WO2009151260A2 - Optical device, and backlight unit and liquid crystal display comprising the same - Google Patents

Optical device, and backlight unit and liquid crystal display comprising the same Download PDF

Info

Publication number
WO2009151260A2
WO2009151260A2 PCT/KR2009/003088 KR2009003088W WO2009151260A2 WO 2009151260 A2 WO2009151260 A2 WO 2009151260A2 KR 2009003088 W KR2009003088 W KR 2009003088W WO 2009151260 A2 WO2009151260 A2 WO 2009151260A2
Authority
WO
WIPO (PCT)
Prior art keywords
base film
microscopic
pattern
microscopic optical
optical
Prior art date
Application number
PCT/KR2009/003088
Other languages
French (fr)
Korean (ko)
Other versions
WO2009151260A3 (en
Inventor
박정호
도영수
김도윤
안정애
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080053508A external-priority patent/KR100985733B1/en
Priority claimed from KR1020080054991A external-priority patent/KR101009707B1/en
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to US12/996,933 priority Critical patent/US20110085108A1/en
Priority to JP2011513420A priority patent/JP2011523102A/en
Priority to CN2009801215991A priority patent/CN102066991A/en
Publication of WO2009151260A2 publication Critical patent/WO2009151260A2/en
Publication of WO2009151260A3 publication Critical patent/WO2009151260A3/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance

Definitions

  • the present invention relates to an optical element used in a liquid crystal display (LCD), and in particular, an optical element for enhancing a condensing effect and having a wide viewing angle while maintaining high brightness characteristics in a liquid crystal display device, a backlight unit and a liquid crystal display including the same. Relates to a device.
  • LCD liquid crystal display
  • optical devices widely used in liquid crystal displays include light guide plates, diffuser plates, prism sheets, and liquid crystal panels.
  • Such optical elements are commonly used for light diffusion, condensation, and luminance improvement of liquid crystal displays.
  • a backlight unit used in a liquid crystal display light rays incident from a light source are converted into a surface light source through a light guide plate, and then diffused by a diffuser plate and are incident below the prism sheet.
  • the prism sheet may focus the incident light on the light exit surface to improve the brightness of the liquid crystal display.
  • FIG. 1 is a schematic cross-sectional view of a conventional general liquid crystal display device.
  • the liquid crystal display device 10 is largely composed of a backlight unit A and a panel unit B.
  • the backlight unit A includes a light guide plate 12 that diffuses and emits light incident from the light source 10, and one or more prism sheets 14 that collect and emit light incident from the diffuser plate 13 and the diffusion plate 13. And a phase delay layer 16 for converting circularly polarized light transmitted through the reflective polarization film 15 into linearly polarized light, and a reflective polarizing film 15 for selectively reflecting light incident from the prism sheet 14.
  • the panel unit (B) transmits linearly polarized light among the light emitted from the backlight unit (A) and absorbs 50% of the circularly polarized light and absorbs the rest, and a liquid crystal panel (18) for visually displaying a screen. It is configured to include).
  • Unexplained reference numeral 11 is a reflector.
  • an object of the present invention is to provide an optical device that has a high viewing efficiency and a wide viewing angle at a slim yet low cost while maintaining high brightness characteristics in a liquid crystal display device. .
  • Another object of the present invention is to provide a backlight unit and a liquid crystal display device including the optical device.
  • a peak and a valley are continuously formed on a portion of the convex portion.
  • the base film may further include a second micro-optic pattern formed on the other surface of the base film to collect or / and diffuse incident light, wherein the second micro-optic pattern is formed of a mountain and a valley continuously.
  • each of the first and second microscopic optical patterns may have a peak and a valley arranged in parallel with each other.
  • the first microscopic optical pattern and the second microscopic optical pattern may be arranged with each hill and valley having a predetermined inclination angle.
  • the diameter of the convex portion is preferably made of 50 ⁇ 100 ⁇ m.
  • the convex portion is formed in a figure having a long axis and a short axis, the length of the long axis may be made of 50 ⁇ 100 ⁇ m and the length of the short axis may be made of 1 ⁇ 100 ⁇ m.
  • the height of the convex portion is preferably made of 10 ⁇ 40 ⁇ m.
  • the distance between the convex portions is preferably made of 50 ⁇ 150 ⁇ m.
  • At least some of the plurality of convex portions may have different heights.
  • the height of the acid of the first microscopic optical pattern is preferably made of 5 ⁇ 30 ⁇ m.
  • the width of the acid of the first microscopic optical pattern is preferably made of 10 ⁇ 30 ⁇ m.
  • the height of the first microscopic optical pattern may be formed different from each other.
  • the first microscopic optical pattern may be formed at the center portion of each convex portion.
  • the remaining portion of the convex portion in which the first microscopic optical pattern is not formed may be formed in a curved shape with a constant curvature.
  • Each of the third microscopic optical patterns may include a portion having a long axis and a short axis in contact with the surface of the base film, and the height of the mountain provided in the third microscopic optical pattern may be along the long axis direction of the figure. It is formed to be lowered toward both ends from the center.
  • a plurality of third microscopic optical patterns may be formed on one surface of the base film, and a fourth microscopic optical pattern may be formed on the other surface of the base film to collect or / or diffuse incident light.
  • the fourth micro-optic pattern is formed with a mountain and a valley continuously.
  • the third microscopic optical pattern and the fourth microscopic optical pattern may be arranged while each acid forms a predetermined inclination angle.
  • the peaks of the third microscopic optical patterns may be curved with a constant radius of curvature along the long axis of the elliptical shape.
  • the height of the center of the mountain of the third microscopic optical pattern is preferably made of 0.2 ⁇ 200 ⁇ m.
  • the lengths of the long axis and the short axis of the figure forming the third microscopic optical pattern are preferably 1 to 5000 ⁇ m and 1 to 100 ⁇ m, respectively.
  • the distance between the third microscopic optical patterns is preferably made of 1 ⁇ 5000 ⁇ m.
  • the third microscopic optical patterns may be arranged in a matrix form.
  • the third microscopic optical patterns may be arranged to cross each other.
  • the present invention provides a backlight unit including the optical element described in the above embodiments and a liquid crystal display device including the backlight unit.
  • the present invention it is possible to increase the light condensing effect and to realize a wide viewing angle at low cost in the liquid crystal display.
  • the luminance at the side as well as the luminance at the front side can be improved to maintain uniform luminance throughout the entire screen of the liquid crystal display device.
  • FIG. 1 is a schematic cross-sectional view of a conventional general liquid crystal display device.
  • FIG. 2 is a plan view illustrating an optical device according to a first exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG.
  • Figure 4 is an enlarged view showing the main portion of Figure 3 enlarged.
  • FIG. 5 is a cross-sectional view taken along the line B-B in FIG.
  • FIG. 6 is a cross-sectional view showing another embodiment of the first microscopic optical pattern according to the present invention.
  • FIG 7 is an exemplary view showing a modification of the optical device according to the first embodiment of the present invention.
  • FIG. 8 is a perspective view of an optical device according to a second embodiment of the present invention.
  • FIG. 9 is a perspective view illustrating C-C of FIG. 8.
  • FIG. 10 to 12 schematically illustrate a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
  • FIG. 13 and 14 are schematic perspective views of an optical device according to a third exemplary embodiment of the present invention.
  • FIG. 15 is a cross-sectional view and a perspective view illustrating A-A of FIG. 2.
  • FIG. 16 is a cross-sectional view illustrating B-B of FIG. 2.
  • FIG. 17 is a schematic perspective view of an optical device according to a fourth embodiment of the present invention.
  • FIG. 18 is a perspective view illustrating C-C of FIG. 17.
  • 19 and 20 are diagrams showing the results of simulating the path of light in the conventional optical element and the optical element of the present invention.
  • FIG. 21 is a schematic view of a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating an optical device according to a first exemplary embodiment of the present invention.
  • the optical device 100 includes a base film 110 having light transmittance, a plurality of convex parts 120 formed on at least one surface of the base film 110, and the The first micro-optic pattern 130 includes a plurality of peaks 131 and valleys 132 formed on a portion of the convex portion 120.
  • the base film 110 according to the present invention is a material that transmits incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
  • PC Polycarbonate
  • PET Polyyester
  • PE Polyethylene
  • PP Polypropylene
  • PMMA Polymethly Methacrylate
  • a plurality of convex portions 120 are formed on at least one surface of the base film 110.
  • the convex portion 120 is regularly formed over one surface of the base film 110 or in some sections, or irregularly over the entire surface or in some sections to form newton rings and wet-outs. It will prevent the occurrence.
  • the convex portion as shown in Figure 2, when projecting in the plane of the base film 110 may have a cross-section of various shapes, such as circular, oval, square, triangle, rhombus.
  • Each of the convex portions 120 diffuses the light incident on the base film 110 to induce a wide viewing angle.
  • each convex portion 120 has a first micro-optic pattern 130 formed of a plurality of peaks 131 and valleys 132 in a row.
  • the first microscopic optical pattern 130 is preferably formed at the center portion on the convex portion 120.
  • Each of the first microscopic optical patterns 130 functions to condense and emit light such that light incident on the base film 110 is substantially perpendicular to an upper liquid crystal panel (not shown).
  • FIG. 3 is a cross-sectional view taken along line AA of FIG. 2
  • FIG. 4 is an enlarged view showing main parts of FIG. 3
  • FIG. 5 is a cross-sectional view taken along line BB of FIG. 2
  • FIG. 6 is another embodiment of the first microscopic optical pattern according to the present invention. It is a cross-sectional view.
  • the convex portion 120 of the optical device 100 is a protruding shape having a predetermined curvature, for example, is formed in a hemispherical shape and protrudes on the base film 110. It is preferable. In other words, the convex portion 120 preferably has a semi-circle or semi-ellipse shape when projected from the side of the base film 110 (see FIG. 3).
  • the first microscopic optical patterns 130 are formed on a portion of the convex portion 120 by forming a plurality of peaks 131 and valleys 132 in a row, and are preferably formed at the center of the convex portion 120.
  • the remaining portion of the convex portion 120 in which the first microscopic optical pattern 130 is not formed that is, the side portion 121 shown in FIG. 3A, maintains a curved shape with a constant curvature.
  • incident light incident from the lower portion is collected by the first micro-optic pattern 120 and is emitted vertically upwards (N direction), by the side portion 121 of the convex portion 120.
  • N direction the side luminance of the liquid crystal display device is improved.
  • the function of the diffusion film in the backlight unit is further improved.
  • the distance A between the respective convex portions 120 is preferably formed to be 50 to 150 ⁇ m, and the diameter B of the convex portion 120 is preferably formed to be 50 to 100 ⁇ m.
  • the convex portion 120 may be formed as a figure having a long axis and a short axis in the plane projection of the base film 110, wherein the length of the long axis is 50-100 ⁇ m and the length of the short axis is 1-100 ⁇ m. It is preferable to make.
  • each of the convex portion 120 is an elliptical shape, a square shape, a rhombus shape, the length of the long axis and short axis or each diagonal is preferably formed to 50 ⁇ 100 ⁇ m.
  • the height C of each convex part 120 is 10-40 micrometers.
  • At least some of the plurality of convex portions 120 may have different sizes.
  • the size, height, interval, etc. of the convex portion 120 is preferably determined in consideration of the overall density, brightness, ease of manufacture, and the like. For example, when the diameter and height of the convex portion 120 are less than 50 ⁇ m, it is difficult to form the first micro-optic pattern 130 thereon.
  • the convex portion 120 and the first microscopic optical pattern 130 are preferred embodiments, and the numerical values thereof may be changed according to the brightness and manufacturing characteristics of the product to be implemented.
  • the width D of the peak 131 of the first microscopic optical pattern 130 is preferably 10 to 30 ⁇ m, and the height E of the peak 131 is preferably 5 to 30 ⁇ m.
  • the height of the peak 131 of the first microscopic optical pattern 130 is preferably smaller than the height of the convex portion 120.
  • each of the first microscopic optical patterns 130 may include a different number of hills and valleys.
  • micro-optic pattern (not shown) may be formed in each acid. That is, like the aforementioned first microscopic optical pattern 130, the peaks and valleys are formed to be continuously repeated to maximize the light condensing efficiency for the incident light incident on the base film 110.
  • the optical device includes, as an example, an acid 131 of the first microscopic optical pattern 130 formed on a part of each convex portion 120, as shown in FIG. 5.
  • the peak 131 of the first microscopic optical pattern 130 may be formed to have a height lower from the center to both ends thereof.
  • the present invention is not limited to this structure, and as another example, as illustrated in FIG. 5, the peaks 131 of the first microscopic optical patterns 130 may maintain the same height.
  • substantially triangles may be formed in a continuous shape in any one direction, in which the peak 131 of the first microscopic optical pattern 130 is illustrated in FIG. 5. As is preferred, it is formed so as not to deviate from the edge of the arc.
  • the optical device 100 according to the first embodiment of the present invention can be used in the backlight unit and the liquid crystal display device.
  • the plurality of convex parts 120 may be formed on the upper surface of the base film 110.
  • the convex portion 120 diffuses the incident light.
  • the luminance is evened over the entire screen of the liquid crystal display, and the first microscopic optical pattern 130 collects the incident light and emits the light almost vertically to increase the brightness and the viewing angle of the screen.
  • the size, density, radius of curvature of the acid, etc. of the first microscopic optical pattern 120 may be appropriately adjusted in consideration of luminance characteristics of the front and side surfaces of the liquid crystal display.
  • the embodiment of the present invention is not limited to the above structure, and a plurality of convex portions 120 and the first microscopic optical patterns 130 may be simultaneously formed on the upper and lower surfaces of the base film 110.
  • the light condensed and diffused by the first microscopic optical pattern 130 on the lower surface is transmitted again by the convex portion 120 and the first microscopic optical pattern 130 on the upper surface after passing through the base film 110.
  • diffuse As described above, when the optical device 100 according to the first exemplary embodiment of the present invention is applied to the backlight unit of the liquid crystal display device, the optical device 100 may be applied not only to the structure shown in the drawing but also to the vertically symmetrical structure.
  • the optical device 100 according to the first exemplary embodiment of the present invention may be used as a diffusion plate in a backlight unit of a liquid crystal display.
  • the base film 110 may use a PET film.
  • optical device 7 is a modified example of the optical device according to the first embodiment of the present invention.
  • the peaks 131 of the first microscopic optical patterns 130 formed on some or all of the convex portions 120 may have first peaks having different heights. 131a and the second acid 131b.
  • the light collecting efficiency may be higher than that of the first microscopic optical pattern 130 having the peaks 131 having the same height. Accordingly, light can be efficiently supplied to the liquid crystal display.
  • FIG. 8 is a schematic perspective view of an optical device according to a second exemplary embodiment of the present invention.
  • the optical device 200 includes a base film 210 having light transmittance, a plurality of convex parts 220 formed on one surface of the base film 210, and convex parts.
  • a plurality of the mountains 241 and the valleys 242 on the other surface of the first micro-optic pattern 230 and the base film 210 formed with a plurality of mountains 231 and the valleys 232 in a portion on the 220 ) Is configured to include a second micro-optical pattern 240 formed continuously.
  • the base film 210 according to the present invention is a material for transmitting incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
  • PC Polycarbonate
  • PET Polyyester
  • PE Polyethylene
  • PP Polypropylene
  • PMMA Polymethly Methacrylate
  • a plurality of convex portions 220 are formed on one surface of the base film 210.
  • the cross section from the upper portion 220 may have a cross section of various shapes such as oval, circular, square, triangular, rhombus.
  • a first microscopic optical pattern 230 is formed on a portion of each convex portion 220, and the first microscopic optical pattern 230 includes a plurality of peaks 231 and valleys 232. In this case, the first microscopic optical pattern 230 is preferably formed in the center portion on the convex portion 220.
  • the convex portion 220 diffuses the light incident on the base film 210 to the upper liquid crystal panel (not shown), and emits the light.
  • the first micro-optic pattern 230 receives the light incident on the base film 210. The light is condensed to be substantially perpendicular to the upper liquid crystal panel so that the light is emitted.
  • the base film 210, the convex portion 220, and the first microscopic optical pattern 230 according to the second embodiment of the present invention are the base film 110 according to the first embodiment of the present invention described with reference to FIGS. 2 to 4. Since the constitution and operation are the same as those of the convex portion 120 and the first microscopic optical pattern 130, the repeated description thereof will be omitted.
  • the second microscopic optical pattern 240 is formed on the other surface on which the convex portion 220 is formed in the base film 210.
  • the second microscopic optical pattern 240 is preferably a prism pattern in which a plurality of peaks 241 and valleys 242 are continuously formed. That is, for example, the second microscopic optical patterns 240 are arranged in a substantially triangular shape along the longitudinal direction of the base film 210 so that the plurality of mountains 241 and the valleys 242 are continuously arranged adjacent to each other. It may be made of a prism pattern.
  • the second microscopic optical pattern 240 performs a function of condensing and / or diffusing the light incident from the bottom to emit the light upward. This serves to improve the luminance over the entire visible surface of the upper liquid crystal panel (not shown).
  • Each prism constituting the second microscopic optical pattern 240 has a cross section of any one of a triangular shape, an arc shape, and a polygonal shape when projecting the cross section.
  • FIG. 9 is a cross-sectional view taken along the line C-C in FIG.
  • the first microscopic optical pattern 230 and the second microscopic optical pattern 240 according to the second embodiment of the present invention preferably have a triangular cross section when projecting the cross section.
  • it may have an arc-shaped or trapezoidal cross section. Since the first micro-optic pattern 230 is formed on a portion of the convex portion 220, the remaining portion 221 of the convex portion 220 in which the first micro-optic pattern 230 is not formed is preferably curved at a constant curvature. Forming-arc-drawing, and the light incident by this portion 221 is diffused to the periphery.
  • each of the mountains 231 and 241 of the first microscopic optical pattern 230 and the second microscopic optical pattern 240 is formed in parallel with each other. It can be expected to prevent moire because it is arranged to cross each other while forming an inclination angle.
  • the predetermined inclination angle includes a concept in which the peaks 231 and 241 are arranged orthogonally, and the predetermined inclination angle is preferably 45 ° to 90 °.
  • the mountains 231 of the first microscopic optical patterns 220 are preferably arranged up and down in the liquid crystal display device.
  • the optical device 200 may be applied to a backlight unit and a liquid crystal display device.
  • the convex portion 220 and the first microscopic optical pattern 230 are preferably formed on the lower surface of the base film 210, and the second microscopic optical pattern 240 is formed on the upper surface. Accordingly, when incident light generated by the lower light source (not shown) is incident on the convex portion 220 and the first micro-optic pattern 230 on the lower surface, the incident light is condensed and diffused and emitted to the base film 210. When the light penetrates the base film 210 and is incident on the second microscopic optical pattern 240, the incident light is focused and emitted upward.
  • the size, density, and radius of curvature of the first microscopic optical pattern 220 may be appropriately adjusted in consideration of luminance characteristics of the front and side surfaces thereof.
  • the embodiment of the present invention is not limited to the above structure, and a plurality of convex portions 220 and the first microscopic optical patterns 230 are formed on the upper surface of the base film 210, and the second microscopic optical patterns ( 240 may be formed.
  • incident light incident from the lower portion is collected by the second microscopic optical pattern 240 and is emitted to the base film 210, and the light emitted through the base film 210 is again the convex portion 220 and the first portion. Diffuse and condensed by the micro-optic pattern 230 is emitted. Through such light diffusion, a wide viewing angle at the side can be secured.
  • the optical device 200 according to the second exemplary embodiment of the present invention may be used as a conventional prism sheet in the backlight unit of the liquid crystal display.
  • the base film 210 may use a PET film.
  • FIG. 10 to 12 schematically illustrate a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
  • the liquid crystal display device 800 includes a backlight unit A and a panel unit B.
  • incident light incident from the light guide plate 820, the diffusion plate 830, and the diffusion plate 830 diffuses and emits the light incident from the light source 810 and the light reflected from the reflector 811.
  • an absorption polarizing film 870 that transmits linearly polarized light among the light passing through the phase delay layer 860, transmits 50% of the circularly polarized light, and absorbs the rest, and a liquid crystal panel 880 that displays a screen. It is configured to include.
  • the diffuser plate 830 or the prism sheet 840 is implemented using an optical device according to embodiments of the present disclosure, at least one surface (eg, lower portion) of the diffuser plate 830 and the prism sheet 840 is implemented. Planes) are formed with a plurality of convex portions 831, 843a and 843b having microscopic optical patterns, respectively, to condense and diffuse light.
  • the prism sheet 840 may have a structure in which the upper prism sheet 842 is stacked on the lower prism sheet 841.
  • the optical device may be implemented in various forms in the backlight unit, and in particular, by condensing and diffusing incident light in the micro-optical pattern, it is possible to secure a wide viewing angle at the side while maintaining the luminance characteristic to the maximum.
  • 11 and 12 illustrate another example in which the optical devices 830 and 840 according to the exemplary embodiment of the present invention are applied to the liquid crystal display.
  • a plurality of convex portions 832 having a micro optical pattern are formed on an upper surface of the light transmissive base film 831, and may be used as, for example, a diffusion plate.
  • the optical device 830 of the present invention may be used as a diffusion plate by forming a plurality of convex portions 832 having fine optical patterns formed on both surfaces, that is, on an upper surface and a lower surface of the transparent base film 831. .
  • the convex portions formed on the upper and lower surfaces of the base film 831 may be arranged to form a predetermined inclination angle.
  • another optical element 840 has a plurality of convex portions 842 having a first microscopic optical pattern formed on an upper surface of the base film 841, and a second microscopic optical pattern having a mountain and a valley formed on the lower surface thereof. 843 can be formed and used as a prism sheet.
  • the optical device may be implemented in various forms in the backlight unit.
  • FIG. 13 and 14 are perspective views of an optical device according to a third exemplary embodiment of the present invention.
  • the optical device 300 includes a base film 310 having light transmittance and a plurality of third micro-optics formed on at least one surface of the base film 310. It is configured to include a pattern (320).
  • the base film 310 according to the present invention is a material for transmitting incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
  • PC Polycarbonate
  • PET Polyyester
  • PE Polyethylene
  • PP Polypropylene
  • PMMA Polymethly Methacrylate
  • the plurality of third microscopic optical patterns 320 according to the present invention are formed on at least one surface of the base film 310 to have a peak 321 of a predetermined height and condense and diffuse light incident on the base film 310. .
  • the third microscopic optical patterns 320 may be integrally formed on at least one surface of the base film 310.
  • the plurality of third microscopic optical patterns 320 according to the present invention may be formed in a shape having a long axis and a short axis, that is, an elliptical shape 322 or a leaf shape in the plane projection from the top.
  • each of the third microscopic optical patterns 320 according to the present invention has an oval shape 322 in contact with at least one surface of the base film 310.
  • the peak 321 of the third microscopic optical pattern 320 is lowered from the center to both ends thereof along the long axis of the elliptical shape 322. More preferably, the peak 321 of the third microscopic optical pattern is curved with a constant radius of curvature along the long axis of the elliptical shape 322.
  • the length of the long axis 21 in this elliptical shape is preferably 1 ⁇ 5000 ⁇ m
  • the length of the short axis 22 is preferably 1 ⁇ 100 ⁇ m.
  • the length ratio of the short axis and the long axis of the elliptical phase is preferably greater than 1: 1 and 1: 50000 or less. Even more preferably, it is 1: 1000 or less.
  • the distance between the third microscopic optical patterns is preferably 1 to 5000 ⁇ m.
  • the length ratio of the long axis to the short axis, the distance between the third microscopic optical patterns, the height of each mountain, the repetition and distribution of the patterns may be determined according to the light condensing and diffusion efficiency of the incident light. It can be determined by the brightness at the side of the device.
  • the plurality of third microscopic optical patterns according to the present invention may be arranged at regular intervals from each other.
  • the plurality of third microscopic optical patterns may be arranged in a matrix form arranged vertically and horizontally.
  • the plurality of third microscopic optical patterns may be arranged to cross each other.
  • FIG. 15 is a sectional view and a perspective view of F-F of FIG. 2, and FIG. 16 is a sectional view of G-G of FIG. 13.
  • the third microscopic optical pattern according to the third exemplary embodiment of the present invention has a triangular cross section protruding substantially to the top surface of the base film 310 when the single-sided projection is performed.
  • the triangular center portion 321a becomes part of the mountain 321 in the third microscopic optical pattern.
  • the line (A, B) of the side portion from the central portion 321a to the surface 322a of the base film 310 along the short axis 22 of the elliptical shape 322 is preferably curved. This is because when the side line lines A and B are curved, not only the incident light is focused but also diffused to the side surface.
  • the present invention is not limited thereto and may be implemented in the form of a straight line.
  • the third microscopic optical pattern may implement not only the concentration of incident light but also a diffusion function to the side surface.
  • the peak 321 has a predetermined height along the long axis 21 of the elliptical shape 322. At this time, the height of the mountain 321 is preferably changed along the long axis 21 of the elliptical shape (322). This is described in detail in FIG. 16.
  • the cross-section of the third microscopic optical pattern is illustrated as being formed in a triangular shape in the drawing, the present invention is not limited thereto and may be implemented in various shapes such as an equilateral triangle, an isosceles triangle, an arc, a ladder, and a rectangle.
  • the peaks 321 of the third microscopic optical patterns are arranged up and down in order to increase the luminance at the side parts of the liquid crystal display to secure a wide viewing angle.
  • each of the third microscopic optical patterns according to the third exemplary embodiment of the present invention may include the third microscopic optical fibers along the long axis 21 of the elliptical shape 322, which is a part in contact with at least one surface of the base film 310.
  • the height of the pattern 321 is lowered from the central portion 321a toward both ends 321b.
  • the height of the mountain 321 is the highest in the center portion 321a of the third micro-optic pattern and the height is lowered toward both ends 321b.
  • the peak 321 of the third microscopic optical pattern is curved with a constant radius of curvature along the long axis 21 of the elliptical shape 322.
  • the height of the mountain 321 in the center portion 321a is preferably 0.2 ⁇ 200 ⁇ m.
  • the processing becomes difficult and the light collection efficiency is lowered, so that it cannot have a significant value.
  • the present invention is not limited to this structure.
  • the center 321a to both ends 321a may be curved in different radii of curvature and may be implemented in a straight line.
  • the shapes of the mountains 321 extending from the central portion 321a to the both ends 321b along the long axis 21 in the central portion 321a are preferably symmetrical with each other. Is preferably curved with a constant radius of curvature.
  • the optical device 300 according to the third embodiment of the present invention can be used in the backlight unit and the liquid crystal display device.
  • the third microscopic optical pattern is preferably formed on the upper surface of the base film 310.
  • the size, density, radius of curvature of the acid, repetition pattern, density, etc. of the third microscopic optical pattern may be appropriately adjusted in consideration of luminance characteristics of the front and side surfaces of the liquid crystal display.
  • the embodiment of the present invention is not limited to the above structure, and the third microscopic optical patterns may be simultaneously formed on the upper and lower surfaces of the base film 310.
  • the light condensed and diffused by the third microscopic optical pattern on the lower surface is collected and diffused again by the third microscopic optical pattern on the upper surface after passing through the base film 310.
  • the optical device 300 according to the embodiment is applied to the backlight unit of the liquid crystal display device, the optical device 300 may be applied not only to the structure shown in the drawing but also to the vertically symmetrical structure.
  • the optical device 100 according to the third exemplary embodiment of the present invention may be used as a diffusion plate in a backlight unit of a liquid crystal display.
  • the base film 310 may use a PET film.
  • FIG. 17 is a schematic perspective view of an optical device according to a fourth embodiment of the present invention.
  • the optical device 400 may include a base film 410 having light transmission and a third microscopic optical pattern 420 formed on one surface of the base film 410. And a fourth microscopic optical pattern 430 formed on the other surface of the base film 422.
  • the base film 410 according to the present invention is a material that transmits incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
  • PC Polycarbonate
  • PET Polyyester
  • PE Polyethylene
  • PP Polypropylene
  • PMMA Polymethly Methacrylate
  • the plurality of third microscopic optical patterns 420 according to the present invention are formed on one surface of the base film 410 so as to have a peak 421 having a predetermined height and condense and diffuse light incident on the base film 410.
  • the third microscopic optical patterns 420 may be integrally formed on one surface of the base film 410.
  • the base film 410 and the third microscopic optical pattern 420 according to the fourth embodiment of the present invention are the base film 310 and the third microscopic optical according to the third embodiment of the present invention described with reference to FIGS. 2 to 16. Since the configuration and operation are the same as the pattern, duplicate description thereof will be omitted.
  • the fourth microscopic optical patterns 430 are formed on the opposite side of one surface of the base film 410 where the third microscopic optical patterns 420 are formed.
  • the fourth microscopic optical pattern 430 is preferably a prism pattern in which a plurality of mountains 431 and valleys 432 are formed in succession. That is, for example, the fourth microscopic optical patterns 430 are arranged in a substantially triangular shape continuously along the longitudinal direction of the base film 410 so that the plurality of mountains 431 and the valleys 432 are adjacent to each other. It may be made of a prism pattern.
  • the fourth microscopic optical pattern 430 collects the light incident from the bottom to emit the light to the top.
  • Each prism constituting the fourth microscopic optical pattern 430 has a cross section of any one of a triangular shape, an arc shape, and a polygonal shape when projecting the cross section.
  • FIG. 18 is a perspective view illustrating H-H of FIG. 17.
  • the third microscopic optical pattern 420 and the fourth microscopic optical pattern 430 according to the fourth exemplary embodiment of the present invention have a substantially triangular cross section when projecting the cross section.
  • the lines A and B extending from the peak 411 to the elliptical shape 422 in the triangular cross section are preferably curved, and the fourth microscopic optical pattern 430.
  • the line from the mountain 431 to the valley 432 is preferably a straight line.
  • each of the mountains 421 and 431 of the third micro-optic pattern 420 and the fourth micro-optic pattern 430 is formed in parallel, but as another example, the mountains 421 and 431 may be formed to cross each other. have.
  • the mountains 421 of the third microscopic optical patterns 420 are preferably arranged up and down in the liquid crystal display device.
  • the optical device 400 according to the fourth embodiment of the present invention may be applied to a backlight unit and a liquid crystal display device.
  • the third microscopic optical pattern 420 may be formed on the lower surface of the base film 410
  • the fourth microscopic optical pattern 430 may be formed on the upper surface.
  • the embodiment of the present invention is not limited to the above structure, and the third microscopic optical pattern 420 may be formed on the upper surface of the base film 410, and the fourth microscopic optical pattern 430 may be formed on the lower surface of the substrate.
  • incident light incident from the lower portion is collected by the fourth microscopic optical pattern 430 and is emitted to the base film 410, and the light emitted through the base film 410 is again returned to the third microscopic optical pattern 420. Condensation and diffusion occur. Through the diffusion of light, a wide viewing angle at the side can be secured.
  • the optical device 400 according to the fourth exemplary embodiment of the present invention may be used as a prism sheet in a backlight unit of a liquid crystal display.
  • the base film 410 may use a PET film.
  • 19 and 20 illustrate simulation results for comparing a path of light emitted from a conventional optical device and an optical device according to the present invention.
  • Figure 19 (a) is a simulation result showing the path of light in the side of the conventional optical device
  • Figure 19 (b) is a simulation result showing the path of light in the side of the optical device according to an embodiment of the present invention.
  • the conventional optical element has a straight side cross-section is formed almost no light diffusion or condensing power
  • the optical element of the present invention is formed so that the side cross-section is curved in the form of a lens, that is, a constant curvature of the light It can be seen that this occurs.
  • Figure 20 (a) is a simulation result showing the path of the light in a perspective view of a conventional optical device
  • Figure 20 (b) is a simulation result showing the path of light in a perspective view of an optical device according to an embodiment of the present invention.
  • the conventional optical device only the light collecting power is generated in the triangular prism, and in the case of the optical device of the present invention, not only the light collecting power but also the diffusing power to the side surface are generated.
  • the optical device of the present invention can be realized that the light converging upward and the diffusion to the side are also implemented, thereby ensuring a wide viewing angle in the liquid crystal display device.
  • FIG. 21 is a schematic view of a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
  • the liquid crystal display device 700 includes a backlight unit A and a panel unit B.
  • incident light incident from the light guide plate 720, the diffusion plate 730, and the diffusion plate 730 diffuses and exits the light incident from the light source 710 and the light reflected from the reflective plate 711.
  • an absorption polarizing film 770 that transmits linearly polarized light among the light passing through the phase delay layer 760, transmits 50% of the circularly polarized light, and absorbs the rest, and a liquid crystal panel 780 that displays a screen. It is configured to include.
  • the diffuser plate 730 or the prism sheet 740 when the diffuser plate 730 or the prism sheet 740 is implemented using an optical device according to embodiments of the present disclosure, at least one surface (eg, lower portion) of the diffuser plate 730 and the prism sheet 740 may be implemented.
  • a plurality of micro-optic patterns 731, 743a, and 743b are formed on each surface to condense and diffuse light.
  • the prism sheet 740 may have a structure in which the upper prism sheet 742 is stacked on the lower prism sheet 741.
  • FIG. 21 illustrates an example of a liquid crystal display.
  • the diffusion plate 730 and the prism sheet 740 may be implemented in various ways.
  • the diffusion plate 730 and the prism sheet 740 may have a plurality of micro optical patterns 731, 743a, and 743b formed on the top or both sides of the base film, respectively, to condense and diffuse light. have.
  • the optical device may be implemented in various forms in the backlight unit, and in particular, by condensing and diffusing incident light in the micro-optical pattern, it is possible to secure a wide viewing angle at the side while maintaining the luminance characteristic to the maximum.
  • LCD liquid crystal display
  • the optical device used in the liquid crystal display according to the present invention can contribute to the improvement of product quality because the light condensing function can be improved and the wide viewing angle can be realized at low cost while maintaining high brightness characteristics. For this reason, the optical device of the present invention is considered to be widely used in the display device in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The present invention relates to an optical device which maintains luminance characteristics at a maximum level, improves light-collecting effects, and enables a wide viewing angle, and to a backlight unit and a liquid crystal display comprising the same. To this end, one embodiment of the optical device of the present invention includes: a base film having a light transmittance; a plurality of iron portions formed on at least one surface of the base film; and a fine optical pattern containing a plurality of apexes and recesses continuously formed on parts of the iron portions. In the meantime, another embodiment of the optical device of the present invention includes a base film having a light transmittance, and a plurality of third fine optical patterns formed on at least one surface of the base film, wherein each of the third fine optical patterns has a portion contacting the surface of the base film, formed into a figure with a longer axis and a shorter axis, and wherein each of third fine optical patterns has an apex with a height that becomes lower as the latter goes from the center towards both ends thereof according to the direction of the longer axis of the figure.

Description

광학소자, 이를 포함하는 백라이트 유닛 및 액정표시장치Optical element, backlight unit and liquid crystal display including same
본 발명은 액정표시장치(LCD)에 사용되는 광학소자에 관한 것으로서, 특히 액정표시장치에서 고휘도 특성을 최대한 유지하면서 집광 효과를 높이고 넓은 시야각을 갖도록 하는 광학소자와, 이를 포함하는 백라이트 유닛 및 액정표시장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element used in a liquid crystal display (LCD), and in particular, an optical element for enhancing a condensing effect and having a wide viewing angle while maintaining high brightness characteristics in a liquid crystal display device, a backlight unit and a liquid crystal display including the same. Relates to a device.
일반적으로 액정표시장치(LCD:Liquid Crystal Display)에서 널리 사용되는 광학소자로는 도광판, 확산판, 프리즘시트, 액정패널 등이 있다. 이러한 광학소자들은 액정표시장치의 광확산, 집광, 휘도개선 등을 위하여 통상적으로 사용되고 있다. 예를 들어, 액정표시장치에 사용되는 백라이트 유닛에서는 광원으로부터 입사된 광선이 도광판을 통해 면광원으로 전환된 후 확산판에 의해 확산되어 프리즘시트의 하방에 입사된다. 이때 프리즘시트는 입사된 광을 광출사면에서 집광함으로써 액정표시장치의 휘도를 향상시킬 수 있다.In general, optical devices widely used in liquid crystal displays (LCDs) include light guide plates, diffuser plates, prism sheets, and liquid crystal panels. Such optical elements are commonly used for light diffusion, condensation, and luminance improvement of liquid crystal displays. For example, in a backlight unit used in a liquid crystal display, light rays incident from a light source are converted into a surface light source through a light guide plate, and then diffused by a diffuser plate and are incident below the prism sheet. In this case, the prism sheet may focus the incident light on the light exit surface to improve the brightness of the liquid crystal display.
도 1은 종래의 일반적인 액정표시장치의 개략적인 단면도이다.1 is a schematic cross-sectional view of a conventional general liquid crystal display device.
도 1에 도시된 바와 같이, 액정표시장치(10)는 크게 백라이트 유닛(A)과 패널 유닛(B)으로 구성된다. 백라이트 유닛(A)은 광원(10)으로부터 입사된 광선을 확산 출사시키는 도광판(12)과 확산판(13), 확산판(13)으로부터 입사되는 광을 집광시켜 출사시키는 하나 이상의 프리즘시트(14), 프리즘시트(14)로부터 입사되는 광을 선택 반사시키는 반사편광막(15) 및 반사편광막(15)을 투과한 원편광을 선편광으로 전환시키는 위상지연층(16)을 포함하여 구성된다. 패널 유닛(B)은 백라이트 유닛(A)으로부터 출사되는 광 중에서 선편광은 투과시키며 원편광은 50%를 투과시키고 나머지는 흡수하는 흡수형 편광막(17) 및 시각적으로 화면을 표시하는 액정패널(18)을 포함하여 구성된다. 미설명된 도면부호 11은 반사판이다.As shown in FIG. 1, the liquid crystal display device 10 is largely composed of a backlight unit A and a panel unit B. FIG. The backlight unit A includes a light guide plate 12 that diffuses and emits light incident from the light source 10, and one or more prism sheets 14 that collect and emit light incident from the diffuser plate 13 and the diffusion plate 13. And a phase delay layer 16 for converting circularly polarized light transmitted through the reflective polarization film 15 into linearly polarized light, and a reflective polarizing film 15 for selectively reflecting light incident from the prism sheet 14. The panel unit (B) transmits linearly polarized light among the light emitted from the backlight unit (A) and absorbs 50% of the circularly polarized light and absorbs the rest, and a liquid crystal panel (18) for visually displaying a screen. It is configured to include). Unexplained reference numeral 11 is a reflector.
이러한 액정표시장치에 사용되는 각종 광학소자의 경우 고휘도를 위한 집광기능의 향상에 대한 기술개발이 중점적으로 이루어졌다. 이는 LCD 장치가 모바일, 노트북 컴퓨터 등 개인용 전자기기에 주로 사용되기 때문이다. 따라서 이러한 개인용 전자기기의 경우 시야각은 큰 문제로 대두되지 않았다. 그런데, 최근 들어 LCD TV가 대형화되고 가격 인하로 대중화되면서 여러 시청자가 동시에 시청할 수 있고, 특히 차량의 네비게이션 장치는 운전석과 보조석에서 동시에 확인할 수 있도록 넓은 시야각이 요구되고 있다.In the case of various optical elements used in such a liquid crystal display device, the development of technology for improving the light condensing function for high brightness has been made. This is because LCD devices are mainly used for personal electronic devices such as mobile and notebook computers. Therefore, the viewing angle of such a personal electronic device is not a big problem. However, in recent years, as LCD TVs have become larger and more popular due to price reductions, multiple viewers can watch them at the same time. In particular, a wide viewing angle is required so that a navigation device of a vehicle can be simultaneously checked in a driver's seat and an auxiliary seat.
이에 따라, 종래에는 광시야각을 갖는 광학소자로서 확산시트를 여러 장 적층하여 사용하는 방법과 반사 편광 필름을 사용하는 방법이 있다. 전자의 확산시트를 여러 장 사용하는 방법은 휘도 상승에 한계가 있으며 여러 장 적층함으로써 제품두께가 두꺼워지는 단점이 있으며, 후자의 반사 편광 필름을 사용하는 방법은 반사 편광 필름이 아직까지 시장 독점적 상품이라 그 가격이 비싸 제품의 경쟁력을 떨어뜨리는 문제점이 있다.Accordingly, conventionally, there are a method of laminating a plurality of diffusion sheets and using a reflective polarizing film as an optical element having a wide viewing angle. The method of using several sheets of the former diffuser has a limitation in increasing the brightness, and the thickness of the product is increased by stacking several sheets. The method of using the latter reflective polarizing film is still a market exclusive product. The price is expensive, there is a problem that reduces the competitiveness of the product.
따라서, 해당 기술분야에서는 액정표시장치에서 넓은 시야각을 갖도록 하는 광학소자에 대한 기술개발이 계속 요구되어 오고 있다.Accordingly, there is a continuous demand for technical development of an optical device having a wide viewing angle in a liquid crystal display device.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 액정표시장치에서 고휘도 특성을 최대한 유지하면서 슬림하면서도 저렴한 비용으로 집광 효과를 높이고 넓은 시야각을 갖도록 하는 광학소자를 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, an object of the present invention is to provide an optical device that has a high viewing efficiency and a wide viewing angle at a slim yet low cost while maintaining high brightness characteristics in a liquid crystal display device. .
또한, 본 발명은 이러한 광학소자를 포함하는 백라이트 유닛 및 액정표시장치를 제공하는데 다른 목적이 있다.Another object of the present invention is to provide a backlight unit and a liquid crystal display device including the optical device.
상기 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 광학소자는,Optical device according to an embodiment of the present invention for achieving the above object,
광 투과성을 갖는 베이스 필름; 상기 베이스 필름의 적어도 일면에 형성되어 입사광을 확산시키는 다수의 철부; 및 상기 철부 상에 형성되어 입사광을 집광하여 출사시키는 제1 미세광학패턴;을 포함하는 것이다.A base film having light transmittance; A plurality of convex portions formed on at least one surface of the base film to diffuse incident light; And a first microscopic optical pattern formed on the convex portion to collect and emit incident light.
여기서, 상기 제1 미세광학패턴은 철부 상의 일부에 산과 골이 연속적으로 형성된다.Here, in the first microscopic optical pattern, a peak and a valley are continuously formed on a portion of the convex portion.
본 발명의 실시 예에서, 상기 베이스 필름의 다른 일면에 형성되어 입사광을 집광 또는/및 확산시키는 제2 미세광학패턴을 더 포함할 수 있으며, 상기 제2 미세광학패턴은 산과 골이 연속적으로 형성된다.In an embodiment of the present invention, the base film may further include a second micro-optic pattern formed on the other surface of the base film to collect or / and diffuse incident light, wherein the second micro-optic pattern is formed of a mountain and a valley continuously. .
본 발명의 실시 예에서, 상기 제1 미세광학패턴 및 제2 미세광학패턴은 각각의 산과 골이 서로 평행하게 배열될 수 있다.In an embodiment of the present invention, each of the first and second microscopic optical patterns may have a peak and a valley arranged in parallel with each other.
본 발명의 실시 예에서, 상기 제1 미세광학패턴 및 제2 미세광학패턴은 각각의 산과 골이 소정의 경사각을 이루면서 배열될 수 있다.In an embodiment of the present disclosure, the first microscopic optical pattern and the second microscopic optical pattern may be arranged with each hill and valley having a predetermined inclination angle.
본 발명의 실시 예에서, 상기 철부의 지름은 50~100㎛로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the diameter of the convex portion is preferably made of 50 ~ 100㎛.
본 발명의 실시 예에서, 상기 철부는 장축과 단축을 갖는 도형으로 형성되며, 장축의 길이는 50~100㎛로 이루어지고 단축의 길이는 1~100㎛로 이루어질 수 있다.In an embodiment of the present invention, the convex portion is formed in a figure having a long axis and a short axis, the length of the long axis may be made of 50 ~ 100㎛ and the length of the short axis may be made of 1 ~ 100㎛.
본 발명의 실시 예에서, 상기 철부의 높이는 10~40㎛로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the height of the convex portion is preferably made of 10 ~ 40㎛.
본 발명의 실시 예에서, 상기 철부 간의 거리는 50~150㎛로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the distance between the convex portions is preferably made of 50 ~ 150㎛.
본 발명의 실시 예에서, 상기 다수의 철부 중 적어도 일부는 그 높이가 상이할 수 있다.In an embodiment of the present disclosure, at least some of the plurality of convex portions may have different heights.
본 발명의 실시 예에서, 상기 제1 미세광학패턴의 산의 높이는 5~30㎛로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the height of the acid of the first microscopic optical pattern is preferably made of 5 ~ 30㎛.
본 발명의 실시 예에서, 상기 제1 미세광학패턴의 산의 폭은 10~30㎛로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the width of the acid of the first microscopic optical pattern is preferably made of 10 ~ 30㎛.
본 발명의 실시 예에서, 상기 제1 미세광학패턴은 산의 높이가 서로 다르게 형성될 수 있다.In an embodiment of the present invention, the height of the first microscopic optical pattern may be formed different from each other.
본 발명의 실시 예에서, 상기 제1 미세광학패턴은 상기 각 철부의 중앙부에 형성될 수 있다.In an embodiment of the present disclosure, the first microscopic optical pattern may be formed at the center portion of each convex portion.
본 발명의 실시 예에서, 상기 철부 중 상기 제1 미세광학패턴이 형성되지 않은 나머지 부분은, 일정한 곡률로 만곡된 형상으로 이루어질 수 있다.In an embodiment of the present disclosure, the remaining portion of the convex portion in which the first microscopic optical pattern is not formed may be formed in a curved shape with a constant curvature.
한편, 상기 목적을 달성하기 위한 본 발명의 다른 실시 예에 따른 광학소자는,On the other hand, an optical device according to another embodiment of the present invention for achieving the above object,
광 투과성을 갖는 베이스 필름; 및 상기 베이스 필름의 적어도 일면에 형성되어 입사광을 집광 및 확산시키는 다수의 제3 미세광학패턴; 을 포함하되, 상기 각 제3 미세광학패턴은 상기 베이스 필름의 표면과 접하는 부분이 장축과 단축을 갖는 도형으로 형성되고, 상기 제3 미세광학패턴에 구비된 산의 높이는 상기 도형의 장축 방향을 따라 그 중심부에서 양단부로 갈수록 낮아지게 형성하는 것이다.A base film having light transmittance; And a plurality of third microscopic optical patterns formed on at least one surface of the base film to condense and diffuse incident light; Each of the third microscopic optical patterns may include a portion having a long axis and a short axis in contact with the surface of the base film, and the height of the mountain provided in the third microscopic optical pattern may be along the long axis direction of the figure. It is formed to be lowered toward both ends from the center.
여기서, 상기 베이스 필름의 일면에는 다수의 제3 미세광학패턴이 형성되고, 상기 베이스 필름의 다른 일면에는 입사광을 집광 또는/및 확산시키도록 제4 미세광학패턴이 형성될 수 있다.Here, a plurality of third microscopic optical patterns may be formed on one surface of the base film, and a fourth microscopic optical pattern may be formed on the other surface of the base film to collect or / or diffuse incident light.
본 발명의 실시 예에서, 상기 제4 미세광학패턴은 산과 골이 연속적으로 형성된다.In an embodiment of the present invention, the fourth micro-optic pattern is formed with a mountain and a valley continuously.
본 발명의 실시 예에서, 상기 제3 미세광학패턴 및 제4 미세광학패턴은 각각의 산이 소정의 경사각을 이루면서 배열될 수 있다.In an embodiment of the present disclosure, the third microscopic optical pattern and the fourth microscopic optical pattern may be arranged while each acid forms a predetermined inclination angle.
본 발명의 실시 예에서, 상기 제3 미세광학패턴의 산은 상기 타원형상의 장축을 따라 일정한 곡률반경으로 만곡되어 이루어질 수 있다.In an embodiment of the present disclosure, the peaks of the third microscopic optical patterns may be curved with a constant radius of curvature along the long axis of the elliptical shape.
본 발명의 실시 예에서, 상기 제3 미세광학패턴의 산의 중심부 높이는 0.2~200㎛로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the height of the center of the mountain of the third microscopic optical pattern is preferably made of 0.2 ~ 200㎛.
본 발명의 실시 예에서, 상기 제3 미세광학패턴을 형성하는 도형의 장축 및 단축의 길이는 각각 1~5000㎛ 및 1~100㎛으로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the lengths of the long axis and the short axis of the figure forming the third microscopic optical pattern are preferably 1 to 5000 µm and 1 to 100 µm, respectively.
본 발명의 실시 예에서, 상기 제3 미세광학패턴 사이의 거리는 1~5000㎛로 이루어지는 것이 바람직하다.In an embodiment of the present invention, the distance between the third microscopic optical patterns is preferably made of 1 ~ 5000㎛.
본 발명의 실시 예에서, 상기 제3 미세광학패턴은 매트릭스 형태로 배열될 수 있다.In an embodiment of the present invention, the third microscopic optical patterns may be arranged in a matrix form.
본 발명의 실시 예에서, 상기 제3 미세광학패턴은 서로 교차로 배열될 수 있다.In an embodiment of the present invention, the third microscopic optical patterns may be arranged to cross each other.
다른 한편, 본 발명은 상기한 실시 예들에 기재된 광학소자를 포함하여 구성된 백라이트 유닛 및 이러한 백라이트 유닛을 포함하여 구성된 액정표시장치를 제공한다.On the other hand, the present invention provides a backlight unit including the optical element described in the above embodiments and a liquid crystal display device including the backlight unit.
본 발명에 의하면 액정표시장치에서 저렴한 비용으로 집광 효과를 높이고 넓은 시야각을 구현할 수 있다.According to the present invention, it is possible to increase the light condensing effect and to realize a wide viewing angle at low cost in the liquid crystal display.
또한, 본 발명에서는 정면에서의 휘도뿐만 아니라 측면에서의 휘도를 향상시켜 액정표시장치의 화면 전체에 걸쳐 고른 휘도를 유지할 수 있다.In addition, in the present invention, the luminance at the side as well as the luminance at the front side can be improved to maintain uniform luminance throughout the entire screen of the liquid crystal display device.
도 1은 종래의 일반적인 액정표시장치의 개략적인 단면도이다.1 is a schematic cross-sectional view of a conventional general liquid crystal display device.
도 2는 본 발명의 제1 실시 예에 따른 광학소자를 나타낸 평면도이다.2 is a plan view illustrating an optical device according to a first exemplary embodiment of the present invention.
도 3은 도 2의 A-A선 단면도.3 is a cross-sectional view taken along the line A-A of FIG.
도 4는 도 3의 요부를 확대 도시한 확대도.Figure 4 is an enlarged view showing the main portion of Figure 3 enlarged.
도 5는 도 2의 B-B선 단면도.5 is a cross-sectional view taken along the line B-B in FIG.
도 6은 본 발명에 의한 제1 미세광학패턴의 다른 실시 예를 도시한 단면도.6 is a cross-sectional view showing another embodiment of the first microscopic optical pattern according to the present invention;
도 7은 본 발명의 제1 실시 예에 따른 광학소자의 변형 예를 도시한 예시도.7 is an exemplary view showing a modification of the optical device according to the first embodiment of the present invention.
도 8은 본 발명의 제2 실시 예에 따른 광학소자의 사시도.8 is a perspective view of an optical device according to a second embodiment of the present invention.
도 9는 도 8의 C-C를 나타낸 사시도이다.9 is a perspective view illustrating C-C of FIG. 8.
도 10 내지 도 12는 본 발명의 일 실시 예에 따른 광학소자를 포함한 액정표시장치의 일부를 개략적으로 도시한 도면이다.10 to 12 schematically illustrate a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
도 13 및 도 14는 본 발명의 제3 실시 예에 따른 광학소자의 개략적인 사시도이다.13 and 14 are schematic perspective views of an optical device according to a third exemplary embodiment of the present invention.
도 15은 도 2의 A-A를 나타낸 단면도 및 사시도이다.FIG. 15 is a cross-sectional view and a perspective view illustrating A-A of FIG. 2.
도 16는 도 2의 B-B를 나타낸 단면도이다. FIG. 16 is a cross-sectional view illustrating B-B of FIG. 2.
도 17는 본 발명의 제4 실시 예에 따른 광학소자의 개략적인 사시도이다.17 is a schematic perspective view of an optical device according to a fourth embodiment of the present invention.
도 18은 도 17의 C-C를 나타낸 사시도이다.18 is a perspective view illustrating C-C of FIG. 17.
도 19 및 도 20은 종래의 광학소자와 본 발명의 광학소자에서의 광의 경로를 시뮬레이션한 결과를 도시한 도면이다.19 and 20 are diagrams showing the results of simulating the path of light in the conventional optical element and the optical element of the present invention.
도 21는 본 발명의 일 실시 예에 따른 광학소자를 포함한 액정표시장치의 일부를 개략적으로 도시한 도면이다.FIG. 21 is a schematic view of a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
이하에서, 본 발명의 바람직한 실시 예의 상세한 설명이 첨부된 도면들을 참조하여 설명할 것이다. 본 발명에 따른 광학소자는 액정표시장치에 통상적으로 사용되는 어떠한 구조에도 본 발명의 기술적 사상이 광범위하게 적용될 수 있다. 따라서 이하에서 기술되는 광학소자는 액정표시장치에 사용되는 소자의 기본적인 구조로서 본 발명을 설명하기 위한 예시로서 제공된다.Hereinafter, a detailed description of a preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the optical device according to the present invention, the technical spirit of the present invention may be widely applied to any structure commonly used in liquid crystal display devices. Therefore, the optical element described below is provided as an example for explaining the present invention as a basic structure of the element used in the liquid crystal display device.
나아가, 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Furthermore, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 2는 본 발명의 제1 실시 예에 따른 광학소자를 나타낸 평면도이다.2 is a plan view illustrating an optical device according to a first exemplary embodiment of the present invention.
도 2를 참조하면, 본 발명의 제1 실시 예에 따른 광학소자(100)는 광 투과성을 갖는 베이스 필름(110), 그 베이스 필름(110)의 적어도 일면에 형성된 다수의 철부(120) 및 그 철부(120) 상의 일부에 복수의 산(131)과 골(132)이 연속적으로 형성된 제1 미세광학패턴(130)을 포함하여 구성된다.Referring to FIG. 2, the optical device 100 according to the first embodiment of the present invention includes a base film 110 having light transmittance, a plurality of convex parts 120 formed on at least one surface of the base film 110, and the The first micro-optic pattern 130 includes a plurality of peaks 131 and valleys 132 formed on a portion of the convex portion 120.
본 발명에 따른 베이스 필름(110)은 입사되는 광을 투과시키는 재료로서, 예컨대, PC(Polycarbonate), PET(Polyester), PE(Polyethylene), PP(Polypropylene), PMMA(Polymethly Methacrylate) 중에서 선택된 하나를 포함한다.The base film 110 according to the present invention is a material that transmits incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
이러한 베이스 필름(110)의 적어도 일면에는 다수의 철부(120)가 형성되어 있다. 철부(120)는 베이스 필름(110)의 일면 전체에 걸쳐서 또는 일부 구간에 규칙적으로 형성되거나, 전체에 걸쳐서 또는 일부 구간에 불규칙적으로 형성되어 뉴톤링(newton rings) 및 웨트아웃(wet-out)의 발생을 방지하게 된다. 그리고 철부는 도 2에 도시된 바와 같이, 베이스 필름(110)의 평면에서 투영 시, 원형, 타원형, 사각형, 삼각형, 마름모 등 다양한 형상의 단면을 가질 수도 있다. 이러한 각각의 철부(120)는 베이스 필름(110)으로 입사된 광을 확산시켜서 광시야각을 유도하게 된다.A plurality of convex portions 120 are formed on at least one surface of the base film 110. The convex portion 120 is regularly formed over one surface of the base film 110 or in some sections, or irregularly over the entire surface or in some sections to form newton rings and wet-outs. It will prevent the occurrence. And the convex portion, as shown in Figure 2, when projecting in the plane of the base film 110 may have a cross-section of various shapes, such as circular, oval, square, triangle, rhombus. Each of the convex portions 120 diffuses the light incident on the base film 110 to induce a wide viewing angle.
각각의 철부(120) 상의 일부에는 복수의 산(131)과 골(132)이 연속으로 이루어진 제1 미세광학패턴(130)이 형성되어 있다. 특히, 제1 미세광학패턴(130)은 철부(120) 상에서 중앙부에 형성되는 것이 바람직하다. 이러한 각각의 제1 미세광학패턴(130)은 베이스 필름(110)으로 입사된 광이 상부의 액정패널(미도시)에 실질적으로 수직이 되도록 집광하여 출사시키는 기능을 한다.A portion of each convex portion 120 has a first micro-optic pattern 130 formed of a plurality of peaks 131 and valleys 132 in a row. In particular, the first microscopic optical pattern 130 is preferably formed at the center portion on the convex portion 120. Each of the first microscopic optical patterns 130 functions to condense and emit light such that light incident on the base film 110 is substantially perpendicular to an upper liquid crystal panel (not shown).
도 3은 도 2의 A-A선 단면도, 도 4는 도 3의 요부를 확대 도시한 확대도, 도 5는 도 2의 B-B선 단면도, 도 6은 본 발명에 의한 제1 미세광학패턴의 다른 실시예를 도시한 단면도이다.FIG. 3 is a cross-sectional view taken along line AA of FIG. 2, FIG. 4 is an enlarged view showing main parts of FIG. 3, FIG. 5 is a cross-sectional view taken along line BB of FIG. 2, and FIG. 6 is another embodiment of the first microscopic optical pattern according to the present invention. It is a cross-sectional view.
도 3을 참조하면, 본 발명의 제1 실시 예에 따른 광학소자(100)의 철부(120)는 소정의 곡률을 갖는 돌출된 형상으로서, 예컨대 반구형으로 형성되어 베이스 필름(110) 상에 돌출되는 것이 바람직하다. 다시 말하면, 철부(120)는 베이스 필름(110)의 측면에서 투영 시(도 3 참조) 반원 또는 반타원 형상을 갖는 것이 바람직하다. 제1 미세광학패턴(130)은 복수의 산(131)과 골(132)이 연속으로 이루어져 철부(120) 상의 일부에 형성되며, 바람직하게는 철부(120)의 중앙부에 형성된다. 따라서, 제1 미세광학패턴(130)이 형성되지 않은 철부(120)의 나머지 부분, 즉 도 3a에 도시된 측면부(121)는 일정한 곡률로 만곡된 형상을 그대로 유지하게 된다. 이로써, 도 4에 도시된 바와 같이, 하부로부터 입사된 입사광은 제1 미세광학패턴(120)에 의해 집광되어 상부로 수직으로 출사되며(N방향), 철부(120)의 측면부(121)에 의해 확산되어 출사됨으로써(R방향), 액정표시장치의 측면 휘도를 향상시키게 된다. 이에 따라 시야각을 충분히 확보할 뿐만 아니라, 더 나아가서는 백라이트 유닛에서 확산필름의 기능을 병행하게 된다.Referring to FIG. 3, the convex portion 120 of the optical device 100 according to the first embodiment of the present invention is a protruding shape having a predetermined curvature, for example, is formed in a hemispherical shape and protrudes on the base film 110. It is preferable. In other words, the convex portion 120 preferably has a semi-circle or semi-ellipse shape when projected from the side of the base film 110 (see FIG. 3). The first microscopic optical patterns 130 are formed on a portion of the convex portion 120 by forming a plurality of peaks 131 and valleys 132 in a row, and are preferably formed at the center of the convex portion 120. Therefore, the remaining portion of the convex portion 120 in which the first microscopic optical pattern 130 is not formed, that is, the side portion 121 shown in FIG. 3A, maintains a curved shape with a constant curvature. As a result, as shown in FIG. 4, incident light incident from the lower portion is collected by the first micro-optic pattern 120 and is emitted vertically upwards (N direction), by the side portion 121 of the convex portion 120. By being diffused out (R direction), the side luminance of the liquid crystal display device is improved. As a result, not only the viewing angle is sufficiently secured, but also the function of the diffusion film in the backlight unit is further improved.
도 3에 도시된 바와 같이, 각각의 철부(120) 사이의 거리(A)는 50~150㎛로 형성된 것이 바람직하고, 철부(120)의 지름(B)은 50~100㎛로 형성된 것이 바람직하다. 여기서, 철부(120)는 베이스 필름(110)의 평면 투영 시, 장축과 단축을 갖는 도형으로 형성될 수 있으며, 이때 장축의 길이는 50~100㎛로 이루어지고 단축의 길이는 1~100㎛로 이루어지는 것이 바람직하다. 아울러, 각각의 철부(120)가 타원형상, 사각형상, 마름모형상인 경우에도 장축과 단축 또는 각 대각선의 길이가 50~100㎛로 형성되는 것이 바람직하다. 또한, 각 철부(120)의 높이(C)는 10~40㎛인 것이 바람직하다. 이러한 다수의 철부(120) 중 적어도 일부는 그 크기가 다를 수도 있다. 여기서, 상기 철부(120)의 크기, 높이, 간격 등의 형태는 전체적인 밀도, 휘도, 제작의 용이성 등을 고려하여 결정되는 것이 바람직하다. 예컨대, 철부(120)의 지름 및 높이의 경우 50㎛ 미만이면 그 상부에 제1 미세광학패턴(130)을 형성하기가 어렵고, 100㎛ 초과하면 오히려 전체적인 휘도가 저하된다. 또한 철부(120) 간의 간격은 50㎛ 미만이면 측면 휘도의 특성이 향상되지 않고 150㎛ 초과하면 밀도가 낮아져 휘도 특성이 나쁘게 된다. 그러나 이와 같이 철부(120) 및 제1 미세광학패턴(130)은 바람직한 실시 예이며, 구현되는 제품의 휘도 및 제작특성에 따라 그 수치를 다르게 변경하여 설계할 수 있음은 물론이다.As shown in FIG. 3, the distance A between the respective convex portions 120 is preferably formed to be 50 to 150 μm, and the diameter B of the convex portion 120 is preferably formed to be 50 to 100 μm. . Here, the convex portion 120 may be formed as a figure having a long axis and a short axis in the plane projection of the base film 110, wherein the length of the long axis is 50-100 μm and the length of the short axis is 1-100 μm. It is preferable to make. In addition, even if each of the convex portion 120 is an elliptical shape, a square shape, a rhombus shape, the length of the long axis and short axis or each diagonal is preferably formed to 50 ~ 100㎛. In addition, it is preferable that the height C of each convex part 120 is 10-40 micrometers. At least some of the plurality of convex portions 120 may have different sizes. Here, the size, height, interval, etc. of the convex portion 120 is preferably determined in consideration of the overall density, brightness, ease of manufacture, and the like. For example, when the diameter and height of the convex portion 120 are less than 50 μm, it is difficult to form the first micro-optic pattern 130 thereon. When the diameter and height of the convex part 120 are greater than 100 μm, the overall luminance decreases. In addition, when the interval between the convex portions 120 is less than 50 μm, the characteristics of the side luminance are not improved, and when the thickness is larger than 150 μm, the density is lowered, resulting in poor luminance characteristics. However, as described above, the convex portion 120 and the first microscopic optical pattern 130 are preferred embodiments, and the numerical values thereof may be changed according to the brightness and manufacturing characteristics of the product to be implemented.
나아가, 제1 미세광학패턴(130)의 산(131)의 폭(D)은 10~30㎛인 것이 바람직하고, 그 산(131)의 높이(E)는 5~30㎛인 것이 바람직하다. 여기서, 제1 미세광학패턴(130)의 산(131)의 높이는 철부(120)의 높이보다 작은 것이 바람직하다. 또한, 각 제1 미세광학패턴(130)은 서로 다른 개수의 산과 골을 포함할 수도 있다.Furthermore, the width D of the peak 131 of the first microscopic optical pattern 130 is preferably 10 to 30 μm, and the height E of the peak 131 is preferably 5 to 30 μm. Here, the height of the peak 131 of the first microscopic optical pattern 130 is preferably smaller than the height of the convex portion 120. In addition, each of the first microscopic optical patterns 130 may include a different number of hills and valleys.
아울러, 각각의 산에는 또 다른 미세광학패턴(도시생략)이 형성될 수 있다. 즉, 앞서 언급한 제1 미세광학패턴(130)처럼 산과 골이 연속적 반복되게 형성되어 베이스필름(110)으로 입사되는 입사광에 대한 집광효율을 극대화시키는 것이다.In addition, another micro-optic pattern (not shown) may be formed in each acid. That is, like the aforementioned first microscopic optical pattern 130, the peaks and valleys are formed to be continuously repeated to maximize the light condensing efficiency for the incident light incident on the base film 110.
도 5를 참조하면, 본 발명의 제1 실시 예에 따른 광학소자는, 일례로서 도 5에 도시된 바와 같이, 각 철부(120) 상의 일부에 형성된 제1 미세광학패턴(130)의 산(131)은 원호를 형성하도록 일정한 곡률로 만곡될 수 있다. 즉, 제1 미세광학패턴(130)의 산(131)은 그 중심부에서 양단부로 갈수록 높이가 낮아지도록 형성될 수 있다. 그러나, 본 발명은 이러한 구조에 한정되지 않으며, 다른 일례로서 도 5에 도시된 바와 같이,제1 미세광학패턴(130)의 산(131)은 동일한 높이를 유지할 수도 있다. 다시 말하면, 도 3 및 도 5에 도시된 바와 같이, 실질적으로 삼각형이 어느 일 방향으로 연속적으로 배열된 형상으로 형성될 수 있으며, 이때 제1 미세광학패턴(130)의 산(131)은 도 5에서와 같이 원호의 테두리를 벗어나지 않도록 형성되는 것이 바람직하다.Referring to FIG. 5, the optical device according to the first exemplary embodiment of the present invention includes, as an example, an acid 131 of the first microscopic optical pattern 130 formed on a part of each convex portion 120, as shown in FIG. 5. ) May be curved with a constant curvature to form an arc. That is, the peak 131 of the first microscopic optical pattern 130 may be formed to have a height lower from the center to both ends thereof. However, the present invention is not limited to this structure, and as another example, as illustrated in FIG. 5, the peaks 131 of the first microscopic optical patterns 130 may maintain the same height. In other words, as illustrated in FIGS. 3 and 5, substantially triangles may be formed in a continuous shape in any one direction, in which the peak 131 of the first microscopic optical pattern 130 is illustrated in FIG. 5. As is preferred, it is formed so as not to deviate from the edge of the arc.
한편, 본 발명의 제1 실시 예에 따른 광학소자(100)는 백라이트 유닛 및 액정표시장치에 사용될 수 있다. 이 경우 다수의 철부(120)는 베이스 필름(110)의 상면에 형성되는 것이 바람직하다. 이로써 하부의 광원(미도시)에서 발생된 광이 베이스 필름(110)을 투과하여 다수의 철부(120) 및 제1 미세광학패턴(130)으로 입사되면, 철부(120)는 그 입사광을 확산시켜 액정표시장치의 전 화면에 걸쳐 휘도를 고르게 하고, 제1 미세광학패턴(130)은 그 입사광을 집광하여 거의 수직으로 출사시켜서 화면의 휘도 및 시야각을 증가시키도록 한다. 이로써 본 발명의 경우 액정표시장치에서 휘도를 최대한 유지하면서 화면에서의 넓은 시야각을 구현할 수 있다. 이때, 액정표시장치에서 정면 및 측면에서의 휘도 특성을 고려하여 제1 미세광학패턴(120)의 크기, 밀도, 산의 곡률반경 등을 적절하게 조정할 수 있다.On the other hand, the optical device 100 according to the first embodiment of the present invention can be used in the backlight unit and the liquid crystal display device. In this case, the plurality of convex parts 120 may be formed on the upper surface of the base film 110. As a result, when light generated from a lower light source (not shown) passes through the base film 110 and is incident on the plurality of convex portions 120 and the first microscopic optical patterns 130, the convex portion 120 diffuses the incident light. The luminance is evened over the entire screen of the liquid crystal display, and the first microscopic optical pattern 130 collects the incident light and emits the light almost vertically to increase the brightness and the viewing angle of the screen. Accordingly, in the case of the present invention, a wide viewing angle on the screen can be realized while maintaining the maximum luminance in the liquid crystal display. In this case, the size, density, radius of curvature of the acid, etc. of the first microscopic optical pattern 120 may be appropriately adjusted in consideration of luminance characteristics of the front and side surfaces of the liquid crystal display.
여기서, 본 발명의 실시 예는 상기 구조에 한정되지 않고 베이스 필름(110)의 상면 및 하면에 동시에 다수의 철부(120) 및 제1 미세광학패턴(130)이 형성될 수도 있다. 이 경우에, 하면의 제1 미세광학패턴(130)에 의해 집광 및 확산된 광이 베이스 필름(110)을 투과한 후 상면의 철부(120) 및 제1 미세광학패턴(130)에 의해 다시 집광 및 확산된다. 이와 같이, 본 발명의 제1 실시 예에 따른 광학소자(100)는 액정표시장치의 백라이트 유닛에 적용되는 경우, 도면에 도시된 구조뿐만 아니라 상하 대칭구조로도 적용될 수 있다.Here, the embodiment of the present invention is not limited to the above structure, and a plurality of convex portions 120 and the first microscopic optical patterns 130 may be simultaneously formed on the upper and lower surfaces of the base film 110. In this case, the light condensed and diffused by the first microscopic optical pattern 130 on the lower surface is transmitted again by the convex portion 120 and the first microscopic optical pattern 130 on the upper surface after passing through the base film 110. And diffuse. As described above, when the optical device 100 according to the first exemplary embodiment of the present invention is applied to the backlight unit of the liquid crystal display device, the optical device 100 may be applied not only to the structure shown in the drawing but also to the vertically symmetrical structure.
이러한 본 발명의 제1 실시 예에 따른 광학소자(100)는 액정표시장치의 백라이트 유닛에서 확산판으로 이용될 수 있다. 예컨대, 이러한 광학소자(100)가 확산판으로 이용되는 경우 베이스 필름(110)은 PET 필름을 이용할 수 있다.The optical device 100 according to the first exemplary embodiment of the present invention may be used as a diffusion plate in a backlight unit of a liquid crystal display. For example, when the optical device 100 is used as a diffusion plate, the base film 110 may use a PET film.
도 7은 본 발명의 제1 실시 예에 따른 광학소자의 변형 예이다.7 is a modified example of the optical device according to the first embodiment of the present invention.
도 7을 참조하면, 본 발명의 제1 실시 예에 따른 광학소자에서 철부(120) 상의 일부 또는 전부에 형성된 제1 미세광학패턴(130)의 산(131)은 서로 다른 높이를 갖는 제1 산(131a) 및 제2 산(131b)으로 구성될 수 있다. 이와 같이, 제1 산(131a) 및 제2 산(131b)의 높이를 서로 다르게 형성함으로써 서로 동일한 높이의 산(131)을 갖는제1 미세광학패턴(130)의 경우보다 집광 효율을 높일 수 있고, 이에 따라 액정표시장치에 광을 효율적으로 공급할 수 있다.Referring to FIG. 7, in the optical device according to the first exemplary embodiment, the peaks 131 of the first microscopic optical patterns 130 formed on some or all of the convex portions 120 may have first peaks having different heights. 131a and the second acid 131b. As such, by forming the heights of the first peak 131a and the second peak 131b differently from each other, the light collecting efficiency may be higher than that of the first microscopic optical pattern 130 having the peaks 131 having the same height. Accordingly, light can be efficiently supplied to the liquid crystal display.
도 8은 본 발명의 제2 실시 예에 따른 광학소자의 개략적인 사시도이다.8 is a schematic perspective view of an optical device according to a second exemplary embodiment of the present invention.
도 8을 참조하면, 본 발명에 따른 제2 실시 예에 따른 광학소자(200)는 광 투과성을 갖는 베이스 필름(210), 그 베이스 필름(210)의 일면에 형성된 다수의 철부(220), 철부(220) 상의 일부에 복수의 산(231)과 골(232)이 연속으로 형성된 제1 미세광학패턴(230) 및 그 베이스 필름(210)의 다른 일면에 복수의 산(241)과 골(242)이 연속으로 형성된 제2 미세광학패턴(240)을 포함하여 구성된다.Referring to FIG. 8, the optical device 200 according to the second exemplary embodiment of the present invention includes a base film 210 having light transmittance, a plurality of convex parts 220 formed on one surface of the base film 210, and convex parts. A plurality of the mountains 241 and the valleys 242 on the other surface of the first micro-optic pattern 230 and the base film 210 formed with a plurality of mountains 231 and the valleys 232 in a portion on the 220 ) Is configured to include a second micro-optical pattern 240 formed continuously.
본 발명에 따른 베이스 필름(210)은 입사되는 광을 투과시키는 재료로서, 예컨대, PC(Polycarbonate), PET(Polyester), PE(Polyethylene), PP(Polypropylene), PMMA(Polymethly Methacrylate) 중에서 선택된 하나를 포함한다.The base film 210 according to the present invention is a material for transmitting incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
이러한 베이스 필름(210)의 일면에 다수의 철부(220)가 형성된다. 상부에서 단면투영시 철부(220)는 타원형상, 원형상, 사각형상, 삼각형상, 마름모형상 등 다양한 형상의 단면을 가질 수도 있다. 각각의 철부(220) 상의 일부에는 제1 미세광학패턴(230)이 형성되어 있으며, 그 제1 미세광학패턴(230)은 복수의 산(231)과 골(232)이 연속으로 이루어진다. 이때, 제1 미세광학패턴(230)은 철부(220) 상에서 중앙부에 형성되는 것이 바람직하다. 이러한 철부(220)는 베이스 필름(210)으로 입사된 광이 상부의 액정패널(미도시)로 확산되어 출사되도록 하고, 제1 미세광학패턴(230)은 베이스 필름(210)으로 입사된 광이 상부의 액정패널에 실질적으로 수직이 되도록 집광하여 출사되도록 한다.A plurality of convex portions 220 are formed on one surface of the base film 210. When projecting the cross section from the upper portion 220 may have a cross section of various shapes such as oval, circular, square, triangular, rhombus. A first microscopic optical pattern 230 is formed on a portion of each convex portion 220, and the first microscopic optical pattern 230 includes a plurality of peaks 231 and valleys 232. In this case, the first microscopic optical pattern 230 is preferably formed in the center portion on the convex portion 220. The convex portion 220 diffuses the light incident on the base film 210 to the upper liquid crystal panel (not shown), and emits the light. The first micro-optic pattern 230 receives the light incident on the base film 210. The light is condensed to be substantially perpendicular to the upper liquid crystal panel so that the light is emitted.
본 발명의 제2 실시 예에 따른 베이스 필름(210), 철부(220) 및 제1 미세광학패턴(230)은 도 2 내지 도 4에서 설명한 본 발명의 제1 실시 예에 따른 베이스 필름(110), 철부(120) 및제1 미세광학패턴(130)과 구성 및 작용이 동일하므로 그에 대한 중복 설명은 생략한다.The base film 210, the convex portion 220, and the first microscopic optical pattern 230 according to the second embodiment of the present invention are the base film 110 according to the first embodiment of the present invention described with reference to FIGS. 2 to 4. Since the constitution and operation are the same as those of the convex portion 120 and the first microscopic optical pattern 130, the repeated description thereof will be omitted.
본 발명에 따른 제2 미세광학패턴(240)은 베이스 필름(210)에서 철부(220)가 형성된 다른 일면에 형성된다. 본 발명의 일례로서 제2 미세광학패턴(240)은 복수의 산(241)과 골(242)이 연속으로 형성된 프리즘 패턴인 것이 바람직하다. 즉, 예를 들어 제2 미세광학패턴(240)은 베이스 필름(210)의 길이방향을 따라서 실질적으로 삼각형상이 연속적으로 배열되어 복수의 산(241)과 골(242)이 서로 이웃하도록 연속 배열된 프리즘 패턴으로 이루어질 수 있다. 바람직하게는 이러한 제2 미세광학패턴(240)은 하부에서 입사된 광을 집광 또는/및 확산시켜서 상부로 출사하는 기능을 수행한다. 이로써 상부에 있는 액정패널(미도시)의 가시면 전체에 걸쳐 휘도를 향상시키는 기능을 한다. 이러한 제2 미세광학패턴(240)을 이루는 개개의 프리즘은 그 단면투영시 삼각형상, 원호형상, 다각형상 중 어느 하나의 단면을 갖는다.The second microscopic optical pattern 240 according to the present invention is formed on the other surface on which the convex portion 220 is formed in the base film 210. As an example of the present invention, the second microscopic optical pattern 240 is preferably a prism pattern in which a plurality of peaks 241 and valleys 242 are continuously formed. That is, for example, the second microscopic optical patterns 240 are arranged in a substantially triangular shape along the longitudinal direction of the base film 210 so that the plurality of mountains 241 and the valleys 242 are continuously arranged adjacent to each other. It may be made of a prism pattern. Preferably, the second microscopic optical pattern 240 performs a function of condensing and / or diffusing the light incident from the bottom to emit the light upward. This serves to improve the luminance over the entire visible surface of the upper liquid crystal panel (not shown). Each prism constituting the second microscopic optical pattern 240 has a cross section of any one of a triangular shape, an arc shape, and a polygonal shape when projecting the cross section.
도 9는 도 8의 C-C선 단면도이다.9 is a cross-sectional view taken along the line C-C in FIG.
도 9를 참조하면, 본 발명의 제2 실시 예에 따른 제1 미세광학패턴(230) 및 제2 미세광학패턴(240)은 그 단면투영시 바람직하게는 삼각형상의 단면을 갖는다. 그러나, 본 발명의 다른 일례에서는 원호형상, 사다리꼴 형상의 단면을 가질 수도 있다. 제1 미세광학패턴(230)이 철부(220) 상의 일부에 형성되므로, 제1 미세광학패턴(230)이 형성되지 않은 철부(220)의 나머지 부분(221)은 바람직하게는 일정한 곡률로 만곡되게 형성-원호를 그리도록-되며, 이 부분(221)에 의해 입사된 광이 주변으로 확산된다.9, the first microscopic optical pattern 230 and the second microscopic optical pattern 240 according to the second embodiment of the present invention preferably have a triangular cross section when projecting the cross section. However, in another example of the present invention, it may have an arc-shaped or trapezoidal cross section. Since the first micro-optic pattern 230 is formed on a portion of the convex portion 220, the remaining portion 221 of the convex portion 220 in which the first micro-optic pattern 230 is not formed is preferably curved at a constant curvature. Forming-arc-drawing, and the light incident by this portion 221 is diffused to the periphery.
도면에서는 예시적으로 제1 미세광학패턴(230) 및 제2 미세광학패턴(240)의 각 산(231,241)이 서로 평행하게 형성된 것으로 도시되어 있으나, 다른 예로서 이러한 각 산(231,241)은 소정의 경사각을 이루면서 서로 교차되게 배열되어 무아레방지를 기대할 수 있다. 여기서 소정의 경사각은 각각의 산(231,241)이 직교되게 배열되는 개념을 포함하며, 소정의 경사각은 45°~90°로 이루어지는 것이 바람직하다. 그리고 액정표시장치에서 측면부(좌우)에서의 휘도를 높여 넓은 시야각을 확보하기 위해서는 제1 미세광학패턴(220)의 산(231)이 액정표시장치에서 상하로 배열되는 것이 바람직하다.In the drawing, for example, each of the mountains 231 and 241 of the first microscopic optical pattern 230 and the second microscopic optical pattern 240 is formed in parallel with each other. It can be expected to prevent moire because it is arranged to cross each other while forming an inclination angle. Here, the predetermined inclination angle includes a concept in which the peaks 231 and 241 are arranged orthogonally, and the predetermined inclination angle is preferably 45 ° to 90 °. In addition, in order to increase the luminance at the side portions (left and right) of the liquid crystal display device and to secure a wide viewing angle, the mountains 231 of the first microscopic optical patterns 220 are preferably arranged up and down in the liquid crystal display device.
한편, 본 발명의 제2 실시 예에 따른 광학소자(200)는 백라이트 유닛 및 액정표시장치에 적용될 수 있다. 이 경우, 철부(220) 및 제1 미세광학패턴(230)은 베이스 필름(210)의 하면에, 제2 미세광학패턴(240)은 상면에 형성되는 것이 바람직하다. 이로써 하부의 광원(미도시)에서 발생되어 입사된 입사광이 하면의 철부(220) 및 제1 미세광학패턴(230)으로 입사되면 그 입사광을 집광 및 확산시켜 베이스 필름(210)으로 출사하고, 이후 베이스 필름(210)을 투과하여 제2 미세광학패턴(240)으로 입사되면 그 입사광을 집광하여 상부로 출사시킨다. 이로써 휘도 특성을 유지하면서 넓은 시야각을 구현할 수 있다. 액정표시장치에서 정면 및 측면의 휘도 특성을 고려하여 제1 미세광학패턴(220)의 크기, 밀도, 산의 곡률반경 등을 적절하게 조정할 수 있다.Meanwhile, the optical device 200 according to the second embodiment of the present invention may be applied to a backlight unit and a liquid crystal display device. In this case, the convex portion 220 and the first microscopic optical pattern 230 are preferably formed on the lower surface of the base film 210, and the second microscopic optical pattern 240 is formed on the upper surface. Accordingly, when incident light generated by the lower light source (not shown) is incident on the convex portion 220 and the first micro-optic pattern 230 on the lower surface, the incident light is condensed and diffused and emitted to the base film 210. When the light penetrates the base film 210 and is incident on the second microscopic optical pattern 240, the incident light is focused and emitted upward. As a result, a wide viewing angle can be realized while maintaining luminance characteristics. In the liquid crystal display, the size, density, and radius of curvature of the first microscopic optical pattern 220 may be appropriately adjusted in consideration of luminance characteristics of the front and side surfaces thereof.
여기서, 본 발명의 실시 예는 상기 구조에 한정되지 않고 베이스 필름(210)을 기준으로 상면에는 다수의 철부(220) 및 제1 미세광학패턴(230)이 형성되고 하면에는 제2 미세광학패턴(240)이 형성될 수도 있다. 이 경우, 하부로부터 입사되는 입사광은 제2 미세광학패턴(240)에 의해 집광되어 베이스 필름(210)으로 출사되고, 베이스 필름(210)을 통과하여 출사된 광은 다시 철부(220) 및 제1 미세광학패턴(230)에 의해 확산 및 집광되어 출사된다. 이러한 광의 확산을 통하여 측면에서의 넓은 시야각을 확보할 수 있게 된다.Here, the embodiment of the present invention is not limited to the above structure, and a plurality of convex portions 220 and the first microscopic optical patterns 230 are formed on the upper surface of the base film 210, and the second microscopic optical patterns ( 240 may be formed. In this case, incident light incident from the lower portion is collected by the second microscopic optical pattern 240 and is emitted to the base film 210, and the light emitted through the base film 210 is again the convex portion 220 and the first portion. Diffuse and condensed by the micro-optic pattern 230 is emitted. Through such light diffusion, a wide viewing angle at the side can be secured.
이러한 본 발명의 제2 실시 예에 따른 광학소자(200)는 액정표시장치의 백라이트 유닛에서 통상의 프리즘시트(prism sheet)로 이용될 수 있다. 이 경우에 베이스 필름(210)은 PET 필름을 이용할 수 있다.The optical device 200 according to the second exemplary embodiment of the present invention may be used as a conventional prism sheet in the backlight unit of the liquid crystal display. In this case, the base film 210 may use a PET film.
도 10 내지 도 12는 본 발명의 일 실시 예에 따른 광학소자를 포함한 액정표시장치의 일부를 개략적으로 도시한 도면이다.10 to 12 schematically illustrate a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
도 10에 도시된 바와 같이, 본 발명에 따른 액정표시장치(800)는 백라이트 유닛(A)과 패널 유닛(B)으로 구성된다. 이러한 액정표시장치(800)에서는 광원(810)에서 입사된 광과 반사판(811)에서 반사된 광을 확산 및 출사시키는 도광판(820)과 확산판(830), 확산판(830)으로부터 입사되는 입사광을 집광시키는 하나 이상의 프리즘시트(840), 프리즘시트(840)로부터 입사된 광을 선택반사시키는 반사편광막(850), 반사편광막(850)을 투과한 원편광을 선편광으로 전환시키는 위상지연층(860), 위상지연층(860)을 통과한 광 중 선편광은 투과시키며, 원편광은 50%를 투과시키고 나머지는 흡수하는 흡수형 편광막(870) 및 화면을 표시하는 액정패널(880)을 포함하여 구성된다.As shown in FIG. 10, the liquid crystal display device 800 according to the present invention includes a backlight unit A and a panel unit B. FIG. In the liquid crystal display device 800, incident light incident from the light guide plate 820, the diffusion plate 830, and the diffusion plate 830 diffuses and emits the light incident from the light source 810 and the light reflected from the reflector 811. One or more prism sheets 840 for condensing light, a reflective polarizing film 850 for selectively reflecting light incident from the prism sheet 840, and a phase delay layer for converting circularly polarized light transmitted through the reflective polarizing film 850 into linearly polarized light. 860, an absorption polarizing film 870 that transmits linearly polarized light among the light passing through the phase delay layer 860, transmits 50% of the circularly polarized light, and absorbs the rest, and a liquid crystal panel 880 that displays a screen. It is configured to include.
이때, 본 발명의 실시 예들에 따른 광학소자를 이용하여 확산판(830) 또는 프리즘시트(840)를 구현하는 경우, 확산판(830) 및 프리즘시트(840) 중 적어도 하나의 일면(예:하부면)에 각각 미세광학패턴이 형성된 다수의 철부(831,843a,843b)가 형성됨으로써 광을 집광 및 확산시키도록 한다. 또한, 본 발명의 실시 예에서 프리즘시트(840)의 경우 하부 프리즘시트(841) 상부에 상부 프리즘시트(842)가 적층된 구조를 가질 수 있다.In this case, when the diffuser plate 830 or the prism sheet 840 is implemented using an optical device according to embodiments of the present disclosure, at least one surface (eg, lower portion) of the diffuser plate 830 and the prism sheet 840 is implemented. Planes) are formed with a plurality of convex portions 831, 843a and 843b having microscopic optical patterns, respectively, to condense and diffuse light. In addition, in the embodiment of the present invention, the prism sheet 840 may have a structure in which the upper prism sheet 842 is stacked on the lower prism sheet 841.
이와 같이 본 발명에서는 광학소자가 백라이트 유닛에서 다양한 형태로 구현될 수 있으며, 특히 미세광학패턴에서 입사광을 집광 및 확산시킴으로써 휘도 특성을 최대한 유지하면서 측면에서의 넓은 시야각을 확보할 수 있다.As described above, the optical device may be implemented in various forms in the backlight unit, and in particular, by condensing and diffusing incident light in the micro-optical pattern, it is possible to secure a wide viewing angle at the side while maintaining the luminance characteristic to the maximum.
도 11 및 도 12에는 본 발명의 실시 예에 따른 광학소자(830,840)가 액정표시장치에 적용된 다른 일례가 도시되어 있다.11 and 12 illustrate another example in which the optical devices 830 and 840 according to the exemplary embodiment of the present invention are applied to the liquid crystal display.
도 11에서, 본 발명의 광학소자(830)는 광투과성 베이스 필름(831)의 상면에 미세광학패턴이 형성된 다수의 철부(832)가 형성되어, 예컨대 확산판으로 사용될 수 있다. 또한, 도 11에서, 본 발명의 광학소자(830)는 광투과성 베이스 필름(831)의 양면, 즉 상면 및 하면에는 미세광학패턴이 형성된 다수의 철부(832)가 형성되어 확산판으로 사용될 수 있다. 이때 베이스필름(831)의 상하면에 형성된 철부는 소정의 경사각을 이루면서 배열될 수도 있다. 도 12에서 다른 광학소자(840)는 베이스 필름(841)의 상면에는 제1 미세광학패턴이 형성된 다수의 철부(842)가 형성됨과 동시에, 하면에는 산과 골이 연속으로 이루어진 제2 미세광학패턴(843)이 형성되어 프리즘 시트로 사용될 수 있다.In FIG. 11, in the optical device 830 of the present invention, a plurality of convex portions 832 having a micro optical pattern are formed on an upper surface of the light transmissive base film 831, and may be used as, for example, a diffusion plate. In addition, in FIG. 11, the optical device 830 of the present invention may be used as a diffusion plate by forming a plurality of convex portions 832 having fine optical patterns formed on both surfaces, that is, on an upper surface and a lower surface of the transparent base film 831. . In this case, the convex portions formed on the upper and lower surfaces of the base film 831 may be arranged to form a predetermined inclination angle. In FIG. 12, another optical element 840 has a plurality of convex portions 842 having a first microscopic optical pattern formed on an upper surface of the base film 841, and a second microscopic optical pattern having a mountain and a valley formed on the lower surface thereof. 843 can be formed and used as a prism sheet.
이와 같이 본 발명에서는 광학소자가 백라이트 유닛에서 다양한 형태로 구현될 수 있다.As described above, the optical device may be implemented in various forms in the backlight unit.
도 13 및 도 14는 본 발명의 제3 실시 예에 따른 광학소자의 사시도이다.13 and 14 are perspective views of an optical device according to a third exemplary embodiment of the present invention.
도 13 및 14를 참조하면, 본 발명의 제3 실시 예에 따른 광학소자(300)는 광 투과성을 갖는 베이스 필름(310) 및 그 베이스 필름(310)의 적어도 일면에 형성된 다수의 제3 미세광학패턴(320)을 포함하여 구성된다.13 and 14, the optical device 300 according to the third exemplary embodiment of the present invention includes a base film 310 having light transmittance and a plurality of third micro-optics formed on at least one surface of the base film 310. It is configured to include a pattern (320).
본 발명에 따른 베이스 필름(310)은 입사되는 광을 투과시키는 재료로서, 예컨대, PC(Polycarbonate), PET(Polyester), PE(Polyethylene), PP(Polypropylene), PMMA(Polymethly Methacrylate) 중에서 선택된 하나를 포함한다.The base film 310 according to the present invention is a material for transmitting incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
본 발명에 따른 다수의 제3 미세광학패턴(320)은 소정 높이의 산(321)을 갖도록 베이스 필름(310)의 적어도 일면에 형성되고 그 베이스 필름(310)으로 입사된 광을 집광 및 확산시킨다. 이러한 제3 미세광학패턴(320)은 베이스 필름(310)의 적어도 일면에 일체로 형성되는 것이 바람직하다.The plurality of third microscopic optical patterns 320 according to the present invention are formed on at least one surface of the base film 310 to have a peak 321 of a predetermined height and condense and diffuse light incident on the base film 310. . The third microscopic optical patterns 320 may be integrally formed on at least one surface of the base film 310.
또한, 본 발명에 따른 다수의 제3 미세광학패턴(320)은 상부에서의 평면 투영시, 장축과 단축을 갖는 도형, 즉 타원형상(322) 또는 나뭇잎형상으로 형성된다. 다시 말하면, 본 발명에 따른 각 제3 미세광학패턴(320)은 베이스 필름(310)의 적어도 일면과 접하는 부분이 타원형상(322)이다. 이때 바람직하게는 제3 미세광학패턴(320)의 산(321)은 이러한 타원형상(322)의 장축을 따라서 그 중심부에서 양단부로 갈수록 높이가 낮아진다. 보다 바람직하게는 제3 미세광학패턴의 산(321)은 타원형상(322)의 장축을 따라 일정한 곡률반경으로 만곡되어 이루어진다.In addition, the plurality of third microscopic optical patterns 320 according to the present invention may be formed in a shape having a long axis and a short axis, that is, an elliptical shape 322 or a leaf shape in the plane projection from the top. In other words, each of the third microscopic optical patterns 320 according to the present invention has an oval shape 322 in contact with at least one surface of the base film 310. In this case, preferably, the peak 321 of the third microscopic optical pattern 320 is lowered from the center to both ends thereof along the long axis of the elliptical shape 322. More preferably, the peak 321 of the third microscopic optical pattern is curved with a constant radius of curvature along the long axis of the elliptical shape 322.
본 발명의 실시 예에서, 이러한 타원형상에서 장축(21)의 길이는 1~5000㎛인 것이 바람직하고, 단축(22)의 길이는 1~100㎛인 것이 바람직하다. 이때, 이러한 타원형상의 단축과 장축의 길이 비율은 1:1을 초과하고 1:50000 이하인 것이 바람직하다. 보다 더 바람직하게는 1:1000 이하인 것이 바람직하다. 또한, 이러한 제3 미세광학패턴 간의 거리는 1~5000㎛인 것이 바람직하다. 본 발명의 실시 예에서, 이러한 장축 대 단축의 길이 비, 제3 미세광학패턴 간의 거리, 각 산의 높이, 패턴의 반복 및 분포 등은 입사광의 집광 및 확산 효율에 따라 결정될 수 있으며, 나아가 액정표시장치의 측면부에서의 휘도에 의해 결정될 수 있다.In the embodiment of the present invention, the length of the long axis 21 in this elliptical shape is preferably 1 ~ 5000㎛, the length of the short axis 22 is preferably 1 ~ 100㎛. At this time, the length ratio of the short axis and the long axis of the elliptical phase is preferably greater than 1: 1 and 1: 50000 or less. Even more preferably, it is 1: 1000 or less. In addition, the distance between the third microscopic optical patterns is preferably 1 to 5000㎛. In an embodiment of the present invention, the length ratio of the long axis to the short axis, the distance between the third microscopic optical patterns, the height of each mountain, the repetition and distribution of the patterns may be determined according to the light condensing and diffusion efficiency of the incident light. It can be determined by the brightness at the side of the device.
한편, 본 발명에 따른 다수의 제3 미세광학패턴은 서로 일정한 간격으로 배열될 수 있다. 본 발명의 일례로서, 도 13와 같이 다수의 제3 미세광학패턴은 종횡으로 나열된 매트릭스(matrix) 형태로 배열될 수 있다. 다른 예로서, 도 14와 같이 다수의 제3 미세광학패턴은 서로 교차하도록 배열될 수도 있다.Meanwhile, the plurality of third microscopic optical patterns according to the present invention may be arranged at regular intervals from each other. As an example of the present invention, as shown in FIG. 13, the plurality of third microscopic optical patterns may be arranged in a matrix form arranged vertically and horizontally. As another example, as illustrated in FIG. 14, the plurality of third microscopic optical patterns may be arranged to cross each other.
도 15은 도 2의 F-F를 나타낸 단면도 및 사시도이고, 도 16는 도 13의 G-G를 나타낸 단면도이다.FIG. 15 is a sectional view and a perspective view of F-F of FIG. 2, and FIG. 16 is a sectional view of G-G of FIG. 13.
도 15를 참조하면, 본 발명의 제3 실시 예에 따른 제3 미세광학패턴은 그 단축의 단면투영시 실질적으로 베이스 필름(310)의 상면으로 돌출된 삼각형상의 단면을 갖는다. 이러한 삼각형상의 중심부(321a)는 제3 미세광학패턴에서 산(321)의 일부가 된다. 이때 상기 중심부(321a)에서 타원형상(322)의 단축(22)을 따라 베이스 필름(310)의 표면(322a)까지 이르는 측면부의 라인(A,B)은 곡선인 것이 바람직하다. 왜냐하면, 이러한 측면부 라인(A,B)이 곡선인 경우에는 입사광이 집광될 뿐만 아니라 측면으로도 확산되기 때문이다. 그러나 본 발명은 이에 한정되지 않고 직선의 형태로 구현이 가능하다. 이 경우 입사광의 확산보다는 집광이 더 강하게 일어난다. 이로써 제3 미세광학패턴은 입사광의 집광뿐만 아니라 측면으로의 확산기능도 함께 구현할 수 있다. 또한, 제3 미세광학패턴은 그 산(321)이 타원형상(322)의 장축(21)을 따라서 소정의 높이를 갖는다. 이때, 이러한 산(321)의 높이는 바람직하게는 타원형상(322)의 장축(21)을 따라 변한다. 이는 도 16에서 구체적으로 설명된다. 도면에는 제3 미세광학패턴의 단면이 삼각형상으로 형성된 것으로 도시되어 있으나, 본 발명은 이에 한정되지 않고 정삼각형, 이등변삼각형, 원호형, 사다리형, 사각형 등 다양한 형상으로 구현이 가능하다. 또한 액정표시장치에서 측면부에서의 휘도를 높여 넓은 시야각의 확보를 위하여 제3 미세광학패턴의 산(321)이 상하로 배열되는 것이 바람직하다.Referring to FIG. 15, the third microscopic optical pattern according to the third exemplary embodiment of the present invention has a triangular cross section protruding substantially to the top surface of the base film 310 when the single-sided projection is performed. The triangular center portion 321a becomes part of the mountain 321 in the third microscopic optical pattern. At this time, the line (A, B) of the side portion from the central portion 321a to the surface 322a of the base film 310 along the short axis 22 of the elliptical shape 322 is preferably curved. This is because when the side line lines A and B are curved, not only the incident light is focused but also diffused to the side surface. However, the present invention is not limited thereto and may be implemented in the form of a straight line. In this case, condensing occurs more strongly than diffusion of incident light. As a result, the third microscopic optical pattern may implement not only the concentration of incident light but also a diffusion function to the side surface. In addition, in the third microscopic optical pattern, the peak 321 has a predetermined height along the long axis 21 of the elliptical shape 322. At this time, the height of the mountain 321 is preferably changed along the long axis 21 of the elliptical shape (322). This is described in detail in FIG. 16. Although the cross-section of the third microscopic optical pattern is illustrated as being formed in a triangular shape in the drawing, the present invention is not limited thereto and may be implemented in various shapes such as an equilateral triangle, an isosceles triangle, an arc, a ladder, and a rectangle. In addition, it is preferable that the peaks 321 of the third microscopic optical patterns are arranged up and down in order to increase the luminance at the side parts of the liquid crystal display to secure a wide viewing angle.
도 16을 참조하면, 본 발명의 제3 실시 예에 따른 각 제3 미세광학패턴은 베이스 필름(310)의 적어도 일면과 접하는 부분인 타원형상(322)의 장축(21)을 따라서 제3 미세광학패턴의 산(321)이 그 중심부(321a)에서 양단부(321b)로 갈수록 높이가 낮아진다. 다시 말하면, 제3 미세광학패턴은 그 중심부(321a)에서 산(321)의 높이가 가장 높고 양 끝단부(321b)로 갈수록 높이는 낮아진다. 특히, 바람직하게는 제3 미세광학패턴의 산(321)은 이러한 타원형상(322)의 장축(21)을 따라서 일정한 곡률반경으로 만곡되어 있다. 이때 중심부(321a)에서 산(321)의 높이는 0.2~200㎛인 것이 바람직하다. 이러한 산(321)의 높이가 위 범위보다 작거나 커지게 되면 가공이 난해해지고 집광효율이 저하되어 유의한 값을 가질 수 없게 된다.Referring to FIG. 16, each of the third microscopic optical patterns according to the third exemplary embodiment of the present invention may include the third microscopic optical fibers along the long axis 21 of the elliptical shape 322, which is a part in contact with at least one surface of the base film 310. The height of the pattern 321 is lowered from the central portion 321a toward both ends 321b. In other words, the height of the mountain 321 is the highest in the center portion 321a of the third micro-optic pattern and the height is lowered toward both ends 321b. In particular, preferably, the peak 321 of the third microscopic optical pattern is curved with a constant radius of curvature along the long axis 21 of the elliptical shape 322. At this time, the height of the mountain 321 in the center portion 321a is preferably 0.2 ~ 200㎛. When the height of the mountain 321 is smaller or larger than the above range, the processing becomes difficult and the light collection efficiency is lowered, so that it cannot have a significant value.
도 16에는 본 발명의 바람직한 실시 예로서 제3 미세광학패턴의 측단면에서 볼 때, 산(321)이 일정한 곡률반경으로 만곡된 것으로 도시되어 있으나, 본 발명은 이러한 구조에 한정되지 않는다. 다른 예로서, 중심부(321a)에서 양단부(321a)까지 서로 다른 곡률반경으로 만곡될 수 있고 직선으로 구현될 수도 있다. 그러나 액정표시장치에 적용될 경우 가시면 전체에 고른 휘도를 제공하기 위해 중심부(321a)에서 장축(21)을 따라 양단부(321b)로 이어지는 산(321)의 형상은 서로 대칭되는 것이 바람직하며, 보다 바람직하게는 일정한 곡률반경으로 만곡된 것이 양호하다.16 illustrates that the peak 321 is curved with a constant curvature radius when viewed from the side cross-section of the third microscopic optical pattern as a preferred embodiment of the present invention, the present invention is not limited to this structure. As another example, the center 321a to both ends 321a may be curved in different radii of curvature and may be implemented in a straight line. However, when applied to a liquid crystal display, the shapes of the mountains 321 extending from the central portion 321a to the both ends 321b along the long axis 21 in the central portion 321a are preferably symmetrical with each other. Is preferably curved with a constant radius of curvature.
한편, 본 발명의 제3 실시 예에 따른 광학소자(300)는 백라이트 유닛 및 액정표시장치에 사용될 수 있다. 이 경우 제3 미세광학패턴은 베이스 필름(310)의 상면에 형성되는 것이 바람직하다. 이로써 하부의 광원(미도시)에서 발생된 광이 베이스 필름(310)을 투과하여 제3 미세광학패턴으로 입사되면 그 입사광을 집광함과 동시에 측면으로 확산시킨다. 이로써 휘도 특성을 유지하면서 넓은 시야각을 구현할 수 있다. 이때, 액정표시장치에서 정면 및 측면에서의 휘도 특성을 고려하여 제3 미세광학패턴의 크기, 밀도, 산의 곡률반경, 반복 패턴 및 밀도 등을 적절하게 조절할 수 있다.On the other hand, the optical device 300 according to the third embodiment of the present invention can be used in the backlight unit and the liquid crystal display device. In this case, the third microscopic optical pattern is preferably formed on the upper surface of the base film 310. As a result, when the light generated from the lower light source (not shown) is transmitted through the base film 310 and incident on the third microscopic optical pattern, the incident light is focused and diffused to the side. As a result, a wide viewing angle can be realized while maintaining luminance characteristics. In this case, the size, density, radius of curvature of the acid, repetition pattern, density, etc. of the third microscopic optical pattern may be appropriately adjusted in consideration of luminance characteristics of the front and side surfaces of the liquid crystal display.
여기서, 본 발명의 실시 예는 상기 구조에 한정되지 않고 베이스 필름(310)의 상면 및 하면에 동시에 제3 미세광학패턴이 형성될 수도 있다. 이 경우에, 하면의 제3 미세광학패턴에 의해 집광 및 확산된 광이 베이스 필름(310)을 투과한 후 상면의 제3 미세광학패턴에 의해 다시 집광 및 확산된다 이와 같이, 본 발명의 제3 실시 예에 따른 광학소자(300)는 액정표시장치의 백라이트 유닛에 적용되는 경우, 도면에 도시된 구조뿐만 아니라, 상하 대칭구조로도 적용될 수 있다.Here, the embodiment of the present invention is not limited to the above structure, and the third microscopic optical patterns may be simultaneously formed on the upper and lower surfaces of the base film 310. In this case, the light condensed and diffused by the third microscopic optical pattern on the lower surface is collected and diffused again by the third microscopic optical pattern on the upper surface after passing through the base film 310. When the optical device 300 according to the embodiment is applied to the backlight unit of the liquid crystal display device, the optical device 300 may be applied not only to the structure shown in the drawing but also to the vertically symmetrical structure.
이러한 본 발명의 제3 실시 예에 따른 광학소자(100)는 액정표시장치의 백라이트 유닛에서 확산판으로 이용될 수 있다. 예컨대, 이러한 광학소자(300)가 확산판으로 이용되는 경우 베이스 필름(310)은 PET 필름을 이용할 수 있다.The optical device 100 according to the third exemplary embodiment of the present invention may be used as a diffusion plate in a backlight unit of a liquid crystal display. For example, when the optical device 300 is used as a diffusion plate, the base film 310 may use a PET film.
도 17는 본 발명의 제4 실시 예에 따른 광학소자의 개략적인 사시도이다.17 is a schematic perspective view of an optical device according to a fourth embodiment of the present invention.
도 17를 참조하면, 본 발명에 따른 제4 실시 예에 따른 광학소자(400)는 광 투과성을 갖는 베이스 필름(410), 그 베이스 필름(410)의 일면에 형성된 제3 미세광학패턴(420) 및 그 베이스 필름(422)의 타면에 형성된 제4 미세광학패턴(430)을 포함하여 구성된다.Referring to FIG. 17, the optical device 400 according to the fourth exemplary embodiment of the present invention may include a base film 410 having light transmission and a third microscopic optical pattern 420 formed on one surface of the base film 410. And a fourth microscopic optical pattern 430 formed on the other surface of the base film 422.
본 발명에 따른 베이스 필름(410)은 입사되는 광을 투과시키는 재료로서, 예컨대, PC(Polycarbonate), PET(Polyester), PE(Polyethylene), PP(Polypropylene), PMMA(Polymethly Methacrylate) 중에서 선택된 하나를 포함한다.The base film 410 according to the present invention is a material that transmits incident light, for example, one selected from PC (Polycarbonate), PET (Polyester), PE (Polyethylene), PP (Polypropylene), PMMA (Polymethly Methacrylate) Include.
본 발명에 따른 다수의 제3 미세광학패턴(420)은 소정 높이의 산(421)을 갖도록 베이스 필름(410)의 일면에 형성되고 그 베이스 필름(410)으로 입사된 광을 집광 및 확산시킨다. 이러한 제3 미세광학패턴(420)은 베이스 필름(410)의 일면에 일체로 형성되는 것이 바람직하다.The plurality of third microscopic optical patterns 420 according to the present invention are formed on one surface of the base film 410 so as to have a peak 421 having a predetermined height and condense and diffuse light incident on the base film 410. The third microscopic optical patterns 420 may be integrally formed on one surface of the base film 410.
본 발명의 제4 실시 예에 따른 베이스 필름(410) 및 제3 미세광학패턴(420)은 도 2 내지 도 16에서 설명한 본 발명의 제3 실시 예에 따른 베이스 필름(310) 및 제3 미세광학패턴과 구성 및 작용이 동일하므로 그에 대한 중복 설명은 생략한다.The base film 410 and the third microscopic optical pattern 420 according to the fourth embodiment of the present invention are the base film 310 and the third microscopic optical according to the third embodiment of the present invention described with reference to FIGS. 2 to 16. Since the configuration and operation are the same as the pattern, duplicate description thereof will be omitted.
본 발명에 따른 제4 미세광학패턴(430)은 베이스 필름(410)에서 제3 미세광학패턴(420)이 형성된 일면의 반대면에 형성된다. 본 발명의 일례로서 제4 미세광학패턴(430)은 복수의 산(431)과 밸리(432)가 연속으로 형성된 프리즘 패턴인 것이 바람직하다. 즉, 예를 들어 제4 미세광학패턴(430)은 베이스 필름(410)의 길이방향을 따라서 실질적으로 삼각형상이 연속적으로 배열되어 복수의 산(431)과 밸리(432)가 서로 이웃하도록 연속 배열된 프리즘 패턴으로 이루어질 수 있다. 바람직하게는 이러한 제4 미세광학패턴(430)은 하부에서 입사된 광을 집광시켜 상부로 출사하는 기능을 수행한다. 이로써 상부에 있는 액정패널(미도시)의 가시면 전체에 걸쳐 휘도를 향상시키는 기능을 한다. 이러한 제4 미세광학패턴(430)을 이루는 개개의 프리즘은 그 단면투영시 삼각형상, 원호형상, 다각형상 중 어느 하나의 단면을 갖는다.The fourth microscopic optical patterns 430 according to the present invention are formed on the opposite side of one surface of the base film 410 where the third microscopic optical patterns 420 are formed. As an example of the present invention, the fourth microscopic optical pattern 430 is preferably a prism pattern in which a plurality of mountains 431 and valleys 432 are formed in succession. That is, for example, the fourth microscopic optical patterns 430 are arranged in a substantially triangular shape continuously along the longitudinal direction of the base film 410 so that the plurality of mountains 431 and the valleys 432 are adjacent to each other. It may be made of a prism pattern. Preferably, the fourth microscopic optical pattern 430 collects the light incident from the bottom to emit the light to the top. This serves to improve the luminance over the entire visible surface of the upper liquid crystal panel (not shown). Each prism constituting the fourth microscopic optical pattern 430 has a cross section of any one of a triangular shape, an arc shape, and a polygonal shape when projecting the cross section.
도 18은 도 17의 H-H를 나타낸 사시도이다.18 is a perspective view illustrating H-H of FIG. 17.
도 18을 참조하면, 본 발명의 제4 실시 예에 따른 제3 미세광학패턴(420) 및 제4 미세광학패턴(430)은 그 단면투영시 실질적으로 삼각형상의 단면을 갖는다. 이때, 이러한 삼각형상의 단면에서 제3 미세광학패턴(420)의 경우 산(411)에서 타원형상(422)까지 이르는 라인(A,B)은 곡선인 것이 바람직하고, 제4 미세광학패턴(430)의 경우 산(431)에서 밸리(432)에 이르는 라인은 직선인 것이 바람직하다. 도면에서는 일례로서 제3 미세광학패턴(420) 및 제4 미세광학패턴(430)의 각 산(421,431)이 평행하게 형성되어 있으나, 다른 예로서 상기 각 산(421,431)은 서로 교차되도록 형성될 수도 있다. 여기서 액정표시장치에서 측면부(좌우)에서의 휘도를 높여 넓은 시야각을 확보하기 위해서는 제3 미세광학패턴(420)의 산(421)이 액정표시장치에서 상하로 배열되는 것이 바람직하다.Referring to FIG. 18, the third microscopic optical pattern 420 and the fourth microscopic optical pattern 430 according to the fourth exemplary embodiment of the present invention have a substantially triangular cross section when projecting the cross section. In this case, in the case of the third microscopic optical pattern 420, the lines A and B extending from the peak 411 to the elliptical shape 422 in the triangular cross section are preferably curved, and the fourth microscopic optical pattern 430. In this case, the line from the mountain 431 to the valley 432 is preferably a straight line. In the drawing, as an example, each of the mountains 421 and 431 of the third micro-optic pattern 420 and the fourth micro-optic pattern 430 is formed in parallel, but as another example, the mountains 421 and 431 may be formed to cross each other. have. Here, in order to increase the luminance at the side portions (left and right) of the liquid crystal display device and to secure a wide viewing angle, the mountains 421 of the third microscopic optical patterns 420 are preferably arranged up and down in the liquid crystal display device.
한편, 본 발명의 제4 실시 예에 따른 광학소자(400)는 백라이트 유닛 및 액정표시장치에 적용될 수 있다. 이 경우, 제3 미세광학패턴(420)은 베이스 필름(410)의 하면에, 제4 미세광학패턴(430)은 상면에 형성되는 것이 바람직하다. 이로써 하부의 광원(미도시)에서 발생된 광이 하면의 제3 미세광학패턴(420)으로 입사되면 그 입사광을 집광 및 확산시켜 베이스 필름(410)으로 출사하고, 이후 베이스 필름(410)을 투과하여 제4 미세광학패턴(430)으로 입사되면 그 입사광을 집광하여 상부로 출사시킨다. 이로써 휘도 특성을 유지하면서 넓은 시야각을 구현할 수 있다. 액정표시장치에서 정면 및 측면의 휘도 특성을 고려하여 제3 미세광학패턴(420)의 크기, 밀도, 산의 곡률반경 등을 적절하게 조정할 수 있다.Meanwhile, the optical device 400 according to the fourth embodiment of the present invention may be applied to a backlight unit and a liquid crystal display device. In this case, the third microscopic optical pattern 420 may be formed on the lower surface of the base film 410, and the fourth microscopic optical pattern 430 may be formed on the upper surface. As a result, when the light generated from the lower light source (not shown) is incident on the third microscopic optical pattern 420 on the lower surface, the incident light is collected and diffused to be emitted to the base film 410, and then transmitted through the base film 410. When the light is incident on the fourth microscopic optical pattern 430, the incident light is focused and emitted upward. As a result, a wide viewing angle can be realized while maintaining luminance characteristics. In the liquid crystal display, the size, density, and radius of curvature of the acid may be appropriately adjusted in consideration of the luminance characteristics of the front and side surfaces.
여기서, 본 발명의 실시 예는 상기 구조에 한정되지 않고 베이스 필름(410)을 기준으로 상면에 제3 미세광학패턴(420)이, 하면에 제4 미세광학패턴(430)이 형성될 수도 있다. 이 경우 하부로부터 입사되는 입사광은 제4 미세광학패턴(430)에 의해 집광되어 베이스 필름(410)으로 출사되고, 베이스 필름(410)을 통과하여 출사된 광은 다시 제3 미세광학패턴(420)에 의해 집광 및 확산이 일어나게 된다. 이러한 광의 확산을 통하여 측면에서의 넓은 시야각을 확보할 수 있다.Here, the embodiment of the present invention is not limited to the above structure, and the third microscopic optical pattern 420 may be formed on the upper surface of the base film 410, and the fourth microscopic optical pattern 430 may be formed on the lower surface of the substrate. In this case, incident light incident from the lower portion is collected by the fourth microscopic optical pattern 430 and is emitted to the base film 410, and the light emitted through the base film 410 is again returned to the third microscopic optical pattern 420. Condensation and diffusion occur. Through the diffusion of light, a wide viewing angle at the side can be secured.
이러한 본 발명의 제4 실시 예에 따른 광학소자(400)는 액정표시장치의 백라이트 유닛에서 통상의 프리즘시트(prism sheet)로 이용될 수 있다. 이 경우에 베이스 필름(410)은 PET 필름을 이용할 수 있다.The optical device 400 according to the fourth exemplary embodiment of the present invention may be used as a prism sheet in a backlight unit of a liquid crystal display. In this case, the base film 410 may use a PET film.
도 19 및 도 20은 종래의 광학소자와 본 발명에 따른 광학소자에서 출사되는 광의 경로를 비교하기 위한 시뮬레이션 결과를 도시한 도면이다.19 and 20 illustrate simulation results for comparing a path of light emitted from a conventional optical device and an optical device according to the present invention.
도 19(a)는 종래의 광학소자의 측면에서 광의 경로를 나타낸 시뮬레이션 결과이고, 도 19(b)는 본 발명의 실시 예에 따른 광학소자의 측면에서 광의 경로를 나타낸 시뮬레이션 결과이다. 도면에 나타난 바와 같이, 종래의 광학소자는 측단면이 직선으로 형성되어 광의 확산이나 집광력이 거의 없고, 본 발명의 광학소자는 측단면이 렌즈형태, 즉 일정한 곡률을 만곡되도록 형성되어 광의 확산 및 집광력이 발생함을 알 수 있다.19 (a) is a simulation result showing the path of light in the side of the conventional optical device, Figure 19 (b) is a simulation result showing the path of light in the side of the optical device according to an embodiment of the present invention. As shown in the figure, the conventional optical element has a straight side cross-section is formed almost no light diffusion or condensing power, the optical element of the present invention is formed so that the side cross-section is curved in the form of a lens, that is, a constant curvature of the light It can be seen that this occurs.
또한, 도 20(a)는 종래의 광학소자의 사시도에서 광의 경로를 나타낸 시뮬레이션 결과이고, 도 20(b)는 본 발명의 실시 예에 따른 광학소자의 사시도에서 광의 경로를 나타낸 시뮬레이션 결과이다. 도면에 나타난 바와 같이 종래의 광학소자의 경우 삼각형 프리즘에서는 집광력만 발생함을 알 수 있고, 본 발명의 광학소자의 경우 집광력뿐만 아니라 측면으로의 확산력도 함께 발생함을 알 수 있다.In addition, Figure 20 (a) is a simulation result showing the path of the light in a perspective view of a conventional optical device, Figure 20 (b) is a simulation result showing the path of light in a perspective view of an optical device according to an embodiment of the present invention. As shown in the figure, it can be seen that in the case of the conventional optical device, only the light collecting power is generated in the triangular prism, and in the case of the optical device of the present invention, not only the light collecting power but also the diffusing power to the side surface are generated.
이러한 시뮬레이션 결과를 통하여 본 발명의 광학소자는 상방으로의 집광 및 측면으로의 확산도 함께 구현됨을 알 수 있고, 이로써 액정표시장치에서 시야각을 넓게 확보할 수 있게 된다.Through the simulation results, the optical device of the present invention can be realized that the light converging upward and the diffusion to the side are also implemented, thereby ensuring a wide viewing angle in the liquid crystal display device.
도 21는 본 발명의 일 실시 예에 따른 광학소자를 포함한 액정표시장치의 일부를 개략적으로 도시한 도면이다.FIG. 21 is a schematic view of a portion of a liquid crystal display including an optical device according to an embodiment of the present invention.
도 21에 도시된 바와 같이, 본 발명에 따른 액정표시장치(700)는 백라이트 유닛(A)과 패널 유닛(B)로 구성된다. 이러한 액정표시장치(700)에서는 광원(710)에서 입사된 광과 반사판(711)에서 반사된 광을 확산 및 출사시키는 도광판(720)과 확산판(730), 확산판(730)으로부터 입사되는 입사광을 집광시키는 하나 이상의 프리즘시트 (740), 프리즘시트(740)로부터 입사된 광을 선택반사시키는 반사편광막(750), 반사편광막(750)을 투과한 원편광을 선편광으로 전환시키는 위상지연층(760), 위상지연층(760)을 통과한 광 중 선편광은 투과시키며, 원편광은 50%를 투과시키고 나머지는 흡수하는 흡수형 편광막(770) 및 화면을 표시하는 액정패널(780)을 포함하여 구성된다.As shown in FIG. 21, the liquid crystal display device 700 according to the present invention includes a backlight unit A and a panel unit B. FIG. In the liquid crystal display device 700, incident light incident from the light guide plate 720, the diffusion plate 730, and the diffusion plate 730 diffuses and exits the light incident from the light source 710 and the light reflected from the reflective plate 711. One or more prism sheets 740 for collecting light, a reflective polarizing film 750 for selectively reflecting light incident from the prism sheet 740, and a phase delay layer for converting circularly polarized light transmitted through the reflective polarizing film 750 into linearly polarized light. 760, an absorption polarizing film 770 that transmits linearly polarized light among the light passing through the phase delay layer 760, transmits 50% of the circularly polarized light, and absorbs the rest, and a liquid crystal panel 780 that displays a screen. It is configured to include.
이때, 본 발명의 실시 예들에 따른 광학소자를 이용하여 확산판(730) 또는 프리즘시트(740)를 구현하는 경우, 확산판(730) 및 프리즘시트(740) 중 적어도 하나의 일면(예:하부면)에 각각 다수의 미세광학패턴(731,743a,743b)이 형성됨으로써 광을 집광 및 확산시키도록 한다. 또한, 본 발명의 실시 예에서 프리즘시트(740)의 경우 하부 프리즘시트(741) 상부에 상부 프리즘시트(742)가 적층된 구조를 가질 수 있다.In this case, when the diffuser plate 730 or the prism sheet 740 is implemented using an optical device according to embodiments of the present disclosure, at least one surface (eg, lower portion) of the diffuser plate 730 and the prism sheet 740 may be implemented. A plurality of micro-optic patterns 731, 743a, and 743b are formed on each surface to condense and diffuse light. In addition, in the embodiment of the present invention, the prism sheet 740 may have a structure in which the upper prism sheet 742 is stacked on the lower prism sheet 741.
도 21에서는 액정표시장치의 일례를 도시한 것으로서, 본 발명의 다른 실시 예에서 확산판(730) 및 프리즘시트(740)는 다양하게 구현될 수도 있다. 예를 들어, 도 21에서 확산판(730) 및 프리즘시트(740)는 베이스 필름의 상면 또는 양면에 각각 다수의 미세광학패턴(731,743a,743b)이 형성됨으로써 광을 집광 및 확산시키도록 할 수도 있다.FIG. 21 illustrates an example of a liquid crystal display. In another embodiment of the present disclosure, the diffusion plate 730 and the prism sheet 740 may be implemented in various ways. For example, in FIG. 21, the diffusion plate 730 and the prism sheet 740 may have a plurality of micro optical patterns 731, 743a, and 743b formed on the top or both sides of the base film, respectively, to condense and diffuse light. have.
이와 같이 본 발명에서는 광학소자가 백라이트 유닛에서 다양한 형태로 구현될 수 있으며, 특히 미세광학패턴에서 입사광을 집광 및 확산시킴으로써 휘도 특성을 최대한 유지하면서 측면에서의 넓은 시야각을 확보할 수 있다.As described above, the optical device may be implemented in various forms in the backlight unit, and in particular, by condensing and diffusing incident light in the micro-optical pattern, it is possible to secure a wide viewing angle at the side while maintaining the luminance characteristic to the maximum.
상기 도면과 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시형태가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.The drawings and detailed description of the invention are merely exemplary of the invention, which are used for the purpose of illustrating the invention only and are not intended to limit the scope of the invention as defined in the appended claims or claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
최근 들어 액정표시장치(LCD)는 휴대폰, TV, 네비게이션, 각종 모니터와 같은 디스플레이 장치에서 그 사용폭이 점점 확대되고 있으며 향후에도 이러한 추세는 계속될 것으로 예상된다. 특히 디스플레이 장치가 대형화되면서 정면의 휘도뿐만 아니라 측면에서의 휘도가 중요한 요소가 되고 있다. 따라서 액정표시장치에 사용되는 각종 광학소자에서 넓은 시야각을 위한 기술개발이 활발히 진행되고 있다.Recently, liquid crystal display (LCD) has been increasingly used in display devices such as mobile phones, TVs, navigation, and various monitors, and this trend is expected to continue in the future. In particular, as the size of a display device increases, not only the brightness of the front surface but also the brightness of the side surface becomes an important factor. Therefore, the development of technology for wide viewing angle is actively progressed in various optical elements used in the liquid crystal display device.
이러한 측면에서 볼 때, 본 발명에 따른 액정표시장치에 사용되는 광학소자는 고휘도 특성을 유지하면서 저렴한 비용으로 집광 기능을 높이고 넓은 시야각을 구현할 수 있기 때문에 최종적으로 제품의 품질향상에 기여할 수 있다. 이러한 이유에서 본 발명의 광학소자는 향후 디스플레이 장치에서 널리 이용될 수 있을 것으로 판단된다.In view of this aspect, the optical device used in the liquid crystal display according to the present invention can contribute to the improvement of product quality because the light condensing function can be improved and the wide viewing angle can be realized at low cost while maintaining high brightness characteristics. For this reason, the optical device of the present invention is considered to be widely used in the display device in the future.

Claims (30)

  1. 광 투과성을 갖는 베이스 필름;A base film having light transmittance;
    상기 베이스 필름의 적어도 일면에 형성되어 입사광을 확산시키는 다수의 철부; 및A plurality of convex portions formed on at least one surface of the base film to diffuse incident light; And
    상기 각각의 철부 상에 형성되어 입사광을 집광하여 출사시키는 제1 미세광학패턴;A first microscopic optical pattern formed on each of the convex portions to condense and emit incident light;
    을 포함하는 것을 특징으로 하는 광학소자.Optical device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 미세광학패턴은 철부 상의 적어도 일부에 산과 골이 연속적으로 형성된 것을 특징으로 하는 광학소자.The first micro-optic pattern is an optical element, characterized in that the acid and the valley formed continuously on at least a portion on the convex portion.
  3. 제1항에 있어서,The method of claim 1,
    상기 베이스 필름의 다른 일면에 형성되어 입사광을 집광 또는/및 확산시키는 제2 미세광학패턴을 더 포함하는 것을 특징으로 하는 광학소자.And a second microscopic optical pattern formed on the other surface of the base film to condense and / or diffuse incident light.
  4. 제3항에 있어서,The method of claim 3,
    상기 제2 미세광학패턴은 산과 골이 연속적으로 형성된 것을 특징으로 하는 광학소자.The second microscopic optical pattern is an optical element, characterized in that the peak and the valley formed continuously.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 미세광학패턴 및 제2 미세광학패턴은 각각의 산과 골이 서로 평행하게 배열된 것을 특징으로 하는 광학소자.The first microscopic optical pattern and the second microscopic optical pattern is characterized in that each mountain and the valley are arranged in parallel with each other.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 미세광학패턴 및 제2 미세광학패턴은 각각의 산과 골이 소정의 경사각을 이루면서 배열된 것을 특징으로 하는 광학소자.The first microscopic optical pattern and the second microscopic optical pattern is characterized in that each of the mountains and valleys are arranged with a predetermined angle of inclination.
  7. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 철부의 지름은 50~100㎛로 이루어진 것을 특징으로 하는 광학소자.The diameter of the convex portion is an optical element, characterized in that consisting of 50 ~ 100㎛.
  8. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 철부는 장축과 단축을 갖는 도형으로 형성되며, 장축의 길이는 50~100㎛로 이루어지고 단축의 길이는 1~100㎛로 이루어진 것을 특징으로 하는 광학소자.The convex portion is formed in a figure having a long axis and a short axis, the length of the long axis is made of 50 ~ 100㎛ and the length of the short axis is an optical device, characterized in that made of 1 ~ 100㎛.
  9. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 철부의 높이는 10~40㎛로 이루어진 것을 특징으로 하는 광학소자.The height of the convex portion is an optical element, characterized in that consisting of 10 ~ 40㎛.
  10. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 철부 간의 거리는 50~150㎛로 이루어진 것을 특징으로 하는 광학소자.The distance between the convex portion is an optical element, characterized in that consisting of 50 ~ 150㎛.
  11. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 다수의 철부 중 적어도 일부는 그 높이가 상이한 것을 특징으로 하는 광학소자.At least some of the plurality of convex portions are different in height of the optical element.
  12. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 제1 미세광학패턴의 산의 높이는 5~30㎛로 이루어진 것을 특징으로 하는 광학소자.The height of the acid of the first micro-optic pattern is 5 to 30㎛ optical element, characterized in that.
  13. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 제1 미세광학패턴의 산의 폭은 10~30㎛로 이루어진 것을 특징으로 하는 광학소자.The width of the acid of the first micro-optical pattern is 10 to 30㎛ optical element.
  14. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 제1 미세광학패턴은 산의 높이가 서로 다르게 형성된 것을 특징으로 하는 광학소자.The first microscopic optical pattern is characterized in that the height of the mountains formed different from each other.
  15. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 제1 미세광학패턴은 상기 각 철부의 중앙부에 형성된 것을 특징으로 하는 광학소자.And the first microscopic optical pattern is formed at the center of each convex portion.
  16. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 철부 중 상기 제1 미세광학패턴이 형성되지 않은 나머지 부분은, 일정한 곡률로 만곡된 형상으로 이루어진 것을 특징으로 하는 광학소자.The remaining portion of the convex portion in which the first microscopic optical pattern is not formed is formed in a curved shape with a constant curvature.
  17. 제1항 내지 제16항 중 어느 한 항의 광학소자를 포함하는 백라이트 유닛.A backlight unit comprising the optical element of any one of claims 1 to 16.
  18. 제17항에 기재된 백라이트 유닛을 포함하는 액정표시장치.A liquid crystal display device comprising the backlight unit of claim 17.
  19. 광 투과성을 갖는 베이스 필름; 및A base film having light transmittance; And
    상기 베이스 필름의 적어도 일면에 형성되어 입사광을 집광 및 확산시키는 다수의 제3 미세광학패턴; 을 포함하되,A plurality of third microscopic optical patterns formed on at least one surface of the base film to condense and diffuse incident light; Including,
    상기 각 제3 미세광학패턴은 상기 베이스 필름의 표면과 접하는 부분이 장축과 단축을 갖는 도형으로 형성되고, 상기 제3 미세광학패턴에 구비된 산의 높이는 상기 도형의 장축 방향을 따라 그 중심부에서 양단부로 갈수록 낮아지는 것을 특징으로 하는 광학소자.Each of the third microscopic optical patterns is formed as a figure having a long axis and a short axis in contact with the surface of the base film, and the height of the mountains provided in the third microscopic optical pattern is formed at both ends thereof in the center along the long axis direction of the figure. The optical element, characterized in that lowered toward.
  20. 제19항에 있어서,The method of claim 19,
    상기 베이스 필름의 일면에는 다수의 제3 미세광학패턴이 형성되고, 상기 베이스 필름의 다른 일면에는 입사광을 집광 또는/및 확산시키도록 제4 미세광학패턴이 형성된 것을 특징으로 하는 광학소자.A plurality of third microscopic optical patterns are formed on one surface of the base film, and a fourth microscopic optical pattern is formed on the other surface of the base film to condense and / or diffuse incident light.
  21. 제20항에 있어서,The method of claim 20,
    상기 제4 미세광학패턴은 산과 골이 연속적으로 형성된 것을 특징으로 하는 광학소자.The fourth microscopic optical pattern is an optical element, characterized in that the peak and the valley formed continuously.
  22. 제21항에 있어서,The method of claim 21,
    상기 제3 미세광학패턴 및 제4 미세광학패턴은 각각의 산이 소정의 경사각을 이루면서 배열된 것을 특징으로 하는 광학소자.And the third microscopic optical patterns and the fourth microscopic optical patterns are arranged with each acid having a predetermined inclination angle.
  23. 제19항 또는 제20항에 있어서,The method of claim 19 or 20,
    상기 제3 미세광학패턴의 산은 상기 타원형상의 장축을 따라 일정한 곡률반경으로 만곡되어 이루어진 것을 특징으로 하는 광학소자.The mountain of the third microscopic optical pattern is curved with a constant radius of curvature along the long axis of the elliptical shape.
  24. 제19항 또는 제20항에 있어서,The method of claim 19 or 20,
    상기 제3 미세광학패턴의 산의 중심부 높이는 0.2~200㎛로 이루어진 것을 특징으로 하는 광학소자.The height of the center portion of the mountain of the third micro-optical pattern is 0.2 ~ 200㎛ optical element.
  25. 제19항 또는 제20항에 있어서.The method of claim 19 or 20.
    상기 제3 미세광학패턴을 형성하는 도형의 장축 및 단축의 길이는 각각 1~5000㎛ 및 1~100㎛으로 이루어진 것을 특징으로 하는 광학소자.The length of the long axis and short axis of the figure forming the third microscopic optical pattern is 1 to 5000㎛ and 1 to 100㎛, respectively.
  26. 제19항 또는 제20항에 있어서,The method of claim 19 or 20,
    상기 제3 미세광학패턴 사이의 거리는 1~5000㎛로 이루어진 것을 특징으로 하는 광학소자.The distance between the third micro-optic pattern is an optical element, characterized in that consisting of 1 ~ 5000㎛.
  27. 제19항 또는 제20항에 있어서,The method of claim 19 or 20,
    상기 제3 미세광학패턴은 매트릭스 형태로 배열된 것을 특징으로 하는 광학소자.The third microscopic optical pattern is an optical element, characterized in that arranged in the form of a matrix.
  28. 제19항 또는 제20항에 있어서,The method of claim 19 or 20,
    상기 제3 미세광학패턴은 서로 교차로 배열된 것을 특징으로 하는 광학소자.And the third microscopic optical patterns are arranged to cross each other.
  29. 제19항 내지 제28항 중 어느 한 항의 광학소자를 포함하는 백라이트 유닛.29. A backlight unit comprising the optical element of any one of claims 19-28.
  30. 제29항에 기재된 백라이트 유닛을 포함하는 액정표시장치.A liquid crystal display device comprising the backlight unit of claim 29.
PCT/KR2009/003088 2008-06-09 2009-06-09 Optical device, and backlight unit and liquid crystal display comprising the same WO2009151260A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/996,933 US20110085108A1 (en) 2008-06-09 2009-06-09 Optical device, and backlight unit and liquid crystal display including the same
JP2011513420A JP2011523102A (en) 2008-06-09 2009-06-09 Optical element, backlight unit including the same, and liquid crystal display device
CN2009801215991A CN102066991A (en) 2008-06-09 2009-06-09 Optical device, and backlight unit and liquid crystal display comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080053508A KR100985733B1 (en) 2008-06-09 2008-06-09 Optical element, backlight unit and liquid crystal display including the same
KR10-2008-0053508 2008-06-09
KR1020080054991A KR101009707B1 (en) 2008-06-12 2008-06-12 Optical element, backlight unit and liquid crystal display including the same
KR10-2008-0054991 2008-06-12

Publications (2)

Publication Number Publication Date
WO2009151260A2 true WO2009151260A2 (en) 2009-12-17
WO2009151260A3 WO2009151260A3 (en) 2010-03-25

Family

ID=41417237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003088 WO2009151260A2 (en) 2008-06-09 2009-06-09 Optical device, and backlight unit and liquid crystal display comprising the same

Country Status (3)

Country Link
JP (1) JP2011523102A (en)
CN (1) CN102066991A (en)
WO (1) WO2009151260A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056042A (en) * 2012-09-11 2014-03-27 Dainippon Printing Co Ltd Optical sheet, surface light source device, transmissive display device, and production method of optical sheet
EP2904311A1 (en) * 2012-10-08 2015-08-12 Rambus Delaware LLC Article of manufacture with micro-features of differing surface roughness
US10345644B2 (en) 2017-03-21 2019-07-09 Keiwa Inc. Liquid crystal display device and turning film for liquid crystal display device
US10401553B2 (en) 2017-03-21 2019-09-03 Keiwa Inc. Liquid crystal display device and turning film for liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057807A (en) * 1999-02-04 2000-09-25 케이이치 오사무라 Light Diffusing Sheet And Back Light Unit Using Light Diffusing Sheet
KR20060104254A (en) * 2005-03-29 2006-10-09 엘지.필립스 엘시디 주식회사 Liquid crystal display device including optical sheet having protrusion in dual plane
KR20080046312A (en) * 2006-11-22 2008-05-27 희성전자 주식회사 Lgp structure of edge-type backlight unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292790A (en) * 1999-02-04 2000-10-20 Keiwa Inc Light diffusion sheet and back light unit using same
JP4317378B2 (en) * 2003-04-07 2009-08-19 恵和株式会社 Optical sheet and backlight unit using the same
KR20070108794A (en) * 2006-05-08 2007-11-13 미래나노텍(주) Optical sheet and back light assembly of luquid crystal display equipped with the prism sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057807A (en) * 1999-02-04 2000-09-25 케이이치 오사무라 Light Diffusing Sheet And Back Light Unit Using Light Diffusing Sheet
KR20060104254A (en) * 2005-03-29 2006-10-09 엘지.필립스 엘시디 주식회사 Liquid crystal display device including optical sheet having protrusion in dual plane
KR20080046312A (en) * 2006-11-22 2008-05-27 희성전자 주식회사 Lgp structure of edge-type backlight unit

Also Published As

Publication number Publication date
JP2011523102A (en) 2011-08-04
WO2009151260A3 (en) 2010-03-25
CN102066991A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US6244719B1 (en) Surface light source device and liquid crystal display device sign display apparatus and traffic sign display apparatus using the surface light source device
JP2950219B2 (en) Surface light source device, image display device using the surface light source device, and prism array used for the surface light source device
USRE46601E1 (en) Liquid crystal display apparatus
WO2014003389A1 (en) Laminated optical sheet module
WO2018212436A1 (en) Backlight unit and light flux control member for local dimming
WO2016111466A1 (en) Optical sheet and optical display device comprising same
WO2015105317A1 (en) Optical sheet assembly and back-light unit comprising same
WO2016195300A1 (en) Reflective polarizing module having diffusion pattern and backlight unit including same
WO2016159563A1 (en) Optical sheet and backlight unit having same
US20090073722A1 (en) Light source device, display device using same, and terminal device
WO2014104772A1 (en) Optical sheet module
WO2016114597A1 (en) Reflective polarizer module having light recycling improving sheet, and backlight unit having same
WO2009151260A2 (en) Optical device, and backlight unit and liquid crystal display comprising the same
WO2011065806A2 (en) Light guide plate and backlight unit
WO2013105683A1 (en) Microlens array sheet and backlight unit including same
WO2019132367A1 (en) Diffusion sheet having improved shielding performance and backlight unit comprising same
KR20090086759A (en) Prism sheet having lengthwise wave patterned prisms with improved front brightness, back light unit having the prism sheet, and liquid crystal display device having the back light unit
WO2013168990A1 (en) Optical sheet unit
KR100985733B1 (en) Optical element, backlight unit and liquid crystal display including the same
WO2020171506A1 (en) Optical structure for light-emitting diode device and light-emitting diode device for lighting application including the same
WO2013094925A1 (en) Optical film, backlight unit comprising same, and liquid display device comprising optical film
WO2014007508A1 (en) Inverse-prism optical sheet, backlight unit having same, and flat panel display device having same
WO2010047557A2 (en) Optical film, and backlight unit using same
WO2017204413A1 (en) Backlight unit and display device using same
WO2011062461A2 (en) Integrated optical sheet and optical device including same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121599.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762647

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12996933

Country of ref document: US

Ref document number: 2011513420

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762647

Country of ref document: EP

Kind code of ref document: A2