WO2009153837A1 - Magnetic head, manufacturing method of magnetic head, and magnetic storage device - Google Patents

Magnetic head, manufacturing method of magnetic head, and magnetic storage device Download PDF

Info

Publication number
WO2009153837A1
WO2009153837A1 PCT/JP2008/001590 JP2008001590W WO2009153837A1 WO 2009153837 A1 WO2009153837 A1 WO 2009153837A1 JP 2008001590 W JP2008001590 W JP 2008001590W WO 2009153837 A1 WO2009153837 A1 WO 2009153837A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
width
layer
magnetic head
magnetic pole
Prior art date
Application number
PCT/JP2008/001590
Other languages
French (fr)
Japanese (ja)
Inventor
今純一
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/001590 priority Critical patent/WO2009153837A1/en
Priority to JP2010517553A priority patent/JPWO2009153837A1/en
Publication of WO2009153837A1 publication Critical patent/WO2009153837A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Definitions

  • the present invention relates to a magnetic head capable of writing magnetic information to a magnetic storage medium, a method for manufacturing the magnetic head, and a magnetic storage device including the magnetic head.
  • the main magnetic pole has a wide magnetic field guiding portion in which a magnetic field is induced by a coil, a flare portion that is adjacent to the magnetic field guiding portion and becomes narrower as the air bearing surface is approached (so-called tapered shape), and a narrow width that is adjacent to the flare portion And a tip portion. The tip is exposed on the air bearing surface of the magnetic head.
  • the air bearing surface is usually polished. From the viewpoint of efficiently releasing a magnetic field from the air bearing surface of the magnetic head toward the storage medium, it is preferable that the length of the tip portion (the length in the direction perpendicular to the air bearing surface, so-called “throat height”) is small. Therefore, at present, the tip is polished so that the throat height is about several hundred nm. In order to process the width of the main magnetic pole at the time of this polishing, the tip is usually designed to have a constant width.
  • the present invention provides a structure for making the width of the main pole of a magnetic head for recording magnetic information constant.
  • a magnetic head comprising an auxiliary magnetic pole layer provided on the insulating layer and magnetically connected to the magnetic pole.
  • a magnetic head having a magnetic pole having a predetermined main magnetic pole width can be obtained even if an error in the range of processing accuracy occurs during polishing of the air bearing surface.
  • FIG. 1 is a schematic plan view showing a magnetic recording apparatus including a magnetic head obtained according to the present embodiment.
  • FIG. 2 is a schematic view showing a magnetic recording apparatus including the magnetic head obtained according to the present embodiment.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the first embodiment of the magnetic head.
  • 4A to 4B are sectional views showing a schematic configuration of the first embodiment of the magnetic head.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the first embodiment of the magnetic head.
  • FIG. 6 is a schematic view showing a cross section of the main magnetic pole layer, which is parallel to the main surface of the substrate, overlaid on the same plane in the first embodiment of the magnetic head.
  • FIG. 7A to 7B are partial schematic views of the main magnetic pole layer in the first embodiment of the magnetic head.
  • FIG. 8 is a cross-sectional view of the main magnetic pole layer in the first embodiment of the magnetic head.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of another embodiment of the magnetic head.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of another embodiment of the magnetic head.
  • 11A to 11E are schematic cross-sectional views showing a first embodiment of a method for manufacturing a magnetic head.
  • 12A to 12F are schematic cross-sectional views showing a method for forming a ferromagnetic layer in the first embodiment of the method for manufacturing a magnetic head.
  • FIG. 13 is a perspective view of a ferromagnetic layer obtained by the forming method described with reference to FIG. 13 in the first embodiment of the method of manufacturing a magnetic head.
  • FIG. 14 is a plan view showing an upper surface of the ferromagnetic layer 40, in which a portion T in FIG. 13 is enlarged.
  • 15A to 15D are schematic cross-sectional views showing the process of processing the upper surface of the ferromagnetic layer in the first embodiment of the method of manufacturing the magnetic head.
  • 16A to 16E are partial cross-sectional views showing the ferromagnetic layer after processing the upper surface of the ferromagnetic layer in the first embodiment of the method of manufacturing the magnetic head.
  • 17A to 17B are cross-sectional views showing an example of the cross section of the ferromagnetic layer before processing the upper surface of the ferromagnetic layer in the first embodiment of the method of manufacturing the magnetic head.
  • 18A to 18B are cross-sectional views showing an example of the cross section of the ferromagnetic layer when the upper surface of the ferromagnetic layer is processed in the first embodiment of the method of manufacturing the magnetic head.
  • FIG. 1 is a schematic plan view showing a magnetic recording apparatus (hard disk drive: HDD) including a magnetic head obtained according to this embodiment.
  • HDD hard disk drive
  • the magnetic disk device 101 shown in FIG. 1 has a housing 102 as shown in the figure as an exterior. Inside the housing 102, a magnetic disk 104 mounted on the rotary shaft 103 and rotating in the direction of the arrow 120, a head slider 105 mounted with a magnetic head for recording information on and reproducing information from the magnetic disk 104, A suspension 106 that holds the head slider 105, a carriage arm 108 that is fixed and moves along the surface of the magnetic disk 104 about the arm shaft 107, and an electromagnetic actuator 109 that drives the carriage arm 108 are provided. ing. Note that a cover (not shown) is attached to the housing 102, and the above-described components are accommodated in an internal space formed by the housing 102 and the cover.
  • the magnetic disk device 1 further includes a control unit 110 that controls the operation of the magnetic disk device 101 as shown in FIG.
  • the control unit 110 is mounted on a control board (not shown) provided inside the housing 102, for example.
  • the control unit 110 stores a CPU (Central Processing Unit) 112, a RAM (Random Access Memory) 114 that temporarily stores data processed by the CPU 112, a control program, and the like.
  • a ROM (Read Only Memory) 115, an input / output circuit 119 for inputting / outputting signals to / from the outside, and a bus 117 for transmitting signals between these circuits are included.
  • the head slider 105 has a magnetic head 122 formed on a slider substrate 121.
  • the magnetic head 122 is connected to the input / output circuit 119 in the control circuit 110 by wirings 111a and 111b, and records information on the magnetic disk 104 (write operation) and reproduces information read from the magnetic disk 104 (read). Operation).
  • the carriage arm 108 is driven by the electromagnetic actuator 109 to move the magnetic head 121 to a desired track on the magnetic disk 104.
  • -Magnetic head- 3 to 5 are sectional views showing a magnetic head which is a first embodiment of the magnetic head of the present invention.
  • FIG. 3 shows a surface perpendicular to the surface (floating surface) facing the storage medium and perpendicular to the diameter direction of the storage medium.
  • 4A and 4B are plan views showing the air bearing surface.
  • FIG. 5 is a diagram in which cross sections parallel to the main surface of the main magnetic pole layer and the plating base substrate are displayed on the same plane.
  • the X-axis direction is the diameter direction of the storage medium
  • the Y-axis direction is the direction away from the storage medium
  • the Z-axis is the stacking direction of each layer stacked on the substrate (hereinafter referred to as “substrate”).
  • substrate the substrate
  • the X axis, the Y axis, and the Z axis are perpendicular to each other. Further, the distance in the X-axis direction is expressed as “width”, the distance in the Y-axis direction as “length”, and the distance in the Z-axis direction as “thickness”.
  • air bearing surface side the side closer to the air bearing surface (air bearing surface: ABS) in the Y-axis direction
  • the side away from the air bearing surface is referred to as the “height side”.
  • the magnetic head according to the present embodiment is mounted as a magnetic recording device in a magnetic recording apparatus such as a hard disk drive.
  • This magnetic head has an insulating layer 9 made of aluminum oxide (Al 2 O 3 ; hereinafter simply referred to as “alumina”) on a substrate 7 made of a ceramic material such as AlTiC (Al 2 O 3 TiC).
  • the recording head unit 123 capable of recording information at an arbitrary position on the recording surface of the storage medium by the vertical recording method and an overcoat layer (not shown) made of alumina are stacked in this order. .
  • An insulating layer 9 is formed on the Altic substrate 7.
  • the insulating layer 9 is made of a nonmagnetic nonconductive material such as alumina.
  • a heater (not shown) may be embedded in the insulating layer 9. The heater heats the recording head unit 111 to expand them and project them to the air bearing surface side.
  • the flying height can be controlled to be suitable for reproduction and recording.
  • the recording head portion 123 includes, for example, the main magnetic pole layer 11, the trailing shield layer 14, the connection layers 10A and 10B, the coils 8a to 8d (hereinafter may be collectively referred to as the coil 8), and the resin layers 13a to 13e (hereinafter, referred to as “coil 8”). , And may be collectively referred to as a resist 13), and includes a return yoke layer 15 and insulating layers 12 and 17.
  • the main magnetic pole layer 11, the connection layer 10B, the return yoke layer 15, the connection layer 10A, and the trailing shield layer 14 are each made of a magnetic material and are magnetically connected.
  • the portions made of these magnetic materials and the coil 8 are electrically shielded by the insulating layers 12 and 17 and the resin layer 13.
  • the coil 8, the resist 13, and the connection layer 10A are polished on the surface far from the substrate, and are located on substantially the same plane.
  • the coils 8a to 8d can generate a magnetic field when energized.
  • the generated magnetic field is guided to the main magnetic pole layer 11 and emitted from the tip of the main magnetic pole layer 11, whereby magnetic information can be recorded on the recording medium.
  • the coils 8a to 8d are made of a conductive material such as copper (Cu), for example.
  • the thickness of the coil is, for example, about 1 to 3 ⁇ m.
  • a coil located on the height side of the connection layer 10B is not shown.
  • the main magnetic pole layer 11 mainly contains magnetic flux generated in the coils 8A and 8B and emits the magnetic flux toward a magnetic disk (not shown).
  • the main magnetic pole layer 11 is normally exposed on the air bearing surface 16 side.
  • the main magnetic pole layer 11 contains a ferromagnetic material. Examples of the ferromagnetic material include iron-cobalt alloy (FeCo), iron-based alloy (Fe-M; M is a metal element of 4A, 5A, 6A, 3B, and 4B group), or nitrides of these alloys. Can be mentioned.
  • the main magnetic pole layer 11 has a thickness of about 0.1 ⁇ m to 0.5 ⁇ m.
  • the main magnetic pole layer 11 corresponds to a specific example of “magnetic pole” and “magnetic pole layer” in the present invention.
  • FIGS. 4A and 4B are schematic plan views showing the air bearing surface 16, and only the main magnetic pole layer 11 and the trailing shield layer 14 are shown.
  • the cross section on the air bearing surface side of the main magnetic pole layer 11 has an inverted trapezoidal shape.
  • the cross section has such an inverted trapezoidal shape when the magnetic head performs a recording operation depending on the inclination angle (skew angle) of the magnetic head with respect to the circumferential direction (track direction) of the magnetic storage medium. This is to prevent the magnetic pole layer 11 from writing magnetic information on a track that is not desired to be recorded.
  • the cross section on the air bearing surface side of the main magnetic pole layer 11 may be an inverted triangle. The sides of the inverted trapezoid and the inverted triangle are filled with a nonmagnetic insulator such as alumina (not shown).
  • FIG. 5 is a schematic view of a cross section of the main magnetic pole layer parallel to the main surface of the substrate.
  • the main magnetic pole layer 11 includes a flare portion 42 extending from the magnetic field induction portion 41 and a flare portion tip 42 a on a substrate (not shown) provided with an insulating layer.
  • the magnetic field induction unit 41 is a relatively wide part where a magnetic field for recording by a coil is induced.
  • the width i of the magnetic field guiding part 41 is equal to or greater than the width j of the flare part 42.
  • the width i of the magnetic field induction unit is, for example, several tens of ⁇ m.
  • the flare part 42 is a part that narrows down the magnetic field induced by the magnetic field guiding part 41 and guides it to the tip of the flare part.
  • the width j of the flare portion 42 has a so-called taper shape that increases as it approaches the magnetic field guiding portion 41 and decreases as it approaches the tip.
  • the range of the width j of the flare portion is, for example, about 0.1 to 30 ⁇ m.
  • the tip 42a of the flare portion is a portion for recording information by emitting a magnetic field from the air bearing surface 16 toward the magnetic storage medium.
  • the width k of the tip of the flare portion is, for example, about several tens to one hundred and several tens of nm.
  • the degree of taper of the tip 42a of the flare part is smaller than that of the flare part 42.
  • the length k 0 (generally called the throat height) of the tip 42a of the flare part is, for example, a few hundred tens of nm.
  • the length j 0 excluding the tip 42a is, for example, 100 to 150 nm.
  • the ideal shape of the tip 42a of the flare portion is indicated by broken lines R1 and R2.
  • inevitable shape curling occurs near the boundary between the flare portion 42 and the tip 42a of the flare portion.
  • This shape distortion is derived from the shape accuracy of the resist layer used when the main magnetic pole layer 11 is formed. A method for forming the resist layer will be described later.
  • FIG. 6 is an enlarged perspective view of a portion T surrounded by a dotted line in the main magnetic pole layer 11 shown in FIG.
  • the width of the tip 42a of the flare portion is smaller as it is closer to the substrate 7.
  • the width n 1 of the upper side of the air bearing surface 16 is larger than the width n 3 of the lower side.
  • the width n 2 between the upper side and the lower side is smaller than the width n 1 and larger than the width n 3 .
  • the width of the upper surface of the tip 42a of the flared portion is substantially constant.
  • the width n 1 of the upper side of the air bearing surface 16 is determined by the width n 1A of the upper side at the position A separated from the air bearing surface 16 by the length L A and the width n 1B of the upper side at the position B separated by the length L B. It is equal to the width n 1C of the upper side at the position C separated from the air bearing surface 16 by the length L C. Also within the air bearing surface 16 to a predetermined length L C to the magnetic field induction section side, the thickness of the tip 42a of the flared portion is greater as the distance from the magnetic field induction section 41. For example, the thickness h of the flare portion on the air bearing surface 16 is larger than h C at a position C away from the air bearing surface 16 by a length L C.
  • FIGS. 7A and 7B are schematic views of a portion T surrounded by a dotted line in the main magnetic pole layer 11 shown in FIG.
  • the upper view of FIG. 7A is a top view
  • the lower view is a cross-sectional view showing a P 1 -P 2 cross section of the upper view.
  • 7B is a cross-sectional view showing a cross section of the main magnetic pole layer 11 in FIG. 7A on the air bearing surface and a cross section parallel to the air bearing surface at position A and position B.
  • the width of the tip 42a of the flare portion is smaller as it approaches a substrate (not shown).
  • the width of the tip 42a of the flare portion is smaller as it approaches the surface in contact with the insulating layer 9 from the surface in contact with the insulating layer 12 in FIG.
  • the thickness of the tip 42a of the flare part increases as it approaches the air bearing surface 16, that is, away from the magnetic field guiding part. For example, assuming that the thickness at the air bearing surface 16 is h, the thickness at the position A is h A , the thickness at the position B is h B , and the thickness at the position C is h C , h> h A > h B > h C It is.
  • the width of the flare portion tip 42a is smaller the closer to the air bearing surface 16, that is, the farther from the magnetic field guiding portion, the inner surface of the flare portion 42a and the distance from the lower surface are the same.
  • the width at the air bearing surface is n 3
  • the width at position A is n 3A
  • the width at position B is n 3B
  • the width at position C is n 3C. Then, n 3 ⁇ n 3A ⁇ n 3B ⁇ n 3C .
  • the width at position A is n 1A
  • the width at position B is n 1B
  • the width at position C is n 1C , n 1 , n 1A , N 1B and n 1C are substantially the same.
  • the tip of the flare part is so small that the width of the tip 42a of the flare part is close to the substrate, is so small that it is far from the magnetic field induction part, and the thickness of the tip 42a of the flare part is so large that it is away from the magnetic field induction part. This can be realized by forming 42a.
  • the magnetic head having the shape of the tip 42a of the flare portion has a main surface on the air bearing surface even if an error in the processing accuracy range occurs when polishing the air bearing surface after laminating the layers constituting the magnetic head.
  • the width of the upper side of the pole layer 11 (so-called main pole width) is constant. That is, a magnetic head satisfying a predetermined main magnetic pole width can be obtained even if polishing is performed more excessively than the current air bearing surface 16.
  • FIG. 8 is a cross-sectional view showing an example of a cross section parallel to the air bearing surface of the tip 42a of the flare portion and the air bearing surface at the position B.
  • FIG. 8 the cross section PQRS at the air bearing surface 16 and the cross section P A Q A R A S A at the position A are displayed in an overlapping manner.
  • the side PQ and the side P A Q A are parallel to the air bearing surface 16 of the tip 42a of the flare portion and the cross section at the position A.
  • the side RS and the side R A S A are parallel.
  • the thickness h A at the position A is the taper angle ⁇ , the angle ⁇ formed by the upper side and the side,
  • the thickness h, the width n 3 of the lower side of the air bearing surface 16, and the width n 3A of the lower side at the position A are expressed by the following formula (1).
  • the width n 1 of the upper side on the air bearing surface is equal to the width n 1A of the upper side at the position A.
  • the plating base (not shown) is located on the substrate side of the main magnetic pole layer 11. This is a layer that functions as an electrode when the main magnetic pole layer 11 is formed by a plating method.
  • the plating base can be made of any material having conductivity.
  • the material contained in the plating base is selected from at least one of tantalum (Ta), titanium (Ti), ruthenium (Ru), and the like. If the main magnetic pole layer 11 is not formed using the plating method, the plating base is not provided.
  • the trailing shield layer 14 mainly uses the magnetic field gradient of the write magnetic field of the main magnetic pole layer when the magnetic flux emitted from the main magnetic pole layer 11 is circulated to the return yoke layer 15 via the hard disk (not shown). Takes the function of sharpening.
  • the trailing shield layer 14 also has a function of magnetically shielding the main magnetic pole layer 11 from the surroundings.
  • the trailing shield layer 14 is normally exposed on the air bearing surface 16 side.
  • the trailing shield layer 14 is made of a magnetic material such as permalloy (Ni: 80 wt%, Fe: 20 wt%), and has a thickness of about 1.0 ⁇ m to 2.0 ⁇ m.
  • the trailing shield layer 14 corresponds to a specific example of the “auxiliary magnetic pole layer” in the present invention.
  • the return yoke layer 15 has a function of circulating the magnetic flux emitted from the main magnetic pole layer 11 through the hard disk (not shown) in the recording head unit 111.
  • the return yoke layer 15 is made of, for example, a magnetic material such as permalloy (Ni: 80 wt%, Fe: 20 wt%), and has a thickness of about 1.0 ⁇ m to 4.0 ⁇ m.
  • the return yoke layer 15 corresponds to a specific example of “auxiliary magnetic pole layer” in the invention.
  • the resin layers 13a to 13e are made of, for example, a photoresist (photosensitive resin) that exhibits fluidity when heated.
  • a photoresist photosensitive resin
  • ceramics such as alumina may be disposed instead of the resin layers 13a to 13e.
  • the resin layers 13a to 13e correspond to a specific example of “insulating layer” in the present invention.
  • the insulating layer 12 is made of a material that can ensure electrical insulation between the coil 8 and the main magnetic pole layer 11 and is nonmagnetic.
  • the insulating layer 12 is made of a nonmagnetic nonconductive material such as alumina or silicon oxide (SiO 2 ). Further, a nonmagnetic material having conductivity such as ruthenium (Ru) or copper (Cu) may be used on the air bearing surface side of the insulating layer 12.
  • the insulating layer 12 has a thickness of about several tens to several hundreds of nanometers on the air bearing surface side and about 0.1 ⁇ m to 1.0 ⁇ m on the height side.
  • the insulating layer 12 may be composed of a plurality of materials, or may be composed of a plurality of layers made of different materials.
  • the insulating layer 12 corresponds to a specific example of “insulating layer” in the present invention.
  • the insulating layer 17 is provided so as to cover the coil 8 and the resin layer 13.
  • the insulating layer 17 is made of a nonmagnetic nonconductive material such as alumina, silicon oxide (SiO 2 ), or photoresist, and has a thickness of about 0.1 ⁇ m to 1.0 ⁇ m, for example.
  • the insulating layer 17 is made of a photoresist, it is usually formed integrally with the resin layer 13.
  • the insulating layer 12 corresponds to a specific example of “insulating layer” in the present invention.
  • connection layer 10A is for magnetically connecting the return yoke layer 15 and the trailing shield 14, and is usually located on the air bearing surface side of the coil 8.
  • the connection layer 10 ⁇ / b> B is for magnetically connecting the return yoke layer 15 and the main magnetic pole layer 11, and is usually located on the height side of the coil 8.
  • the connection layers 10A and 10B are made of a magnetic material such as permalloy (Ni: 80% by weight, Fe: 20% by weight).
  • the connection layer 10A corresponds to a specific example of “auxiliary magnetic pole layer” in the invention.
  • An overcoat layer (not shown) is provided on the upper surface of the recording head unit 123 in order to protect the recording head unit 123.
  • the material constituting the overcoat layer is not particularly limited.
  • the overcoat layer can be made of alumina, for example.
  • Each of the above layers uses, for example, an existing thin film process including a film forming technique such as plating or sputtering, a patterning technique using a photolithography method or an etching method, and a polishing technique such as machining or polishing, It can be manufactured by laminating on a substrate 7 made of a ceramic material in order from the lower layer to the upper layer in FIG. Details of the method of manufacturing the magnetic head will be described later.
  • a film forming technique such as plating or sputtering
  • a patterning technique using a photolithography method or an etching method and a polishing technique such as machining or polishing
  • a predetermined magnetic flux is generated by passing a current through the coil 8 near the main magnetic pole layer 11.
  • the magnetic flux generated by the coil 8 passes through the main magnetic pole layer 11 and flows from the air bearing surface 16 to the surface of the storage medium (not shown).
  • the magnetic field flowing into the recording layer flows out into the magnetic flux and flows into the trailing shield layer 14, the connection layer 10 ⁇ / b> A, and the return yoke layer 15.
  • a magnetic circuit is formed by the main magnetic pole layer 11, the storage medium (not shown), the trailing shield layer 14, the connection layer 10A, the return yoke 15, and the connection layer 10B.
  • the main magnetic pole width is constant even when an error in the range of processing accuracy occurs when the air bearing surface side is polished after laminating the layers constituting the magnetic head. That is, even if the air bearing surface 16 is excessively polished, a magnetic head satisfying a predetermined main pole width can be obtained.
  • 9 and 10 are cross-sectional schematic views showing different embodiments of the magnetic head of the present invention.
  • 9 and 10 are schematic plan views showing a surface (floating surface) facing the storage medium.
  • the cross section of the main magnetic pole layer parallel to the air bearing surface and the cross section of the main magnetic pole layer parallel to the main surface of the substrate are the same as the cross sectional shapes described with reference to FIGS. Therefore, it is omitted.
  • the trailing shield layer 14 and the connection layers 10A and 10B are provided.
  • the trailing shield 14 and the connection layers 10A and 10B are not provided. good.
  • the magnetic head of the present invention may be a composite head capable of performing both recording and reproduction functions.
  • an insulating layer 9 and a reproduction head portion are formed on a substrate 7.
  • the recording head part 123, and the overcoat layer may be laminated in this order.
  • the reproducing head unit 124 has a configuration in which the lower shield layer 3, the gap film 4, and the upper shield layer 6 are laminated in this order.
  • MR element magnetoresistive effect element
  • the lower shield layer 3 and the upper shield layer 6 mainly shield the MR element 5 from the surroundings.
  • the lower shield layer 3 and the upper shield layer 6 are made of, for example, a magnetic material such as a nickel iron alloy (NiFe (hereinafter simply referred to as “permalloy (trade name)”); Ni: 80 wt%, Fe: 20 wt%). Their thickness is about 1.0 ⁇ m to 2.0 ⁇ m.
  • the gap film 4 electrically isolates the MR element 5 from the lower shield layer 3 and the upper shield layer 6.
  • the gap film 4 is made of, for example, a nonmagnetic nonconductive material such as alumina and has a thickness of about 0.1 ⁇ m to 0.2 ⁇ m.
  • an element using a magnetosensitive film exhibiting a magnetoresistive effect such as a giant magnetoresistive effect (GMR; Giant Magneto-resistive) or a tunnel magnetoresistive effect (TMR; Tunneling Magneto-resistive) can be used.
  • GMR giant magnetoresistive effect
  • TMR tunnel magnetoresistive effect
  • FIGS. 9 and 10 has an error in the processing accuracy range when the air bearing surface side is polished after laminating each layer constituting the magnetic head, like the magnetic head shown in FIGS. Even if it occurs, the main pole width is constant. That is, even if the air bearing surface 16 is excessively polished, a magnetic head including a main magnetic pole layer having a predetermined main magnetic pole width can be obtained.
  • FIGS. 11A to 11E are schematic cross-sectional views showing a first embodiment of the method for manufacturing a magnetic head of the present invention. In the process of manufacturing a magnetic head having the same configuration as the magnetic head described with reference to FIGS.
  • FIG. 5 is a schematic cross-sectional view showing a cross-sectional shape corresponding to the air bearing surface of the finally obtained magnetic head in the laminated body in FIG.
  • description is abbreviate
  • an insulating layer such as alumina is formed on a substrate 7 such as Altic, and a plated base layer (such as ruthenium) is formed on the substrate 7 on which the insulating layer is formed. (Not shown) is formed by sputtering or the like.
  • the ferromagnetic layer 40 is formed on the substrate 7 provided with an insulating layer and a plating base layer (not shown). The ferromagnetic layer 40 becomes the main magnetic pole layer 11 in the finally obtained magnetic head.
  • FIG. 12A to 12F are schematic cross-sectional views showing a method for forming the ferromagnetic layer 40.
  • FIG. This schematic cross-sectional view shows a cross-section at the tip of the main magnetic pole layer 11 (that is, a cross-section corresponding to the air bearing surface in the obtained magnetic head).
  • a resist layer 30 is applied to the surface of the substrate 7.
  • the resist used may be positive or negative.
  • the resist layer 30 is patterned by using a normal photolithography technique. Specifically, for example, after exposure is performed with an exposure mask disposed on the resist layer 30, the exposed portion of the resist layer 30 is removed by development.
  • This mask is an opening-type mask having an opening reflecting the pattern shape of the main magnetic pole layer 11 finally obtained when viewed in the direction of the main surface of the substrate 7.
  • the exposure apparatus (exposure conditions) to be used and the type of developer can be arbitrarily set.
  • the end part (edge) 31 of the resist layer 30 after development rises substantially vertically as shown in FIG. 12B.
  • the width of the opening 32 of the resist layer is larger as the distance from the air bearing surface is closer to the magnetic field guiding portion within a predetermined distance from the cross section corresponding to the air bearing surface.
  • the width of the opening 32 of the resist layer is increased as the distance from the air bearing surface in the direction approaching the magnetic field guiding portion is within a predetermined distance from the cross section corresponding to the air bearing surface.
  • the tapered resist layer 30 is plated with a ferromagnetic material (for example, permalloy) to form the ferromagnetic layer 40.
  • the ferromagnetic layer 40 is slimmed by ion milling as shown in FIG. 12F.
  • the shape of the ferromagnetic layer 40 maintains an inverted trapezoidal shape, but becomes an inverted triangle as described above when the width of the tip is smaller or when ion milling is performed more.
  • the manufacturing flow shown in FIGS. 12A to 12F not only the side surface but also the upper surface of the pattern formed by ion milling (plating pattern made of a ferromagnetic material) is etched by ions, so that the pattern thickness (that is, the plating thickness) is also increased. Will be reduced.
  • FIG. 13 is a perspective view of a ferromagnetic layer obtained by the formation method described with reference to FIGS. 12A to 12F.
  • FIG. 13 shows a pattern of the ferromagnetic layer formed on the plating base layer that is not yet completed as a magnetic head.
  • the ferromagnetic layer 40 includes a main magnetic pole portion 44 that becomes the main magnetic pole layer 11 in the obtained magnetic head, and a support portion 48 that is integrated with the main magnetic pole portion 44 in order to maintain the shape of the main magnetic pole portion 44 during manufacturing. And comprising.
  • the main magnetic pole part 11 includes a magnetic field guiding part 41, a flare part 42, and a part of the tip part 43.
  • the magnetic field guiding part 41, the flare part 42, and the tip part 43 are magnetically connected.
  • the width i (the length in the X-axis direction) in the cross section perpendicular to the stacking direction of the magnetic field induction part 41 is equal to or greater than the width j of the flare part 42.
  • a magnetic field is induced by a coil (not shown).
  • the flare part 42 is adjacent to the magnetic field induction part 41 and the tip part 43.
  • the width j of the flare portion 42 has a tapered shape that becomes narrower as it approaches the tip portion 43 from the magnetic field guiding portion 41.
  • the tip portion 43 is adjacent to the flare portion 42.
  • the tip portion 43 usually has a substantially constant width k except for the end portion in the longitudinal direction for convenience of processing the magnetic pole width to be constant.
  • the width k of the tip portion 43 is equal to or less than the width j on the height side of the flare portion 42. Near the boundary between the flare portion 42 and the tip portion 43 (the end portion in the longitudinal direction of the tip portion 43), an inevitable shape distortion resulting from the shape accuracy of the resist layer 30 in FIG. 12C occurs. Therefore, the width of the end portion 43 near the flare portion 42 gradually decreases with increasing distance from the magnetic field guiding portion 41, like the shape of the flare portion tip 42a described with reference to FIGS.
  • the support portion 48 is provided for the purpose of preventing the tip of the flare portion 42, which is narrow and high in height compared to the width, and the tip portion 43 from falling or bending during the manufacture of the magnetic head.
  • the support part 48 and the magnetic field induction part 41 are provided so as to sandwich the flare part 42 and the tip part 43. That is, the support portion 48 and the magnetic field guiding portion 41 are formed in a pattern so as to support the flare portion 42 and the tip portion 43.
  • the shape of the support portion 48 is not particularly limited as long as this object can be achieved.
  • a shape constituted by a flare support portion 45 having a tapered shape and a wide support portion 46 as in the present embodiment is adopted. can do.
  • the width q of the flare support portion 45 is not less than the width k of the tip portion 43 and not more than the width m of the wide support portion 46.
  • the width i of the magnetic field induction unit 41 is, for example, about several tens of ⁇ m.
  • the range of the width j of the flare portion 42 is, for example, about 0.1 to 30 ⁇ m.
  • the width k of the distal end portion 43 is, for example, about several tens to one hundred and several tens of nm.
  • the range of the width q of the flare support portion 45 is, for example, about 0.1 to 10 ⁇ m.
  • the length q z of the flare support portion 45 is, for example, 100 to 150 nm.
  • the width r of the wide support portion 46 is, for example, about 5 to 10 ⁇ m. In the present embodiment, the width i of the magnetic field guiding part 41 is larger than the width r of the wide support part 46, but the width r of the wide support part 46 may be larger than the width i of the magnetic field guiding part.
  • the length k z of the bridge formed by the tip portion 43 is, for example, 1 to 2 ⁇ m.
  • the main magnetic pole layer 11 having a predetermined throat height can be obtained by polishing the ferromagnetic layer 40 from the support portion 48 side to a cross section perpendicular to the Y axis passing through the line segment E 1 -E 2. it can.
  • a cross section perpendicular to the Y-axis passing through the line segment E 1 -E 2 constitutes a part of the air bearing surface of the magnetic head.
  • FIG. 14 is a plan view showing the upper surface of the ferromagnetic layer 40 in which the portion T in FIG. 13 is enlarged.
  • the shape near the boundary between the flare portion 42 and the tip portion 43 is not linear as shown by the solid line. This originates in the shape of the resist layer 30 in the method for forming a ferromagnetic layer described with reference to FIGS. 12A to 12F.
  • the resist layer 30 is formed by an exposure mask having a shape corresponding to a linear shape as indicated by dotted lines R1 and R2 in FIG.
  • the shape of the resist layer 30 in the vicinity of the boundary between the flare portion 42 and the tip portion 43 is not linear due to the influence of light wrapping during exposure.
  • the length of the width changing portion 43a in the Y-axis direction is currently about several hundreds of nm.
  • the method for manufacturing the magnetic head of this embodiment will be described.
  • the insulating layer 21 is provided so as to cover the ferromagnetic layer 40, and the stacked body shown in FIG. 11C is obtained.
  • the insulating layer 21 is made of a nonmagnetic nonconductive material such as alumina.
  • the insulating layer 21 can be formed by sputtering, for example.
  • the upper surface of the insulating layer 21 is polished by CMP until the ferromagnetic layer 40 is exposed and the upper surface becomes flat.
  • FIG. 15A to 15D are schematic cross-sectional views showing a process of processing the upper surface of the ferromagnetic layer.
  • FIG. 15A is a partial cross-sectional view showing a cross-sectional shape passing through F 1 -F 2 of the ferromagnetic layer shown in FIG. 13 and perpendicular to the X-axis.
  • the part that can be processed is a part that becomes wider as it moves away from the magnetic field guiding part 41, that is, the part that is close to the flare part 42 among the flare part 42 and the tip part 43.
  • a patterned resist layer 50 is provided on the upper surface of the ferromagnetic layer 40.
  • the resist layer 50 is not provided on the portion to be processed.
  • the resist layer 50 can be formed using a normal photolithography technique. Details of the resist layer 50 are the same as those of the resist layer 30 in FIG.
  • the ferromagnetic layer 40 exposed in the portion 51 where the resist is not provided is removed by etching such as ion milling, and a step is formed on the upper surface of the ferromagnetic layer 40 as shown in FIG. 15C.
  • the resist layer 50 becomes a shadow with respect to the ion beam emitted in the ion milling to the ferromagnetic layer 40. Therefore, by controlling the resist shape or the ion beam incident angle, the thickness of the ferromagnetic layer 40 continuously changes in the direction extending from the magnetic field guiding portion (not shown) toward the flare portion 42. As described above, the upper surface of the ferromagnetic layer 40 can be processed. For example, by adjusting the thickness of the resist layer 50 and the taper angle of the sidewall of the resist layer 50, the thickness of the portion U near the resist layer 50 and the gradient of the upper surface of the exposed upper surface of the ferromagnetic layer 40 can be arbitrarily controlled. Can do. Thereafter, as shown in FIG. 15D, the resist layer 50 is removed.
  • the shape of the step is not limited to the shape shown in FIG. 16A to 16E are partial cross-sectional views showing the ferromagnetic layer after processing the upper surface of the ferromagnetic layer.
  • a portion U in which the thickness and the gradient of the upper surface are controlled may be provided across the flare portion 42 and the width changing portion 43a.
  • the portion U may be provided in the flare portion 42.
  • a portion V that increases in thickness as it approaches the magnetic field guiding portion 41 may be provided on the magnetic field guiding portion 41 side of the portion U provided in the width changing portion 43a.
  • data on a magnetic recording medium is read and written by a magnetic head.
  • the density in both the track width direction (magnetic pole width direction: X-axis direction) and the bit length direction (magnetic pole thickness direction: Z-axis direction) is improved. There is a need. When the track width is reduced, it is necessary to reduce the main pole width.
  • the portion V whose thickness increases as it approaches the magnetic field guiding portion 41 has a function of compensating for the output of the recording magnetic field that has been lowered by reducing the main magnetic pole width and avoiding the occurrence of write defects.
  • the portion U may be provided across the flare portion 42 and the width changing portion 43a, and further, the portion V may be provided on the magnetic field guiding portion 41 side of the portion U. Further, as shown in FIG.
  • the portion U may be provided in the flare portion 42, and the portion V may be further provided on the magnetic field induction portion 41 side of the portion U.
  • the ferromagnetic layers having the shapes shown in FIGS. 16A to 16E can be formed by changing the shape of the resist layer.
  • FIGS. 17A to 17B are schematic partial cross-sectional views showing an example of the ferromagnetic layer before processing the upper surface of the ferromagnetic layer.
  • FIG. 17A is a cross section obtained by enlarging the portion T in FIG. 13 and parallel to the main surface of the substrate.
  • FIG. 17B is a cross section parallel to the Y axis (parallel to the air bearing surface) in FIG. 17A.
  • the polishing error is assumed to be f.
  • the length of the upper side of the cross section perpendicular to the Y axis at the position f / 2 (position D) from the processing target position M toward the constant width portion 43b is defined as d.
  • p be the length of the upper side of the cross section perpendicular to the Y axis at an arbitrary position P between the position D and the position E.
  • the length of the upper side satisfies the relationship d ⁇ p ⁇ e.
  • the taper angle of the cross section parallel to the Y axis between the position D and the position E of the ferromagnetic layer 40 is ⁇ (constant) (the angle between the upper side and the side side in the cross section is ⁇ (constant)). . Further, it is assumed that corresponding side edges at positions D, E, and P are parallel to each other. Before the upper surface of the ferromagnetic layer 40 is processed, the thickness of the ferromagnetic layer 40 between the position D and the position E is set to h D. Now, let the target main pole width be d.
  • FIG. 18A is a schematic diagram in which the cross sections of the ferromagnetic layer 40 perpendicular to the Y axis at the positions D and P are overlapped.
  • the depth to be removed on the basis of the upper surface of the position P before processing is defined as h 1
  • the thickness of the position P after processing of the upper surface is defined as h P.
  • the ferromagnetic layer 40 is removed so as to satisfy the relationship of the following formula (2) at an arbitrary position P between the position D and the position E.
  • the width of the upper side of an arbitrary cross section perpendicular to the Y axis between the position D and the position E can be made constant.
  • the shape of the resist layer 50 necessary to satisfy the above formula (2) will be described with reference to FIG. 18B.
  • the upper surface of the ferromagnetic layer 40 that satisfies the condition of the above formula (2) is adjusted by adjusting the taper angle ⁇ and the film thickness m of the resist layer 50 used as a mask during ion milling. It can be arbitrarily formed.
  • a ferromagnetic material e.g., permalloy
  • a thickness h D is 300 nm
  • the taper angle ⁇ formed the ferromagnetic layer 12 °.
  • An error f of polishing performed to form the air bearing surface 16 described later was 40 nm. Therefore, the distance between the position D and the position E in FIG.
  • the width of the upper side of the cross section perpendicular to the Y axis of the ferromagnetic layer 40 at the position D and the position E was 176 nm and 191 nm, respectively, as measured with a scanning electron microscope. Therefore, the required height difference h 2 between the positions DE was calculated as follows.
  • a resist is applied on the ferromagnetic layer 40, exposed, and developed, thereby forming a resist layer 50 having an inversely tapered shape.
  • the resist layer 50 having a resist film thickness m of 3500 mm and a taper angle ⁇ of 8 ° was formed by using electron beam lithography capable of easily forming a reverse taper pattern.
  • the inclined surface 49 was formed by performing ion milling on the upper surface of the ferromagnetic layer 40 on which the resist layer 50 was formed.
  • the height difference h 2 on the upper surface of the ferromagnetic layer 40 at the positions D and E was measured using a scanning electron microscope to be 37 nm.
  • the method for manufacturing the magnetic head of this embodiment will be described. Thereafter, as shown in FIG. 11E, the insulating layer 12 and the trailing shield layer 14 are sequentially formed on the upper surface of the laminate.
  • a coil (not shown), a resin layer (not shown), and an insulating layer (not shown) provided so as to cover the coil and the resin layer are located at the back of FIG. 11D. Is provided.
  • the coil corresponds to the coil 8 in FIG. 3
  • the resin layer corresponds to the resin layer 13 in FIG. 3
  • the insulating layer corresponds to the insulating layer 17 in FIG.
  • layers (not shown) corresponding to the connection layers 10A and 10B and the return yoke layer 15 shown in FIG. 3 are provided. These layers use, for example, existing thin film processes including film formation techniques such as plating and sputtering, patterning techniques utilizing photolithography and etching, and polishing techniques such as machining and polishing. It is possible to form.
  • an overcoat layer (not shown) is provided on the entire upper surface by sputtering.
  • the obtained multilayer body is polished from the support portion 48 side of the ferromagnetic layer 40 in FIG. 13 to a position corresponding to a cross section perpendicular to the Y axis passing through the line segment E 1 -E 2 .
  • a magnetic head including the main magnetic pole layer 11 having the shape described with reference to FIGS. 3 to 8 can be obtained.
  • the air bearing surface 16 in FIGS. 3 to 7 is formed.
  • the polishing means is not particularly limited, and examples thereof include polishing using a dicing saw. Note that after cutting the substantially parallel arbitrary cross section to line E 1 -E 2 of the supporting portion 48 in FIG.
  • the ferromagnetic layer 40 may be polished to a position corresponding to a cross section perpendicular to the Y axis. In this polishing process, even if an error within the range of processing accuracy occurs, the width of the main magnetic pole layer 11 in the vicinity of the air bearing surface is substantially constant. Therefore, according to the magnetic head manufacturing method of the present embodiment, a magnetic head including a main magnetic pole layer having a desired main magnetic pole width can be manufactured with high accuracy.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Abstract

[PROBLEMS] To provide a magnetic head with the high accuracy of the width of a main pole recording magnetic information to a recording medium. [MEANS FOR SOLVING PROBLEMS] A magnetic head is provided with a substrate, a wide part that is provided on the substrate, and a narrow part that is extended from the wide part and is thicker as it separates from the wide part. The magnetic head is characterized in that the narrow part has a magnetic pole having an upper surface and a lower surface having a width that is narrower than the width of the upper surface and is wider as it approaches the wide part, an insulating layer that is provided on the magnetic pole and is non-magnetic and non-conductive, and an auxiliary magnetic pole layer provided on the insulating layer and magnetically connected to the magnetic pole.

Description

磁気ヘッド、磁気ヘッドの製造方法、及び磁気記憶装置Magnetic head, method of manufacturing magnetic head, and magnetic storage device
 本発明は、磁気記憶媒体へ磁気情報の書き込みを行うことが可能な磁気ヘッド、その磁気ヘッドの製造方法、及びその磁気ヘッドを備えた磁気記憶装置に関する。 The present invention relates to a magnetic head capable of writing magnetic information to a magnetic storage medium, a method for manufacturing the magnetic head, and a magnetic storage device including the magnetic head.
 近年のコンピュータや通信で扱う情報量の増大は目覚しいものがある。これらの情報を記録する磁気記憶装置に対する大容量化(高記録密度化)に対する要求が高まっている。磁気記憶装置の記録密度の向上を図るため、磁気ヘッドの浮上面(記録媒体に対向する面)における主磁極の幅(記録媒体におけるトラック幅に対応する幅)をより小さくした磁気ヘッドが提案されている。主磁極は、コイルにより磁界が誘導される幅広の磁界誘導部と、磁界誘導部に隣接し浮上面に近づくにつれて細くなる形状(いわゆるテーパ形状)を有するフレア部と、フレア部に隣接する細幅の先端部とを有する。先端部は磁気ヘッドの浮上面に露出している。 In recent years, there has been a remarkable increase in the amount of information handled by computers and communications. There is an increasing demand for a large capacity (high recording density) for a magnetic storage device that records such information. In order to improve the recording density of a magnetic storage device, a magnetic head has been proposed in which the width of the main pole (the width corresponding to the track width in the recording medium) on the air bearing surface (the surface facing the recording medium) of the magnetic head is made smaller. ing. The main magnetic pole has a wide magnetic field guiding portion in which a magnetic field is induced by a coil, a flare portion that is adjacent to the magnetic field guiding portion and becomes narrower as the air bearing surface is approached (so-called tapered shape), and a narrow width that is adjacent to the flare portion And a tip portion. The tip is exposed on the air bearing surface of the magnetic head.
 磁気ヘッドを構成する種々の層を積層させた後、通常、浮上面側を研磨する。磁気ヘッドの浮上面から記憶媒体に向けて効率よく磁場を放出する観点から、先端部の長さ(浮上面に垂直な方向の長さ。いわゆる「スロートハイト」。)は小さいほうが好ましい。このため、現状、スロートハイトが数百nm程度になるように先端部を研磨する。この研磨の際、主磁極の幅を一定に加工するため、通常、先端部は一定の幅となるように設計される。 After laminating the various layers that make up the magnetic head, the air bearing surface is usually polished. From the viewpoint of efficiently releasing a magnetic field from the air bearing surface of the magnetic head toward the storage medium, it is preferable that the length of the tip portion (the length in the direction perpendicular to the air bearing surface, so-called “throat height”) is small. Therefore, at present, the tip is polished so that the throat height is about several hundred nm. In order to process the width of the main magnetic pole at the time of this polishing, the tip is usually designed to have a constant width.
 しかし、フレア部と先端部とが接合する部分では、主磁極を形成する際に使用されるレジストの形状精度に由来する不可避の形状訛りが生じている。すなわち、先端部とフレア部との接合部近傍において、先端部の幅はフレア部から遠ざかるほど連続的に小さくなっている。このように幅が連続的に変化しているのは、接合部から浮上面方向に数百nmの範囲である。一方、研磨精度に由来するスロートハイトの誤差は、現状数十nm程度である。この研磨精度の誤差が主磁極幅に誤差を生じさせるおそれがある。
特開2001-76314号公報
However, in the portion where the flare portion and the tip end portion are joined, an inevitable shape distortion resulting from the shape accuracy of the resist used when forming the main magnetic pole occurs. That is, in the vicinity of the joint portion between the tip portion and the flare portion, the width of the tip portion continuously decreases as the distance from the flare portion increases. The width continuously changing in this way is in the range of several hundreds of nanometers from the joint to the air bearing surface. On the other hand, the error in the throat height due to the polishing accuracy is currently about several tens of nm. This polishing accuracy error may cause an error in the main pole width.
JP 2001-76314 A
 本発明は、磁気情報を記録する磁気ヘッドの主磁極の幅を一定にするための構造を提供する。 The present invention provides a structure for making the width of the main pole of a magnetic head for recording magnetic information constant.
 本発明の一側面によると、
 基板と、
 前記基板上に設けられ、幅広部と前記幅広部から延在し且つ前記幅広部から離れるほど厚くなる狭隘部とを備え、前記狭隘部が、上面と、前記上面の幅よりも狭く前記幅広部へ近づくほど広い幅を有する下面とを有する磁極と、
 前記磁極上に設けられ、非磁性且つ非導電性である絶縁層と、
 前記絶縁層上に設けられ、前記磁極と磁気的に接続する補助磁極層と
を有することを特徴とする磁気ヘッドが提供される。
According to one aspect of the invention,
A substrate,
A wide portion and a narrow portion that extends from the wide portion and becomes thicker as the distance from the wide portion increases, and the narrow portion is narrower than an upper surface and a width of the upper surface. A magnetic pole having a lower surface with a width that is wider toward
An insulating layer provided on the magnetic pole and nonmagnetic and nonconductive;
There is provided a magnetic head comprising an auxiliary magnetic pole layer provided on the insulating layer and magnetically connected to the magnetic pole.
 本発明によれば、浮上面の研磨の際に加工精度の範囲の誤差が生じても、所定の主磁極幅を有する磁極を備えた磁気ヘッドが得られる。 According to the present invention, a magnetic head having a magnetic pole having a predetermined main magnetic pole width can be obtained even if an error in the range of processing accuracy occurs during polishing of the air bearing surface.
図1は、本実施形態により得られた磁気ヘッドを備える磁気記録装置を示す概略的な平面図である。FIG. 1 is a schematic plan view showing a magnetic recording apparatus including a magnetic head obtained according to the present embodiment. 図2は、本実施形態により得られた磁気ヘッドを備える磁気記録装置を示す概略図である。FIG. 2 is a schematic view showing a magnetic recording apparatus including the magnetic head obtained according to the present embodiment. 図3は、磁気ヘッドの第1実施形態の概略的構成を示す断面図である。FIG. 3 is a cross-sectional view showing a schematic configuration of the first embodiment of the magnetic head. 図4A~4Bは、磁気ヘッドの第1実施形態の概略的構成を示す断面図である。4A to 4B are sectional views showing a schematic configuration of the first embodiment of the magnetic head. 図5は、磁気ヘッドの第1実施形態の概略的構成を示す断面図である。FIG. 5 is a cross-sectional view showing a schematic configuration of the first embodiment of the magnetic head. 図6は、磁気ヘッドの第1実施形態のうち主磁極層の、基板の主面に平行な断面を同一平面上に重ねて表示した概略図である。FIG. 6 is a schematic view showing a cross section of the main magnetic pole layer, which is parallel to the main surface of the substrate, overlaid on the same plane in the first embodiment of the magnetic head. 図7A~7Bは、磁気ヘッドの第1実施形態のうち主磁極層の部分模式図である。7A to 7B are partial schematic views of the main magnetic pole layer in the first embodiment of the magnetic head. 図8は、磁気ヘッドの第1実施形態のうち主磁極層の断面図である。FIG. 8 is a cross-sectional view of the main magnetic pole layer in the first embodiment of the magnetic head. 図9は、磁気ヘッドの別の実施形態の概略的構成を示す断面図である。FIG. 9 is a cross-sectional view showing a schematic configuration of another embodiment of the magnetic head. 図10は、磁気ヘッドの別の実施形態の概略的構成を示す断面図である。FIG. 10 is a cross-sectional view showing a schematic configuration of another embodiment of the magnetic head. 図11A~11Eは、磁気ヘッドの製造方法の第1実施形態を示す模式的断面図である。11A to 11E are schematic cross-sectional views showing a first embodiment of a method for manufacturing a magnetic head. 図12A~12Fは、磁気ヘッドの製造方法の第1実施形態において、強磁性層の形成方法を示す模式的断面図である。12A to 12F are schematic cross-sectional views showing a method for forming a ferromagnetic layer in the first embodiment of the method for manufacturing a magnetic head. 図13は、磁気ヘッドの製造方法の第1実施形態において、図13を用いて説明した形成方法により得られた強磁性層の斜視図である。FIG. 13 is a perspective view of a ferromagnetic layer obtained by the forming method described with reference to FIG. 13 in the first embodiment of the method of manufacturing a magnetic head. 図14は、図13における部分Tを拡大した、強磁性層40の上面を示す平面図である。FIG. 14 is a plan view showing an upper surface of the ferromagnetic layer 40, in which a portion T in FIG. 13 is enlarged. 図15A~15Dは、磁気ヘッドの製造方法の第1実施形態において、強磁性層の上面を加工する工程を示す模式的断面図である。15A to 15D are schematic cross-sectional views showing the process of processing the upper surface of the ferromagnetic layer in the first embodiment of the method of manufacturing the magnetic head. 図16A~16Eは、磁気ヘッドの製造方法の第1実施形態において、強磁性層の上面を加工した後の強磁性層を示す部分断面図である。16A to 16E are partial cross-sectional views showing the ferromagnetic layer after processing the upper surface of the ferromagnetic layer in the first embodiment of the method of manufacturing the magnetic head. 図17A~17Bは、磁気ヘッドの製造方法の第1実施形態において、強磁性層の上面を加工する前における強磁性層の断面の一例を示す断面図である。17A to 17B are cross-sectional views showing an example of the cross section of the ferromagnetic layer before processing the upper surface of the ferromagnetic layer in the first embodiment of the method of manufacturing the magnetic head. 図18A~18Bは、磁気ヘッドの製造方法の第1実施形態において、強磁性層の上面を加工する際の強磁性層の断面の一例を示す断面図である。18A to 18B are cross-sectional views showing an example of the cross section of the ferromagnetic layer when the upper surface of the ferromagnetic layer is processed in the first embodiment of the method of manufacturing the magnetic head.
符号の説明Explanation of symbols
 7  基板
 8a~8d  コイル
 9  絶縁層
 10A、10B  接続層
 11  主磁極層
 12  絶縁層
 13a~13e  樹脂層
 14  トレーリングシールド層
 15  リターンヨーク層
 16  浮上面
 17  絶縁層
 21  絶縁層
 30  レジスト層
 31  レジスト層の端部
 40  強磁性層
 41  磁界誘導部
 42  フレア部
 42a  フレア部の先端
 43  先端部
 43a  幅変化部
 43b  幅一定部
 44  主磁極部
 45  フレア支持部
 46  幅広支持部
 48  支持部
 49  傾斜面
 50  レジスト層
 101  磁気ディスク装置
 102  ハウジング
 103  回転軸
 104  磁気ディスク
 105  ヘッドスライダ
 106  サスペンション
 107  アーム軸
 108  キャリッジアーム
 109  電磁アクチュエータ
 110  制御部
 111a、111b  配線
 112  CPU
 114  RAM
 115  ROM
 117  バス
 119  出力回路
 121  スライダ基板
 122  磁気ヘッド
 123  記録ヘッド
 124  再生ヘッド
7 Substrate 8a to 8d Coil 9 Insulating layer 10A, 10B Connection layer 11 Main magnetic pole layer 12 Insulating layer 13a to 13e Resin layer 14 Trailing shield layer 15 Return yoke layer 16 Air bearing surface 17 Insulating layer 21 Insulating layer 30 Resist layer 31 Resist layer End 40 of the magnetic layer 41 magnetic field induction part 42 flare part 42a tip of the flare part 43 tip part 43a width changing part 43b constant width part 44 main magnetic pole part 45 flare support part 46 wide support part 48 support part 49 inclined surface 50 resist Layer 101 Magnetic disk device 102 Housing 103 Rotating shaft 104 Magnetic disk 105 Head slider 106 Suspension 107 Arm shaft 108 Carriage arm 109 Electromagnetic actuator 110 Controller 111a, 111b Wiring 112 CPU
114 RAM
115 ROM
117 Bus 119 Output Circuit 121 Slider Substrate 122 Magnetic Head 123 Recording Head 124 Playback Head
 以下、図面を参照しながら、本発明の好ましい実施形態の構成を図1から図18を用いて説明する。
-磁気ディスク装置-
 まず、磁気ヘッドの使用態様である磁気ディスク装置について、図1及び図2を用いて簡単に説明する。なお、これ以降、前述した構成要素と同様のものについては、同一の参照番号を付して表す。図1は、本実施形態により得られた磁気ヘッドを備える磁気記録装置(ハードディスクドライブ:HDD)を示す概略的な平面図である。
The configuration of a preferred embodiment of the present invention will be described below with reference to FIGS. 1 to 18 with reference to the drawings.
-Magnetic disk unit-
First, a magnetic disk device as a usage mode of a magnetic head will be briefly described with reference to FIGS. Hereinafter, the same components as those described above are denoted by the same reference numerals. FIG. 1 is a schematic plan view showing a magnetic recording apparatus (hard disk drive: HDD) including a magnetic head obtained according to this embodiment.
 図1に示した磁気ディスク装置101は、外装として図に示すようなハウジング102を有する。ハウジング102の内部には、回転軸103に装着されて矢印120の方向に回転する磁気ディスク104と、磁気ディスク104に対して情報記録と情報再生を行う磁気ヘッドが搭載されたヘッドスライダ105と、ヘッドスライダ105を保持するサスペンション106と、サスペンション106が固定されてアーム軸107を中心に磁気ディスク104の表面に沿って移動するキャリッジアーム108と、キャリッジアーム108を駆動する電磁アクチュエータ109とが設けられている。なお、ハウジング102にはカバー(図示せず)が取り付けられて、ハウジング102とカバーで形成された内部空間に上述の構成部品が収容される。 The magnetic disk device 101 shown in FIG. 1 has a housing 102 as shown in the figure as an exterior. Inside the housing 102, a magnetic disk 104 mounted on the rotary shaft 103 and rotating in the direction of the arrow 120, a head slider 105 mounted with a magnetic head for recording information on and reproducing information from the magnetic disk 104, A suspension 106 that holds the head slider 105, a carriage arm 108 that is fixed and moves along the surface of the magnetic disk 104 about the arm shaft 107, and an electromagnetic actuator 109 that drives the carriage arm 108 are provided. ing. Note that a cover (not shown) is attached to the housing 102, and the above-described components are accommodated in an internal space formed by the housing 102 and the cover.
 磁気ディスク装置1は、更に、図2に示すように、磁気ディスク装置101の動作を制御する制御部110を有する。制御部110は、例えばハウジング102内部に設けられたコントロールボード(不図示)に搭載される。制御部110は、図2に示すように、CPU(Central Processing Unit)112、CPU112が処理するデータ等を一時的に記憶させておくRAM(Random Access Memory)114、制御用のプログラム等を格納するROM(Read Only Memory)115、外部に対して信号の入出力を行う入出力回路119、これらの回路間で信号を伝送するバス117を含む。 The magnetic disk device 1 further includes a control unit 110 that controls the operation of the magnetic disk device 101 as shown in FIG. The control unit 110 is mounted on a control board (not shown) provided inside the housing 102, for example. As shown in FIG. 2, the control unit 110 stores a CPU (Central Processing Unit) 112, a RAM (Random Access Memory) 114 that temporarily stores data processed by the CPU 112, a control program, and the like. A ROM (Read Only Memory) 115, an input / output circuit 119 for inputting / outputting signals to / from the outside, and a bus 117 for transmitting signals between these circuits are included.
 また、図2に示すように、ヘッドスライダ105はスライダ基板121に形成された磁気ヘッド122を有する。磁気ヘッド122は、例えば、制御回路110内の入出力回路119と配線111a、111bによって接続され、磁気ディスク104への情報の記録(ライト動作)及び磁気ディスク104に記憶された情報の再生(リード動作)を行う。このリード動作またはライト動作を行う際に、電磁アクチュエータ109によってキャリッジアーム108が駆動され、磁気ヘッド121を磁気ディスク104上の所望のトラックに移動する。
-磁気ヘッド-
 図3~5は、本発明の磁気ヘッドの第1実施形態である磁気ヘッドを示す断面図である。ここでは、単磁極型の垂直磁気ヘッドからなる記録ヘッド部を有する磁気ヘッドを示す。図3は、記憶媒体に対向する面(浮上面)に垂直であり且つ記憶媒体の直径方向に垂直な面を示す。図4A及び4Bは、浮上面を示す平面図である。図5は、主磁極層及び鍍金ベースの基板の主面に平行な断面を同一平面上に重ねて表示した図である。
As shown in FIG. 2, the head slider 105 has a magnetic head 122 formed on a slider substrate 121. For example, the magnetic head 122 is connected to the input / output circuit 119 in the control circuit 110 by wirings 111a and 111b, and records information on the magnetic disk 104 (write operation) and reproduces information read from the magnetic disk 104 (read). Operation). When performing this read operation or write operation, the carriage arm 108 is driven by the electromagnetic actuator 109 to move the magnetic head 121 to a desired track on the magnetic disk 104.
-Magnetic head-
3 to 5 are sectional views showing a magnetic head which is a first embodiment of the magnetic head of the present invention. Here, a magnetic head having a recording head portion composed of a single magnetic pole type perpendicular magnetic head is shown. FIG. 3 shows a surface perpendicular to the surface (floating surface) facing the storage medium and perpendicular to the diameter direction of the storage medium. 4A and 4B are plan views showing the air bearing surface. FIG. 5 is a diagram in which cross sections parallel to the main surface of the main magnetic pole layer and the plating base substrate are displayed on the same plane.
 以下の説明では、X軸方向は記憶媒体の直径方向であり、Y軸方向は記憶媒体に対して遠ざかる方向であり、Z軸は基板上に積層されている各層の積層方向(以下、「基板からの積層方向」と呼称する。)であり、また、磁気ヘッドに対する媒体の移動方向である。X軸、Y軸、及びZ軸は互いに垂直である。また、X軸方向の距離を「幅」、Y軸方向の距離を「長さ」、Z軸方向の距離を「厚さ」とそれぞれ表記する。磁気ヘッドにおいて、Y軸方向のうちの浮上面(エアベアリング面:ABS)に近い側を「浮上面側」、浮上面から遠ざかる側を「ハイト側」とそれぞれ表記する。これらの表記内容は、後述する図3以降においても同様とする。 In the following description, the X-axis direction is the diameter direction of the storage medium, the Y-axis direction is the direction away from the storage medium, and the Z-axis is the stacking direction of each layer stacked on the substrate (hereinafter referred to as “substrate”). And the moving direction of the medium relative to the magnetic head. The X axis, the Y axis, and the Z axis are perpendicular to each other. Further, the distance in the X-axis direction is expressed as “width”, the distance in the Y-axis direction as “length”, and the distance in the Z-axis direction as “thickness”. In the magnetic head, the side closer to the air bearing surface (air bearing surface: ABS) in the Y-axis direction is referred to as the “air bearing surface side”, and the side away from the air bearing surface is referred to as the “height side”. These notation contents are the same also in FIG.
 以下、図3を参照しながら、第1の実施形態である磁気ヘッドを説明する。本実施形態に係る磁気ヘッドは、例えばハードディスクドライブなどの磁気記録装置に磁気記録用のデバイスとして搭載されるものである。この磁気ヘッドは、例えば、アルティック(AlTiC)などのセラミック材料よりなる基板7上に、酸化アルミニウム(Al;以下、単に「アルミナ」という。)よりなる絶縁層9と、垂直記録方式により記憶媒体上の記録面の任意の位置に情報を記録可能な記録ヘッド部123と、アルミナよりなるオーバーコート層(図示せず)とがこの順に積層された構成をなしている。 Hereinafter, the magnetic head according to the first embodiment will be described with reference to FIG. The magnetic head according to the present embodiment is mounted as a magnetic recording device in a magnetic recording apparatus such as a hard disk drive. This magnetic head has an insulating layer 9 made of aluminum oxide (Al 2 O 3 ; hereinafter simply referred to as “alumina”) on a substrate 7 made of a ceramic material such as AlTiC (Al 2 O 3 TiC). The recording head unit 123 capable of recording information at an arbitrary position on the recording surface of the storage medium by the vertical recording method and an overcoat layer (not shown) made of alumina are stacked in this order. .
 アルティック基板7の上に、絶縁層9が形成されている。絶縁層9はアルミナなどの非磁性非導電性材料からなる。絶縁層9には、加熱器(図示せず)が埋め込まれていてもよい。加熱器は記録ヘッド部111を加熱することにより、それらを膨張させ、浮上面側に突き出させることを可能にする。磁気ディスク装置においては、この突出量の制御によって、再生、記録に適した浮上量になるように制御することができる。 An insulating layer 9 is formed on the Altic substrate 7. The insulating layer 9 is made of a nonmagnetic nonconductive material such as alumina. A heater (not shown) may be embedded in the insulating layer 9. The heater heats the recording head unit 111 to expand them and project them to the air bearing surface side. In the magnetic disk device, by controlling the protrusion amount, the flying height can be controlled to be suitable for reproduction and recording.
 記録ヘッド部123は、例えば、主磁極層11、トレーリングシールド層14、接続層10A、10B、コイル8a~8d(以下、コイル8と総称する場合がある。)、樹脂層13a~13e(以下、レジスト13と総称する場合がある。)、リターンヨーク層15、絶縁層12、17を有する。 The recording head portion 123 includes, for example, the main magnetic pole layer 11, the trailing shield layer 14, the connection layers 10A and 10B, the coils 8a to 8d (hereinafter may be collectively referred to as the coil 8), and the resin layers 13a to 13e (hereinafter, referred to as “coil 8”). , And may be collectively referred to as a resist 13), and includes a return yoke layer 15 and insulating layers 12 and 17.
 主磁極層11、接続層10B、リターンヨーク層15、接続層10A、及びトレーリングシールド層14は、それぞれ磁性材料からなり、磁気的に接続されている。これら磁性材料からなる部分とコイル8とは絶縁層12、17及び樹脂層13により電気的に遮蔽されている。コイル8、レジスト13、及び接続層10Aは基板から遠い側の表面は研磨され、略同一平面上に位置する。 The main magnetic pole layer 11, the connection layer 10B, the return yoke layer 15, the connection layer 10A, and the trailing shield layer 14 are each made of a magnetic material and are magnetically connected. The portions made of these magnetic materials and the coil 8 are electrically shielded by the insulating layers 12 and 17 and the resin layer 13. The coil 8, the resist 13, and the connection layer 10A are polished on the surface far from the substrate, and are located on substantially the same plane.
 コイル8a~8dは、通電することにより磁界を発生させることができる。発生した磁界が主磁極層11へ誘導され、主磁極層11の先端から放出されることにより、記録媒体へ磁気情報が記録されうる。このコイル8a~8dは、例えば、銅(Cu)などの導電性材料により構成されている。コイルの厚さは例えば1~3μm程度である。尚、接続層10Bのハイト側に位置するコイルは図示していない。 The coils 8a to 8d can generate a magnetic field when energized. The generated magnetic field is guided to the main magnetic pole layer 11 and emitted from the tip of the main magnetic pole layer 11, whereby magnetic information can be recorded on the recording medium. The coils 8a to 8d are made of a conductive material such as copper (Cu), for example. The thickness of the coil is, for example, about 1 to 3 μm. A coil located on the height side of the connection layer 10B is not shown.
 主磁極層11は、主に、コイル8A及び8Bにおいて発生した磁束を収容し、その磁束を磁気ディスク(図示せず。)に向けて放出するものである。主磁極層11は、通常、浮上面16側が露出している。この主磁極層11は強磁性材料を含んでいる。強磁性材料としては、例えば、鉄コバルト合金(FeCo)、鉄系合金(Fe-M;Mは4A,5A,6A,3B,4B族の金属元素)、あるいはこれらの各合金の窒化物などが挙げられる。主磁極層11の膜厚は約0.1μm~0.5μmである。ここで、主磁極層11は本発明における「磁極」「磁極層」の一具体例に相当する。 The main magnetic pole layer 11 mainly contains magnetic flux generated in the coils 8A and 8B and emits the magnetic flux toward a magnetic disk (not shown). The main magnetic pole layer 11 is normally exposed on the air bearing surface 16 side. The main magnetic pole layer 11 contains a ferromagnetic material. Examples of the ferromagnetic material include iron-cobalt alloy (FeCo), iron-based alloy (Fe-M; M is a metal element of 4A, 5A, 6A, 3B, and 4B group), or nitrides of these alloys. Can be mentioned. The main magnetic pole layer 11 has a thickness of about 0.1 μm to 0.5 μm. The main magnetic pole layer 11 corresponds to a specific example of “magnetic pole” and “magnetic pole layer” in the present invention.
 主磁極層11について、図4A及び4Bを用いて更に説明する。図4A及び4Bは、浮上面16を示す概略平面図であり、主磁極層11と、トレーリングシールド層14のみが示されている。図4Aに示すように、主磁極層11の浮上面側の断面は、逆台形の形状を有する。断面がこのような逆台形の形状を有しているのは、磁気ヘッドが記録動作を行う際、磁気記憶媒体の円周方向(トラック方向)に対する磁気ヘッドの傾き角(スキュー角)によって、主磁極層11が記録を行いたくないトラックに磁気情報を書き込んでしまうのを抑制するためである。尚、図4Bに示すように、主磁極層11の浮上面側の断面は、逆三角形であってもよい。逆台形及び逆三角形の側方は図示されないアルミナなどの非磁性絶縁物で埋められる。 The main magnetic pole layer 11 will be further described with reference to FIGS. 4A and 4B. 4A and 4B are schematic plan views showing the air bearing surface 16, and only the main magnetic pole layer 11 and the trailing shield layer 14 are shown. As shown in FIG. 4A, the cross section on the air bearing surface side of the main magnetic pole layer 11 has an inverted trapezoidal shape. The cross section has such an inverted trapezoidal shape when the magnetic head performs a recording operation depending on the inclination angle (skew angle) of the magnetic head with respect to the circumferential direction (track direction) of the magnetic storage medium. This is to prevent the magnetic pole layer 11 from writing magnetic information on a track that is not desired to be recorded. As shown in FIG. 4B, the cross section on the air bearing surface side of the main magnetic pole layer 11 may be an inverted triangle. The sides of the inverted trapezoid and the inverted triangle are filled with a nonmagnetic insulator such as alumina (not shown).
 主磁極層11について、図5を用いて更に説明する。図5は、主磁極層の、基板の主面に平行な断面の概略図である。図5に示すように、主磁極層11は、絶縁層を設けた基板(図示せず。)上に、磁界誘導部41から延在するフレア部42及びフレア部の先端42aを備える。磁界誘導部41は、コイルにより記録するための磁界が誘導される比較的幅が広い部分である。磁界誘導部41の幅iは、フレア部42の幅j以上である。磁界誘導部の幅iは、例えば、数十μmである。フレア部42は、磁界誘導部41に誘導された磁界を絞り込み、フレア部の先端へと誘導する部分である。フレア部42の幅jは磁界誘導部41に近づくほど大きく、先端へ近づくほど小さい、いわゆるテーパ形状を有する。フレア部の幅jの範囲は、例えば0.1~30μm程度である。フレア部の先端42aは、浮上面16側から磁気記憶媒体に向けて磁界を放出し、情報を記録するための部分である。フレア部の先端の幅kは、例えば、数十~百数十nm程度である。フレア部の先端42aのテーパの程度は、フレア部42のそれよりもよりも小さい。フレア部の先端42aの長さk(一般にスロートハイトと呼ばれる)は、例えば百数十nmである。フレア部のうち、先端42aを除いた長さjは、例えば100~150nmである。 The main magnetic pole layer 11 will be further described with reference to FIG. FIG. 5 is a schematic view of a cross section of the main magnetic pole layer parallel to the main surface of the substrate. As shown in FIG. 5, the main magnetic pole layer 11 includes a flare portion 42 extending from the magnetic field induction portion 41 and a flare portion tip 42 a on a substrate (not shown) provided with an insulating layer. The magnetic field induction unit 41 is a relatively wide part where a magnetic field for recording by a coil is induced. The width i of the magnetic field guiding part 41 is equal to or greater than the width j of the flare part 42. The width i of the magnetic field induction unit is, for example, several tens of μm. The flare part 42 is a part that narrows down the magnetic field induced by the magnetic field guiding part 41 and guides it to the tip of the flare part. The width j of the flare portion 42 has a so-called taper shape that increases as it approaches the magnetic field guiding portion 41 and decreases as it approaches the tip. The range of the width j of the flare portion is, for example, about 0.1 to 30 μm. The tip 42a of the flare portion is a portion for recording information by emitting a magnetic field from the air bearing surface 16 toward the magnetic storage medium. The width k of the tip of the flare portion is, for example, about several tens to one hundred and several tens of nm. The degree of taper of the tip 42a of the flare part is smaller than that of the flare part 42. The length k 0 (generally called the throat height) of the tip 42a of the flare part is, for example, a few hundred tens of nm. Of the flare portion, the length j 0 excluding the tip 42a is, for example, 100 to 150 nm.
 尚、図5において、理想的なフレア部の先端42aの形状が破線R1、R2により示されている。しかし、フレア部42とフレア部の先端42aの境界付近に、不可避の形状訛りが生じる。この形状訛りは、主磁極層11を形成する際に使用されるレジスト層の形状精度に由来する。レジスト層の形成方法については後述する。 In FIG. 5, the ideal shape of the tip 42a of the flare portion is indicated by broken lines R1 and R2. However, inevitable shape curling occurs near the boundary between the flare portion 42 and the tip 42a of the flare portion. This shape distortion is derived from the shape accuracy of the resist layer used when the main magnetic pole layer 11 is formed. A method for forming the resist layer will be described later.
 主磁極層11について、図6を用いて更に説明する。図6は、図5に示される主磁極層11のうち点線で囲まれた部分Tの拡大斜視図である。フレア部の先端42aの幅は基板7に近いほど小さい。例えば浮上面16の上辺の幅nは下辺の幅nよりも大きい。上辺と下辺の間の幅nは幅nより小さく幅nより大きい。浮上面16から磁界誘導部側へ所定の長さLまでの範囲内において、フレア部の先端42aの上面の幅は略一定である。例えば、浮上面16における上辺の幅nは、浮上面16から長さLだけ離れた位置Aにおける上辺の幅n1A、及び長さLだけ離れた位置Bにおける上辺の幅n1B、浮上面16から長さLだけ離れた位置Cにおける上辺の幅n1Cに等しい。また、浮上面16から磁界誘導部側へ所定の長さLまでの範囲内において、フレア部の先端42aの厚さは磁界誘導部41から離れるほど大きい。例えば、浮上面16におけるフレア部の厚さhは、浮上面16から長さLだけ離れた位置Cにおけるhよりも大きい。 The main magnetic pole layer 11 will be further described with reference to FIG. FIG. 6 is an enlarged perspective view of a portion T surrounded by a dotted line in the main magnetic pole layer 11 shown in FIG. The width of the tip 42a of the flare portion is smaller as it is closer to the substrate 7. For example, the width n 1 of the upper side of the air bearing surface 16 is larger than the width n 3 of the lower side. The width n 2 between the upper side and the lower side is smaller than the width n 1 and larger than the width n 3 . In the range of the air bearing surface 16 to a predetermined length L C to the magnetic field induction section side, the width of the upper surface of the tip 42a of the flared portion is substantially constant. For example, the width n 1 of the upper side of the air bearing surface 16 is determined by the width n 1A of the upper side at the position A separated from the air bearing surface 16 by the length L A and the width n 1B of the upper side at the position B separated by the length L B. It is equal to the width n 1C of the upper side at the position C separated from the air bearing surface 16 by the length L C. Also within the air bearing surface 16 to a predetermined length L C to the magnetic field induction section side, the thickness of the tip 42a of the flared portion is greater as the distance from the magnetic field induction section 41. For example, the thickness h of the flare portion on the air bearing surface 16 is larger than h C at a position C away from the air bearing surface 16 by a length L C.
 主磁極層11について、図7A及び7Bを用いて更に説明する。図7A及び7Bは、図5に示される主磁極層11のうち点線で囲まれた部分Tの模式図である。図7Aの上図は上面図であり、下図は上図のP-P断面を示す断面図である。また、図7Bは図7Aの主磁極層11の浮上面における断面、及び位置A並びに位置Bにおける浮上面に平行な断面を示す断面図である。フレア部の先端42aの幅は、図7Bの主磁極層11の断面図に示されるように、図示されない基板に近づくほど小さい。換言すれば、フレア部の先端42aの幅は、図3において絶縁層12に接する面から絶縁層9に接する面へ近づくほど小さい。また、フレア部の先端42aの厚さは、図7Aの下図に示されるように、浮上面16に近づくほど、即ち磁界誘導部から離れるほど大きい。例えば、浮上面16における厚さをh、位置Aにおける厚さをh、位置Bにおける厚さをh、位置Cにおける厚さをhとすると、h>h>h>hである。また、フレア部の先端42aの下面内及び下面からの距離が同じ面内において、フレア部の先端42aの幅は、浮上面16に近づくほど、即ち磁界誘導部から離れるほど小さい。例えば、図7Bに示されるように、フレア部の先端42aの下面において、浮上面における幅をn、位置Aにおける幅をn3A、位置Bにおける幅をn3B、位置Cにおける幅をn3Cとすると、n<n3A<n3B<n3Cである。一方、フレア部の先端42aの上面において、浮上面における幅をn、位置Aにおける幅をn1A、位置Bにおける幅をn1B、位置Cにおける幅をn1Cとすると、n、n1A、n1B、n1Cは略同一である。これは、フレア部の先端42aの幅が基板に近づくほど小さく、磁界誘導部から離れるほどほど小さく、且つフレア部の先端42aの厚さが磁界誘導部から離れるほど大きくなるように、フレア部の先端42aを形成することにより実現可能である。このようなフレア部の先端42aの形状を有する磁気ヘッドは、磁気ヘッドを構成する各層を積層した後に、浮上面側を研磨する際に、加工精度の範囲の誤差が生じても浮上面における主磁極層11の上辺の幅(いわゆる主磁極幅)は一定となる。つまり、現在の浮上面16よりも過剰に研磨が行われたとしても、所定の主磁極幅を満たす磁気ヘッドが得られる。 The main magnetic pole layer 11 will be further described with reference to FIGS. 7A and 7B. 7A and 7B are schematic views of a portion T surrounded by a dotted line in the main magnetic pole layer 11 shown in FIG. The upper view of FIG. 7A is a top view, and the lower view is a cross-sectional view showing a P 1 -P 2 cross section of the upper view. 7B is a cross-sectional view showing a cross section of the main magnetic pole layer 11 in FIG. 7A on the air bearing surface and a cross section parallel to the air bearing surface at position A and position B. As shown in the cross-sectional view of the main magnetic pole layer 11 in FIG. 7B, the width of the tip 42a of the flare portion is smaller as it approaches a substrate (not shown). In other words, the width of the tip 42a of the flare portion is smaller as it approaches the surface in contact with the insulating layer 9 from the surface in contact with the insulating layer 12 in FIG. Further, as shown in the lower part of FIG. 7A, the thickness of the tip 42a of the flare part increases as it approaches the air bearing surface 16, that is, away from the magnetic field guiding part. For example, assuming that the thickness at the air bearing surface 16 is h, the thickness at the position A is h A , the thickness at the position B is h B , and the thickness at the position C is h C , h> h A > h B > h C It is. In addition, the width of the flare portion tip 42a is smaller the closer to the air bearing surface 16, that is, the farther from the magnetic field guiding portion, the inner surface of the flare portion 42a and the distance from the lower surface are the same. For example, as shown in FIG. 7B, on the lower surface of the tip 42a of the flare portion, the width at the air bearing surface is n 3 , the width at position A is n 3A , the width at position B is n 3B , and the width at position C is n 3C. Then, n 3 <n 3A <n 3B <n 3C . On the other hand, on the upper surface of the tip 42a of the flare portion, assuming that the width at the air bearing surface is n 1 , the width at position A is n 1A , the width at position B is n 1B , and the width at position C is n 1C , n 1 , n 1A , N 1B and n 1C are substantially the same. This is because the tip of the flare part is so small that the width of the tip 42a of the flare part is close to the substrate, is so small that it is far from the magnetic field induction part, and the thickness of the tip 42a of the flare part is so large that it is away from the magnetic field induction part. This can be realized by forming 42a. The magnetic head having the shape of the tip 42a of the flare portion has a main surface on the air bearing surface even if an error in the processing accuracy range occurs when polishing the air bearing surface after laminating the layers constituting the magnetic head. The width of the upper side of the pole layer 11 (so-called main pole width) is constant. That is, a magnetic head satisfying a predetermined main magnetic pole width can be obtained even if polishing is performed more excessively than the current air bearing surface 16.
 図8は、フレア部の先端42aの浮上面と位置Bにおける浮上面に平行な断面の一例を示す断面図である。図8において、浮上面16における断面PQRSと、位置Aにおける断面Pとは重ねて表示されている。例えば、図8に示すように、フレア部の先端42aの浮上面16と位置Aにおける断面において、側辺PQと、側辺Pとは平行である。また、側辺RSと、側辺Rとは平行である。このように浮上面16と位置Aにおける断面の対応する側辺が互いに平行である場合、位置Aにおける厚さhは、テーパ角θ、上辺と側辺とがなす角α、浮上面16における厚さh、浮上面16における下辺の幅n、位置Aにおける下辺の幅n3Aを用いて下記式(1)のように表される。 8 is a cross-sectional view showing an example of a cross section parallel to the air bearing surface of the tip 42a of the flare portion and the air bearing surface at the position B. FIG. In FIG. 8, the cross section PQRS at the air bearing surface 16 and the cross section P A Q A R A S A at the position A are displayed in an overlapping manner. For example, as shown in FIG. 8, the side PQ and the side P A Q A are parallel to the air bearing surface 16 of the tip 42a of the flare portion and the cross section at the position A. Further, the side RS and the side R A S A are parallel. In this way, when the air bearing surface 16 and the corresponding side of the cross section at the position A are parallel to each other, the thickness h A at the position A is the taper angle θ, the angle α formed by the upper side and the side, The thickness h, the width n 3 of the lower side of the air bearing surface 16, and the width n 3A of the lower side at the position A are expressed by the following formula (1).
   h=h-(n3A-n)/2tanθ
     =h-(n3A-n)/2tan(90°-α)   (1)
 下記式(1)の関係を満たすとき、浮上面における上辺の幅nと位置Aにおける上辺の幅n1Aとが等しくなる。同様の関係は、浮上面16と位置Bにおける断面、及び浮上面16と位置Cにおける断面との間にも成り立つ。
h A = h− (n 3A −n 3 ) / 2 tan θ
= H- (n 3A -n 3 ) / 2 tan (90 ° -α) (1)
When the relationship of the following formula (1) is satisfied, the width n 1 of the upper side on the air bearing surface is equal to the width n 1A of the upper side at the position A. A similar relationship holds between the air bearing surface 16 and the cross section at position B, and the air bearing surface 16 and the cross section at position C.
 再び図3を参照しながら、第1の実施形態である磁気ヘッドを説明する。 Referring to FIG. 3 again, the magnetic head according to the first embodiment will be described.
 鍍金ベース(図示せず)は主磁極層11の基板側に位置する。主磁極層11を鍍金法により形成する際に電極として機能する層である。鍍金ベースは、導電性を有する任意の材料により構成されうる。鍍金ベースに含まれる材料は、例えばタンタル(Ta)、チタン(Ti)、ルテニウム(Ru)などの中から少なくとも1種類が選択される。尚、主磁極層11が鍍金法を用いて形成されない場合、鍍金ベースは設けられない。 The plating base (not shown) is located on the substrate side of the main magnetic pole layer 11. This is a layer that functions as an electrode when the main magnetic pole layer 11 is formed by a plating method. The plating base can be made of any material having conductivity. The material contained in the plating base is selected from at least one of tantalum (Ta), titanium (Ti), ruthenium (Ru), and the like. If the main magnetic pole layer 11 is not formed using the plating method, the plating base is not provided.
 トレーリングシールド層14は、主に、主磁極層11から放出された磁束をハードディスク(図示せず。)を経由してリターンヨーク層15に環流させる際に、主磁極層の書き込み磁界の磁界勾配を急峻にする機能を担う。また、トレーリングシールド層14は、主磁極層11を周囲から磁気的に遮蔽する機能も担う。トレーリングシールド層14は、通常、浮上面16側が露出している。このトレーリングシールド層14は、例えば、パーマロイ(Ni:80重量%,Fe:20重量%)などの磁性材料により構成されており、その厚みは約1.0μm~2.0μmである。ここで、トレーリングシールド層14は本発明における「補助磁極層」の一具体例に相当する。 The trailing shield layer 14 mainly uses the magnetic field gradient of the write magnetic field of the main magnetic pole layer when the magnetic flux emitted from the main magnetic pole layer 11 is circulated to the return yoke layer 15 via the hard disk (not shown). Takes the function of sharpening. The trailing shield layer 14 also has a function of magnetically shielding the main magnetic pole layer 11 from the surroundings. The trailing shield layer 14 is normally exposed on the air bearing surface 16 side. The trailing shield layer 14 is made of a magnetic material such as permalloy (Ni: 80 wt%, Fe: 20 wt%), and has a thickness of about 1.0 μm to 2.0 μm. Here, the trailing shield layer 14 corresponds to a specific example of the “auxiliary magnetic pole layer” in the present invention.
 リターンヨーク層15は、記録ヘッド部111において、主磁極層11から放出された磁束をハードディスク(図示せず。)を経由して環流させる機能を担うものである。このリターンヨーク層15は、例えば、パーマロイ(Ni:80重量%,Fe:20重量%)などの磁性材料により構成されており、その厚みは約1.0μm~4.0μmである。リターンヨーク層15は本発明における「補助磁極層」の一具体例に対応する。 The return yoke layer 15 has a function of circulating the magnetic flux emitted from the main magnetic pole layer 11 through the hard disk (not shown) in the recording head unit 111. The return yoke layer 15 is made of, for example, a magnetic material such as permalloy (Ni: 80 wt%, Fe: 20 wt%), and has a thickness of about 1.0 μm to 4.0 μm. The return yoke layer 15 corresponds to a specific example of “auxiliary magnetic pole layer” in the invention.
 樹脂層13a~13eは、例えば、加熱されることにより流動性を示すフォトレジスト(感光性樹脂)などにより構成されている。樹脂層13a~13eは、尚、樹脂層13a~13eの代わりに、アルミナ等のセラミックスを配置しても良い。ここで、樹脂層13a~13eは、本発明における「絶縁層」の一具体例に対応する。 The resin layers 13a to 13e are made of, for example, a photoresist (photosensitive resin) that exhibits fluidity when heated. In the resin layers 13a to 13e, ceramics such as alumina may be disposed instead of the resin layers 13a to 13e. Here, the resin layers 13a to 13e correspond to a specific example of “insulating layer” in the present invention.
 絶縁層12は、コイル8と主磁極層11との間の電気的な絶縁性を確保することが可能であり且つ非磁性である材料により構成されている。絶縁層12は、例えば、アルミナやシリコン酸化物(SiO)などの非磁性非導電性材料により構成されている。また、絶縁層12のうち浮上面側に、ルテニウム(Ru)や銅(Cu)などの導電性を有する非磁性材料が用いられてもよい。絶縁層12の厚みは、浮上面側において約数十~数百nm、ハイト側で約0.1μm~1.0μmである。絶縁層12は、複数の材料から構成されていても良いし、互いに異なる材料からなる複数の層からなっていてもよい。ここで、絶縁層12は、本発明における「絶縁層」の一具体例に対応する。 The insulating layer 12 is made of a material that can ensure electrical insulation between the coil 8 and the main magnetic pole layer 11 and is nonmagnetic. The insulating layer 12 is made of a nonmagnetic nonconductive material such as alumina or silicon oxide (SiO 2 ). Further, a nonmagnetic material having conductivity such as ruthenium (Ru) or copper (Cu) may be used on the air bearing surface side of the insulating layer 12. The insulating layer 12 has a thickness of about several tens to several hundreds of nanometers on the air bearing surface side and about 0.1 μm to 1.0 μm on the height side. The insulating layer 12 may be composed of a plurality of materials, or may be composed of a plurality of layers made of different materials. Here, the insulating layer 12 corresponds to a specific example of “insulating layer” in the present invention.
 絶縁層17は、コイル8及び樹脂層13を覆うように設けられる。絶縁層17は、例えばアルミナやシリコン酸化物(SiO)やフォトレジストなどの非磁性非導電性材料により構成されており、その厚みは例えば約0.1μm~1.0μmである。絶縁層17がフォトレジストからなる場合、通常、上記樹脂層13と一体形成される。ここで、絶縁層12は、本発明における「絶縁層」の一具体例に対応する。 The insulating layer 17 is provided so as to cover the coil 8 and the resin layer 13. The insulating layer 17 is made of a nonmagnetic nonconductive material such as alumina, silicon oxide (SiO 2 ), or photoresist, and has a thickness of about 0.1 μm to 1.0 μm, for example. When the insulating layer 17 is made of a photoresist, it is usually formed integrally with the resin layer 13. Here, the insulating layer 12 corresponds to a specific example of “insulating layer” in the present invention.
 接続層10Aは、リターンヨーク層15とトレーリングシールド14との間を磁気的に連結させるためのものであり、通常、コイル8よりも浮上面側に位置する。また、接続層10Bは、リターンヨーク層15と主磁極層11との間を磁気的に連結させるためのものであり、通常、コイル8よりもハイト側に位置する。接続層10A及び10Bは、例えばパーマロイ(Ni:80重量%,Fe:20重量%)などの磁性材料により構成されている。接続層10Aは本発明における「補助磁極層」の一具体例に対応する。 The connection layer 10A is for magnetically connecting the return yoke layer 15 and the trailing shield 14, and is usually located on the air bearing surface side of the coil 8. The connection layer 10 </ b> B is for magnetically connecting the return yoke layer 15 and the main magnetic pole layer 11, and is usually located on the height side of the coil 8. The connection layers 10A and 10B are made of a magnetic material such as permalloy (Ni: 80% by weight, Fe: 20% by weight). The connection layer 10A corresponds to a specific example of “auxiliary magnetic pole layer” in the invention.
 オーバーコート層(図示せず。)は、記録ヘッド部123を保護するため、記録ヘッド部123の上面に設けられる。オーバーコート層を構成する材料は特に限定されない。オーバーコート層は、例えば、アルミナから構成されうる。 An overcoat layer (not shown) is provided on the upper surface of the recording head unit 123 in order to protect the recording head unit 123. The material constituting the overcoat layer is not particularly limited. The overcoat layer can be made of alumina, for example.
 上記各層は、例えば、メッキ処理やスパッタリングなどの成膜技術、フォトリソグラフィ法やエッチング法などを利用したパタニング技術、並びに機械加工や研磨加工などの研磨技術を含む既存の薄膜プロセスを使用して、図3の下方の層から上方の層へ向かって順に、セラミック材料よりなる基板7上に積層することにより製造可能である。磁気ヘッドの製造方法の詳細は後述する。 Each of the above layers uses, for example, an existing thin film process including a film forming technique such as plating or sputtering, a patterning technique using a photolithography method or an etching method, and a polishing technique such as machining or polishing, It can be manufactured by laminating on a substrate 7 made of a ceramic material in order from the lower layer to the upper layer in FIG. Details of the method of manufacturing the magnetic head will be described later.
 磁気ヘッド122を磁気ディスクに配置して、記憶媒体上の記録層に情報を記録したい場合、主磁極層11の近傍のコイル8に電流を流して所定の磁束を生成する。このコイル8にて生成された磁束は、主磁極層11を通過し、浮上面16から記憶媒体(図示せず)の表面へ流れる。記録層に流れ込んだ磁界は磁束に流出し、トレーリングシールド層14、接続層10A、及びリターンヨーク層15へと流入する。上記の主磁極層11、記憶媒体(図示せず)、トレーリングシールド層14、接続層10A、リターンヨーク15、接続層10Bにより磁気回路が形成される。この磁気回路を利用して、記憶媒体の記憶媒体面に対して垂直な方向の磁化(情報)を記録層に記録することができる。上記磁気ヘッドは、磁気ヘッドを構成する各層を積層した後に、浮上面側を研磨する際に、加工精度の範囲の誤差が生じても主磁極幅は一定となる。つまり、浮上面16が過剰に研磨されたとしても、所定の主磁極幅を満たす磁気ヘッドが得られる。 When the magnetic head 122 is disposed on a magnetic disk and information is to be recorded on the recording layer on the storage medium, a predetermined magnetic flux is generated by passing a current through the coil 8 near the main magnetic pole layer 11. The magnetic flux generated by the coil 8 passes through the main magnetic pole layer 11 and flows from the air bearing surface 16 to the surface of the storage medium (not shown). The magnetic field flowing into the recording layer flows out into the magnetic flux and flows into the trailing shield layer 14, the connection layer 10 </ b> A, and the return yoke layer 15. A magnetic circuit is formed by the main magnetic pole layer 11, the storage medium (not shown), the trailing shield layer 14, the connection layer 10A, the return yoke 15, and the connection layer 10B. Using this magnetic circuit, magnetization (information) in a direction perpendicular to the storage medium surface of the storage medium can be recorded on the recording layer. In the magnetic head, the main magnetic pole width is constant even when an error in the range of processing accuracy occurs when the air bearing surface side is polished after laminating the layers constituting the magnetic head. That is, even if the air bearing surface 16 is excessively polished, a magnetic head satisfying a predetermined main pole width can be obtained.
 図9、10は、それぞれ本発明の磁気ヘッドの別の実施形態を示す断面模式図である。図9、10は、記憶媒体に対向する面(浮上面)を示す概略平面図である。これらの磁気ヘッドの、浮上面に平行な主磁極層の断面、及び基板の主面に平行な主磁極層の断面の形状は、それぞれ図4A~8を用いて説明した断面形状と同様であるため省略する。上記実施形態の磁気ヘッドにおいて、トレーリングシールド層14、接続層10A、10Bが設けられているが、例えば図9のように、トレーリングシールド14、接続層10A、10Bが設けられていなくても良い。 9 and 10 are cross-sectional schematic views showing different embodiments of the magnetic head of the present invention. 9 and 10 are schematic plan views showing a surface (floating surface) facing the storage medium. In these magnetic heads, the cross section of the main magnetic pole layer parallel to the air bearing surface and the cross section of the main magnetic pole layer parallel to the main surface of the substrate are the same as the cross sectional shapes described with reference to FIGS. Therefore, it is omitted. In the magnetic head of the above embodiment, the trailing shield layer 14 and the connection layers 10A and 10B are provided. For example, as shown in FIG. 9, the trailing shield 14 and the connection layers 10A and 10B are not provided. good.
 また、本発明の磁気ヘッドは、記録・再生の双方の機能を実行可能な複合型ヘッドであってもよく、例えば、図10に示されるように、基板7上に絶縁層9と再生ヘッド部124と記録ヘッド部123とオーバーコート層(図示せず)とがこの順に積層された構成であってもよい。再生ヘッド部124は、例えば、下部シールド層3と、ギャップ膜4と、上部シールド層6とがこの順に積層された構成をなしている。ギャップ膜4には、浮上面16に一端面が露出するように、磁気再生デバイスとしての磁気抵抗効果素子(Magnetoresistance effect element。以下、MR素子と略記する。)5が埋設されている。 The magnetic head of the present invention may be a composite head capable of performing both recording and reproduction functions. For example, as shown in FIG. 10, an insulating layer 9 and a reproduction head portion are formed on a substrate 7. 124, the recording head part 123, and the overcoat layer (not shown) may be laminated in this order. For example, the reproducing head unit 124 has a configuration in which the lower shield layer 3, the gap film 4, and the upper shield layer 6 are laminated in this order. In the gap film 4, a magnetoresistive effect element (Magnetorescence effect element, hereinafter abbreviated as MR element) 5 is embedded so that one end face is exposed on the air bearing surface 16.
 下部シールド層3および上部シールド層6は、主に、MR素子5を周囲から磁気的に遮蔽するものである。これらの下部シールド層3および上部シールド層6は、例えば、ニッケル鉄合金(NiFe(以下、単に「パーマロイ(商品名)」という);Ni:80重量%,Fe:20重量%)などの磁性材料により構成されており、それらの厚みは約1.0μm~2.0μmである。 The lower shield layer 3 and the upper shield layer 6 mainly shield the MR element 5 from the surroundings. The lower shield layer 3 and the upper shield layer 6 are made of, for example, a magnetic material such as a nickel iron alloy (NiFe (hereinafter simply referred to as “permalloy (trade name)”); Ni: 80 wt%, Fe: 20 wt%). Their thickness is about 1.0 μm to 2.0 μm.
 ギャップ膜4は、下部シールド層3や上部シールド層6からMR素子5を電気的に分離するものである。このギャップ膜4は、例えば、アルミナなどの非磁性非導電性材料により構成されており、その厚みは約0.1μm~0.2μmである。 The gap film 4 electrically isolates the MR element 5 from the lower shield layer 3 and the upper shield layer 6. The gap film 4 is made of, for example, a nonmagnetic nonconductive material such as alumina and has a thickness of about 0.1 μm to 0.2 μm.
 MR素子5として、例えば、巨大磁気抵抗効果(GMR;Giant Magneto-resistive)やトンネル磁気抵抗効果(TMR;Tunneling Magneto-resistive)等の磁気抵抗効果を示す感磁性膜を用いた素子が利用されうる。 As the MR element 5, for example, an element using a magnetosensitive film exhibiting a magnetoresistive effect such as a giant magnetoresistive effect (GMR; Giant Magneto-resistive) or a tunnel magnetoresistive effect (TMR; Tunneling Magneto-resistive) can be used. .
 図9、10に示される磁気ヘッドは、図3~8に示される磁気ヘッドと同様、磁気ヘッドを構成する各層を積層した後に、浮上面側を研磨する際に、加工精度の範囲の誤差が生じても主磁極幅は一定となる。つまり、浮上面16が過剰に研磨されたとしても、所定の主磁極幅を有する主磁極層を備えた磁気ヘッドが得られる。
-磁気ヘッドの製造方法-
 図11A~11Eは、本発明の磁気ヘッドの製造方法の第1実施形態を示す模式的断面図であり、図3~8を用いて説明した磁気ヘッドと同様の構成を有する磁気ヘッドの製造途中における積層体において、最終的に得られる磁気ヘッドの浮上面に相当する断面の形状を示す模式的断面図である。尚、上記実施形態の磁気ヘッドの説明と重複する部分については、説明を省略する。
The magnetic head shown in FIGS. 9 and 10 has an error in the processing accuracy range when the air bearing surface side is polished after laminating each layer constituting the magnetic head, like the magnetic head shown in FIGS. Even if it occurs, the main pole width is constant. That is, even if the air bearing surface 16 is excessively polished, a magnetic head including a main magnetic pole layer having a predetermined main magnetic pole width can be obtained.
-Magnetic head manufacturing method-
FIGS. 11A to 11E are schematic cross-sectional views showing a first embodiment of the method for manufacturing a magnetic head of the present invention. In the process of manufacturing a magnetic head having the same configuration as the magnetic head described with reference to FIGS. 5 is a schematic cross-sectional view showing a cross-sectional shape corresponding to the air bearing surface of the finally obtained magnetic head in the laminated body in FIG. In addition, description is abbreviate | omitted about the part which overlaps with description of the magnetic head of the said embodiment.
 まず、図11Aに示すように、アルティック等の基板7上にアルミナ等の絶縁層(図示せず)を形成し、更に、絶縁層を形成した基板7上にルテニウム等の鍍金ベース層(図示せず)をスパッタリング法等によって形成する。次に、図11Bに示すように、図示されない絶縁層及び鍍金ベース層が設けられた基板7の上に強磁性層40を形成する。この強磁性層40は、最終的に得られる磁気ヘッドにおいて主磁極層11となる。 First, as shown in FIG. 11A, an insulating layer (not shown) such as alumina is formed on a substrate 7 such as Altic, and a plated base layer (such as ruthenium) is formed on the substrate 7 on which the insulating layer is formed. (Not shown) is formed by sputtering or the like. Next, as shown in FIG. 11B, the ferromagnetic layer 40 is formed on the substrate 7 provided with an insulating layer and a plating base layer (not shown). The ferromagnetic layer 40 becomes the main magnetic pole layer 11 in the finally obtained magnetic head.
 図12A~12Fは、強磁性層40の形成方法を示す模式的断面図である。この模式的断面図は、主磁極層11の先端の断面(すなわち、得られる磁気ヘッドにおける浮上面に相当する断面)を示している。 12A to 12F are schematic cross-sectional views showing a method for forming the ferromagnetic layer 40. FIG. This schematic cross-sectional view shows a cross-section at the tip of the main magnetic pole layer 11 (that is, a cross-section corresponding to the air bearing surface in the obtained magnetic head).
 まず、図12Aに示されるように、基板7の表面にレジスト層30を塗布する。使用されるレジストはポジ型であってもネガ型であってもよい。続いて、図12Bに示されるように、レジスト層30を通常のフォトリソグラフィの技術を用いてパタニングする。具体的には、例えば、そのレジスト層30上に露光用のマスクを配置した状態で露光を行った後、レジスト層30の感光した部分を現像により除去する。このマスクは、最終的に得られる主磁極層11の、基板7の主面の方向を見たときにおけるパターン形状を反映した開口部を有する開口型のマスクである。使用する露光装置(露光条件)および現像液の種類は、任意に設定可能である。現像後のレジスト層30の端部(エッジ)31は、図12Bに示されるように略垂直に立ち上がっている。尚、現像後、レジスト層の開口部32の幅は、浮上面に相当する断面から所定の距離の範囲内において、浮上面から磁界誘導部に近づく方向へ遠ざかるほど大きい。このレジスト層30を所定温度の加熱炉に入れてレジスト層30をリフロー(流動化)させると、図12Cのように端部31がテーパ形状を有するレジスト層30を得ることができる。尚、リフローさせた後、浮上面に相当する断面に平行な断面において、レジスト層30の端部のテーパ角は通常一定である。このとき、レジスト層の開口部32の幅は、浮上面に相当する断面から所定の距離の範囲内において、浮上面から磁界誘導部に近づく方向へ遠ざかるほど大きい。次いで、図12Dに示すようにテーパのついたレジスト層30に強磁性材料(例えば、パーマロイ)による鍍金を行い、強磁性層40が形成される。図12Eに示されるようにレジスト層30の除去した後、図12Fに示されるように強磁性層40をイオンミリングによりスリミングする。図12Fにおいて強磁性層40の形状は逆台形を保っているが、先端部の幅がより小さい場合やイオンミリングをより多く実施すれば前述したように逆三角形になる。なお、図12A~12Fに示す製造フローでは、イオンミリングにより形成したパターン(強磁性材料によるメッキパターン)の側面だけではなく上面もイオンによるエッチングが行われるので、パターン厚(即ち、メッキ厚)も減少することになる。 First, as shown in FIG. 12A, a resist layer 30 is applied to the surface of the substrate 7. The resist used may be positive or negative. Subsequently, as shown in FIG. 12B, the resist layer 30 is patterned by using a normal photolithography technique. Specifically, for example, after exposure is performed with an exposure mask disposed on the resist layer 30, the exposed portion of the resist layer 30 is removed by development. This mask is an opening-type mask having an opening reflecting the pattern shape of the main magnetic pole layer 11 finally obtained when viewed in the direction of the main surface of the substrate 7. The exposure apparatus (exposure conditions) to be used and the type of developer can be arbitrarily set. The end part (edge) 31 of the resist layer 30 after development rises substantially vertically as shown in FIG. 12B. After the development, the width of the opening 32 of the resist layer is larger as the distance from the air bearing surface is closer to the magnetic field guiding portion within a predetermined distance from the cross section corresponding to the air bearing surface. When this resist layer 30 is put into a heating furnace at a predetermined temperature and the resist layer 30 is reflowed (fluidized), a resist layer 30 having a tapered end 31 as shown in FIG. 12C can be obtained. After reflow, the taper angle at the end of the resist layer 30 is usually constant in a cross section parallel to the cross section corresponding to the air bearing surface. At this time, the width of the opening 32 of the resist layer is increased as the distance from the air bearing surface in the direction approaching the magnetic field guiding portion is within a predetermined distance from the cross section corresponding to the air bearing surface. Next, as shown in FIG. 12D, the tapered resist layer 30 is plated with a ferromagnetic material (for example, permalloy) to form the ferromagnetic layer 40. After removing the resist layer 30 as shown in FIG. 12E, the ferromagnetic layer 40 is slimmed by ion milling as shown in FIG. 12F. In FIG. 12F, the shape of the ferromagnetic layer 40 maintains an inverted trapezoidal shape, but becomes an inverted triangle as described above when the width of the tip is smaller or when ion milling is performed more. In the manufacturing flow shown in FIGS. 12A to 12F, not only the side surface but also the upper surface of the pattern formed by ion milling (plating pattern made of a ferromagnetic material) is etched by ions, so that the pattern thickness (that is, the plating thickness) is also increased. Will be reduced.
 図13は、図12A~12Fを用いて説明した形成方法により得られた強磁性層の斜視図である。図13は磁気ヘッドとして未だ完成しておらず、製造途中の鍍金ベース層上に形成した強磁性層のパターンを示すものである。強磁性層40は、得られる磁気ヘッドにおいて主磁極層11となる主磁極部44と、製造中に主磁極部44の形状を保持するために主磁極部44と一体となっている支持部48とを含んでなる。主磁極部11は、磁界誘導部41とフレア部42と先端部43の一部とからなる。磁界誘導部41とフレア部42と先端部43とは磁気的に接続されている。磁界誘導部41の積層方向に垂直な断面における幅i(X軸方向の長さ)は、フレア部42の幅j以上である。磁界誘導部41は図示されないコイルにより磁界が誘導される。フレア部42は、磁界誘導部41及び先端部43に隣接する。フレア部42の幅jは磁界誘導部41から先端部43に近づくにつれて細くなるテーパ形状を有する。先端部43はフレア部42に隣接する。先端部43は磁極幅を一定に加工する便宜上、長手方向の端部を除き、通常ほぼ一定の幅kを有する。先端部43の幅kは、フレア部42のハイト側の幅j以下である。フレア部42と先端部43の境界付近(先端部43の長手方向の端部)には、図12Cにおけるレジスト層30の形状精度に由来する不可避の形状訛りが生じている。よって、先端部43のフレア部42に近い端における幅は、図5~7を用いて説明したフレア部の先端42aの形状と同様に、磁界誘導部41から離れるにしたがって徐々に狭くなる。支持部48は、細幅であり且つ高さが幅に較べて高いフレア部42の先端、及び先端部43が磁気ヘッドの製造途中で倒れたり曲がったりすることを防ぐ目的で設けられる。支持部48と磁界誘導部41とは、フレア部42及び先端部43を挟むように設けられる。即ち、支持部48と磁界誘導部41とがフレア部42及び先端部43を支えるようにパターン形成されている。支持部48の形状は、この目的を達成可能なものであれば特に限定されないが、例えば、本実施形態のようにテーパ形状を有するフレア支持部45、幅広支持部46から構成される形状を採用することができる。フレア支持部45の幅qは、先端部43の幅k以上であり、幅広支持部46の幅m以下である。 FIG. 13 is a perspective view of a ferromagnetic layer obtained by the formation method described with reference to FIGS. 12A to 12F. FIG. 13 shows a pattern of the ferromagnetic layer formed on the plating base layer that is not yet completed as a magnetic head. The ferromagnetic layer 40 includes a main magnetic pole portion 44 that becomes the main magnetic pole layer 11 in the obtained magnetic head, and a support portion 48 that is integrated with the main magnetic pole portion 44 in order to maintain the shape of the main magnetic pole portion 44 during manufacturing. And comprising. The main magnetic pole part 11 includes a magnetic field guiding part 41, a flare part 42, and a part of the tip part 43. The magnetic field guiding part 41, the flare part 42, and the tip part 43 are magnetically connected. The width i (the length in the X-axis direction) in the cross section perpendicular to the stacking direction of the magnetic field induction part 41 is equal to or greater than the width j of the flare part 42. In the magnetic field induction unit 41, a magnetic field is induced by a coil (not shown). The flare part 42 is adjacent to the magnetic field induction part 41 and the tip part 43. The width j of the flare portion 42 has a tapered shape that becomes narrower as it approaches the tip portion 43 from the magnetic field guiding portion 41. The tip portion 43 is adjacent to the flare portion 42. The tip portion 43 usually has a substantially constant width k except for the end portion in the longitudinal direction for convenience of processing the magnetic pole width to be constant. The width k of the tip portion 43 is equal to or less than the width j on the height side of the flare portion 42. Near the boundary between the flare portion 42 and the tip portion 43 (the end portion in the longitudinal direction of the tip portion 43), an inevitable shape distortion resulting from the shape accuracy of the resist layer 30 in FIG. 12C occurs. Therefore, the width of the end portion 43 near the flare portion 42 gradually decreases with increasing distance from the magnetic field guiding portion 41, like the shape of the flare portion tip 42a described with reference to FIGS. The support portion 48 is provided for the purpose of preventing the tip of the flare portion 42, which is narrow and high in height compared to the width, and the tip portion 43 from falling or bending during the manufacture of the magnetic head. The support part 48 and the magnetic field induction part 41 are provided so as to sandwich the flare part 42 and the tip part 43. That is, the support portion 48 and the magnetic field guiding portion 41 are formed in a pattern so as to support the flare portion 42 and the tip portion 43. The shape of the support portion 48 is not particularly limited as long as this object can be achieved. For example, a shape constituted by a flare support portion 45 having a tapered shape and a wide support portion 46 as in the present embodiment is adopted. can do. The width q of the flare support portion 45 is not less than the width k of the tip portion 43 and not more than the width m of the wide support portion 46.
 磁界誘導部41の幅iは、例えば数十μm程度である。フレア部42の幅jの範囲は、例えば0.1~30μm程度である。先端部43の幅kは、例えば、数十~百数十nm程度である。フレア支持部45の幅qの範囲は、例えば0.1~10μm程度である。フレア支持部45の長さqは、例えば100~150nmである。幅広支持部46の幅rは、例えば5~10μm程度である。尚、本実施形態において磁界誘導部41の幅iは幅広支持部46の幅rよりも大きいが、幅広支持部46の幅rが磁界誘導部の幅iよりも大きくてもよい。 The width i of the magnetic field induction unit 41 is, for example, about several tens of μm. The range of the width j of the flare portion 42 is, for example, about 0.1 to 30 μm. The width k of the distal end portion 43 is, for example, about several tens to one hundred and several tens of nm. The range of the width q of the flare support portion 45 is, for example, about 0.1 to 10 μm. The length q z of the flare support portion 45 is, for example, 100 to 150 nm. The width r of the wide support portion 46 is, for example, about 5 to 10 μm. In the present embodiment, the width i of the magnetic field guiding part 41 is larger than the width r of the wide support part 46, but the width r of the wide support part 46 may be larger than the width i of the magnetic field guiding part.
 先端部43からなる架橋の長さkは例えば1~2μmである。後工程において、強磁性層40が支持部48側から線分E-Eを通るY軸に垂直な断面まで研磨されることにより、所定のスロートハイトを有する主磁極層11を得ることができる。線分E-Eを通るY軸に垂直な断面は磁気ヘッドにおける浮上面の一部を構成する。 The length k z of the bridge formed by the tip portion 43 is, for example, 1 to 2 μm. In the post process, the main magnetic pole layer 11 having a predetermined throat height can be obtained by polishing the ferromagnetic layer 40 from the support portion 48 side to a cross section perpendicular to the Y axis passing through the line segment E 1 -E 2. it can. A cross section perpendicular to the Y-axis passing through the line segment E 1 -E 2 constitutes a part of the air bearing surface of the magnetic head.
 図14は、図13における部分Tを拡大した、強磁性層40の上面を示す平面図である。フレア部42及び先端部43の境界付近の形状は、実線で示されるように直線的ではない。これは、図12A~12Fを用いて説明した強磁性層の形成方法におけるレジスト層30の形状訛りに由来する。レジスト層30は、図14における点線R1、R2で示されるような直線的な形状に対応した形状の露光用のマスクによって形成される。しかし、露光の際の光の回り込みの影響により、得られるレジスト層30のフレア部42及び先端部43の境界付近の形状は、直線的ではない。幅変化部43aのY軸方向の長さは、現状、百数十nm程度である。 FIG. 14 is a plan view showing the upper surface of the ferromagnetic layer 40 in which the portion T in FIG. 13 is enlarged. The shape near the boundary between the flare portion 42 and the tip portion 43 is not linear as shown by the solid line. This originates in the shape of the resist layer 30 in the method for forming a ferromagnetic layer described with reference to FIGS. 12A to 12F. The resist layer 30 is formed by an exposure mask having a shape corresponding to a linear shape as indicated by dotted lines R1 and R2 in FIG. However, the shape of the resist layer 30 in the vicinity of the boundary between the flare portion 42 and the tip portion 43 is not linear due to the influence of light wrapping during exposure. The length of the width changing portion 43a in the Y-axis direction is currently about several hundreds of nm.
 再び図11A~11Eを用いて、本実施形態の磁気ヘッドの製造方法について説明する。その後、強磁性層40を覆うように絶縁層21を設け、図11Cに示される積層体を得る。絶縁層21は、例えばアルミナなどの非磁性非導電性材料から構成される。絶縁層21は例えばスパッタリング法により形成することができる。次いで、図11Dに示されるように、絶縁層21の上面を強磁性層40が露出し、その上面が平坦になるまでCMPによって研磨を行う。 11A to 11E again, the method for manufacturing the magnetic head of this embodiment will be described. Then, the insulating layer 21 is provided so as to cover the ferromagnetic layer 40, and the stacked body shown in FIG. 11C is obtained. The insulating layer 21 is made of a nonmagnetic nonconductive material such as alumina. The insulating layer 21 can be formed by sputtering, for example. Next, as shown in FIG. 11D, the upper surface of the insulating layer 21 is polished by CMP until the ferromagnetic layer 40 is exposed and the upper surface becomes flat.
 次いで、強磁性層40の上面を、磁界誘導部41から離れるにしたがって厚さが大きくなるように加工する。図15A~15Dは強磁性層の上面を加工する工程を示す模式的断面図である。図15Aは、図13に示される強磁性層のF-Fを通りX軸に垂直な断面形状を示す部分断面図である。強磁性層40の上面のうち、加工対象となりうる部分は磁界誘導部41から離れるに従がって幅が広くなる部分、即ち、フレア部42、及び先端部43のうちフレア部42に近い部分43a(以下、幅変化部43aと称呼する。)である。まず、図15Bに示されるように、強磁性層40の上面にパタニングされたレジスト層50を設ける。強磁性層40の上面のうち、加工したい部分にはレジスト層50が設けられていない。レジスト層50は、通常のフォトリソグラフィの技術を用いて形成することができる。レジスト層50の詳細については図13におけるレジスト層30と同様であるため省略する。その後、イオンミリング等のエッチングによりレジストが設けられていない部分51に露出した強磁性層40を除去し、図15Cに示されるように、強磁性層40の上面に段差を形成する。この際、レジスト層50が、強磁性層40へのイオンミリングにおいて放射されるイオンビームに対して影となる。このため、レジストの形状又はイオンビームの入射角度を制御することにより、強磁性層40の厚さが磁界誘導部(図示せず)からフレア部42に向かって延在する方向に連続的に変化するように、強磁性層40の上面を加工することができる。例えば、レジスト層50厚さやレジスト層50の側壁のテーパ角等を調整することで、露出した強磁性層40の上面うちレジスト層50付近の部分Uの厚さや上面の勾配を任意に制御することができる。その後、図15Dに示されるように、レジスト層50を除去する。 Next, the upper surface of the ferromagnetic layer 40 is processed so that the thickness increases as the distance from the magnetic field guiding portion 41 increases. 15A to 15D are schematic cross-sectional views showing a process of processing the upper surface of the ferromagnetic layer. FIG. 15A is a partial cross-sectional view showing a cross-sectional shape passing through F 1 -F 2 of the ferromagnetic layer shown in FIG. 13 and perpendicular to the X-axis. Of the upper surface of the ferromagnetic layer 40, the part that can be processed is a part that becomes wider as it moves away from the magnetic field guiding part 41, that is, the part that is close to the flare part 42 among the flare part 42 and the tip part 43. 43a (hereinafter referred to as the width changing portion 43a). First, as shown in FIG. 15B, a patterned resist layer 50 is provided on the upper surface of the ferromagnetic layer 40. Of the upper surface of the ferromagnetic layer 40, the resist layer 50 is not provided on the portion to be processed. The resist layer 50 can be formed using a normal photolithography technique. Details of the resist layer 50 are the same as those of the resist layer 30 in FIG. Thereafter, the ferromagnetic layer 40 exposed in the portion 51 where the resist is not provided is removed by etching such as ion milling, and a step is formed on the upper surface of the ferromagnetic layer 40 as shown in FIG. 15C. At this time, the resist layer 50 becomes a shadow with respect to the ion beam emitted in the ion milling to the ferromagnetic layer 40. Therefore, by controlling the resist shape or the ion beam incident angle, the thickness of the ferromagnetic layer 40 continuously changes in the direction extending from the magnetic field guiding portion (not shown) toward the flare portion 42. As described above, the upper surface of the ferromagnetic layer 40 can be processed. For example, by adjusting the thickness of the resist layer 50 and the taper angle of the sidewall of the resist layer 50, the thickness of the portion U near the resist layer 50 and the gradient of the upper surface of the exposed upper surface of the ferromagnetic layer 40 can be arbitrarily controlled. Can do. Thereafter, as shown in FIG. 15D, the resist layer 50 is removed.
 なお、段差の形状は、図15に示される形状に限定されるものではない。図16A~16Eは強磁性層の上面を加工した後の強磁性層を示す部分断面図である。例えば図16Aに示されるように、厚さや上面の勾配が制御された部分Uがフレア部42及び幅変化部43aにわたって設けられていてもよい。また、図16Bに示されるように、部分Uがフレア部42に設けられていてもよい。 It should be noted that the shape of the step is not limited to the shape shown in FIG. 16A to 16E are partial cross-sectional views showing the ferromagnetic layer after processing the upper surface of the ferromagnetic layer. For example, as shown in FIG. 16A, a portion U in which the thickness and the gradient of the upper surface are controlled may be provided across the flare portion 42 and the width changing portion 43a. Further, as shown in FIG. 16B, the portion U may be provided in the flare portion 42.
 また、図16Cに示されるように、幅変化部43aに設けられた部分Uの磁界誘導部41側に、磁界誘導部41に近づくに従って厚さが大きくなる部分Vが設けられていてもよい。磁気ディスク装置では、磁気記録媒体上のデータは磁気ヘッドによって読み書きされるが。磁気記録媒体の単位面積当たりの記録容量を大きくするためには、トラック幅方向(磁極幅方向:X軸方向)及びビット長方向(磁極厚さ方向:Z軸方向)の双方の密度を向上させる必要がある。トラック幅が小さくなると、主磁極幅を小さくする必要がある。しかし、主磁極幅が小さくなると、主磁極層から磁気記録媒体に誘導される記録磁界の出力を減らすことになる。よって主磁極から出力される記録磁界の低下により、書込み不良の発生が懸念される。磁界誘導部41に近づくにしたがって厚さが大きくなる部分Vは、主磁極幅を小さくすることにより低下した記録磁界の出力を補い、書き込み不良の発生を回避する働きを有する。図16Dに示されるように、部分Uはフレア部42及び幅変化部43aにわたって設けられ、更に部分Uの磁界誘導部41側に部分Vが設けられていてもよい。また、図16Eに示されるように、部分Uはフレア部42に設けられ、更に部分Uの磁界誘導部41側に部分Vが設けられていてもよい。図16A~16Eに示される形状の強磁性層は、レジスト層の形状を変えることでそれぞれ形成できる。 Further, as shown in FIG. 16C, a portion V that increases in thickness as it approaches the magnetic field guiding portion 41 may be provided on the magnetic field guiding portion 41 side of the portion U provided in the width changing portion 43a. In a magnetic disk device, data on a magnetic recording medium is read and written by a magnetic head. In order to increase the recording capacity per unit area of the magnetic recording medium, the density in both the track width direction (magnetic pole width direction: X-axis direction) and the bit length direction (magnetic pole thickness direction: Z-axis direction) is improved. There is a need. When the track width is reduced, it is necessary to reduce the main pole width. However, when the main magnetic pole width is reduced, the output of the recording magnetic field induced from the main magnetic pole layer to the magnetic recording medium is reduced. Therefore, there is a concern that a write failure may occur due to a decrease in the recording magnetic field output from the main magnetic pole. The portion V whose thickness increases as it approaches the magnetic field guiding portion 41 has a function of compensating for the output of the recording magnetic field that has been lowered by reducing the main magnetic pole width and avoiding the occurrence of write defects. As shown in FIG. 16D, the portion U may be provided across the flare portion 42 and the width changing portion 43a, and further, the portion V may be provided on the magnetic field guiding portion 41 side of the portion U. Further, as shown in FIG. 16E, the portion U may be provided in the flare portion 42, and the portion V may be further provided on the magnetic field induction portion 41 side of the portion U. The ferromagnetic layers having the shapes shown in FIGS. 16A to 16E can be formed by changing the shape of the resist layer.
 上記イオンミリングを利用した磁極の上面を加工する工程を、図17A~17Bを用いて更に説明する。図17A~17Bは、強磁性層の上面を加工する前における強磁性層の一例を示す模式的部分断面図である。図17Aは、図13における部分Tを拡大した、基板の主面に平行な断面である。また、図17Bは、図17Aにおける、Y軸に平行(浮上面に平行)な断面である。後述する浮上面16を形成するための研磨加工において、研磨の誤差をfとする。加工狙い位置Mから幅一定部43bに向かってf/2の位置(位置D)のY軸に垂直な断面の上辺の長さをdとする。位置Mから磁界誘導部(図示せず)に向かってf/2の位置(位置E)での上辺の長さeとする。位置Dと位置Eの間の任意の位置Pにおける、Y軸に垂直な断面の上辺の長さをpとする。上辺の長さはd<p<e関係を満たす。強磁性層40の、位置Dと位置Eとの間において、Y軸に平行な断面のテーパ角をθ(一定)とする(断面において上辺と側辺のなす角をα(一定)とする)。また、位置D、E、Pにおける対応する側辺は互いに平行であるとする。強磁性層40の上面を加工する前において、位置Dと位置Eとの間において強磁性層40の厚さはいずれもhとする。今、目標とする主磁極幅をdとする。 The process of processing the top surface of the magnetic pole using the ion milling will be further described with reference to FIGS. 17A to 17B. 17A to 17B are schematic partial cross-sectional views showing an example of the ferromagnetic layer before processing the upper surface of the ferromagnetic layer. FIG. 17A is a cross section obtained by enlarging the portion T in FIG. 13 and parallel to the main surface of the substrate. FIG. 17B is a cross section parallel to the Y axis (parallel to the air bearing surface) in FIG. 17A. In the polishing process for forming the air bearing surface 16 to be described later, the polishing error is assumed to be f. The length of the upper side of the cross section perpendicular to the Y axis at the position f / 2 (position D) from the processing target position M toward the constant width portion 43b is defined as d. A length e of the upper side at a position (position E) of f / 2 from the position M toward the magnetic field guiding section (not shown). Let p be the length of the upper side of the cross section perpendicular to the Y axis at an arbitrary position P between the position D and the position E. The length of the upper side satisfies the relationship d <p <e. The taper angle of the cross section parallel to the Y axis between the position D and the position E of the ferromagnetic layer 40 is θ (constant) (the angle between the upper side and the side side in the cross section is α (constant)). . Further, it is assumed that corresponding side edges at positions D, E, and P are parallel to each other. Before the upper surface of the ferromagnetic layer 40 is processed, the thickness of the ferromagnetic layer 40 between the position D and the position E is set to h D. Now, let the target main pole width be d.
 図18Aは、位置D及び位置PにおけるY軸に垂直な強磁性層40の断面を重ねて示した模式図である。加工前の位置Pの上面を基準として除去されるべき深さをh、上面の加工後において位置Pの厚さをhとする。 FIG. 18A is a schematic diagram in which the cross sections of the ferromagnetic layer 40 perpendicular to the Y axis at the positions D and P are overlapped. The depth to be removed on the basis of the upper surface of the position P before processing is defined as h 1 , and the thickness of the position P after processing of the upper surface is defined as h P.
 図18Aに示される強磁性層40の断面形状の幾何学的関係から、位置Dから位置Eまでの間の任意の位置Pにおいて下記式(2)の関係を満たすように強磁性層40を除去することで、位置Dと位置Eとの間のY軸に垂直な任意の断面の上辺の幅を一定にすることができる。 From the geometrical relationship of the cross-sectional shape of the ferromagnetic layer 40 shown in FIG. 18A, the ferromagnetic layer 40 is removed so as to satisfy the relationship of the following formula (2) at an arbitrary position P between the position D and the position E. By doing so, the width of the upper side of an arbitrary cross section perpendicular to the Y axis between the position D and the position E can be made constant.
   h=(p-d)/2tanθ
     =(p-d)/2tan(90°-α)   (2)
 図18Bを用いて、上記式(2)を満たすために必要なレジスト層50の形状を説明する。上記式(2)の条件を満たす強磁性層40の上面は、図18Bに示されるように、イオンミリングの際にマスクとして使用するレジスト層50のテーパ角φや膜厚mを調整することで任意に形成することができる。
h 1 = (pd) / 2 tan θ
= (Pd) / 2 tan (90 ° -α) (2)
The shape of the resist layer 50 necessary to satisfy the above formula (2) will be described with reference to FIG. 18B. As shown in FIG. 18B, the upper surface of the ferromagnetic layer 40 that satisfies the condition of the above formula (2) is adjusted by adjusting the taper angle φ and the film thickness m of the resist layer 50 used as a mask during ion milling. It can be arbitrarily formed.
 強磁性層40の上面の加工例を以下に示す。まず、上記公知の方法により、強磁性材料(例えば、パーマロイ)からなり、厚さhが300nm、テーパ角θが12°の強磁性層を形成した。後述する浮上面16を形成するために行われる研磨加工の誤差fは40nmであった。よって、図17における位置Dと位置Eとの間の距離は40nmとした。位置D及び位置Eにおける強磁性層40のY軸に垂直な断面の上辺の幅は、走査型電子顕微鏡により測定すると、それぞれ176nm、191nmであった。よって位置D-E間に必要な高低差hは以下のように算出された。 An example of processing the upper surface of the ferromagnetic layer 40 is shown below. First, by the known method, a ferromagnetic material (e.g., permalloy) a thickness h D is 300 nm, the taper angle θ formed the ferromagnetic layer 12 °. An error f of polishing performed to form the air bearing surface 16 described later was 40 nm. Therefore, the distance between the position D and the position E in FIG. The width of the upper side of the cross section perpendicular to the Y axis of the ferromagnetic layer 40 at the position D and the position E was 176 nm and 191 nm, respectively, as measured with a scanning electron microscope. Therefore, the required height difference h 2 between the positions DE was calculated as follows.
  h=(191nm-178nm)/2tan12°=35.3nm
 次いで強磁性層40上にレジストを塗布し、露光、現像を施すことで、逆テーパ形状を有するレジスト層50を形成する。本実験例では、逆テーパのパターンが容易に形成できる電子線リソグラフィーを利用し、レジスト膜厚mが3500Å、テーパ角φが8°のレジスト層50を形成した。次いで、レジスト層50が形成された強磁性層40の上面に対してイオンミリングを行うことで、傾斜面49を形成した。位置Dと位置Eにおける強磁性層40の上面の高低差hを走査型電子顕微鏡を用いて測定したところは37nmだった。
h 2 = (191 nm-178 nm) / 2 tan 12 ° = 35.3 nm
Next, a resist is applied on the ferromagnetic layer 40, exposed, and developed, thereby forming a resist layer 50 having an inversely tapered shape. In this experimental example, the resist layer 50 having a resist film thickness m of 3500 mm and a taper angle φ of 8 ° was formed by using electron beam lithography capable of easily forming a reverse taper pattern. Next, the inclined surface 49 was formed by performing ion milling on the upper surface of the ferromagnetic layer 40 on which the resist layer 50 was formed. The height difference h 2 on the upper surface of the ferromagnetic layer 40 at the positions D and E was measured using a scanning electron microscope to be 37 nm.
 再び図11A~11Eを用いて、本実施形態の磁気ヘッドの製造方法について説明する。その後、図11Eに示すように、絶縁層12及びトレーリングシールド層14を積層体の上面に順に形成する。また、図示されないが、図11Dの紙面奥の位置には、コイル(図示せず)、樹脂層(図示せず)、及びそのコイル並びに樹脂層を覆うように設けられる絶縁層(図示せず)が設けられる。ここで、コイルは図3におけるコイル8に対応し、樹脂層は図3における樹脂層13に対応し、絶縁層は図3における絶縁層17に対応する。更に、トレーリングシールド層14と強磁性層40とを磁気的に接続するため、図3に示される接続層10A、10B及びリターンヨーク層15に対応する層(図示せず)が設けられる。これらの層は、例えば、メッキ処理やスパッタリングなどの成膜技術、フォトリソグラフィ法やエッチング法などを利用したパタニング技術、並びに機械加工や研磨加工などの研磨技術を含む既存の薄膜プロセスを使用して形成することが可能である。次いで、上面全体にオーバーコート層(図示せず)をスパッタリング法を用いて設ける。 11A to 11E again, the method for manufacturing the magnetic head of this embodiment will be described. Thereafter, as shown in FIG. 11E, the insulating layer 12 and the trailing shield layer 14 are sequentially formed on the upper surface of the laminate. In addition, although not shown in the drawing, a coil (not shown), a resin layer (not shown), and an insulating layer (not shown) provided so as to cover the coil and the resin layer are located at the back of FIG. 11D. Is provided. Here, the coil corresponds to the coil 8 in FIG. 3, the resin layer corresponds to the resin layer 13 in FIG. 3, and the insulating layer corresponds to the insulating layer 17 in FIG. Further, in order to magnetically connect the trailing shield layer 14 and the ferromagnetic layer 40, layers (not shown) corresponding to the connection layers 10A and 10B and the return yoke layer 15 shown in FIG. 3 are provided. These layers use, for example, existing thin film processes including film formation techniques such as plating and sputtering, patterning techniques utilizing photolithography and etching, and polishing techniques such as machining and polishing. It is possible to form. Next, an overcoat layer (not shown) is provided on the entire upper surface by sputtering.
 その後、図13における強磁性層40の支持部48側から線分E-Eを通るY軸に垂直な断面に対応する位置まで、得られた積層体を研磨する。この研磨により、図3~8を用いて説明したような形状を有する主磁極層11を備えた磁気ヘッドを得ることができる。この研磨により、図3~7における浮上面16が形成される。研磨の手段は特に限定されないが、例えばダイシングソーなどを用いた研磨が挙げられる。尚、図13における支持部48の線分E-Eに略平行な任意の断面において切断した後に、図13における強磁性層40の支持部48側から線分E-Eを通るY軸に垂直な断面に対応する位置まで、強磁性層40を研磨してもよい。この研磨工程において、加工精度の範囲内の誤差が生じたとしても、主磁極層11の浮上面近傍における幅は略一定になる。よって本実施形態の磁気ヘッドの製造方法によれば、所望の主磁極幅を有する主磁極層を備えた磁気ヘッドを、精度よく製造することができる。 Thereafter, the obtained multilayer body is polished from the support portion 48 side of the ferromagnetic layer 40 in FIG. 13 to a position corresponding to a cross section perpendicular to the Y axis passing through the line segment E 1 -E 2 . By this polishing, a magnetic head including the main magnetic pole layer 11 having the shape described with reference to FIGS. 3 to 8 can be obtained. By this polishing, the air bearing surface 16 in FIGS. 3 to 7 is formed. The polishing means is not particularly limited, and examples thereof include polishing using a dicing saw. Note that after cutting the substantially parallel arbitrary cross section to line E 1 -E 2 of the supporting portion 48 in FIG. 13, through the line E 1 -E 2 from the support portion 48 side of the ferromagnetic layer 40 in FIG. 13 The ferromagnetic layer 40 may be polished to a position corresponding to a cross section perpendicular to the Y axis. In this polishing process, even if an error within the range of processing accuracy occurs, the width of the main magnetic pole layer 11 in the vicinity of the air bearing surface is substantially constant. Therefore, according to the magnetic head manufacturing method of the present embodiment, a magnetic head including a main magnetic pole layer having a desired main magnetic pole width can be manufactured with high accuracy.
 尚、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (12)

  1.  基板と、
     前記基板上に設けられ、幅広部と前記幅広部から延在し且つ前記幅広部から離れるほど厚くなる狭隘部とを備え、前記狭隘部が、上面と、前記上面の幅よりも狭く前記幅広部へ近づくほど広い幅を有する下面とを有する磁極と、
     前記磁極上に設けられ、非磁性且つ非導電性である絶縁層と、
     前記絶縁層上に設けられ、前記磁極と磁気的に接続する補助磁極層と
    を有することを特徴とする磁気ヘッド。
    A substrate,
    A wide portion and a narrow portion that extends from the wide portion and increases in thickness as the distance from the wide portion increases. The narrow portion is narrower than the upper surface and the width of the upper surface. A magnetic pole having a lower surface with a width that is wider toward
    An insulating layer provided on the magnetic pole and nonmagnetic and nonconductive;
    A magnetic head having an auxiliary magnetic pole layer provided on the insulating layer and magnetically connected to the magnetic pole.
  2.  前記狭隘部の上面が略一定の幅を有する
    ことを特徴とする請求項1に記載の磁気ヘッド。
    The magnetic head according to claim 1, wherein an upper surface of the narrow portion has a substantially constant width.
  3.  前記磁極が強磁性材料からなる
    ことを特徴とする請求項1に記載の磁気ヘッド。
    The magnetic head according to claim 1, wherein the magnetic pole is made of a ferromagnetic material.
  4.  前記狭隘部の、前記狭隘部と前記幅広部の延在方向に垂直な断面において、前記第1面上の上辺とそれに隣接する側辺とがなす角をα(°)とし、前記狭隘部の端部において厚さをhとし前記第2面上の下辺の幅をnとすると、下辺の幅がn3Aである前記狭隘部の任意の断面の高さhが下記式(1)を満たすことを特徴とする請求項1に記載の磁気ヘッド。
       h=h-(n3A-n)/2tan(90°-α)   (1)
    In a cross section of the narrow portion perpendicular to the extending direction of the narrow portion and the wide portion, an angle formed by an upper side on the first surface and a side side adjacent thereto is α (°), and the narrow portion When the thickness of the end portion is h the width of the lower edge on the second surface and n 3, the height h a is represented by the following formula for any cross-section of the constriction width of the lower edge is n 3A: (1) The magnetic head according to claim 1, wherein the magnetic head is satisfied.
    h A = h− (n 3A −n 3 ) / 2 tan (90 ° −α) (1)
  5.  前記狭隘部は、前記幅広部に近づくに従って厚さが大きくなる部分を有することを特徴とする請求項1に記載の磁気ヘッド。 The magnetic head according to claim 1, wherein the narrow portion has a portion that increases in thickness as it approaches the wide portion.
  6.  基板上に磁極層を形成する工程と、
     前記磁極層を、幅広部と前記幅広部から延在する狭隘部とを備え、前記狭隘部の幅が前記基板に近いほど狭く且つ前記狭隘部の幅が幅広部に近づくほど広くなるように加工する工程と、
     前記狭隘部の厚さが前記幅広部から離れるに従って厚くなるように前記狭隘部の上面を加工する工程と、
     前記磁極層の上に非磁性且つ非導電性を有する絶縁層を形成する工程と、
     前記絶縁層上に前記磁極層と磁気的に接続する補助磁極層を形成する工程と
    を有することを特徴とする磁気ヘッドの製造方法。
    Forming a pole layer on the substrate;
    The magnetic pole layer includes a wide portion and a narrow portion extending from the wide portion, and is processed so that the width of the narrow portion is narrower as it is closer to the substrate and the width of the narrow portion is wider as it is closer to the wide portion. And a process of
    Processing the upper surface of the narrow portion so that the thickness of the narrow portion becomes thicker as the distance from the wide portion increases.
    Forming a nonmagnetic and nonconductive insulating layer on the pole layer;
    Forming an auxiliary magnetic pole layer magnetically connected to the magnetic pole layer on the insulating layer.
  7.  前記狭隘部の上面を加工する工程が、前記狭隘部の厚さが前記幅広部から離れるに従って厚く、前記狭隘部の幅が略一定になるように前記狭隘部の上面を加工する工程である
    ことを特徴とする請求項6に記載の磁気ヘッドの製造方法。
    The step of processing the upper surface of the narrowed portion is a step of processing the upper surface of the narrowed portion so that the thickness of the narrowed portion increases as the distance from the widened portion increases and the width of the narrowed portion becomes substantially constant. The method of manufacturing a magnetic head according to claim 6.
  8.  前記狭隘部の上面を加工する工程において、前記狭隘部の上面をエッチングによって加工することを特徴とする請求項6に記載の磁気ヘッドの製造方法。 The method of manufacturing a magnetic head according to claim 6, wherein, in the step of processing the upper surface of the narrow portion, the upper surface of the narrow portion is processed by etching.
  9.  前記狭隘部の上面を加工する工程が、前記狭隘部の上にレジストパターンを形成する工程と、イオンミリングを用いて狭隘部の上面をエッチングする工程とを含んでなることを特徴とする請求項6に記載の磁気ヘッドの製造方法。 The step of processing the upper surface of the narrow portion includes a step of forming a resist pattern on the narrow portion and a step of etching the upper surface of the narrow portion using ion milling. 6. A method of manufacturing a magnetic head according to 6.
  10.  前記狭隘部の上面を加工する工程が、前記狭隘部と前記幅広部の延在方向に垂直な断面において、上辺と隣接する側辺とがなす角をα(°)、目標とする上辺の長さをaとすると、上辺の長さがbである前記狭隘部を、厚さが(b-a)/tan(90°-α)だけ低くなるように加工する工程を含むことを特徴とする請求項6に記載の磁気ヘッドの製造方法。 In the step of processing the upper surface of the narrow portion, in the cross section perpendicular to the extending direction of the narrow portion and the wide portion, an angle formed by the upper side and the adjacent side side is α (°), and the target length of the upper side is When the thickness is a, the narrow portion having an upper side length of b includes a step of processing so that the thickness is reduced by (ba) / tan (90 ° -α). A method of manufacturing the magnetic head according to claim 6.
  11.  前記狭隘部の上面を加工する工程が、更に、前記狭隘部の厚さが前記幅広部に近づくに従って大きくなる部分を形成する工程を含むことを特徴とする請求項6に記載の磁気ヘッドの製造方法。 The magnetic head manufacturing method according to claim 6, wherein the step of processing the upper surface of the narrow portion further includes a step of forming a portion in which the thickness of the narrow portion increases as the width portion approaches the wide portion. Method.
  12.  基板と、
     前記基板上に設けられ、幅広部と前記幅広部から延在し且つ前記幅広部から離れるほど厚くなる狭隘部とを備え、前記狭隘部が、上面と、前記上面の幅よりも狭く前記幅広部へ近づくほど広い幅を有する下面とを有する磁極と、
     前記磁極上に設けられ、非磁性且つ非導電性である絶縁層と、
     前記絶縁層上に設けられ、前記磁極と磁気的に接続する補助磁極層と
    を有することを特徴とする磁気ヘッドと、
     前記磁気ヘッドに対向し、前記磁気ヘッドから印加される磁界により磁気情報を記録すことが可能な磁気記憶媒体と
    を備えることを特徴とする磁気記憶装置。
    A substrate,
    A wide portion and a narrow portion that extends from the wide portion and increases in thickness as the distance from the wide portion increases. The narrow portion is narrower than the upper surface and the width of the upper surface. A magnetic pole having a lower surface with a width that is wider toward
    An insulating layer provided on the magnetic pole and nonmagnetic and nonconductive;
    A magnetic head having an auxiliary magnetic pole layer provided on the insulating layer and magnetically connected to the magnetic pole;
    A magnetic storage device comprising: a magnetic storage medium facing the magnetic head and capable of recording magnetic information by a magnetic field applied from the magnetic head.
PCT/JP2008/001590 2008-06-19 2008-06-19 Magnetic head, manufacturing method of magnetic head, and magnetic storage device WO2009153837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/001590 WO2009153837A1 (en) 2008-06-19 2008-06-19 Magnetic head, manufacturing method of magnetic head, and magnetic storage device
JP2010517553A JPWO2009153837A1 (en) 2008-06-19 2008-06-19 Magnetic head, method of manufacturing magnetic head, and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001590 WO2009153837A1 (en) 2008-06-19 2008-06-19 Magnetic head, manufacturing method of magnetic head, and magnetic storage device

Publications (1)

Publication Number Publication Date
WO2009153837A1 true WO2009153837A1 (en) 2009-12-23

Family

ID=41433768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001590 WO2009153837A1 (en) 2008-06-19 2008-06-19 Magnetic head, manufacturing method of magnetic head, and magnetic storage device

Country Status (2)

Country Link
JP (1) JPWO2009153837A1 (en)
WO (1) WO2009153837A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016250A (en) * 2011-06-30 2013-01-24 Seagate Technology Llc Device provided with writing pole chip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036503A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Perpendicular magnetic recording head and magnetic disk drive incorporating it
JP2006012378A (en) * 2004-06-21 2006-01-12 Headway Technologies Inc Magnetic head for perpendicular magnetic recording and method of manufacturing the same
JP2007087506A (en) * 2005-09-22 2007-04-05 Alps Electric Co Ltd Vertical magnetic recording head and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036503A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Perpendicular magnetic recording head and magnetic disk drive incorporating it
JP2006012378A (en) * 2004-06-21 2006-01-12 Headway Technologies Inc Magnetic head for perpendicular magnetic recording and method of manufacturing the same
JP2007087506A (en) * 2005-09-22 2007-04-05 Alps Electric Co Ltd Vertical magnetic recording head and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016250A (en) * 2011-06-30 2013-01-24 Seagate Technology Llc Device provided with writing pole chip

Also Published As

Publication number Publication date
JPWO2009153837A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
US7679862B2 (en) Perpendicular recording head with reduced thermal protrusion
US8000058B2 (en) Magnetic head for perpendicular recording having pole pieces provided on surface of soft magnetic film
US7154707B2 (en) Thin film magnetic head and magnetic recording apparatus
JP5615863B2 (en) Magnetic head for perpendicular magnetic recording with main pole and shield
US7463450B2 (en) Thin film magnetic head
US7227720B2 (en) Magnetic head for perpendicular magnetic recording and method of manufacturing same
JP4116626B2 (en) Magnetic head for perpendicular magnetic recording and manufacturing method thereof
US7119987B2 (en) Thin-film magnetic head, a head gimbal assembly, and a hard disk drive
US8243558B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk apparatus
JP2008123654A (en) Thin film magnetic head with heating portion and protrusion adjustment portion and manufacturing method of head
US11289117B1 (en) Magnetic head including spin torque oscillator
JP2007035082A (en) Perpendicular recording magnetic head and its manufacturing method
JP4906268B2 (en) Manufacturing method of magnetic head for perpendicular magnetic recording
US11211082B1 (en) Magnetic head including spin torque oscillator
JP2006302421A (en) Manufacturing method of magnetic head, and magnetic head
US6728064B2 (en) Thin-film magnetic head having two magnetic layers, one of which includes a pole portion layer and a yoke portion layer, and method of manufacturing same
US6738222B2 (en) Thin-film magnetic head and method of manufacturing same
JP2005285306A (en) Thin film magnetic head
US7168156B2 (en) Method of manufacturing a thin-film magnetic head
JP2008234716A (en) Magnetic head
WO2009153837A1 (en) Magnetic head, manufacturing method of magnetic head, and magnetic storage device
JP2003006811A (en) Thin film magnetic head and its manufacturing method
JP4713836B2 (en) Thin film magnetic head, magnetic recording apparatus, and manufacturing method thereof
JP4818325B2 (en) Magnetic head for perpendicular magnetic recording and manufacturing method thereof
JP2009230808A (en) Manufacturing method of magnetic head, and magnetic head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517553

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764173

Country of ref document: EP

Kind code of ref document: A1