calculation means 40 to the bridge switches SW B1 to SW B4 . When a voltage is applied to the exciting coil 22, it is preferable to apply a high voltage so that the coil current IL can easily flow. Therefore, as shown in FIG. 24 (e), the output (power supply switching signal S VH ) of the calculation means 40 is set to HIGH, the power supply changeover switch 192 is turned on, and the high voltage V of the exciting coil power supply as shown in FIG. 24 (b). Apply H. If then the coil current I L to the excitation coil 22 begins to flow, the exciting current detection voltage V RE of the excitation constant current circuit 29 as shown in FIG. 24 (d) is gradually increased. When the excitation current detection voltage V RE exceeds a predetermined threshold value, the power source switching signal S VH is turned off and the power source switching switch 192 is turned off as shown in FIG. Thus, the voltage is switched to the low voltage V L and applied to the exciting coil 22. In this state, the coil current I L becomes a substantially constant value as shown in FIG. Note that the broken line shown in FIG. 24C indicates that the coil current I L increases when the low voltage V L is applied from the beginning. As indicated by the broken line, the excitation coil 22 has poor rise characteristics. Therefore, by increasing the applied voltage at the time of voltage application, it becomes possible to obtain a stable excitation in a short time with a sharp rise.
一方、低電圧VLについては図24(f)に示すように、励磁コイルの立ち上げから通常の定電流に移行した際の励磁コイル残留電圧が所定値となるように、残留電圧検出回路180が調整している。また図24(g)のチャージ電荷モニタ回路26のチャージ完了信号CHG_COMPが演算手段40に入力されると、演算手段40から励磁極性切替回路28に励磁タイミング信号SETが出力されて、図24(a)に示すように励磁が開始される。
On the other hand, for the low voltage V L , as shown in FIG. 24 (f), the residual voltage detection circuit 180 is set so that the excitation coil residual voltage becomes a predetermined value when the excitation coil starts up and shifts to a normal constant current. Has been adjusted. Further, when the charge completion signal CHG_COMP charge charge monitor circuit 26 of FIG. 24 (g) is inputted to the arithmetic unit 40, is output excitation timing signal S ET from the arithmetic unit 40 to the excitation polarity switching circuit 28, FIG. 24 ( Excitation is started as shown in a).
以上のように実施例3では、間欠励磁の際の休止期間は一定ではなく、休止期間ができるだけ少なくなるよう回路が判断して励磁を行っている。これにより供給されている電力内で最も効率的な励磁が行える。また、休止期間中には流量演算等が必要ないため、演算手段40を構成するCPUも消費電力を減らし、最低限の動作のみを行う。CPUの消費電力を減らす方法は、クロック分周、メインクロックとは別にサブクロックを持つ等、動作周波数を低くする方法が利用できる。
As described above, in the third embodiment, the pause period during intermittent excitation is not constant, and the circuit performs the excitation by determining that the pause period is as short as possible. As a result, the most efficient excitation can be performed within the supplied power. Further, since the flow rate calculation and the like are not required during the suspension period, the CPU constituting the calculation means 40 also reduces power consumption and performs only a minimum operation. As a method of reducing the power consumption of the CPU, a method of lowering the operating frequency such as clock division and having a sub clock separately from the main clock can be used.
図20の回路を構成する具体例を、図25に示す。励磁極性切替回路28の各ブリッジスイッチSWB1-B4はブリッジトランジスタTr1~Tr4で構成され、図示しない演算手段40からの励磁タイミング信号SETでON/OFFを制御される。
(チャージ電荷モニタ回路26) A specific example constituting the circuit of FIG. 20 is shown in FIG. Each bridge switches SW B1-B4 of the excitationpolarity switching circuit 28 is constituted by bridge transistors Tr 1 ~ Tr 4, the ON / OFF control by the excitation timing signal S ET from the calculating means 40, not shown.
(Charge Charge Monitor Circuit 26)
(チャージ電荷モニタ回路26) A specific example constituting the circuit of FIG. 20 is shown in FIG. Each bridge switches SW B1-B4 of the excitation
(Charge Charge Monitor Circuit 26)
間欠励磁の際にチャージ電荷モニタ回路26で休止期間を制御する波形パターンを図26に示す。この図において図26(a)は励磁タイミング、図26(b)はチャージ電圧Vc、図26(c)はチャージ完了信号CHG_COMPの波形を、それぞれ示している。励磁期間においては、励磁電流IEが流れると共に、チャージコンデンサCCの放電によりVcは低下する。励磁が終了し休止期間になると、励磁電流IEが停止され、チャージコンデンサCCへのチャージが開始される。そしてVcが上昇して、チャージ電圧指示電圧V2に達すると、図20に示す演算手段40から励磁タイミング信号SETがブリッジスイッチSWB1-B4に出力されて、再び励磁電流IEが励磁コイル22に通電される。このようにしてチャージコンデンサCCに蓄えられた電力は、励磁期間に励磁コイル22で消費され、休止期間に電源部14からチャージされる。
FIG. 26 shows a waveform pattern for controlling the pause period by the charge charge monitor circuit 26 during intermittent excitation. 26A shows the excitation timing, FIG. 26B shows the charge voltage V c , and FIG. 26C shows the waveform of the charge completion signal CHG_COMP. In the excitation period, the flows excitation current I E, Vc due to the discharge of the charge capacitor C C is reduced. The excitation is ended quiescent period, the exciting current I E is stopped, the charge to the charge capacitor C C is started. Then Vc rises, and reaches the charge voltage command voltage V 2, is output from the operation unit 40 shown in FIG. 20 the excitation timing signal S ET bridge switches SW B1-B4, again exciting current I E is the excitation coil 22 is energized. Power stored in the charge capacitor C C in this way, is consumed by the excitation coil 22 to the exciting period, it is charged from the power supply unit 14 to pause.
この励磁回路24は、休止期間を一定とせず、チャージ電圧指示電圧V2 及びチャージコンデンサCCの電荷量に応じて動的に変化する。すなわち、指示されたチャージ電圧指示電圧V2 に達した時点で速やかに励磁が開始されるので、チャージコンデンサCCへの充電が早く完了すると、その分だけ休止期間も短くなる。休止期間が短い程、励磁される期間が相対的に長くなり、流量検出の精度向上及び安定動作に貢献できる。
The excitation circuit 24, without the pause period is constant, dynamically changes according to the charge amount of the charge voltage command voltage V 2 and a charge capacitor C C. That is, since the rapidly energized upon reaching the charge voltage command voltage V 2 which is instructed is started, the charging of the charge capacitor C C is completed earlier, is shortened rest period by that amount. The shorter the pause period, the longer the period of excitation, which can contribute to improved flow rate detection accuracy and stable operation.
またこの回路では、チャージコンデンサCCへの供給電荷量が十分であれば、間欠励磁に移行することなく連続励磁を維持できる。出力電流IOが増え連続励磁を維持できる場合の動作例を図27に示す。この図も上記図26と同様、(a)は励磁タイミング、(b)はチャージ電圧Vc、(c)はチャージ完了信号CHG_COMPの波形を、それぞれ示している。図27に示すように、チャージコンデンサCCにチャージされる電力が、励磁回路24で消費する電力を上回る場合は、Vcが指示されたチャージ電圧指示電圧V2 を下回らないため、励磁電流IEの通電を維持する連続励磁が可能となる。このため、後述するアンプモードにおいて出力電流を付加することで、間欠励磁を行うことなく連続励磁を維持して、高精度な流量検出が可能となる。
In this circuit, if is sufficient supply amount of charge to the charge capacitor C C, it can maintain a continuous excitation without shifting the intermittent excitation. FIG. 27 shows an operation example in the case where the output current I O increases and the continuous excitation can be maintained. Similarly to FIG. 26, (a) shows the excitation timing, (b) shows the charge voltage V c , and (c) shows the waveform of the charge completion signal CHG_COMP. As shown in FIG. 27, since the power is charged to the charge capacitor C C is, if exceeding the power consumed by the excitation circuit 24, no less than the charge voltage command voltage V 2 which Vc is instructed, the exciting current I E Can be continuously excited to maintain the current. For this reason, by adding an output current in an amplifier mode, which will be described later, continuous excitation can be maintained without performing intermittent excitation, and highly accurate flow rate detection can be performed.
このように間欠励磁のタイミングは、チャージ電荷モニタ回路26が決定する。間欠励磁の周期は、出力電流値で規定することも考えられるが、この方法ではオフセット等を考慮する必要があり、どうしても電流の無駄が生じてしまう。これに対して本実施例では、チャージ電荷モニタ回路26がチャージコンデンサCCに蓄えられた電荷量をモニタし、チャージ可能な電圧になった時点で放電する構成としているため、現実の電荷量に即した動作ができ、電流を無駄に消費しない高効率の駆動が可能となる。またこの方式では、現実の電圧値をモニタするため、励磁コイル等の特性を変更しても、常に実際の電荷量をモニタして励磁可能なタイミングを決定できるので、異なる励磁コイルにも対応できるという利点も得られる。
Thus, the charge charge monitor circuit 26 determines the timing of intermittent excitation. Although it is conceivable that the intermittent excitation cycle is defined by the output current value, in this method, it is necessary to consider an offset or the like, and the current is wasted. In this embodiment the contrary, to monitor the amount of charge charge charge monitoring circuit 26 is stored in the charge capacitor C C, because it configured to discharge when it becomes chargeable voltage, the charge amount of the actual It is possible to operate in accordance with high efficiency driving without wasting current. In this method, since the actual voltage value is monitored, the actual charge amount can always be monitored and the excitation possible timing can be determined even if the characteristics of the excitation coil etc. are changed. The advantage is also obtained.
なお本実施の形態のチャージ電荷モニタ回路26では、励磁コイルの励磁電圧を一のみとしているが、図20、図24等に示したように、励磁電圧を複数設けることもできる。特に励磁コイルは、電圧印加時の立ち上がりが遅いため、電流投入時には通常電圧よりも高い電圧を印加することが好ましい。図28に、コイル立ち上げ時の電圧として通常の低電圧VLよりも高電圧VHを生成するチャージ手段の例を示す。このチャージ手段は、高電圧VHと低電圧VLを供給するよう、電源部14の2次側に巻数の異なる複数のコイルと整流ダイオード、チャージコンデンサCCを各々備えている。この回路では、チャージ電圧Vcの上にさらに第2チャージコンデンサCC2を積み上げて、高電圧VHを得ている。この構成では、高電圧VHがチャージ電圧VCを基準に作られるため、Vcの上下変動と合わせてVHも上下変動する。
In the charge charge monitor circuit 26 of the present embodiment, only one excitation voltage is applied to the excitation coil, but a plurality of excitation voltages may be provided as shown in FIGS. In particular, the excitation coil has a slow rise at the time of voltage application, and therefore it is preferable to apply a voltage higher than the normal voltage when a current is applied. FIG. 28 shows an example of charging means for generating a voltage V H higher than the normal low voltage V L as the voltage at the time of starting up the coil. This charging means includes a plurality of coils, rectifier diodes, and charge capacitors CC having different turns on the secondary side of the power supply unit 14 so as to supply a high voltage V H and a low voltage V L. In this circuit, a second charge capacitor C C2 is further stacked on the charge voltage V c to obtain a high voltage V H. In this configuration, since the high voltage V H is generated based on the charge voltage V C , V H also fluctuates up and down together with the up and down fluctuation of Vc.
次に図25の回路の詳細について、図29の波形パターンを参照しながら説明する。図25に示す励磁コイル22の電源は2種類設けられており、通常電圧(低電圧VL)であるチャージ電圧Vcと、励磁コイル立ち上げ時用の高電圧VHである。通常はチャージ電圧Vcで励磁するが、電圧印加時には、高電圧を印加した方が励磁電流IEの立ち上がりが速くなるため、これらを電源切替スイッチ192で切り替えて使用する。励磁極性切替回路28のブリッジスイッチSWB1-B4を構成するブリッジトランジスタTr1~Tr4は、Tr1・Tr4とTr2・Tr3を組とし、励磁コイル22に正負両方の励磁電圧を印加することができ、この結果励磁コイル22には交流電流が流れる。図29は連続励磁動作時の波形パターンを示しており、(a)はブリッジトランジスタTr1・Tr4のON/OFFタイミング、(b)はブリッジトランジスタTr2・Tr3のON/OFFタイミング、(c)は励磁コイル22に印加される励磁電圧、(d)は励磁電流IE、(e)は励磁電流検出電圧VRE、(f)は電源切替信号SVH、(h)は残留電圧検出タイミング信号SRVの波形を、それぞれ示している。なお(c)においては、VC、VHはチャージコンデンサの放電であるため、若干傾斜を示す。
(励磁定電流回路29) Next, details of the circuit of FIG. 25 will be described with reference to the waveform pattern of FIG. Two types of power sources for theexciting coil 22 shown in FIG. 25 are provided, that is, a charge voltage V c that is a normal voltage (low voltage V L ) and a high voltage V H for starting up the exciting coil. Normally, excitation is performed with the charge voltage V c , but when a voltage is applied, the rise of the excitation current IE becomes faster when a high voltage is applied. Therefore, these are switched by the power switch 192 for use. The bridge transistors Tr 1 to Tr 4 constituting the bridge switches SW B1 to B4 of the excitation polarity switching circuit 28 are a combination of Tr 1 · Tr 4 and Tr 2 · Tr 3 , and apply both positive and negative excitation voltages to the excitation coil 22. As a result, an alternating current flows through the exciting coil 22. FIG. 29 shows a waveform pattern during continuous excitation operation, where (a) is the ON / OFF timing of the bridge transistors Tr 1 and Tr 4 , (b) is the ON / OFF timing of the bridge transistors Tr 2 and Tr 3 , c) Excitation voltage applied to the excitation coil 22, (d) Excitation current I E , (e) Excitation current detection voltage V RE , (f) Power supply switching signal S VH , (h) Residual voltage detection The waveforms of the timing signal S RV are shown. In (c), V C and V H are slightly inclined because of discharge of the charge capacitor.
(Excitation constant current circuit 29)
(励磁定電流回路29) Next, details of the circuit of FIG. 25 will be described with reference to the waveform pattern of FIG. Two types of power sources for the
(Excitation constant current circuit 29)
励磁定電流回路29は、演算増幅器A2とトランジスタTr5、励磁電流検出抵抗RE、基準電圧Vref1で構成される。演算増幅器A2の非反転入力は基準電圧Vref1と、反転入力は励磁電流検出抵抗REとトランジスタTr5との間と、それぞれ接続され、また出力側はトランジスタTr5と接続される。演算増幅器A2の反転入力(励磁電流検出抵抗REとトランジスタTr5との間)の電圧を励磁電流検出電圧VREとすると、演算増幅器A2はVref1=励磁電流検出電圧VREとなるようにトランジスタTr5を駆動する。その結果、励磁電流IE=VRE(≒Vref1)/R2になるように制御される。
The excitation constant current circuit 29 includes an operational amplifier A 2 , a transistor Tr 5 , an excitation current detection resistor R E , and a reference voltage V ref1 . The non-inverting input of the operational amplifier A 2 and the reference voltage V ref1, inverting input and between the exciting current detection resistor R E and the transistor Tr 5, are connected, and the output side is connected to the transistor Tr 5. When the voltage at the inverting input of the operational amplifier A 2 (between the exciting current detection resistor R E and the transistor Tr 5) and exciting current detection voltage V RE, the operational amplifier A 2 becomes V ref1 = exciting current detection voltage V RE driving the transistor Tr 5 as. As a result, control is performed so that the excitation current I E = V RE (≈V ref1 ) / R 2 .
励磁定電流回路29は、励磁電流検出電圧VREが基準電圧Vref1に近づくようにトランジスタTr5を制御している。具体的には、励磁電流検出電圧VREが所定の基準値よりも低いときは、電源切替スイッチ192を構成するトランジスタTr6をONすることで励磁コイル22は高電圧VHで駆動される。逆に高い場合はトランジスタTr6はOFFとなり、励磁コイル22はチャージ電圧Vcで駆動される。
The excitation constant current circuit 29 controls the transistor Tr 5 so that the excitation current detection voltage V RE approaches the reference voltage V ref1 . Specifically, when the excitation current detection voltage V RE is lower than a predetermined reference value, the excitation coil 22 is driven by the high voltage V H by turning on the transistor Tr 6 constituting the power supply switch 192. Conversely, when it is high, the transistor Tr 6 is turned off and the exciting coil 22 is driven by the charge voltage V c .
またこれとは逆に、チャージ電荷モニタ回路26から出力するチャージ完了信号CHG_COMPを演算手段40に出力し、演算手段40で励磁タイミング信号SETを発生させる構成に変えて、演算手段を介さずに専用の回路を設けることもできる。ただ、この場合は休止期間中に演算手段の動作周波数を変更する等して消費電力を低減するメリットを享受できない。
(実施例4 アンプモード) Also conversely, it outputs a charge completion signal CHG_COMP output from the chargecharge monitoring circuit 26 to the arithmetic unit 40, instead of the configuration for generating the excitation timing signal S ET in computing means 40, without using the operation means A dedicated circuit can also be provided. However, in this case, it is not possible to enjoy the advantage of reducing power consumption by changing the operating frequency of the calculation means during the suspension period.
(Example 4 amplifier mode)
(実施例4 アンプモード) Also conversely, it outputs a charge completion signal CHG_COMP output from the charge
(Example 4 amplifier mode)
また電磁流量計は、出力電流IOを4-20mAで動作させるノーマルモードの他、測定精度を向上させるために、出力電流を増して動作させるアンプモードに切り替えるアンプモード切替機能を備えることもできる。アンプモードでは、例えば4-20mAの消費電流に20mAの付加電流(ベース電流)を加えた24-40mAで動作させることで、励磁電流IEを増加させ起電力を大きくしてより安定な性能が得られるようになる。この結果、間欠励磁の休止期間を低減或いは排除し、連続励磁で安定した測定を実現できる。
In addition to the normal mode in which the output current IO is operated at 4-20 mA, the electromagnetic flow meter can also have an amplifier mode switching function for switching to an amplifier mode in which the output current is increased in order to improve measurement accuracy. . In the amplifier mode, for example, by operating at 24-40 mA, which is a 4-20 mA consumption current plus an additional current (base current) of 20 mA, the excitation current IE is increased and the electromotive force is increased, resulting in more stable performance. It will be obtained. As a result, it is possible to reduce or eliminate the pause period of intermittent excitation and realize stable measurement with continuous excitation.
このようなアンプモード切替機能を備える電磁流量計を、実施例4として図30に示す。この図に示す電磁流量計400は、演算手段40がモード切替手段の機能を果たす他は、図19の電磁流量計300とほぼ同じ構成であり、図19と同一の部材については詳細説明を省略する。演算手段40は、ノーマルモードから、出力電流に所定の付加電流を付加して出力するアンプモードへの切替を指示するアンプモード指示信号SAPを、電源部14及び励磁回路24に出力する。電源部14及び励磁回路24は、アンプモード指示信号SAPを受けると、付加電流を付加したアンプモードの動作に移行する。またアンプモードにおいては、出力電流IOを増加させるため、出力電流を受ける外部機器においても、電流増加分に対応して流量を検出する機構が必要となる。例えば、アンプモードに対応した変換器を接続して、電流増加分を加味した流量に適切に変換する。またアンプモード切替手段も、このような変換器等のアンプモード対応型外部機器と接続されたことを自動的に検出して、アンプモードに切り替えるよう構成してもよい。
An electromagnetic flow meter having such an amplifier mode switching function is shown in FIG. The electromagnetic flow meter 400 shown in this figure has substantially the same configuration as the electromagnetic flow meter 300 in FIG. 19 except that the calculation means 40 functions as a mode switching means, and detailed description of the same members as those in FIG. 19 is omitted. To do. Calculation means 40 outputs the normal mode, the amplifier mode instruction signal S AP instructing switching of adding a predetermined additional current to the output current to the amplifier mode to output, to the power unit 14 and the excitation circuit 24. Power supply unit 14 and the excitation circuit 24 receives the amplifier mode instruction signal S AP, the process proceeds to the operation of the amplifier mode with add additional current. Further, in the amplifier mode, the output current I O is increased, so that an external device that receives the output current also needs a mechanism for detecting the flow rate corresponding to the increase in current. For example, the converter corresponding to amplifier mode is connected and it converts into the flow volume which considered the increase in electric current appropriately. The amplifier mode switching means may also be configured to automatically detect that it is connected to an amplifier mode compatible external device such as a converter and switch to the amplifier mode.
次にアンプモード切替機能を備える電磁流量計の出力電流調整回路の例を図31に、示す。この図に示す電磁流量計は、絶縁型スイッチング電源であるDC/DC変換回路17と、DC/DC変換回路17のスイッチング制御を行うスイッチング制御回路19として、デューティ調整回路を含む発振回路182と、ローパスフィルタLPFと、演算手段40と、演算手段40からの電源制御信号を絶縁して電流出力回路16に送出する制御信号絶縁回路12と、アンプモード切替手段33を備える演算手段40からのアンプモード指示信号SAPでON/OFFを切り替えられるアンプモード切替スイッチと、アンプモード指示信号SAPを絶縁する指示信号絶縁回路12Cと、分解能を下げることなく付加電流を付加可能な電流出力回路として、付加した消費電流をアンプモード時に有効に活用できるように出力電流Ioとアンプモード時の基準電圧Vaを加算する加算回路31とを備える。加算回路31は、演算増幅器A2と、抵抗Ra、Rb、Rcで構成される。
Next, FIG. 31 shows an example of an output current adjusting circuit of an electromagnetic flow meter having an amplifier mode switching function. The electromagnetic flow meter shown in this figure includes a DC / DC conversion circuit 17 that is an insulating switching power supply, and an oscillation circuit 182 that includes a duty adjustment circuit as a switching control circuit 19 that performs switching control of the DC / DC conversion circuit 17; Low-pass filter LPF, calculation means 40, control signal insulation circuit 12 that insulates the power supply control signal from calculation means 40 and sends it to the current output circuit 16, and amplifier mode from calculation means 40 that includes amplifier mode switching means 33 an instruction signal S amp mode changeover switch for switching the ON / OFF at AP, and the instruction signal insulation circuit 12C for insulating the amplifier mode instruction signal S AP, as an additional programmable current output circuit an additional current without lowering the resolution, additional the output current I o and Anpumo so as to be able to effectively take advantage of the current consumption and the amplifier mode An adding circuit 31 for adding the reference voltage V a at the time. The adder circuit 31 includes an operational amplifier A 2 and resistors R a , R b , and R c .
この演算手段40は、アンプモード切替手段33を兼用しており、アンプモード指示信号SAPで基準電圧を切り替える。具体的には、基準電圧の変化により励磁電流IEと励磁電圧を引き上げて電磁流量計の動作を安定させるよう、2つの制御を切り替えている。すなわち、(A)励磁コイル22の励磁電圧をVHからVLに切りかえるタイミングの閾値を切り替える。(B)励磁電流IEのレンジを切り替えて、付加電流を加えた分励磁電流IEを大きくする。
The calculation means 40 serves also as an amplifier mode switching means 33 switches the reference voltage at the amplifier mode instruction signal S AP. Specifically, the two controls are switched so as to stabilize the operation of the electromagnetic flowmeter by raising the excitation current IE and the excitation voltage by changing the reference voltage. That is, (A) the threshold value of timing for switching the excitation voltage of the excitation coil 22 from V H to V L is switched. (B) to switch the range of the excitation current I E, to increase the partial excitation current I E plus additional current.
この電磁流量計は、アンプモード切替手段33からのアンプモード指示信号SAPで、アンプモード切替スイッチのON/OFFを切り替える。ここではアンプモード切替スイッチがOFFのときはノーマルモード、ONのときはアンプモードとなる。アンプモード時に出力電流に対して単純に付加電流を付加する場合、例えば20mAの電流を付加すると、電流範囲が4-20mAから4-40mAに拡大する結果、分解能が相対的に低下してしまう虞がある。そこで、この出力電流調整回路ではアンプモード時には演算手段40が加算回路31にアンプモード指示信号SAPを送出して、電流範囲を24-40mAにシフトさせることで、分解能を維持したまま消費電流のベースアップができるよう構成している。
The electromagnetic flow meter, the amplifier mode instruction signal S AP from the amplifier mode switching means 33 switches the ON / OFF of the amplifier mode switch. Here, when the amplifier mode selector switch is OFF, the normal mode is selected, and when it is ON, the amplifier mode is selected. When simply adding an additional current to the output current in the amplifier mode, for example, if a current of 20 mA is added, the current range may be expanded from 4-20 mA to 4-40 mA, resulting in a relative decrease in resolution. There is. Therefore, the output current adjusting circuit in the amplifier mode by sending the amp mode instruction signal S AP to the arithmetic unit 40 is the adding circuit 31, by shifting the current range 24-40MA, remains current consumption maintaining the resolution It is configured to allow base up.
図31の回路図に基づいて、出力電流調整回路がアンプモード時に付加電流を付加する動作例を説明する。デューティ調整回路に入力される電圧はVpであり、ローパスフィルタLPFを通じてデューティ調整回路のPWM制御に適した電圧としている。一方、デューティ調整回路の電圧Vnは、ノーマルモード時にはアンプモード切替スイッチがOFFであるため、Vn=Rb/Ra×IoRoとなる。一方、アンプモード時にはアンプモード切替スイッチがONとなり、加算回路31が働く結果、Vn=Rb/Ra×IoRo-Rb/Rc×Vaとなる。そして、デューティ調整回路がVp=Vnとなるように作動すると、出力電流IOはノーマルモード時には、Io=Ra/Ro×Vp/Rbアンプモード時には、Io=Ra/Ro×(Vp/Rb+Va/Rc)となる。すなわち、ノーマルモード時の出力電流IOに加え、アンプモード時はアンプモード切替スイッチのON/OFF切り替えにより、付加電流IaddとしてRa/Ro×Va/Rcの電流を加算して通電することができる。この出力電流調整回路により、ノーマルモードとアンプモードとで任意にスパンを設定できるため、デューティ調整回路でのPWM制御の分解能を低下させることなく、4-20mA又は24-40mAの電流出力に切り替え可能とできる。
Based on the circuit diagram of FIG. 31, an operation example in which the output current adjusting circuit adds the additional current in the amplifier mode will be described. The voltage input to the duty adjustment circuit is V p , and is a voltage suitable for PWM control of the duty adjustment circuit through the low-pass filter LPF. On the other hand, the voltage V n of the duty adjustment circuit is V n = R b / R a × I o Ro since the amplifier mode selector switch is OFF in the normal mode. On the other hand, in the amplifier mode, the amplifier mode changeover switch is turned on and the adder circuit 31 operates, resulting in V n = R b / R a × I o Ro −R b / R c × V a . When the duty adjusting circuit operates such that V p = V n, the output current I O in the normal mode, the I o = R a / R o × V p / R b amplifier mode, I o = R a / R o × (V p / R b + V a / R c ). That is, in addition to the output current I O in the normal mode, the amplifier mode changeover switch is turned ON / OFF in the amplifier mode to add the current R a / R o × V a / R c as the additional current I add. It can be energized. With this output current adjustment circuit, the span can be set arbitrarily in normal mode and amplifier mode, so it can be switched to 4-20mA or 24-40mA current output without reducing the resolution of PWM control in the duty adjustment circuit. And can.
このように、より安定した動作を要求する場合はアンプモードに設定して動作を行う。なお、得られる信号は20mAの付加電流が付加しているために信号の受け側にて20mAの減算を行う必要がある。あるいは、アンプモード動作に対応した専用の変換器を使用する。このような専用の変換器では、得られた信号を例えば250Ωの抵抗で受けて6-10Vの電圧信号とする。すなわち付加電流20mAに相当する電圧5V分を減算することにより、1-5Vの電圧信号に変換することが可能となる。この1-5Vの電圧信号は通常良く使われる電圧信号であって、処理も容易である。
As described above, when more stable operation is required, the amplifier mode is set for operation. Since the obtained signal has an additional current of 20 mA, it is necessary to subtract 20 mA on the signal receiving side. Alternatively, a dedicated converter corresponding to the amplifier mode operation is used. In such a dedicated converter, the obtained signal is received by a resistor of, for example, 250Ω, and converted to a voltage signal of 6-10V. That is, by subtracting the voltage of 5 V corresponding to the additional current of 20 mA, it can be converted into a voltage signal of 1-5 V. This 1-5V voltage signal is a commonly used voltage signal and can be easily processed.
アンプモードを利用することで、出力電流に関係なく励磁電流をある程度の大きさに確保できる利点が得られる。ノーマルモードでは、例えば流量が小さく出力電流IOが4mAで動作している時でも、30mAの励磁電流IEを間欠的に流すことができる。すなわち、励磁電流はどんな値にでも設定できるが、間欠励磁を行うと一定時間での励磁回数が連続励磁に比べて少なくなるため、アンプモードの使用される頻度が高く、高精度が要求される出力電流値で連続励磁ができるように励磁電流を設定する。ノーマルモードでは、例えば12mA以上の出力電流IOで使われる頻度が高く、高精度が要求される場合、12mAの出力電流IOで連続励磁できるように励磁電流IEを定めるのが望ましい。
(リファレンス励磁機能) By using the amplifier mode, there is an advantage that the excitation current can be secured to a certain level regardless of the output current. In the normal mode, for example, even when the flow rate is small and the output current IO is operating at 4 mA, the 30 mA excitation current IE can be intermittently supplied. In other words, the excitation current can be set to any value, but if intermittent excitation is performed, the number of excitations in a fixed time is smaller than that in continuous excitation, so the amplifier mode is used more frequently and requires high accuracy. Set the excitation current so that continuous excitation is possible with the output current value. In the normal mode, for example, when the output current I O of 12 mA or more is frequently used and high accuracy is required, it is desirable to determine the excitation current IE so that continuous excitation is possible with the output current I O of 12 mA.
(Reference excitation function)
(リファレンス励磁機能) By using the amplifier mode, there is an advantage that the excitation current can be secured to a certain level regardless of the output current. In the normal mode, for example, even when the flow rate is small and the output current IO is operating at 4 mA, the 30 mA excitation current IE can be intermittently supplied. In other words, the excitation current can be set to any value, but if intermittent excitation is performed, the number of excitations in a fixed time is smaller than that in continuous excitation, so the amplifier mode is used more frequently and requires high accuracy. Set the excitation current so that continuous excitation is possible with the output current value. In the normal mode, for example, when the output current I O of 12 mA or more is frequently used and high accuracy is required, it is desirable to determine the excitation current IE so that continuous excitation is possible with the output current I O of 12 mA.
(Reference excitation function)
間欠励磁においては、A/D変換の回数をなるべく増やさず、低周波オフセット成分を除去するために、オフセット補償回路を利用し、アナログ回路でオフセット補償を行う。この際、図32に示すようにリファレンスをセットするための半周期励磁を付加するリファレンス設定機能を設けることもできる。これにより、ゼロ点の変動分を除去するオフセット補償が実現できる。従来利用されているオフセット補償回路は、間欠励磁では精度が悪くなるため、そのまま利用できない。これに対して本実施の形態では、奇数回の半周期励磁を行い、最初の1回の励磁でサンプリングを行わずオフセット補償回路のみ駆動させることで、精度を低下させることなくオフセット補償を可能としている。
In intermittent excitation, the offset compensation circuit is used and offset compensation is performed by an analog circuit in order to remove the low frequency offset component without increasing the number of A / D conversions as much as possible. At this time, as shown in FIG. 32, a reference setting function for adding half-period excitation for setting the reference may be provided. Thereby, it is possible to realize offset compensation that removes the variation of the zero point. Conventional offset compensation circuits cannot be used as they are because accuracy is deteriorated in intermittent excitation. On the other hand, in the present embodiment, odd-numbered half-period excitation is performed, and sampling is not performed by the first one-time excitation, and only the offset compensation circuit is driven, thereby enabling offset compensation without reducing accuracy. Yes.
次に、このようなオフセット補償回路を備える電磁流量計の例を、図33に示す。この図に示す電磁流量計は、励磁コイル22と、励磁回路24と、測定管10と、電極30と、信号増幅回路34Cと、A/D変換器38と、演算手段40とを備える。上述した部材と同一名称の部材については、ほぼ同様の構成が利用でき、詳細説明を省略する。この信号増幅回路34Cは、検出回路の差動増幅器342と差動増幅器343との間に、オフセット補償回路344を備えている。オフセット補償回路344は、スイッチSWO1、SWO2と、抵抗器RO1、RO2と、ホールドコンデンサCO1、CO2で構成される。このようにオフセット補償回路344が2つの充放電経路を有するのは、P側励磁とN側励磁にそれぞれ対応させるためである。差動増幅器343の反転入力には、差動増幅器342の出力VSが接続される。一方、オフセット補償回路344のスイッチSWO1が差動増幅器342の出力VSと、スイッチSWO2が差動増幅器343の非反転入力と、各々接続される。すなわち、オフセット補償回路344は、差動増幅器342の出力VSを入力してホールドコンデンサCO1、CO2のいずれかを充電し、差動増幅器343の非反転入力に対して放電するよう出力する。
Next, an example of an electromagnetic flow meter provided with such an offset compensation circuit is shown in FIG. The electromagnetic flow meter shown in this figure includes an exciting coil 22, an exciting circuit 24, a measuring tube 10, an electrode 30, a signal amplifying circuit 34C, an A / D converter 38, and a computing means 40. About the member of the same name as the member mentioned above, substantially the same composition can be used, and detailed explanation is omitted. The signal amplification circuit 34C includes an offset compensation circuit 344 between the differential amplifier 342 and the differential amplifier 343 of the detection circuit. The offset compensation circuit 344 includes switches SW O1 and SW O2 , resistors R O1 and R O2 , and hold capacitors C O1 and C O2 . The reason why the offset compensation circuit 344 has two charging / discharging paths in this way is to correspond to P-side excitation and N-side excitation, respectively. The output V S of the differential amplifier 342 is connected to the inverting input of the differential amplifier 343. On the other hand, the switch SW O1 of the offset compensation circuit 344 is connected to the output V S of the differential amplifier 342, and the switch SW O2 is connected to the non-inverting input of the differential amplifier 343. That is, the offset compensation circuit 344 receives the output V S of the differential amplifier 342, charges one of the hold capacitors C O1 and C O2 , and outputs it to discharge the non-inverting input of the differential amplifier 343. .
演算手段40は、基準電圧切替信号Srefsをオフセット補償回路344に出力し、スイッチSWO1、SWO2を切り替える。スイッチSWO1、SWO2は、図33に示すように一方をホールドコンデンサCO1、他方をホールドコンデンサCO2に接続するようにON/OFFされる。これにより、差動増幅器342の出力がホールドコンデンサCO1、CO2のいずれ一方に充電されて保持されるサンプルホールド回路が構成され、前段の出力VSとの比較結果が差動増幅器343より出力される。
The calculation means 40 outputs the reference voltage switching signal S refs to the offset compensation circuit 344, and switches the switches SW O1 and SW O2 . As shown in FIG. 33, the switches SW O1 and SW O2 are turned ON / OFF so that one is connected to the hold capacitor C O1 and the other is connected to the hold capacitor C O2 . As a result, a sample-and-hold circuit is configured in which the output of the differential amplifier 342 is charged and held in one of the hold capacitors C O1 and C O2 , and the comparison result with the output V S of the previous stage is output from the differential amplifier 343. Is done.
図32の例では、常にP側励磁→N側励磁の順序でサンプリングを行っている。好ましくは、リファレンス励磁は、励磁期間毎に極性を交互に変更する。本実施の形態では、図34に示すように、P側励磁→N側励磁の順で励磁されると、休止期間後に再開される次の励磁では、N側励磁→P側励磁の順に、すなわち開始される励磁の極性が逆になるように設定する。これによって、P側励磁とN側励磁を均等に扱うことができる。このような極性を交互に入れ替える励磁を行うため、半周期励磁は励磁期間で奇数回生じるようにする。この波形パターンの例を図34に示す。図34において(a)は励磁パターンのタイミングを、(b)は演算手段40が出力する基準電圧切替信号Srefsを、(c)は差動増幅器342の出力VS(すなわちオフセット補償回路344の入力)を、(d)は差動増幅器343の反転入力Vrefo(すなわちオフセット補償回路344の出力)を、(e)は差動増幅器343の出力VOSを、(f)は演算手段40が検出信号のサンプリングを行うタイミングを、それぞれ示している。この例では、アナログ回路である差動増幅器342の出力VSに、図34(c)に示すように直線状に傾斜したオフセット分が存在していると想定する。各励磁期間において、最初の半周期励磁がリファレンス励磁であり、図34(f)に示すように信号サンプリングを行わない。また、リファレンス励磁においては、オフセット補償回路344の出力Vrefoは、サンプルホールドのため、オフセット分が生じる。さらにオフセット補償回路344の出力Vrefoは、休止期間においても半周期前の最後の電圧が出力される。この様子を図35の表に示す。休止期間を除いて、PNP→NPN→PNP・・・の励磁期間を順に1,2,3・・・,2n,・・・と表現すると、以下の式で表せる。ここでk番目の状態のときの電圧Vsは、Vs(k)と表現する。
In the example of FIG. 32, sampling is always performed in the order of P-side excitation → N-side excitation. Preferably, in the reference excitation, the polarity is alternately changed every excitation period. In the present embodiment, as shown in FIG. 34, when excitation is performed in the order of P-side excitation → N-side excitation, in the next excitation resumed after the pause period, N-side excitation → P-side excitation, Set the polarity of the excitation to be started to be reversed. Thereby, the P-side excitation and the N-side excitation can be handled equally. In order to perform such excitation with alternating polarity, half-period excitation is generated an odd number of times in the excitation period. An example of this waveform pattern is shown in FIG. 34A shows the timing of the excitation pattern, FIG. 34B shows the reference voltage switching signal S refs output from the calculation means 40, and FIG. 34C shows the output V S of the differential amplifier 342 (ie, the offset compensation circuit 344). (D) is the inverting input V refo of the differential amplifier 343 (ie, the output of the offset compensation circuit 344), (e) is the output V OS of the differential amplifier 343, and (f) is the calculation means 40. The timing for sampling the detection signal is shown. In this example, it is assumed that there is an offset portion linearly inclined as shown in FIG. 34C in the output V S of the differential amplifier 342 which is an analog circuit. In each excitation period, the first half-cycle excitation is the reference excitation, and no signal sampling is performed as shown in FIG. Further, in reference excitation, the output V refo of the offset compensation circuit 344 is offset because of sample hold. Further, as the output V refo of the offset compensation circuit 344, the last voltage before a half cycle is output even in the idle period. This situation is shown in the table of FIG. If the excitation periods of PNP → NPN → PNP... Are expressed as 1, 2, 3,..., 2n,. Here, the voltage Vs in the k-th state is expressed as Vs (k).
nが奇数のとき、コンデンサC01に充電すると、
VC01(2n)=VC01(2n-1)=Vs(2n-1)
VC02(2n+1)=VC02(2n)=Vs(2n)
Vref0(2n)=VC01(2n)=Vs(2n-1)
Vref0(2n+1)=VC02(2n+1)=Vs(2n)
となる。 When n is an odd number, if capacitor C 01 is charged,
VC 01 (2n) = VC 01 (2n-1) = V s (2n-1)
VC 02 (2n + 1) = VC 02 (2n) = V s (2n)
V ref0 (2n) = VC 01 (2n) = V s (2n−1)
V ref0 (2n + 1) = VC 02 (2n + 1) = V s (2n)
It becomes.
VC01(2n)=VC01(2n-1)=Vs(2n-1)
VC02(2n+1)=VC02(2n)=Vs(2n)
Vref0(2n)=VC01(2n)=Vs(2n-1)
Vref0(2n+1)=VC02(2n+1)=Vs(2n)
となる。 When n is an odd number, if capacitor C 01 is charged,
VC 01 (2n) = VC 01 (2n-1) = V s (2n-1)
VC 02 (2n + 1) = VC 02 (2n) = V s (2n)
V ref0 (2n) = VC 01 (2n) = V s (2n−1)
V ref0 (2n + 1) = VC 02 (2n + 1) = V s (2n)
It becomes.
このように、Nが偶数、奇数によらず、Vref0(N)=Vs(N-1)となる。よって、
Vos(N)=Gain×(Vs(N)-Vref0(N))=Gain×(Vs(N)-Vs(N-1))
となる。ここで、起電力をEs(N)、オフセット成分をEnとすると、
Vs(N)=Es(N)+En
と表現でき、この場合でも
VoS(N)=Gain×((Es(N)+En)-(Es(N-1)+En))=Es(N)-Es(N-1)
となり、オフセット成分によらず差動増幅が行える。 Thus, V ref0 (N) = V s (N−1) regardless of whether N is an even number or an odd number. Therefore,
V os (N) = Gain × (V s (N) −V ref0 (N)) = Gain × (V s (N) −V s (N−1))
It becomes. Here, when the electromotive force is Es (N) and the offset component is En,
V s (N) = Es (N) + En
Even in this case, V oS (N) = Gain × ((Es (N) + En) − (Es (N−1) + En)) = Es (N) −Es (N−1)
Thus, differential amplification can be performed regardless of the offset component.
Vos(N)=Gain×(Vs(N)-Vref0(N))=Gain×(Vs(N)-Vs(N-1))
となる。ここで、起電力をEs(N)、オフセット成分をEnとすると、
Vs(N)=Es(N)+En
と表現でき、この場合でも
VoS(N)=Gain×((Es(N)+En)-(Es(N-1)+En))=Es(N)-Es(N-1)
となり、オフセット成分によらず差動増幅が行える。 Thus, V ref0 (N) = V s (N−1) regardless of whether N is an even number or an odd number. Therefore,
V os (N) = Gain × (V s (N) −V ref0 (N)) = Gain × (V s (N) −V s (N−1))
It becomes. Here, when the electromotive force is Es (N) and the offset component is En,
V s (N) = Es (N) + En
Even in this case, V oS (N) = Gain × ((Es (N) + En) − (Es (N−1) + En)) = Es (N) −Es (N−1)
Thus, differential amplification can be performed regardless of the offset component.
図34の例では、P側励磁、N側励磁の一組の信号に対して、最初にリファレンス励磁として半周期励磁を付加することで、全体として3回の半周期励磁を励磁期間内に行う。また、P→N→P→Nのように偶数回の纏まった励磁に対して半周期を付加すればよいので、全体で5回や7回等にしてもよい。なお、2n+1回の半周期励磁を行う場合、実際に信号サンプリングを行うのは最初のリファレンス励磁を除いた2n回であるため、1/(2n+1)の割合で信号サンプリングがなされない。よって、効率の面からはnを可能な限り大きく取ることが望ましい。よって、チャージコンデンサCCに蓄えられたチャージ分で可能な最大回数のサンプリングを行うことが好ましい。これにより、P側、N側いずれの側にオフセットが生じていても、効果的に排除できる。
In the example of FIG. 34, a half-cycle excitation is added to the pair of signals on the P-side excitation and the N-side excitation first as a reference excitation, so that a total of three half-cycle excitations are performed within the excitation period. . Further, since a half cycle may be added to the even number of times of excitation such as P → N → P → N, the total may be 5 or 7 times. When 2n + 1 half-period excitation is performed, signal sampling is actually performed 2n times excluding the first reference excitation, and thus signal sampling is not performed at a rate of 1 / (2n + 1). Therefore, it is desirable to take n as large as possible from the viewpoint of efficiency. Therefore, it is preferable to perform sampling of the maximum number possible in a charge amount accumulated in the charge capacitor C C. Thereby, even if an offset occurs on either the P side or the N side, it can be effectively eliminated.
ここで、オフセット補償すなわちアナログリセット動作について図36、図37に基づいて説明する。図36はアナログリセット回路の回路図、図37はこの回路で連続励磁を行った場合の動作波形を、それぞれ示している。また図37の(a)はアナログ検出信号の入力波形、(b)はリセット信号AN_RES_T1、(b)はリセット信号AN_RES_T2の波形を、それぞれ示している。図36の回路は図33と同様、P側励磁専用、N側励磁専用のサンプルホールド回路を各々有しており、各サンプルホールド回路はホールドコンデンサC01、C02を備え、スイッチを介して演算増幅器343の非反転入力と接続される。スイッチはリセット信号によりON/OFFを切り替えられる。図36では、各アナログスイッチはLow状態を示しており、演算増幅器343の非反転入力側にP側が接続されている。ホールドコンデンサC01、C02の充電は信号サンプリング中でも可能であり、P側波形の増幅時には半周期前のN側励磁の値をリファレンスに持ち、N側波形の増幅時には半周期前のP側励磁の値をリファレンスに持つ。この結果、図37に示すように各A/Dサンプリング区間中に一方のホールドコンデンサの充電が行われ、同時に他方のホールドコンデンサの電圧が維持されて、リファレンス動作が可能となる。(変形例)
Here, offset compensation, that is, an analog reset operation will be described with reference to FIGS. FIG. 36 is a circuit diagram of an analog reset circuit, and FIG. 37 shows operation waveforms when continuous excitation is performed in this circuit. 37A shows the input waveform of the analog detection signal, FIG. 37B shows the waveform of the reset signal AN_RES_T1, and FIG. 37B shows the waveform of the reset signal AN_RES_T2. The circuit in FIG. 36 has a sample hold circuit dedicated to P side excitation and N side excitation, respectively, as in FIG. 33. Each sample hold circuit includes hold capacitors C 01 and C 02 and is operated via a switch. Connected to the non-inverting input of amplifier 343. The switch can be switched ON / OFF by a reset signal. In FIG. 36, each analog switch shows a low state, and the P side is connected to the non-inverting input side of the operational amplifier 343. The hold capacitors C 01 and C 02 can be charged even during signal sampling. When the P-side waveform is amplified, the N-side excitation value before the half cycle is used as a reference, and when the N-side waveform is amplified, the P-side excitation before the half cycle is used. With the value of as a reference. As a result, as shown in FIG. 37, one hold capacitor is charged during each A / D sampling period, and at the same time, the voltage of the other hold capacitor is maintained, thereby enabling a reference operation. (Modification)
上記の方法では、信号のサンプリングを行わない期間にも励磁電流を通電しているため、測定に寄与しない無駄な電力を消費しているため効率の面で劣る。そこで図33と同一の回路を使用しつつ、励磁をせずにオフセット補償回路の駆動のみを行うこともできる。図38に、このような駆動方法の一例を示す。図38(a)に示すようにP→N→休止→P→Nの間欠励磁を行う際に、図33の回路を用いて各々半周期前の信号を基準として信号のサンプリングを行うと、図38(b)に示すような出力が得られる。この方法であれば、励磁の回数と信号サンプリングの回数が同じになるため、無駄な励磁電流を無くして低消費で効率の良い励磁が行える。この方法で図34と同様に、P→N→P→休止→N→P→Nのような奇数回の半周期励磁を連続させる場合の波形パターンを、図39に示す。図39においても、(a)は励磁パターンのタイミングを、(b)は演算手段40が出力する基準電圧切替信号Srefsを、(c)は差動増幅器342の出力VSを、(d)は差動増幅器343の反転入力Vrefoを、(e)は差動増幅器343の出力VOSを、(f)は演算手段40が検出信号のサンプリングを行うタイミングを、それぞれ示している。この例でも、アナログ回路である差動増幅器342の出力VSに、図39(c)に示すように直線状に傾斜したオフセット分が存在している場合を想定している。
The above method is inferior in efficiency because the exciting current is applied even during the period when the signal is not sampled, and wasteful power that does not contribute to measurement is consumed. Therefore, it is possible to drive only the offset compensation circuit without using excitation while using the same circuit as in FIG. FIG. 38 shows an example of such a driving method. As shown in FIG. 38A, when intermittent excitation of P → N → pause → P → N is performed, signal sampling is performed using the circuit of FIG. An output as shown in FIG. 38 (b) is obtained. With this method, the number of excitations and the number of signal samplings are the same, so that unnecessary excitation current is eliminated and efficient excitation can be performed with low consumption. FIG. 39 shows a waveform pattern in the case where odd-numbered half-period excitations such as P → N → P → pause → N → P → N are continued by this method as in FIG. Also in FIG. 39, (a) shows the timing of the excitation pattern, (b) shows the reference voltage switching signal S refs output by the computing means 40, (c) shows the output V S of the differential amplifier 342, and (d). Is the inverting input V refo of the differential amplifier 343, (e) is the output V OS of the differential amplifier 343, and (f) is the timing at which the computing means 40 samples the detection signal. Also in this example, it is assumed that the output V S of the differential amplifier 342 which is an analog circuit has a linearly inclined offset as shown in FIG. 39C.
この方法では、図39(e)及び図38(b)に示すように、奇数回の半周期励磁のうち、最初の1回の信号が半減する。オフセット補償回路344がゲインを有するため、休止期間後の1回目の励磁では半周期前の信号が無いことからゲインが低くなる。そのため、最初の1回の信号のみゲインを持たせた演算を行ったり、あるいは最初の1回の信号をPとNでセットにして演算を行うといった処理を行うことで対応できる。例えば図40(a)に示すように、P→N→P→休止→N→P→Nのような奇数回の半周期励磁を連続させる際、図40(b)に示すように各励磁期間の最初に現れる低いゲインA、Bを合わせて一つの信号とするように演算する。これによって半減するゲインを補償でき、通常の半周期分の励磁信号と同様に扱うことができる。
In this method, as shown in FIG. 39 (e) and FIG. 38 (b), the signal of the first one out of the odd number of half-period excitations is halved. Since the offset compensation circuit 344 has a gain, the gain is lowered because there is no signal before the half cycle in the first excitation after the pause period. Therefore, this can be dealt with by performing an operation with gain only for the first signal, or by performing an operation with the first signal set as P and N. For example, when an odd number of half-period excitations such as P → N → P → pause → N → P → N are continued as shown in FIG. 40 (a), each excitation period is shown in FIG. 40 (b). The low gains A and B appearing at the beginning of the signal are combined into one signal. This makes it possible to compensate for a gain that is halved, and it can be handled in the same way as an excitation signal for a normal half cycle.
またオフセット補償方法は上記の方法に限られず、例えばアンプ343の出力電圧をフィードバックして、入力のリファレンスとする方法でもオフセット補償を実現できる。
(変換器) The offset compensation method is not limited to the above method, and for example, offset compensation can also be realized by a method in which the output voltage of theamplifier 343 is fed back and used as an input reference.
(converter)
(変換器) The offset compensation method is not limited to the above method, and for example, offset compensation can also be realized by a method in which the output voltage of the
(converter)
次に、このような2線式電磁流量計に変換器を接続した2線式電磁流量計システムの例を図41に示す。ここでは2線式電磁流量計と外部直流電源とを回路的に絶縁する絶縁型の変換器を説明する。この図に示す変換器500は、昇圧電源501と、絶縁トランス502と、絶縁型スイッチング制御回路503と、電流検出抵抗504と、電圧減算回路505と、絶縁型のパルストランス506と、出力回路507を備える。この変換器500は、外部直流電源DCから電力線PLを介して受けた電力をスイッチング方式により変換して、伝送線DLを介して2線式電磁流量計400に供給する一方、2線式電磁流量計400で検出した流量に応じた出力電流IOを出力電圧VOに変換して、出力回路から出力線OLを介して1-5Vの電圧信号として出力する。
Next, FIG. 41 shows an example of a two-wire electromagnetic flow meter system in which a converter is connected to such a two-wire electromagnetic flow meter. Here, an insulation type converter that insulates the two-wire electromagnetic flow meter and the external DC power supply in a circuit manner will be described. The converter 500 shown in this figure includes a step-up power supply 501, an insulation transformer 502, an insulation type switching control circuit 503, a current detection resistor 504, a voltage subtraction circuit 505, an insulation type pulse transformer 506, and an output circuit 507. Is provided. The converter 500 converts the power received from the external DC power source DC through the power line PL by a switching method, and supplies the converted power to the two-wire electromagnetic flow meter 400 through the transmission line DL, while the two-wire electromagnetic flow rate. The output current I O corresponding to the flow rate detected by the total 400 is converted into an output voltage V O and output from the output circuit as a 1-5 V voltage signal via the output line OL.
また、図42に他の2線式電磁流量計システムの例を示す。この変換器600は、通常の電圧出力に加えて、流量の積算パルスを出力する積算パルス警報出力を備える高機能型である。この変換器600は、昇圧スイッチング電源601と、電流検出抵抗604と、電圧減算回路605と、A/Dコンバータ608と、演算部609と、DC/DC変換回路602と、F/V変換回路610と、積算パルス警報出力回路611とを備えている。この変換器600は、図41と同様に2線式電磁流量計400で検出した流量に応じた出力電流IOから、電圧減算回路605で付加電圧分を減算した後、A/Dコンバータ608でA/D変換した信号を演算部609に送出する。演算部609は、検出されたデジタル信号に基づいて流量を演算し、流量に応じて周波数を変化させたデジタル信号をF/V変換回路610及び積算パルス警報出力回路611に出力する。F/V変換回路610は、周波数/電圧変換を行い、流量に応じた1-5Vの電圧信号を出力する。一方で積算パルス警報出力回路611は、流量信号の積算値を、トランジスタ出力として出力する。これにより、流量信号の積算値に基づいて警報出力が得られる。
(アンプモード切替機能) FIG. 42 shows an example of another two-wire electromagnetic flow meter system. Thisconverter 600 is a high-functional type provided with an integrated pulse alarm output that outputs an integrated pulse of flow rate in addition to a normal voltage output. The converter 600 includes a step-up switching power supply 601, a current detection resistor 604, a voltage subtraction circuit 605, an A / D converter 608, a calculation unit 609, a DC / DC conversion circuit 602, and an F / V conversion circuit 610. And an integrated pulse alarm output circuit 611. As in FIG. 41, the converter 600 subtracts the additional voltage from the output current I O corresponding to the flow detected by the two-wire electromagnetic flow meter 400 by the voltage subtracting circuit 605, and then the A / D converter 608. The A / D converted signal is sent to the calculation unit 609. The calculation unit 609 calculates the flow rate based on the detected digital signal, and outputs the digital signal whose frequency is changed according to the flow rate to the F / V conversion circuit 610 and the integrated pulse alarm output circuit 611. The F / V conversion circuit 610 performs frequency / voltage conversion and outputs a voltage signal of 1-5V corresponding to the flow rate. On the other hand, the integrated pulse alarm output circuit 611 outputs the integrated value of the flow rate signal as a transistor output. Thereby, an alarm output is obtained based on the integrated value of the flow signal.
(Amplifier mode switching function)
(アンプモード切替機能) FIG. 42 shows an example of another two-wire electromagnetic flow meter system. This
(Amplifier mode switching function)
これらの2線式電磁流量計では、出力電流IOとして4-20mAで動作させるノーマルモード以外に、測定精度を向上させるために、付加電流を付加して動作させるアンプモードに切り替えることができる。ノーマルモードとアンプモードの切替は、アンプモード切替手段33で行う。アンプモード切替手段33はアンプモード指示信号SAPを出力して、ノーマルモードとアンプモードの切替を指示する。図41及び図42の例では、アンプモードにおいて出力電流に20mAの付加電流を加算する。これによりアンプモード時には出力電流IOとして24-40mAで動作できるので、流量が少ない場合でも励磁コイル22の連続励磁が可能となり、安定した流量測定が実現できる。
These two-wire electromagnetic flow meters can be switched to an amplifier mode in which an additional current is added in order to improve measurement accuracy in addition to the normal mode in which the output current I O is operated at 4-20 mA. Switching between the normal mode and the amplifier mode is performed by the amplifier mode switching means 33. Amp mode switching unit 33 outputs the amp mode instruction signal S AP, instructs the switching of the normal mode and the amp mode. In the example of FIGS. 41 and 42, an additional current of 20 mA is added to the output current in the amplifier mode. As a result, since the output current IO can be operated at 24-40 mA in the amplifier mode, the excitation coil 22 can be continuously excited even when the flow rate is small, and stable flow rate measurement can be realized.
また変換器は、アンプモードの有無もしくはON/OFFに応じて、出力信号を切り替える。図41の例では、変換器500が電流検出抵抗でアンプモードを検出すると、電圧減算回路で出力電圧を付加電圧分(例えば5V)だけ減算して、パルストランスを介して絶縁した後、出力回路から出力することにより、ノーマルモード時、アンプモード時のいずれにおいても流量に応じた1-5Vの電圧信号が出力される。
Also, the converter switches the output signal according to the presence / absence of the amplifier mode or ON / OFF. In the example of FIG. 41, when the converter 500 detects the amplifier mode with the current detection resistor, the output voltage is subtracted by an additional voltage (for example, 5V) by the voltage subtracting circuit and insulated via the pulse transformer, and then the output circuit 1-5V, a voltage signal of 1-5V corresponding to the flow rate is output in both the normal mode and the amplifier mode.
このようなアンプモード切替機能を備えた2線式電磁流量計の例を、図43に示す。この図に示す2線式電磁流量計は、外部直流電源DCと一対の伝送線DLで接続されており、伝送線DLの間に電流出力回路16を設けている。電流出力回路16は、演算増幅器A6とトランジスタで構成される。また電流出力回路16は、加減算指示回路41に接続される。加減算指示回路41は、演算増幅器A7と抵抗で構成される。演算増幅器A7の反転入力には、抵抗を介してスイッチSW7が接続される。スイッチSW7は、内部回路のアンプモード切替手段33から出力されるアンプモード指示信号SAPでON/OFFを切り替えられる。また演算増幅器A7の反転入力はさらに別の抵抗を介して内部回路と接続されている。これにより、内部回路から出力される出力電流指示信号SVOが抵抗を介して反転側入力側に入力される。
An example of a two-wire electromagnetic flow meter having such an amplifier mode switching function is shown in FIG. The two-wire electromagnetic flow meter shown in this figure is connected to an external DC power source DC by a pair of transmission lines DL, and a current output circuit 16 is provided between the transmission lines DL. The current output circuit 16 includes an operational amplifier A 6 and a transistor. The current output circuit 16 is connected to the addition / subtraction instruction circuit 41. The addition / subtraction instruction circuit 41 includes an operational amplifier A 7 and a resistor. The switch SW 7 is connected to the inverting input of the operational amplifier A 7 via a resistor. Switch SW 7 is switched to ON / OFF the amplifier mode instruction signal S AP output from the amplifier mode switching means 33 of the internal circuit. The inverting input of the operational amplifier A 7 is connected to the internal circuit via a further resistor. As a result, the output current instruction signal SVO output from the internal circuit is input to the inverting side input side via the resistor.
図43の内部回路は、ノーマルモード時には、流量レンジに合わせて4-20mAを消費させるように設計されている。一方、アンプモード時には、付加電流が付加される。この場合、例えば20mAを付加電流として単純に付加するのであれば、流量レンジに対して4-40mAを消費させる指示回路が必要となり分解能が下がることになる。これに対して、図43の例では、アンプモード時にはアンプモード指示信号SAPによりスイッチSW7がONまたはOFFされ、加減算指示回路41の基準電圧を変化させる。この結果、電流出力回路16の動作が切り替えられて、出力電流IOが4-40mAでなく、24-40mAの範囲で変化するように動作する。このようにして、アンプモード時に加減算指示回路41で出力電流指示信号SVOの分解能を低下させることなく、電流オフセット分を付加できる。
The internal circuit of FIG. 43 is designed to consume 4-20 mA in accordance with the flow rate range in the normal mode. On the other hand, in the amplifier mode, an additional current is added. In this case, for example, if 20 mA is simply added as an additional current, an instruction circuit that consumes 4-40 mA is required for the flow rate range, and the resolution is lowered. In contrast, in the example of FIG. 43, the amplifier mode switch SW 7 by an amplifier mode instructing signal S AP is ON or OFF, to change the reference voltage of the subtraction instruction circuit 41. As a result, the operation of the current output circuit 16 is switched to operate so that the output current I O changes in a range of 24-40 mA instead of 4-40 mA. In this way, the current offset can be added without reducing the resolution of the output current instruction signal SVO by the addition / subtraction instruction circuit 41 in the amplifier mode.
このような構成により、ノーマルモードとアンプモードを切り替えて動作できる。特に励磁電流IEと励磁電圧を引き上げて、電磁流量計として安定した動作が実現される。ユーザが流量測定により安定した動作を要求する場合は、アンプモードに設定する。ただ、この場合に得られる信号には20mAの付加電流が付加している。よって、信号の受け側で20mAの減算を行う必要がある。もしくは、アンプモード動作に対応した専用の変換器(又はディストリビュータ)を使用する。後者の例として、上述した図41では、変換器500は得られた信号を電流検出抵抗(例えば250Ωの抵抗)で受けて、6-10Vの電圧信号とする。ここで付加電流20mAに相当する付加電圧5Vを減算することにより、1-5Vの信号に容易に変換できる。この1-5Vの電圧信号は広く使用されている電圧信号であるため、処理も容易である。
(励磁コントロール機能付き励磁回路) With such a configuration, it is possible to operate by switching between the normal mode and the amplifier mode. In particular, by raising the excitation current IE and the excitation voltage, a stable operation as an electromagnetic flow meter is realized. When the user requests stable operation by measuring the flow rate, the amplifier mode is set. However, an additional current of 20 mA is added to the signal obtained in this case. Therefore, it is necessary to perform 20 mA subtraction on the signal receiving side. Alternatively, a dedicated converter (or distributor) that supports amplifier mode operation is used. As an example of the latter, in FIG. 41 described above, theconverter 500 receives the obtained signal with a current detection resistor (for example, a resistor of 250 Ω) to obtain a voltage signal of 6-10V. Here, by subtracting the additional voltage 5V corresponding to the additional current 20 mA, it can be easily converted into a signal of 1-5V. Since the 1-5V voltage signal is a widely used voltage signal, it is easy to process.
(Excitation circuit with excitation control function)
(励磁コントロール機能付き励磁回路) With such a configuration, it is possible to operate by switching between the normal mode and the amplifier mode. In particular, by raising the excitation current IE and the excitation voltage, a stable operation as an electromagnetic flow meter is realized. When the user requests stable operation by measuring the flow rate, the amplifier mode is set. However, an additional current of 20 mA is added to the signal obtained in this case. Therefore, it is necessary to perform 20 mA subtraction on the signal receiving side. Alternatively, a dedicated converter (or distributor) that supports amplifier mode operation is used. As an example of the latter, in FIG. 41 described above, the
(Excitation circuit with excitation control function)
アンプモード時に利用可能な電流を増やすことで、励磁コイル22の連続励磁を可能にできる。このため、アンプモード時に付加される消費電流を有効に活用できるように、励磁電流と励磁電圧を上げる回路が必要となる。次に、このようなアンプモードに対応して励磁電流、電圧の制御が可能な励磁コントロール機能を備える励磁回路の例を図44に示す。この電磁流量計は、チャージ電荷モニタ回路26と、残留電圧検出回路180と、励磁極性切替回路28と、励磁定電流回路29と、アンプモード切替手段(図示せず)からアンプモード指示信号SAPを受けて、これら残留電圧検出回路180、励磁極性切替回路28、励磁定電流回路29が参照する基準電圧をVref3からVref4に切り替える基準電圧切替回路43とを備える。
By increasing the current that can be used in the amplifier mode, the exciting coil 22 can be continuously excited. For this reason, a circuit for increasing the excitation current and the excitation voltage is required so that the consumption current added in the amplifier mode can be effectively utilized. Next, FIG. 44 shows an example of an excitation circuit having an excitation control function capable of controlling the excitation current and voltage corresponding to such an amplifier mode. The electromagnetic flow meter, a charge charge monitoring circuit 26, a residual voltage detection circuit 180, an exciting polarity switching circuit 28, the excitation and constant current circuit 29, the amplifier mode switching means amplifier mode (not shown) instructing signal S AP receiving, and a reference voltage switching circuit 43 for switching these residual voltage detection circuit 180, the excitation polarity switching circuit 28, a reference voltage exciting the constant current circuit 29 is referenced from V ref3 to V ref4.
この励磁回路24は、電磁流量計の安定動作を実現するために、3つの制御を切り替えている。すなわち、(1)励磁電流IEを切り替える。(2)励磁コイル22の励磁電圧を切りかえるタイミングを切り替える。ここでは、励磁電圧をVHからVLに切りかえるタイミングの閾値を、励磁定電流回路29で切り替えている。(3)励磁コイル22に供給する電圧を上げる。言い換えると、励磁電流IEを変更する。励磁電流IEを変更すると、残留電圧を変更する必要がある。残留電圧を変更した結果、残留電圧検出回路180からチャージ電荷モニタ回路26へのチャージ電圧指示信号Vrefが変わる。チャージ電荷モニタ回路26が制御し、チャージ電圧指示電圧V2が変わる。これによって、コイル電圧VLが上がることになる。このような構成により、アンプモードへの切り替え動作に加え、励磁のタイミングを調整して効率を一層改善できる。
(ダンピング機能) Theexcitation circuit 24 switches between three controls in order to realize a stable operation of the electromagnetic flow meter. That is, (1) the excitation current IE is switched. (2) The timing for switching the excitation voltage of the excitation coil 22 is switched. Here, the threshold value of the timing for switching the excitation voltage from V H to V L is switched by the excitation constant current circuit 29. (3) The voltage supplied to the exciting coil 22 is increased. In other words, the excitation current IE is changed. When the excitation current IE is changed, the residual voltage needs to be changed. As a result of changing the residual voltage, the charge voltage instruction signal V ref from the residual voltage detection circuit 180 to the charge charge monitor circuit 26 changes. And control charge charge monitoring circuit 26, changes the charge voltage command voltage V 2. As a result, the coil voltage V L increases. With such a configuration, the efficiency can be further improved by adjusting the excitation timing in addition to the switching operation to the amplifier mode.
(Damping function)
(ダンピング機能) The
(Damping function)
またこの電磁流量計は、信号を安定化させるためのダンピング機能を備える。電磁流量計で検出される流速が低下すると、値のふらつきが大きくなって測定の安定性が低下する。そこで、ノイズ成分が大きくなる低流速でダンピング量を大きくして、安定性を向上させる。このようにダンピングは、移動平均化処理等における平均化の重み付けであり、ダンピング処理(平均化処理)の概要を図45に示す。図45(a)に示すように、入力値に対するダンピング処理後の出力値は、図45(b)に示すように入力がステップ状に変化したときの、図45(c)に示すように出力が63%に至るまでの時間で定義される。図45(c)に示すように、ダンピングを大きくするほど値の安定性が向上するが、入力の変化に対する応答時間が悪化する。逆に、ダンピングが小さいと入力変化に対する応答時間は早くなるが、値の安定性は低くなり、値のばらつきに対してふれやすくなる。
Also, this electromagnetic flow meter has a damping function to stabilize the signal. When the flow velocity detected by the electromagnetic flow meter decreases, the value fluctuation increases and the measurement stability decreases. Therefore, the stability is improved by increasing the damping amount at a low flow rate at which the noise component increases. Thus, damping is weighting of averaging in the moving averaging process or the like, and FIG. 45 shows an outline of the damping process (averaging process). As shown in FIG. 45 (a), the output value after the damping process for the input value is output as shown in FIG. 45 (c) when the input changes stepwise as shown in FIG. 45 (b). Is defined as the time to reach 63%. As shown in FIG. 45 (c), as the damping is increased, the stability of the value is improved, but the response time to the input change is deteriorated. On the contrary, if the damping is small, the response time to the input change is fast, but the stability of the value is low, and it is easy to touch the variation of the value.
図46に、このようなダンピング機能を備える電磁流量計の例を示す。この図に示す電磁流量計700は、上述した構成に加え、演算手段がさらにダンピング手段44と、オートモード切替手段45とを備え、さらにこれらの設定を行う設定部80を接続している。ここでダンピング手段44は、設定されたダンピング量に基づいてダンピング演算を行うための部材である。オートモード切替手段45は、マニュアルモードとオートモードとを切り替えるための手段である。設定部80は、ダンピング量やオートモード切替タイミング等の設定を行う部材であり、必要に応じてコンソールや表示モニタ、通信ポート等を備える。その他の部材については、上述した実施例と同様であり、詳細説明を省略する。なお図46の例では、これらダンピング手段44及びオートモード切替手段45は、流量演算を行う演算手段40に統合されている。ただ、演算手段と別個にこれらダンピング手段44及び/又はオートモード切替手段45を設けることも可能であることは言うまでもない。
FIG. 46 shows an example of an electromagnetic flow meter having such a damping function. In addition to the above-described configuration, the electromagnetic flow meter 700 shown in this figure further includes a damping means 44 and an auto mode switching means 45, and is further connected to a setting unit 80 for performing these settings. Here, the damping means 44 is a member for performing a damping calculation based on the set damping amount. The auto mode switching means 45 is a means for switching between manual mode and auto mode. The setting unit 80 is a member that sets a damping amount, an auto mode switching timing, and the like, and includes a console, a display monitor, a communication port, and the like as necessary. About other members, it is the same as that of the Example mentioned above, and detailed description is abbreviate | omitted. In the example of FIG. 46, the damping unit 44 and the auto mode switching unit 45 are integrated with a calculation unit 40 that performs flow rate calculation. However, it goes without saying that the damping means 44 and / or the auto mode switching means 45 can be provided separately from the calculation means.
この電磁流量計は、ダンピング手段44でダンピング処理を行うと共に、オートモード切替手段45でマニュアルモードとオートモードとを切り替え可能としている。ここでマニュアルモードとは、ダンピング手段44がダンピング演算を行うダンピング量を予め定められた所定値に維持するモードであり、一方のオートモードとは、ダンピング手段44がダンピング量を流量に応じて変化させるモードである。これにより電磁流量計は、定められた条件に従ってオートモード切替手段45がマニュアルモードからオートモードに切り替えることで、ダンピング量を固定値から可変値に切り替えて、ダンピング量を大きくすることで安定した測定結果を得ることができる。以下、この処理について詳述する。
(ダンピング演算) In this electromagnetic flow meter, the dampingunit 44 performs a damping process and the auto mode switching unit 45 can switch between a manual mode and an auto mode. Here, the manual mode is a mode in which the damping unit 44 maintains the damping amount for performing the damping calculation at a predetermined value, and one auto mode is a mode in which the damping unit 44 changes the damping amount according to the flow rate. It is a mode to make it. As a result, the electromagnetic flow meter can perform stable measurement by switching the damping amount from a fixed value to a variable value and increasing the damping amount by the automatic mode switching means 45 switching from the manual mode to the automatic mode according to the predetermined conditions. The result can be obtained. Hereinafter, this process will be described in detail.
(Damping calculation)
(ダンピング演算) In this electromagnetic flow meter, the damping
(Damping calculation)
図47、図48に、ダンピング処理の一例を示す。これらの例では、流速の大きい領域では検出信号が安定しているため、ダンピング量を一定としつつ、流量の小さい領域ではダンピング量を大きくして、信号の安定化を図る。図47の例では、ダンピング量を直線的に大きく変化させており、一方の図48の例では、ダンピング量を指数関数的に変化させている。これらの変化は、要求される測定精度や応答性、また信号検出の安定度変化等に応じて設定される。
47 and 48 show an example of the damping process. In these examples, since the detection signal is stable in the region where the flow velocity is large, the damping amount is constant, and the damping amount is increased in the region where the flow rate is small, thereby stabilizing the signal. In the example of FIG. 47, the damping amount is greatly changed linearly, and in the example of FIG. 48, the damping amount is changed exponentially. These changes are set according to the required measurement accuracy and responsiveness, changes in signal detection stability, and the like.
なおダンピング量は、典型的には平均化処理を行う時間を示すダンピング時定数であり、例えば0.5s~30sの範囲で可変とする。
Note that the damping amount is typically a damping time constant indicating the time for performing the averaging process, and is variable in the range of 0.5 s to 30 s, for example.
また、ダンピング量を可変とする基準、すなわちマニュアルモードからオートモードに切り替えるタイミングは、オートモード切替手段45により決定される。切替の基準としては、ダンピング処理を大きくする必要がある領域であり、流速や出力電流等を利用できる。例えば演算された流速が低流速の範囲(0m/s~0.5m/s等)では、信号値が小さいため、安定化が必要となる。また出力電流IOのアナログ出力が4~12mAとなる範囲でも、励磁電流が小さいため検出信号も小さくなり、同様にダンピング処理による安定化が必要となる。また、励磁コイルのコイル電流が連続電流から、休止期間を設けた間欠励磁に切り替わると、同様に信号の安定性が悪くなるため、間欠励磁への切り替えを基準とすることもできる。また、ユーザが指定する任意のタイミングでオートモードとマニュアルモードとを切り替えるように構成してもよい。
Further, the reference for making the damping amount variable, that is, the timing for switching from the manual mode to the auto mode is determined by the auto mode switching means 45. The reference for switching is an area where the damping process needs to be increased, and the flow rate, output current, etc. can be used. For example, when the calculated flow velocity is in the low flow velocity range (0 m / s to 0.5 m / s, etc.), the signal value is small, so stabilization is necessary. Even in the range where the analog output of the output current IO is 4 to 12 mA, the excitation current is small, so the detection signal is also small, and similarly stabilization by damping processing is necessary. In addition, when the coil current of the exciting coil is switched from continuous current to intermittent excitation with a pause period, the stability of the signal similarly deteriorates, so switching to intermittent excitation can be used as a reference. Further, the auto mode and the manual mode may be switched at an arbitrary timing designated by the user.
このように低速領域になるとオートモードに移行すると共に、流量が低くなるほどダンピング量を大きくすることで、安定性を高めることができる。また逆に流量が大きくなるほどダンピング量を抑えることで、平均化処理を低減して流量変化に対する応答性を高めることができ、測定精度の維持と安定性を向上を両立させることが可能となる。
In such a low speed region, the mode can be shifted to the auto mode, and the stability can be improved by increasing the damping amount as the flow rate decreases. Conversely, by suppressing the damping amount as the flow rate increases, it is possible to reduce the averaging process and increase the responsiveness to changes in the flow rate, thereby making it possible to maintain both measurement accuracy and improve stability.
また図49に、ダンピングの設定を行うイメージを示す。ここでは設定部80のモニタ上に表示される設定画面例を示しており、ユーザがコンソールから各項目の設定を行う。この画面から、ダンピング手段44がダンピング処理を行うダンピング量の設定として、マニュアルモード時のダンピング時定数を0.5s、1.0s、1.5sと切り替えることができる。このような固定値の選択に限られず、ユーザが任意の値を指定可能と構成してもよい。
Fig. 49 shows an image for setting the damping. Here, an example of a setting screen displayed on the monitor of the setting unit 80 is shown, and the user sets each item from the console. From this screen, the damping time constant in the manual mode can be switched between 0.5 s, 1.0 s, and 1.5 s as the setting of the damping amount that the damping means 44 performs the damping process. It is not limited to the selection of such a fixed value, but the user may be able to specify an arbitrary value.
またオートモード切替手段45の動作として、規定の条件(レベル1、2、3等)から選択する。各レベルは、例えば流速値、励磁電流値等で規定される。またオートモードのOFF、すなわちダンピング量を流速に限られず一定値に維持するマニュアルモードのみの動作を選択することもできる。
Also, the operation of the auto mode switching means 45 is selected from specified conditions ( level 1, 2, 3, etc.). Each level is defined by, for example, a flow velocity value, an excitation current value, or the like. It is also possible to select the operation in the manual mode in which the auto mode is turned off, that is, the damping amount is maintained at a constant value without being limited to the flow velocity.
また、出力電流IOでオートモードに切り替える場合は、ユーザが指定するスパンに対して規定することもできる。スパンとは、出力電流IOのアナログ出力の最大値である20mAを出力するときの流速または流量である。このように、流量と出力電流値との関係をユーザが割り当てる構成とすれば、オートモード切替の閾値についても同様にユーザが割り当てることができる。図50に、このようなスパンの設定と、流速に対するアナログ出力の変化の例を示す。ここでは、流速0からスパン設定された流速値に向かって、アナログ出力が直線状に4mAから20mAに変化する。このようなスパンの設定は、流速(m/s)、流量(L/min)、質量流量(kg/s)等の単位で設定することができる。また、このようなスパンの設定例を図51に示す。この例でも図49と同様に設定部80の設定画面イメージを示している。ここでは、設定項目としてスパンを選択し、スパンの値を選択肢(例えば流量500L/min、流速2m/s、質量流量100kg/h)から、ユーザが所望の値を選択できる。
In addition, when switching to the auto mode with the output current I O , it is possible to define the span specified by the user. The span is a flow velocity or a flow rate when outputting 20 mA that is the maximum value of the analog output of the output current IO . As described above, if the user assigns the relationship between the flow rate and the output current value, the user can also assign the auto mode switching threshold. FIG. 50 shows an example of such a span setting and a change in analog output with respect to the flow velocity. Here, the analog output linearly changes from 4 mA to 20 mA from the flow velocity 0 toward the span flow velocity value. Such a span can be set in units of a flow rate (m / s), a flow rate (L / min), a mass flow rate (kg / s), or the like. An example of setting such a span is shown in FIG. This example also shows a setting screen image of the setting unit 80 as in FIG. Here, a span is selected as a setting item, and the user can select a desired value from choices (for example, a flow rate of 500 L / min, a flow rate of 2 m / s, and a mass flow rate of 100 kg / h).
本発明の2線式電磁流量計は、導電性液体の流量を非接液状態で検出する容量式電磁流量計として好適に適用できる。
The two-wire electromagnetic flow meter of the present invention can be suitably applied as a capacitive electromagnetic flow meter that detects the flow rate of a conductive liquid in a non-wetted state.
Claims (6)
- 被検出流体の流量を検出し、検出された流量の信号伝送と電源供給を共通の2本の伝送線で行う2線式電磁流量計において、
被検出流体を通過させる流路を構成する測定管と、
前記測定管の流路と直交するように配置された少なくとも一対の励磁コイルと、
前記励磁コイルを励磁するための励磁回路と、
前記一対の励磁コイル間を結ぶ直線、及び前記測定管の流路と相互に直交するように配置される少なくとも一対の電極と、
前記電極で検出された電圧信号を検出可能な検出回路と、
2本の伝送線を接続可能な1次側入力と、前記1次側入力と絶縁された2次側出力とを備え、伝送線から供給される直流電力を所定の電力に変換して2次側出力から出力可能な電源部と、
前記検出回路で検出された電圧信号に基づいて、前記測定管の流路を通過する被検出流体の流量を演算すると共に、前記励磁回路の駆動状態を制御するための励磁制御信号を前記励磁回路に、及び前記電源部の駆動状態を制御する電源制御信号を前記電源部に、それぞれ出力可能な演算手段と、
を備えており、
前記電源部の2次側出力に、前記励磁回路、検出回路を接続しており、
前記演算手段が、演算された被検出流体の流量に応じて前記電源部の1次側入力に供給される伝送線からの電流量を制御するよう構成してなることを特徴とする2線式電磁流量計。 In a two-wire electromagnetic flowmeter that detects the flow rate of the fluid to be detected and performs signal transmission and power supply of the detected flow rate using two common transmission lines.
A measuring tube constituting a flow path through which the fluid to be detected passes,
At least a pair of exciting coils arranged to be orthogonal to the flow path of the measuring tube;
An excitation circuit for exciting the excitation coil;
A straight line connecting the pair of excitation coils, and at least a pair of electrodes arranged to be orthogonal to the flow path of the measurement tube;
A detection circuit capable of detecting a voltage signal detected by the electrode;
A primary side input capable of connecting two transmission lines and a secondary side output insulated from the primary side input are converted into a secondary power by converting DC power supplied from the transmission line into predetermined power. Power supply that can output from the side output;
Based on the voltage signal detected by the detection circuit, the flow rate of the fluid to be detected that passes through the flow path of the measurement tube is calculated, and an excitation control signal for controlling the driving state of the excitation circuit is calculated in the excitation circuit. And a calculation means capable of outputting a power control signal for controlling a driving state of the power supply unit to the power supply unit, respectively.
With
The excitation circuit and the detection circuit are connected to the secondary side output of the power supply unit,
The two-wire system characterized in that the calculation means is configured to control the amount of current from the transmission line supplied to the primary side input of the power supply unit according to the calculated flow rate of the fluid to be detected. Electromagnetic flow meter. - 請求項1に記載の2線式電磁流量計において、さらに、
前記電源部の1次側入力と前記演算手段との間のコモン電位を分離しつつ、前記演算手段から前記電源部への電源制御信号を送出するための制御信号絶縁回路を備え、
前記演算手段が、前記電源部の2次側出力に配置されて、前記検出回路の出力側に接続されてなることを特徴とする2線式電磁流量計。 The two-wire electromagnetic flow meter according to claim 1, further comprising:
A control signal insulation circuit for sending a power supply control signal from the calculation means to the power supply section while separating a common potential between the primary side input of the power supply section and the calculation means;
The two-wire electromagnetic flowmeter, wherein the arithmetic means is disposed at a secondary output of the power supply unit and connected to an output side of the detection circuit. - 請求項2に記載の2線式電磁流量計において、
前記電源部が、
前記演算手段からの電源制御信号に基づいて、伝送線を通電する1次側入力電流値を制御可能な電流出力回路と、
前記電流出力回路で制御され該伝送線から供給される1次側入力電流の直流電力を所定の電力に変換して2次側に出力可能なスイッチング回路と、
を備えることを特徴とする2線式電磁流量計。 The two-wire electromagnetic flow meter according to claim 2,
The power supply unit is
A current output circuit capable of controlling a primary-side input current value for energizing the transmission line based on a power supply control signal from the arithmetic means;
A switching circuit controlled by the current output circuit and capable of converting the DC power of the primary side input current supplied from the transmission line into a predetermined power and outputting it to the secondary side;
A two-wire electromagnetic flow meter comprising: - 請求項3に記載の2線式電磁流量計において、
前記スイッチング回路がさらに、2次側出力として、
前記励磁回路を駆動する駆動電力を生成するための励磁回路用出力と、
前記演算手段を駆動する駆動電力を生成するための演算手段用出力と
を備えることを特徴とする2線式電磁流量計。 The two-wire electromagnetic flow meter according to claim 3,
The switching circuit is further used as a secondary output,
An excitation circuit output for generating drive power for driving the excitation circuit;
A two-wire electromagnetic flow meter comprising: an output for calculating means for generating driving power for driving the calculating means. - 請求項1に記載の2線式電磁流量計において、
前記検出回路が、前記電極で検出される電圧信号を増幅するアナログ信号増幅回路であることを特徴とする2線式電磁流量計。 The two-wire electromagnetic flow meter according to claim 1,
The two-wire electromagnetic flowmeter, wherein the detection circuit is an analog signal amplification circuit that amplifies a voltage signal detected by the electrode. - 請求項1に記載の2線式電磁流量計において、さらに、
前記励磁回路と並列に、
前記励磁コイルと直列に接続されて、前記励磁コイルを励起する出力電圧値を調整して供給可能な定電圧電源と、
前記定電圧電源で前記励磁回路に励磁電流を供給するために必要な電圧を指示するためのチャージ電荷モニタ回路と、
を備えることを特徴とする2線式電磁流量計。 The two-wire electromagnetic flow meter according to claim 1, further comprising:
In parallel with the excitation circuit,
A constant voltage power source connected in series with the exciting coil and capable of adjusting and supplying an output voltage value for exciting the exciting coil;
A charge charge monitor circuit for instructing a voltage required to supply an excitation current to the excitation circuit by the constant voltage power supply;
A two-wire electromagnetic flow meter comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010517864A JP5635907B2 (en) | 2008-06-20 | 2009-06-10 | 2-wire electromagnetic flow meter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008161855 | 2008-06-20 | ||
JP2008-161855 | 2008-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009154115A1 true WO2009154115A1 (en) | 2009-12-23 |
Family
ID=41434031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/060607 WO2009154115A1 (en) | 2008-06-20 | 2009-06-10 | Two-wire electromagnetic flow meter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5635907B2 (en) |
WO (1) | WO2009154115A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013186019A1 (en) * | 2012-06-12 | 2013-12-19 | Endress+Hauser Flowtec Ag | Method for controlling the excitation energy in a coil arrangement of a flow meter which is formed as a two-wire field device |
JP2014169871A (en) * | 2013-03-01 | 2014-09-18 | Azbil Corp | Excitation circuit of electromagnetic flow meter |
JP2014194393A (en) * | 2013-03-29 | 2014-10-09 | Azbil Corp | Excitation circuit of electromagnetic flow meter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08285646A (en) * | 1995-04-18 | 1996-11-01 | Hitachi Ltd | Integral electromagnetic flow meter |
JPH09126849A (en) * | 1995-11-01 | 1997-05-16 | Hitachi Ltd | Two-wire type electromagnetic flowmeter |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07324959A (en) * | 1994-06-01 | 1995-12-12 | Yamatake Honeywell Co Ltd | Electromagnetic flowmeter |
JP4110442B2 (en) * | 2001-05-14 | 2008-07-02 | 横河電機株式会社 | Electromagnetic flow meter |
JP5065620B2 (en) * | 2006-05-23 | 2012-11-07 | 株式会社キーエンス | Electromagnetic flow meter |
-
2009
- 2009-06-10 WO PCT/JP2009/060607 patent/WO2009154115A1/en active Application Filing
- 2009-06-10 JP JP2010517864A patent/JP5635907B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08285646A (en) * | 1995-04-18 | 1996-11-01 | Hitachi Ltd | Integral electromagnetic flow meter |
JPH09126849A (en) * | 1995-11-01 | 1997-05-16 | Hitachi Ltd | Two-wire type electromagnetic flowmeter |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013186019A1 (en) * | 2012-06-12 | 2013-12-19 | Endress+Hauser Flowtec Ag | Method for controlling the excitation energy in a coil arrangement of a flow meter which is formed as a two-wire field device |
CN104395701A (en) * | 2012-06-12 | 2015-03-04 | 恩德斯+豪斯流量技术股份有限公司 | Method for controlling the excitation energy in a coil arrangement of a flow meter which is formed as a two-wire field device |
US9341506B2 (en) | 2012-06-12 | 2016-05-17 | Endress + Hauser Flowtec Ag | Method for controlling excitation energy in a coil arrangement of a flow measuring device embodied as a two-conductor field device |
CN104395701B (en) * | 2012-06-12 | 2018-01-26 | 恩德斯+豪斯流量技术股份有限公司 | It is a kind of control be formed as two-wire field apparatus flow measurement device coil arrangement in excitation energy method |
DE102012105042B4 (en) | 2012-06-12 | 2022-06-15 | Endress + Hauser Flowtec Ag | Method for controlling the excitation energy in a coil arrangement of a flow meter, which is designed as a two-wire field device |
JP2014169871A (en) * | 2013-03-01 | 2014-09-18 | Azbil Corp | Excitation circuit of electromagnetic flow meter |
JP2014194393A (en) * | 2013-03-29 | 2014-10-09 | Azbil Corp | Excitation circuit of electromagnetic flow meter |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009154115A1 (en) | 2011-12-01 |
JP5635907B2 (en) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5379938B2 (en) | 2-wire electromagnetic flow meter | |
US8698470B2 (en) | Control for switching between PWM and PFM operation in a buck converter | |
JP5065620B2 (en) | Electromagnetic flow meter | |
JPH0377932B2 (en) | ||
JP6835539B2 (en) | Excitation circuit of electromagnetic flowmeter, and electromagnetic flowmeter | |
JPS6237440B1 (en) | ||
WO2009154116A1 (en) | Two-wire electromagnetic flow meter | |
JP5635907B2 (en) | 2-wire electromagnetic flow meter | |
JP5379937B2 (en) | Electromagnetic flow meter, electromagnetic flow meter system, transducer for electromagnetic flow meter | |
US8817496B2 (en) | Primary-side sensing arrangements for power converters | |
US9316516B2 (en) | Magnetic excitation circuit for electromagnetic flow meter | |
JP5049206B2 (en) | 2-wire electromagnetic flow meter | |
JP5023836B2 (en) | Two-wire field device | |
JP2010002321A (en) | Electromagnetic flowmeter | |
JP6212426B2 (en) | Electromagnetic flow meter | |
US10527472B2 (en) | Excitation circuit for electromagnetic flowmeter, and electromagnetic flowmeter | |
KR101215074B1 (en) | Power supply for controlling current | |
CN211978011U (en) | Magnetic flowmeter for measuring fluid flow | |
JPH0137799B2 (en) | ||
JP2019184544A (en) | Converter for electromagnetic flow meter, electromagnetic flow meter, and method for operating flow rate | |
JP2019158582A (en) | Electromagnetic flowmeter | |
JPH0124711Y2 (en) | ||
JP7504199B2 (en) | Load leveling boost supply for magnetic flowmeters. | |
JP5820303B2 (en) | 2-wire electromagnetic flow meter | |
CN118443099A (en) | Excitation circuit and electromagnetic flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09766563 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010517864 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09766563 Country of ref document: EP Kind code of ref document: A1 |