WO2009147911A1 - Solution for self-depositing coating treatment of metal materials and self-depositing coating treatment method - Google Patents

Solution for self-depositing coating treatment of metal materials and self-depositing coating treatment method Download PDF

Info

Publication number
WO2009147911A1
WO2009147911A1 PCT/JP2009/058088 JP2009058088W WO2009147911A1 WO 2009147911 A1 WO2009147911 A1 WO 2009147911A1 JP 2009058088 W JP2009058088 W JP 2009058088W WO 2009147911 A1 WO2009147911 A1 WO 2009147911A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
treatment
autodeposition
coating
coating treatment
Prior art date
Application number
PCT/JP2009/058088
Other languages
French (fr)
Japanese (ja)
Inventor
孝洋 藤野
哲司 川邉
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Publication of WO2009147911A1 publication Critical patent/WO2009147911A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/088Autophoretic paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/24Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with mixtures of two or more phenols which are not covered by only one of the groups C08G8/10 - C08G8/20
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09J161/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols

Definitions

  • the present invention can be used alone on a surface of an iron-based metal material that requires corrosion resistance and may be overcoated depending on the application, such as automobile bodies, automobile parts, steel furniture, and home appliances.
  • TECHNICAL FIELD The present invention relates to a surface treatment solution for autodeposition coating treatment for depositing an organic coating having sufficient corrosion resistance and capable of being repeatedly applied with a chemical reaction, a self-deposition coating treatment method, and a metal material having an autodeposition coating. .
  • the paint used for the metal material can be classified in various ways according to the coating method and components, and is selected according to the performance required for the material to be coated and the possible coating method.
  • the material to be coated has a complicated structure and a high degree of corrosion resistance is required, such as an automobile body, it is necessary to secure a coating thickness inside the bag structure part called throwing power. is important.
  • a general method used to ensure corrosion resistance inside the bag structure is a combination of zinc phosphate treatment, which is a chemical conversion treatment for the coating base, and cationic electrodeposition coating.
  • zinc phosphate treatment which is a chemical conversion treatment for the coating base
  • cationic electrodeposition coating since the material to be coated is immersed in the treatment bath for chemical conversion treatment and coating, the inside of the bag structure can be brought into contact with the chemical conversion treatment liquid and the paint.
  • the zinc phosphate treatment process is hot water washing ⁇ preliminary degreasing ⁇ degreasing ⁇ multistage water washing (usually 2 to 3 stages) ⁇ surface adjustment ⁇ film formation ⁇ multistage water washing (usually 2 to 3 stages) ⁇ ion exchange water washing,
  • the cationic electrodeposition coating process is electrodeposition ⁇ multi-stage water washing (usually 3 to 5 stages) ⁇ ion-exchange water washing ⁇ baking, so the treatment process is very long. For example, in the case of an automobile body, the process length exceeds 200 m. It becomes.
  • the generation of iron phosphate sludge which is a side reaction of the film deposition reaction, is unavoidable, and improvement is desired from the viewpoint of environmental problems.
  • the coating film is deposited by electrolysis, and the coating film is deposited by the electrical resistance of the deposited coating. Occurrence of a difference in film thickness between the plate portion and the inside of the bag structure portion where the coating film is deposited with a delay is an unavoidable problem.
  • compositions are referred to as autodeposition compositions, or autodeposition compositions, or autodeposition compositions.
  • Patent Document 1 relates to an autodeposition composition using a vinylidene chloride copolymer. Since vinylidene chloride resin is very excellent in moisture resistance, moisture resistance, and gas barrier properties, it has a very large inhibitory action against corrosion when formed into a coating film. However, as is well known, vinylidene chloride resin has very low heat resistance. Therefore, Patent Document 1 discloses that heat resistance can be improved by copolymerizing a vinylidene chloride monomer with a comonomer such as an acrylic comonomer and inserting a stable comonomer into the chain by heat. However, even if a stable site is inserted in the chain, the low heat resistance of the vinylidene chloride basic structure cannot be fundamentally improved. Therefore, the autodeposition technology using vinylidene chloride is not only applicable to metal materials used in environments exposed to high temperatures, but also cannot be overcoated by baking coating on the autodeposition coating. Had.
  • Patent Documents 6 and 7 disclose an aqueous coating composition that can be automatically deposited on a metal support, which is made of a water-dispersible phenol resin and a softener polymer.
  • a metal support which is made of a water-dispersible phenol resin and a softener polymer.
  • the autodeposition coating film before baking obtained by this method contains a large amount of moisture, the coating film before baking cannot be washed with water. Therefore, there is no problem if it is a flat material to be coated, but in the case of a material having a bag structure part, the paint remaining inside the bag structure part cannot be washed out. Serious defects that significantly affect the corrosion resistance.
  • the process length is shortened compared with the coating process consisting of a combination of zinc phosphate treatment and electrodeposition coating, and no by-product harmful to the environment such as sludge is generated.
  • the purpose of the present invention is to solve the problems of the prior art.
  • the process length is shortened compared to the coating process consisting of a combination of zinc phosphate treatment and electrodeposition coating, and almost no by-products that are harmful to the environment such as sludge are produced.
  • a surface treatment solution for treating a self-deposited film which is excellent, does not use environmentally harmful components such as chromium compounds, has corrosion resistance, and can be further baked onto the obtained film. That is.
  • the surface treatment liquid for autodeposition coating treatment comprises a resole resin obtained by reacting phenols and aldehydes in the presence of an alkali catalyst in the F / P ratio range of 2.5 to 3. , Obtained by mixing and stirring a hydroxyphenol having two or more hydroxyl groups on adjacent aromatic ring carbon and a phenol, further adding a phenol, an aldehyde and an acid catalyst, and polymerizing the F / A novolak resin having a methylol group having a P ratio of 0.7 to 1.0, and a crosslinking agent having a crosslinking group capable of thermosetting reaction with the methylol group, phenol nucleus and / or phenolic hydroxyl group,
  • the solid content mass concentration ratio with the crosslinking agent is in the range of 1: 1 to 1:10, and the ferric ion and at least three times the mole of the ferric ion And every elemental fluorine (preferably dissolved elemental fluorine in), further comprising an
  • the novolak resin preferably has at least a methylol group substituted with an aromatic ring and a phenol moiety having two or more hydroxyl groups on adjacent aromatic ring carbons, and has a structural formula shown in Formula 1. More preferred. Wherein m and n are integers of 1 to 5, p is an integer of 0 to 5, R1 is methylol, R2 is independently hydroxyl or alkylaryl, R3 is independently methylol, hydroxyl or alkylaryl, a is 0 or 1)
  • the crosslinking group capable of thermosetting reaction of the crosslinking agent is an isocyanate group.
  • the cross-linking agent is preferably a polyfunctional blocked isocyanate obtained by adding at least 2 mol of polyisocyanate in which one isocyanate group is blocked with a blocking agent to 1 mol of polyol.
  • the polyol in the crosslinking agent has a bisphenol A structure of at least one molecule.
  • the concentration of the novolak resin is preferably 1 to 5% by mass as the solid content concentration in the aqueous solution.
  • the oxidizing agent is at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide.
  • the oxidation-reduction potential of the surface treatment solution for autodeposition coating treatment measured with a platinum electrode is preferably 300 to 500 mV.
  • the present invention is a method in which a metal material is previously degreased and cleaned with a water washing treatment, and then contacted with the aqueous solution described in the surface treatment solution for autodeposition coating treatment.
  • This is a metal material self-deposition coating treatment method, wherein the coating film is thermally cured by removing excess treatment liquid adhering to the substrate and then performing a baking treatment.
  • the present invention has an autodeposition coating layer deposited on the surface of an iron-based metal material by the above method, and the thickness of the autodeposition coating layer after baking hardening is 10 to 30 ⁇ m. It is a metal material.
  • the meaning of each term used in the claims and the specification will be described.
  • the “ferric ion” is an ion represented by Fe 3+
  • the existence form in the treatment liquid for surface treatment is not particularly limited, and for example, indicates a state in which Fe 3+ or a ligand is coordinated.
  • elemental fluorine is coordinated to ferric ion, FeF 2+, FeF 2 +, can be cited FeF 3 and the like.
  • the “elemental fluorine” is not particularly limited to its form such as a molecular state or an ionic state, and means the whole elemental fluorine supplied by a fluorine-containing compound such as hydrogen fluoride and / or a salt thereof.
  • the concentration of “elemental fluorine” is the total molar concentration of various elements of fluorine present in the system.
  • elemental fluorine supplied by the fluorine-containing compound depending on the pH of the aqueous solution, F -, HF, HF 2 - can take the dissociated form, such as, a concentration of the fluorine element as referred to herein, all in an aqueous solution
  • the total molar concentration of F when a complex is formed with ferric ions, the complex includes “ferric ions” and also includes “fluorine element”.
  • the “dissolved fluorine element” is not particularly limited to its form such as molecular state or ion state, but is present as solid particles without being dissolved in the surface treatment liquid for autodeposition coating treatment of the present invention. Fluorine elements contained in salts and the like are excluded. Furthermore, the concentration of “dissolved fluorine element” is the total molar concentration of various dissolved fluorine elements present in the system.
  • the “novolak resin” means a resin obtained by polymerizing phenols with aldehydes under an acid catalyst.
  • Resol means a resin obtained by polymerizing phenols with aldehydes in the presence of an alkali catalyst.
  • phenol means an aromatic compound having a phenolic hydroxyl group.
  • Aldehydes are compounds having one or more aldehyde groups in one molecule or compounds that can easily generate aldehyde groups in a reaction system.
  • Alkyl means C1-C10 linear or branched, substituted or unsubstituted alkyl.
  • Aryl is a substituted or unsubstituted C6-C14 1- to 3-cyclic aryl (wherein one or more C atoms constituting the ring may be substituted with S, N, or O). Means.
  • the method of the present invention no by-product harmful to the environment such as sludge is produced, and no harmful components such as chromium compounds are used in the autodeposition coating treatment bath, so the influence on the environment is small. Moreover, since the self-deposited film of the present invention has excellent corrosion resistance and excellent throwing power inside the bag structure, it is effective for improving the corrosion resistance of an object having a complicated structure. Furthermore, the autodeposition coated metal material of the present invention can be baked over the autodeposition coating. Therefore, it can be used in combination with various coatings.
  • isocyanate As the cross-linking agent, it is possible to form an autodeposition coating with better corrosion resistance.
  • the film When the concentration of the novolak resin is 1 to 5% by mass as the solid content concentration in the aqueous solution, the film has a sufficient film thickness to obtain corrosion resistance and the consumption of components can be suppressed.
  • the novolak resin and the cross-linking agent have a solid mass concentration ratio of 1: 1 to 1:10, a uniform autodeposition coating appearance can be obtained and corrosion resistance can be improved.
  • the self-deposition coating treatment liquid is self-impaired without impairing the stability. There is an effect of promoting the precipitation reaction.
  • the redox potential measured at the platinum electrode By setting the redox potential measured at the platinum electrode to 300 to 500 mV, there is a sufficient amount of oxidant to oxidize all the iron ions present in the bath to ferric ions and maintain their oxidation state. Thus, the precipitation reaction of the autodeposition film can be promoted and the destabilization of the autodeposition film treatment liquid due to ferrous ions can be suppressed.
  • the autodeposition coating treatment method according to the present invention by using the treatment liquid according to the present invention, there is an effect that an autodeposition coating having more excellent corrosion resistance can be formed.
  • the metal material is an iron-based metal material, it is easier to form a self-oxidation film, and the film having excellent corrosion resistance can be formed.
  • the inventors of the present invention have disclosed a metal material, a resole resin obtained by reacting a phenol and an aldehyde with an F / P ratio in the range of 2.5 to 3 in the presence of an alkali catalyst, and an adjacent aromatic ring carbon.
  • the F / P ratio obtained by mixing and stirring a hydroxyphenol having two or more hydroxyl groups and a phenol, and adding and polymerizing a phenol, an aldehyde and an acid catalyst is 0.7.
  • a solid content of the novolak resin and the crosslinking agent comprising a novolak resin having a methylol group of ⁇ 1.0 and a crosslinking agent having a crosslinking group capable of thermosetting reaction with the methylol group, phenol nucleus and / or phenolic hydroxyl group.
  • the novolac resin preferably has the structural formula shown in Formula 1. Wherein m and n are integers of 1 to 5, p is an integer of 0 to 5, R1 is methylol, R2 is independently hydroxyl or alkylaryl, R3 is independently methylol, hydroxyl or alkylaryl, a is 0 or 1)
  • the surface treatment liquid for autodeposition coating treatment of the present invention can be applied to ferrous metal materials and galvanized steel sheets.
  • the most suitable metal material is an iron-based metal material.
  • the iron-based metal material here refers to steel-based metals such as cold-rolled steel plates and hot-rolled steel plates, and iron-based metals such as cast iron and sintered materials.
  • metal material of the present invention are automobile bodies, automobile parts, steel furniture, home appliances, etc., and depending on each application, only the self-deposited film of the present invention or other top coating such as solvent coating Can be used in combination.
  • the novolak resin containing at least one methylol group in the basic molecular structure is one of the essential components in the present invention.
  • the present invention is a surface treatment solution for treating an autodeposition coating of a metal material, wherein the iron-based metal material is brought into contact with a specific aqueous solution. Therefore, the components used in the treatment method of the present invention must first be water-soluble or water-dispersible. Furthermore, the resin component that is the main component of the self-deposited film must have self-deposition property to the ferrous metal material under the treatment conditions presented in the present invention, and the thermosetting property in the baking treatment after self-deposition. It is necessary to have both.
  • m and n are integers of 1 to 5
  • p is an integer of 0 to 5
  • R1 is methylol
  • R2 is independently hydroxyl or alkylaryl
  • R3 is independently methylol, hydroxyl or alkylaryl
  • a is 0 or 1.
  • preferred alkylaryl of R2 and R3 is a benzyl group or a tolyl group.
  • Resins generally called novolak resins and resol resins are polymerized using phenols and aldehydes.
  • the reaction molar ratio at the time of reacting phenols (P) and aldehydes (F) is called F / P ratio.
  • a resin generally referred to as a novolak is obtained by polymerizing phenols with aldehydes using an acid catalyst.
  • Novolac is polymerized with a small F / P ratio in order to prevent the molecular structure from becoming three-dimensional, and aldehydes added to phenols are used in the polymerization reaction of phenols.
  • formaldehyde is used for polymerization of phenols, and there is no methylol group due to addition of formaldehyde.
  • the novolak resin according to the best mode is not particularly limited, but the F / P ratio is preferably 0.7 to 1.0, more preferably 0.75 to 0.95, and 0.75 to 0. .9 is more preferred.
  • a novolak resin having no methylol group is not suitable for the use of the present invention because it has a remarkably low affinity with water and does not disperse in water and does not have a functional group that is crosslinked by heat.
  • a resol resin that polymerizes formaldehyde and phenols at a high F / P ratio under an alkali catalyst is a thermosetting resin having a methylol group, but the stability of the aqueous dispersion in an acidic aqueous solution is remarkable. Since it is low, it cannot be used in the present invention.
  • the novolak resin represented by Formula 1 used in the present invention has at least one methylol group.
  • thermosetting is imparted to the novolac resin.
  • the hydrophilicity of the novolak resin can be improved.
  • sufficient water solubility and water dispersibility cannot be provided only by methylol groups.
  • novolak resin only provided with a methylol group cannot obtain autoprecipitation. Therefore, by introducing dihydroxyphenol having an ionic group into a novolak resin having a methylol group, its water solubility and water dispersibility were improved, and autoprecipitation was further imparted.
  • 2,3-dihydroxynaphthalene-6-sulfonic acid is most preferable as the dihydroxyphenol having an ionic group used in the novolak resin of the present invention.
  • Sulfonic acid groups can impart sufficient water solubility and water dispersibility to the novolak resin, and self-precipitating properties can be imparted by two ortho-hydroxy groups.
  • 2,3-dihydroxynaphthalene-6-sulfonic acid alkali metal salt can be used.
  • the novolak resin having a methylol group in the structural formula shown in Formula 1 used in the present invention reacts phenols with aldehydes in advance under an alkaline catalyst, preferably at an F / P ratio in the range of 2.5 to 3.
  • an alkaline catalyst preferably at an F / P ratio in the range of 2.5 to 3.
  • 2,3-dihydroxynaphthalene-6-sulfonic acid sodium salt and phenols were mixed and stirred in the resole resin, and further polymerized by adding phenols, aldehydes and an acid catalyst. Can be synthesized.
  • the final novolak F / P ratio is the molar ratio of all phenols (including hydroxyphenols) and aldehydes.
  • the phenols and aldehydes used in the resol resin synthesis are also included in the final F / P ratio. Further, whether or not a methylol group is present in the synthesized novolak resin can be determined by measuring the absorption of the methylol group appearing in the vicinity of 1000 cm ⁇ 1 by infrared spectroscopy.
  • phenol, catechol, resorcinol, pyrogallol, cresol and the like can be used as phenols
  • formaldehyde, acetaldehyde, acetone, benzaldehyde and the like can be used as aldehydes.
  • the most preferred aldehyde is formaldehyde marketed as formalin.
  • crosslinking group of the crosslinking agent having a methylol group, a phenol nucleus, and a crosslinking group capable of thermosetting reaction with a phenolic hydroxyl group used in the present invention a methylol group, a carboxyl group, a glycidyl group, and a secondary class in which a glycidyl group is opened
  • An alcohol group, an isocyanate group, and the like can be used, and among them, an isocyanate group is preferable.
  • the cross-linking agent is preferably a polyfunctional blocked isocyanate obtained by adding at least 2 mol of polyisocyanate in which one isocyanate group is blocked with a blocking agent to 1 mol of polyol.
  • Isocyanate groups are optimal as the crosslinking agent of the present invention, because the blocking with a blocking agent can suppress the reaction with water, and the application of heat causes the blocking agent to dissociate and cause a crosslinking reaction. .
  • 1,4-tetramethylene diisocyanate, ethyl (2,6-diisocyanato) hexanoate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 2,2,4- or 2,4,4 -Aliphatic diisocyanates such as trimethylhexamethylene diisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 2-isocyanatoethyl (2,6-diisocyanate) Nato) diisocyanate having a cyclic structure such as aliphatic triisocyanate such as hexanoate and isophorone diisocyanate, m- or p-phenylene diisocyanate, toluene-2,4- or 2,6-
  • the polyisocyanate suitable for the present invention is 1,6-hexamethylene diisocyanate from the viewpoint of the flexibility of the resulting film, and toluene-2,4- or 2,6-diisocyanate from the viewpoint of the reactivity of the isocyanate group. .
  • isocyanate group blocking agent used in the present invention
  • known ones can be used.
  • alcohol such as methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol, phenol, methylphenol, chlorophenol, p-iso-butylphenol, p Phenols such as tert-butylphenol, p-iso-amylphenol, p-octylphenol, p-nonylphenol, active methylene compounds such as malonic acid dimethyl ester, malonic acid diethyl ester, acetylacetone, methyl acetoacetate, ethyl acetoacetate, Such as formaldoxime, acetoaldoxime, acetone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime, 2-butanone oxime, etc. Shi
  • the baking temperature of the coating in the autodeposition coating treatment of the present invention can be lowered.
  • the dissociation temperature is too low, the stability of the surface treatment solution for autodeposition coating treatment may be impaired. Therefore, it is preferable to use oximes such as formaldoxime, acetoaldoxime, acetone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime, 2-butanone oxime, and thiosulfate.
  • the blocking agent used here is preferably 1 ⁇ 2 times the molar amount when the polyisocyanate to be used is a diisocyanate and 2/3 times the molar amount when it is a triisocyanate.
  • the blocking agent is used, the reaction with the water of the crosslinking agent after reacting with the polyol is suppressed, and heat is applied to the autodeposition coating before baking while maintaining the stability of the autodeposition surface treatment solution. This has the effect of curing the coating film.
  • polyols examples include polyether polyols such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol, polyethylene abates, polydiethylene abates, polypropylene abates, polytetramethylene abates, and poly- ⁇ .
  • polyether polyols such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol
  • polyethylene abates polydiethylene abates
  • polypropylene abates polytetramethylene abates
  • poly- ⁇ poly- ⁇ .
  • -Polyester polyols such as caprolactone, polycarbonate polyols, acrylic polyols, epoxy polyols, trimethylolpropane, bisphenol A, bisphenol F, bisphenol AD and the like.
  • epoxy polyol and bisphenol A having at least one molecule of bisphenol A structure in the molecular structure are preferable.
  • “having at least one molecule of bisphenol A structure” means that the polymer is incorporated in a linear chain of a polymer such as the epoxy polyol or has a bisphenol A repeating unit in part. Or a homopolymer of bisphenol A or bisphenol A itself.
  • Bisphenol A has a benzene ring in the basic skeleton, and since the two benzene rings are connected by a methylene chain with two methyl groups, the resin itself has robustness (rigidity) and high chemical resistance.
  • the concentration of the novolak resin is preferably 1 to 5% by mass, more preferably 1 to 3% by mass as the solid content concentration in the aqueous solution.
  • the novolak resin having a methylol group has autoprecipitation properties and thermosetting properties. Therefore, when the concentration is less than 1% by mass, sufficient self-deposition property cannot be obtained, and a self-deposition coating thickness sufficient to obtain the corrosion resistance which is one of the effects of the present invention cannot be obtained.
  • it is larger than 5% by mass not only the consumption of the autodeposition bath component due to the removal of the treatment liquid by the object to be coated will increase, but also the removed treatment liquid will be removed in the water washing process and go to the wastewater treatment process. Since it is sent, unnecessary waste increases. Therefore, the more preferable upper limit concentration of the novolak resin is 3% by mass.
  • the solid mass concentration ratio of the novolak resin and the crosslinking agent in the aqueous solution is preferably 1: 1 to 1:10, more preferably 1: 1 to 1: 5, and even more preferably 1: 1. To 1: 3. Since the novolak resin used in the present invention has at least one molecule of methylol group in its molecular structure, heat is applied without adding a crosslinking agent by a crosslinking reaction between methylol groups, that is, an ether bond or methylene crosslinking. Can be cured. However, the present inventors have found that it is important to further increase the crosslinking density by adding a crosslinking agent in order to obtain practically sufficient corrosion resistance as the object of the present invention.
  • the coating film formed of novolac resin has inherently hard properties.
  • the hardness of the coating film increases as a result of complicated crosslinking with a cross-linking agent, and eventually the coating film becomes very brittle.
  • a hard and brittle coating film using a novolak resin is inferior in adhesion.
  • a hard and brittle coating film is not suitable for practical use because it is easily damaged by impact applied to the coating film and deformation of the coated metal material.
  • the ratio of the crosslinking agent to the novolak resin having a methylol group is less than 1 time, the crosslinking density is low and sufficient corrosion resistance cannot be obtained. On the other hand, if it is larger than 10 times, the crosslinking density is too high and the coating film becomes brittle, which is not suitable for practical use.
  • a solvent component for improving the water solubility of the components in the surface treatment liquid, particularly the crosslinking agent, and improving the appearance of the film after baking and curing can be added to the present invention.
  • Suitable solvents for the present invention include ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, and 2,2,4-trimethylpentanediol-1,3-monoisobutyrate Etc.
  • the present invention relates to a surface treatment solution for autodeposition coating treatment.
  • the self-precipitation reaction is carried out by dissolving ferrous metal material having a pH of 2 to 6, and ferrous ions dissolved in the bath by oxidation reaction of metallic iron with ferric ions, and methylol.
  • the novolak resin having a group the two hydroxy groups in the ortho position of the 2,3-dihydroxynaphthalene-6-sulfonic acid molecule chelate with ferrous ions, so that the novolak resin is insolubilized and deposited as an autodeposition coating film. is there.
  • Oxidized ferric ions can cause the stability of the autodeposition treatment bath as it is, but by coordination of the fluorine element contained in the treatment bath of the present invention, the novolac resin in the treatment bath This suppresses the chelating reaction and maintains the stability of the treatment bath.
  • soluble iron salts such as iron nitrate, iron sulfate, iron chloride, etc.
  • any of the ferrous salts and ferric salts can be used for autoprecipitation.
  • ferric ions By oxidizing with an oxidizing agent in the surface treatment liquid for coating treatment, ferric ions can be formed in the treatment liquid. Further, iron powder, iron oxide, iron hydroxide, or the like may be dissolved in hydrofluoric acid.
  • the concentration of ferric ions for causing the autodeposition reaction is 0.1 to 3 g / L, preferably 0.5 to 2.5 g / L, more preferably 1 to 2 g / L. .
  • the concentration of ferric ion can be measured by a general method in the art. For example, using a surface treatment solution for autodeposition coating treatment obtained by previously decomposing and separating a resin component by acid and heating, an atomic absorption method, It can be measured by ICP emission analysis or chelate analysis by EDTA.
  • concentration of a fluorine element is a 3 times molar concentration of a ferric ion.
  • an upper limit is not specifically limited, For example, it is 10 times or less molar concentration of a ferric ion.
  • concentration of elemental fluorine can be measured by a common method in the industry.
  • the surface treatment solution for autodeposition coating treatment of the present invention is subjected to distillation operation, and the concentration of elemental fluorine in the distilled solution is determined by ion chromatography or capillary. It can be measured by an electrophoresis apparatus.
  • the ferric ion concentration is less than 0.1 g / L, it becomes difficult to cause an oxidation dissolution reaction of iron in an amount suitable for autodeposition.
  • concentration of iron contained in the deposited self-deposited coating increases, and the amount of moisture taken into the coating together with iron ions increases. It becomes easy to peel off in the water washing process.
  • hydrofluoric acid As a supply source of elemental fluorine, hydrofluoric acid, ammonium fluoride, acidic ammonium fluoride, sodium fluoride, sodium hydrogen difluoride, potassium fluoride, potassium hydrogen difluoride and the like can be used.
  • the pH of the surface treatment solution for autodeposition coating treatment may be adjusted using an acid such as nitric acid or sulfuric acid.
  • the preferred pH of the surface treatment solution for autodeposition coating treatment of the present invention is 2 to 6, more preferably 2.5 to 5, more preferably 2.5 to 4.
  • the measuring method of pH shall be based on the method of JISZ8802.
  • the autodeposition coating treatment method of the present invention starts from the dissolution reaction of the iron-based metal material by hydrofluoric acid in the surface treatment solution for autodeposition coating treatment and the oxidation reaction of metallic iron by ferric ions. It is what. Accordingly, when the pH is higher than 6, the dissolution reaction of the metal material hardly occurs and the reduction reaction of ferric ion does not easily occur. On the other hand, if the pH is less than 2, the dissolution reaction of the metal material with respect to the precipitation reaction of the autodeposition coating becomes too large, and the stability of the surface treatment solution for autodeposition coating treatment may be impaired.
  • the oxidizing agent is preferably at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide.
  • Hydrogen peroxide is an oxidant suitable for the present invention because it is easily available and it is not necessary to consider the influence on the autodeposition treatment bath because the by-product of its own reduction reaction is water.
  • the concentration of the oxidizing agent in the autodeposition treatment bath of the present invention can be controlled by the oxidation-reduction potential measured with a commercially available ORP electrode using a platinum electrode as a working station.
  • an excess oxidizing agent exists in the treatment bath in a state where all ferrous ions are oxidized to ferric ions. That is, the amount of oxidizing agent is preferably an amount sufficient to oxidize all iron ions present in the bath to ferric ions and maintain their oxidized state.
  • the preferred oxidation-reduction potential when taking hydrogen peroxide as an example. Is at least 300 mV or more, more preferably 350 mV or more, and even more preferably 400 mV or more. Although an upper limit is not specifically limited, It is 500 mV or less.
  • the surface of the iron-based metal material is previously degreased and washed with water, and then brought into contact with the aqueous solution described in the surface treatment solution for self-deposited film treatment. Then, the excess aqueous solution adhering to the surface of the metal material is further removed by a water washing step, and then the coating is thermally cured by performing a baking treatment.
  • the degreasing treatment solvent degreasing, alkali degreasing and the like that have been generally used can be used, and the method of the degreasing is not limited and spraying, dipping, electrolysis and the like are not limited.
  • the water washing process performed after a degreasing process and an autodeposition coating process It can select from pouring, spraying, immersion, etc.
  • the quality of water used for washing is not particularly limited, but ion-exchanged water is a preferable choice in consideration of bringing in small components into the autodeposition coating treatment bath and remaining in the coating.
  • the autodeposition coating treatment according to the present invention is performed by an immersion method in which an object to be coated is immersed in a treatment bath.
  • an immersion method in which an object to be coated is immersed in a treatment bath.
  • the preferable immersion time is 1 to 10 minutes, and the more preferable immersion time is 2 to 5 minutes.
  • a pickling process may be employed.
  • the treatment process in this case is degreasing ⁇ multi-stage washing (usually 2 to 3 stages) ⁇ acid washing ⁇ multi-stage water washing (usually 1 to 2 stages) ⁇ self-deposition coating formation ⁇ multi-stage water washing (usually 2 to 3 stages) ⁇ baking .
  • the present invention has an autodeposition coating layer deposited on the surface of an iron-based metal material by the above method, and the thickness of the autodeposition coating layer after baking hardening is 10 to 30 ⁇ m. It is a metal material. Within this range, it has sufficient corrosion resistance, and appearance defects such as cracks and shrinkage are less likely to occur.
  • Test plate Cold rolled steel sheet: JIS-G-3141
  • Production Example 1 Synthesis of a novolak resin containing a methylol group Using dimethylaminobenzene as an alkali catalyst, 60 g of phenol (reagent) and 135 g of 37% by mass formaldehyde (reagent) are mixed and stirred at 70 ° C., and F / P ratio Of 2.6, and a water-soluble resol resin having a solid content of 55% by mass was obtained. A solution obtained by adding 40 g of 2,3-dihydroxynaphthalene-6-sulfonic acid sodium salt (reagent), 35 g of catechol (reagent), and 50 g of water to 200 g of the water-soluble resol resin is heated to 90 ° C. Stir for 3 hours.
  • Production Example 2 Synthesis of novolak resin Using 85% by mass phosphoric acid (reagent) as an acid catalyst, 61 g of phenol (reagent) and 42 g of 37% by mass formaldehyde (reagent) were mixed and stirred at 70 ° C., and F / P ratio Was novolak resin having a solid content of 55% by mass. To 140 g of the novolak resin, 40 g of 2,3-dihydroxynaphthalene-6-sulfonic acid sodium salt (reagent), 35 g of catechol (reagent), 30 g of 37% by mass formaldehyde (reagent) and 30 g of water were added. The product was heated to 90 ° C. and stirred for 3 hours.
  • Examples 1 to 5 and Comparative Example 1 A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • L4460 manufactured by Nihon Parkerizing Co., Ltd.
  • the test plate whose surface was degreased and cleaned was prepared by using a novolak resin containing a methylol group in Production Example 1, a crosslinking agent in Production Example 3, iron powder (reagent), hydrofluoric acid (reagent), and hydrogen peroxide ( After immersing in the autodeposition coating treatment bath shown in Table 1 prepared using a reagent), it was washed with ion-exchanged water using a spray device, and then baked at 160 ° C. for 20 minutes. The immersion time in the autodeposition bath was set so that the film thickness was 15 ⁇ m.
  • the autodeposition coated metal materials obtained in each of the examples and comparative examples were evaluated according to the methods described later.
  • Examples 6 to 9 and Comparative Examples 2 and 3 A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform a degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • L4460 manufactured by Nihon Parkerizing Co., Ltd.
  • the test plate whose surface was degreased and cleaned was prepared by using a novolak resin containing a methylol group in Production Example 1, a crosslinking agent in Production Example 4, iron powder (reagent), hydrofluoric acid (reagent), and hydrogen peroxide ( After being immersed in the autodeposition coating treatment bath shown in Table 2 prepared using a reagent), it was washed with ion-exchanged water using a spray device, and then baked at 160 ° C. for 20 minutes.
  • a commercially available amino alkyd intermediate coating (trade name Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd., film thickness 35 ⁇ m, spray coating, baked at 140 ° C.
  • Examples 11 to 13 A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • L4460 manufactured by Nihon Parkerizing Co., Ltd.
  • the test plate whose surface was degreased and washed was a novolak resin containing a methylol group in Production Example 1, Elastron H38 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), a commercial block isocyanate crosslinking agent, iron powder (reagent), After immersing in an autodeposition coating treatment bath shown in Table 3 prepared using hydrofluoric acid (reagent) and hydrogen peroxide solution (reagent) for 5 minutes, it was washed with ion-exchanged water using a spray device, Baking was performed at 160 ° C. for 20 minutes.
  • Comparative example 4 A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform a degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • L4460 manufactured by Nihon Parkerizing Co., Ltd.
  • the test plate whose surface was degreased and washed was a novolak resin containing a methylol group in Production Example 1, Elastron H38 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), a commercial block isocyanate crosslinking agent, iron powder (reagent), After immersing in an autodeposition coating treatment bath shown in Table 3 prepared using hydrofluoric acid (reagent) and hydrogen peroxide solution (reagent) for 5 minutes, it was washed with ion-exchanged water using a spray device, Baking was performed at 160 ° C. for 20 minutes. The mixing ratio of ferric chloride and iron powder was 1 g / L with ferric chloride as iron and the remaining iron as iron powder.
  • Comparative example 5 A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • L4460 manufactured by Nihon Parkerizing Co., Ltd.
  • the test plate whose surface was degreased and washed was obtained by adding 3% by mass of the novolak resin containing the methylol group of Production Example 1 as a solid content, 1.5 g / L of iron powder (reagent), and hydrofluoric acid (reagent). After dipping for 5 minutes in an autodeposition coating treatment bath in which ORP was adjusted to 400 mV using 1.6 g / L of fluorine and hydrogen peroxide solution (reagent) as a fluorine, it was washed with ion-exchanged water using a spray device, and then Baking was performed at 160 ° C. for 20 minutes. The obtained autodeposition coated metal material was evaluated according to the method described later.
  • Comparative examples 6-8 A fine alkaline L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted with water to 2% by mass with a commercially available alkaline degreasing agent and heated to 40 ° C. and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. Using the novolak resin of Production Example 2, the cross-linking agent of Production Example 3, iron powder (reagent), hydrofluoric acid (reagent), and hydrogen peroxide (reagent), the test plate whose surface was degreased and washed was used.
  • Comparative Example 9 A fine alkaline L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted with water to 2% by mass with a commercially available alkaline degreasing agent and heated to 40 ° C. and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • test plate whose surface was degreased and washed was immersed in a treatment bath in which NSD-1000 (vinylidene chloride type: Nippon Parkerizing Co., Ltd.), a commercially available autodeposition coating treatment agent, was adjusted to the center of the catalog value for 2 minutes. Then, it wash
  • a commercially available amino alkyd intermediate coating (trade name Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd., film thickness 35 ⁇ m, spray coating, baked at 140 ° C.
  • the coating film at the time of completion of the autodeposition coating treatment is referred to as a self-deposition coating film, and the coating film at the time of completion of the top coating is referred to as a 3coats coating film.
  • SST Salt spray test (self-deposited coating)
  • SDT salt warm water test (self-deposited coating)
  • 1 st ADH Primary adhesion (3coats coating film)
  • 2 nd ADH water resistant secondary adhesion (3-coat coating film)
  • Table 5 shows the evaluation results of the autodeposition coatings obtained in Examples 1 to 5 and Comparative Example 1.
  • Examples 1 to 5 a uniform appearance was obtained at all levels, and corrosion resistance was excellent.
  • Comparative Example 1 was not evaluated for corrosion resistance because cracks occurred on the entire surface of the autodeposition coating after baking.
  • Table 6 shows the evaluation results of the self-deposited films obtained in Examples 6 to 9 and Comparative Examples 2 and 3. Since Examples 6 to 9 did not introduce a bisphenol A structure into the cross-linking agent, they exhibited practically sufficient corrosion resistance although slightly inferior to Examples 1 to 5. Also, the adhesion after the intermediate top coating was good. On the other hand, the self-deposited coated metal material of Comparative Example 2 was inferior in corrosion resistance because the film thickness was low, although adhesion was obtained. In Comparative Example 3, the corrosion resistance evaluation was not performed because cracks occurred in the autodeposition coating after baking.
  • Table 7 shows the evaluation results of the autodeposition coatings obtained in Examples 11 to 13 and Comparative Example 4.
  • Examples 11 to 13 a uniform appearance was obtained at all levels, and the corrosion resistance was excellent. Also, the adhesion after the intermediate top coating was good.
  • the coating film before baking peeled in the washing process which is the next process of an autodeposition coating process was good.
  • Table 8 shows the evaluation results of the self-deposited film obtained in Comparative Example 5.
  • Comparative Example 5 an autodeposited film was obtained, but the result was markedly inferior in corrosion resistance because no crosslinking agent was used.
  • Table 9 shows the evaluation results of the autodeposition coating obtained in Comparative Examples 6 to 8.
  • the novolak resin used in Comparative Examples 6 to 8 was inferior in corrosion resistance because it did not have a methylol group.
  • the stability of the treatment bath was extremely low, and precipitates were generated 1 hour after the autodeposition coating treatment.
  • no precipitate was generated even when the treatment liquid after the autodeposition coating treatment was stored for one month, and sludge was hardly generated by the autodeposition coating treatment.
  • Table 10 shows the evaluation results of the self-deposited film obtained in Comparative Example 9. Since Comparative Example 9 was a commercially available autodeposition coating agent, it exhibited relatively good corrosion resistance. However, in the adhesion evaluation after the intermediate top coating, all the coatings on the grid area were peeled off.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The issue is to provide a solution for a self-depositing coating treatment for which the process length has been shortened compared to prior coating processes, that generates almost no by-products that are harmful to the environment such as sludge, that has excellent throwing power in bag-structured interiors, that does not use components that are harmful to the environment such as chromium compounds, that has anti-corrosion properties, and with which a baked finish can be applied to the obtained coating. The solution for a self-depositing coating treatment of metal materials is an aqueous solution comprising a novolak resin having methylol groups, a cross-linking agent, ferric ions, a fluorine component and an oxidant. The above cross-linking agent is a cross-linking agent that has cross-linking groups that can undergo heat-curing reactions with said methylol groups, phenol nuclei and/or phenolic hydroxyl groups. The solids weight concentration ratio of the above novolak resin to the above cross-linking agent is in the range of 1:1 to 1:10. The molar concentration of the above fluorine component is at least 3 times that of the above ferric ions and the pH is in a range of 2 to 6.

Description

金属材料の自己析出被膜処理液、および自己析出被膜処理方法Self-deposited coating treatment liquid for metal material, and self-deposited coating treatment method
 本発明は、自動車車体や自動車部品、スチール家具、および家電製品のように耐食性が必要とされ、かつ用途に応じて塗料の重ね塗りが施されることがある鉄系金属材料表面に、単独でも十分な耐食性を有し、かつ塗料の重ね塗りが可能な有機塗膜を化学反応で析出させるための自己析出被膜処理用表面処理液、自己析出被膜処理方法、および自己析出被膜を有する金属材料に関する。 The present invention can be used alone on a surface of an iron-based metal material that requires corrosion resistance and may be overcoated depending on the application, such as automobile bodies, automobile parts, steel furniture, and home appliances. TECHNICAL FIELD The present invention relates to a surface treatment solution for autodeposition coating treatment for depositing an organic coating having sufficient corrosion resistance and capable of being repeatedly applied with a chemical reaction, a self-deposition coating treatment method, and a metal material having an autodeposition coating. .
 金属材料を使用した工業製品は、一部の特別な用途、および材料を除き、そのほとんどが塗装されている。塗装の目的は、美観の向上もさることながら、金属の宿命である酸化、すなわち腐食を防止することである。ここで、金属材料に用いられる塗料は、その塗装方法や成分で様々に分類することができ、被塗装材料に要求される性能や可能な塗装方法によって選定される。ここで、自動車車体のように、被塗装材料が複雑な構造を有し、かつ高度な耐食性を要求される場合には、つきまわり性と称される袋構造部内部の塗膜厚の確保が重要である。 Most industrial products using metal materials are painted except for some special applications and materials. The purpose of painting is to prevent oxidation, that is, corrosion, which is the fate of metal, as well as improving aesthetics. Here, the paint used for the metal material can be classified in various ways according to the coating method and components, and is selected according to the performance required for the material to be coated and the possible coating method. Here, when the material to be coated has a complicated structure and a high degree of corrosion resistance is required, such as an automobile body, it is necessary to secure a coating thickness inside the bag structure part called throwing power. is important.
 袋構造部内部の耐食性を確保するために用いられる一般的な方法は、塗装下地用の化成処理であるリン酸亜鉛処理とカチオン電着塗装の組み合わせである。何れの方法も、被塗装材料を処理浴に浸漬して化成処理、および塗装を行うため、袋構造部内部までも化成処理液、および塗料と接触させることができる。しかしながら、リン酸亜鉛処理工程は、湯洗→予備脱脂→脱脂→多段水洗(通常2から3段)→表面調整→皮膜化成→多段水洗(通常2から3段)→イオン交換水洗であり、さらにカチオン電着塗装工程は、電着塗装→多段水洗(通常3から5段)→イオン交換水洗→焼き付けであるため、その処理工程は非常に長く、例えば自動車車体の場合には200mを超える工程長となる。 A general method used to ensure corrosion resistance inside the bag structure is a combination of zinc phosphate treatment, which is a chemical conversion treatment for the coating base, and cationic electrodeposition coating. In any method, since the material to be coated is immersed in the treatment bath for chemical conversion treatment and coating, the inside of the bag structure can be brought into contact with the chemical conversion treatment liquid and the paint. However, the zinc phosphate treatment process is hot water washing → preliminary degreasing → degreasing → multistage water washing (usually 2 to 3 stages) → surface adjustment → film formation → multistage water washing (usually 2 to 3 stages) → ion exchange water washing, The cationic electrodeposition coating process is electrodeposition → multi-stage water washing (usually 3 to 5 stages) → ion-exchange water washing → baking, so the treatment process is very long. For example, in the case of an automobile body, the process length exceeds 200 m. It becomes.
 リン酸亜鉛処理工程においては、従来から知られている通り、皮膜析出反応の副反応であるリン酸鉄スラッジの発生が避けられず、環境問題の観点から改良が望まれている。また、昨今のカチオン電着塗料は改良されてはいるものの、塗膜が電解によって析出し、析出した塗膜の電気抵抗によって塗膜がつきまわっていくメカニズム上、初期に塗膜が析出する外板部と遅れて塗膜が析出する袋構造部内部との膜厚差の発生は避けては通れない課題である。 In the zinc phosphate treatment process, as is conventionally known, the generation of iron phosphate sludge, which is a side reaction of the film deposition reaction, is unavoidable, and improvement is desired from the viewpoint of environmental problems. In addition, although the recent cationic electrodeposition coatings have been improved, the coating film is deposited by electrolysis, and the coating film is deposited by the electrical resistance of the deposited coating. Occurrence of a difference in film thickness between the plate portion and the inside of the bag structure portion where the coating film is deposited with a delay is an unavoidable problem.
 そこで、化学反応によって有機塗膜を析出させることで、工程短縮を図りつつ、リン酸鉄スラッジ発生の問題と袋構造部内部の塗膜厚の問題を解決すべく技術が古くから提案されており、このような組成物はオートデポジション組成物、または自己析出組成物、または自己沈着組成物と称されている。 Therefore, technology has been proposed for a long time to solve the problem of iron phosphate sludge generation and the film thickness inside the bag structure, while shortening the process by depositing an organic film by chemical reaction. Such compositions are referred to as autodeposition compositions, or autodeposition compositions, or autodeposition compositions.
 例えば、特許文献1は、塩化ビニリデンコポリマーを用いたオートデポジション組成物に関するものである。塩化ビニリデン樹脂は、防湿性、耐湿性、およびガスバリア性が非常に優れるため、塗膜とした際の腐食に対する抑制作用が非常に大きい。しかしながら、塩化ビニリデン樹脂は周知の通り耐熱性が非常に低い。そこで、特許文献1には、塩化ビニリデンモノマーをコモノマーたとえばアクリル系コモノマーと共重合させ、鎖中に熱により安定なコモノマーを挿入することで耐熱性を改善できることが開示されている。しかしながら、鎖中に安定な部位を挿入しても、塩化ビニリデン基本構造の耐熱性の低さは根本的に改善できない。従って、塩化ビニリデンを用いたオートデポジション技術は、高温に晒される環境で使用される金属材料には使用できないばかりか、オートデポジション塗膜の上に、焼き付け塗装による重ね塗りが出来ない問題点を有していた。 For example, Patent Document 1 relates to an autodeposition composition using a vinylidene chloride copolymer. Since vinylidene chloride resin is very excellent in moisture resistance, moisture resistance, and gas barrier properties, it has a very large inhibitory action against corrosion when formed into a coating film. However, as is well known, vinylidene chloride resin has very low heat resistance. Therefore, Patent Document 1 discloses that heat resistance can be improved by copolymerizing a vinylidene chloride monomer with a comonomer such as an acrylic comonomer and inserting a stable comonomer into the chain by heat. However, even if a stable site is inserted in the chain, the low heat resistance of the vinylidene chloride basic structure cannot be fundamentally improved. Therefore, the autodeposition technology using vinylidene chloride is not only applicable to metal materials used in environments exposed to high temperatures, but also cannot be overcoated by baking coating on the autodeposition coating. Had.
 塩化ビニリデンを使用しないオートデポジション組成物も数多く開示されている。塩化ビニリデン以外にオートデポジション組成物に用いられる樹脂成分の例としては、特許文献2,3および4に引用されるとおり、スチレンブタジエン、アクリル重合体およびその共重合体、ポリ塩化ビニル、ポリエチレン、ポリテトラフルオロエチレン、アクリロニトリルブタジエンおよびウレタン樹脂が開示されている。 Many autodeposition compositions that do not use vinylidene chloride are also disclosed. Examples of resin components used in the autodeposition composition other than vinylidene chloride include styrene butadiene, acrylic polymers and copolymers thereof, polyvinyl chloride, polyethylene, as cited in Patent Documents 2, 3 and 4. Polytetrafluoroethylene, acrylonitrile butadiene and urethane resins are disclosed.
 しかしながら、何れの方法においてもオートデポジション塗膜の耐食性は、塩化ビニリデンを用いたものと比較すると著しく低かった。そこで、耐食性を向上させるためには、特許文献3に示される通り、現在では環境問題の観点から使用が規制されるクロム化合物を使用した後処理をオートデポジション塗装の後に施す必要があった。 However, in any of the methods, the corrosion resistance of the autodeposition coating film was significantly lower than that using vinylidene chloride. Therefore, in order to improve the corrosion resistance, as shown in Patent Document 3, it is necessary to perform a post-treatment using a chromium compound whose use is currently restricted from the viewpoint of environmental problems after the autodeposition coating.
 そこで、近年になって特許文献5に示される通り、エポキシ樹脂と架橋剤とを組み合わせたオートデポジション組成物が提案された。しかしながら、本発明者らが前記発明の効果を検証した結果、エポキシ樹脂を使用したオートデポジション塗膜は、耐食性が未だ十分であるとは言い難く、かつ、溶剤塗料との密着性が著しく低く、重ね塗りが出来ないという致命的な欠陥を有することを見出した。 Therefore, an autodeposition composition combining an epoxy resin and a crosslinking agent has been recently proposed as shown in Patent Document 5. However, as a result of verifying the effects of the present invention by the present inventors, it is difficult to say that the autodeposition coating film using the epoxy resin has sufficient corrosion resistance and the adhesion to the solvent paint is extremely low. And found that it has a fatal defect that can not be overpainted.
 特許文献6および7には、水分散性フェノール樹脂、及び柔軟剤重合体からなる、金属支持体上に自動付着できることを特徴とする水性塗料組成物が開示されている。しかしながら、本方法で得られた焼き付け前のオートデポジション塗膜には多量の水分を含んでいるため、焼き付け前の塗膜を水洗することができない。従って、平板な被塗装材料であれば問題はないが、袋構造部を有する材料である場合には、袋構造部内部に残った塗料を洗い出すことができないため、焼き付け後に塗膜膨れや剥離等の、耐食性に著しい影響を及ぼす重大な欠陥が生じる。 Patent Documents 6 and 7 disclose an aqueous coating composition that can be automatically deposited on a metal support, which is made of a water-dispersible phenol resin and a softener polymer. However, since the autodeposition coating film before baking obtained by this method contains a large amount of moisture, the coating film before baking cannot be washed with water. Therefore, there is no problem if it is a flat material to be coated, but in the case of a material having a bag structure part, the paint remaining inside the bag structure part cannot be washed out. Serious defects that significantly affect the corrosion resistance.
 従って、従来技術では、リン酸亜鉛処理と電着塗装の組み合わせからなる塗装工程と比較して、工程長を短縮し、スラッジ等の環境に有害な副生成物を生じず、袋構造部内部のつきまわり性に優れ、クロム化合物のような環境に有害な成分を使用せず、耐食性を有し、かつ得られた塗膜の上に更に焼き付け塗装を重ね塗り可能なオートデポジション塗膜を提供することは不可能であった。 Therefore, in the prior art, the process length is shortened compared with the coating process consisting of a combination of zinc phosphate treatment and electrodeposition coating, and no by-product harmful to the environment such as sludge is generated. Providing an auto-deposition coating that has excellent throwing power, does not use environmentally harmful components such as chromium compounds, has corrosion resistance, and can be further baked on top of the resulting coating It was impossible to do.
特開昭60-58474JP 60-58474 特開昭47-32039JP 47-32039 特開昭48-13428JP 48-13428 特開昭61-168673JP 61-168673 特開2003-176449JP2003-176449 特表2002-501100Special table 2002-501100 特表2002-501124Special Table 2002-501124
 本発明の目的は、従来技術の問題点を解決することである。すなわち、リン酸亜鉛処理と電着塗装の組み合わせからなる塗装工程と比較して工程長を短縮し、スラッジ等の環境に有害な副生成物をほとんど生じず、袋構造部内部のつきまわり性に優れ、クロム化合物のような環境に有害な成分を使用せず、耐食性を有し、かつ得られた塗膜の上に更に焼き付け塗装を重ね塗り可能な自己析出被膜処理用表面処理液を提供することである。 The purpose of the present invention is to solve the problems of the prior art. In other words, the process length is shortened compared to the coating process consisting of a combination of zinc phosphate treatment and electrodeposition coating, and almost no by-products that are harmful to the environment such as sludge are produced. Provided is a surface treatment solution for treating a self-deposited film, which is excellent, does not use environmentally harmful components such as chromium compounds, has corrosion resistance, and can be further baked onto the obtained film. That is.
 本発明者らは前記課題を解決するための手段について鋭意検討した結果、従来技術にはない自己析出被膜処理用表面処理液、自己析出被膜処理方法及び自己析出被膜を有する金属材料を発明するに至った。 As a result of intensive studies on means for solving the above problems, the present inventors have invented a surface treatment solution for autodeposition coating treatment, a method for autodeposition coating treatment, and a metal material having an autodeposition coating that is not found in the prior art. It came.
 すなわち、本発明に係る自己析出被膜処理用表面処理液は、フェノール類とアルデヒド類とをF/P比が2.5から3の範囲でアルカリ触媒存在下において反応させることで得られるレゾール樹脂と、隣接する芳香環炭素上に二以上のヒドロキシル基を有するヒドロキシフェノール類と、フェノール類と、を混合撹拌し、更にフェノール類とアルデヒド類と酸触媒を加えて重合することにより得られる、F/P比が0.7~1.0のメチロール基を有するノボラック樹脂と、該メチロール基、フェノール核および/またはフェノール性ヒドロキシル基と熱硬化反応可能な架橋基を有する架橋剤とを前記ノボラック樹脂と架橋剤との固形分質量濃度比が1:1から1:10の範囲で含み、第二鉄イオンと、少なくとも第二鉄イオンの三倍モル濃度のフッ素元素(好適には溶解型フッ素元素)と、酸化剤とを更に含み、pHが2から6の範囲である水溶液である。 That is, the surface treatment liquid for autodeposition coating treatment according to the present invention comprises a resole resin obtained by reacting phenols and aldehydes in the presence of an alkali catalyst in the F / P ratio range of 2.5 to 3. , Obtained by mixing and stirring a hydroxyphenol having two or more hydroxyl groups on adjacent aromatic ring carbon and a phenol, further adding a phenol, an aldehyde and an acid catalyst, and polymerizing the F / A novolak resin having a methylol group having a P ratio of 0.7 to 1.0, and a crosslinking agent having a crosslinking group capable of thermosetting reaction with the methylol group, phenol nucleus and / or phenolic hydroxyl group, The solid content mass concentration ratio with the crosslinking agent is in the range of 1: 1 to 1:10, and the ferric ion and at least three times the mole of the ferric ion And every elemental fluorine (preferably dissolved elemental fluorine in), further comprising an oxidizing agent is an aqueous solution in the range pH of 2 to 6.
 前記ノボラック樹脂が、少なくとも、芳香環に置換したメチロール基と、互いに隣接する芳香環炭素上に二以上のヒドロキシル基を有するフェノール類部位を有することが好ましく、式1に示す構造式を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、mおよびnは1~5の整数、pは0~5の整数、R1はメチロール、R2は独立にヒドロキシル又はアルキルアリール、R3は独立にメチロール、ヒドロキシル又はアルキルアリール、aは0又は1である。)
The novolak resin preferably has at least a methylol group substituted with an aromatic ring and a phenol moiety having two or more hydroxyl groups on adjacent aromatic ring carbons, and has a structural formula shown in Formula 1. More preferred.
Figure JPOXMLDOC01-appb-C000002
Wherein m and n are integers of 1 to 5, p is an integer of 0 to 5, R1 is methylol, R2 is independently hydroxyl or alkylaryl, R3 is independently methylol, hydroxyl or alkylaryl, a is 0 or 1)
 前記架橋剤の熱硬化反応可能な架橋基がイソシアネート基であることが好ましい。 It is preferable that the crosslinking group capable of thermosetting reaction of the crosslinking agent is an isocyanate group.
 さらに前記架橋剤が、1モルのポリオールに対して、予め一方のイソシアネート基がブロック剤でブロックされた少なくとも2モルのポリイソシアネートを付加した多官能ブロックイソシアネートであることが好ましい。 Further, the cross-linking agent is preferably a polyfunctional blocked isocyanate obtained by adding at least 2 mol of polyisocyanate in which one isocyanate group is blocked with a blocking agent to 1 mol of polyol.
 また、前記架橋剤中のポリオールが少なくとも一分子のビスフェノールA構造を有することが好ましい。 Moreover, it is preferable that the polyol in the crosslinking agent has a bisphenol A structure of at least one molecule.
 前記ノボラック樹脂の濃度が水溶液中の固形分濃度として1~5質量%であることが好ましい。 The concentration of the novolak resin is preferably 1 to 5% by mass as the solid content concentration in the aqueous solution.
 前記酸化剤が過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも一種であることが好ましい。 It is preferable that the oxidizing agent is at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide.
 白金電極で測定される自己析出被膜処理用表面処理液の酸化還元電位が、300から500mVであることが好ましい。 The oxidation-reduction potential of the surface treatment solution for autodeposition coating treatment measured with a platinum electrode is preferably 300 to 500 mV.
 また、本発明は、金属材料を予め脱脂、水洗処理によって表面を清浄化した後、前記自己析出被膜処理用表面処理液に記載された水溶液と接触させた後、さらに水洗工程で該金属材料表面に付着した余剰な前記処理液を除去し、次いで焼き付け処理を行うことによって被膜を熱硬化させることを特徴とする金属材料の自己析出被膜処理方法である。 In addition, the present invention is a method in which a metal material is previously degreased and cleaned with a water washing treatment, and then contacted with the aqueous solution described in the surface treatment solution for autodeposition coating treatment. This is a metal material self-deposition coating treatment method, wherein the coating film is thermally cured by removing excess treatment liquid adhering to the substrate and then performing a baking treatment.
 さらに、本発明は鉄系金属材料表面に前記方法によって析出した自己析出被膜層を有し、かつ焼き付け硬化後の自己析出被膜層の膜厚が10~30μmであることを特徴とする自己析出被覆金属材料である。 Further, the present invention has an autodeposition coating layer deposited on the surface of an iron-based metal material by the above method, and the thickness of the autodeposition coating layer after baking hardening is 10 to 30 μm. It is a metal material.
 ここで、本特許請求の範囲及び本明細書において使用する各用語の意味について説明する。「第二鉄イオン」とは、Fe3+で示されるイオンであれば、表面処理用処理液中での存在形態は特に限定されず、例えば、Fe3+や配位子が配位した状態を示す。フッ素元素が第二鉄イオンに配位した状態の例としては、FeF2+、FeF 、FeF等を挙げることができる。「フッ素元素」とは、分子の状態、イオンの状態など、その形態に特に限定されず、フッ化水素及び/又はその塩等のフッ素含有化合物によって供給されるフッ素元素全般を意味する。更に「フッ素元素」の濃度とは、系内に存在する様々なフッ素元素の合計モル濃度である。例えば、前記フッ素含有化合物によって供給されるフッ素元素は水溶液のpHによって、F、HF、HF 等の解離形態をとることが出来、ここで言うフッ素元素の濃度とは、水溶液中の全てのFの合計モル濃度である。更には、第二鉄イオンと錯体を形成している場合、当該錯体は「第二鉄イオン」を含み「フッ素元素」をも含む。また、「溶解型フッ素元素」とは、分子の状態、イオンの状態など、その形態に特に限定されないが、本発明の自己析出被膜処理用表面処理液中において溶解せずに固体粒子として存在する塩等に含まれるフッ素元素は除かれる。更に「溶解型フッ素元素」の濃度とは、系内に存在する様々な溶解型フッ素元素の合計モル濃度である。また、「ノボラック樹脂」とは、フェノール類を酸触媒下でアルデヒド類で重合した樹脂を意味する。また、「レゾール」とは、フェノール類をアルカリ触媒下でアルデヒド類で重合した樹脂を意味する。ここで、「フェノール類」とは、フェノール性水酸基を有する芳香族化合物を意味する。「アルデヒド類」とは、1分子中に1個以上のアルデヒド基をもつ化合物又は反応系において容易にアルデヒド基を生成できる化合物である。「アルキル」とは、C1~C10の、直鎖又は分岐状の、置換又は非置換アルキルを意味する。「アリール」とは、置換又は非置換である、C6~C14の1~3環式アリール(ここで、環を構成するC原子の一以上がS,N、Oで置換されていてもよい)を意味する。 Here, the meaning of each term used in the claims and the specification will be described. As long as the “ferric ion” is an ion represented by Fe 3+ , the existence form in the treatment liquid for surface treatment is not particularly limited, and for example, indicates a state in which Fe 3+ or a ligand is coordinated. . Examples of conditions elemental fluorine is coordinated to ferric ion, FeF 2+, FeF 2 +, can be cited FeF 3 and the like. The “elemental fluorine” is not particularly limited to its form such as a molecular state or an ionic state, and means the whole elemental fluorine supplied by a fluorine-containing compound such as hydrogen fluoride and / or a salt thereof. Furthermore, the concentration of “elemental fluorine” is the total molar concentration of various elements of fluorine present in the system. For example, elemental fluorine supplied by the fluorine-containing compound depending on the pH of the aqueous solution, F -, HF, HF 2 - can take the dissociated form, such as, a concentration of the fluorine element as referred to herein, all in an aqueous solution The total molar concentration of F. Further, when a complex is formed with ferric ions, the complex includes “ferric ions” and also includes “fluorine element”. The “dissolved fluorine element” is not particularly limited to its form such as molecular state or ion state, but is present as solid particles without being dissolved in the surface treatment liquid for autodeposition coating treatment of the present invention. Fluorine elements contained in salts and the like are excluded. Furthermore, the concentration of “dissolved fluorine element” is the total molar concentration of various dissolved fluorine elements present in the system. The “novolak resin” means a resin obtained by polymerizing phenols with aldehydes under an acid catalyst. “Resol” means a resin obtained by polymerizing phenols with aldehydes in the presence of an alkali catalyst. Here, “phenol” means an aromatic compound having a phenolic hydroxyl group. “Aldehydes” are compounds having one or more aldehyde groups in one molecule or compounds that can easily generate aldehyde groups in a reaction system. “Alkyl” means C1-C10 linear or branched, substituted or unsubstituted alkyl. “Aryl” is a substituted or unsubstituted C6-C14 1- to 3-cyclic aryl (wherein one or more C atoms constituting the ring may be substituted with S, N, or O). Means.
 本発明の自己析出被膜処理用表面処理液を用いることで、湯洗→予備脱脂→脱脂→多段水洗(通常2から3段)→表面調整→皮膜化成→多段水洗(通常2から3段)→イオン交換水洗→電着塗装→多段水洗(通常3から5段)→イオン交換水洗→焼き付けからなる従来技術、すなわちリン酸亜鉛処理と電着塗装の組み合わせからなる塗装工程と比較して工程長を短縮することが可能である。さらに、本発明の方法によるとスラッジ等の環境に有害な副生成物を生じず、かつ自己析出被膜処理浴にはクロム化合物のような有害な成分を使用しないため、環境に対する影響も小さい。また、本発明の自己析出被膜は耐食性に優れ、袋構造部内部のつきまわり性に優れるため、複雑な構造を有する被塗装物の耐食性向上の有効である。さらに、本発明の自己析出被覆金属材料は、自己析出被膜の上に焼き付け塗装を重ね塗りすることが可能である。従って、様々な塗装と組み合わせて使用することが可能である。 By using the surface treatment liquid for autodeposition coating treatment of the present invention, hot water washing → preliminary degreasing → degreasing → multistage water washing (usually 2 to 3 stages) → surface adjustment → film formation → multistage water washing (usually 2 to 3 stages) → Ion exchange water washing → Electrodeposition coating → Multi-stage water washing (usually 3 to 5 stages) → Ion exchange water washing → Baking process compared to the conventional process consisting of a combination of zinc phosphate treatment and electrodeposition coating It can be shortened. Furthermore, according to the method of the present invention, no by-product harmful to the environment such as sludge is produced, and no harmful components such as chromium compounds are used in the autodeposition coating treatment bath, so the influence on the environment is small. Moreover, since the self-deposited film of the present invention has excellent corrosion resistance and excellent throwing power inside the bag structure, it is effective for improving the corrosion resistance of an object having a complicated structure. Furthermore, the autodeposition coated metal material of the present invention can be baked over the autodeposition coating. Therefore, it can be used in combination with various coatings.
 架橋剤をイソシアネートとすることにより、より耐食性にすぐれた自己析出被膜を形成できるという効果を奏する。 By using isocyanate as the cross-linking agent, it is possible to form an autodeposition coating with better corrosion resistance.
 架橋剤として多官能ブロックイソシアネートを使用することにより、よりいっそう耐食性に優れた自己析出膜を形成できるという効果を奏する。 By using polyfunctional blocked isocyanate as a cross-linking agent, it is possible to form an autodeposition film with even better corrosion resistance.
 架橋剤に少なくとも一分子のビスフェノールA構造を有するものを用いることにより、よりいっそう耐食性に優れた自己析出膜を形成できるという効果を奏する。 By using a cross-linking agent having at least one molecule of bisphenol A structure, an effect of forming a self-deposited film having further excellent corrosion resistance can be obtained.
 前記ノボラック樹脂の濃度を水溶液中の固形分濃度として1~5質量%とすることにより、耐食性を得るのに十分な膜厚を有し、且つ、成分の消費量を抑えることができる。 When the concentration of the novolak resin is 1 to 5% by mass as the solid content concentration in the aqueous solution, the film has a sufficient film thickness to obtain corrosion resistance and the consumption of components can be suppressed.
 前記ノボラック樹脂と架橋剤を固形分質量濃度比が1:1から1:10とすることにより、均一な自己析出被膜外観が得られ、かつ耐食性も向上するという効果を奏する。 When the novolak resin and the cross-linking agent have a solid mass concentration ratio of 1: 1 to 1:10, a uniform autodeposition coating appearance can be obtained and corrosion resistance can be improved.
 前記酸化剤が過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも一種とすることにより、自己析出被膜処理用処理液の安定性を損なわずに自己析出反応を促進するという効果を奏する。 By making the oxidant at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide, the self-deposition coating treatment liquid is self-impaired without impairing the stability. There is an effect of promoting the precipitation reaction.
 白金電極で測定される酸化還元電位を300から500mVとすることにより、浴中に存在する全ての鉄イオンを第二鉄イオンに酸化しその酸化状態を維持するに十分な量の酸化剤が存在することとなり、自己析出膜の析出反応を促進し、かつ第一鉄イオンによる自己析出被膜処理液の不安定化を抑制することができる。 By setting the redox potential measured at the platinum electrode to 300 to 500 mV, there is a sufficient amount of oxidant to oxidize all the iron ions present in the bath to ferric ions and maintain their oxidation state. Thus, the precipitation reaction of the autodeposition film can be promoted and the destabilization of the autodeposition film treatment liquid due to ferrous ions can be suppressed.
 本発明に係る自己析出被膜処理方法によれば、本発明に係る処理液を使用することにより、より耐食性に優れた自己析出被膜を形成できるという効果を奏する。 According to the autodeposition coating treatment method according to the present invention, by using the treatment liquid according to the present invention, there is an effect that an autodeposition coating having more excellent corrosion resistance can be formed.
 前記金属材料が、鉄系金属材料であることにより、より自己酸化膜を形成し易くなり、耐食性に優れた該膜を形成することができるという効果を奏する。 Since the metal material is an iron-based metal material, it is easier to form a self-oxidation film, and the film having excellent corrosion resistance can be formed.
 本発明者らは、金属材料を、フェノール類とアルデヒド類とをF/P比が2.5から3の範囲でアルカリ触媒存在下において反応させることで得られるレゾール樹脂と、隣接する芳香環炭素上に二以上のヒドロキシル基を有するヒドロキシフェノール類と、フェノール類と、を混合撹拌し、更にフェノール類とアルデヒド類と酸触媒を加えて重合することにより得られる、F/P比が0.7~1.0のメチロール基を有するノボラック樹脂と、該メチロール基、フェノール核および/またはフェノール性ヒドロキシル基と熱硬化反応可能な架橋基を有する架橋剤とを前記ノボラック樹脂と架橋剤との固形分質量濃度比が1:1から1:10の範囲で含み、第二鉄イオンと、少なくとも第二鉄イオンの三倍モル濃度のフッ素元素と、酸化剤とを更に含み、pHが2から6の範囲である表面処理液と接触させることで、金属材料表面に耐食性に優れる自己析出被膜を析出させることを可能としたのである。 The inventors of the present invention have disclosed a metal material, a resole resin obtained by reacting a phenol and an aldehyde with an F / P ratio in the range of 2.5 to 3 in the presence of an alkali catalyst, and an adjacent aromatic ring carbon. The F / P ratio obtained by mixing and stirring a hydroxyphenol having two or more hydroxyl groups and a phenol, and adding and polymerizing a phenol, an aldehyde and an acid catalyst is 0.7. A solid content of the novolak resin and the crosslinking agent comprising a novolak resin having a methylol group of ˜1.0 and a crosslinking agent having a crosslinking group capable of thermosetting reaction with the methylol group, phenol nucleus and / or phenolic hydroxyl group. A mass concentration ratio in the range of 1: 1 to 1:10, ferric ions, at least a three-fold molar concentration of fluorine elements of ferric ions, and an oxidizing agent; Further comprising, by contact with the surface treatment solution pH ranges from 2 to 6, it was made possible to be deposited the autodeposition coating having excellent corrosion resistance on a metal material surface.
 更に、前記ノボラック樹脂が、式1に示す構造式を有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、mおよびnは1~5の整数、pは0~5の整数、R1はメチロール、R2は独立にヒドロキシル又はアルキルアリール、R3は独立にメチロール、ヒドロキシル又はアルキルアリール、aは0又は1である。)
Furthermore, the novolac resin preferably has the structural formula shown in Formula 1.
Figure JPOXMLDOC01-appb-C000003
Wherein m and n are integers of 1 to 5, p is an integer of 0 to 5, R1 is methylol, R2 is independently hydroxyl or alkylaryl, R3 is independently methylol, hydroxyl or alkylaryl, a is 0 or 1)
 本発明の自己析出被膜処理用表面処理液は、鉄系金属材料や亜鉛めっき鋼板に適用することができる。しかしながら、もっとも適した金属材料は鉄系金属材料である。ここで言う鉄系金属材料とは、冷延鋼板、及び熱間圧延鋼板等の鋼板や、鋳鉄、及び焼結材等の鉄系金属を示す。 The surface treatment liquid for autodeposition coating treatment of the present invention can be applied to ferrous metal materials and galvanized steel sheets. However, the most suitable metal material is an iron-based metal material. The iron-based metal material here refers to steel-based metals such as cold-rolled steel plates and hot-rolled steel plates, and iron-based metals such as cast iron and sintered materials.
 本発明の金属材料の用途は、自動車車体や自動車部品、スチール家具、および家電製品等であり、各々の用途に応じて本発明の自己析出被膜のみの状態か、溶剤塗装等の他の上塗り塗装と組み合わせて使用することができる。 Applications of the metal material of the present invention are automobile bodies, automobile parts, steel furniture, home appliances, etc., and depending on each application, only the self-deposited film of the present invention or other top coating such as solvent coating Can be used in combination.
 基本分子構造中に少なくとも一つのメチロール基を含有するノボラック樹脂は、本発明における必須成分の一つである。本発明は、鉄系金属材料をある特定の水溶液と接触させることを特徴とする、金属材料の自己析出被膜処理用表面処理液である。従って、本発明の処理方法に用いる成分は、第一に水溶性又は水分散性である必要がある。さらに、自己析出被膜の主成分となる樹脂分は、本発明に提示される処理条件において鉄系金属材料への自己析出性を有する必要があり、かつ自己析出後の焼き付け処理において熱硬化性を併せ持つ必要がある。 The novolak resin containing at least one methylol group in the basic molecular structure is one of the essential components in the present invention. The present invention is a surface treatment solution for treating an autodeposition coating of a metal material, wherein the iron-based metal material is brought into contact with a specific aqueous solution. Therefore, the components used in the treatment method of the present invention must first be water-soluble or water-dispersible. Furthermore, the resin component that is the main component of the self-deposited film must have self-deposition property to the ferrous metal material under the treatment conditions presented in the present invention, and the thermosetting property in the baking treatment after self-deposition. It is necessary to have both.
 本発明者らは、式1に示す特別な構造を有するノボラック樹脂を使用することによって、前記本発明に必要な条件を満たし、かつ優れた性能が得られることを見出したのである。式1において、mおよびnは1~5の整数、pは0~5の整数、R1はメチロール、R2は独立にヒドロキシル又はアルキルアリール、R3は独立にメチロール、ヒドロキシル又はアルキルアリール、aは0又は1である。さらに、R2およびR3の好ましいアルキルアリールは、ベンジル基、またはトリル基である。 The present inventors have found that by using a novolak resin having a special structure shown in Formula 1, the conditions necessary for the present invention can be satisfied and excellent performance can be obtained. In Formula 1, m and n are integers of 1 to 5, p is an integer of 0 to 5, R1 is methylol, R2 is independently hydroxyl or alkylaryl, R3 is independently methylol, hydroxyl or alkylaryl, a is 0 or 1. Further, preferred alkylaryl of R2 and R3 is a benzyl group or a tolyl group.
 一般にノボラック樹脂、レゾール樹脂と称される樹脂は、フェノール類とアルデヒド類を用いて重合される。ここで、フェノール類(P)とアルデヒド類(F)とを反応させる際の反応モル比をF/P比という。一般にノボラックと称される樹脂は、フェノール類を酸触媒を用いてアルデヒド類で重合することによって得られる。ノボラックは、分子構造が三次元化することを防止するために小さいF/P比で重合され、フェノール類へ付加したアルデヒド類は、フェノール類の重合反応に使用される。従って、ホルムアルデヒドをアルデヒド類として使用した場合でも、一般に言われるノボラック樹脂には、ホルムアルデヒドはフェノール類の重合に使用され、ホルムアルデヒドの付加によるメチロール基は存在しない。本最良形態に係るノボラック樹脂は、特に限定されないが、F/P比が、0.7~1.0が好適であり、0.75~0.95がより好適であり、0.75~0.9が更に好適である。 Resins generally called novolak resins and resol resins are polymerized using phenols and aldehydes. Here, the reaction molar ratio at the time of reacting phenols (P) and aldehydes (F) is called F / P ratio. A resin generally referred to as a novolak is obtained by polymerizing phenols with aldehydes using an acid catalyst. Novolac is polymerized with a small F / P ratio in order to prevent the molecular structure from becoming three-dimensional, and aldehydes added to phenols are used in the polymerization reaction of phenols. Therefore, even when formaldehyde is used as an aldehyde, in the novolak resin generally referred to, formaldehyde is used for polymerization of phenols, and there is no methylol group due to addition of formaldehyde. The novolak resin according to the best mode is not particularly limited, but the F / P ratio is preferably 0.7 to 1.0, more preferably 0.75 to 0.95, and 0.75 to 0. .9 is more preferred.
 メチロール基が存在しないノボラック樹脂は、水との親和性が著しく低いため水には分散せず、かつ熱によって架橋する官能基をもたないため、本発明の用途には適さない。片や、アルカリ触媒下で高いF/P比でホルムアルデヒドとフェノール類を重合させるレゾール樹脂は、メチロール基を有する熱硬化型樹脂であるが、その水分散物の酸性水溶液中での安定性が著しく低いために本発明に使用することはできない。 A novolak resin having no methylol group is not suitable for the use of the present invention because it has a remarkably low affinity with water and does not disperse in water and does not have a functional group that is crosslinked by heat. A resol resin that polymerizes formaldehyde and phenols at a high F / P ratio under an alkali catalyst is a thermosetting resin having a methylol group, but the stability of the aqueous dispersion in an acidic aqueous solution is remarkable. Since it is low, it cannot be used in the present invention.
 本発明に用いられる式1に示すノボラック樹脂は、少なくとも一つのメチロール基を有するものである。メチロール基を有することによって、ノボラック樹脂には熱硬化性が付与される。さらに、メチロール基を有することによって、ノボラック樹脂の親水性を改善することができる。しかしながら、メチロール基のみでは十分な水溶性、水分散性を与えることはできない。また、メチロール基を付与したのみのノボラック樹脂では、自己析出性を得ることもできない。そこで、メチロール基を有するノボラック樹脂に、イオン性基を有するジヒドロキシフェノール類を導入することで、その水溶性、水分散性を改善し、更に自己析出性を付与したのである。 The novolak resin represented by Formula 1 used in the present invention has at least one methylol group. By having a methylol group, thermosetting is imparted to the novolac resin. Furthermore, by having a methylol group, the hydrophilicity of the novolak resin can be improved. However, sufficient water solubility and water dispersibility cannot be provided only by methylol groups. In addition, novolak resin only provided with a methylol group cannot obtain autoprecipitation. Therefore, by introducing dihydroxyphenol having an ionic group into a novolak resin having a methylol group, its water solubility and water dispersibility were improved, and autoprecipitation was further imparted.
 式1に示すとおり、本発明のノボラック樹脂に用いるイオン性基を有するジヒドロキシフェノールとしては、2,3-ジヒドロキシナフタレン-6-スルホン酸が最も好ましい。スルホン酸基によってノボラック樹脂に十分な水溶性、水分散性を、オルソ位の二つのヒドロキシ基によって自己析出性を付与することができる。なお、ノボラック樹脂の合成に際しては、2,3-ジヒドロキシナフタレン-6-スルホン酸アルカリ金属塩を使用することができる。 As shown in Formula 1, 2,3-dihydroxynaphthalene-6-sulfonic acid is most preferable as the dihydroxyphenol having an ionic group used in the novolak resin of the present invention. Sulfonic acid groups can impart sufficient water solubility and water dispersibility to the novolak resin, and self-precipitating properties can be imparted by two ortho-hydroxy groups. In the synthesis of the novolak resin, 2,3-dihydroxynaphthalene-6-sulfonic acid alkali metal salt can be used.
 本発明に用いる式1に示す構造式の中にメチロール基を有するノボラック樹脂は、予めフェノール類をアルカリ触媒下において、好ましくは2.5から3の範囲のF/P比でアルデヒド類と反応させることでレゾール樹脂を合成した後に、該レゾール樹脂に2,3-ジヒドロキシナフタレン-6-スルホン酸ナトリウム塩とフェノール類を混合撹拌し、さらにフェノール類とアルデヒド類と酸触媒を加えて重合することで合成することができる。尚、最終的なノボラックのF/P比は、全てのフェノール類(ヒドロキシフェノール類も含む)とアルデヒド類のモル比である。従って、レゾール樹脂合成に用いたフェノール類とアルデヒド類も最終的なF/P比に含まれる。さらに、合成されたノボラック樹脂にメチロール基が存在するか否かは、赤外分光法による1000cm-1付近に現れるメチロール基の吸収を測定することで判断可能である。 The novolak resin having a methylol group in the structural formula shown in Formula 1 used in the present invention reacts phenols with aldehydes in advance under an alkaline catalyst, preferably at an F / P ratio in the range of 2.5 to 3. After synthesizing the resole resin, 2,3-dihydroxynaphthalene-6-sulfonic acid sodium salt and phenols were mixed and stirred in the resole resin, and further polymerized by adding phenols, aldehydes and an acid catalyst. Can be synthesized. The final novolak F / P ratio is the molar ratio of all phenols (including hydroxyphenols) and aldehydes. Therefore, the phenols and aldehydes used in the resol resin synthesis are also included in the final F / P ratio. Further, whether or not a methylol group is present in the synthesized novolak resin can be determined by measuring the absorption of the methylol group appearing in the vicinity of 1000 cm −1 by infrared spectroscopy.
 ここで、フェノール類としては、フェノール、カテコール、レソルシノール、ピロガロール、クレゾール等を、アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、アセトン、ベンズアルデヒド等を用いることができる。中でも最も好ましいアルデヒド類は、ホルマリンとして市販されるホルムアルデヒドである。 Here, phenol, catechol, resorcinol, pyrogallol, cresol and the like can be used as phenols, and formaldehyde, acetaldehyde, acetone, benzaldehyde and the like can be used as aldehydes. Among these, the most preferred aldehyde is formaldehyde marketed as formalin.
 本発明に用いるメチロール基、フェノール核、およびフェノール性ヒドロキシル基と熱硬化反応可能な架橋基を有する架橋剤の架橋基としては、メチロール基、カルボキシル基、グリシジル基、グリシジル基が開環した二級アルコール基、およびイソシアネート基等を用いることができ、中でもイソシアネート基であることが好ましい。 As the crosslinking group of the crosslinking agent having a methylol group, a phenol nucleus, and a crosslinking group capable of thermosetting reaction with a phenolic hydroxyl group used in the present invention, a methylol group, a carboxyl group, a glycidyl group, and a secondary class in which a glycidyl group is opened An alcohol group, an isocyanate group, and the like can be used, and among them, an isocyanate group is preferable.
 さらに前記架橋剤が、1モルのポリオールに対して、予め一方のイソシアネート基がブロック剤でブロックされた少なくとも2モルのポリイソシアネートを付加した多官能ブロックイソシアネートであることが好ましい。イソシアネート基は、ブロック剤でブロックすることによって、水との反応を抑制することができ、かつ熱を与えることでブロック剤が解離して架橋反応が起こるため、本発明の架橋剤として最適である。 Further, the cross-linking agent is preferably a polyfunctional blocked isocyanate obtained by adding at least 2 mol of polyisocyanate in which one isocyanate group is blocked with a blocking agent to 1 mol of polyol. Isocyanate groups are optimal as the crosslinking agent of the present invention, because the blocking with a blocking agent can suppress the reaction with water, and the application of heat causes the blocking agent to dissociate and cause a crosslinking reaction. .
 本発明に用いることができるポリイソシアネートとしては、公知のものを用いることができる。例えば、1,4-テトラメチレンジイソシアネート、エチル(2,6-ジイソシアナート)ヘキサノエート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、2,2,4-または2,4,4-トリメチルヘキサメチレンジイソシアネートの様な脂肪族ジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアナート-4-イソシアナートメチルオクタン、2-イソシアナートエチル(2,6-ジイソシアナート)ヘキサノエートの様な脂肪族トリイソシアネートやイソホロンジイソシアネートの様な環状構造を有するジイソシアネート、更には、m-またはp-フェニレンジイソシアネート、トルエン-2,4-または2,6-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ナフタレン-1,5-ジイソシアネート、ジフェニル-4,4’-ジイソシアネート、4,4’-ジイソシアナート-3,3’-ジメチルジフェニル、3-メチル-ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネートの様な芳香族ジイソシアネート等を用いることができる。 As the polyisocyanate that can be used in the present invention, known ones can be used. For example, 1,4-tetramethylene diisocyanate, ethyl (2,6-diisocyanato) hexanoate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 2,2,4- or 2,4,4 -Aliphatic diisocyanates such as trimethylhexamethylene diisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 2-isocyanatoethyl (2,6-diisocyanate) Nato) diisocyanate having a cyclic structure such as aliphatic triisocyanate such as hexanoate and isophorone diisocyanate, m- or p-phenylene diisocyanate, toluene-2,4- or 2,6-diisocyanate, diphenylmethane 4,4'-diisocyanate, naphthalene-1,5-diisocyanate, diphenyl-4,4'-diisocyanate, 4,4'-diisocyanate-3,3'-dimethyldiphenyl, 3-methyl-diphenylmethane-4,4 Aromatic diisocyanates such as' -diisocyanate and diphenyl ether-4,4'-diisocyanate can be used.
 本発明に好適なポリイソシアネートは、得られる被膜の柔軟性の観点からは1,6-ヘキサメチレンジイソシアネート、イソシアネート基の反応性の観点からはトルエン-2,4-または2,6-ジイソシアネートである。 The polyisocyanate suitable for the present invention is 1,6-hexamethylene diisocyanate from the viewpoint of the flexibility of the resulting film, and toluene-2,4- or 2,6-diisocyanate from the viewpoint of the reactivity of the isocyanate group. .
 本発明に用いるイソシアネート基のブロック剤としては、公知のものを用いることができる。例えば、メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、iso-ブチルアルコール、tert-ブチルアルコール等のアルコール類、フェノール、メチルフェノール、クロルフェノール、p-iso-ブチルフェノール、p-tert-ブチルフェノール、p-iso-アミルフェノール、p-オクチルフェノール、p-ノニルフェノール等のフェノール類、マロン酸ジメチルエステル、マロン酸ジエチルエステル、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル等の活性メチレン化合物類、ホルムアルドキシム、アセトアルドキシム、アセトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム、2-ブタノンオキシム等のオキシム類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等のラクタム類、およびチオ硫酸塩等が挙げられる。 As the isocyanate group blocking agent used in the present invention, known ones can be used. For example, alcohol such as methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol, phenol, methylphenol, chlorophenol, p-iso-butylphenol, p Phenols such as tert-butylphenol, p-iso-amylphenol, p-octylphenol, p-nonylphenol, active methylene compounds such as malonic acid dimethyl ester, malonic acid diethyl ester, acetylacetone, methyl acetoacetate, ethyl acetoacetate, Such as formaldoxime, acetoaldoxime, acetone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime, 2-butanone oxime, etc. Shim acids, .epsilon.-caprolactam, .delta.-valerolactam, lactams such as γ- butyrolactam, and thiosulfate salts.
 イソシアネート基からの解離温度が低いブロック剤を選択することによって、本発明の自己析出被膜処理における被膜の焼き付け温度を低下させることができる。しかしながら、あまりにも解離温度が低い場合には、自己析出被膜処理用表面処理液の安定性を損なう恐れがある。そこで、ホルムアルドキシム、アセトアルドキシム、アセトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム、2-ブタノンオキシム等のオキシム類、およびチオ硫酸塩の使用が好ましい。尚、ここで用いるブロック剤は、イソシアネート基に対して、使用するポリイソシアネートがジイソシアネートの場合は1/2倍のモル量が好ましく、トリイソシアネートの場合には2/3倍のモル量が好ましい。当該ブロック剤を用いると、ポリオールと反応させた後の架橋剤の水との反応を抑制し、自己析出表面処理用処理液の安定性を維持しつつ、焼き付け前の自己析出被膜に熱を与えることで塗膜を硬化させるという効果を奏する。 By selecting a blocking agent having a low dissociation temperature from the isocyanate group, the baking temperature of the coating in the autodeposition coating treatment of the present invention can be lowered. However, when the dissociation temperature is too low, the stability of the surface treatment solution for autodeposition coating treatment may be impaired. Therefore, it is preferable to use oximes such as formaldoxime, acetoaldoxime, acetone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime, 2-butanone oxime, and thiosulfate. The blocking agent used here is preferably ½ times the molar amount when the polyisocyanate to be used is a diisocyanate and 2/3 times the molar amount when it is a triisocyanate. When the blocking agent is used, the reaction with the water of the crosslinking agent after reacting with the polyol is suppressed, and heat is applied to the autodeposition coating before baking while maintaining the stability of the autodeposition surface treatment solution. This has the effect of curing the coating film.
 本発明に用いることができるポリオールとしては、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコールの様なポリエーテルポリオール、ポリエチレンアジベート、ポリジエチレンアジベート、ポリプロピレンアジベート、ポリテトラメチレンアジベート、ポリ-ε-カプロラクトンの様なポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール、エポキシポリオール、トリメチロールプロパン、ビスフェノールA、ビスフェノールF、ビスフェノールAD等が挙げられる。 Examples of polyols that can be used in the present invention include polyether polyols such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol, polyethylene abates, polydiethylene abates, polypropylene abates, polytetramethylene abates, and poly-ε. -Polyester polyols such as caprolactone, polycarbonate polyols, acrylic polyols, epoxy polyols, trimethylolpropane, bisphenol A, bisphenol F, bisphenol AD and the like.
 中でも、分子構造中に少なくとも一分子のビスフェノールA構造を有するエポキシポリオールやビスフェノールAが好ましい。ここで、「少なくとも一分子のビスフェノールA構造を有する」とは、前記エポキシポリオールのようなポリマーの直鎖の中に組み込まれていることや、ビスフェノールAの繰り返し単位を一部に有するポリマーであることや、ビスフェノールAのホモポリマーや、ビスフェノールAそのものであることを意味する。ビスフェノールAは、ベンゼン環を基本骨格に有し、かつ二つのベンゼン環が二つのメチル基がついたメチレン鎖で繋がれているため、樹脂自体の頑丈さ(堅さ)と高い耐薬品性を併せ持つ構造である(HO-C-C(CH-C-OH)。従って、ビスフェノールA構造を有するポリオールを本発明の多官能ブロックイソシアネートに用いることによって、本発明によって得られる耐食性が飛躍的に向上するのである。 Among them, epoxy polyol and bisphenol A having at least one molecule of bisphenol A structure in the molecular structure are preferable. Here, “having at least one molecule of bisphenol A structure” means that the polymer is incorporated in a linear chain of a polymer such as the epoxy polyol or has a bisphenol A repeating unit in part. Or a homopolymer of bisphenol A or bisphenol A itself. Bisphenol A has a benzene ring in the basic skeleton, and since the two benzene rings are connected by a methylene chain with two methyl groups, the resin itself has robustness (rigidity) and high chemical resistance. is a structure that has both (HO-C 6 H 4 -C (CH 3) 2 -C 6 H 4 -OH). Therefore, the use of a polyol having a bisphenol A structure in the polyfunctional blocked isocyanate of the present invention dramatically improves the corrosion resistance obtained by the present invention.
 前記ノボラック樹脂の濃度が水溶液中の固形分濃度として1~5質量%であることが好ましく、より好ましくは、1~3質量%である。前述したとおり、メチロール基を有するノボラック樹脂は、自己析出性と熱硬化性を有している。従って、その濃度が1質量%よりも小さい時は、十分な自己析出性が得られず、本発明の効果のひとつである耐食性を得られるだけの自己析出塗膜厚が得られない。また、5質量%よりも大きい場合は、被塗装物による処理液の持ち出しに起因する自己析出浴成分の消費量が増えるばかりか、持ち出された処理液は水洗工程で除去されて排水処理工程へ送られるため、不要な廃棄物の増大を招くこととなる。従って、より好ましいノボラック樹脂の上限濃度は3質量%である。 The concentration of the novolak resin is preferably 1 to 5% by mass, more preferably 1 to 3% by mass as the solid content concentration in the aqueous solution. As described above, the novolak resin having a methylol group has autoprecipitation properties and thermosetting properties. Therefore, when the concentration is less than 1% by mass, sufficient self-deposition property cannot be obtained, and a self-deposition coating thickness sufficient to obtain the corrosion resistance which is one of the effects of the present invention cannot be obtained. On the other hand, if it is larger than 5% by mass, not only the consumption of the autodeposition bath component due to the removal of the treatment liquid by the object to be coated will increase, but also the removed treatment liquid will be removed in the water washing process and go to the wastewater treatment process. Since it is sent, unnecessary waste increases. Therefore, the more preferable upper limit concentration of the novolak resin is 3% by mass.
 水溶液中の前記ノボラック樹脂と架橋剤との固形分質量濃度比が1:1から1:10であることが好ましく、より好ましくは1:1から1:5であり、さらにより好ましくは1:1から1:3である。本発明に用いるノボラック樹脂は、その分子構造中に少なくとも1分子のメチロール基を有するために、メチロール基同士の架橋反応、すなわちエーテル結合、またはメチレン架橋によって、架橋剤を添加しなくとも熱を与えることで硬化することができる。しかしながら本発明者らは、実用上十分な、本発明の目的とするところの耐食性を得るためには、さらに架橋剤を添加して架橋密度を高めることが重要であることを見いだしたのである。 The solid mass concentration ratio of the novolak resin and the crosslinking agent in the aqueous solution is preferably 1: 1 to 1:10, more preferably 1: 1 to 1: 5, and even more preferably 1: 1. To 1: 3. Since the novolak resin used in the present invention has at least one molecule of methylol group in its molecular structure, heat is applied without adding a crosslinking agent by a crosslinking reaction between methylol groups, that is, an ether bond or methylene crosslinking. Can be cured. However, the present inventors have found that it is important to further increase the crosslinking density by adding a crosslinking agent in order to obtain practically sufficient corrosion resistance as the object of the present invention.
 さらに、メチロール基を有するノボラック樹脂とビスフェノールA構造を有するブロックポリイソシアネートを組み合わせることで、従来にない耐食性が発現される。しかしながら、本発明者らが鋭意検討した結果、いたずらに架橋剤の添加量を増加すれば、自己析出被膜の耐食性が向上するわけではないことが判明した。 Further, by combining a novolak resin having a methylol group and a block polyisocyanate having a bisphenol A structure, unprecedented corrosion resistance is exhibited. However, as a result of intensive studies by the present inventors, it has been found that the corrosion resistance of the autodeposition coating is not improved if the amount of the crosslinking agent added is increased unnecessarily.
 ノボラック樹脂によって形成された塗膜は、本来硬い性質を有する。さらに、架橋剤で複雑に架橋させることによって、塗膜の硬度は増していき最終的には非常に脆い塗膜となってしまう。本発明者らが検討した結果、ノボラック樹脂を利用した硬くて脆い塗膜は、密着性に劣ることが判明した。さらに、硬くて脆い塗膜は、塗膜に加えられた衝撃、および塗装された金属材料の変形によって、容易に破損してしまうため実用に適さない。 The coating film formed of novolac resin has inherently hard properties. In addition, the hardness of the coating film increases as a result of complicated crosslinking with a cross-linking agent, and eventually the coating film becomes very brittle. As a result of investigations by the present inventors, it has been found that a hard and brittle coating film using a novolak resin is inferior in adhesion. Furthermore, a hard and brittle coating film is not suitable for practical use because it is easily damaged by impact applied to the coating film and deformation of the coated metal material.
 メチロール基を有するノボラック樹脂に対する架橋剤の比率が1倍未満の場合は、架橋密度が低く十分な耐食性を得ることができない。また、10倍よりも大きい場合は、架橋密度が高すぎて塗膜が脆くなり実用に適さないのである。 When the ratio of the crosslinking agent to the novolak resin having a methylol group is less than 1 time, the crosslinking density is low and sufficient corrosion resistance cannot be obtained. On the other hand, if it is larger than 10 times, the crosslinking density is too high and the coating film becomes brittle, which is not suitable for practical use.
 さらに本発明には、表面処理液中の成分、特に架橋剤の水溶性向上、および焼き付け硬化後の被膜の外観を向上するための溶剤成分を添加することができる。本発明に好適な溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、および2,2,4-トリメチルペンタンジオール-1,3-モノイソブチレート等が挙げられる。 Furthermore, a solvent component for improving the water solubility of the components in the surface treatment liquid, particularly the crosslinking agent, and improving the appearance of the film after baking and curing can be added to the present invention. Suitable solvents for the present invention include ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, and 2,2,4-trimethylpentanediol-1,3-monoisobutyrate Etc.
 本発明は自己析出被膜処理用表面処理液に関するものである。ここで、自己析出反応は、pHが2から6であることによる鉄系金属材料の溶解反応、および第二鉄イオンによる金属鉄の酸化反応によって浴中に溶け出した第一鉄イオンと、メチロール基を有するノボラック樹脂中の2,3-ジヒドロキシナフタレン-6-スルホン酸分子のオルソ位の二つのヒドロキシ基が第一鉄イオンとキレートすることによって、ノボラック樹脂が不溶化し自己析出被膜として析出するのである。 The present invention relates to a surface treatment solution for autodeposition coating treatment. Here, the self-precipitation reaction is carried out by dissolving ferrous metal material having a pH of 2 to 6, and ferrous ions dissolved in the bath by oxidation reaction of metallic iron with ferric ions, and methylol. In the novolak resin having a group, the two hydroxy groups in the ortho position of the 2,3-dihydroxynaphthalene-6-sulfonic acid molecule chelate with ferrous ions, so that the novolak resin is insolubilized and deposited as an autodeposition coating film. is there.
 さらに、自己析出反応に使用されなかった余剰の第一鉄イオンは、本発明の自己析出処理浴中の酸化剤によって速やかに第二鉄イオンに酸化される。酸化された第二鉄イオンは、そのままでは自己析出処理浴の安定性を損なう原因となり得るが、本発明の処理浴に含まれるフッ素元素が配位することによって、処理浴中でのノボラック樹脂とのキレート反応が抑制され、処理浴の安定性が保たれるのである。 Furthermore, surplus ferrous ions that have not been used in the autodeposition reaction are rapidly oxidized to ferric ions by the oxidizing agent in the autodeposition treatment bath of the present invention. Oxidized ferric ions can cause the stability of the autodeposition treatment bath as it is, but by coordination of the fluorine element contained in the treatment bath of the present invention, the novolac resin in the treatment bath This suppresses the chelating reaction and maintains the stability of the treatment bath.
 ここで、鉄イオンの供給源としては、可溶性の鉄塩、例えば硝酸鉄、硫酸鉄、塩化鉄等を用いることができ、第一鉄塩、第二鉄塩のいずれを用いても、自己析出被膜処理用表面処理液中の酸化剤で酸化することによって、処理液中で第二鉄イオンとすることができる。また、鉄粉、酸化鉄、水酸化鉄等をフッ化水素酸で溶解して使用してもよい。 Here, as a source of iron ions, soluble iron salts such as iron nitrate, iron sulfate, iron chloride, etc. can be used, and any of the ferrous salts and ferric salts can be used for autoprecipitation. By oxidizing with an oxidizing agent in the surface treatment liquid for coating treatment, ferric ions can be formed in the treatment liquid. Further, iron powder, iron oxide, iron hydroxide, or the like may be dissolved in hydrofluoric acid.
 前記自己析出反応が起こるための第二鉄イオンの濃度は0.1~3g/Lであり、好ましくは、0.5~2.5g/Lであり、より好ましくは1~2g/Lである。尚、第二鉄イオンの濃度は、当業界で一般的な方法で測定でき、例えば、予め樹脂分を酸と加熱によって分解、分離した自己析出被膜処理用表面処理液を用い、原子吸光法、ICP発光分析、EDTAによるキレート分析法によって測定することができる。また、フッ素元素の好ましい濃度は、第二鉄イオンの少なくとも三倍モル濃度である。上限は特に限定されないが、例えば、第二鉄イオンの十倍モル濃度以下である。尚、フッ素元素の濃度は、当業界で一般的な方法で測定でき、例えば、本発明の自己析出被膜処理用表面処理液を蒸留操作を行い蒸留液中のフッ素元素濃度をイオンクロマトグラフやキャピラリー電気泳動装置により測定することができる。第二鉄イオン濃度が0.1g/L未満では、自己析出に好適な量の鉄の酸化溶解反応を起こしにくくなる。また、3g/Lよりも大きい場合には、析出した自己析出塗膜にとりこまれる鉄分濃度が上昇し、鉄イオンとともに塗膜中に取り込まれる水分量が増えるために、自己析出塗膜が後の水洗工程で剥離しやすくなる。 The concentration of ferric ions for causing the autodeposition reaction is 0.1 to 3 g / L, preferably 0.5 to 2.5 g / L, more preferably 1 to 2 g / L. . The concentration of ferric ion can be measured by a general method in the art. For example, using a surface treatment solution for autodeposition coating treatment obtained by previously decomposing and separating a resin component by acid and heating, an atomic absorption method, It can be measured by ICP emission analysis or chelate analysis by EDTA. Moreover, the preferable density | concentration of a fluorine element is a 3 times molar concentration of a ferric ion. Although an upper limit is not specifically limited, For example, it is 10 times or less molar concentration of a ferric ion. The concentration of elemental fluorine can be measured by a common method in the industry. For example, the surface treatment solution for autodeposition coating treatment of the present invention is subjected to distillation operation, and the concentration of elemental fluorine in the distilled solution is determined by ion chromatography or capillary. It can be measured by an electrophoresis apparatus. When the ferric ion concentration is less than 0.1 g / L, it becomes difficult to cause an oxidation dissolution reaction of iron in an amount suitable for autodeposition. Also, if it is greater than 3 g / L, the concentration of iron contained in the deposited self-deposited coating increases, and the amount of moisture taken into the coating together with iron ions increases. It becomes easy to peel off in the water washing process.
 フッ素元素の供給源としては、フッ化水素酸、フッ化アンモニウム、酸性フッ化アンモニウム、フッ化ナトリウム、二フッ化水素ナトリウム、フッ化カリウム、二フッ化水素カリウム等を用いることができる。ここで、フッ化水素酸以外のフッ化物を用いる場合には、硝酸、硫酸等の酸を使用して自己析出被膜処理用表面処理液のpHを調整してもよい。 As a supply source of elemental fluorine, hydrofluoric acid, ammonium fluoride, acidic ammonium fluoride, sodium fluoride, sodium hydrogen difluoride, potassium fluoride, potassium hydrogen difluoride and the like can be used. Here, when using a fluoride other than hydrofluoric acid, the pH of the surface treatment solution for autodeposition coating treatment may be adjusted using an acid such as nitric acid or sulfuric acid.
 本発明の自己析出被膜処理用表面処理液の好ましいpHは2から6、より好ましくは、2.5から5、より好ましくは2.5から4である。尚、pHの測定方法は、JIS Z 8802の方法によるものとする。本発明の自己析出被膜処理方法は、前述したとおり、自己析出被膜処理用表面処理液中のフッ化水素酸よる鉄系金属材料の溶解反応、および第二鉄イオンによる金属鉄の酸化反応を起点とするものである。従って、pHが6よりも大きいと金属材料の溶解反応が起こりにくく、かつ第二鉄イオンの還元反応も起こりにくくなるのである。また、pHが2よりも小さいと自己析出被膜の析出反応に対する金属材料の溶解反応が大きくなりすぎて、自己析出被膜処理用表面処理液の安定性が損なわれる恐れがあるのである。 The preferred pH of the surface treatment solution for autodeposition coating treatment of the present invention is 2 to 6, more preferably 2.5 to 5, more preferably 2.5 to 4. In addition, the measuring method of pH shall be based on the method of JISZ8802. As described above, the autodeposition coating treatment method of the present invention starts from the dissolution reaction of the iron-based metal material by hydrofluoric acid in the surface treatment solution for autodeposition coating treatment and the oxidation reaction of metallic iron by ferric ions. It is what. Accordingly, when the pH is higher than 6, the dissolution reaction of the metal material hardly occurs and the reduction reaction of ferric ion does not easily occur. On the other hand, if the pH is less than 2, the dissolution reaction of the metal material with respect to the precipitation reaction of the autodeposition coating becomes too large, and the stability of the surface treatment solution for autodeposition coating treatment may be impaired.
 前記酸化剤は過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも一種であることが好ましい。過酸化水素は、入手が容易であり、かつ自身の還元反応による副生成物が水であることから自己析出処理浴に対する影響を考慮する必要がなく、本発明に好適な酸化剤である。 The oxidizing agent is preferably at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide. Hydrogen peroxide is an oxidant suitable for the present invention because it is easily available and it is not necessary to consider the influence on the autodeposition treatment bath because the by-product of its own reduction reaction is water.
 本発明の自己析出処理浴における酸化剤の濃度は、白金電極を作用局に用いた市販のORP電極で測定される酸化還元電位で管理することができる。ここで、本発明の自己析出反応メカニズムからは、全ての第一鉄イオンを第二鉄イオンに酸化した状態で余剰の酸化剤が処理浴に存在する状態が好ましい。即ち、酸化剤の量は、浴中に存在する全ての鉄イオンを第二鉄イオンに酸化しその酸化状態を維持するに十分な量が好ましい。酸化還元電位を、選択した酸化剤によって与えられる値の最小値以上に保つことによって、前記状態を維持することが可能となる、ここで、過酸化水素を例にとった場合の好ましい酸化還元電位は、少なくとも300mV以上であり、より好ましくは350mV以上であり、さらにより好ましくは400mV以上である。上限は特に限定されないが500mV以下である。 The concentration of the oxidizing agent in the autodeposition treatment bath of the present invention can be controlled by the oxidation-reduction potential measured with a commercially available ORP electrode using a platinum electrode as a working station. Here, from the self-deposition reaction mechanism of the present invention, it is preferable that an excess oxidizing agent exists in the treatment bath in a state where all ferrous ions are oxidized to ferric ions. That is, the amount of oxidizing agent is preferably an amount sufficient to oxidize all iron ions present in the bath to ferric ions and maintain their oxidized state. By maintaining the oxidation-reduction potential at or above the minimum value given by the selected oxidant, it becomes possible to maintain this state, where the preferred oxidation-reduction potential when taking hydrogen peroxide as an example. Is at least 300 mV or more, more preferably 350 mV or more, and even more preferably 400 mV or more. Although an upper limit is not specifically limited, It is 500 mV or less.
 さらに、本発明の金属材料の自己析出被膜処理方法は、鉄系金属材料を予め脱脂、水洗処理によって表面を清浄化した後、前記自己析出被膜処理用表面処理液に記載された水溶液と接触させた後、さらに水洗工程で該金属材料表面に付着した余剰な水溶液を除去し、次いで焼き付け処理を行うことによって被膜を熱硬化させることによって行う。 Furthermore, in the method for treating a self-deposited film of a metal material according to the present invention, the surface of the iron-based metal material is previously degreased and washed with water, and then brought into contact with the aqueous solution described in the surface treatment solution for self-deposited film treatment. Then, the excess aqueous solution adhering to the surface of the metal material is further removed by a water washing step, and then the coating is thermally cured by performing a baking treatment.
 ここで、脱脂処理は従来から一般に用いられている溶剤脱脂、アルカリ脱脂等を用いることができ、その工法も流しかけ、スプレー、浸漬、および電解等なんら制約されるものではない。また、脱脂処理後、および自己析出被膜処理後に行われる水洗処理に関しても何ら制約はなく、流しかけ、スプレー、浸漬等から選択することができる。水洗に用いられる水の水質にも特に制約はないが、自己析出被膜処理浴への微少成分の持ち込み、および塗膜中への残存を考慮するとイオン交換水が望ましい選択である。 Here, as the degreasing treatment, solvent degreasing, alkali degreasing and the like that have been generally used can be used, and the method of the degreasing is not limited and spraying, dipping, electrolysis and the like are not limited. Moreover, there is no restriction | limiting also about the water washing process performed after a degreasing process and an autodeposition coating process, It can select from pouring, spraying, immersion, etc. The quality of water used for washing is not particularly limited, but ion-exchanged water is a preferable choice in consideration of bringing in small components into the autodeposition coating treatment bath and remaining in the coating.
 本発明の自己析出被膜処理は、被塗装物を処理浴へ浸漬する浸漬法によって行われる。浸漬法が行われる処理浴に関しては、処理浴中の成分濃度が均一に保たれる程度の攪拌を備えているのみでよい。また、好ましい浸漬時間は1~10分であり、より好ましい浸漬時間は2~5分である。 The autodeposition coating treatment according to the present invention is performed by an immersion method in which an object to be coated is immersed in a treatment bath. With respect to the treatment bath in which the dipping method is performed, it is only necessary to provide stirring to such an extent that the component concentration in the treatment bath is kept uniform. Further, the preferable immersion time is 1 to 10 minutes, and the more preferable immersion time is 2 to 5 minutes.
 被塗装材料の表面状態によっては酸洗工程を採用することもできる。その場合の処理工程は、脱脂→多段水洗(通常2から3段)→酸洗→多段水洗(通常1~2段)→自己析出被膜化成→多段水洗(通常2から3段)→焼き付けとなる。 Depending on the surface condition of the material to be coated, a pickling process may be employed. The treatment process in this case is degreasing → multi-stage washing (usually 2 to 3 stages) → acid washing → multi-stage water washing (usually 1 to 2 stages) → self-deposition coating formation → multi-stage water washing (usually 2 to 3 stages) → baking .
 さらに、本発明は鉄系金属材料表面に前記方法によって析出した自己析出被膜層を有し、かつ焼き付け硬化後の自己析出被膜層の膜厚が10~30μmであることを特徴とする自己析出被覆金属材料である。当該範囲内では、十分な耐食性を有し、クラックや収縮といった外観不良が生じにくくなる。 Further, the present invention has an autodeposition coating layer deposited on the surface of an iron-based metal material by the above method, and the thickness of the autodeposition coating layer after baking hardening is 10 to 30 μm. It is a metal material. Within this range, it has sufficient corrosion resistance, and appearance defects such as cracks and shrinkage are less likely to occur.
〔実施例〕 〔Example〕
 以下に実施例を比較例とともに挙げ、本発明の自己析出被膜処理用表面処理液、および自己析出被膜処理された金属材料の効果を具体的に説明する。尚、実施例で使用した被処理金属材料、脱脂剤、及び塗料は市販されている材料の中から任意に選定したものであり、本発明の自己析出被膜処理用表面処理液、及び自己析出被膜処理された金属材料の実際の用途における材料の組み合わせを何ら限定するものではない。 Examples will be given below together with comparative examples to specifically explain the effects of the surface treatment liquid for autodeposition coating treatment of the present invention and the metal material subjected to autodeposition coating treatment. In addition, the to-be-treated metal material, degreasing agent, and paint used in the examples are arbitrarily selected from commercially available materials, and the surface treatment liquid for autodeposition coating treatment of the present invention, and the autodeposition coating There is no limitation on the combination of materials in the actual application of the treated metal material.
(供試板)
 実施例と比較例に用いた供試板の略号と内訳を以下に示す。
・ CRS(冷延鋼板:JIS-G-3141)
(Test plate)
The abbreviations and breakdown of the test plates used in the examples and comparative examples are shown below.
・ CRS (Cold rolled steel sheet: JIS-G-3141)
(自己析出被膜処理液組成と処理工程) (Self-deposition coating solution composition and treatment process)
・ 製造例1:メチロール基を含有するノボラック樹脂の合成
 ジメチルアミノベンゼンをアルカリ触媒に用い、フェノール(試薬)60gと37質量%ホルムアルデヒド(試薬)135gとを70℃で混合攪拌し、F/P比が2.6で固形分が55質量%の水溶性レゾール樹脂を得た。前記水溶性レゾール樹脂200gに、40gの2,3-ジヒドロキシナフタレン-6-スルホン酸ナトリウム塩(試薬)、35gのカテコ-ル(試薬)、及び50gの水を添加したものを90℃に加熱し3時間攪拌した。攪拌後に210gのレソルシノ-ル(試薬)、及び85質量%リン酸(試薬)5gを添加した水200gを添加し、温度を90℃に保ったまま1時間攪拌した。攪拌後、70gの37質量%ホルムアルデヒド(試薬)を少量ずつ加え、合成物の粘度が上昇することを目視で確認し、F/P比が0.84で固形分濃度53%のノボラック樹脂を得た。合成物を赤外分光法で分析した結果、メチロール基の存在を示す吸収が確認された。
Production Example 1: Synthesis of a novolak resin containing a methylol group Using dimethylaminobenzene as an alkali catalyst, 60 g of phenol (reagent) and 135 g of 37% by mass formaldehyde (reagent) are mixed and stirred at 70 ° C., and F / P ratio Of 2.6, and a water-soluble resol resin having a solid content of 55% by mass was obtained. A solution obtained by adding 40 g of 2,3-dihydroxynaphthalene-6-sulfonic acid sodium salt (reagent), 35 g of catechol (reagent), and 50 g of water to 200 g of the water-soluble resol resin is heated to 90 ° C. Stir for 3 hours. After stirring, 210 g of resorcinol (reagent) and 200 g of water to which 5 g of 85% by mass phosphoric acid (reagent) was added were added and stirred for 1 hour while maintaining the temperature at 90 ° C. After stirring, 70 g of 37% by mass formaldehyde (reagent) is added little by little, and it is visually confirmed that the viscosity of the composite increases, and a novolak resin having an F / P ratio of 0.84 and a solid content concentration of 53% is obtained. It was. As a result of analyzing the synthesized product by infrared spectroscopy, absorption indicating the presence of a methylol group was confirmed.
・ 製造例2:ノボラック樹脂の合成
 85質量%リン酸(試薬)を酸触媒に用い、フェノール(試薬)61gと37質量%ホルムアルデヒド(試薬)42gとを70℃で混合攪拌し、F/P比が0.8で固形分が55質量%のノボラック樹脂を得た。前記ノボラック樹脂140gに、40gの2,3-ジヒドロキシナフタレン-6-スルホン酸ナトリウム塩(試薬)、35gのカテコ-ル(試薬)、30gの37質量%ホルムアルデヒド(試薬)及び30gの水を添加したものを90℃に加熱し3時間攪拌した。攪拌後に210gのレソルシノ-ル(試薬)、及び85質量%リン酸(試薬)5gを添加した水200gを添加し、温度を90℃に保ったまま1時間攪拌した。攪拌後、70gの37質量%ホルムアルデヒド(試薬)を少量ずつ加え、合成物の粘度が上昇することを目視で確認し、F/P比が0.3で固形分濃度53%のノボラック樹脂を得た。合成物を赤外分光法で分析した結果、メチロール基の存在を示す吸収は確認できなかった。
Production Example 2: Synthesis of novolak resin Using 85% by mass phosphoric acid (reagent) as an acid catalyst, 61 g of phenol (reagent) and 42 g of 37% by mass formaldehyde (reagent) were mixed and stirred at 70 ° C., and F / P ratio Was novolak resin having a solid content of 55% by mass. To 140 g of the novolak resin, 40 g of 2,3-dihydroxynaphthalene-6-sulfonic acid sodium salt (reagent), 35 g of catechol (reagent), 30 g of 37% by mass formaldehyde (reagent) and 30 g of water were added. The product was heated to 90 ° C. and stirred for 3 hours. After stirring, 210 g of resorcinol (reagent) and 200 g of water to which 5 g of 85% by mass phosphoric acid (reagent) was added were added and stirred for 1 hour while maintaining the temperature at 90 ° C. After stirring, 70 g of 37% by mass formaldehyde (reagent) is added little by little, and it is visually confirmed that the viscosity of the synthesized product increases, and a novolak resin having an F / P ratio of 0.3 and a solid content concentration of 53% is obtained. It was. As a result of analyzing the synthesized product by infrared spectroscopy, absorption indicating the presence of a methylol group could not be confirmed.
・ 製造例3:架橋剤の合成
 乾燥窒素雰囲気下で、174gのトルエンジイソシアネート(コロネートT80:日本ポリウレタン工業(株)製)に87gの2-ブタノンオキシムを、反応温度が40℃を超えないように外部から冷却しながら加えた。40℃で1時間保持した後に、反応容器を70℃に加温した。そこに、ビスフェノールA(試薬)113g、さらにジブチル錫ラウレート(STANN BL:三共有機合成(株)製)0.02gを加え120℃で2時間保持した後、エチレングリコールモノブチルエーテル(試薬)で固形分濃度が30質量%となるように希釈した。
Production Example 3: Synthesis of cross-linking agent In a dry nitrogen atmosphere, 174 g of toluene diisocyanate (Coronate T80: manufactured by Nippon Polyurethane Industry Co., Ltd.) was added with 87 g of 2-butanone oxime so that the reaction temperature did not exceed 40 ° C. Added while cooling from outside. After holding at 40 ° C. for 1 hour, the reaction vessel was warmed to 70 ° C. Thereto, 113 g of bisphenol A (reagent) and 0.02 g of dibutyltin laurate (STANN BL: manufactured by Sansha Co., Ltd.) were added and held at 120 ° C. for 2 hours, and then solidified with ethylene glycol monobutyl ether (reagent). It diluted so that a partial concentration might be 30 mass%.
・ 製造例4:架橋剤の合成
 乾燥窒素雰囲気下で、174gのトルエンジイソシアネート(コロネートT80:日本ポリウレタン工業(株)製)に87gの2-ブタノンオキシムを、反応温度が40℃を超えないように外部から冷却しながら加えた。40℃で1時間保持した後に、反応容器を70℃に加温した。そこに、1,1,1-トリス(ヒドロキシメチル)プロパン(試薬)45g、さらにジブチル錫ラウレート(STANN BL:三共有機合成(株)製)0.02gを加え120℃で2時間保持した後、エチレングリコールモノブチルエーテル(試薬)で固形分濃度が30質量%となるように希釈した。
Production Example 4: Synthesis of cross-linking agent In a dry nitrogen atmosphere, 174 g of toluene diisocyanate (Coronate T80: manufactured by Nippon Polyurethane Industry Co., Ltd.) was added with 87 g of 2-butanone oxime so that the reaction temperature did not exceed 40 ° C. Added while cooling from outside. After holding at 40 ° C. for 1 hour, the reaction vessel was warmed to 70 ° C. Thereto, 45 g of 1,1,1-tris (hydroxymethyl) propane (reagent) and 0.02 g of dibutyltin laurate (STANN BL: manufactured by Sansha Co., Ltd.) were added and held at 120 ° C. for 2 hours. The solution was diluted with ethylene glycol monobutyl ether (reagent) so that the solid content was 30% by mass.
・ 実施例1~5、および比較例1
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、製造例1のメチロール基を含有するノボラック樹脂、製造例3の架橋剤、鉄粉(試薬)、フッ化水素酸(試薬)、及び過酸化水素水(試薬)を用いて調整した表1に示す自己析出被膜処理浴に浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで160℃で20分間焼き付けを行った。自己析出浴への浸漬時間は、膜厚が15μmとなるように設定した。各々の実施例および比較例で得られた自己析出被覆金属材料を後述する方法に従って評価した。
Examples 1 to 5 and Comparative Example 1
A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and cleaned was prepared by using a novolak resin containing a methylol group in Production Example 1, a crosslinking agent in Production Example 3, iron powder (reagent), hydrofluoric acid (reagent), and hydrogen peroxide ( After immersing in the autodeposition coating treatment bath shown in Table 1 prepared using a reagent), it was washed with ion-exchanged water using a spray device, and then baked at 160 ° C. for 20 minutes. The immersion time in the autodeposition bath was set so that the film thickness was 15 μm. The autodeposition coated metal materials obtained in each of the examples and comparative examples were evaluated according to the methods described later.
・ 実施例6~9、および比較例2,3
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、製造例1のメチロール基を含有するノボラック樹脂、製造例4の架橋剤、鉄粉(試薬)、フッ化水素酸(試薬)、及び過酸化水素水(試薬)を用いて調整した表2に示す自己析出被膜処理浴に浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで160℃で20分間焼き付けを行った。さらに市販のアミノアルキッド系中塗り塗装(商品名アミラックTP-37グレー:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)、および市販のアミノアルキッド系上塗り塗装(商品名アミラックTM-13白:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)を行った。各々の実施例および比較例で得られた自己析出被覆金属材料を後述する方法に従って評価した。
Examples 6 to 9 and Comparative Examples 2 and 3
A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform a degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and cleaned was prepared by using a novolak resin containing a methylol group in Production Example 1, a crosslinking agent in Production Example 4, iron powder (reagent), hydrofluoric acid (reagent), and hydrogen peroxide ( After being immersed in the autodeposition coating treatment bath shown in Table 2 prepared using a reagent), it was washed with ion-exchanged water using a spray device, and then baked at 160 ° C. for 20 minutes. In addition, a commercially available amino alkyd intermediate coating (trade name Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baked at 140 ° C. for 20 minutes), and commercially available amino alkyd top coating (product) Name Amirac TM-13 White: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baking at 140 ° C. for 20 minutes). The autodeposition coated metal materials obtained in each of the examples and comparative examples were evaluated according to the methods described later.
・ 実施例11~13
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、製造例1のメチロール基を含有するノボラック樹脂、市販のブロックイソシアネート架橋剤であるエラストロンH38(第一工業製薬(株)製)、鉄粉(試薬)、フッ化水素酸(試薬)、及び過酸化水素水(試薬)を用いて調整した表3に示す自己析出被膜処理浴に5分間浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで160℃で20分間焼き付けを行った。さらに市販のアミノアルキッド系中塗り塗装(商品名アミラックTP-37グレー:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)、および市販のアミノアルキッド系上塗り塗装(商品名アミラックTM-13白:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)を行った。各々の実施例で得られた自己析出被覆金属材料を後述する方法に従って評価した。
Examples 11 to 13
A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and washed was a novolak resin containing a methylol group in Production Example 1, Elastron H38 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), a commercial block isocyanate crosslinking agent, iron powder (reagent), After immersing in an autodeposition coating treatment bath shown in Table 3 prepared using hydrofluoric acid (reagent) and hydrogen peroxide solution (reagent) for 5 minutes, it was washed with ion-exchanged water using a spray device, Baking was performed at 160 ° C. for 20 minutes. In addition, a commercially available amino alkyd intermediate coating (trade name Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baked at 140 ° C. for 20 minutes), and commercially available amino alkyd top coating (product) Name Amirac TM-13 White: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baking at 140 ° C. for 20 minutes). The autodeposition coated metal material obtained in each example was evaluated according to the method described later.
・ 比較例4
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、製造例1のメチロール基を含有するノボラック樹脂、市販のブロックイソシアネート架橋剤であるエラストロンH38(第一工業製薬(株)製)、鉄粉(試薬)、フッ化水素酸(試薬)、及び過酸化水素水(試薬)を用いて調整した表3に示す自己析出被膜処理浴に5分間浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで160℃で20分間焼き付けを行った。なお、塩化第二鉄と鉄粉の配合割合は、塩化第二鉄を鉄分として1g/L、残りの鉄分を鉄粉とした。さらに市販のアミノアルキッド系中塗り塗装(商品名アミラックTP-37グレー:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)、および市販のアミノアルキッド系上塗り塗装(商品名アミラックTM-13白:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)を行った。各々の実施例で得られた自己析出被覆金属材料を後述する方法に従って評価した。
Comparative example 4
A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform a degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and washed was a novolak resin containing a methylol group in Production Example 1, Elastron H38 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), a commercial block isocyanate crosslinking agent, iron powder (reagent), After immersing in an autodeposition coating treatment bath shown in Table 3 prepared using hydrofluoric acid (reagent) and hydrogen peroxide solution (reagent) for 5 minutes, it was washed with ion-exchanged water using a spray device, Baking was performed at 160 ° C. for 20 minutes. The mixing ratio of ferric chloride and iron powder was 1 g / L with ferric chloride as iron and the remaining iron as iron powder. In addition, a commercially available amino alkyd intermediate coating (trade name Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baked at 140 ° C. for 20 minutes), and commercially available amino alkyd top coating (product) Name Amirac TM-13 White: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baking at 140 ° C. for 20 minutes). The autodeposition coated metal material obtained in each example was evaluated according to the method described later.
・ 比較例5
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、製造例1のメチロール基を含有するノボラック樹脂を固形分として3質量%、鉄粉(試薬)を1.5g/L、フッ化水素酸(試薬)をフッ素として1.6g/L、及び過酸化水素水(試薬)を用いてORPを400mVに調整した自己析出被膜処理浴に5分間浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで160℃で20分間焼き付けを行った。得られた自己析出被覆金属材料を後述する方法に従って評価した。
Comparative example 5
A commercially available fine cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.), which is a commercially available alkaline degreasing agent, was diluted to 2% by mass with water and heated to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and washed was obtained by adding 3% by mass of the novolak resin containing the methylol group of Production Example 1 as a solid content, 1.5 g / L of iron powder (reagent), and hydrofluoric acid (reagent). After dipping for 5 minutes in an autodeposition coating treatment bath in which ORP was adjusted to 400 mV using 1.6 g / L of fluorine and hydrogen peroxide solution (reagent) as a fluorine, it was washed with ion-exchanged water using a spray device, and then Baking was performed at 160 ° C. for 20 minutes. The obtained autodeposition coated metal material was evaluated according to the method described later.
・ 比較例6~8
 市販のアルカリ脱脂剤でファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、製造例2のノボラック樹脂、製造例3の架橋剤、鉄粉(試薬)、フッ化水素酸(試薬)、及び過酸化水素水(試薬)を用いて調整した表4に示す自己析出被膜処理浴に浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで160℃で20分間焼き付けを行った。自己析出浴への浸漬時間は、膜厚が15μmとなるように設定した。各々の比較例で得られた自己析出被覆金属材料を後述する方法に従って評価した。
Comparative examples 6-8
A fine alkaline L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted with water to 2% by mass with a commercially available alkaline degreasing agent and heated to 40 ° C. and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. Using the novolak resin of Production Example 2, the cross-linking agent of Production Example 3, iron powder (reagent), hydrofluoric acid (reagent), and hydrogen peroxide (reagent), the test plate whose surface was degreased and washed was used. After being immersed in the adjusted autodeposition coating treatment bath shown in Table 4, it was washed with ion-exchanged water using a spray device, and then baked at 160 ° C. for 20 minutes. The immersion time in the autodeposition bath was set so that the film thickness was 15 μm. The self-deposited coated metal material obtained in each comparative example was evaluated according to the method described later.
・ 比較例9
 市販のアルカリ脱脂剤でファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、市販の自己析出被膜処理薬剤であるNSD-1000(塩化ビニリデンタイプ:日本パーカライジング(株)製)をカタログ値の中心に調整した処理浴に2分間浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで100℃で20分間焼き付けを行った。さらに市販のアミノアルキッド系中塗り塗装(商品名アミラックTP-37グレー:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)、および市販のアミノアルキッド系上塗り塗装(商品名アミラックTM-13白:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)を行った。上塗り塗装まで行った供試板塗膜の密着性を後述する方法に従って評価した。
Comparative Example 9
A fine alkaline L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted with water to 2% by mass with a commercially available alkaline degreasing agent and heated to 40 ° C. and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and washed was immersed in a treatment bath in which NSD-1000 (vinylidene chloride type: Nippon Parkerizing Co., Ltd.), a commercially available autodeposition coating treatment agent, was adjusted to the center of the catalog value for 2 minutes. Then, it wash | cleaned with ion-exchange water using the spray apparatus, and then baked at 100 degreeC for 20 minutes. In addition, a commercially available amino alkyd intermediate coating (trade name Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baked at 140 ° C. for 20 minutes), and commercially available amino alkyd top coating (product) Name Amirac TM-13 White: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baking at 140 ° C. for 20 minutes). The adhesion of the test plate coating film that was applied to the top coat was evaluated according to the method described below.
(自己析出被覆処理金属材料の外観および膜厚評価)
 実施例、及び比較例の自己析出被膜処理方法で処理を行った供試板の外観を目視で判定した。また、被膜厚を電磁式膜厚計(フィッシャースコープMMS:FISCHER製)を用いて測定した。
(Appearance and film thickness evaluation of self-deposited coated metal materials)
The appearance of the test plates treated with the autodeposition coating treatment methods of the examples and comparative examples was visually determined. The film thickness was measured using an electromagnetic film thickness meter (Fischerscope MMS: manufactured by FISCHER).
(自己析出被覆金属材料の性能評価)
 実施例、及び比較例の性能評価を行った。評価項目と略号を以下に示す。尚、自己析出被膜処理完了時点での塗膜を自己析出塗膜、上塗り塗装完了時点での塗膜を3coats塗膜と称することとする。
(1)SST:塩水噴霧試験(自己析出塗膜)
(2)SDT:塩温水試験(自己析出塗膜)
(3)1stADH:1次密着性(3coats塗膜)
(4)2ndADH:耐水2次密着性(3coats塗膜)
(Performance evaluation of self-deposited coated metal materials)
The performance evaluation of Examples and Comparative Examples was performed. Evaluation items and abbreviations are shown below. The coating film at the time of completion of the autodeposition coating treatment is referred to as a self-deposition coating film, and the coating film at the time of completion of the top coating is referred to as a 3coats coating film.
(1) SST: Salt spray test (self-deposited coating)
(2) SDT: salt warm water test (self-deposited coating)
(3) 1 st ADH: Primary adhesion (3coats coating film)
(4) 2 nd ADH: water resistant secondary adhesion (3-coat coating film)
・SST
 鋭利なカッターでクロスカットを入れた自己析出塗膜板に5質量%塩水を600時間噴霧(JIS-Z-2371に準ずる)した。噴霧終了後にクロスカット部からの両側最大ふくれ幅を測定した。
・ SST
5 mass% salt water was sprayed for 600 hours (according to JIS-Z-2371) onto a self-deposited coated film plate that had been cross-cut with a sharp cutter. After spraying, the maximum swelling width on both sides from the cross cut part was measured.
・SDT
 鋭利なカッターでクロスカットを入れた自己析出塗膜板を、50℃に昇温した5質量%のNaCl水溶液に240時間浸漬した。浸漬終了後に水道水で水洗→常温乾燥したクロスカット部を粘着テープで剥離し、塗膜の両側最大剥離幅を測定した。
・ SDT
The self-deposited coated plate with a cross cut cut with a sharp cutter was immersed in a 5 mass% NaCl aqueous solution heated to 50 ° C for 240 hours. After dipping, the cross-cut portion that was washed with tap water and dried at room temperature was peeled off with an adhesive tape, and the maximum peel width on both sides of the coating film was measured.
・ 1stADH
 3coats塗膜に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部のセロテープ(登録商標)剥離を行い碁盤目の残存個数を数えた。
・ 1 st ADH
Cut 100 grids at 2mm intervals with a sharp cutter on the 3coats coating. Cellotape (registered trademark) was peeled off from the grid area, and the remaining number of grids was counted.
・2ndADH
 3coats塗装板を40℃の脱イオン水に240時間浸漬した。浸漬後に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部のセロテープ剥離を行い碁盤目の残存個数を数えた。
· 2 nd ADH
The 3coats coated plate was immersed in deionized water at 40 ° C. for 240 hours. After immersion, 100 grids with 2 mm intervals were cut with a sharp cutter. The tape was peeled off from the grid area, and the remaining number of grids was counted.
 表5に実施例1から5、および比較例1で得られた自己析出被膜の評価結果を示した。実施例1から5は、全ての水準において均一な外観が得られ、かつ耐食性も優れていた。対して、比較例1は、焼き付け後の自己析出被膜全面にクラックが発生したため、耐食性評価を行わなかった。 Table 5 shows the evaluation results of the autodeposition coatings obtained in Examples 1 to 5 and Comparative Example 1. In Examples 1 to 5, a uniform appearance was obtained at all levels, and corrosion resistance was excellent. On the other hand, Comparative Example 1 was not evaluated for corrosion resistance because cracks occurred on the entire surface of the autodeposition coating after baking.
 表6に実施例6から9、および比較例2,3で得られた自己析出被膜の評価結果を示した。実施例6から9は、架橋剤にビスフェノールA構造を導入していないため、実施例1から5と比較すると若干劣るものの実用上十分な耐食性を示した。また、中上塗り塗装後の密着性も良好であった。対して、比較例2の自己析出被覆金属材料は、密着性は得られたものの、膜厚が低いため耐食性に劣る結果であった。比較例3では、焼き付け後の自己析出被膜にクラックが発生したため、耐食性評価を行わなかった。 Table 6 shows the evaluation results of the self-deposited films obtained in Examples 6 to 9 and Comparative Examples 2 and 3. Since Examples 6 to 9 did not introduce a bisphenol A structure into the cross-linking agent, they exhibited practically sufficient corrosion resistance although slightly inferior to Examples 1 to 5. Also, the adhesion after the intermediate top coating was good. On the other hand, the self-deposited coated metal material of Comparative Example 2 was inferior in corrosion resistance because the film thickness was low, although adhesion was obtained. In Comparative Example 3, the corrosion resistance evaluation was not performed because cracks occurred in the autodeposition coating after baking.
 表7には、実施例11から13、および比較例4で得られた自己析出被膜の評価結果を示した。実施例11から13は、全ての水準において均一な外観が得られ、かつ耐食性も優れていた。また、中上塗り塗装後の密着性も良好であった。対して比較例4では、自己析出被膜処理工程の次工程である水洗工程において、焼き付け前の塗膜が剥離した。 Table 7 shows the evaluation results of the autodeposition coatings obtained in Examples 11 to 13 and Comparative Example 4. In Examples 11 to 13, a uniform appearance was obtained at all levels, and the corrosion resistance was excellent. Also, the adhesion after the intermediate top coating was good. On the other hand, in the comparative example 4, the coating film before baking peeled in the washing process which is the next process of an autodeposition coating process.
 表8に比較例5で得られた自己析出被膜の評価結果を示した。比較例5においては、自己析出被膜は得られたが、架橋剤を使用しなかったため著しく耐食性に劣る結果であった。 Table 8 shows the evaluation results of the self-deposited film obtained in Comparative Example 5. In Comparative Example 5, an autodeposited film was obtained, but the result was markedly inferior in corrosion resistance because no crosslinking agent was used.
 表9に比較例6から8で得られた自己析出被膜の評価結果を示した。比較例6から8に用いたノボラック樹脂は、メチロール基を有していないため耐食性に劣っていた。また、処理浴の安定性が著しく低く、自己析出被膜処理後1時間経過後には沈殿物が発生した。対して、全ての実施例においては、自己析出被膜処理後の処理液を1ヶ月間保管しても沈殿物の発生はなく、かつ自己析出被膜処理によってスラッジがほとんど発生しなかった。 Table 9 shows the evaluation results of the autodeposition coating obtained in Comparative Examples 6 to 8. The novolak resin used in Comparative Examples 6 to 8 was inferior in corrosion resistance because it did not have a methylol group. In addition, the stability of the treatment bath was extremely low, and precipitates were generated 1 hour after the autodeposition coating treatment. On the other hand, in all Examples, no precipitate was generated even when the treatment liquid after the autodeposition coating treatment was stored for one month, and sludge was hardly generated by the autodeposition coating treatment.
 表10には、比較例9で得られた自己析出被膜の評価結果を示した。比較例9は市販の自己析出被膜処理剤であるため、比較的良好な耐食性を示した。しかしながら、中上塗り塗装後の密着性評価では、碁盤目部の塗膜が全て剥離した。 Table 10 shows the evaluation results of the self-deposited film obtained in Comparative Example 9. Since Comparative Example 9 was a commercially available autodeposition coating agent, it exhibited relatively good corrosion resistance. However, in the adhesion evaluation after the intermediate top coating, all the coatings on the grid area were peeled off.
 以上より、本発明の効果は明らかである。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 
From the above, the effects of the present invention are clear.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013

Claims (11)

  1.  ノボラック樹脂と、架橋剤と、第二鉄イオンと、フッ素元素と、酸化剤とを含む水溶液であって、
     前記ノボラック樹脂が、フェノール類とアルデヒド類とをF/P比が2.5から3の範囲でアルカリ触媒存在下において反応させることで得られるレゾール樹脂と、隣接する芳香環炭素上に二以上のヒドロキシル基を有するヒドロキシフェノール類と、フェノール類と、を混合撹拌し、更にフェノール類とアルデヒド類と酸触媒を加えて重合することにより得られる、F/P比が0.7~1.0のメチロール基を有するノボラック樹脂であり、
     前記架橋剤が、該メチロール基、フェノール核および/またはフェノール性ヒドロキシル基と熱硬化反応可能な架橋基を有する架橋剤であり、
     前記ノボラック樹脂と前記架橋剤との固形分質量濃度比が1:1から1:10の範囲であり、
     前記フッ素元素のモル濃度が前記第二鉄イオンの少なくとも3倍であり、かつ、pHが2から6の範囲である
    ことを特徴とする、金属材料の自己析出被膜処理用表面処理液。
    An aqueous solution containing a novolak resin, a crosslinking agent, ferric ions, elemental fluorine, and an oxidizing agent,
    The novolak resin comprises two or more resole resins obtained by reacting phenols and aldehydes in the presence of an alkali catalyst in an F / P ratio of 2.5 to 3, and two or more adjacent aromatic ring carbons. A hydroxyphenol having a hydroxyl group and a phenol are mixed and stirred, and further polymerized by adding a phenol, an aldehyde and an acid catalyst, and having an F / P ratio of 0.7 to 1.0. A novolac resin having a methylol group,
    The crosslinking agent is a crosslinking agent having a crosslinking group capable of thermosetting reaction with the methylol group, phenol nucleus and / or phenolic hydroxyl group,
    The solid content mass concentration ratio of the novolac resin and the crosslinking agent is in the range of 1: 1 to 1:10,
    A surface treatment solution for autodeposition coating treatment of a metal material, wherein the molar concentration of the fluorine element is at least 3 times that of the ferric ion and the pH is in the range of 2 to 6.
  2.  前記ノボラック樹脂が、式1に示す構造式を有することを特徴とする、請求項1記載の金属材料の自己析出被膜処理用表面処理液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、mおよびnは1~5の整数、pは0~5の整数、R1はメチロール、R2は独立にヒドロキシル又はアルキルアリール、R3は独立にメチロール、ヒドロキシル又はアルキルアリール、aは0又は1である。)
    The surface treatment solution for autodeposition coating treatment of a metal material according to claim 1, wherein the novolak resin has a structural formula shown in Formula 1.
    Figure JPOXMLDOC01-appb-C000001
    Wherein m and n are integers of 1 to 5, p is an integer of 0 to 5, R1 is methylol, R2 is independently hydroxyl or alkylaryl, R3 is independently methylol, hydroxyl or alkylaryl, a is 0 or 1)
  3.  前記架橋剤の熱硬化反応可能な架橋基がイソシアネート基である、請求項1又は2に記載の金属材料の自己析出被膜処理用表面処理液。 The surface treatment liquid for autodeposition coating treatment of a metal material according to claim 1 or 2, wherein the crosslinking group capable of thermosetting reaction of the crosslinking agent is an isocyanate group.
  4.  前記架橋剤が、1モルのポリオールに対して、予め一方のイソシアネート基がブロック剤でブロックされた少なくとも2モルのポリイソシアネートを付加した多官能ブロックイソシアネートである、請求項3に記載の金属材料の自己析出被膜処理用表面処理液。 The metal material according to claim 3, wherein the cross-linking agent is a polyfunctional blocked isocyanate obtained by adding at least 2 mol of polyisocyanate in which one isocyanate group is blocked with a blocking agent to 1 mol of polyol. Surface treatment solution for autodeposition coating treatment.
  5.  前記架橋剤中のポリオールが少なくとも一分子のビスフェノールA構造を有することを特徴とする、請求項4に記載の金属材料の自己析出被膜処理用表面処理液。 The surface treatment liquid for autodeposition coating treatment of a metal material according to claim 4, wherein the polyol in the cross-linking agent has at least one molecule of bisphenol A structure.
  6.  前記ノボラック樹脂の濃度が水溶液中の固形分濃度として1~5質量%であることを特徴とする、請求項1から5の何れか一項に記載の金属材料の自己析出被膜処理用表面処理液。 6. The surface treatment liquid for autodeposition coating treatment of a metal material according to claim 1, wherein the concentration of the novolak resin is 1 to 5% by mass as a solid content concentration in the aqueous solution. .
  7.  酸化剤が過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも一種である、請求項1から6の何れか一項に記載の金属材料の自己析出被膜処理用表面処理液。 The metal material self-deposition according to any one of claims 1 to 6, wherein the oxidizing agent is at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide. Surface treatment solution for coating treatment.
  8.  白金電極で測定される酸化還元電位が、300から500mVであることを特徴とする、請求項7に記載の自己析出被膜処理用表面処理液。 The surface treatment solution for autodeposition coating treatment according to claim 7, wherein the oxidation-reduction potential measured with a platinum electrode is 300 to 500 mV.
  9.  予め脱脂、水洗処理によって表面を清浄化した金属材料を、請求項1から8の何れか一項に記載された表面処理液と接触させた後、さらに水洗工程で該金属材料表面に付着した余剰な前記処理液を除去し、次いで焼き付け処理を行うことによって被膜を熱硬化させることを特徴とする金属材料の自己析出被膜処理方法。 The surplus adhered to the surface of the metal material in the water washing step after the metal material whose surface has been cleaned in advance by degreasing and washing treatment is brought into contact with the surface treatment liquid described in any one of claims 1 to 8. An autodeposition coating treatment method for a metal material, wherein the coating solution is thermally cured by removing the treatment liquid and then performing a baking treatment.
  10.  前記金属材料が、鉄系金属材料であることを特徴とする、請求項9に記載の金属材料の自己析出被膜処理方法。 10. The metal material autodeposition coating treatment method according to claim 9, wherein the metal material is an iron-based metal material.
  11.  金属材料表面に請求項9又は10に記載された方法によって析出した自己析出被膜層を有し、かつ焼き付け硬化後の自己析出被膜層の膜厚が10~30μmであることを特徴とする自己析出被覆金属材料。 An autodeposition film layer having an autodeposition coating layer deposited on the surface of a metal material by the method described in claim 9 and having a film thickness of 10 to 30 μm after baking and hardening. Coated metal material.
PCT/JP2009/058088 2008-06-07 2009-04-23 Solution for self-depositing coating treatment of metal materials and self-depositing coating treatment method WO2009147911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008149994A JP5518307B2 (en) 2008-06-07 2008-06-07 Self-deposited coating treatment liquid for metal material, and self-deposited coating treatment method
JP2008-149994 2008-06-07

Publications (1)

Publication Number Publication Date
WO2009147911A1 true WO2009147911A1 (en) 2009-12-10

Family

ID=41335594

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/058088 WO2009147911A1 (en) 2008-06-07 2009-04-23 Solution for self-depositing coating treatment of metal materials and self-depositing coating treatment method
PCT/US2009/046406 WO2010002543A1 (en) 2008-06-07 2009-06-05 Treatment solution for autodeposition coating of metallic materials and autodeposition coating treatment method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2009/046406 WO2010002543A1 (en) 2008-06-07 2009-06-05 Treatment solution for autodeposition coating of metallic materials and autodeposition coating treatment method

Country Status (3)

Country Link
JP (1) JP5518307B2 (en)
TW (1) TW201006959A (en)
WO (2) WO2009147911A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992932B2 (en) * 2019-10-25 2022-02-03 Dic株式会社 Polyfunctional phenol resin, polyfunctional epoxy resin, curable resin composition containing them and cured product thereof
CN112301337A (en) * 2020-10-24 2021-02-02 安徽省含山县皖中减速机械有限公司 Production process for prolonging service life of speed reducer gear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037712A1 (en) * 1998-01-27 1999-07-29 Lord Corporation Aqueous phenolic dispersion
JP2003176449A (en) * 2001-08-31 2003-06-24 Nippon Parkerizing Co Ltd Curable autodeposition coating film, autodeposition composition, coated metal substrate, and method for forming coating film on metal substrate
JP2006152436A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486414A (en) * 1994-07-18 1996-01-23 Henkel Corporation Dual coated metal substrates and method of making
WO1999037722A1 (en) * 1998-01-27 1999-07-29 Lord Corporation Aqueous metal treatment composition
US6902766B1 (en) * 2000-07-27 2005-06-07 Lord Corporation Two-part aqueous metal protection treatment
WO2003020447A2 (en) * 2001-08-31 2003-03-13 Lord Corporation Improved autodeposition metal dip coating process
US20070243372A1 (en) * 2006-04-13 2007-10-18 Mowrey Douglas H Aqueous adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037712A1 (en) * 1998-01-27 1999-07-29 Lord Corporation Aqueous phenolic dispersion
JP2003176449A (en) * 2001-08-31 2003-06-24 Nippon Parkerizing Co Ltd Curable autodeposition coating film, autodeposition composition, coated metal substrate, and method for forming coating film on metal substrate
JP2006152436A (en) * 2004-10-26 2006-06-15 Nippon Parkerizing Co Ltd Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material

Also Published As

Publication number Publication date
TW201006959A (en) 2010-02-16
WO2010002543A1 (en) 2010-01-07
JP5518307B2 (en) 2014-06-11
JP2009293101A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
RU2482220C2 (en) Metallizing preliminary treatment of zinc surfaces
CN101987938B (en) Cationic electrodeposition coating composition
JP4500113B2 (en) High corrosion resistance surface-treated steel sheet and method for producing the same
CN102574157B (en) Two-stage method for the corrosion protection treatment of metal surfaces
EP2302098A1 (en) Chemical conversion liquid for metal structure and surface treating method
US8663376B2 (en) Surface treatment solution for autodeposition coating of metallic material and autodeposition coating treatment method
KR20020070460A (en) Organic coating covered steel sheet
EP2309026A1 (en) Chemical treatment liquid for steel material coating primer and method of treatment
JP5123051B2 (en) Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
CN104120420A (en) Chromium-free conversion coating
CN111670226A (en) Electrodepositable coating compositions and conductive coatings produced therefrom
CN102653657B (en) Cationic electrodeposition coating composition
JP4457819B2 (en) High corrosion resistance surface-treated steel sheet and method for producing the same
JP2009174049A (en) Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article
US20090297843A1 (en) Non-chrome thin organic-inorganic hybrid coating on zinciferous metals
JP5518398B2 (en) Post-treatment liquid for autodeposition coating on metal surface and method for producing metal material with post-processed autodeposition coating
JP5518307B2 (en) Self-deposited coating treatment liquid for metal material, and self-deposited coating treatment method
US3961992A (en) Method of treating metal surfaces
CN110049864A (en) The metal base of inverted coating is handled with the pre-formed reaction product of catechin compounds and functionalization coreaction compound
JP2011117026A (en) Surface treatment solution for self-deposition coating treatment for metallic material and self-deposition coating treatment method
JP2004156081A (en) Surface treated steel sheet superior in electromagnetic wave shielding property and corrosion resistance, and manufacturing method therefor
WO2012147478A1 (en) Cationic electrodeposition coating composition and coated article
JP4207536B2 (en) Surface treatment metal plate and surface treatment agent
JP2006082369A (en) Highly corrosion-resistant surface treated steel sheet and its manufacturing method
JP2017082260A (en) Metal surface treatment agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758178

Country of ref document: EP

Kind code of ref document: A1