WO2009148257A2 - Novel silicon-based compound, production method thereof, and organic light-emitting element employing the same - Google Patents

Novel silicon-based compound, production method thereof, and organic light-emitting element employing the same Download PDF

Info

Publication number
WO2009148257A2
WO2009148257A2 PCT/KR2009/002944 KR2009002944W WO2009148257A2 WO 2009148257 A2 WO2009148257 A2 WO 2009148257A2 KR 2009002944 W KR2009002944 W KR 2009002944W WO 2009148257 A2 WO2009148257 A2 WO 2009148257A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbon atoms
compound
layer
organic light
Prior art date
Application number
PCT/KR2009/002944
Other languages
French (fr)
Korean (ko)
Other versions
WO2009148257A3 (en
Inventor
김영은
연규만
이정섭
김태형
김경수
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2009148257A2 publication Critical patent/WO2009148257A2/en
Publication of WO2009148257A3 publication Critical patent/WO2009148257A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the present invention can improve the thermal stability, the luminous efficiency, the luminance, the current efficiency, the power efficiency, etc. of the device when introduced into the organic layer of the organic light emitting device, in particular, the hole injection layer, the hole transport layer, and / or the electron blocking layer.
  • the present invention relates to a silicon compound, a method of manufacturing the same, and an organic light emitting device using the same.
  • the organic light emitting device is a self-light emitting device using a principle that a fluorescent material emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying a voltage.
  • electroluminescent (EL) devices Since the first development of electroluminescent (EL) devices by Tang in 1987, many kinds of materials for electroluminescent devices have been developed. However, the commercially available electroluminescent device has a low luminance when it is used for a long time and its durability is also lowered due to deterioration, and thus it is necessary to improve this.
  • materials constituting the organic layer in particular, the hole injection material and the hole transport material constituting the hole injection and transfer layer must be thermally and electrically stable.
  • a voltage is applied to the device, heat is generated in the device.
  • the heat may cause a rearrangement phenomenon, and in the part where the rearrangement occurs, destruction of the device due to deterioration is accelerated. Can shorten the service life. Therefore, it is preferable that the material which comprises the organic layer of an element maintains amorphousness, and it is so preferable that the glass transition temperature is high.
  • Conventional hole injection materials include CuPc, m-MTDATA, 2-TNATA, and the like. Since CuPc of the following Chemical Formula 1 is a metal complex, it is excellent in adhesion to the electrode (ITO), stable, and also excellent in hole mobility, and thus is preferable as a hole injection material, but has a disadvantage in that it absorbs light in the visible region. , Currently not used.
  • m-MTDATA of the following formula (2) has a glass transition temperature of about 78 °C, thermal stability is poor, there is a problem of crystallization, its use is currently insignificant.
  • 2-TNATA of the following formula (3) has a glass transition temperature of about 108 °C, it is possible to ensure the thermal stability to some extent, but it is not enough to be satisfied.
  • the present invention is a silicon-based compound having a high electrical stability and charge transport ability, high glass transition temperature and can prevent crystallization; And organic light emitting devices having excellent thermal stability, luminous efficiency, luminance, current efficiency, power efficiency, and the like.
  • the present invention provides a silicon compound represented by the following formula (4).
  • n is an integer of 1 to 5;
  • R 1 to R 4 are each independently hydrogen, alkyl having 1 to 30 carbon atoms, alkenyl having 2 to 30 carbon atoms, aryl having 5 to 30 carbon atoms, heteroaryl having 5 to 30 carbon atoms, Aryloxy having 5 to 30 carbon atoms, alkyloxy having 1 to 30 carbon atoms, arylalkyl having 5 to 30 carbon atoms, cycloalkyl having 5 to 30 carbon atoms, heterocycloalkyl having 5 to 30 carbon atoms, and a halogen element;
  • X 1 to X 4 are each independently C 5 ⁇ C 30 aryl, C 5 ⁇ C 30 heteroaryl and It is selected from the group consisting of, any one or more of X 1 ⁇ X 4
  • Ar 1 to Ar 4 are each independently C 5 to C 30 aryl or C 5 to C 30 heteroaryl.
  • the present invention provides a method for producing a silicon compound represented by the formula (4) characterized in that it comprises the step of reacting a compound of the formula (5) and a compound of the formula (6).
  • Y 1 ⁇ Y 4 are each independently selected from the group consisting of hydrogen, C 5 ⁇ C 30 aryl and C 5 ⁇ C 30 heteroaryl, any one or more of Y 1 ⁇ Y 4 is hydrogen Is; n and R 1 to R 4 are the same as defined in Formula 4;
  • Z is a halogen element selected from the group consisting of F, Cl, Br, and I; Ar 1 to Ar 4 are the same as defined in Formula 4.
  • the present invention also provides an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) one or more organic material layers interposed between the anode and the cathode, and at least one of the one or more organic material layers.
  • the layer of provides an organic light-emitting device characterized in that it comprises a silicon compound represented by the formula (4).
  • the layer including the silicon compound represented by the formula (4) is preferably at least one of a hole injection layer, a hole transport layer and an electron blocking layer.
  • the silicon compound represented by the formula (4) of the present invention is used in an organic layer, in particular a hole injection layer, a hole transport layer and / or an electron blocking layer of an organic light emitting device, the light emitting performance of the device, in particular thermal stability, luminous efficiency, luminance, current efficiency , Power efficiency and the like can be improved.
  • FIG. 1 is a cross-sectional view showing an example of an organic light emitting device structure according to the present invention.
  • FIG. 5 is a lifetime graph of the organic light emitting diodes manufactured in Example 8 and Comparative Example 3.
  • FIG. 5 is a lifetime graph of the organic light emitting diodes manufactured in Example 8 and Comparative Example 3.
  • the present invention has a high electrical stability and charge transport ability, the glass transition temperature is high, silicon-based compound that can improve the thermal stability, luminous efficiency, brightness, current efficiency, power efficiency, etc. of the device when introduced into the organic layer of the organic light emitting device It characterized in that to provide.
  • Silicone compound according to the present invention is a compound represented by the following formula (4).
  • n is an integer of 1 to 5;
  • R 1 to R 4 are each independently hydrogen, alkyl having 1 to 30 carbon atoms, alkenyl having 2 to 30 carbon atoms, aryl having 5 to 30 carbon atoms, heteroaryl having 5 to 30 carbon atoms, Aryloxy having 5 to 30 carbon atoms, alkyloxy having 1 to 30 carbon atoms, arylalkyl having 5 to 30 carbon atoms, cycloalkyl having 5 to 30 carbon atoms, heterocycloalkyl having 5 to 30 carbon atoms, and halogen atoms;
  • X 1 to X 4 are each independently C 5 ⁇ C 30 aryl, C 5 ⁇ C 30 heteroaryl and It is selected from the group consisting of, any one or more of X 1 ⁇ X 4
  • Ar 1 to Ar 4 are each independently C 5 to C 30 aryl or C 5 to C 30 heteroaryl.
  • Ar 1 to Ar 4 may each independently form or may not form a fused aliphatic ring, a fused aromatic ring, a fused heteroaliphatic ring or a fused heteroaromatic ring with an adjacent group.
  • the silicon-based compound of Formula 4 may contain Si, N and the like to have excellent electrical stability and hole transport ability, and may have high glass transition temperature to prevent crystallization. Therefore, when the silicon compound of Formula 4 is introduced into the organic layer of the organic light emitting device, thermal stability, light emission efficiency, luminance, current efficiency, power efficiency, and the like of the device can be improved.
  • Examples of the silicon-based compound of Formula 4 according to the present invention include, but are not limited to, compounds of the following Chemical Formulas 4-a to 4-g.
  • the compound of Formula 4 may be obtained by reacting the compound of Formula 5 and the compound of Formula 6.
  • n is an integer of 1 to 5; Y 1 to Y 4 are each independently selected from the group consisting of hydrogen, C 5 -C 30 aryl and C 5 -C 30 heteroaryl, at least one of Y 1 -Y 4 is hydrogen; R 1 to R 4 are the same as defined in Formula 4.
  • Z is a halogen element selected from the group consisting of F, Cl, Br, and I
  • Ar 1 ⁇ Ar 4 are each independently C 5 ⁇ C 30 aryl or C 5 ⁇ C 30 heteroaryl .
  • the compound of Formula 5 is a compound of Formula 7 and HNY 1 Y 2 and HNY 3 Y 4 (wherein, Y 1 ⁇ Y 4 are each independently hydrogen, C 5 ⁇ C 30 aryl and C 5 ⁇ C 30 hetero It is selected from the group consisting of aryl, any one or more of Y 1 ⁇ Y 4 It can be obtained by reacting with an amine compound.
  • the HNY 1 Y 2 and HNY 3 Y 4 may be the same or different amine compounds.
  • T 1 and T 2 are each independently a halogen element selected from the group consisting of F, Cl, Br, and I; n and R 1 to R 4 are the same as defined in Formula 4.
  • the compound of Formula 6 may be obtained by reacting a compound of Formula 8 with a compound of Formula 9.
  • Z is a halogen element selected from the group consisting of F, Cl, Br, and I
  • Ar 1 is C 5 ⁇ C 30 aryl or C 5 ⁇ C 30 heteroaryl.
  • W is a halogen element selected from the group consisting of F, Cl, Br and I, Ar 2 ⁇ Ar 4 is the same as defined in Formula 4.
  • W is preferably a halogen element having a lower reactivity than Z in the formula (8).
  • the silicon compound according to the present invention may be prepared according to the above method, but this is only one example, and the present invention is not limited thereto and may be prepared through a similar compound or a similar process.
  • the present invention provides an organic light emitting device comprising such a silicon-based compound.
  • the organic light emitting device is an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) at least one organic layer between the anode and the cathode, at least one of the at least one organic layer
  • One layer is characterized by including the silicon-based compound of formula (4).
  • the organic material layer including the silicon compound of the present invention may be any one or more of a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, an electron transport layer and an electron injection layer.
  • the silicon compound according to the present invention has excellent hole transport ability, the silicon compound is preferably included in the organic light emitting device as a hole injection layer, a hole transport layer, and / or an electron blocking layer material.
  • FIG. 1 is a cross-sectional view showing an example of an organic light emitting device structure according to the present invention, wherein the substrate 101, the anode 102, the hole injection layer 103, the hole transport layer 104, the light emitting layer 105, the electron transport layer ( 106 and the cathode 107 are sequentially stacked.
  • the electron injection layer may be positioned on the electron transport layer 106, and the electron blocking layer may be positioned on the hole transport layer 104.
  • the organic light emitting device may not only have a structure in which an anode, at least one organic material layer, and a cathode are sequentially stacked, but an insulating layer or an adhesive layer may be inserted at an interface between the electrode and the organic material layer.
  • the organic material layer including the silicon compound of Formula 1 may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the organic light emitting device according to the present invention may be manufactured by forming an organic material layer and an electrode using materials and methods known in the art, except that at least one layer of the organic material layer is formed to include the silicon compound of the present invention. have.
  • the substrate 101 may be a silicon wafer, quartz or glass plate, metal plate, plastic film or sheet.
  • the anode 102 material may be a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black, but is not limited thereto.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PE
  • the cathode 107 material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • reaction mixture was stirred under reflux for 5 hours, and the reaction was confirmed by TLC to terminate the reaction, and cooled to room temperature after the completion of the reaction.
  • the reaction mixture was poured onto a thin pad of silica for short chromatography and washed with MC.
  • the filtrate was distilled under reduced pressure to remove the solvent, and the residue was purified by silica gel column chromatography (dimethylchloride / normal hexane (1/3)) to give a compound as an off-white solid (N4, N4'-di (naphthalen-1-yl). ) -N4, N4'-bis (4- (triphenylsilyl) phenyl) biphenyl-4,4'-diamine) 25g (yield 80%) was obtained.
  • the reaction mixture was stirred under reflux for 8 hours, and the reaction was confirmed by TLC.
  • the reaction mixture was cooled to room temperature after completion of the reaction.
  • the reaction mixture was poured onto a thin pad of silica for short chromatography and washed with MC.
  • the filtrate was distilled under reduced pressure to remove the solvent, and the residue was separated and purified by silica gel column chromatography (dimeltylchloride / normal hexane (1/3)) to obtain 23 g of a compound as an off-white solid (yield 56%).
  • reaction mixture was stirred under reflux for 8 hours, and the reaction was confirmed by TLC, and the reaction mixture was cooled to room temperature after the reaction was terminated.
  • the reaction mixture was poured onto a thin pad of silica for short chromatography and washed with MC.
  • the filtrate was distilled under reduced pressure to remove the solvent, and the residue was separated and purified by silica gel column chromatography (dimeltylchloride / normal hexane (1/3)) to obtain 18 g of a compound as an off-white solid (yield 45%).
  • optical properties of the compounds obtained in Examples 1 to 3 are shown in Table 1, where Td is the result measured by TGA analysis and Tg by DSC analysis.
  • Table 1 Optical properties Thermal properties Absorption wavelength Emission wavelength HOMO Energy Level LUMO Energy Level Melting point Td Tg
  • Example 1 349 nm 446 nm 5.20 eV 1.94 eV 370.2 °C 553 °C 131.1 °C
  • Example 2 322nm 406 nm 5.48 eV 2.07eV 376.4 °C 556 °C 132.2 °C
  • Example 3 346 nm 408 nm 5.32eV 2.05eV 264.7 °C 525 °C 131.8 °C
  • the silicone compounds according to the present invention have excellent thermal properties as well as optical properties, and are particularly stable at 500 ° C. or higher.
  • the glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was washed with distilled water ultrasonic waves. After the washing of distilled water, ultrasonic washing with a solvent such as isopropyl alcohol, acetone, methanol, and the like was dried and transferred to a plasma cleaner, and then the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum depositor.
  • ITO Indium tin oxide
  • the compound of formula 4-a was vacuum vacuum deposited to a thickness of 600 kPa to form a hole injection layer.
  • NPB N , N- di (naphthalene-1-yl) -N , N- diphenylbenzidine
  • a hole transporting material was vacuum deposited to a thickness of 150 ⁇ on the hole injection layer to form a hole transport layer, and a blue light emitting material thereon DS-H41 (Doosan Co., Ltd.) and DS-405 (Doosan Co., Ltd.) were vacuum deposited to a thickness of 300 kPa to form a light emitting layer.
  • Alq3 which is an electron injection and transport material, was vacuum deposited on the emission layer to a thickness of 250 kPa to form an electron injection and transport layer. Further, LiF was sequentially deposited on the electron injection and transport layer in a thickness of 10 kPa, and aluminum (cathode) was vacuum deposited at a thickness of 2000 kPa to manufacture an organic light emitting device.
  • An organic light-emitting device was manufactured in the same manner as in Example 4, except that 2-TNATA was used instead of the compound of Formula 4-a as the hole injection material.
  • Example 4 For each organic light emitting device manufactured in Example 4 and Comparative Example 1, the luminous efficiency was measured at a current density of 10 mA / cm 2, and the results are shown in Table 2 below.
  • the silicon-based compound according to the present invention when used as the hole injection material of the organic light emitting device, the luminous efficiency can be improved by 19% or more, and the blue color can be more intensely exhibited. .
  • the silicon compound according to the present invention has high amorphousness and can be formed continuously without blocking the opening of the evaporation source during film formation, and thus has shown a very effective result in improving the production yield of the organic light emitting device.
  • 2-TNATA was vacuum vacuum deposited to a thickness of 600 kPa to form a hole injection layer
  • the compound of formula 4-a was vacuum deposited to a thickness of 150 kPa to form a hole transport layer thereon.
  • blue light emitting materials DS-H41 (Doosan Co., Ltd.) and DS-405 (Doosan Co., Ltd.) were vacuum-deposited to a thickness of 300 kW to form a light emitting layer
  • Alq3 was deposited to a thickness of 250 kW on the light-emitting layer to form electrons.
  • An injection and transport layer was formed. Further, LiF was sequentially deposited on the electron injection and transport layer in a thickness of 10 kPa, and aluminum (cathode) was vacuum deposited at a thickness of 2000 kPa to manufacture an organic light emitting device.
  • An organic light-emitting device was manufactured in the same manner as in Example 5, except that the compound of Chemical Formula 4-a was deposited at a thickness of 200 Hz instead of 150 Hz.
  • An organic light-emitting device was manufactured in the same manner as in Example 5, except that NPB was used instead of the compound of Formula 4-a as the hole transport material.
  • 2-TNATA was vacuum vacuum deposited to a thickness of 600 kPa to form a hole injection layer
  • NPB was vacuum deposited to a thickness of 100 kPa to form a hole transport layer.
  • the compound of Formula 4-a was deposited thereon to a thickness of 50 kV to form an electron blocking layer.
  • blue light emitting materials DS-H41 (Doosan Co., Ltd.) and DS-405 (Doosan Co., Ltd.) were vacuum-deposited to a thickness of 300 kW to form a light emitting layer
  • Alq 3 was vacuumed to a thickness of 250 kW on the light emitting layer.
  • LiF was sequentially deposited on the electron injection and transport layer in a thickness of 10 kPa
  • aluminum (cathode) was vacuum deposited at a thickness of 2000 kPa to manufacture an organic light emitting device.
  • An organic light-emitting device was manufactured in the same manner as in Example 7, except that NPB, which was a hole transporting material, was deposited at a thickness of 120 GPa instead of 100 GPa.
  • An organic light-emitting device was manufactured in the same manner as in Example 7, except that the thickness of the hole transporting material NPB was deposited to 150 GPa and the electron blocking layer was not formed.
  • Example 8 the lifespan of each organic light emitting device manufactured in Example 8 and Comparative Example 3 was measured at an initial luminance of 1000 cd / m 2, and the results are shown in FIG. 5.
  • the silicon compound according to the present invention when used as the electron blocking layer material of the organic light emitting device, the luminous efficiency can be improved by 13% or more, and the power efficiency can be improved. .
  • the exciton due to the electron blocking effect, the exciton can emit light only in the light emitting layer, thereby improving color purity.
  • the life of the device when the silicon compound according to the present invention is used as the electron blocking layer material of the organic light emitting device, the life of the device can be improved by 15% or more. Therefore, the silicon compound according to the present invention was found to be effective as an electron blocking layer of the organic light emitting device.

Abstract

The present invention relates to a silicon-based compound which, when used as an organic layer in an organic light-emitting element, and in particular as a hole-injection layer, hole-transport layer and/or electron-blocking layer, can improve characteristics of the element such as the thermal stability, the light-emission efficiency, the luminance, the current efficiency and the power efficiency. The present invention also relates to a production method of the compound and to an organic light-emitting element employing the compound

Description

신규 실리콘계 화합물, 그 제조 방법 및 이를 이용한 유기 발광 소자Novel silicon-based compound, preparation method thereof and organic light emitting device using the same
본 발명은 유기 발광 소자의 유기층, 특히 정공 주입층, 정공 수송층, 및/또는 전자 저지층에 도입되는 경우에 그 소자의 열 안정성, 발광 효율, 휘도, 전류 효율, 전력 효율 등을 향상시킬 수 있는 실리콘계 화합물, 그 제조 방법 및 이를 이용하는 유기 발광 소자에 관한 것이다.The present invention can improve the thermal stability, the luminous efficiency, the luminance, the current efficiency, the power efficiency, etc. of the device when introduced into the organic layer of the organic light emitting device, in particular, the hole injection layer, the hole transport layer, and / or the electron blocking layer. The present invention relates to a silicon compound, a method of manufacturing the same, and an organic light emitting device using the same.
유기 발광 소자는 전압을 인가함으로써 양극(anode)으로부터 주입된 정공과 음극(cathode)으로부터 주입된 전자의 재결합 에너지에 의해 형광성 물질이 발광하는 원리를 이용한 자발광 소자이다.The organic light emitting device is a self-light emitting device using a principle that a fluorescent material emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying a voltage.
1987년 탕(Tang)이 진공증착법으로 제작한 전계 발광(EL) 소자를 처음 개발한 이후 십수 년 동안 많은 종류의 전계 발광 소자용 재료가 개발되었다. 그러나, 상용화되어 있는 전계 발광 소자는 아직 장시간 사용 시에 발광 휘도가 낮아지고, 열화에 의하여 내구성 역시 낮아지므로, 이를 개선할 필요가 있다.Since the first development of electroluminescent (EL) devices by Tang in 1987, many kinds of materials for electroluminescent devices have been developed. However, the commercially available electroluminescent device has a low luminance when it is used for a long time and its durability is also lowered due to deterioration, and thus it is necessary to improve this.
유기 발광 소자를 실용화하기 위해서는 유기층을 구성하는 재료, 특히 정공 주입 및 전달층을 구성하는 정공 주입 재료, 정공 전달 재료가 열적, 전기적으로 안정해야 한다. 소자에 전압이 걸리면 소자에서 열이 발생하는데, 이때 결정화 온도가 낮은 재료들의 경우, 상기 열로 인해 재배열 현상이 일어날 수 있고, 재배열 현상이 일어난 부분에서는 열화로 인한 소자의 파괴가 가속화되어, 소자의 수명을 단축시킬 수 있다. 따라서, 소자의 유기층을 구성하는 재료는 비결정성을 유지하는 것이 바람직하며, 유리전이온도가 높은 것일수록 바람직하다. In order to put the organic light emitting device into practical use, materials constituting the organic layer, in particular, the hole injection material and the hole transport material constituting the hole injection and transfer layer must be thermally and electrically stable. When a voltage is applied to the device, heat is generated in the device. In the case of materials having a low crystallization temperature, the heat may cause a rearrangement phenomenon, and in the part where the rearrangement occurs, destruction of the device due to deterioration is accelerated. Can shorten the service life. Therefore, it is preferable that the material which comprises the organic layer of an element maintains amorphousness, and it is so preferable that the glass transition temperature is high.
종래 정공 주입 재료로는 CuPc, m-MTDATA, 2-TNATA 등을 예로 들 수 있다. 하기 화학식 1의 CuPc는 금속착물이므로 전극(ITO)과의 접착성이 뛰어나고, 안정할 뿐 아니라, 정공 이동도도 우수하여, 정공 주입 재료로서 바람직하지만, 가시광선 영역에서 빛을 흡수한다는 단점이 있어서, 현재는 사용되고 있지 않다. Conventional hole injection materials include CuPc, m-MTDATA, 2-TNATA, and the like. Since CuPc of the following Chemical Formula 1 is a metal complex, it is excellent in adhesion to the electrode (ITO), stable, and also excellent in hole mobility, and thus is preferable as a hole injection material, but has a disadvantage in that it absorbs light in the visible region. , Currently not used.
[화학식 1][Formula 1]
Figure PCTKR2009002944-appb-I000001
Figure PCTKR2009002944-appb-I000001
또한, 하기 화학식 2의 m-MTDATA는 유리 전이 온도가 78℃ 정도이어서, 열적 안정성이 떨어지고, 결정화되는 문제가 있어, 현재 이의 사용이 미미하다.In addition, m-MTDATA of the following formula (2) has a glass transition temperature of about 78 ℃, thermal stability is poor, there is a problem of crystallization, its use is currently insignificant.
[화학식 2][Formula 2]
Figure PCTKR2009002944-appb-I000002
Figure PCTKR2009002944-appb-I000002
한편, 하기 화학식 3의 2-TNATA는 108℃ 정도의 유리 전이 온도를 가져, 열적 안정성을 어느 정도까지 확보할 수는 있지만, 만족하기에는 충분하지 못하다.On the other hand, 2-TNATA of the following formula (3) has a glass transition temperature of about 108 ℃, it is possible to ensure the thermal stability to some extent, but it is not enough to be satisfied.
[화학식 3][Formula 3]
Figure PCTKR2009002944-appb-I000003
Figure PCTKR2009002944-appb-I000003
본 발명은 높은 전기적 안정성과 전하 수송 능력을 가지며 유리 전이 온도가 높고 결정화를 방지할 수 있는 실리콘계 화합물; 및 이를 이용하여 열 안정성, 발광 효율, 휘도, 전류 효율, 전력 효율 등이 우수한 유기 발광 소자를 제공하고자 한다.The present invention is a silicon-based compound having a high electrical stability and charge transport ability, high glass transition temperature and can prevent crystallization; And organic light emitting devices having excellent thermal stability, luminous efficiency, luminance, current efficiency, power efficiency, and the like.
본 발명은 하기 화학식 4로 표시되는 실리콘계 화합물을 제공한다.The present invention provides a silicon compound represented by the following formula (4).
[화학식 4][Formula 4]
Figure PCTKR2009002944-appb-I000004
Figure PCTKR2009002944-appb-I000004
상기 화학식 4에서, n은 1~5의 정수이며; In Formula 4, n is an integer of 1 to 5;
R1~R4은 각각 독립적으로 수소, 탄소수 1~30의 알킬(alkyl), 탄소수 2~30의 알케닐(alkenyl), 탄소수 5~30의 아릴(aryl), 탄소수 5~30의 헤테로아릴, 탄소수 5~30의 아릴옥시, 탄소수 1~30의 알킬옥시, 탄소수 5~30의 아릴알킬, 탄소수 5~30의 시클로알킬, 탄소수 5~30의 헤테로시클로알킬 및 할로겐원소로 구성된 군에서 선택된 것이고; R 1 to R 4 are each independently hydrogen, alkyl having 1 to 30 carbon atoms, alkenyl having 2 to 30 carbon atoms, aryl having 5 to 30 carbon atoms, heteroaryl having 5 to 30 carbon atoms, Aryloxy having 5 to 30 carbon atoms, alkyloxy having 1 to 30 carbon atoms, arylalkyl having 5 to 30 carbon atoms, cycloalkyl having 5 to 30 carbon atoms, heterocycloalkyl having 5 to 30 carbon atoms, and a halogen element;
X1~X4는 각각 독립적으로 C5~C30의 아릴, C5~C30의 헤테로아릴 및
Figure PCTKR2009002944-appb-I000005
로 구성된 군에서 선택되며, X1~X4 중 어느 하나 이상은
Figure PCTKR2009002944-appb-I000006
이고, 여기서 Ar1~Ar4는 각각 독립적으로 C5~C30의 아릴 또는 C5~C30의 헤테로아릴이다.
X 1 to X 4 are each independently C 5 ~ C 30 aryl, C 5 ~ C 30 heteroaryl and
Figure PCTKR2009002944-appb-I000005
It is selected from the group consisting of, any one or more of X 1 ~ X 4
Figure PCTKR2009002944-appb-I000006
Wherein Ar 1 to Ar 4 are each independently C 5 to C 30 aryl or C 5 to C 30 heteroaryl.
또한, 본 발명은 하기 화학식 5의 화합물과 하기 화학식 6의 화합물을 반응시키는 단계를 포함하는 것이 특징인 상기 화학식 4로 표시되는 실리콘계 화합물의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a silicon compound represented by the formula (4) characterized in that it comprises the step of reacting a compound of the formula (5) and a compound of the formula (6).
[화학식 5][Formula 5]
Figure PCTKR2009002944-appb-I000007
Figure PCTKR2009002944-appb-I000007
상기 화학식 5에서, Y1~Y4는 각각 독립적으로 수소, C5~C30의 아릴 및 C5~C30의 헤테로아릴로 구성된 군에서 선택되며, Y1~Y4 중 어느 하나 이상은 수소이며; n 및 R1~R4은 화학식 4에 정의된 바와 동일하며;In Formula 5, Y 1 ~ Y 4 are each independently selected from the group consisting of hydrogen, C 5 ~ C 30 aryl and C 5 ~ C 30 heteroaryl, any one or more of Y 1 ~ Y 4 is hydrogen Is; n and R 1 to R 4 are the same as defined in Formula 4;
[화학식 6][Formula 6]
Figure PCTKR2009002944-appb-I000008
Figure PCTKR2009002944-appb-I000008
상기 화학식 6에서, Z는 F, Cl, Br 및 I로 구성된 군에서 선택된 할로겐 원소이고; Ar1~Ar4는 화학식 4에 정의된 바와 동일하다.In Chemical Formula 6, Z is a halogen element selected from the group consisting of F, Cl, Br, and I; Ar 1 to Ar 4 are the same as defined in Formula 4.
또한, 본 발명은 (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나의 층은 상기 화학식 4로 표시되는 실리콘계 화합물을 포함하는 것이 특징인 유기 발광 소자를 제공한다. The present invention also provides an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) one or more organic material layers interposed between the anode and the cathode, and at least one of the one or more organic material layers. The layer of provides an organic light-emitting device characterized in that it comprises a silicon compound represented by the formula (4).
이때, 상기 화학식 4로 표시되는 실리콘계 화합물을 포함하는 층은 정공 주입층, 정공 수송층 및 전자 저지층 중 어느 하나 이상인 것이 바람직하다.In this case, the layer including the silicon compound represented by the formula (4) is preferably at least one of a hole injection layer, a hole transport layer and an electron blocking layer.
유기 발광 소자의 유기층, 특히 정공 주입층, 정공 수송층 및/또는 전자 저지층에 본 발명의 화학식 4로 표시되는 실리콘계 화합물을 사용하면, 소자의 발광 성능, 특히 열 안정성, 발광 효율, 휘도, 전류 효율, 전력 효율 등을 개선할 수 있다.When the silicon compound represented by the formula (4) of the present invention is used in an organic layer, in particular a hole injection layer, a hole transport layer and / or an electron blocking layer of an organic light emitting device, the light emitting performance of the device, in particular thermal stability, luminous efficiency, luminance, current efficiency , Power efficiency and the like can be improved.
도 1은 본 발명에 따른 유기 발광 소자 구조의 일 예를 나타내는 단면도이다.1 is a cross-sectional view showing an example of an organic light emitting device structure according to the present invention.
도 2는 실시예 1에서 제조된 화학식 4-a 화합물의 UV 흡광도 측정 결과를 나타내는 그래프이다.2 is a graph showing the results of UV absorbance measurement of the compound of formula 4-a prepared in Example 1.
도 3는 실시예 1에서 제조된 화학식 4-f 화합물의 UV 흡광도 측정 결과를 나타내는 그래프이다.3 is a graph showing the results of UV absorbance measurement of the compound of formula 4-f prepared in Example 1.
도 4는 실시예 1에서 제조된 화학식 4-g 화합물의 UV 흡광도 측정 결과를 나타내는 그래프이다.4 is a graph showing the results of UV absorbance measurement of the compound of formula 4-g prepared in Example 1.
도 5은 실시예 8 및 비교예 3에서 제조된 유기 발광 소자의 수명 그래프이다.5 is a lifetime graph of the organic light emitting diodes manufactured in Example 8 and Comparative Example 3. FIG.
본 발명은 높은 전기적 안정성과 전하 수송 능력을 가지며 유리 전이 온도가 높아, 유기 발광 소자의 유기층에 도입시 그 소자의 열 안정성, 발광 효율, 휘도, 전류 효율, 전력 효율 등을 향상시킬 수 있는 실리콘계 화합물을 제공하는 것을 특징으로 한다. The present invention has a high electrical stability and charge transport ability, the glass transition temperature is high, silicon-based compound that can improve the thermal stability, luminous efficiency, brightness, current efficiency, power efficiency, etc. of the device when introduced into the organic layer of the organic light emitting device It characterized in that to provide.
본 발명의 따른 실리콘계 화합물은 하기 화학식 4로 표시되는 화합물이다. Silicone compound according to the present invention is a compound represented by the following formula (4).
[화학식 4][Formula 4]
Figure PCTKR2009002944-appb-I000009
Figure PCTKR2009002944-appb-I000009
상기 화학식 4에서, n은 1~5의 정수이며; In Formula 4, n is an integer of 1 to 5;
R1~R4은 각각 독립적으로 수소, 탄소수 1~30의 알킬(alkyl), 탄소수 2~30의 알케닐(alkenyl), 탄소수 5~30의 아릴(aryl), 탄소수 5~30의 헤테로아릴, 탄소수 5~30의 아릴옥시, 탄소수 1~30의 알킬옥시, 탄소수 5~30의 아릴알킬, 탄소수 5~30의 시클로알킬, 탄소수 5~30의 헤테로시클로알킬 및 할로겐원자로 구성된 군에서 선택된 것이고; R 1 to R 4 are each independently hydrogen, alkyl having 1 to 30 carbon atoms, alkenyl having 2 to 30 carbon atoms, aryl having 5 to 30 carbon atoms, heteroaryl having 5 to 30 carbon atoms, Aryloxy having 5 to 30 carbon atoms, alkyloxy having 1 to 30 carbon atoms, arylalkyl having 5 to 30 carbon atoms, cycloalkyl having 5 to 30 carbon atoms, heterocycloalkyl having 5 to 30 carbon atoms, and halogen atoms;
X1~X4는 각각 독립적으로 C5~C30의 아릴, C5~C30의 헤테로아릴 및
Figure PCTKR2009002944-appb-I000010
로 구성된 군에서 선택되며, X1~X4 중 어느 하나 이상은
Figure PCTKR2009002944-appb-I000011
이고, 여기서 Ar1~Ar4는 각각 독립적으로 C5~C30의 아릴 또는 C5~C30의 헤테로아릴이다.
X 1 to X 4 are each independently C 5 ~ C 30 aryl, C 5 ~ C 30 heteroaryl and
Figure PCTKR2009002944-appb-I000010
It is selected from the group consisting of, any one or more of X 1 ~ X 4
Figure PCTKR2009002944-appb-I000011
Wherein Ar 1 to Ar 4 are each independently C 5 to C 30 aryl or C 5 to C 30 heteroaryl.
또한, 본 발명의 화학식에서, 상기 Ar1~Ar4는 각각 독립적으로 인접하는 기와 축합(fused) 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리 또는 축합 헤테로방향족 고리를 형성하거나 형성하지 않을 수 있다.In addition, in the chemical formula of the present invention, Ar 1 to Ar 4 may each independently form or may not form a fused aliphatic ring, a fused aromatic ring, a fused heteroaliphatic ring or a fused heteroaromatic ring with an adjacent group.
상기 화학식 4의 실리콘계 화합물은 Si, N 등을 함유하여 전기적 안정성과 정공 수송 능력이 우수하며, 유리 전이 온도가 높아 결정화를 방지할 수 있다. 따라서, 유기 발광 소자의 유기층에 화학식 4의 실리콘계 화합물을 도입하는 경우에 그 소자의 열 안정성, 발광 효율, 휘도, 전류 효율, 전력 효율 등을 향상시킬 수 있다.The silicon-based compound of Formula 4 may contain Si, N and the like to have excellent electrical stability and hole transport ability, and may have high glass transition temperature to prevent crystallization. Therefore, when the silicon compound of Formula 4 is introduced into the organic layer of the organic light emitting device, thermal stability, light emission efficiency, luminance, current efficiency, power efficiency, and the like of the device can be improved.
본 발명에 따른 화학식 4의 실리콘계 화합물의 예로는 하기 화학식 4-a 내지 화학식 4-g의 화합물 등이 있으나, 이에 제한되는 것은 아니다.Examples of the silicon-based compound of Formula 4 according to the present invention include, but are not limited to, compounds of the following Chemical Formulas 4-a to 4-g.
[화학식 4-a][Formula 4-a]
Figure PCTKR2009002944-appb-I000012
Figure PCTKR2009002944-appb-I000012
[화학식 4-b][Formula 4-b]
Figure PCTKR2009002944-appb-I000013
Figure PCTKR2009002944-appb-I000013
[화학식 4-c][Formula 4-c]
Figure PCTKR2009002944-appb-I000014
Figure PCTKR2009002944-appb-I000014
[화학식 4-d][Formula 4-d]
Figure PCTKR2009002944-appb-I000015
Figure PCTKR2009002944-appb-I000015
[화학식 4-e][Formula 4-e]
Figure PCTKR2009002944-appb-I000016
Figure PCTKR2009002944-appb-I000016
[화학식 4-f][Formula 4-f]
Figure PCTKR2009002944-appb-I000017
Figure PCTKR2009002944-appb-I000017
[화학식 4-g][Formula 4-g]
Figure PCTKR2009002944-appb-I000018
Figure PCTKR2009002944-appb-I000018
한편, 상기 화학식 4의 화합물은 하기 화학식 5의 화합물과 하기 화학식 6의 화합물을 반응시켜 얻을 수 있다.On the other hand, the compound of Formula 4 may be obtained by reacting the compound of Formula 5 and the compound of Formula 6.
[화학식 5][Formula 5]
Figure PCTKR2009002944-appb-I000019
Figure PCTKR2009002944-appb-I000019
상기 화학식 5에서, n은 1~5의 정수이며; Y1~Y4는 각각 독립적으로 수소, C5~C30의 아릴 및 C5~C30의 헤테로아릴로 구성된 군에서 선택되며, Y1~Y4 중 어느 하나 이상은 수소이며; R1~R4은 화학식 4에 정의된 바와 동일하다.In Formula 5, n is an integer of 1 to 5; Y 1 to Y 4 are each independently selected from the group consisting of hydrogen, C 5 -C 30 aryl and C 5 -C 30 heteroaryl, at least one of Y 1 -Y 4 is hydrogen; R 1 to R 4 are the same as defined in Formula 4.
[화학식 6][Formula 6]
Figure PCTKR2009002944-appb-I000020
Figure PCTKR2009002944-appb-I000020
상기 화학식 6에서, Z는 F, Cl, Br, 및 I로 구성된 군에서 선택된 할로겐 원소이고, Ar1~Ar4는 각각 독립적으로 C5~C30의 아릴 또는 C5~C30의 헤테로아릴이다.In Formula 6, Z is a halogen element selected from the group consisting of F, Cl, Br, and I, Ar 1 ~ Ar 4 are each independently C 5 ~ C 30 aryl or C 5 ~ C 30 heteroaryl .
상기 화학식 5의 화합물은 하기 화학식 7의 화합물과 HNY1Y2 및 HNY3Y4 (여기서, Y1~Y4은 각각 독립적으로 수소, C5~C30의 아릴 및 C5~C30의 헤테로아릴로 구성된 군에서 선택되며, Y1~Y4 중 어느 하나 이상은 수소임)의 아민 화합물과 반응시켜 얻을 수 있다. 이때, 상기 HNY1Y2 및 HNY3Y4은 서로 동일하거나 다른 아민 화합물일 수 있다.The compound of Formula 5 is a compound of Formula 7 and HNY 1 Y 2 and HNY 3 Y 4 (wherein, Y 1 ~ Y 4 are each independently hydrogen, C 5 ~ C 30 aryl and C 5 ~ C 30 hetero It is selected from the group consisting of aryl, any one or more of Y 1 ~ Y 4 It can be obtained by reacting with an amine compound. In this case, the HNY 1 Y 2 and HNY 3 Y 4 may be the same or different amine compounds.
[화학식 7][Formula 7]
Figure PCTKR2009002944-appb-I000021
Figure PCTKR2009002944-appb-I000021
상기 화학식 7에서, T1 및 T2는 각각 독립적으로 F, Cl, Br 및 I로 구성된 군에서 선택된 할로겐 원소이며; n 및 R1~R4은 화학식 4에 정의된 바와 동일하다.In Formula 7, T 1 and T 2 are each independently a halogen element selected from the group consisting of F, Cl, Br, and I; n and R 1 to R 4 are the same as defined in Formula 4.
또한, 상기 화학식 6의 화합물은 하기 화학식 8의 화합물과 하기 화학식 9의 화합물을 반응시켜 얻을 수 있다.In addition, the compound of Formula 6 may be obtained by reacting a compound of Formula 8 with a compound of Formula 9.
[화학식 8][Formula 8]
Z-Ar1-ZZ-Ar 1- Z
상기 화학식 8에서, Z는 F, Cl, Br, 및 I로 구성된 군에서 선택된 할로겐 원소이고, Ar1은 C5~C30의 아릴 또는 C5~C30의 헤테로아릴이다.In Formula 8, Z is a halogen element selected from the group consisting of F, Cl, Br, and I, Ar 1 is C 5 ~ C 30 aryl or C 5 ~ C 30 heteroaryl.
[화학식 9][Formula 9]
Figure PCTKR2009002944-appb-I000022
Figure PCTKR2009002944-appb-I000022
상기 화학식 9에서, W는 F, Cl, Br 및 I로 구성된 군에서 선택된 할로겐 원소이며, Ar2~Ar4은 화학식 4에 정의된 바와 동일하다. 이때, W는 상기 화학식 8의 Z보다 반응성이 낮은 할로겐 원소가 바람직하다.In Formula 9, W is a halogen element selected from the group consisting of F, Cl, Br and I, Ar 2 ~ Ar 4 is the same as defined in Formula 4. In this case, W is preferably a halogen element having a lower reactivity than Z in the formula (8).
본 발명에 따른 실리콘계 화합물은 상기의 방법에 따라 제조될 수 있으나, 이는 하나의 예시일 뿐, 이에 제한되지 않고 유사 화합물 또는 유사 공정을 통해 제조될 수 있다.The silicon compound according to the present invention may be prepared according to the above method, but this is only one example, and the present invention is not limited thereto and may be prepared through a similar compound or a similar process.
또한, 본 발명은 이러한 실리콘계 화합물을 포함하는 유기 발광 소자를 제공한다.In addition, the present invention provides an organic light emitting device comprising such a silicon-based compound.
구체적으로, 본 발명에 따른 유기 발광 소자는 (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나의 층은 상기 화학식 4의 실리콘계 화합물을 포함하는 것이 특징이다.Specifically, the organic light emitting device according to the present invention is an organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) at least one organic layer between the anode and the cathode, at least one of the at least one organic layer One layer is characterized by including the silicon-based compound of formula (4).
본 발명의 실리콘계 화합물이 포함되는 유기물층은 정공 주입층, 정공 수송층, 전자 저지층, 발광층, 전자 수송층 및 전자 주입층 중 어느 하나 이상일 수 있다. 특히, 본 발명에 따른 실리콘계 화합물은 정공 수송 능력이 우수하므로, 정공 주입층, 정공 수송층, 및/또는 전자 저지층 물질로서 유기 발광 소자에 포함되는 것이 바람직하다. The organic material layer including the silicon compound of the present invention may be any one or more of a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, an electron transport layer and an electron injection layer. In particular, since the silicon compound according to the present invention has excellent hole transport ability, the silicon compound is preferably included in the organic light emitting device as a hole injection layer, a hole transport layer, and / or an electron blocking layer material.
도 1은 본 발명에 따른 유기 발광 소자 구조의 일 예를 나타내는 단면도로서, 기판(101), 양극(102), 정공 주입층(103), 정공 수송층(104), 발광층(105), 전자 수송층(106) 및 음극(107)이 순차적으로 적층되어 있다. 상기 전자 수송층(106) 위에는 전자 주입층이 위치할 수 있고, 또한 정공 수송층(104) 위에는 전자 저지층이 위치할 수도 있다.1 is a cross-sectional view showing an example of an organic light emitting device structure according to the present invention, wherein the substrate 101, the anode 102, the hole injection layer 103, the hole transport layer 104, the light emitting layer 105, the electron transport layer ( 106 and the cathode 107 are sequentially stacked. The electron injection layer may be positioned on the electron transport layer 106, and the electron blocking layer may be positioned on the hole transport layer 104.
본 발명에 따른 유기 발광 소자는 전술한 바와 같이 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입될 수 있다.As described above, the organic light emitting device according to the present invention may not only have a structure in which an anode, at least one organic material layer, and a cathode are sequentially stacked, but an insulating layer or an adhesive layer may be inserted at an interface between the electrode and the organic material layer.
본 발명에 따른 유기 발광 소자에 있어서, 상기 화학식 1의 실리콘계 화합물을 포함하는 상기 유기물층은 진공증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이들에만 한정되지 않는다. In the organic light emitting device according to the present invention, the organic material layer including the silicon compound of Formula 1 may be formed by a vacuum deposition method or a solution coating method. Examples of the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
본 발명에 따른 유기 발광 소자는 유기물층 중 1층 이상을 본 발명의 실리콘계 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 유기물층 및 전극을 형성함으로써 제조될 수 있다.The organic light emitting device according to the present invention may be manufactured by forming an organic material layer and an electrode using materials and methods known in the art, except that at least one layer of the organic material layer is formed to include the silicon compound of the present invention. have.
예컨대, 기판(101)으로는 실리콘 웨이퍼, 석영 또는 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.For example, the substrate 101 may be a silicon wafer, quartz or glass plate, metal plate, plastic film or sheet.
양극(102) 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자; 또는 카본블랙 등이 있으나, 이들에만 한정되는 것은 아니다.The anode 102 material may be a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black, but is not limited thereto.
음극(107) 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.The cathode 107 material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.
<화합물의 제조>Preparation of Compound
실시예 1. 상기 화학식 4-a의 화합물의 제조Example 1 Preparation of the Compound of Formula 4-a
(1) (4-bromophenyl)triphenylsilane 제조(1) Preparation of (4-bromophenyl) triphenylsilane
[반응식 1] Scheme 1
Figure PCTKR2009002944-appb-I000023
Figure PCTKR2009002944-appb-I000023
1,4-다이브로모 벤젠 21.9 g (92.7 mmol)을 Tetrahydrofuran 500ml에 용해시킨 후, 노르말헥산에 용해된 1.6몰 노르말부틸리튬 64 ml(102 mmol)을 -78℃에서 적가한 후 1시간동안 교반하였다. 여기에, 클로로트리페닐실란 27.3 g(92.7 mmol)을 첨가하고, 동일 온도에서 1시간, 상온에서 5시간 동안 교반하였다. After dissolving 21.9 g (92.7 mmol) of 1,4-dibromo benzene in 500 ml of Tetrahydrofuran, 64 ml (102 mmol) of 1.6 mol normal butyllithium dissolved in normal hexane were added dropwise at -78 ° C, followed by stirring for 1 hour. . 27.3 g (92.7 mmol) of chlorotriphenylsilane were added thereto, followed by stirring at the same temperature for 1 hour and at room temperature for 5 hours.
상기 반응 혼합액에 수산화암모늄 용액을 첨가하고 1시간 교반한 후 에틸아세테이트로 3회 추출하였다. 유기층을 회수하여 마그네슘설페이트로 건조하고 용매를 증발시켜 얻어진 잔유물을 실리카겔 관 크로마토 그래피(에틸아세테이트/노말헥산 (1/3))로 분리 정제하여 흰색 고체 상태의 (4-bromophenyl)triphenylsilane 31g (수율 80%)을 얻었다. An ammonium hydroxide solution was added to the reaction mixture, stirred for 1 hour, and then extracted three times with ethyl acetate. The organic layer was recovered, dried over magnesium sulfate, and the residue obtained by evaporation of the solvent was separated and purified by silica gel column chromatography (ethyl acetate / normal hexane (1/3)) to give 31 g of (4-bromophenyl) triphenylsilane as a white solid (yield 80). %) Was obtained.
(2) N4,N4'-di(naphthalen-1-yl)biphenyl-4,4'-diamine의 제조(2) Preparation of N4, N4'-di (naphthalen-1-yl) biphenyl-4,4'-diamine
[반응식 2] Scheme 2
Figure PCTKR2009002944-appb-I000024
Figure PCTKR2009002944-appb-I000024
4,4'-다이아이오도바이페닐 2g (4.93 mmol)과 나프탈렌-1-아민 1.4g (9.86 mmol)을 톨루엔에 용해시키고, 질소하에서 트리스 디벤질리딘 아세톤 디팔라듐 0.20 g (0.20 mmol)을 투입하였다. 여기에, 소듐 부톡사이드 1.20 g (12.44 mmol)과, (t-bu)3P 0.09 g (0.39 mmol)을 넣고, 반응 혼합물을 4 시간 환류 교반하였다. 2 g (4.93 mmol) of 4,4'-diiodobiphenyl and 1.4 g (9.86 mmol) of naphthalene-1-amine were dissolved in toluene, and 0.20 g (0.20 mmol) of tris dibenzylidine acetone dipalladium was added under nitrogen. 1.20 g (12.44 mmol) of sodium butoxide and 0.09 g (0.39 mmol) of (t-bu) 3 P were added thereto, and the reaction mixture was stirred under reflux for 4 hours.
이후, 반응 혼합물을 실온으로 냉각하고, 얇은 실리카 패드 위에 부어 크로마토그래피를 수행한 후, 디클로로메탄으로 세정하였다. 또한, 이를 농축하여 용매를 제거한 후, 디클로로메탄 30ml에 녹여 메탄올 450ml에 천천히 부어 고체상의 N4,N4'-di(naphthalen-1-yl)biphenyl-4,4'-diamine 1.7 g (수율 80%)을 얻었다.The reaction mixture was then cooled to room temperature, poured onto a thin pad of silica, subjected to chromatography, and then washed with dichloromethane. In addition, the solvent was concentrated to remove the solvent, dissolved in 30 ml of dichloromethane, and slowly poured into 450 ml of methanol to give 1.7 g of solid N4, N4'-di (naphthalen-1-yl) biphenyl-4,4'-diamine (yield 80%). Got.
(3) 목적 화합물의 제조(3) Preparation of the target compound
[반응식 3]Scheme 3
Figure PCTKR2009002944-appb-I000025
Figure PCTKR2009002944-appb-I000025
상기 (1)에서 제조된 (4-bromophenyl)triphenylsilane 27 g (65 mmol)과 (2)에서 제조된 N4,N4'-di(naphthalen-1-yl)biphenyl-4,4'-diamine 12.9g (29.5 mmol)을 톨루엔 500 mL에 용해시킨 후, 질소하에서 Pd2(dba)3 0.8 g (0.9 mmol)을 투입하였다. 여기에, NaOBut 7.1 g (74 mmol)과, (t-Bu)3P 0.7 ml (1.8 mmol)을 투입하였다. 27 g (65 mmol) of (4-bromophenyl) triphenylsilane prepared in (1) above and 12.9 g of N4, N4'-di (naphthalen-1-yl) biphenyl-4,4'-diamine prepared in (2) ( 29.5 mmol) was dissolved in 500 mL of toluene, and 0.8 g (0.9 mmol) of Pd 2 (dba) 3 was added under nitrogen. To this, 7.1 g (74 mmol) of NaOBu t and 0.7 ml (1.8 mmol) of (t-Bu) 3 P were added.
상기 반응 혼합물을 5시간 동안 환류 교반하고, TLC로 반응의 종결 여부를 확인하여, 반응 종결 후 상온으로 식혔다. 반응 혼합물을 얇은 실리카 패드 위에 쏟아 부어 짧은 크로마토그래피를 하고, MC로 세척하였다. 여액을 감압증류하여 용매를 제거한 잔유물을 실리카겔 관 크로마토 그래피(다이멜틸클로라이드/노말헥산 (1/3))로 분리 정제하여 미색 고체 형태의 화합물 (N4,N4'-di(naphthalen-1-yl)-N4,N4'-bis(4-(triphenylsilyl)phenyl) biphenyl-4,4'-diamine) 25g (수율 80%)을 얻었다.The reaction mixture was stirred under reflux for 5 hours, and the reaction was confirmed by TLC to terminate the reaction, and cooled to room temperature after the completion of the reaction. The reaction mixture was poured onto a thin pad of silica for short chromatography and washed with MC. The filtrate was distilled under reduced pressure to remove the solvent, and the residue was purified by silica gel column chromatography (dimethylchloride / normal hexane (1/3)) to give a compound as an off-white solid (N4, N4'-di (naphthalen-1-yl). ) -N4, N4'-bis (4- (triphenylsilyl) phenyl) biphenyl-4,4'-diamine) 25g (yield 80%) was obtained.
1H-NMR (300MHz, CDCl3): δ 7.93 (d, 2H), 7.87(d, 2H), 7.76(d, 2H), 7.54(d, 12H), 7.46(m, 4H), 7.38(m, 30H), 7.11(d, 4H), 6.98(d, 4H). 1 H-NMR (300 MHz, CDCl 3): δ 7.93 (d, 2H), 7.87 (d, 2H), 7.76 (d, 2H), 7.54 (d, 12H), 7.46 (m, 4H), 7.38 (m, 30H), 7.11 (d, 4H), 6.98 (d, 4H).
GC-MASS (FAB): 1104.53 g/mol.GC-MASS (FAB): 1104.53 g / mol.
실시예 2. 상기 화학식 4-f의 제조Example 2. Preparation of Chemical Formula 4-f
[반응식 4] Scheme 4
Figure PCTKR2009002944-appb-I000026
Figure PCTKR2009002944-appb-I000026
Benzidine 5 g (27.1 mmol)과 (4-bromophenyl)triphenylsilane 27 g (65 mmol)을 톨루엔 500 mL에 용해시킨 후, 질소하에서 Pd2(dba)3 1.9 g (2.2 mmol)을 투입하였다. 여기에, NaOBut 13 g (135.5 mmol)과, (t-Bu)3P 1.7 ml (4.4 mmol)을 투입하였다. 5 g (27.1 mmol) of Benzidine and 27 g (65 mmol) of (4-bromophenyl) triphenylsilane were dissolved in 500 mL of toluene, and then 1.9 g (2.2 mmol) of Pd 2 (dba) 3 was added under nitrogen. 13 g (135.5 mmol) of NaOBu t and 1.7 ml (4.4 mmol) of (t-Bu) 3 P were added thereto.
상기 반응 혼합물을 8시간 동안 환류 교반하고, TLC로 반응의 종결 여부를 확인하였고, 반응 종결 후 상온으로 식혔다. 반응 혼합물을 얇은 실리카 패드 위에 쏟아 부어 짧은 크로마토그래피를 하고, MC로 세척하였다. 여액을 감압증류하여 용매를 제거하고, 잔유물을 실리카겔 관 크로마토 그래피(다이멜틸클로라이드/노말헥산 (1/3))로 분리 정제하여 미색 고체 형태의 화합물 23g (수율 56%)을 얻었다. The reaction mixture was stirred under reflux for 8 hours, and the reaction was confirmed by TLC. The reaction mixture was cooled to room temperature after completion of the reaction. The reaction mixture was poured onto a thin pad of silica for short chromatography and washed with MC. The filtrate was distilled under reduced pressure to remove the solvent, and the residue was separated and purified by silica gel column chromatography (dimeltylchloride / normal hexane (1/3)) to obtain 23 g of a compound as an off-white solid (yield 56%).
1H-NMR (300MHz, THF-D8): δ 7.46 (m, 24H), 7.38 (m, 36H), 7.33(d, 8H), 7.28 (d, 8H), 6.56(d, 8H). 1 H-NMR (300 MHz, THF-D8): δ 7.46 (m, 24H), 7.38 (m, 36H), 7.33 (d, 8H), 7.28 (d, 8H), 6.56 (d, 8H).
GC-MASS (FAB): 1520.57 g/mol. GC-MASS (FAB): 1520.57 g / mol.
실시예 3. 상기 화학식 4-g의 화합물 제조Example 3. Preparation of the compound of Chemical Formula 4-g
(1) (3-bromophenyl)triphenylsilane 제조(1) Preparation of (3-bromophenyl) triphenylsilane
[반응식 5]Scheme 5
Figure PCTKR2009002944-appb-I000027
Figure PCTKR2009002944-appb-I000027
1,4-다이브로모 벤젠 대신 1,3-다이브로모 벤젠 21.9 g (92.7 mmol)을 사용한 것을 제외하고, 상기 실시예 1의 (1)과 동일한 방법을 통해 흰색 고체 상태의 (3-bromophenyl)triphenylsilane 25g (수율 65%)을 얻었다.(3-bromophenyl) triphenylsilane in a white solid state by the same method as in (1) of Example 1, except that 21.9 g (92.7 mmol) of 1,3-dibromo benzene was used instead of 1,4-dibromo benzene. 25 g (65% yield) was obtained.
(2) 목적화합물의 제조(2) Preparation of the target compound
[반응식 6]Scheme 6
Figure PCTKR2009002944-appb-I000028
Figure PCTKR2009002944-appb-I000028
Benzidine 5 g (27.1 mmol)과 (3-bromophenyl)triphenylsilane을 44.9 g (108.6 mmol)을 톨루엔 800 mL에 용해시킨 후, 질소하에서 Pd2(dba)3 1.9 g (2.2 mmol)을 투입하였다. 여기에, NaOBut 13 g (135.5 mmol)과, (t-Bu)3P 1.7 ml (4.4 mmol)을 투입하였다. After dissolving 5 g (27.1 mmol) of Benzidine and 44.9 g (108.6 mmol) of (3-bromophenyl) triphenylsilane in 800 mL of toluene, 1.9 g (2.2 mmol) of Pd 2 (dba) 3 was added under nitrogen. 13 g (135.5 mmol) of NaOBu t and 1.7 ml (4.4 mmol) of (t-Bu) 3 P were added thereto.
상기 반응 혼합물을 8시간 동안 환류 교반하고, TLC로 반응의 종결 여부를 확인하였고, 반응 종결 후 상온으로 식혔다. 반응 혼합물을 얇은 실리카 패드 위에 쏟아 부어 짧은 크로마토그래피를 하고, MC로 세척하였다. 여액을 감압증류하여 용매를 제거하고, 잔유물을 실리카겔 관 크로마토 그래피(다이멜틸클로라이드/노말헥산 (1/3))로 분리 정제하여 미색 고체 형태의 화합물 18g (수율 45%)을 얻었다. The reaction mixture was stirred under reflux for 8 hours, and the reaction was confirmed by TLC, and the reaction mixture was cooled to room temperature after the reaction was terminated. The reaction mixture was poured onto a thin pad of silica for short chromatography and washed with MC. The filtrate was distilled under reduced pressure to remove the solvent, and the residue was separated and purified by silica gel column chromatography (dimeltylchloride / normal hexane (1/3)) to obtain 18 g of a compound as an off-white solid (yield 45%).
1H-NMR (300MHz, THF-D8): δ 7.46(m, 32H), 7.40 (m,44H), 7.22 (d, 8H), 7.11(t, 4H), 6.57(d, 4H). 1 H-NMR (300 MHz, THF-D8): δ 7.46 (m, 32H), 7.40 (m, 44H), 7.22 (d, 8H), 7.11 (t, 4H), 6.57 (d, 4H).
GC-MASS (FAB): 1520.57 g/mol.GC-MASS (FAB): 1520.57 g / mol.
<실험예 1: 화합물의 광학적, 열적 특성 평가>Experimental Example 1 Evaluation of Optical and Thermal Properties of the Compound
상기 실시예 1~3에서 얻어진 화합물들에 대해 광학적 특성을 평가하여, 하기 표 1 및 도 2~4에 각각 나타내었다. 이때, UV 흡광도는 Tetrahydrofuran 용액 상태에서 측정하였다.The optical properties of the compounds obtained in Examples 1 to 3 were evaluated and shown in Table 1 and FIGS. 2 to 4, respectively. At this time, UV absorbance was measured in the state of Tetrahydrofuran solution.
또한, 상기 실시예 1~3에서 얻어진 화합물들에 대해 광학적 특성을 평가하여 표 1에 나타내었으며, 이때 Td는 TGA 분석, Tg는 DSC분석을 통해 측정된 결과이다.In addition, the optical properties of the compounds obtained in Examples 1 to 3 are shown in Table 1, where Td is the result measured by TGA analysis and Tg by DSC analysis.
표 1
. 광학적 특성 열적 특성
최대흡수파장 최대발광파장 HOMO에너지레벨 LUMO에너지레벨 녹는점 Td Tg
실시예 1 349nm 446nm 5.20eV 1.94eV 370.2℃ 553℃ 131.1℃
실시예 2 322nm 406nm 5.48eV 2.07eV 376.4℃ 556℃ 132.2℃
실시예 3 346nm 408nm 5.32eV 2.05eV 264.7℃ 525℃ 131.8℃
Table 1
. Optical properties Thermal properties
Absorption wavelength Emission wavelength HOMO Energy Level LUMO Energy Level Melting point Td Tg
Example 1 349 nm 446 nm 5.20 eV 1.94 eV 370.2 ℃ 553 ℃ 131.1 ℃
Example 2 322nm 406 nm 5.48 eV 2.07eV 376.4 ℃ 556 ℃ 132.2 ℃
Example 3 346 nm 408 nm 5.32eV 2.05eV 264.7 ℃ 525 ℃ 131.8 ℃
상기 분석 결과, 본 발명에 따른 실리콘계 화합물들은 광학적 특성뿐 아니라 열적 특성도 우수하며, 특히 500℃이상에서도 안정한 것을 알 수 있었다.As a result of the analysis, it was found that the silicone compounds according to the present invention have excellent thermal properties as well as optical properties, and are particularly stable at 500 ° C. or higher.
<유기 발광 소자의 제조><Production of Organic Light-Emitting Element>
실시예 4Example 4
ITO (Indium tin oxide)가 1500Å의 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 진공 층착기로 기판을 이송하였다. The glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 Å was washed with distilled water ultrasonic waves. After the washing of distilled water, ultrasonic washing with a solvent such as isopropyl alcohol, acetone, methanol, and the like was dried and transferred to a plasma cleaner, and then the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum depositor.
이렇게 준비한 ITO (양극) 위에, 상기 화학식 4-a의 화합물을 600 Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 정공 주입층 위에 정공 이송 물질인 NPB (N, N-di(naphthalene-1-yl)-N, N-diphenylbenzidine)을 150 Å의 두께로 진공 증착하여 정공 수송층을 형성하였고, 그 위에 청색 발광 재료인 DS-H41(㈜두산) 및 DS-405(㈜두산)를 300 Å의 두께로 진공 증착하여 발광층을 형성하였다. 상기 발광층 위에 전자 주입 및 이송 물질인 Alq3을 250 Å의 두께로 진공 증착하여 전자 주입 및 수송층을 형성하였다. 또한, 상기 전자 주입 및 수송층 위에 순차적으로 LiF를 10 Å의 두께로, 알루미늄 (음극)을 2000 Å의 두께로 진공 증착하여, 유기 발광 소자를 제조하였다.On the thus prepared ITO (anode), the compound of formula 4-a was vacuum vacuum deposited to a thickness of 600 kPa to form a hole injection layer. NPB ( N , N- di (naphthalene-1-yl) -N , N- diphenylbenzidine), a hole transporting material, was vacuum deposited to a thickness of 150 위에 on the hole injection layer to form a hole transport layer, and a blue light emitting material thereon DS-H41 (Doosan Co., Ltd.) and DS-405 (Doosan Co., Ltd.) were vacuum deposited to a thickness of 300 kPa to form a light emitting layer. Alq3, which is an electron injection and transport material, was vacuum deposited on the emission layer to a thickness of 250 kPa to form an electron injection and transport layer. Further, LiF was sequentially deposited on the electron injection and transport layer in a thickness of 10 kPa, and aluminum (cathode) was vacuum deposited at a thickness of 2000 kPa to manufacture an organic light emitting device.
비교예 1Comparative Example 1
정공 주입재료로 상기 화학식 4-a의 화합물 대신 2-TNATA를 사용한 것을 제외하고는, 실시예 4와 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 4, except that 2-TNATA was used instead of the compound of Formula 4-a as the hole injection material.
<실험예 2: 유기 발광 소자의 성능 평가 1>Experimental Example 2 Performance Evaluation 1 of Organic Light-Emitting Element
상기 실시예 4 및 비교예 1에서 제조된 각각의 유기 발광 소자에 대하여 전류밀도 10mA/㎠에서의 발광 효율을 측정하였고, 그 결과를 하기 표 2에 나타내었다.For each organic light emitting device manufactured in Example 4 and Comparative Example 1, the luminous efficiency was measured at a current density of 10 mA / cm 2, and the results are shown in Table 2 below.
표 2
. 정공주입재료 휘도(cd/㎡) 색좌표 Peak λ(nm) 발광효율( cd/A ) 전력효율( lm/W )
실시예4 화학식 4-a 화합물 693 0.149, 0.146 455 6.9 2.9
비교예1 2-TNATA 563 0.152, 0.157 455 5.6 3.3
TABLE 2
. Hole injection material Luminance (cd / ㎡) Color coordinates Peak λ (nm) Luminous Efficiency (cd / A) Power efficiency (lm / W)
Example 4 Compound 4-a 693 0.149, 0.146 455 6.9 2.9
Comparative Example 1 2-TNATA 563 0.152, 0.157 455 5.6 3.3
상기 표 2의 결과로 알 수 있듯이, 본 발명에 따른 실리콘계 화합물을 유기 발광 소자의 정공 주입 재료로 사용한 경우, 종래에 비해 발광효율을 19% 이상 향상시킬 수 있고, 청색이 더 진하게 발휘될 수 있다.As can be seen from the results of Table 2, when the silicon-based compound according to the present invention is used as the hole injection material of the organic light emitting device, the luminous efficiency can be improved by 19% or more, and the blue color can be more intensely exhibited. .
또한, 본 발명에 따른 실리콘계 화합물은 비결정성이 높아, 성막시 증착원의 개구부를 막는 일 없이 연속적으로 성막할 수 있어, 유기 발광 소자의 제조 수율을 향상시키는 데 매우 유효한 결과를 보였다.In addition, the silicon compound according to the present invention has high amorphousness and can be formed continuously without blocking the opening of the evaporation source during film formation, and thus has shown a very effective result in improving the production yield of the organic light emitting device.
실시예 5Example 5
ITO (양극) 위에, 2-TNATA를 600 Å의 두께로 열 진공 증착하여 정공 주입층을 형성하고, 그 위에 상기 화학식 4-a의 화합물을 150 Å의 두께로 진공 증착하여 정공 수송층을 형성하였다. 상기 정공 수송층 위에 청색 발광 재료인 DS-H41(㈜두산) 및 DS-405(㈜두산)를 300 Å의 두께로 진공 증착하여 발광층을 형성하고, 발광층 위에 Alq3을 250 Å의 두께로 진공 증착하여 전자 주입 및 수송층을 형성하였다. 또한, 상기 전자 주입 및 수송층 위에 순차적으로 LiF를 10 Å의 두께로, 알루미늄 (음극)을 2000 Å의 두께로 진공 증착하여, 유기 발광 소자를 제조하였다.On ITO (anode), 2-TNATA was vacuum vacuum deposited to a thickness of 600 kPa to form a hole injection layer, and the compound of formula 4-a was vacuum deposited to a thickness of 150 kPa to form a hole transport layer thereon. On the hole transport layer, blue light emitting materials DS-H41 (Doosan Co., Ltd.) and DS-405 (Doosan Co., Ltd.) were vacuum-deposited to a thickness of 300 kW to form a light emitting layer, and Alq3 was deposited to a thickness of 250 kW on the light-emitting layer to form electrons. An injection and transport layer was formed. Further, LiF was sequentially deposited on the electron injection and transport layer in a thickness of 10 kPa, and aluminum (cathode) was vacuum deposited at a thickness of 2000 kPa to manufacture an organic light emitting device.
실시예 6Example 6
상기 화학식 4-a의 화합물을 150 Å 대신 200 Å의 두께로 증착한 것을 제외하고는, 실시예 5와 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 5, except that the compound of Chemical Formula 4-a was deposited at a thickness of 200 Hz instead of 150 Hz.
비교예 2Comparative Example 2
정공 수송 재료로 상기 화학식 4-a의 화합물 대신 NPB를 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 5, except that NPB was used instead of the compound of Formula 4-a as the hole transport material.
<실험예 3: 유기 발광 소자의 성능 평가 2>Experimental Example 3: Performance Evaluation 2 of Organic Light-Emitting Element
상기 실시예 5, 6 및 비교예 2에서 제조된 각각의 유기 발광 소자에 대하여 전류밀도 10mA/㎠에서의 발광 효율을 측정하였고, 그 결과를 하기 표 3에 나타내었다.For each organic light emitting device manufactured in Examples 5, 6 and Comparative Example 2, the luminous efficiency at a current density of 10 mA / cm 2 was measured, and the results are shown in Table 3 below.
표 3
. 정공수송재료 휘도(cd/㎡) 색좌표 Peak λ(nm) 발광효율( cd/A ) 전력효율( lm/W )
실시예5 화학식 4-a 화합물 (150Å) 748 0.160, 0.200 453 7.5 4.1
실시예6 화학식 4-a 화합물 (200Å) 741 0.157, 0.179 452 7.4 3.8
비교예2 NPB 559 0.154, 0.171 452 5.6 3.1
TABLE 3
. Hole transport material Luminance (cd / ㎡) Color coordinates Peak λ (nm) Luminous Efficiency (cd / A) Power efficiency (lm / W)
Example 5 Formula 4-a Compound (150 ') 748 0.160, 0.200 453 7.5 4.1
Example 6 Formula 4-a Compound (200 ′) 741 0.157, 0.179 452 7.4 3.8
Comparative Example 2 NPB 559 0.154, 0.171 452 5.6 3.1
상기 표 3의 결과로 알 수 있듯이, 본 발명에 따른 실리콘계 화합물을 유기 발광 소자의 정공 수송 재료로 사용한 경우, 발광효율과 전력효율을 종래에 비해 25% 이상 향상시킬 수 있다. As can be seen from the results of Table 3, when the silicon compound according to the present invention is used as the hole transporting material of the organic light emitting device, the luminous efficiency and power efficiency can be improved by 25% or more.
실시예 7Example 7
ITO (양극) 위에, 2-TNATA를 600 Å의 두께로 열 진공 증착하여 정공 주입층을 형성하고, NPB를 100 Å의 두께로 진공 증착하여 정공 수송층을 형성하였다. 그 위에 상기 화학식 4-a의 화합물을 50Å의 두께로 증착하여 전자 저지층을 형성하였다. 상기 정공 저지층 위에, 청색 발광 재료인 DS-H41(㈜두산) 및 DS-405(㈜두산)를 300 Å의 두께로 진공 증착하여 발광층을 형성하고, 발광층 위에 Alq3을 250 Å의 두께로 진공 증착하여 전자 주입 및 수송층을 형성하였다. 또한, 상기 전자 주입 및 수송층 위에 순차적으로 LiF를 10 Å의 두께로, 알루미늄 (음극)을 2000 Å의 두께로 진공 증착하여, 유기 발광 소자를 제조하였다.On ITO (anode), 2-TNATA was vacuum vacuum deposited to a thickness of 600 kPa to form a hole injection layer, and NPB was vacuum deposited to a thickness of 100 kPa to form a hole transport layer. The compound of Formula 4-a was deposited thereon to a thickness of 50 kV to form an electron blocking layer. On the hole blocking layer, blue light emitting materials DS-H41 (Doosan Co., Ltd.) and DS-405 (Doosan Co., Ltd.) were vacuum-deposited to a thickness of 300 kW to form a light emitting layer, and Alq 3 was vacuumed to a thickness of 250 kW on the light emitting layer. Evaporation to form an electron injection and transport layer. Further, LiF was sequentially deposited on the electron injection and transport layer in a thickness of 10 kPa, and aluminum (cathode) was vacuum deposited at a thickness of 2000 kPa to manufacture an organic light emitting device.
실시예 8Example 8
정공 수송 재료인 NPB를 100 Å 대신 120 Å의 두께로 증착한 것을 제외하고는, 실시예 7와 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 7, except that NPB, which was a hole transporting material, was deposited at a thickness of 120 GPa instead of 100 GPa.
비교예 3Comparative Example 3
정공 수송 재료 NPB의 두께를 150 Å로 증착하고, 전자 저지층을 성막하지 않은 것을 제외하고는, 실시예 7과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 7, except that the thickness of the hole transporting material NPB was deposited to 150 GPa and the electron blocking layer was not formed.
<실험예 4: 유기 발광 소자의 성능 평가 3>Experimental Example 4: Performance Evaluation of Organic Light-Emitting Element 3
상기 실시예 7, 8 및 비교예 3에서 제조된 각각의 유기 발광 소자에 대하여 전류밀도 10mA/㎠에서의 발광 효율을 측정하였고, 그 결과를 하기 표 4에 나타내었다.For each organic light emitting device manufactured in Examples 7, 8 and Comparative Example 3, the luminous efficiency was measured at a current density of 10 mA / cm 2, and the results are shown in Table 4 below.
또한, 실시예 8 및 비교예 3에서 제작된 각각의 유기 발광 소자에 대하여 초기휘도 1000cd/㎡에서 수명을 측정하였고, 그 결과를 도 5에 나타내었다.In addition, the lifespan of each organic light emitting device manufactured in Example 8 and Comparative Example 3 was measured at an initial luminance of 1000 cd / m 2, and the results are shown in FIG. 5.
표 4
정공수송층 전자저지층 휘도(cd/㎡) 색좌표 Peak λ(nm) 발광효율(cd/A ) 전력효율(lm/W )
실시예7 NPB (100Å) 화학식 4-a 화합물 (50Å) 637 0.153, 0.157 452 6.4 3.4
실시예8 NPB (120Å) 화학식 4-a 화합물 (50Å) 640 0.151, 0.153 453 6.4 3.5
비교예3 NPB (150Å) - 559 0.154, 0.171 452 5.6 3.1
Table 4
Hole transport layer Electronic floor Luminance (cd / ㎡) Color coordinates Peak λ (nm) Luminous Efficiency (cd / A) Power Efficiency (lm / W)
Example 7 NPB (100Å) Formula 4-a Compound (50 ') 637 0.153, 0.157 452 6.4 3.4
Example 8 NPB (120Å) Formula 4-a Compound (50 ') 640 0.151, 0.153 453 6.4 3.5
Comparative Example 3 NPB (150Å) - 559 0.154, 0.171 452 5.6 3.1
상기 표 4의 결과로 알 수 있듯이, 본 발명에 따른 실리콘계 화합물을 유기 발광 소자의 전자 저지층 재료로 사용한 경우, 종래에 비해 발광효율을 13% 이상 향상시킬 수 있고, 전력효율도 향상시킬 수 있다. 또한, 전자 저지 효과로 인해 엑시톤이 발광층에서만 발광할 수 있게 되어 색순도도 향상시킬 수 있다. 또한, 도 5의 결과에서와 같이, 본 발명에 따른 실리콘계 화합물을 유기 발광 소자의 전자 저지층 재료로 사용한 경우, 소자의 수명을 15% 이상 향상시킬 수 있다. 따라서, 본 발명에 따른 실리콘계 화합물은 유기 발광 소자의 전자 저지층으로 유효함을 알 수 있었다.As can be seen from the results of Table 4, when the silicon compound according to the present invention is used as the electron blocking layer material of the organic light emitting device, the luminous efficiency can be improved by 13% or more, and the power efficiency can be improved. . In addition, due to the electron blocking effect, the exciton can emit light only in the light emitting layer, thereby improving color purity. In addition, as shown in the result of FIG. 5, when the silicon compound according to the present invention is used as the electron blocking layer material of the organic light emitting device, the life of the device can be improved by 15% or more. Therefore, the silicon compound according to the present invention was found to be effective as an electron blocking layer of the organic light emitting device.

Claims (6)

  1. 하기 화학식 4로 표시되는 실리콘계 화합물:Silicone compound represented by the following formula (4):
    [화학식 4][Formula 4]
    Figure PCTKR2009002944-appb-I000029
    Figure PCTKR2009002944-appb-I000029
    상기 화학식 4에서, n은 1~5의 정수이며; In Formula 4, n is an integer of 1 to 5;
    R1~R4은 각각 독립적으로 수소, 탄소수 1~30의 알킬(alkyl), 탄소수 2~30의 알케닐(alkenyl), 탄소수 5~30의 아릴(aryl), 탄소수 5~30의 헤테로아릴, 탄소수 5~30의 아릴옥시, 탄소수 1~30의 알킬옥시, 탄소수 5~30의 아릴알킬, 탄소수 5~30의 시클로알킬, 탄소수 5~30의 헤테로시클로알킬 및 할로겐 원소로 구성된 군에서 선택된 것이고; R 1 to R 4 are each independently hydrogen, alkyl having 1 to 30 carbon atoms, alkenyl having 2 to 30 carbon atoms, aryl having 5 to 30 carbon atoms, heteroaryl having 5 to 30 carbon atoms, Aryloxy having 5 to 30 carbon atoms, alkyloxy having 1 to 30 carbon atoms, arylalkyl having 5 to 30 carbon atoms, cycloalkyl having 5 to 30 carbon atoms, heterocycloalkyl having 5 to 30 carbon atoms, and a halogen element;
    X1~X4는 각각 독립적으로 C5~C30의 아릴, C5~C30의 헤테로아릴 및
    Figure PCTKR2009002944-appb-I000030
    로 구성된 군에서 선택되며, X1~X4 중 어느 하나 이상은
    Figure PCTKR2009002944-appb-I000031
    이고, 여기서 Ar1~Ar4는 각각 독립적으로 C5~C30의 아릴 또는 C5~C30의 헤테로아릴이다.
    X 1 to X 4 are each independently C 5 ~ C 30 aryl, C 5 ~ C 30 heteroaryl and
    Figure PCTKR2009002944-appb-I000030
    It is selected from the group consisting of, any one or more of X 1 ~ X 4
    Figure PCTKR2009002944-appb-I000031
    Wherein Ar 1 to Ar 4 are each independently C 5 to C 30 aryl or C 5 to C 30 heteroaryl.
  2. 하기 화학식 5의 화합물과 하기 화학식 6의 화합물을 반응시키는 단계를 포함하는 것이 특징인 화학식 4의 화합물 제조 방법:A method for preparing a compound of Formula 4, comprising reacting a compound of Formula 5 with a compound of Formula 6:
    [화학식 4][Formula 4]
    Figure PCTKR2009002944-appb-I000032
    Figure PCTKR2009002944-appb-I000032
    상기 화학식 4에서, n은 1~5의 정수이며; In Formula 4, n is an integer of 1 to 5;
    R1~R4은 각각 독립적으로 수소, 탄소수 1~30의 알킬(alkyl), 탄소수 2~30의 알케닐(alkenyl), 탄소수 5~30의 아릴(aryl), 탄소수 5~30의 헤테로아릴, 탄소수 5~30의 아릴옥시, 탄소수 1~30의 알킬옥시, 탄소수 5~30의 아릴알킬, 탄소수 5~30의 시클로알킬, 탄소수 5~30의 헤테로시클로알킬 및 할로겐 원소로 구성된 군에서 선택된 것이고; R 1 to R 4 are each independently hydrogen, alkyl having 1 to 30 carbon atoms, alkenyl having 2 to 30 carbon atoms, aryl having 5 to 30 carbon atoms, heteroaryl having 5 to 30 carbon atoms, Aryloxy having 5 to 30 carbon atoms, alkyloxy having 1 to 30 carbon atoms, arylalkyl having 5 to 30 carbon atoms, cycloalkyl having 5 to 30 carbon atoms, heterocycloalkyl having 5 to 30 carbon atoms, and a halogen element;
    X1~X4는 각각 독립적으로 C5~C30의 아릴, C5~C30의 헤테로아릴 및
    Figure PCTKR2009002944-appb-I000033
    로 구성된 군에서 선택되며, X1~X4 중 어느 하나 이상은
    Figure PCTKR2009002944-appb-I000034
    이고, 여기서 Ar1~Ar4는 각각 독립적으로 C5~C30의 아릴 또는 C5~C30의 헤테로아릴이며;
    X 1 to X 4 are each independently C 5 ~ C 30 aryl, C 5 ~ C 30 heteroaryl and
    Figure PCTKR2009002944-appb-I000033
    It is selected from the group consisting of, any one or more of X 1 ~ X 4
    Figure PCTKR2009002944-appb-I000034
    Wherein Ar 1 to Ar 4 are each independently C 5 to C 30 aryl or C 5 to C 30 heteroaryl;
    [화학식 5][Formula 5]
    Figure PCTKR2009002944-appb-I000035
    Figure PCTKR2009002944-appb-I000035
    상기 화학식 5에서, Y1~Y4는 각각 독립적으로 수소, C5~C30의 아릴, 및 C5~C30의 헤테로아릴로 구성된 군에서 선택되며, 이 중 어느 하나 이상은 수소이며; n 및 R1~R4은 화학식 4에 정의된 바와 동일하며;In Formula 5, Y 1 ~ Y 4 are each independently selected from the group consisting of hydrogen, C 5 ~ C 30 aryl, and C 5 ~ C 30 heteroaryl, at least one of which is hydrogen; n and R 1 to R 4 are the same as defined in Formula 4;
    [화학식 6][Formula 6]
    Figure PCTKR2009002944-appb-I000036
    Figure PCTKR2009002944-appb-I000036
    상기 화학식 6에서, Z는 F, Cl, Br, 및 I로 구성된 군에서 선택된 할로겐 원소이고; Ar1~Ar4는 화학식 4에 정의된 바와 동일하다.In Chemical Formula 6, Z is a halogen element selected from the group consisting of F, Cl, Br, and I; Ar 1 to Ar 4 are the same as defined in Formula 4.
  3. 제2항에 있어서, 상기 화학식 5의 화합물은 하기 화학식 7의 화합물과 HNY1Y2 및 HNY3Y4 (여기서, Y1~Y4은 각각 독립적으로 수소, C5~C30의 아릴 및 C5~C30의 헤테로아릴로 구성된 군에서 선택되며, Y1~Y4 중 어느 하나 이상은 수소임)의 아민 화합물의 반응을 통해 제조되는 것이 특징인 화학식 4의 화합물 제조 방법:According to claim 2, wherein the compound of Formula 5 is a compound of Formula 7 and HNY 1 Y 2 and HNY 3 Y 4 (wherein, Y 1 ~ Y 4 are each independently hydrogen, C 5 ~ C 30 Aryl and C Method selected from the group consisting of 5 to C 30 heteroaryl, wherein at least one of Y 1 ~ Y 4 is hydrogen) characterized in that it is prepared through the reaction of an amine compound of formula (4):
    [화학식 7][Formula 7]
    Figure PCTKR2009002944-appb-I000037
    Figure PCTKR2009002944-appb-I000037
    상기 화학식 7에서, T1 및 T2는 각각 독립적으로 F, Cl, Br 및 I로 구성된 군에서 선택된 할로겐 원소이며; n 및 R1~R4은 화학식 4에 정의된 바와 동일하다.In Formula 7, T 1 and T 2 are each independently a halogen element selected from the group consisting of F, Cl, Br, and I; n and R 1 to R 4 are the same as defined in Formula 4.
  4. 제2항에 있어서, 상기 화학식 6의 화합물은 하기 화학식 8의 화합물과 하기 화학식 9의 화합물의 반응을 통해 제조되는 것이 특징인 화학식 4의 화합물 제조 방법:The method of claim 2, wherein the compound of Formula 6 is prepared through the reaction of a compound of Formula 8 with a compound of Formula 9.
    [화학식 8][Formula 8]
    Z-Ar1-ZZ-Ar 1- Z
    상기 화학식 8에서, Z는 F, Cl, Br, 및 I로 구성된 군에서 선택된 할로겐 원소이고; Ar1은 C5~C30의 아릴 또는 C5~C30의 헤테로아릴이며;In Formula 8, Z is a halogen element selected from the group consisting of F, Cl, Br, and I; Ar 1 is C 5 -C 30 aryl or C 5 -C 30 heteroaryl;
    [화학식 9][Formula 9]
    Figure PCTKR2009002944-appb-I000038
    Figure PCTKR2009002944-appb-I000038
    상기 화학식 9에서, W는 F, Cl, Br 및 I로 구성된 군에서 선택된 할로겐 원소이며; Ar2~Ar4은 화학식 4에 정의된 바와 동일하다.In Formula 9, W is a halogen element selected from the group consisting of F, Cl, Br and I; Ar 2 to Ar 4 are the same as defined in Formula 4.
  5. (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서,An organic light emitting device comprising (i) an anode, (ii) a cathode, and (iii) at least one organic layer interposed between the anode and the cathode,
    상기 1층 이상의 유기물층 중 적어도 하나의 층은 제1항의 실리콘계 화합물을 포함하는 것이 특징인 유기 발광 소자.At least one layer of the at least one organic material layer is an organic light emitting device, characterized in that containing the silicon compound of claim 1.
  6. 제5항에 있어서, 상기 제1항의 실리콘계 화합물을 포함하는 층은 정공 주입층, 정공 수송층 및 전자 저지층 중 어느 하나 이상인 것이 특징인 유기 발광 소자.The organic light emitting device of claim 5, wherein the layer including the silicon compound of claim 1 is at least one of a hole injection layer, a hole transport layer, and an electron blocking layer.
PCT/KR2009/002944 2008-06-03 2009-06-03 Novel silicon-based compound, production method thereof, and organic light-emitting element employing the same WO2009148257A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0051933 2008-06-03
KR1020080051933A KR100965044B1 (en) 2008-06-03 2008-06-03 Novel silicon-based compounds, preparation method thereof and organic light emitting diode using the same

Publications (2)

Publication Number Publication Date
WO2009148257A2 true WO2009148257A2 (en) 2009-12-10
WO2009148257A3 WO2009148257A3 (en) 2010-03-11

Family

ID=41398666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002944 WO2009148257A2 (en) 2008-06-03 2009-06-03 Novel silicon-based compound, production method thereof, and organic light-emitting element employing the same

Country Status (2)

Country Link
KR (1) KR100965044B1 (en)
WO (1) WO2009148257A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006673A1 (en) * 2014-07-11 2017-04-27 日産化学工業株式会社 Charge transport varnish
CN114213444A (en) * 2021-12-10 2022-03-22 陕西维世诺新材料有限公司 Tetraphenylsilane derivative and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056091A2 (en) * 2000-01-28 2001-08-02 Siemens Aktiengesellschaft Charge transport material having an increased glass transition temperature and the use of said material
US6696588B2 (en) * 1997-02-28 2004-02-24 Sumitomo Chemical Company, Limited Silicon-containing compound and organic electroluminescence device using the same
KR20040086249A (en) * 2002-01-28 2004-10-08 센시엔트 이메징 테크놀로지 게엠바하 Triarylamine derivatives and the use thereof in organic electroluminescent and electrophotographic devices
JP2006176520A (en) * 2004-12-20 2006-07-06 Samsung Sdi Co Ltd Triarylamine-based compound for organic electroluminescent element and method for producing the same, and organic electroluminescent element
KR20080041941A (en) * 2006-11-08 2008-05-14 삼성에스디아이 주식회사 An silanylamine-based compound, a method for preparing the same and an organic light emitting diode comprising an organic layer comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696588B2 (en) * 1997-02-28 2004-02-24 Sumitomo Chemical Company, Limited Silicon-containing compound and organic electroluminescence device using the same
WO2001056091A2 (en) * 2000-01-28 2001-08-02 Siemens Aktiengesellschaft Charge transport material having an increased glass transition temperature and the use of said material
KR20040086249A (en) * 2002-01-28 2004-10-08 센시엔트 이메징 테크놀로지 게엠바하 Triarylamine derivatives and the use thereof in organic electroluminescent and electrophotographic devices
JP2006176520A (en) * 2004-12-20 2006-07-06 Samsung Sdi Co Ltd Triarylamine-based compound for organic electroluminescent element and method for producing the same, and organic electroluminescent element
KR20080041941A (en) * 2006-11-08 2008-05-14 삼성에스디아이 주식회사 An silanylamine-based compound, a method for preparing the same and an organic light emitting diode comprising an organic layer comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006673A1 (en) * 2014-07-11 2017-04-27 日産化学工業株式会社 Charge transport varnish
CN114213444A (en) * 2021-12-10 2022-03-22 陕西维世诺新材料有限公司 Tetraphenylsilane derivative and preparation method thereof

Also Published As

Publication number Publication date
KR20090125883A (en) 2009-12-08
WO2009148257A3 (en) 2010-03-11
KR100965044B1 (en) 2010-06-21

Similar Documents

Publication Publication Date Title
WO2012173370A2 (en) Novel compounds and organic electronic device using same
WO2010076986A4 (en) Novel compounds for an organic photoelectric device, and organic photoelectric device comprising same
WO2010131855A2 (en) Compound containing a 5-membered heterocycle and organic light-emitting diode using same, and terminal for same
WO2013036044A2 (en) Material for organic light-emitting device, and organic light-emitting device using same
WO2010114267A2 (en) Organic electronic device, compounds for same, and terminal
WO2011019173A2 (en) Compound containing 5-membered heterocycles, organic light-emitting device using same, and terminal comprising the latter
WO2014142472A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device thereof
WO2010071362A2 (en) Deuterated anthracene derivative, and organic light-emitting device comprising same
WO2012091428A2 (en) Novel compound, and organic light-emitting device using same
WO2011108902A2 (en) Compound comprising at least two compounds comprising at least two five-membered hetero rings, an organic electrical element using the same and a terminal thereof
WO2011021803A2 (en) Compound having a thianthrene structure, organic light-emitting device using same, and terminal comprising the device
WO2011081429A2 (en) Organic compound, and organic electroluminescent device using same
WO2012099376A2 (en) Novel compound and organic light-emitting device comprising same
WO2011155742A2 (en) Compound comprising carbazole and aromatic amine derivatives, organic electronic element using same, and terminal comprising the organic electronic element
WO2011081431A2 (en) Organic light emitting compound, and organic electroluminescent device using same
WO2011019156A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011126225A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2010114253A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011136482A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011081403A2 (en) Organic luminescent compound and an organic electroluminescent element comprising the same
WO2011149284A2 (en) Hetero-atom-containing compound in which carbazole and fluorene are fused, an organic electrical element using the same and a terminal thereof
WO2014084612A1 (en) Novel compound and organic electronic element using same
WO2010074439A2 (en) Novel compound for organic photoelectric device and photoelectric device including the same
WO2019143031A1 (en) Compound for organic electric element, organic electric element using same, and electronic apparatus employing same
WO2010058946A2 (en) Novel chrysene derivatives and organic electrical device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758510

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758510

Country of ref document: EP

Kind code of ref document: A2