WO2009150482A1 - Dispositivo y método de electro-floculacion continua de alta eficiencia - Google Patents

Dispositivo y método de electro-floculacion continua de alta eficiencia Download PDF

Info

Publication number
WO2009150482A1
WO2009150482A1 PCT/IB2008/001510 IB2008001510W WO2009150482A1 WO 2009150482 A1 WO2009150482 A1 WO 2009150482A1 IB 2008001510 W IB2008001510 W IB 2008001510W WO 2009150482 A1 WO2009150482 A1 WO 2009150482A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid solution
cell
continuous method
conductive component
liquid
Prior art date
Application number
PCT/IB2008/001510
Other languages
English (en)
French (fr)
Inventor
Giovanni Battista Tosco
Original Assignee
Lopez Fernandez, Julio Crescencio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lopez Fernandez, Julio Crescencio filed Critical Lopez Fernandez, Julio Crescencio
Priority to PCT/IB2008/001510 priority Critical patent/WO2009150482A1/es
Publication of WO2009150482A1 publication Critical patent/WO2009150482A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation

Definitions

  • the present invention relates to a novel process in the technical field of electrochemical, chemical and physical.
  • the invention relates to a device that operates through a continuous method of electro-flocculation or electro-coagulation, which can be applied in the domestic, industrial and commercial fields.
  • Some of these areas include, in a non-limiting manner, the treatment, separation and purification of liquid solutions in the chemical, petrochemical, pharmaceutical, textile, electronic, medical, cosmetic, livestock, veterinary, food industry, among others.
  • this invention is preferably used in the purification and purification of water.
  • a pressure higher than the osmotic should be applied to the most concentrated liquid solution, so that the liquid that is to be purified goes through a membrane thus leaving the liquid with impurities on the other side of the semipermeable membrane.
  • the pressure of the reverse osmosis system is generally high and its cost entails high costs.
  • the replacement or cleaning of semipermeable membranes makes maintenance costs significant.
  • the activated sludge system requires a large infrastructure to carry out the steps of primary sedimentation, aeration, secondary sedimentation, sludge recirculation and sediment processing.
  • This system involves various problems such as high energy costs, large area requirements and the confinement of large amounts of sludge.
  • water treated by this system water is obtained for irrigation use that generally does not reach the established levels to be considered as drinking water.
  • the international patent application WO 07037668 describes a water treatment plant comprising three areas: pretreatment, treatment and post-treatment.
  • the pretreatment area consists of a cacarmo where contaminated water is placed and has an ionic flocculator.
  • the treatment area consists of tubs equipped with ionic flocculates that are metal bars that operate with direct current to function as electrodes producing impurity flocculation. Finally, the liquid is pumped to the post-treatment area from the tubs to filter batteries.
  • the international patent application WO 03/089376 explains a novel method of construction of an electro-coagulation cell for water treatment, which consists of a housing in which there is a sacrificable longitudinal central anode and a Helical cathode that runs along and around the anode.
  • this invention presents several problems such as: requiring a replaceable sacrificial anode that generates high maintenance costs, the need for several spacers between the electrodes and the housing, the direct current density ranging from 50 Watts to 2000 Watts, and that the precipitates that produced are gelatinous of AL n (OH) 3 n and Fe (OH) n suspended in aqueous media.
  • this system requires subsequent steps of degasification, conventional flocculation, settlement and filtration.
  • US patent application US2008 / 0053822 presents an easy-to-use and single-step device.
  • This device is restricted to the treatment of water used in polishing optical discs.
  • the apparatus consists of an internal central tubular iron anode that is introduced into an external aluminum tubular cathode where the flocculation of impurities is carried out thanks to the aluminum hydroxide produced during electrolysis. These impurities float until they fall into a chamber external to the cathode itself that has a filter to stop those that stop impurities.
  • This apparatus has as disadvantages that the anode is sacrificable and the filter is replaceable, so that high maintenance costs are generated.
  • the document specifies that to be able to treat the water in a single step, the areas and the current density in the electrodes need to be increased, which suggests a more robust and expensive device. Objectives of the invention
  • Figure 1 is a top front perspective view of the preferred embodiment of the device of the present invention.
  • Figure 2 is a sectional view of Figure 1.
  • the present invention consists of a device and method of continuous treatment of liquid solutions.
  • the device of the present invention in the preferred embodiment consists of a cell (10) consisting of a body (15), preferably cylindrical, hermetically sealed at its two ends by an inlet housing (11 ) and an outlet housing (12) whose shapes are defined according to their function.
  • the inlet housing (11) has support ribs (13) to provide greater structural rigidity to the cell (10).
  • the outlet housing (12) can also have said support ribs. It will be easy for the person with experience in the art to determine that the shape of both housings may additionally possess other elements or variations in their shape, as necessary for their installation and / or support.
  • the body (15) of the cell (10) is embraced by one or more supports (51) and (52) that conform to the shape thereof. The purpose of these supports is to fix the cell (10) within a continuous flow system for the treatment of a liquid solution.
  • the input housing (11) is housed in its central part at least one inlet port (20) through which the liquid solution to be treated inside the cell (10) is introduced.
  • the outlet housing (12) is formed to accommodate at its top at least two outlet holes, preferably an outlet hole of the treated liquid (30), (for example, potable water) and an outlet hole of waste (40).
  • the interior space of the body (15) of the cell (10) there is at least one encapsulated component (60) of a material duly selected in accordance with the liquid substance to be treated.
  • this material has all or part of rare earth elements.
  • a continuous and unidirectional turbulent flow (61) is formed around the component (60) .
  • Component (60) is an electrical conductor and is electrically connected to a positive and negative source of electricity to serve as an anode and cathode, respectively. These electrodes are connected to an external source of electrical energy through wires (16) and (17), whose ends have terminals (18) and (19), respectively.
  • the cell (10) uses direct or alternating current electrical energy.
  • the operation of the cell (10) begins with the pumping of the liquid solution into the cell (10) through the inlet port (20).
  • the pressure at which the liquid solution will be pumped will be determined by its viscosity, volume, type of impurities, among other factors. Preferably, this pressure may range from 1300 kPa to 6000 kPa.
  • the turbulent flow (61) of purified liquid solution will find its exit outside the cell (10) through at least a first substantially cylindrical channel (32) that internally connects to a first conduit (31) which flows into the outlet of treated liquid
  • the first channel (32) has a plurality of holes (33).
  • precipitated contaminant wastes will be disposed through at least a substantially conical second channel (42) that internally connects to a second conduit (41) which flows into the waste outlet orifice (40).
  • sludges consisting mainly of fine sands which facilitates their handling and final disposal.
  • Example 3 Water treatment of the textile industry
  • Example 5 Water treatment of a degreasing line
  • the resulting water at the end of the process has similar or better characteristics to that of an oligomineral spring water.
  • Table 6 below contains the characteristics of nominal rejection of the cell described in the present invention:
  • the present invention can successfully purify and purify industrial water and wastewater, with pollutants of various origins such as those generated in the galvanizing industry, metal processes, packaging factories, textiles, textile industry paint, container cleaning, graphic industry, food industry, pharmaceutical, dairy and cheese industry, etc.
  • pollutants of various origins such as those generated in the galvanizing industry, metal processes, packaging factories, textiles, textile industry paint, container cleaning, graphic industry, food industry, pharmaceutical, dairy and cheese industry, etc.
  • the versatility of this process allows different toxic compounds and contaminants to be separated without major changes in cell designs.
  • the addition of metal ions allows rapid and efficient separation to be carried out.
  • water regains its purity once substances such as heavy metals, emulsions, detergents, organic substances or hydrocarbons have been removed.
  • the proposed invention works without the addition of chemicals in the process. This is not only reflected in direct costs, but also influences download costs.
  • the addition of ions does not increase the number of salts in the water to be treated and half or a third of waste or sludge is produced.
  • the waste is specially disposed in the form of fine sands which facilitates its handling and final disposal.
  • a significant advantage of the cell is its low maintenance costs, since the described electrodes are not sacrificed, so replacement is not necessary.
  • encapsulated components can be considered as clean technology for the environment.
  • Another advantage refers to the use of the properly balanced cell with an adequate catalytic activity allows to achieve high efficiencies of the electric energy used, which is substantially lower compared to that used by existing devices.
  • different electrochemical reactions can be obtained for the various uses mentioned.
  • real-time monitoring and data collection equipment can be used for process automation.
  • Another advantageous feature of the invention is that with this type of method it is possible to carry out disinfection due to anodic oxidation, with a remarkable bactericidal effect. Particularly, in the case of the water treated through the present invention, it responds to the current environmental requirements. It can be reused in the production process, purified or unloaded without damaging the environment.
  • the preferred embodiment of the invention has been described and illustrated and it should be taken into account that it is possible to make several modifications thereto without thereby departing from the spirit and scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Un dispositivo y método de tratamiento continuo de soluciones líquidas, que utiliza una celda sustancialmente hermética. En la zona superior de dicha celda, se disponen un orificio de entrada y dos orificios de salida de la solución líquida. En el interior la celda posee componentes de tierra rara encapsulados conductores, formando así una vía de flujo unidireccional sustancialmente cerrada. Dichos componentes forman un material conductor que están conectados eléctricamente a una fuente de electricidad positiva y negativa para servir como ánodo y cátodo caracterizado porque dichos electrodos no se sacrifican. Se aplica un voltaje a al ánodo y al cátodo generando un campo eléctrico. Durante el flujo del agua a través de dicha vía, ésta se va polarizando y por lo tanto las impurezas se van coagulando para ser separadas en un sólo paso.

Description

DISPOSITIVO Y MÉTODO DE ELECTRO-FLOCULACION CONTINUA DE ALTA
EFICIENCIA
Campo técnico de la invención
La presente invención se relaciona con a un novedoso proceso del campo técnico de la electro química, química y física. Particularmente, la invención se refiere a un dispositivo que funciona a través de un método continuo de electro- floculación o electro-coagulación, que se puede aplicar en los ámbitos doméstico, industrial y comercial. Algunos de estos ámbitos incluyen de manera no limitativa el tratamiento, separación y purificación de soluciones líquidas en la industria química, petroquímica, farmacéutica, textil, electrónica, médica, cosmética, ganadera, veterinaria, alimenticia, entre otras. De manera no excluyente se específica que esta invención es preferentemente utilizada en la purificación y potabilización de agua.
Antecedentes de la invención
Existen diversos procesos para el tratamiento de soluciones líquidas, entre los que se encuentran procesos por evaporación, osmosis inversa, lodos activados, floculación química y electrodiálisis . Actualmente, muchos de estos procesos presentan desventajas que se describen a continuación .
Por lo que respecta a los procesos de evaporación, se debe suministrar energía suficiente para evaporar el líquido en una
COPIA DE CONFIRMACIÓN o varias etapas, lo cual es costoso dependiendo de los medios energéticos que se utilicen.
En relación a la osmosis inversa, se debe aplicar a la solución líquida más concentrada una presión superior a la osmótica, para que el liquido que se busca purificar atraviese por una membrana dejando así del otro lado de la membrana semipermeable el líquido con impurezas. La presión del sistema de osmosis inversa generalmente es alta y su obtención conlleva altos costos. Además, la sustitución o limpieza de las membranas semipermeables hacen que los costos de mantenimiento sean significativos.
Por otra parte, el sistema de lodos activados requiere de una gran infraestructura para llevar a cabo los pasos de sedimentación primaria, aeración, sedimentación secundaria, recirculación de lodos y procesamiento de sedimentos. Este sistema conlleva diversos problemas como los elevados gastos energéticos, requerimiento de grandes áreas y la confinación de gran cantidad de lodos. Además, en el caso de agua tratada por este sistema, se obtiene un agua para uso de riego que generalmente no alcanza los niveles establecidos para poder considerarse como agua potable.
Existe también la técnica de floculación química en donde, con la adición de sustancias químicas floculantes, se aglutinan las impurezas de la solución líquida, facilitando su decantación y filtrado. Las desventajas de esta técnica son los altos costos de los productos químicos, por ejemplo el sulfato de aluminio, cloruro férrico, entre otros, y la posible contaminación por parte de estos floculantes del líquido residual. Además, las impurezas precipitadas que se producen son gelatinosas y quedan suspendidas en medios acuosos que dificultan su transportación, manejo y disposición finales. La electrodiálisis consiste en la separación iónica a través de una serie de membranas situadas consecutivamente y separadas entre si. La aplicación de energía eléctrica genera la migración de iones que pasan por estas membranas, actuando éstas como tamices. Lamentablemente, los aparatos que integran esta tecnología son de alto costo y utilizan altas cantidades de energía eléctrica.
Existe en el estado de la técnica plantas de tratamiento de agua que buscan reducir las altas cantidades de energía eléctrica que utilizan. Por ejemplo, la solicitud de patente internacional WO 07037668 describe una planta de tratamiento de agua que comprende tres áreas: pretratamiento, tratamiento y postratamiento. El área de pretratamiento consiste en un cárcamo en donde se colocan las aguas contaminadas y posee un floculador iónico. El área de tratamiento consiste en unas tinas equipadas con floculadotes iónicos que son barras metálicas que funcionan con corriente directa para fungir como electrodos produciendo floculación de impurezas. Finalmente, el líquido es bombeado al área de postratamiento desde las tinas hasta unas baterías de filtrado. Como se podrá apreciar esta planta de tratamiento de agua presenta varias desventajas ya que requiere de muchos componentes tales como: motobombas, floculadotes iónicos ultrarrápidos, filtros de lecho profundo, tinas, cárcamo, entre otros, por lo que la instalación de la planta necesita bastante espacio y su costo es alto. Otra desventaja es que este tipo de tratamiento por etapas requiere una duración de alrededor de cinco horas y media. Además, el agua no fluye de manera continua a lo largo del proceso, sino que debe estar estacionada en ciertas etapas. Finalmente, las baterías de filtros, así como los electrodos del sistema que se sacrifican, deben ser remplazados continuamente durante acciones de mantenimiento. A este respecto, existen en el estado de la técnica algunos documentos de patentes que protegen métodos, procesos y aparatos que utilizan este principio de electrodiálisis y que buscan hacerlo en un sólo paso. A continuación se citan algunas de estos documentos:
La solicitud de patente internacional WO 00/73215 describe un aparato robusto de electro- floculación para producir agua pura a partir de agua de desecho en un solo paso. Dicho aparato consiste en una carcasa substancialmente cilindrica con un arreglo interno de electrodos metálicos que se sacrifican, preferentemente de hierro y aluminio, en forma de discos perforados dispuestos en forma paralela y horizontal. Para su óptimo funcionamiento, este aparato requiere de una bomba mezcladora que añade iones Al+++ y Fe+++ al agua de entrada para agilizar o acelerar el proceso y reducir así el desgaste de los electrodos. Esta solución presenta diversos problemas ya que requiere de un paso previo de filtrado inicial de partículas sólidas, utiliza corriente alterna en un rango de 2 a 60 volts y la inyección de iones a la entrada del sistema no favorece de manera substancial la duración de los electrodos, que finalmente deberán ser remplazados generando altos costos de mantenimiento.
Por otro lado, la solicitud de patente internacional WO 03/089376 explica un novedoso método de construcción de una celda de electro-coagulación para el tratamiento de agua, que consiste en una carcasa en cuyo interior se dispone de un ánodo central longitudinal sacrificable y un cátodo helicoidal que corre a lo largo y alrededor del ánodo. Sin embargo, esta invención presenta diversos problemas como: el requerir un ánodo sacrificable reemplazable que genera altos costos de mantenimiento, la necesidad de varios espaciadores entre los electrodos y la carcasa, la densidad de corriente directa que oscila entre 50 Wat y 2000 Wat, y que los precipitados que se producen son gelatinosos de ALn (OH) 3n y Fe(OH)n suspendidos en medios acuosos. Finalmente, este sistema requiere pasos posteriores de des-gasificación, floculación convencional, asentamiento y filtrado.
La solicitud de patente internacional WO2008/029258 describe un reactor electroquímico para el tratamiento de agua que incluye un ánodo, un cátodo y uno o más electrodos sólidos de diamante en un arreglo de bipolar. Además este documento sugiere la aplicación dopante en los electrodos, lo que sugiere la utilización de técnicas muy costosas. El documento menciona que este tipo de electrodos poseen una vida útil más larga que los electrodos comunes, pero no elimina totalmente el desgaste que sufren los electrodos. Asimismo, el diamante es un material especialmente conocido por su elevado precio en el mercado. Lo anterior aunado al arreglo del reactor hace a esta invención compleja y de alto costo.
Finalmente, la solicitud de patente estadounidense US2008/0053822 presenta un aparato de fácil uso y de un solo paso. Este aparato se restringe al tratamiento de agua utilizada en pulido de discos ópticos. El aparato consiste en un ánodo tubular central interno de hierro que es introducido en un cátodo tubular externo de aluminio en donde se lleva a cabo la floculación de las impurezas gracias al hidróxido de aluminio que se produce durante la electrólisis. Estas impurezas flotan hasta caer en una cámara externa al cátodo misma que posee un filtro para detener las que detiene impurezas. Este aparato presenta como desventajas que el ánodo es sacrificable y el filtro es reemplazable, por lo que se generan altos costos de mantenimiento. Además el documento especifica que para poder tratar el agua en un solo paso se necesitan incrementar las áreas y la densidad de corriente en los electrodos, lo que sugiere un aparato más robusto y costoso. Objetivos de la invención
Con base en lo anteriormente expuesto, existe en el estado de la técnica la necesidad de un dispositivo compacto capaz de:
• Separar los compuestos contenidos dentro de soluciones líquidas de manera eficaz con un bajo costos de energía eléctrica.
• Separar los compuestos contenidos dentro de soluciones líquidas sin la adición de químicos floculantes.
• Eliminar los costos y tiempos de mantenimiento mediante el uso de electrodos no sacrificables
• Eliminar los costos y tiempos de mantenimiento sin necesidad de emplear filtros o membranas desechables.
• Proporcionar los sedimentos o precipitaciones de compuestos separados en forma de polvo sólido para facilitar su manejo.
• Procesar grandes flujos másicos de soluciones líquidas en un tiempo razonable y de manera continua.
• Dar como resultado separaciones de alta pureza.
• Efectuar todas estas funciones y ventajas en un dispositivo eficiente, de tamaño compacto y en un sólo paso. Descripción de los dibujos
Para un mayor entendimiento de la invención se ilustrará ahora con referencia a las siguientes figuras:
Figura 1, es una vista en perspectiva frontal superior de la modalidad preferida del dispositivo de la presente invención.
Figura 2, es una vista en corte de la Figura 1.
Descripción detallada de la invención
La presente invención consiste en un dispositivo y método de tratamiento continuo de soluciones líquidas. Tal como se observa en la figura 1 el dispositivo de la presente invención en la modalidad preferida consiste en una celda (10) que consta de un cuerpo (15) , preferentemente cilindrico, herméticamente sellado en sus dos extremos por una carcasa de entrada (11) y una carcasa de salida (12) cuyas formas están definidas según su función. Preferentemente, la carcasa de entrada (11) posee costillas de soporte (13) para brindar una mayor rigidez estructural a la celda (10) . Asimismo, la carcasa de salida (12) también puede poseer dichas costillas de soporte. Será fácil para la persona con experiencia en la técnica determinar que la forma de ambas carcasas adicionalmente puede poseer otros elementos o variaciones en su forma, según sean necesarios para su instalación y/o soporte. Finalmente, el cuerpo (15) de la celda (10) está abrazado por uno o más soportes (51) y (52) que se amoldan a la forma del mismo. La finalidad de estos soportes es fijar a la celda (10) dentro de un sistema de flujo continuo para el tratamiento de una solución líquida.
En la modalidad preferente que se ilustra en la figura 1, se puede observar que la carcasa de entrada (11) aloja en su parte central al menos un orificio de entrada (20) por el que se introduce la solución líquida que se desea tratar al interior de la celda (10) . De manera similar, la carcasa de salida (12) está conformada para alojar en su parte superior al menos dos orificios de salida, preferentemente un orificio de salida del líquido tratado (30) , (por ejemplo, agua potabilizada) y un orificio de salida de desechos (40) .
Como se puede observar en la figura 2, en el espacio interior del cuerpo (15) de la celda (10) se dispone al menos un componente (60) encapsulado de un material debidamente seleccionado de conformidad con la sustancia líquida a tratar. Preferentemente, este material posee total o parcialmente elementos de tierra rara. Alrededor del componente (60) se forma un flujo turbulento (61) continuo y unidireccional. El componente (60) es conductor de electricidad y está conectado eléctricamente a una fuente de electricidad positiva y negativa para servir como ánodo y cátodo, respectivamente. Estos electrodos se conectan a una fuente externa de energía eléctrica a través de unos cables (16) y (17) , cuyos extremos poseen terminales (18) y (19), respectivamente. La celda (10) utiliza energía eléctrica de corriente directa o alterna.
El funcionamiento de la celda (10) comienza con el bombeo de la solución líquida hacia el interior de la celda (10) a través del orificio de entrada (20) . La presión a la que se bombeará la solución líquida estará determinada por su viscosidad, volumen, tipo de impurezas, entre otros factores. Preferentemente, esta presión puede oscilar entre los de 1300 kPa a 6000 kPa.
Al interior del cuerpo (15) de la celda (10) ocurre un proceso que involucra la adición electrolítica de iones metálicos coagulantes directamente a los electrodos, sin sacrificar a estos últimos. Durante este proceso se aplica un voltaje determinado al ánodo y al cátodo, generando así un campo eléctrico. En la modalidad preferida, el voltaje aplicado es de 14 voltios y la corriente es de 2 amperes.
Mientras la solución líquida fluye a través del flujo turbulento (61), la solución se va polarizando. Esta polarización permite que las impurezas se vayan coagulando, separándolas a su paso. Los iones metálicos permiten que los contaminantes se aglomeren para separarlos de la solución durante su recorrido. Los contaminantes son removidos debido a que son arrastrados y separados por una pluralidad de micro burbujas de gas que se generan en el sistema, (H2 y O2) cuando la solución líquida es a base de agua, permitiendo que los contaminantes floten en la superficie de la celda (10) , en donde serán comprimidos y precipitados por la presión del sistema.
Finalmente, el flujo turbulento (61) de solución líquida purificada encontrará su salida fuera de la celda (10) a través de al menos un primer canal (32) substancialmente cilindrico que conecta internamente a un primer conducto (31) el cual desemboca en el orificio de salida del líquido tratado
(30) . Preferentemente, el primer canal (32) posee una pluralidad de orificios (33) . Por otra parte, los desechos contaminantes precipitados serán eliminados a través de al menos un segundo canal (42) substancialmente cónico que conecta internamente a un segundo conducto (41) el cual desemboca en el orificio de salida de desechos (40) . Estos contaminantes son eliminados en forma de lodos constituidos principalmente por arenas finas lo que facilita su manejo y disposición final.
Durante el método aquí descrito, existen distintas variables involucradas que inducen en la celda (10) la inyección de iones metálicos para aglutinar los contaminantes dispersos en la solución líquida y el aprovechamiento de la formación del gas que arrastra hacia la superficie los contaminantes. Asimismo, debido a las reacciones de oxidación- reducción que ocurren al interior de la celda (10) , es posible desestabilizar contaminantes con baja capacidad digestiva y tóxica para que puedan ser removidos adecuadamente con otros procedimientos, por ejemplo con procedimientos biológicos.
Es posible controlar el potencial eléctrico de la celda para seleccionar la reacción electroquímica deseada según el contaminante y solución líquida a tratar. Para este control se pueden utilizar dispositivos controladores eléctricos y electrónicos como los que se conocen en el estado de la técnica (no ilustrados) , y cuya descripción queda fuera de la materia a la que se refiere la presente invención. También, es factible adquirir datos en tiempo real para la automatización del proceso.
La aplicación de cada una de las variables mencionadas dependerá directamente del tipo de solución líquida y el tipo de contaminantes a separar. Los siguientes ejemplos ilustran algunas aplicaciones prácticas de la presente invención, en donde se incluyen datos de las muestras utilizadas antes y después de someterse al tratamiento de la celda descrita.
Ejemplos
Ejemplo 1: Eliminación de tenso activos en agua
Figure imgf000013_0001
Ejemplo 2: Agua de vertido de industria petroquímica
Figure imgf000013_0002
Ejemplo 3: Tratamiento de agua de la industria textil
Figure imgf000013_0003
Ejemplo 4: Tratamiento de agua de la industria de aplicación de pintura
Figure imgf000013_0004
Ejemplo 5: Tratamiento de agua de una línea de desengrase- fosfatado
Figure imgf000014_0001
Cabe resaltar que en los ejemplos anteriormente citados, el agua resultante al final del proceso posee características similares o mejores a la de un agua oligomineral de manantial.
A continuación se incorpora a la presente la tabla 6 que contiene las características de rechazo nominal de la celda descrita en la presente invención:
TABLA 6 CARACTERÍSTICAS DE RECHAZO NOMINAL
IONES Y CONTAMINANTES RECHAZO %
Calcio 93 - 98
Sodio 92 - 98
Magnesio 93 - 98
Potasio 92 - 96
Manganeso 96 - 98
Hierro 96 - 98
Aluminio 96 - 98
Cobre 96 - 98
Níquel 96 - 98
Cadmio 93 - 97
Plata 93 - 96
Mercurio 94 - 97
Dureza calcio & magnesio 93 - 97
Radiactividad 93 - 97
Cloruro 92 - 95 Amonio 80 - 90
Bromuro 90 - 95
Fosfato . 95 - 98
Cianuro 85 - 95
Sulfato 96 - 98
Hiposulfito 96 - 98
Silicato 92 -95
Sílice 80 - 90
Nitrato 90 - 95
Boro 50 - 70
Borato 30 - 50
Fluoruro 92 - 95
Poli fosfato 96 - 98
Orto fosfato 96 - 98
Cromato 85 - 95
Bacterias 99 .8 +
Plomo 95 - 98
Zinc 96 - 98
Como se ha mencionado anteriormente, la presente invención puede depurar y potabilizar con éxito agua industrial y aguas residuales, con contaminantes de diversos orígenes como las que se generan en la industria de galvanizados, procesos de metales, fábricas de embalaje, textil, industria de la pintura, limpieza de contenedores, industria gráfica, industria alimenticia, farmacéutica, industria de lácteos y quesera, etc. La versatilidad de este proceso permite separar distintos compuestos tóxicos y contaminantes sin mayores cambios en los diseños de la celda.
Gracias a la adición de los iones metálicos se puede llevar a cabo una separación rápida y eficaz. Además, el agua recupera su pureza una vez que substancias tales como metales pesados, emulsiones, detergentes, sustancias orgánicas o hidrocarburos han sido eliminadas. La invención que se propone funciona sin la adición de químicos en el proceso. Esto no sólo se refleja en los costos directos, sino que además influyen en costos de descarga. Por ejemplo, en la presente invención la adición de los iones no aumenta el número de sales en el agua a tratar y se produce la mitad o una tercera parte de desechos o lodos. Además, los desechos son especialmente eliminados en forma de arenas finas lo que facilita su manejo y disposición final.
Una ventaja significativa de la celda son sus bajos costos de mantenimiento, ya que los electrodos descritos no se sacrifican, por lo que no es necesario su reemplazo. Además, los componentes encapsulados pueden considerarse como tecnología limpia para el medio ambiente.
Otra ventaja más se refiere al empleo de la celda debidamente balanceada con una adecuada actividad catalítica permite lograr altas eficiencias de la energía eléctrica utilizada, que es substancialmente menor en comparación a la utilizada por los dispositivos existentes. Además, gracias al control del potencial eléctrico de la celda se pueden obtener distintas reacciones electroquímicas para los diversos usos citados. Conjuntamente, se pueden utilizar equipos de monitoreo y obtención de datos en tiempo real para la automatización del proceso.
Otra característica ventajosa de la invención es que con este tipo de método es posible llevar a cabo la desinfección debido a la oxidación anódica, con un notable efecto bactericida. Particularmente, en el caso del agua tratada a través de la presente invención, ésta responde a las exigencias medioambientales actuales. Puede ser reutilizada en el proceso de producción, potabilizada o ser descargada sin dañar al medio ambiente . Se ha descrito e ilustrado la modalidad preferida de la invención y debe tomarse en cuenta que es posible hacer varias modificaciones a las mismas sin por ello apartarse del espíritu y alcance de la invención.

Claims

REIVINDICACIONES
1. Un dispositivo de tratamiento de solución líquida contaminada que consiste en: una celda que consta de un cuerpo herméticamente sellado en sus dos extremos por una carcasa de entrada y una carcasa de salida, la carcasa de entrada aloja al menos un orificio de entrada y la carcasa de salida aloja al menos dos orificios de salida, caracterizado porque: el orificio de entrada está adaptado para recibir la solución líquida a presión; en el espacio interior del cuerpo se dispone de al menos un componente conductor de electricidad que está conectado eléctricamente a una fuente de energía eléctrica positiva y negativa para servir como electrodos que no se sacrifican; y el dispositivo trabaja con un flujo continuo y en un solo paso.
2. El dispositivo de la reivindicación 1, caracterizado porque el cuerpo es preferentemente cilindrico.
3. El dispositivo de la reivindicación 1, caracterizado porque la carcasa de entrada y la carcasa de salida poseen formas definidas según su función.
4. El dispositivo de la reivindicación 1, caracterizado porque la carcasa de entrada posee costillas de soporte para brindar una mayor rigidez estructural a la celda.
5. El dispositivo de la reivindicación 1, caracterizado porque la carcasa de salida puede poseer costillas de soporte.
6. El dispositivo de la reivindicación 1, caracterizado porque el cuerpo está abrazado por uno o más soportes que se amoldan a la forma del mismo.
7. El dispositivo de la reivindicación 1, caracterizado porque al menos un orificio de salida es para líquido tratado.
8. El dispositivo de la reivindicación 1, caracterizado porque al menos un orificio de salida es para desechos contaminantes .
9. El dispositivo de la reivindicación 1, caracterizado porque el componente conductor está encapsulado.
10. El dispositivo de la reivindicación 9, caracterizado porque el componente conductor está formado de un material debidamente seleccionado de conformidad con la sustancia líquida a tratar.
11. El dispositivo de la reivindicación 10, caracterizado porque el material posee total o parcialmente elementos de tierra rara.
12. El dispositivo de la reivindicación 1, caracterizado porque el componente conductor se conecta a la fuente externa de energía eléctrica a través de unos cables.
13. El dispositivo de la reivindicación 12, caracterizado porque los cables poseen terminales en sus extremos.
14. El dispositivo de la reivindicación 12, caracterizado porque la fuente externa de energía eléctrica es de corriente directa o corriente alterna.
15. El dispositivo de la reivindicación 1, caracterizado porque el dispositivo opera preferentemente con un voltaje de 14 voltios y una corriente de 2 amperes.
16. El dispositivo de la reivindicación 7, caracterizado porque al menos un primer canal conecta internamente a un primer conducto el cual desemboca en el orificio de salida del líquido tratado.
17. El dispositivo de la reivindicación 8, caracterizado porque al menos un segundo canal que conecta internamente a un segundo conducto el cual desemboca en el orificio de salida de desechos .
18. El dispositivo de la reivindicación 16, caracterizado porque el primer canal es substancialmente cilindrico.
19. El dispositivo de la reivindicación 16, caracterizado porque el primer canal preferentemente posee una pluralidad de orificios.
20. El dispositivo de la reivindicación 17, caracterizado porque el segundo canal es substancialmente cónico.
21. El dispositivo de la reivindicación 8, caracterizado porque los desechos son eliminados en forma de lodos constituidos principalmente por arenas finas.
22. El dispositivo de la reivindicación 1, caracterizado porque la presión está determinada por la viscosidad, volumen, tipo de impurezas, entre otros factores de la solución líquida.
23. El dispositivo de la reivindicación 1, caracterizado porque la presión puede oscilar entre los de 1300 kPa a 6000 kPa.
24. El dispositivo de la reivindicación 1, caracterizado porque alrededor del componente conductor se forma un flujo turbulento continuo y unidireccional .
25. El dispositivo de la reivindicación 24, caracterizado porque el componente conductor produce una adición electrolítica de iones metálicos coagulantes en el flujo turbulento .
26. El dispositivo de la reivindicación 25, caracterizado porque el flujo de solución líquida se va polarizando y los iones metálicos permiten que los contaminantes se aglomeren para separarlos de la solución líquida durante su recorrido y son arrastrados por una pluralidad de micro burbujas de gas.
27. El dispositivo de la reivindicación 26, caracterizado porque la pluralidad de micro burbujas de gas que se generan en el sistema comprenden H2 y O2 cuando la solución líquida es a base de agua.
28. Un método continuo de tratamiento de solución líquida contaminada caracterizado por los siguientes pasos: introducir la solución líquida hacia el interior de una celda a través de un orificio de entrada a una presión determinada; circular energía eléctrica a través de un componente conductor al interior de la celda conectado eléctricamente a una fuente de electricidad positiva y negativa para servir como electrodos; generar un flujo turbulento de solución líquida alrededor del componente en donde sucede una la adición electrolítica de iones metálicos coagulantes sin sacrificar a los electrodos; polarizar el flujo turbulento de solución líquida para que los iones metálicos permitan que los contaminantes se aglomeren para separarlos de la solución durante su recorrido y arrastrarlos por una pluralidad de micro burbujas de gas en donde serán comprimidos y precipitados por la presión del sistema; pasar el flujo de solución líquida purificada a través de un primer canal que conecta internamente a un primer conducto el cual desemboca en un orificio de salida del líquido tratado fuera de la celda; y pasar los contaminantes precipitados a través de un segundo canal que conecta internamente a un segundo conducto el cual desemboca en un orificio de salida de desechos.
29. El método continuo de la reivindicación 28, caracterizado porque el componente conductor está encapsulado.
30. El método continuo de la reivindicación 28, caracterizado porque el componente conductor está formado de un material debidamente seleccionado de conformidad con la sustancia líquida a tratar.
31. El método continuo de la reivindicación 30, caracterizado porque el material posee total o parcialmente elementos de tierra rara.
32. El método continuo de la reivindicación 28, caracterizado porque la energía eléctrica que se hace circular es de corriente directa o corriente alterna.
33. El método continuo de la reivindicación 28, caracterizado porque la energía eléctrica que se hace circular es un voltaje de 14 voltios y una corriente de 2 amperes.
34. El método continuo de la reivindicación 28, caracterizado porque los desechos son eliminados en forma de lodos constituidos principalmente por arenas finas.
35. El método continuo de la reivindicación 28, caracterizado porque la presión está determinada por la viscosidad, volumen, tipo de impurezas, entre otros factores de la solución líquida.
36. El método continuo de la reivindicación 28, caracterizado porque la presión puede oscilar entre los de 1300 kPa a 6000 kPa.
37. El método continuo de la reivindicación 28, caracterizado porque la pluralidad de micro burbujas de gas que se generan en el sistema comprenden H2 y O2 cuando la solución líquida es a base de agua.
PCT/IB2008/001510 2008-06-11 2008-06-11 Dispositivo y método de electro-floculacion continua de alta eficiencia WO2009150482A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2008/001510 WO2009150482A1 (es) 2008-06-11 2008-06-11 Dispositivo y método de electro-floculacion continua de alta eficiencia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2008/001510 WO2009150482A1 (es) 2008-06-11 2008-06-11 Dispositivo y método de electro-floculacion continua de alta eficiencia

Publications (1)

Publication Number Publication Date
WO2009150482A1 true WO2009150482A1 (es) 2009-12-17

Family

ID=41416404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/001510 WO2009150482A1 (es) 2008-06-11 2008-06-11 Dispositivo y método de electro-floculacion continua de alta eficiencia

Country Status (1)

Country Link
WO (1) WO2009150482A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288254A (zh) * 2012-02-29 2013-09-11 张太亮 石油钻井废水电裂解催化氧化工艺及装置
CN111517430A (zh) * 2020-05-14 2020-08-11 逸辰环保科技(厦门)有限公司 一种废水控盐排放的电吸附设备、系统及其工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443320A (en) * 1981-01-30 1984-04-17 King Arthur S Liquid treater having electrical charge injection means
EP0794157A1 (en) * 1996-03-05 1997-09-10 Ming Shing Lee Water treatment by means of electroflotation and electrocoagulation
EP1053976A1 (en) * 1999-05-21 2000-11-22 Applied Oxidation Technologies (2000) Inc. Waste water treatment method and apparatus
WO2000073215A2 (en) * 1999-05-27 2000-12-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem An electro-flocculation process and apparatus
ES2257280T3 (es) * 1999-02-25 2006-08-01 Csem Centre Suisse D'electronique Et De Microtechnique Sa Pila electrolitica con electrodo bipolar.
WO2008029258A2 (en) * 2006-09-05 2008-03-13 Element Six Limited Solid electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443320A (en) * 1981-01-30 1984-04-17 King Arthur S Liquid treater having electrical charge injection means
EP0794157A1 (en) * 1996-03-05 1997-09-10 Ming Shing Lee Water treatment by means of electroflotation and electrocoagulation
ES2257280T3 (es) * 1999-02-25 2006-08-01 Csem Centre Suisse D'electronique Et De Microtechnique Sa Pila electrolitica con electrodo bipolar.
EP1053976A1 (en) * 1999-05-21 2000-11-22 Applied Oxidation Technologies (2000) Inc. Waste water treatment method and apparatus
WO2000073215A2 (en) * 1999-05-27 2000-12-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem An electro-flocculation process and apparatus
WO2008029258A2 (en) * 2006-09-05 2008-03-13 Element Six Limited Solid electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288254A (zh) * 2012-02-29 2013-09-11 张太亮 石油钻井废水电裂解催化氧化工艺及装置
CN111517430A (zh) * 2020-05-14 2020-08-11 逸辰环保科技(厦门)有限公司 一种废水控盐排放的电吸附设备、系统及其工艺
CN111517430B (zh) * 2020-05-14 2022-04-15 逸辰环保科技(厦门)有限公司 一种废水控盐排放的电吸附设备、系统及其工艺

Similar Documents

Publication Publication Date Title
Akbal et al. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation
US8460520B2 (en) Electrochemical system and method for the treatment of water and wastewater
US8333873B2 (en) Apparatus for electrolyzing an electrolytic solution
EP2035337B1 (en) Portable ozone generator and use thereof for purifying water
US20080223731A1 (en) Advanced Electro-Coagulation Device And Process Of Using The Same For Wastewater Treatment
ITMI20090547A1 (it) Processo e reattore di elettrocoagulazione con elettrodi di materiale nanostrutturato a base di carbonio per la rimozione di contaminanti dai liquidi
CA2434646C (en) High efficiency electrolysis cell for generating oxidants in solutions
ES2745979T3 (es) Sistema y método para tratar fluidos mediante sonoelectroquímica
JP2008544837A (ja) 水処理装置
EP2804837A1 (en) Water purification system
GB2515324A (en) Electrolytic advance oxidation processes to treat wastewater, brackish and saline water without hydrogen evolution
JP2009106910A (ja) 流体処理装置
US20190135661A1 (en) Electrochemical liquid treatment apparatus
JP4394941B2 (ja) 電解式オゾナイザ
WO2009150482A1 (es) Dispositivo y método de electro-floculacion continua de alta eficiencia
CN212127829U (zh) 一种反渗透浓缩液电解回收装置
CN108409030A (zh) 一种多单元海水淡化装置及方法
KR101208316B1 (ko) 전기화학 작용을 이용한 자동 정수처리장치
JP2006198619A (ja) 液体の処理方法及びその装置
KR101145975B1 (ko) 정수기
CN211972032U (zh) 电解污水处理器
CN103145255B (zh) 一种净水机及一体化电解滤芯结构
CN208182796U (zh) 一种多单元海水淡化装置
KR200386781Y1 (ko) 나권형 전극을 이용한 전기응집 처리 장치
JP2014004568A (ja) 水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08762843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08762843

Country of ref document: EP

Kind code of ref document: A1