WO2009145900A1 - Methods and compositions for sleep disorders and other disorders - Google Patents

Methods and compositions for sleep disorders and other disorders Download PDF

Info

Publication number
WO2009145900A1
WO2009145900A1 PCT/US2009/003261 US2009003261W WO2009145900A1 WO 2009145900 A1 WO2009145900 A1 WO 2009145900A1 US 2009003261 W US2009003261 W US 2009003261W WO 2009145900 A1 WO2009145900 A1 WO 2009145900A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
disorders
pharmaceutically acceptable
agonist
Prior art date
Application number
PCT/US2009/003261
Other languages
French (fr)
Inventor
Sharon Mates
Allen A. FIENBERG
Lawrence P. Wennogle
Original Assignee
Intra-Cellular Therapies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41377435&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009145900(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US16/784,112 priority Critical patent/USRE48839E1/en
Priority to MX2010013020A priority patent/MX2010013020A/en
Priority to EP09755263A priority patent/EP2320731A4/en
Priority to US12/994,560 priority patent/US8598119B2/en
Priority to AU2009251816A priority patent/AU2009251816B2/en
Priority to CA2725342A priority patent/CA2725342C/en
Priority to KR1020197000911A priority patent/KR102184038B1/en
Priority to KR1020207033595A priority patent/KR102317698B1/en
Priority to KR1020167032085A priority patent/KR102133073B1/en
Application filed by Intra-Cellular Therapies, Inc. filed Critical Intra-Cellular Therapies, Inc.
Priority to CN200980128888.4A priority patent/CN102105059B/en
Priority to JP2011511638A priority patent/JP6106361B2/en
Publication of WO2009145900A1 publication Critical patent/WO2009145900A1/en
Priority to US14/066,987 priority patent/US9168258B2/en
Priority to AU2015218433A priority patent/AU2015218433B2/en
Priority to US14/885,813 priority patent/US9616061B2/en
Priority to US15/467,867 priority patent/US10117867B2/en
Priority to US16/165,832 priority patent/US10702522B2/en
Priority to US16/921,586 priority patent/US20200405713A1/en
Priority to US18/169,466 priority patent/US20230355616A1/en
Priority to US18/481,170 priority patent/US20240041871A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • A01N43/42Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/06Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/14Ortho-condensed systems

Definitions

  • the present invention relates to use of particular substituted heterocycle fused gamma-carbolines as described herein, in free or pharmaceutically acceptable salt forms, as pharmaceuticals and pharmaceutical compositions, e.g., in the treatment of diseases involving 5-HT2A receptor, serotonin transporter (SERT) and/or dopamine D 2 receptor protein phosphorylation pathways, such as depression, sleep disorders, and mood disorders associated with psychosis or Parkinson's disease; psychosis such as schizophrenia associated with depression; bipolar disorder; and other psychiatric and neurological conditions such as sleep disorders, as well as to combinations with other agents.
  • diseases involving 5-HT2A receptor, serotonin transporter (SERT) and/or dopamine D 2 receptor protein phosphorylation pathways such as depression, sleep disorders, and mood disorders associated with psychosis or Parkinson's disease
  • psychosis such as schizophrenia associated with depression
  • bipolar disorder and other psychiatric and neurological conditions
  • sleep disorders as well as to combinations with other agents.
  • Psychosis such as schizophrenia is a severe and crippling mental disorder that affects about 1% of the population. It is a mental disorder that is characterized by gross impairment in reality, major disturbances in reasoning, often evidenced by delusions and hallucinations, incoherent speech, and/or disorganized and agitated behavior.
  • anti-psychotic drugs are available for treatment of schizophrenia, including the prototypical antipsychotic drugs such as chlorpromazine and haloperidol as well as many others such as droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, and trifluoperazine.
  • acute dystonia e.g., facial grimacing, torticollis, oculogyric crisis, abnormal contraction of spinal muscles and of muscles involved in breathing
  • atypical antipsychotic agents which include clozapine, aripiparazole, olanzapine, quetiapine, risperidone and ziprasidone (atypical antipsychotic agents) are effective in treating positive and negative symptoms of schizophrenia with fewer extrapyramidal side effects, these agents can nevertheless cause other serious and at times fatal side effects, including bone marrow suppression, seizure, orthostatic hypotension, insomnia, sedation, somnolence, weight gain, and if administered at higher doses, may again cause extrapyramidal side effects. Therefore, atypical antipsychotic agents, though have improved clinical profiles, are nevertheless undesirable.
  • Substituted heterocycle fused gamma-carbolines are known to be agonists or antagonists of 5-HT2 receptors, particularly 5-HT2A and 5-HT2C receptors, in treating central nervous system disorders.
  • 5-HT2A and 5-HT2C receptors include 5-HT2A and 5-HT2C receptors.
  • These compounds have been disclosed in U.S. Pat. No. 6,548,493; 7,238,690; 6,552,017; 6,713,471 ; U.S. RE39680, and U.S. RE39679, as novel compounds useful for the treatment of disorders associated with 5-HT2A receptor modulation such as obesity, anxiety, depression, psychosis, schizophrenia, sleep disorders, sexual disorders migraine, conditions associated with cephalic pain, social phobias, and gastrointestinal disorders such as dysfunction of the gastrointestinal tract motility.
  • PCT/US08/03340 and U.S. Application Serial No. 10/786,935 also disclose methods of making substituted heterocycle fused gamma-carbolines and uses of these gamma-carbolines as serotonin agonists and antagonists useful for the control and prevention of central nervous system disorders such as addictive behavior and sleep disorders.
  • substituted heterocycle fused gamma-carbolines to independently treat disorders associated with serotonin pathways such as sleep disorder, depression, psychosis, and schizophrenia associated with the 5-HT 2A pathways
  • specific compounds of substituted heterocycle fused gamma-carbolines also exhibit nanomolar binding affinity to serotonin reuptake transporter (SERT) and dopamine D 2 receptors and therefore may be used to treat a combination of psychosis and depressive disorders as well as sleep, depressive and/or mood disorders in patients with psychosis or Parkinson's disease.
  • SERT serotonin reuptake transporter
  • I e.g. Compound A
  • the magnitude of WASO decrease and total sleep time increase at 10 mg suggests the modest D2 (and possibly SERT and Dl) occupancy at this dose contributes favorably to the sleep profile beyond simple 5-HT2A receptor antagonism.
  • Dopamine receptor modulation and SERT inhibition improve psychiatric symptoms co-morbid with insomnia.
  • Compounds of Formula I represent a new approach for treating sleep maintenance insomnia and sleep disorders associated with neuropsychiatric and neurological diseases, as well as for the treatment of sleep disorders, schizophrenia, and other neuropsychiatric and neurological indications. [0010] At higher doses, when 5-HT2A receptors are fully occupied, Compounds of
  • Formula I modulate dopamine receptor protein phosphorylation. Therefore, Compounds of Formula I are particularly useful for the treatment of sleep disorders in patients suffering from psychosis such as schizophrenia, Parkinson's disease and/or depression. [001 1] Unlike dopamine receptor antagonists, Compounds of Formula I normalize brain dopamine activity, particularly in the prefrontal cortex. In addition, Compounds of Formula I also moderately bind to SERT. Therefore, Compounds of Formula I are particularly useful for the treatment of psychosis in patients suffering from depression.
  • Compounds of Formula I show an improved selectivity profile with respect to off-target interactions such as adrenergic alpha- Ia, serotonin 5-HT2C, and histamine Hl associated with many side effects compared to other antipsychotic drugs.
  • Compounds of Formula I are therefore also useful as antipsychotic agents in patients who are unable to tolerate the side effects of convention antipsychotic drugs. [0012] In addition to binding to 5-HT2A and dopamine D 2 receptors, Compounds of Formula I also exhibit nanomolar binding affinity for SERT compared to known antidepressants. Therefore, Compounds of Formula I are useful for the treatment of depression in patients suffering from psychosis.
  • Compounds of Formula I have a wider separation between 5-HT 2 A and D 2 receptor affinities than other atypical antipsychotic drugs ( ⁇ 60 fold), they are additionally useful in reduction of dyskinesia. For example, they reduce L-DOPA-induced dyskinetic behavior in a mouse model. Without intending to be bound by theory, it is hypothesized that this is accomplished by virtue of the potent 5-HT 2A antagonism with minimal interference with L-DOPA-induced motor correction, by virtue of the low relative D 2 receptor activity. Parkinson's disease results from loss of DA neurons in the substantia nigra pars compacta. The primary motor symptoms of PD are treated by L-DOPA. Activation of medium spiny neurons in the dorsolateral striatum that project to the substantia nigra pars reticulata results in disinhibition of thalamocortical neurons and increased motor activity.
  • 5-HT 2A receptors are localized in striatal medium spiny neurons. Compounds of Formula I are thus believed to block dyskinesias by blockade of 5-HT 2A receptors.
  • a method for the treatment of one or more disorders involving serotonine 5-HT 2 A, dopamine D2 and/or serotonin reuptake transporter (SERT) pathway comprising administering to a patient in need thereof a Compound of Formula I:
  • Method I comprising a compound of Formula I, wherein X is -N(CH 3 );
  • Method I comprising a compound of Formula I, wherein X is O;
  • Method I or any of 1.1 - 1.21 , wherein said patient is unable to tolerate the side effects of convention antipsychotic drugs, e.g., chlorpromazine, haloperidol droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone and ziprasidone;
  • convention antipsychotic drugs e.g., chlorpromazine, haloperidol droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, tri
  • Method I or any of 1.1 - 1.21 , wherein said patient is unable to tolerate the side effects of convention antipsychotic drugs, e.g., haloperidol, aripiparazole, clozapine, olanzapine, quetiapine, risperidone, and zipasidone;
  • convention antipsychotic drugs e.g., haloperidol, aripiparazole, clozapine, olanzapine, quetiapine, risperidone, and zipasidone;
  • Method I or any of 1.1 - 1.20, wherein said disorder is depression and said patient is a patient suffering from psychosis, e.g., schizophrenia, or Parkinson's disease;
  • Method I or any of 1.1-1.20, wherein said one or more disorders is sleep disorder and said patient is suffering from psychosis, e.g., schizophrenia;
  • the effective amount is an amount sufficient to bind to 5-HT2A, e.g., with a K, of less than 5nM, preferably less than InM, and also bind to dopamine D 2 receptors and SERT, e.g., with a K, of less than 10OnM, preferably less than 75nM, more preferably less than 5OnM in a binding assay as described in Examples 1 below;
  • the effective amount is an amount sufficient to (i) bind to 5-HT2A, e.g., with a K 1 of less than 5nM, preferably less than InM; (ii) bind to dopamine D 2 receptors, e.g., with a K, of 25-75nM; (iii) bind to SERT, e.g., with a K 1 of less than 10OnM, preferably less than
  • HT2A is greater than 150, more preferably greater than 300;
  • ratio of the K, of Hl to the K 1 of 5- HT2A is greater than 100, more preferably greater than 200;
  • dopaminergic medications e.g., medications selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., levodopa.
  • a method for the treatment of one or more sleep disorders comprising administering to a patient in need thereof a Compound of Formula I:
  • X is O, -NH or -N(CH 3 ); and Y is -O- or -C(O)- in free or pharmaceutically acceptable salt form, at a dose selective for 5-HT 2A receptor blockade, e.g a daily dose of 0.1 - 20 mg, e.g., 0.5-10 mg.
  • the invention further provides Method II as follows: 2.1 Method II comprising a compound of Formula I, wherein X is -N(CH 3 );
  • the effective amount to treat one or more sleep disorders is an amount sufficient to bind to 5-HT2A receptors, e.g., with a K 1 of less than 25nM, preferably less than 1OnM, more preferably InM, but does not bind to D 2 receptors and/or SERT or bind to D 2 receptors and/or SERT, e.g., with a K; of greater than 5OnM, preferably greater than 75nM, more preferably greater than 10OnM in an assay as described in Example 1 below;
  • the sleep disorder include sleep maintenance insomnia, frequent awakenings, and waking up feeling unrefreshed;
  • sleep disorder is sleep maintenance insomnia
  • the sleep disorder is in a patient suffering from or at risk of dyskinesia, e.g., a patient receiving dopaminergic medications, e.g., selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., receiving levodopa.
  • dopaminergic medications e.g., selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., receiving levodopa.
  • Compounds of the Invention may exist in free or salt form, e.g., as acid addition salts.
  • acid addition salts e.g., as acid addition salts.
  • the Compounds of the Invention are intended for use as pharmaceuticals, therefore pharmaceutically acceptable salts are preferred. Salts which are unsuitable for pharmaceutical uses may be useful, for example, for the isolation or purification of free Compounds of the Invention or their pharmaceutically acceptable salts, are therefore also included.
  • Pharmaceutically acceptable salts include, for example, the hydrochloride and tosylate salts.
  • Method II e.g., any of 2.1-2.19, wherein the Compound of Formula I, in free or pharmaceutically acceptable salt form is administered in a composition, wherein said Compound of Formula I in free or pharmaceutically acceptable salt form in admixture with a pharmaceutically acceptable diluent or carrier.
  • composition I a Pharmaceutical Composition comprising a Compound of Formula I in free or pharmaceutically acceptable salt form, e.g., as described in any of Methods I or 1.1-1.37, in admixture with a pharmaceutically acceptable diluent or carrier for use in any of Methods I or 1.1-1.37.
  • composition II a Pharmaceutical Composition comprising a Compound of Formula I in free or pharmaceutically acceptable salt form, e.g., as described in any of Methods I or 1.1-1.37, in admixture with a pharmaceutically acceptable diluent or carrier for use in any of Methods I or 1.1-1.37.
  • composition II a Pharmaceutical Composition comprising a Compound of Formula I in free or pharmaceutically acceptable salt form, e.g., as described in any of Methods I or 1.1-1.37, in admixture with a pharmaceutically acceptable diluent or carrier for use in any of Methods I or 1.1-1.37.
  • composition II a Pharmaceutical Composition comprising a
  • Method II comprising a Compound of Formula I in free or pharmaceutically acceptable salt form, e.g., as described in any of Method II, e.g., any of 2.1-2.19, in admixture with a pharmaceutically acceptable diluent or carrier for use in any of Method II, e.g., any of 2.1- 2.19.
  • the invention provides use of a Compound of Formula I or a pharmaceutical composition comprising a Compound of formula I in free or pharmaceutically acceptable salt form as described in Methods I or 1.1-1.37, in the manufacture of a medicament for the treatment of one or more disorders involving serotonin 5-HT2A, dopamine D 2 and/or serotonin reuptake transporter (SERT) pathway as described in any of Methods I or 1.1-1.37.
  • SERT serotonin reuptake transporter
  • the invention provides use of a Compound of Formula I or a pharmaceutical composition comprising a Compound of formula I in free or pharmaceutically acceptable salt form as described in Methods II or 2.1-2.19, in the manufacture of a medicament for the treatment of one or more sleep disorders as described in any of Methods II or 2.1-2.19.
  • the term "patient” may include a human or non-human patient.
  • Compounds of the Invention refer to Compounds of Formula I, which include:
  • Compounds of the invention are useful in any of Method I, or 1.1-1.37, particularly useful for the treatment of (1) sleep disorder, e.g., sleep maintenance insomnia; (2) depression in patients suffering from psychosis or Parkinson's disease; (3) psychosis, e.g., schizophrenia, in a patient suffering from depression; or (4) mood disorder associated with psychosis, e.g., schizophrenia, or Parkinson's disease.
  • sleep disorder e.g., sleep maintenance insomnia
  • depression in patients suffering from psychosis or Parkinson's disease e.g., schizophrenia, in a patient suffering from depression
  • mood disorder associated with psychosis e.g., schizophrenia, or Parkinson's disease.
  • Compounds of the invention are also useful for any of Method II or 2.1-2.19, particularly for the treatment of sleep disorder, e.g., sleep maintenance insomnia.
  • depression in a patient suffering from psychosis may include depressed patients suffering from a co-morbid psychotic disorder such as schizophrenia or it may include psychotic depressed patients wherein such patients suffer from severe depression wherein such depression accompanies hallucinations and/or delusions.
  • sleep maintenance insomnia refers to the inability to stay asleep or to resume sleep after waking in the middle of the sleep cycle.
  • Compounds of Formula I and “Compounds of the Invention” may be used interchangeably and may be used as a sole therapeutic agent, or they may also be used in combination or for co-administration with other active agents.
  • the discovery of the selective receptor profiles of the Compounds of Formula I not only provides effective treatment of 5-HT2A, SERT and/or D 2 receptor related disorders without or with minimal extrapyramidal side effects as claimed in the current invention, but also provides insight for the design of a combination therapy for the treatment of related disorders, wherein a Compound of Formula I may be used in combination with second therapeutic agents, particularly at lower dosages than when the individual agents are used as a monotherapy so as to enhance the therapeutic activities of the combined agents without causing the undesirable side effects commonly occur in conventional monotherapy.
  • Compounds of the Invention bind to 5-HT2A, D 2 and/or SERT and are useful for treating patients with a combination of disorders, e.g., (a) psychosis with a co-morbid disorder of depression and/or sleep disorder; (b) depression with a co-morbid disorder of psychosis; (c) sleep disorder in patients suffering from psychosis, Parkinson disease, and/or depression; or (d) any combinations thereof, Compounds of Formula I may be simultaneously, sequentially, or contemporaneously administered with other anti-depressant, anti-psychotic, other hypnotic agents, and/or agents use to treat Parkinson's disease or mood disorders.
  • a combination of disorders e.g., (a) psychosis with a co-morbid disorder of depression and/or sleep disorder; (b) depression with a co-morbid disorder of psychosis; (c) sleep disorder in patients suffering from psychosis, Parkinson disease, and/or depression; or (d) any combinations thereof.
  • Compounds of Formula I may be simultaneously
  • side effects may be reduced or minimized by administering a Compound of Formula I in combination with one or more second therapeutic agents in free or salt form, wherein the dosages of the second therapeutic agent(s) or both Compound of Formula I and the second therapeutic agents are lower than if the agents/compounds are administered as a monotherapy.
  • the Compounds of Formula I are useful to treat dyskinesia in a patient receiving dopaminergic medications, e.g., selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., such as are used in the treatment of Parkinson's disease.
  • dopaminergic medications e.g., selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., such as are used in the treatment of Parkinson's disease.
  • dopaminergic medications e.g., selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., such
  • Parkinson's disease results from loss of DA neurons in the substantia nigra pars compacta.
  • the primary motor symptoms of PD are treated by L-DOPA.
  • Activation of medium spiny neurons in the dorsolateral striatum that project to the substantia nigra pars reticulata results in disinhibition of thalamocortical neurons and increased motor activity. Overactivity of this "direct" striatal pathway may contribute to the expression of dyskinesias.
  • Method I e.g., any of 1.1-1.37, or Method II, e.g., any of 2.1-2.19, further comprises one or more therapeutic agents selected from compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5 -HTIa agonist, a 5- HT2a antagonist, a 5-HT2a inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker) , a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin
  • GABA activity e.g., enhances the activity and facilitates GABA transmission
  • GABA-B agonist e.g., a 5-HT modulator (e.g., a 5 -HTIa agonist, a
  • H-A as follows, further comprising one or more therapeutic agents.
  • the therapeutic agent(s) is compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission);
  • Method I-A or II-A or 3.1 wherein the GABA compound is selected from a group consisting of one or more of doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, fiurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals) and estazolam; 3.3 Method I-A or II-A, wherein the therapeutic agent is an additional 5HT2a antagonist;
  • Method I-A or II-A or 3.5 wherein the melatonin agonist is selected from a group consisting of one or more of melatonin, ramelteon (ROZEREM ® , Takeda Pharmaceuticals, Japan), VEC- 162 (Vanda Pharmaceuticals,
  • Method I-A or II-A or 3.7 wherein said ion channel blocker is one or more of lamotrigine, gabapentin and pregabalin.
  • Method I-A or II-A wherein the therapeutic agent is an orexin receptor antagonist;
  • Method I-A or II-A or 3.9 wherein the orexin receptor antagonist is selected from a group consisting of orexin, a 1,3-biarylurea, SB-334867-a (GlaxoSmithKline, UK), GW649868 (GlaxoSmithKline) and a benzamide derivative; 3.1 1 Method I-A or H-A, wherein the therapeutic agent is the serotonin-2 antagonist/reuptake inhibitor (SARI);
  • Method I-A or H-A or 3.13 wherein the 5HTIa agonist is selected from a group consisting of one or more of repinotan, sarizotan, eptapirone, buspirone and MN-305 (MediciNova, San Diego, CA); 3.15 Method I-A or H-A, wherein the therapeutic agent is the neurokinin-1 drug;
  • the antipsychotic agent is selected from a group consisting of chlorpromazine, haloperidol, droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone and paliperidone;
  • Method I-A or H-A wherein the therapeutic agent is an anti-depressant
  • Method I-A or H-A or any of 3.17-3.21 , wherein the atypical antipsychotic agent is selected from a group consisting of clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone, and paliperidone; 3.23 Method I-A or H-A, wherein the therapeutic agent is selected from any of methods 3.1-3.22, e.g., selected from a group consisting of modafinil, armodafinil, doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone,
  • Method I-A or II-A wherein a therapeutic agent is combined with compounds of Formula (I) and the therapeutic agent is an anti-Parkinson agent such as L- dopa, co-careldopa, duodopa, stalova, Symmetrel, benzotropine, biperiden, bromocryiptine, entacapone, pergolide, pramipexole, procyclidine, ropinirole, selegiline and tolcapone.
  • an anti-Parkinson agent such as L- dopa, co-careldopa, duodopa, stalova, Symmetrel, benzotropine, biperiden, bromocryiptine, entacapone, pergolide, pramipexole, procyclidine, ropinirole, selegiline and tolcapone.
  • Method I-A or II-A, wherein compounds of Formula (I) may be used to treat sleep disorders, depression, pyschosis, or any combinations thereof, in patients suffering from the listed diseases and/or Parkinson's disease.
  • Method I-A or II-A wherein the disorder is selected from at least one or more of psychosis, e.g., schizophrenia, depression, mood disorders, sleep disorders (e.g., sleep maintenance and/or sleep onset) or any combination of disorders thereof; 3.37 Any of the foregoing methods wherein the disorder is sleep disorder;
  • the disorder is sleep disorder associated with psychosis, e.g., schizophrenia or Parkinson's disease; in free or pharmaceutically acceptable salt form.
  • the combination of a Compound of Formula I and one or more second therapeutic agents as described in Methods I-A, II-A or any of 3.1- 3.23 may be administered as a composition.
  • the combination compositions can include mixtures of the combined drugs, as well as two or more separate compositions of the drugs, which individual compositions can be, for example, co-administered together to a patient.
  • the person of skill in the art, in possession at the receptor binding profile of the Compounds of Formula I together with those of other drugs, can design combination therapies having optimal receptor activity to enhance efficacy and reduce side effects.
  • Method I-A and Method H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with an atypical antipsychotic agent, e.g., a compound selected from clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone, or paliperidone, in free or pharmaceutically acceptable salt form, for example wherein the dosage of the atypical antipsychotic agent is reduced and/or side effects are reduced.
  • an atypical antipsychotic agent e.g., a compound selected from clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone, or paliperidone
  • Method I-A and Method H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with an anti-depressant, e.g., amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fiuvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, or velafaxine, in free or pharmaceutically acceptable salt form.
  • an anti-depressant e.g., amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, dox
  • Method I-A or H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with a compound that modulates GABA activity, e.g., a compound selected from doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals), estazolam or any combinations thereof, in free or pharmaceutically acceptable salt form.
  • a compound that modulates GABA activity e.g., a compound selected from doxepin,
  • Method I-A or H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with doxepin in free or pharmaceutically acceptable salt form.
  • Dosages of doxepin can vary in any range known to a person of ordinary skill in the art. In one example, a 10 mg dose of doxepin may be combined with any dosage of a compound of Formula I.
  • Method I-A or H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination (including as part of a daily dosage regimen) with an atypical stimulant, e.g., a modafinil, adraf ⁇ nil, or armodafinil.
  • an atypical stimulant e.g., a modafinil, adraf ⁇ nil, or armodafinil.
  • a regimen incorporating a Compound of Formula I with such drugs promotes more regular sleep, and avoids side effects such as psychosis or mania associated with higher levels of such drugs, e.g., in the treatment of bipolar depression, cognition associated with schizophrenia, and excessive sleepiness and fatigue in conditions such as Parkinson's disease and cancer.
  • the dosages of a Compound of Formula I and/or the second therapeutic agents of Method I-A and H-A can be the same as or lower than the approved dosage for the drug, the clinical or literature test dosage or the dosage used for the drug as a monotherapy.
  • the dosages of a Compound of Formula I and/or the second therapeutic agents of Method I-A and H-A are lower than when used in a monotherapy.
  • the dosage of a Compound of Formula I is lower than lOOmg once daily, preferably less than 50mg, more preferably less than 40 mg, still more preferably less than 30 mg, still more preferably less than 20 mg, still more preferably less than lOmg, still more preferably less than 5mg, most preferably less than 2.5 mg.
  • the second therapeutic agent of Method I-A and H-A is doxepin and the dosage of doxepin is between about 0.001 mg and 49 mg.
  • the amount of doxepin is between about 0.0001 mg and 20 mg, between about 0.001 mg and 10 mg, more preferably between about 0.01 mg and 9 mg, and still more preferably between about 0.01 mg and 6 mg.
  • Method I-A or II-A comprises administering (1) a Compound of Formula I at a dosage lower than 100 mg once daily, preferably less than 50 mg, more preferably less than 40 mg, still more preferably less than 30 mg, still more preferably less than 20 mg, still more preferably less than 10 mg, still more preferably less than 5 mg, most preferably less than 2.5 mg; and (2) doxepin at a dosage of less than 50 mg, more preferably, less than 20 mg, still more preferably, less than 10 mg, most preferably less than 6 mg, in free or pharmaceutically acceptable salt form.
  • Method I-A or II-A comprises administering to a patient in need thereof (1) a Compound of Formula I at a dosage of less than 5 mg, more preferably less than 2.5 mg; and (2) doxepin at a dosage of less than 10 mg, preferably less than 6 mg, in free or pharmaceutically acceptable salt form.
  • Method I-A or H-A is a method for the treatment of sleep disorders associated with psychosis, e.g., sleep disorders associated with schizophrenia or Parkinson's disease.
  • Method I-A or H-A is a method for the treatment of psychosis, e.g., schizophrenia or Parkinson's disease in patients suffering from insomnia.
  • Method I-A or H-A is a method for the treatment of one or more sleep disorders.
  • conventional antipsychotic agents or "conventional antipsychotic drugs” or “antipsychotic agents” include, but are not limited to droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone and ziprasidone.
  • Other conventional antipsychotic agents also include chlorpromazine, haloperidol and paliperidone.
  • Conventional antipsychotic agents are divided into typical and atypical antipsychotic agents.
  • Typical antipsychotic agents include but are not limited to chlorpromazine, droperidol, fluphenazine, haloperidol, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene and trifluoperazine.
  • Atypical antipsychotic agents include but are not limited to clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone, and paliperidone.
  • patients who are unable to tolerate the side effects of conventional antipsychotic agents refer to patients who are unable to tolerate the side effects of the agents as described above. Consequently, such patients would benefit from a monotherapy of a Compound of Formula I (e.g., Method I), wherein Compound of Formula I targets 5HT2A receptors without or with minimal interaction with D 2 receptors.
  • these patients would also benefit from a combination therapy comprising a Compound of Formula I and one or more second therapeutic agents (e.g., Method I-A or H-A) wherein the dosages of the second agent(s) or both the second agents and the Compound of Formula I are lower than when they are administered as a monotherapy.
  • undesirable side effects may be reduced or minimized.
  • GABA refers to gamma-aminobutyric acid.
  • the GABA compounds of Method I-A or H-A are compounds which bind to the GABA receptor, and include, but are not limited to one or more of doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon,
  • Additional 5HT2a antagonist of Method I-A or H-A include, but are not limited to, one or more of ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, MDL 100907 (Sanofi-Aventis, France), HY 10275 (Eli Lilly), APD 125
  • the 5HTIa agonist may be, for example, one or more of repinotan, sarizotan, eptapirone, buspirone or MN-305 (MediciNova, San Diego, CA).
  • the melatonin agonist of Method I-A or H-A include, but are not limited to, one or more of melatonin, ramelteon (ROZEREM ® , Takeda Pharmaceuticals, Japan), VEC-
  • the ion channel blocker of Method I-A or H-A include, but are not limited to, one or more of lamotrigine, gabapentin or pregabalin.
  • the orexin receptor antagonist of Method I-A or II-A include, but are not limited to, one or more of orexin, a 1,3-biarylurea, SB-334867-a (GlaxoSmithKline, UK),
  • GW649868 (GlaxoSmithKline) or a benzamide derivative, for example.
  • the serotonin-2 antagonist/reuptake inhibitor (SARI) of Method I-A or II-A include, but are not limited to, one or more of Org 50081 (Organon -Netherlands), ritanserin, nefazodone, serzone or trazodone.
  • the neurokinin- 1 drug of Method I-A or II-A includes, but are not limited to,
  • antidepressant or “other antidepressant” may include amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, velafaxine, in free or pharmaceutically acceptable salt forms.
  • an amount of the Compound of the Invention for administration refers to or is based on the amount of the Compound of the Invention in free base form (i.e., the calculation of the amount is based on the free base amount).
  • Compounds of the Invention may be administered by any suitable route, including orally, parenterally or transdermally, but are preferably administered orally. In general, satisfactory results for Method I or any of 1.1-1.37, e.g.
  • a combination of diseases such as a combination of at least depression, psychosis, e.g., (1) psychosis, e.g., schizophrenia, in a patient suffering from depression; (2) depression in a patient suffering from psychosis, e.g., schizophrenia; (3) mood disorders associated with psychosis, e.g., schizophrenia, or Parkinson's disease; and (4) sleep disorders associated with psychosis, e.g., schizophrenia, or Parkinson's disease, as set forth above are indicated to be obtained on oral administration at dosages of the order from about lmg to lOOmg once daily, preferably 2.5mg-50mg, e.g., 2.5mg, 5mg, lOmg, 20mg, 30mg, 40mg or 50mg, once daily, preferably via oral administration.
  • psychosis e.g., (1) psychosis, e.g., schizophrenia, in a patient suffering from depression; (2) depression in a patient suffering from psychosis, e.g., schizophrenia; (3)
  • Satisfactory results for Method II or any of 2.1-2.19, e.g. for the treatment of sleep disorder alone are indicated to be obtained on oral administration at dosages of the order from about 2.5mg-5mg, e.g., 2.5mg, 3mg, 4mg or 5mg, of a Compound of Formula I, in free or pharmaceutically acceptable salt form, once daily, preferably via oral administration.
  • Satisfactory results for Method I-A are indicated to be obtained at less thanlOOmg, preferably less than 50mg, e.g., less than 40mg, less than 30mg, less than 20mg, less than lOmg, less than 5mg, less than 2.5mg, once daily.
  • Satisfactory results for Method II- A are indicated to be obtained at less than 5mg, preferably less than 2.5mg.ss
  • pharmaceutically acceptable salts refers to derivatives of the above disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.
  • inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like
  • organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic,
  • the pharmaceutically acceptable salts of the Compounds of the Invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free base forms of these compounds with a stoichiometric amount of the appropriate acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Further details for the preparation of these salts, e.g., toluenesulfonic salt in amorphous or crystal form, may be found in PCT/US08/03340 and/or U.S. Provisional Appl. No. 61/036,069.
  • compositions comprising Compounds of the Invention may be prepared using conventional diluents or excipients and techniques known in the galenic art.
  • oral dosage forms may include tablets, capsules, solutions, suspensions and the like.
  • Example 1 Binding Assay for 5-HT2A, dopamine D 2 , SERT, ⁇ Al, 5-HT2C and Hl receptors
  • Binding studies for 5-HT2A, dopamine D 2 , SERT, ⁇ Al, 5-HT2C and Hl receptors are well known in the art and may be used to determine the binding affinities of the Compounds of the Invention.
  • a Compound of Formula I,l-(4-Fluoro-phenyl)-4-((6bR, 1OaS)- 3-methyl-2,3,6b,9, 10, 10a-hexahydro-lH, 7H-pyrido[3',4', 4,5] pyrrolo[l,2,3-de] quinoxalin- 8-yl)-butan-l-one (Compound A) is selected for detailed evaluation.
  • the compound exhibits binding affinity profiles for 5-HT2A, D2, SERT, ⁇ Al, 5-HT2C and Hl as disclosed in Table 1 and Table 2 compared to known antipsychotic agents.
  • Membrane receptors Cell lines stably expressing recombinant human 5-
  • HT2A receptors were generated by calcium phosphate mediated transfection with plamids containing receptor cDNAs (Fitzgerald et al., 1999) [0066] Stable expression of 5-HT2A and 5-HT2C receptors in human embryonic kidney 293 Epstein-Barr nuclear antigen (HEK293E) cells. Stable cell lines were generated by transfecting HEK293E cells with plasmids containing human 5-HT2A or 5-HT2C (VNV edited isoform cDNA using calcium phosphate.
  • plasmids also contained the cytomegalovirus intermediate early promoter to drive receptor expression, Epstein-Bar virus oriP for their maintenance as an extrachromosomal element, and the hph gene from Escherichia coli to yield hygromycin B resistance (Horlick et al, 1997; Rominger et al., 1998).
  • Transfected cells were maintained in Dulbecco's modified Eagle's medium (DMEM) containing dialyzed 10% fetal bovine serum at 37 degrees Celsius in a humid environment (5% CO2) for 10 days.
  • DMEM Dulbecco's modified Eagle's medium
  • the 5-HT2A cells were adapted to spinner culture for bulk processing, whereas it was necessary to maintain the 5-HT2C line as adherent cultures. On the day of harvest, cells were washed in phosphate-buffered saline, counted and stored at -80 degrees Celsius.
  • Cell lines expressing rat D2-short and human D4 receptors were generated by calcium phosphate mediated transfection of Chinese hamster ovary (CHO) cells with plasmids containing receptor cDNAs. Membranes prepared from rat frontal cortex and frozen liver were used for alpha- IA and alpha- IB adrenergic receptor binding.
  • N-[3H] Methylspiperone and [3H] mesulergine were used as the antagonist radioligands for the 5HT2A and 5HT2C receptors, respectively, whereas [125]DOI was used as the agonist radioligand for both receptors.
  • the high efficacy partial agonist [125]DOI was chosen over the full agonist [3H] -5HT because [3H]-5HT gave inadequate levels of specific binding with the lower density 5-HT2C line.
  • the relatively weak binding affinity of 5-HT for the 5-HT2A receptor precluded its use as a radioligand. Equilibrium binding conditions for each radioligand at each receptor were established and optimized with respect to time, temperature, and protein concentration before saturation and competition experiments were conducted.
  • assays were conducted in disposable polypropylene 96-well plates (Costar Corporation, Cambridge, M.A., U.S.A.) and were initiated by addition of membrane homogenate in tissue buffer (10-30 micrograms per well.) to assay buffer (50 mM Tris-HCL, 0.5mM EDTA, 1OmM pargyline, 1OmM MgSO4, and 0.05% ascorbic acid, pH 7.5) containing [125]DOI (final concentration, 0.3-.0.5 nM with or without competing ligand.
  • reaction mixture was incubated to equilibrium for 45 min at 37 degrees Celsius and terminated by rapid filtration (cell harvester, Inotech Biosystems, Lansing, Michigan, U.S.A.) over GFF glass filter membranes that had been presoaked in 0.3% polyethylenimine. Filters were washed in ice-cold 5OmM Tris-HCL buffer (ph 7.5) and then counted for radioactivity in a gamma counter at 80% efficiency. For saturation studies, 14 concentrations of [125I]DOI up to a maximal concentration of 6nM were used. Specific binding at each concentration was determined in the presence of 10 micromolar mianserin.
  • the assay buffer used for the N- [3H]methylspiperone assays was identical to that in the [1251] DOI assay except for the exclusion of 2OmM NaCl.
  • 5-HT2C membrane homogenate 40 micrograms of protein per well
  • membrane homogenate 40 micrograms of protein per well
  • Example 2 Effectiveness of the Compounds of Formula I as antidepressant in chronic animal model of depression.
  • Transporter SERT was a radioligand binding assay in human platelets using [3H]-N-Methyl-Citalopram as a radioligand at a concentration of 0.7 nM.
  • the Kd for [3H]-N-Methyl-Citalopram was 2.5 nM with a Bmax of 425 fmol/mg protein.
  • the third assay was conducted at Cerep (Celle L'Evescault, France).
  • the third assay was a radioligand binding assay in human recombinant serotonin transporter in CHO cells using [3H]-imipramine as the radioligand at a concentration of 2 nM.
  • Formula I (Compound A) is measured using the social defeat (resident-intruder) mouse model for depression in which induced social withdrawal in rodents has been shown to be responsive to chronic, but not acute, anti-depressant drug treatment.
  • the social defeat paradigm is based on the observation that psychosocial stress produces long-lasting alterations in the motivation of mice for social contact. Mice are subjected to a 10 day training period in which they are exposed to daily bouts of social stress, i.e., exposure to a different aggressive mouse ('aggressor') each day. They are then observed for their social behavior by measuring their tendency to approach an unfamiliar mouse, i.e., to spend time in the "Interaction Zone" which is in close proximity to the unfamiliar intruder.
  • mice are recorded by videotape and scored for social behavior (i.e., time in the Interaction Zone) and aversive behavior (i.e., time in the Corner Zones). Whereas normal mice display social interactions with unfamiliar mice (i.e., spend more time in the Interaction Zone), those mice exposed to repeated social defeat conditions display aversive reactions (i.e., spend more time in the Corner Zones) and spend less time than normal mice in contact with the unfamiliar test mouse (i.e., resident intruder or TARGET).
  • social behavior i.e., time in the Interaction Zone
  • aversive behavior i.e., time in the Corner Zones
  • the aversive responses of 'socially defeated' mice are resilient; aversive behavior persists for weeks and can be elicited even 4 weeks after the end of the 10 day social stress exposure.
  • the aberrant behavior of 'socially defeated' mice is responsive to chronic anti-depressant medications.
  • Mice treated daily for 30 days with the anti-depressant drugs, fluoxetine or imipramine display improved social interaction behavior (i.e., spend more time in the Interaction Zone versus the Corner Zones) when once again exposed to an unfamiliar mouse.
  • chronic, but not acute, fluoxetine treatment improves social behavior.
  • mice are tested for their social response to an unfamiliar mouse.
  • Normal mice treated with Compound A once daily for 30d are healthy and normal-appearing and gained weight normally. These mice spend comparable time in the Interaction Zone as mice receiving the vehicle injection.
  • mice that are subjected to 1Od of social stress showed profound social defeat behavior, spending less than half the amount of time in the vicinity of an unfamiliar mouse than normal un-stressed mice.
  • Socially-defeated mice treated chronically with Compound A however, exhibited a significant increase in social behavior, spending almost twice as much time in the Interaction Zone when exposed to an unfamiliar mouse compared with socially-defeated mice receiving vehicle injections.
  • mice non-stressed mice.
  • the administration of a compound of the present invention significantly reverses this behavioral preference.
  • A induce a behavioral response in socially-stressed mice consistent with antidepressant efficacy and comparable to that elicited by anti-depressant medications such as fluoxetine.
  • Day 1 - Day 10 Treatment with L-DOPA/benserazide plus ITI-007 ITI-007PD.
  • Compound A reduces dyskinetic behaviors after chronic co-administration with levodopa (10 mg/kg IP) to unilateral 6-OHDA-lesioned mice.
  • the compound effectively reduces (by -50%) the development of dyskinetic behaviors in PD mice (i.e., Chronic treatment group). It has a less robust but still significant effect (by -25% reduction) on established dyskinetic behaviors (i.e., Acute treatment group).
  • Compounds of Formula I have utility for the prevention and treatment of L- DOPA-induced dyskinesias in PD.
  • the Compounds of Formula I will also reduce PD psychosis and depression, improve poor night time sleep and reduce excessive daytime sleepiness.
  • Example 4 Clinical Trial for Low Dose for Sleep Maintenance Insomnia and Sleep Disorders Associated with Psychiatric and Neurological Diseases
  • Compounds of Formula I are primarily serotonin 5-HT2A antagonists.
  • the compounds also act as a pre-synaptic partial agonist, post-synaptic antagonist at D2 dopamine receptors and inhibits the serotonin transporter.
  • the present study evaluates a range of doses of a Compound of Formula I (Compound A) in patients with sleep maintenance insomnia (SMI).
  • the main objectives of this study are to determine if the compound decreases wake time after sleep onset (WASO) as a measure of sleep maintenance efficacy and if the compound increases slow wave sleep
  • SWS as a biomarker for 5-HT2A brain receptor occupancy.
  • the study is a randomized, double-blind, complete cross-over design.
  • the compound is safe and well-tolerated in patients with sleep maintenance insomnia. There are no serious adverse events. There are no dose-related adverse events or changes in safety parameters.
  • the compound does not impair cognitive function as measured in the morning after PSG by the Digit Symbol Substitution Test (DSST), the Word Pair Associates Test (WPAT), or the Leeds Psychomotor Test.
  • Striatal D2 receptor occupancy in healthy volunteers using positron emission tomography is dose dependent.
  • the doses evaluated for sleep disorder are shown to be below doses where there is high striatal D2 occupancy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Pain & Pain Management (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Anesthesiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicinal Preparation (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Use of particular substituted heterocycle fused gamma-carboline compounds as pharmaceuticals and pharmaceutical compositions comprising them for the treatment of one or more disorders involving the 5-HT2A, SERT and/or dopamine D2 pathways are disclosed. In addition, the compounds may be combined with other therapeutic agents for the treatment of one or more sleep disorders, depression, psychosis, dyskinesias, and/or Parkinson's disease or any combinations.

Description

METHODS AND COMPOSITIONS FOR SLEEP DISORDERS AND OTHER
DISORDERS
This application claims the benefit of United States Provisional Application numbers 61/056,433 filed on May 27, 2008 and 61/155,032 filed on February 24, 2009, both of which applications are hereby incorporated by reference.
TECHNICAL FIELD
[0001] The present invention relates to use of particular substituted heterocycle fused gamma-carbolines as described herein, in free or pharmaceutically acceptable salt forms, as pharmaceuticals and pharmaceutical compositions, e.g., in the treatment of diseases involving 5-HT2A receptor, serotonin transporter (SERT) and/or dopamine D2 receptor protein phosphorylation pathways, such as depression, sleep disorders, and mood disorders associated with psychosis or Parkinson's disease; psychosis such as schizophrenia associated with depression; bipolar disorder; and other psychiatric and neurological conditions such as sleep disorders, as well as to combinations with other agents.
BACKGROUND OF THE INVENTION
[0002] Psychosis such as schizophrenia is a severe and crippling mental disorder that affects about 1% of the population. It is a mental disorder that is characterized by gross impairment in reality, major disturbances in reasoning, often evidenced by delusions and hallucinations, incoherent speech, and/or disorganized and agitated behavior. Several classes of anti-psychotic drugs are available for treatment of schizophrenia, including the prototypical antipsychotic drugs such as chlorpromazine and haloperidol as well as many others such as droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, and trifluoperazine. While these agents are effective in treating positive symptoms of psychosis such as symptoms of hallucination and delusions, e.g., in schizophrenia, these drugs often cause both short-term and long-term movement disorders and other side effects including acute dystonia (e.g., facial grimacing, torticollis, oculogyric crisis, abnormal contraction of spinal muscles and of muscles involved in breathing), akathisia, bradykinesia, rigidity or short term paralysis, parkinsonism, sedation, dry mouth, sexual dysfunction and sometimes tardive dyskinesia. Tardive dyskinesia may persist after discontinuation of the use of typical antipsychotic agents and there is no effective treatment of such side effects. Because of the severity of the side effects, typical antipsychotic drugs, though effective in treating the mental and emotional aspect of the disorder, do not help patients to function normally in society.
[0003] Although another class of antipsychotic agents called atypical antipsychotic agents, which include clozapine, aripiparazole, olanzapine, quetiapine, risperidone and ziprasidone (atypical antipsychotic agents) are effective in treating positive and negative symptoms of schizophrenia with fewer extrapyramidal side effects, these agents can nevertheless cause other serious and at times fatal side effects, including bone marrow suppression, seizure, orthostatic hypotension, insomnia, sedation, somnolence, weight gain, and if administered at higher doses, may again cause extrapyramidal side effects. Therefore, atypical antipsychotic agents, though have improved clinical profiles, are nevertheless undesirable. [0004] In addition to the positive and negative symptoms of psychosis (e.g., schizophrenia), many psychotic patients often times also suffer from depression. While both typical and atypical antipsychotic agents are effective in treating psychosis, depression is often times neglected or left under-treated. The combination of psychosis and depression poses a particular challenge in their treatment as studies revealed that up to 10% of the patients suffering from schizophrenia end their own lives. Therefore, there is a need for agents that are useful for the treatment of psychosis in depressed patients, and for the treatment of depression as well as other disorders such as sleep and mood disorders in psychotic patients and patients suffering from Parkinson's disease without exhibiting or exhibiting minimal extrapyramidal and other side effects compared to conventional antipsychotic, hypnotic and anti-depressive agents.
[0005] Substituted heterocycle fused gamma-carbolines are known to be agonists or antagonists of 5-HT2 receptors, particularly 5-HT2A and 5-HT2C receptors, in treating central nervous system disorders. These compounds have been disclosed in U.S. Pat. No. 6,548,493; 7,238,690; 6,552,017; 6,713,471 ; U.S. RE39680, and U.S. RE39679, as novel compounds useful for the treatment of disorders associated with 5-HT2A receptor modulation such as obesity, anxiety, depression, psychosis, schizophrenia, sleep disorders, sexual disorders migraine, conditions associated with cephalic pain, social phobias, and gastrointestinal disorders such as dysfunction of the gastrointestinal tract motility. PCT/US08/03340 and U.S. Application Serial No. 10/786,935 also disclose methods of making substituted heterocycle fused gamma-carbolines and uses of these gamma-carbolines as serotonin agonists and antagonists useful for the control and prevention of central nervous system disorders such as addictive behavior and sleep disorders. Although these references disclose use of substituted heterocycle fused gamma-carbolines to independently treat disorders associated with serotonin pathways such as sleep disorder, depression, psychosis, and schizophrenia associated with the 5-HT2A pathways, there is no teaching that specific compounds of substituted heterocycle fused gamma-carbolines also exhibit nanomolar binding affinity to serotonin reuptake transporter (SERT) and dopamine D2 receptors and therefore may be used to treat a combination of psychosis and depressive disorders as well as sleep, depressive and/or mood disorders in patients with psychosis or Parkinson's disease. [0006] In addition to disorders associated with psychosis and/or depression, these references do not disclose use of particular substituted heterocycle fused gamma-carbolines at a low dose to selectively antagonize 5-HT2A receptors without affecting or minimally affecting dopamine D2 receptors, thereby useful for the treatment of sleep disorders without the side effects of the dopamine D2 pathways or side effects of other pathways (e.g., GABAA receptors) associated with convention sedative-hypnotic agents (e.g., benzodiazepines) including but not limited to the development of drug dependency, muscle hypotonia, weakness, headache, blurred vision, vertigo, nausea, vomiting, epigastric distress, diarrhea, joint pains, and chest pains.
SUMMARY OF THE INVENTION [0007] It has been discovered that particular substituted heterocycle fused gamma- carboline compounds (Compounds of Formula I, described hereinbelow) exhibit unique pharmacological characteristics wherein they possess high affinity for serotonin 5-HT2A receptors and moderate, yet nanomolar affinity for dopamine receptors and serotonin reuptake transporter (SERT). The compounds moreover demonstrate selectivity between dopamine Dl and D2 receptors. This is a new and unexpected binding profile, which gives the compounds particular utility in certain indications as described below, and in combination therapies. [0008] At low doses, Compounds of Formula I selectively antagonize 5-HT2A receptors and increases rapid eye movement (REM) and non-REM sleep in animals. Therefore, at low doses, these compounds may be used to improve sleep maintenance insomnia and insomnia associated with neuropsychiatric and neurologic disorders. [0009] In a clinical trial, low doses (e.g., 1, 5, and 10 mg) of Compounds of Formula
I, e.g. Compound A, dose-dependently increase slow wave sleep, consistent with 5-HT2A receptor antagonism, they dose-dependently decreases wake after sleep onset, consistent with improving sleep maintenance, they increase total sleep time and restore normal sleep architecture to patients with insomnia by increasing slow wave sleep early in the night and increasing stage 2 sleep late in the night, toward morning, they show no early-morning rebound insomnia and did not suppress REM sleep. They do not impair next-day cognitive function. The magnitude of WASO decrease and total sleep time increase at 10 mg suggests the modest D2 (and possibly SERT and Dl) occupancy at this dose contributes favorably to the sleep profile beyond simple 5-HT2A receptor antagonism. Dopamine receptor modulation and SERT inhibition improve psychiatric symptoms co-morbid with insomnia. Compounds of Formula I represent a new approach for treating sleep maintenance insomnia and sleep disorders associated with neuropsychiatric and neurological diseases, as well as for the treatment of sleep disorders, schizophrenia, and other neuropsychiatric and neurological indications. [0010] At higher doses, when 5-HT2A receptors are fully occupied, Compounds of
Formula I modulate dopamine receptor protein phosphorylation. Therefore, Compounds of Formula I are particularly useful for the treatment of sleep disorders in patients suffering from psychosis such as schizophrenia, Parkinson's disease and/or depression. [001 1] Unlike dopamine receptor antagonists, Compounds of Formula I normalize brain dopamine activity, particularly in the prefrontal cortex. In addition, Compounds of Formula I also moderately bind to SERT. Therefore, Compounds of Formula I are particularly useful for the treatment of psychosis in patients suffering from depression. Unlike many traditional antipsychotic drugs, Compounds of Formula I show an improved selectivity profile with respect to off-target interactions such as adrenergic alpha- Ia, serotonin 5-HT2C, and histamine Hl associated with many side effects compared to other antipsychotic drugs.
Compounds of Formula I are therefore also useful as antipsychotic agents in patients who are unable to tolerate the side effects of convention antipsychotic drugs. [0012] In addition to binding to 5-HT2A and dopamine D2 receptors, Compounds of Formula I also exhibit nanomolar binding affinity for SERT compared to known antidepressants. Therefore, Compounds of Formula I are useful for the treatment of depression in patients suffering from psychosis.
[0013] Because Compounds of Formula I have a wider separation between 5-HT2A and D2 receptor affinities than other atypical antipsychotic drugs (~60 fold), they are additionally useful in reduction of dyskinesia. For example, they reduce L-DOPA-induced dyskinetic behavior in a mouse model. Without intending to be bound by theory, it is hypothesized that this is accomplished by virtue of the potent 5-HT2A antagonism with minimal interference with L-DOPA-induced motor correction, by virtue of the low relative D2 receptor activity. Parkinson's disease results from loss of DA neurons in the substantia nigra pars compacta. The primary motor symptoms of PD are treated by L-DOPA. Activation of medium spiny neurons in the dorsolateral striatum that project to the substantia nigra pars reticulata results in disinhibition of thalamocortical neurons and increased motor activity.
Overactivity of this "direct" striatal pathway may contribute to the expression of dyskinesias, such as are commonly seen in PD patients being treated with dopaminergic drugs such as L- dopa. 5-HT2A receptors are localized in striatal medium spiny neurons. Compounds of Formula I are thus believed to block dyskinesias by blockade of 5-HT2A receptors. [0014] Therefore, the invention provides methods as follows:
[0015] A method (Method I) for the treatment of one or more disorders involving serotonine 5-HT2A, dopamine D2 and/or serotonin reuptake transporter (SERT) pathway, comprising administering to a patient in need thereof a Compound of Formula I:
Figure imgf000006_0001
Formula I
wherein X is O, -NH or -N(CH3); and Y is -O- or -C(O)- in free or pharmaceutically acceptable salt form, at a dose which selectively blocks 5-HT2A receptors. [0016] The invention further provides Method I as follows:
1.1 Method I comprising a compound of Formula I, wherein X is -N(CH3);
1.2 Method I comprising a compound of Formula I, wherein X is -NH;
1.3 Method I comprising a compound of Formula I, wherein X is O;
1.4 Method I or any of 1.1-1.3, comprising a compound of Formula I, wherein Y is -C(O)-;
1.5 Method I or any of 1.1 - 1.3, comprising a compound of Formula I, wherein Y is
-O-;
1.6 any of the preceding methods wherein the Compound of Formula I is selected from a group consisting of:
Figure imgf000007_0001
1.7 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000007_0002
1.8 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000008_0001
1.9 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000008_0002
1.10 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000008_0003
1.11 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000008_0004
1.12 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000008_0005
1.13 any of the preceding methods wherein the Compounds of Formula I (i) bind to 5-HT2A receptors, e.g., with a Kj of less than 5OnM, more preferably less 1OnM, still more preferably less than 5nM, most preferably less than InM; and (ii) also bind to dopamine D2 receptors and SERT, e.g., with a Kj of less than 10OnM, preferably less than 75nM, more preferably less 5OnM, in a binding assay as described in Example 1 below; 1.14 any of the preceding methods wherein the Compounds of Formula I (i) bind to 5-HT2A, e.g., with a K, of less than 5nM, preferably less than InM, and (ii) also bind to dopamine D2 receptors and SERT, e.g., with a K, of less than 10OnM, preferably less than 75nM, more preferably less than 5OnM in a binding assay as described in Example 1 below;
1.15 any of the preceding methods wherein the Compounds of Formula I (i) bind to 5-HT2A, e.g., with a K1 of less than InM and (ii) bind to dopaimine D2 receptors, e.g., with a K1 of about 25-75nM; and (iii) also bind to SERT, e.g., with a K, of less than 10OnM, preferably less than 75nM, more preferably less 5OnM, in a binding assay as described in Example 1 below;
1.16 any of the preceding methods wherein the Compounds of Formula I does not bind to adrenergic alpha-la receptors (αlA) or bind to αlA receptors, e.g., with a K, of greater than 75nM, preferably greater than 10OnM in a binding assay as described in Example 1 below; 1.17 any of the preceding methods wherein the Compounds of Formula I does not bind to 5-HT2C receptors, or bind to 5-HT2C receptors e.g., with a K1 of greater than 75nM, preferably greater than 10OnM, more preferably greater than 15OnM in a binding assay as described in Example 1 below;
1.18 any of the preceding methods wherein the Compounds of Formula I does not bind to Hl receptors, or bind to Hl receptors, e.g., with a K1 of greater than
50OnM, preferably greater than 75OnM, more preferably greater than 100OnM in a binding assay as described in Example 1 below;
1.19 any of the preceding methods wherein the Compounds of Formula I (i) bind to 5-HT2A, e.g., with a K1 of less than 5nM, preferably less than InM, (ii) bind to dopamine D2 receptors, e.g., with a K1 of 25-75nM; (iii) bind to SERT, e.g., with a K1 of less than 10OnM, preferably less than 75nM, more preferably less 5OnM; and (iv) does not bind to αlA, 5-HT2C and/or Hl receptors, or bind to αlA, 5-HT2C and/or Hl receptors e.g., with a K1 of greater than 75nM in a binding assay as described in Example 1 below; 1.20 any of the preceding methods wherein said one or more disorders are selected from (1) psychosis, e.g., schizophrenia, in a patient suffering from depression; (2) depression in a patient suffering from psychosis, e.g., schizophrenia; (3) mood disorders associated with psychosis, e.g., schizophrenia, or Parkinson's disease; and (4) sleep disorders associated with psychosis, e.g., schizophrenia, or Parkinson's disease; 1.21 Method I or any of 1.1-1.20, wherein said disorder is psychosis, e.g., schizophrenia and said patient is a patient suffering from depression;
1.22 Method I or any of 1.1 - 1.21 , wherein said patient is unable to tolerate the side effects of convention antipsychotic drugs, e.g., chlorpromazine, haloperidol droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone and ziprasidone;
1.23 Method I or any of 1.1 - 1.21 , wherein said patient is unable to tolerate the side effects of convention antipsychotic drugs, e.g., haloperidol, aripiparazole, clozapine, olanzapine, quetiapine, risperidone, and zipasidone;
1.24 Method I or any of 1.1 - 1.20, wherein said disorder is depression and said patient is a patient suffering from psychosis, e.g., schizophrenia, or Parkinson's disease;
1.25 Method I or any of 1.1-1.20, wherein said one or more disorders is sleep disorder and said patient is suffering from depression;
1.26 Method I or any of 1.1-1.20, wherein said one or more disorders is sleep disorder and said patient is suffering from psychosis, e.g., schizophrenia;
1.27 Method I or any of 1.1 - 1.20, wherein said one or more disorders is sleep disorder and said patient is suffering from Parkinson's disease; 1.28 Method I or any of 1.1-1.20 or 1.25-1.27, wherein said one or more disorders is sleep disorder and said patient is suffering from depression and psychosis, e.g., schizophrenia, or Parkinson's disease; 1.29 Any of the foregoing methods, wherein the effective amount is an amount sufficient to bind to SERT, 5-HT2A and D2 receptors, e.g., with a K, of less than 10OnM, preferably less than 75nM, more preferably less than 5OnM in an assay as described in Example 1 below; 1.30 Any of the foregoing methods, wherein the effective amount is an amount sufficient to (i) bind to SERT, 5-HT2A and D2 receptors, e.g., with a K, of less than 10OnM, preferably less than 75nM, more preferably less than 5OnM, and (ii) does not bind to αlA, 5-HT2C and/or Hl receptors or bind to αlA, 5- HT2C and/or Hl receptors, e.g., with a K, of greater than 5OnM, preferably greater than 75nM in a binding assay as described in Example 1 below;
1.31 Any of the foregoing methods, wherein the effective amount is an amount sufficient to bind to 5-HT2A, e.g., with a K, of less than 5nM, preferably less than InM, and also bind to dopamine D2 receptors and SERT, e.g., with a K, of less than 10OnM, preferably less than 75nM, more preferably less than 5OnM in a binding assay as described in Examples 1 below;
1.32 Any of the foregoing methods, wherein the effective amount is an amount sufficient to (i) bind to 5-HT2A, e.g., with a K1 of less than 5nM, preferably less than InM; (ii) bind to dopamine D2 receptors, e.g., with a K, of 25-75nM; (iii) bind to SERT, e.g., with a K1 of less than 10OnM, preferably less than
75nM, more preferably less than 5OnM; and (iv) does not bind to αlA, 5- HT2C and/or Hl receptors, or bind to αlA, 5-HT2C and/or Hl receptors, e.g., with a K1 of greater than 5OnM, preferably greater than 75nM in a binding assay as described in Examples 1 below; 1.33 Any of the foregoing methods, wherein the ratio of the K1 of dopamine D2 to the K1 of 5-HT2A is greater than 25, preferably greater than 50; 1.34 Any of the foregoing methods, wherein ratio of the K1 of αlA to the K1 of 5- HT2A is greater than 25, preferably greater than 50, more preferably greater than 100, most preferably greater than 125; 1.35 Any of the foregoing methods, wherein ratio of the K1 of 5HT2C to the K1 of 5-
HT2A is greater than 150, more preferably greater than 300;
1.36 Any of the foregoing methods, wherein ratio of the K, of Hl to the K1 of 5- HT2A is greater than 100, more preferably greater than 200;
1.37 Any of the foregoing methods, wherein the effective amount is 1 mg-100mg, preferably 2.5-50mg. 1.38 Any of the foregoing methods wherein a condition to be treated is dyskinesia, e.g. in a patient receiving dopaminergic medications, e.g., medications selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., levodopa.
1.39 Any of the foregoing methods wherein the patient suffers from Parkinson's disease.
[0017] A method (Method II) for the treatment of one or more sleep disorders comprising administering to a patient in need thereof a Compound of Formula I:
Figure imgf000012_0001
wherein X is O, -NH or -N(CH3); and Y is -O- or -C(O)- in free or pharmaceutically acceptable salt form, at a dose selective for 5-HT2A receptor blockade, e.g a daily dose of 0.1 - 20 mg, e.g., 0.5-10 mg. [0018] The invention further provides Method II as follows: 2.1 Method II comprising a compound of Formula I, wherein X is -N(CH3);
2.2 Method II comprising a compound of Formula I, wherein X is -NH;
2.3 Method II comprising a compound of Formula I, wherein X is O;
2.4 Method II or any of 2.1-2.3, comprising a compound of Formula I, wherein Y is -C(O)-; 2.5 Method II or any of 2.1-2.3, comprising a compound of Formula I, wherein Y is -O-;
2.6 any of the preceding methods wherein the Compound of Formula I is selected from a group consisting of:
Figure imgf000013_0001
2.7 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000013_0002
2.8 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000013_0003
2.9 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000013_0004
2.10 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000014_0001
2.1 1 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000014_0002
2.12 any of the preceding methods wherein the Compound of Formula I is:
Figure imgf000014_0003
2.13 any of the preceding methods wherein the Compounds of Formula I (i) bind to 5-HT2A, e.g., with a K1 of less than 25nM, preferably less than 1OnM, more preferably InM; and (ii) does not bind to D2 receptors and/or SERT or bind to dopamine D2 receptors and/or SERT, e.g., with a K; of greater than 5OnM, preferably greater than 75nM, more preferably greater than 10OnM, in a binding assay as described in the Example 1 below;
2.14 any of the preceding methods wherein the Compounds of Formula I (i) bind to 5-HT2A, e.g., with a K, of less than 5nM, preferably less than InM, and does not bind or only bind to dopamine D2 receptors, SERT, αlA, 5-HT2C or Hl receptors, e.g., with a K1 of greater than 5OnM, preferably greater than 75nM, more preferably greater than 10OnM, in a binding assay as described in example 1 below;
2.15 Any of the foregoing methods, wherein the effective amount to treat one or more sleep disorders is an amount sufficient to bind to 5-HT2A receptors, e.g., with a K1 of less than 25nM, preferably less than 1OnM, more preferably InM, but does not bind to D2 receptors and/or SERT or bind to D2 receptors and/or SERT, e.g., with a K; of greater than 5OnM, preferably greater than 75nM, more preferably greater than 10OnM in an assay as described in Example 1 below;
2.16 Any of the foregoing methods, wherein the sleep disorder include sleep maintenance insomnia, frequent awakenings, and waking up feeling unrefreshed;
2.17 Any of the foregoing methods, wherein the sleep disorder is sleep maintenance insomnia;
2.18 Any of the foregoing methods, wherein the effective amount is lmg-5mg, preferably 2.5-5mg;
2.19 Any of the foregoing methods, wherein the effective amount is 2.5 or 5mg.
2.20 Any of the foregoing methods wherein the sleep disorder is in a patient suffering from or at risk of dyskinesia, e.g., a patient receiving dopaminergic medications, e.g., selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., receving levodopa.
2.21 Any of the foregoing methods wherein the patient suffers from Parkinson's disease.
[0019] Compounds of the Invention may exist in free or salt form, e.g., as acid addition salts. In this specification unless otherwise indicated language such as Compounds of the Invention is to be understood as embracing the compounds in any form, for example free or acid addition salt form, or where the compounds contain acidic substituents, in base addition salt form. The Compounds of the Invention are intended for use as pharmaceuticals, therefore pharmaceutically acceptable salts are preferred. Salts which are unsuitable for pharmaceutical uses may be useful, for example, for the isolation or purification of free Compounds of the Invention or their pharmaceutically acceptable salts, are therefore also included. Pharmaceutically acceptable salts include, for example, the hydrochloride and tosylate salts. Where dosage amounts of salts are given by weight, e.g., milligrams per day or milligrams per unit dose, the dosage amount of the salt is given as the weight of the corresponding free base, unless otherwise indicated. [0020] The invention also provides the foregoing methods, e.g., Method I, e.g., any of
1.1-1.39, or Method II, e.g., any of 2.1-2.19, wherein the Compound of Formula I, in free or pharmaceutically acceptable salt form is administered in a composition, wherein said Compound of Formula I in free or pharmaceutically acceptable salt form in admixture with a pharmaceutically acceptable diluent or carrier.
[0021] The invention further provides a Pharmaceutical Composition (Composition I) comprising a Compound of Formula I in free or pharmaceutically acceptable salt form, e.g., as described in any of Methods I or 1.1-1.37, in admixture with a pharmaceutically acceptable diluent or carrier for use in any of Methods I or 1.1-1.37. [0022] The invention further provides a Pharmaceutical Composition (Composition
II) comprising a Compound of Formula I in free or pharmaceutically acceptable salt form, e.g., as described in any of Method II, e.g., any of 2.1-2.19, in admixture with a pharmaceutically acceptable diluent or carrier for use in any of Method II, e.g., any of 2.1- 2.19. [0023] In another aspect, the invention provides use of a Compound of Formula I or a pharmaceutical composition comprising a Compound of formula I in free or pharmaceutically acceptable salt form as described in Methods I or 1.1-1.37, in the manufacture of a medicament for the treatment of one or more disorders involving serotonin 5-HT2A, dopamine D2 and/or serotonin reuptake transporter (SERT) pathway as described in any of Methods I or 1.1-1.37.
[0024] In another aspect, the invention provides use of a Compound of Formula I or a pharmaceutical composition comprising a Compound of formula I in free or pharmaceutically acceptable salt form as described in Methods II or 2.1-2.19, in the manufacture of a medicament for the treatment of one or more sleep disorders as described in any of Methods II or 2.1-2.19.
[0025] In another aspect, methods which involve use of a Compound of Formula I or a pharmaceutical composition comprising a Compound of Formula I in free or pharmaceutically acceptable salt form as described in Methods I-A or H-A, for the treatment of sleep disorders, depression, pyschosis, or any combinations thereof, in patients suffering from the listed diseases and/or Parkinson's disease, as described in any of Methods I-A or H-A, or 3.1-3.34. DETAILED DESCRIPTION OF THE INVENTION Methods of Making Compounds of the Invention
[0026] The compounds of the formula I and their pharmaceutically acceptable salts may be made using the methods as described and exemplified in any of the following patents or applications: U.S. Pat. No. 6,548,493; 7,238,690; 6,552,017; 6,713,471; U.S. RE39680; U.S. RE39679; PCT/US08/03340; U.S. Application Serial No. 10/786,935; and U.S. Provisional Application No. 61/036,069. If not commercially available, starting materials for these processes may be made by procedures, which are selected from the chemical art using techniques which are similar or analogous to the synthesis of known compounds. All references cited herein are hereby incorporated in their entirety by reference. [0027] The words "treatment" and "treating" are to be understood accordingly as embracing prophylaxis and treatment or amelioration of symptoms of disease as well as treatment of the cause of the disease.
[0028] The term "patient" may include a human or non-human patient. [0029] Compounds of the Invention refer to Compounds of Formula I, which include:
Figure imgf000017_0001
in free or pharmaceutically acceptable salt form. Compounds of the invention are useful in any of Method I, or 1.1-1.37, particularly useful for the treatment of (1) sleep disorder, e.g., sleep maintenance insomnia; (2) depression in patients suffering from psychosis or Parkinson's disease; (3) psychosis, e.g., schizophrenia, in a patient suffering from depression; or (4) mood disorder associated with psychosis, e.g., schizophrenia, or Parkinson's disease. Compounds of the invention are also useful for any of Method II or 2.1-2.19, particularly for the treatment of sleep disorder, e.g., sleep maintenance insomnia. [0030] The phrase "depression in a patient suffering from psychosis" may include depressed patients suffering from a co-morbid psychotic disorder such as schizophrenia or it may include psychotic depressed patients wherein such patients suffer from severe depression wherein such depression accompanies hallucinations and/or delusions. [0031] The term "sleep maintenance insomnia" refers to the inability to stay asleep or to resume sleep after waking in the middle of the sleep cycle.
[0032] The terms "Compounds of Formula I" and "Compounds of the Invention" may be used interchangeably and may be used as a sole therapeutic agent, or they may also be used in combination or for co-administration with other active agents. [0033] The discovery of the selective receptor profiles of the Compounds of Formula I not only provides effective treatment of 5-HT2A, SERT and/or D2 receptor related disorders without or with minimal extrapyramidal side effects as claimed in the current invention, but also provides insight for the design of a combination therapy for the treatment of related disorders, wherein a Compound of Formula I may be used in combination with second therapeutic agents, particularly at lower dosages than when the individual agents are used as a monotherapy so as to enhance the therapeutic activities of the combined agents without causing the undesirable side effects commonly occur in conventional monotherapy. For example, as Compounds of the Invention bind to 5-HT2A, D2 and/or SERT and are useful for treating patients with a combination of disorders, e.g., (a) psychosis with a co-morbid disorder of depression and/or sleep disorder; (b) depression with a co-morbid disorder of psychosis; (c) sleep disorder in patients suffering from psychosis, Parkinson disease, and/or depression; or (d) any combinations thereof, Compounds of Formula I may be simultaneously, sequentially, or contemporaneously administered with other anti-depressant, anti-psychotic, other hypnotic agents, and/or agents use to treat Parkinson's disease or mood disorders. In another example, side effects may be reduced or minimized by administering a Compound of Formula I in combination with one or more second therapeutic agents in free or salt form, wherein the dosages of the second therapeutic agent(s) or both Compound of Formula I and the second therapeutic agents are lower than if the agents/compounds are administered as a monotherapy. [0034] In a particular embodiment, the Compounds of Formula I are useful to treat dyskinesia in a patient receiving dopaminergic medications, e.g., selected from levodopa and levodopa adjuncts (carbidopa, COMT inhibitors, MAO-B inhibitors), dopamine agonists, and anticholinergics, e.g., such as are used in the treatment of Parkinson's disease. [0035] As demonstrated above, Compounds of Formula I have a wide separation between 5-HT2A and D2 receptor affinities than other atypical antipsychotic drugs (~60 fold). They reduce L-DOPA-induced dyskinetic behavior. Without intending to be bound by theory, it is hypothesized that this is accomplished by virtue of the potent 5-HT2A antagonism with minimal interference with L-DOPA-induced motor correction, by virtue of the low relative D2 receptor activity. Parkinson's disease results from loss of DA neurons in the substantia nigra pars compacta. The primary motor symptoms of PD are treated by L-DOPA. Activation of medium spiny neurons in the dorsolateral striatum that project to the substantia nigra pars reticulata results in disinhibition of thalamocortical neurons and increased motor activity. Overactivity of this "direct" striatal pathway may contribute to the expression of dyskinesias. 5-HT2A receptors are localized in striatal medium spiny neurons. Compounds of Formula I are thus believed to block dyskinesias by blockade of 5-HT2A receptors. [0036] In another aspect of the current invention, Method I, e.g., any of 1.1-1.37, or Method II, e.g., any of 2.1-2.19, further comprises one or more therapeutic agents selected from compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5 -HTIa agonist, a 5- HT2a antagonist, a 5-HT2a inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker) , a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin agonist, a CRH antagonist, human growth hormone, a growth hormone agonist, estrogen, an estrogen agonist, a neurokinin- 1 drug, an anti-depressant, and an antipsychotic agent, e.g., an atypical antipsychotic agent, in free or pharmaceutically acceptable salt form (Method I-A and H-A respectively). [0037] In a further embodiment of this aspect, the invention provides Method I-A or
H-A as follows, further comprising one or more therapeutic agents. 3.1 Method I-A or H-A, wherein the therapeutic agent(s) is compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission);
3.2 Method I-A or II-A or 3.1, wherein the GABA compound is selected from a group consisting of one or more of doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, fiurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals) and estazolam; 3.3 Method I-A or II-A, wherein the therapeutic agent is an additional 5HT2a antagonist;
3.4 Method I-A or II-A or 3.3, wherein said additional 5HT2a antagonist is selected from one or more of ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, MDL 100907 (Sanofi-Aventis, France), HY 10275 (Eli Lilly), APD 125 (Arena Pharmaceuticals, San Diego, CA), and
AVE8488 (Sanofi-Aventis, France);
3.5 Method I-A or II-A, wherein the therapeutic agent is a melatonin agonist;
3.6 Method I-A or II-A or 3.5, wherein the melatonin agonist is selected from a group consisting of one or more of melatonin, ramelteon (ROZEREM®, Takeda Pharmaceuticals, Japan), VEC- 162 (Vanda Pharmaceuticals,
Rockville, MD), PD-6735 (Phase II Discovery) and agomelatine;
3.7 Method I-A or II-A, wherein the therapeutic agent is an ion channel blocker;
3.8 Method I-A or II-A or 3.7, wherein said ion channel blocker is one or more of lamotrigine, gabapentin and pregabalin. 3.9 Method I-A or II-A, wherein the therapeutic agent is an orexin receptor antagonist;
3.10 Method I-A or II-A or 3.9, wherein the orexin receptor antagonist is selected from a group consisting of orexin, a 1,3-biarylurea, SB-334867-a (GlaxoSmithKline, UK), GW649868 (GlaxoSmithKline) and a benzamide derivative; 3.1 1 Method I-A or H-A, wherein the therapeutic agent is the serotonin-2 antagonist/reuptake inhibitor (SARI);
3.12 Method I-A or H-A or 3.11, wherein the serotonin-2 antagonist/reuptake inhibitor (SARI) is selected from a group consisting of one or more Org 50081 (Organon -Netherlands), ritanserin, nefazodone, serzone and trazodone;
3.13 Method I-A or H-A, wherein the therapeutic agent is the 5HTIa agonist;
3.14 Method I-A or H-A or 3.13, wherein the 5HTIa agonist is selected from a group consisting of one or more of repinotan, sarizotan, eptapirone, buspirone and MN-305 (MediciNova, San Diego, CA); 3.15 Method I-A or H-A, wherein the therapeutic agent is the neurokinin-1 drug;
3.16 Method I-A or H-A or 3.15, wherein the neurokinin-1 drug is Casopitant (GlaxoSmithKline);
3.17 Method I-A or H-A, wherein the therapeutic agent is an antipsychotic agent;
3.18 Method I-A or H-A or 3.17, wherein the antipsychotic agent is selected from a group consisting of chlorpromazine, haloperidol, droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone and paliperidone;
3.19 Method I-A or H-A, wherein the therapeutic agent is an anti-depressant; 3.20 Method I-A or H-A or 3.19, wherein the anti-depressant is selected from amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, and velafaxine;
3.21 Method I-A or H-A, 3.17 or 3.18, wherein the antipsychotic agent is an atypical antipsychotic agent;
3.22 Method I-A or H-A, or any of 3.17-3.21 , wherein the atypical antipsychotic agent is selected from a group consisting of clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone, and paliperidone; 3.23 Method I-A or H-A, wherein the therapeutic agent is selected from any of methods 3.1-3.22, e.g., selected from a group consisting of modafinil, armodafinil, doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals), estazolam, ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, MDL 100907 (Sanofi- Aventis, France), HY 10275 (Eli Lilly), APD 125 (Arena Pharmaceuticals, San Diego, CA), AVE8488 (Sanofi-Aventis, France), repinotan, sarizotan, eptapirone, buspirone, MN-305 (MediciNova, San Diego, CA), melatonin, ramelteon (ROZEREM®, Takeda Pharmaceuticals, Japan), VEC- 162 (Vanda Pharmaceuticals, Rockville, MD), PD-6735 (Phase II Discovery), agomelatine, lamotrigine, gabapentin, pregabalin, orexin, a 1,3-biarylurea, SB-334867-a (GlaxoSmithKline, UK), GW649868 (GlaxoSmithKline), a benzamide derivative, Org 50081 (Organon -Netherlands), ritanserin, nefazodone, serzone, trazodone, Casopitant (GlaxoSmithKline), amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, velafaxine, chlorpromazine, haloperidol, droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone and paliperidone;
3.24 Method I-A or H-A, wherein the therapeutic agent is an H3 agonist;
3.25 Method I-A or II A, wherein the therapeutic agent is an H3 antagonist;
3.26 Method I-A or H-A, wherein the therapeutic agent is a noradrenergic antagonist; 3.27 Method I-A or H-A, wherein the therapeutic agent is a galanin agonist;
3.28 Method I-A or II-A, wherein the therapeutic agent is a CRH antagonist; 3.29 Method I-A or H-A, wherein the therapeutic agent is a human growth hormone;
3.30 Method I-A or II-A, wherein the therapeutic agent is a growth hormone agonist; 3.31 Method I-A or II-A, wherein the therapeutic agent is estrogen;
3.32 Method I-A or II-A, wherein the therapeutic agent is an estrogen agonist;
3.33 Method I-A or II-A, wherein the therapeutic agent is a neurokinin-1 drug;
3.34 Method I-A or II-A, wherein a therapeutic agent is combined with compounds of Formula (I) and the therapeutic agent is an anti-Parkinson agent such as L- dopa, co-careldopa, duodopa, stalova, Symmetrel, benzotropine, biperiden, bromocryiptine, entacapone, pergolide, pramipexole, procyclidine, ropinirole, selegiline and tolcapone.
3.35 Method I-A or II-A, wherein compounds of Formula (I) may be used to treat sleep disorders, depression, pyschosis, or any combinations thereof, in patients suffering from the listed diseases and/or Parkinson's disease.
3.36 Method I-A or II-A, wherein the disorder is selected from at least one or more of psychosis, e.g., schizophrenia, depression, mood disorders, sleep disorders (e.g., sleep maintenance and/or sleep onset) or any combination of disorders thereof; 3.37 Any of the foregoing methods wherein the disorder is sleep disorder;
3.38 Any of the foregoing methods, wherein the disorder is sleep disorder associated with psychosis, e.g., schizophrenia or Parkinson's disease; in free or pharmaceutically acceptable salt form.
[0038] In another aspect of the invention, the combination of a Compound of Formula I and one or more second therapeutic agents as described in Methods I-A, II-A or any of 3.1- 3.23, may be administered as a composition. The combination compositions can include mixtures of the combined drugs, as well as two or more separate compositions of the drugs, which individual compositions can be, for example, co-administered together to a patient. [0039] The person of skill in the art, in possession at the receptor binding profile of the Compounds of Formula I together with those of other drugs, can design combination therapies having optimal receptor activity to enhance efficacy and reduce side effects. [0040] In a particuar embodiment, Method I-A and Method H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with an atypical antipsychotic agent, e.g., a compound selected from clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone, or paliperidone, in free or pharmaceutically acceptable salt form, for example wherein the dosage of the atypical antipsychotic agent is reduced and/or side effects are reduced.
[0041] In another embodiment, Method I-A and Method H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with an anti-depressant, e.g., amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fiuvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, or velafaxine, in free or pharmaceutically acceptable salt form. [0042] Alternatively, the anti-depressant may be used as an adjunct medication in addition to the compound of Formula I.
[0043] In still another embodiment, Method I-A or H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with a compound that modulates GABA activity, e.g., a compound selected from doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals), estazolam or any combinations thereof, in free or pharmaceutically acceptable salt form. In another preferred embodiment, Method I-A or H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination with doxepin in free or pharmaceutically acceptable salt form. Dosages of doxepin can vary in any range known to a person of ordinary skill in the art. In one example, a 10 mg dose of doxepin may be combined with any dosage of a compound of Formula I.
[0044] In another embodiment, Method I-A or H-A comprises administering to a patient in need thereof, a Compound of Formula I in combination (including as part of a daily dosage regimen) with an atypical stimulant, e.g., a modafinil, adrafϊnil, or armodafinil. A regimin incorporating a Compound of Formula I with such drugs promotes more regular sleep, and avoids side effects such as psychosis or mania associated with higher levels of such drugs, e.g., in the treatment of bipolar depression, cognition associated with schizophrenia, and excessive sleepiness and fatigue in conditions such as Parkinson's disease and cancer. [0045] The dosages of a Compound of Formula I and/or the second therapeutic agents of Method I-A and H-A can be the same as or lower than the approved dosage for the drug, the clinical or literature test dosage or the dosage used for the drug as a monotherapy. In a preferred embodiment, the dosages of a Compound of Formula I and/or the second therapeutic agents of Method I-A and H-A are lower than when used in a monotherapy. Therefore, in a particular embodiment, the dosage of a Compound of Formula I is lower than lOOmg once daily, preferably less than 50mg, more preferably less than 40 mg, still more preferably less than 30 mg, still more preferably less than 20 mg, still more preferably less than lOmg, still more preferably less than 5mg, most preferably less than 2.5 mg. In particular embodiments, the second therapeutic agent of Method I-A and H-A is doxepin and the dosage of doxepin is between about 0.001 mg and 49 mg. Preferably, the amount of doxepin is between about 0.0001 mg and 20 mg, between about 0.001 mg and 10 mg, more preferably between about 0.01 mg and 9 mg, and still more preferably between about 0.01 mg and 6 mg.
[0046] In another preferred embodiment, the dosages of both the Compound of
Formula I and the second therapeutic agent of Method I-A and II-A are lower than the dosages used for the individual drug as a monotherapy. Therefore, in a particular embodiment, for example, Method I-A or II-A comprises administering (1) a Compound of Formula I at a dosage lower than 100 mg once daily, preferably less than 50 mg, more preferably less than 40 mg, still more preferably less than 30 mg, still more preferably less than 20 mg, still more preferably less than 10 mg, still more preferably less than 5 mg, most preferably less than 2.5 mg; and (2) doxepin at a dosage of less than 50 mg, more preferably, less than 20 mg, still more preferably, less than 10 mg, most preferably less than 6 mg, in free or pharmaceutically acceptable salt form. In an especially embodiment, Method I-A or II-A comprises administering to a patient in need thereof (1) a Compound of Formula I at a dosage of less than 5 mg, more preferably less than 2.5 mg; and (2) doxepin at a dosage of less than 10 mg, preferably less than 6 mg, in free or pharmaceutically acceptable salt form. [0047] In some preferred embodiments, Method I-A or H-A is a method for the treatment of sleep disorders associated with psychosis, e.g., sleep disorders associated with schizophrenia or Parkinson's disease. In another preferred embodiment, Method I-A or H-A is a method for the treatment of psychosis, e.g., schizophrenia or Parkinson's disease in patients suffering from insomnia. In still another preferred embodiments, Method I-A or H-A is a method for the treatment of one or more sleep disorders.
[0048] The term "conventional antipsychotic agents" or "conventional antipsychotic drugs" or "antipsychotic agents" include, but are not limited to droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone and ziprasidone. Other conventional antipsychotic agents also include chlorpromazine, haloperidol and paliperidone. Conventional antipsychotic agents are divided into typical and atypical antipsychotic agents. Typical antipsychotic agents include but are not limited to chlorpromazine, droperidol, fluphenazine, haloperidol, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene and trifluoperazine. Atypical antipsychotic agents include but are not limited to clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone, and paliperidone. Therefore, patients who are unable to tolerate the side effects of conventional antipsychotic agents refer to patients who are unable to tolerate the side effects of the agents as described above. Consequently, such patients would benefit from a monotherapy of a Compound of Formula I (e.g., Method I), wherein Compound of Formula I targets 5HT2A receptors without or with minimal interaction with D2 receptors. In addition, these patients would also benefit from a combination therapy comprising a Compound of Formula I and one or more second therapeutic agents (e.g., Method I-A or H-A) wherein the dosages of the second agent(s) or both the second agents and the Compound of Formula I are lower than when they are administered as a monotherapy. As such, undesirable side effects may be reduced or minimized.
[0049] The term "GABA" refers to gamma-aminobutyric acid. The GABA compounds of Method I-A or H-A are compounds which bind to the GABA receptor, and include, but are not limited to one or more of doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon,
Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals) or estazolam.
[0050] Additional 5HT2a antagonist of Method I-A or H-A include, but are not limited to, one or more of ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, MDL 100907 (Sanofi-Aventis, France), HY 10275 (Eli Lilly), APD 125
(Arena Pharmaceuticals, San Diego, CA), or AVE8488 (Sanofi-Aventis, France).
[0051] The 5HTIa agonist may be, for example, one or more of repinotan, sarizotan, eptapirone, buspirone or MN-305 (MediciNova, San Diego, CA).
[0052] The melatonin agonist of Method I-A or H-A include, but are not limited to, one or more of melatonin, ramelteon (ROZEREM®, Takeda Pharmaceuticals, Japan), VEC-
162 (Vanda Pharmaceuticals, Rockville, MD), PD-6735 (Phase II Discovery) or agomelatine.
[0053] The ion channel blocker of Method I-A or H-A include, but are not limited to, one or more of lamotrigine, gabapentin or pregabalin.
[0054] The orexin receptor antagonist of Method I-A or II-A include, but are not limited to, one or more of orexin, a 1,3-biarylurea, SB-334867-a (GlaxoSmithKline, UK),
GW649868 (GlaxoSmithKline) or a benzamide derivative, for example.
[0055] The serotonin-2 antagonist/reuptake inhibitor (SARI) of Method I-A or II-A include, but are not limited to, one or more of Org 50081 (Organon -Netherlands), ritanserin, nefazodone, serzone or trazodone. [0056] The neurokinin- 1 drug of Method I-A or II-A includes, but are not limited to,
Casopitant (GlaxoSmithKline).
[0057] The term "antidepressant" or "other antidepressant" may include amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, velafaxine, in free or pharmaceutically acceptable salt forms.
[0058] Dosages employed in practicing the present invention will of course vary depending, e.g. on the particular disease or condition to be treated, the particular Compound of the Invention used, the mode of administration, and the therapy desired. Unless otherwise indicated, an amount of the Compound of the Invention for administration (whether administered as a free base or as a salt form) refers to or is based on the amount of the Compound of the Invention in free base form (i.e., the calculation of the amount is based on the free base amount). Compounds of the Invention may be administered by any suitable route, including orally, parenterally or transdermally, but are preferably administered orally. In general, satisfactory results for Method I or any of 1.1-1.37, e.g. for the treatment of a combination of diseases such as a combination of at least depression, psychosis, e.g., (1) psychosis, e.g., schizophrenia, in a patient suffering from depression; (2) depression in a patient suffering from psychosis, e.g., schizophrenia; (3) mood disorders associated with psychosis, e.g., schizophrenia, or Parkinson's disease; and (4) sleep disorders associated with psychosis, e.g., schizophrenia, or Parkinson's disease, as set forth above are indicated to be obtained on oral administration at dosages of the order from about lmg to lOOmg once daily, preferably 2.5mg-50mg, e.g., 2.5mg, 5mg, lOmg, 20mg, 30mg, 40mg or 50mg, once daily, preferably via oral administration. Satisfactory results for Method II or any of 2.1-2.19, e.g. for the treatment of sleep disorder alone are indicated to be obtained on oral administration at dosages of the order from about 2.5mg-5mg, e.g., 2.5mg, 3mg, 4mg or 5mg, of a Compound of Formula I, in free or pharmaceutically acceptable salt form, once daily, preferably via oral administration. Satisfactory results for Method I-A are indicated to be obtained at less thanlOOmg, preferably less than 50mg, e.g., less than 40mg, less than 30mg, less than 20mg, less than lOmg, less than 5mg, less than 2.5mg, once daily. Satisfactory results for Method II- A are indicated to be obtained at less than 5mg, preferably less than 2.5mg.ss
[0059] The phrase "pharmaceutically acceptable salts" refers to derivatives of the above disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.
[0060] The pharmaceutically acceptable salts of the Compounds of the Invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free base forms of these compounds with a stoichiometric amount of the appropriate acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Further details for the preparation of these salts, e.g., toluenesulfonic salt in amorphous or crystal form, may be found in PCT/US08/03340 and/or U.S. Provisional Appl. No. 61/036,069.
[0061] Pharmaceutical compositions comprising Compounds of the Invention may be prepared using conventional diluents or excipients and techniques known in the galenic art. Thus oral dosage forms may include tablets, capsules, solutions, suspensions and the like.
EXAMPLES
Example 1: Binding Assay for 5-HT2A, dopamine D2, SERT, αAl, 5-HT2C and Hl receptors
[0062] Binding studies for 5-HT2A, dopamine D2, SERT, αAl, 5-HT2C and Hl receptors are well known in the art and may be used to determine the binding affinities of the Compounds of the Invention. A Compound of Formula I,l-(4-Fluoro-phenyl)-4-((6bR, 1OaS)- 3-methyl-2,3,6b,9, 10, 10a-hexahydro-lH, 7H-pyrido[3',4', 4,5] pyrrolo[l,2,3-de] quinoxalin- 8-yl)-butan-l-one (Compound A) is selected for detailed evaluation. The compound exhibits binding affinity profiles for 5-HT2A, D2, SERT, αAl, 5-HT2C and Hl as disclosed in Table 1 and Table 2 compared to known antipsychotic agents.
[0063] A representative method for performing the binding studies may be found in
Fitzgerald et al., J. Neurochem. 1999 May; 72(5): 2127-34, the disclosure of which is incorporated by reference.
[0064] 1-(4-[125I] iodo-2,5-dimethxoyphenyl)-2-aminopropane([125] DOI; 2, 200 Ci/mmol), N-[3H]methylspiperone (50 Ci/mmol), [3H]Prazosin (77 Ci/mmol), and lysergic acid diethylamide(N-methyl-[3H]([3H]-LSD; 73 Ci/mmol) were purchased from New England Nuclear (Boston, MA, U.S.A.) [3H] 8-hydoxy-DPAT (217 Ci/mmol) and [3H]Mesulergine (50 Ci/mmol) were purchased from Pharmacia Amersham (Arlington Heights, IL, U.S.A.). All other reagents were purchased from Research Biochemical International (Natick, MA, U.S.A.), Sigma Chemical Co. (St. Louis, MO, U.S.A.) or GibcoBRL unless otherwise noted.
[0065] Membrane receptors: Cell lines stably expressing recombinant human 5-
HT2A receptors were generated by calcium phosphate mediated transfection with plamids containing receptor cDNAs (Fitzgerald et al., 1999) [0066] Stable expression of 5-HT2A and 5-HT2C receptors in human embryonic kidney 293 Epstein-Barr nuclear antigen (HEK293E) cells. Stable cell lines were generated by transfecting HEK293E cells with plasmids containing human 5-HT2A or 5-HT2C (VNV edited isoform cDNA using calcium phosphate. These plasmids also contained the cytomegalovirus intermediate early promoter to drive receptor expression, Epstein-Bar virus oriP for their maintenance as an extrachromosomal element, and the hph gene from Escherichia coli to yield hygromycin B resistance (Horlick et al, 1997; Rominger et al., 1998). Transfected cells were maintained in Dulbecco's modified Eagle's medium (DMEM) containing dialyzed 10% fetal bovine serum at 37 degrees Celsius in a humid environment (5% CO2) for 10 days. The 5-HT2A cells were adapted to spinner culture for bulk processing, whereas it was necessary to maintain the 5-HT2C line as adherent cultures. On the day of harvest, cells were washed in phosphate-buffered saline, counted and stored at -80 degrees Celsius.
[0067] Membrane preparations On the day of assay, pellets of whole cells
(containing 1 x 10 cells expressing the receptor of interest were thawed on ice and homogenized in 50 mM Tris-HCL (ph 7.7) containing 1.0 mM EDTA using a Brinkmann Polytron (PT-10; setting of 6 for 10s). The homogenate was centrifuged at 48,000 g for 10 minutes, and the resulting pellet was washed twice by repeated homogenization and centrifugation steps. The final pellet was resuspended in tissue buffer, and protein content was determined by the method of Bradford (1976) using bovine serum albumin as the standard. [0068] Tranfected HEK293 cells (adherent) expressing human 5-HT2B and 5-HT1A receptors provided membrane source for these assays. Cell lines expressing rat D2-short and human D4 receptors were generated by calcium phosphate mediated transfection of Chinese hamster ovary (CHO) cells with plasmids containing receptor cDNAs. Membranes prepared from rat frontal cortex and frozen liver were used for alpha- IA and alpha- IB adrenergic receptor binding.
[0069] Measurement of agonist and antagonist radioligand binding to 5-HT2A and 5- HT2C receptors
[0070] N-[3H] Methylspiperone and [3H] mesulergine were used as the antagonist radioligands for the 5HT2A and 5HT2C receptors, respectively, whereas [125]DOI was used as the agonist radioligand for both receptors. The high efficacy partial agonist [125]DOI was chosen over the full agonist [3H] -5HT because [3H]-5HT gave inadequate levels of specific binding with the lower density 5-HT2C line. In addition, the relatively weak binding affinity of 5-HT for the 5-HT2A receptor precluded its use as a radioligand. Equilibrium binding conditions for each radioligand at each receptor were established and optimized with respect to time, temperature, and protein concentration before saturation and competition experiments were conducted. [0071] For the agonist radioligand binding studies, assays were conducted in disposable polypropylene 96-well plates (Costar Corporation, Cambridge, M.A., U.S.A.) and were initiated by addition of membrane homogenate in tissue buffer (10-30 micrograms per well.) to assay buffer (50 mM Tris-HCL, 0.5mM EDTA, 1OmM pargyline, 1OmM MgSO4, and 0.05% ascorbic acid, pH 7.5) containing [125]DOI (final concentration, 0.3-.0.5 nM with or without competing ligand. The reaction mixture was incubated to equilibrium for 45 min at 37 degrees Celsius and terminated by rapid filtration (cell harvester, Inotech Biosystems, Lansing, Michigan, U.S.A.) over GFF glass filter membranes that had been presoaked in 0.3% polyethylenimine. Filters were washed in ice-cold 5OmM Tris-HCL buffer (ph 7.5) and then counted for radioactivity in a gamma counter at 80% efficiency. For saturation studies, 14 concentrations of [125I]DOI up to a maximal concentration of 6nM were used. Specific binding at each concentration was determined in the presence of 10 micromolar mianserin. For competition experiments, a fixed concentration of [125]DOI (0.3-5 nM) was competed with duplicate concentrations of ligand (12 concentrations ranging from 10 picomolar to 10 micromolar). [0072] For the antagonist radioligands, saturation experiments for [3H] mesulergine and N-[3H]methylspiperone were conducted to establish the equilibrium binding parameters of these radio-ligands for the 5-HT2C and 5-HT2A receptors, respectively. The assay buffer used in the [3H] mesulergine assays was identical to that used in the [1251] DOI assay except for the addition of 1OmM CaC12 for 1OmM MgSO4. The assay buffer used for the N- [3H]methylspiperone assays was identical to that in the [1251] DOI assay except for the exclusion of 2OmM NaCl. 5-HT2C membrane homogenate (40 micrograms of protein per well) was incubated with 14 concentrations of [3H]mesulergine (up to a final concentration of 20 nM for 45 minutes at 37 degrees Celsius. For the 5-HT2A assay, membrane homogenate (40 micrograms of protein per well) was incubated with 14 concentrations of N-[3H] methylspiperone for 30 minutes at 37 degrees Celsius. Excess (10 micromolar) mianserin or ketanserin was used to define nonspecific binding in the 5-HT2C and the 5-HT2A assays, respectively. Assays were conducted and terminated as described for the agonist radioligand assays except that the filters were counted for radioactivity by liquid scintillation spectroscopy.
[0073] Data Analysis
[0074] The equilibrium disassociation constants (Kd values) and maximal number of binding sites (Bmax values) from the saturation experiments and apparent dissociation constants (Ki values) from the competition experiments were calculated using an iterative nonlinear regression curve-fitting program (GraphPad Prism, San Diego, C. A., U.S.A.)
Table 1
Figure imgf000032_0001
Table 2
Figure imgf000033_0001
Example 2: Effectiveness of the Compounds of Formula I as antidepressant in chronic animal model of depression.
[0075] Experimental procedure for Table II:
[0076] Two different assays used to characterize affinity for the serotonin transporter were conducted at Caliper Life Sciences (Hopkinton, MA), a company that acquired NovaScreen. One assay (#100-0056), Transporter SERT, was a radioligand binding assay in rat forebrain using [3H]-N-Methyl-Citalopram as the radioligand at a concentration of 0.7 nM. [3H]-N-Methyl-Citalopram has a Kd (binding affinity) of 1.7 n and a Bmax of 33.1 fmol/mg protein, The assay was validated using the following reference agent, imipramine (IMI) (Ki = 40.9 nM). Other reference agents which may be used include paroxetine (Ki =0.1 nM); fluoxetine (Ki =1.4 nM); clomipramine (Ki = 2.8 nM), serotonin (Ki = 55.6 nM), and zimeldine (Ki= 68.3 nM).
[0077] The other assay, Transporter SERT (h) was a radioligand binding assay in human platelets using [3H]-N-Methyl-Citalopram as a radioligand at a concentration of 0.7 nM. In this assay, the Kd for [3H]-N-Methyl-Citalopram was 2.5 nM with a Bmax of 425 fmol/mg protein. The assay was validated using clomipramine (Ki = 0.2 nM), citalopram (Ki = 3.0 nM), and imipramine (Ki= 4.0 nM).
[0078] The third assay was conducted at Cerep (Celle L'Evescault, France). The third assay was a radioligand binding assay in human recombinant serotonin transporter in CHO cells using [3H]-imipramine as the radioligand at a concentration of 2 nM. The assay was validated with unlabeled imipramine. (Ki= 2.7 nM).
[0079] EXPERIMENTAL DESIGN: Anti-depressant activity of a Compound of
Formula I (Compound A) is measured using the social defeat (resident-intruder) mouse model for depression in which induced social withdrawal in rodents has been shown to be responsive to chronic, but not acute, anti-depressant drug treatment. The social defeat paradigm is based on the observation that psychosocial stress produces long-lasting alterations in the motivation of mice for social contact. Mice are subjected to a 10 day training period in which they are exposed to daily bouts of social stress, i.e., exposure to a different aggressive mouse ('aggressor') each day. They are then observed for their social behavior by measuring their tendency to approach an unfamiliar mouse, i.e., to spend time in the "Interaction Zone" which is in close proximity to the unfamiliar intruder. Mice are recorded by videotape and scored for social behavior (i.e., time in the Interaction Zone) and aversive behavior (i.e., time in the Corner Zones). Whereas normal mice display social interactions with unfamiliar mice (i.e., spend more time in the Interaction Zone), those mice exposed to repeated social defeat conditions display aversive reactions (i.e., spend more time in the Corner Zones) and spend less time than normal mice in contact with the unfamiliar test mouse (i.e., resident intruder or TARGET).
[0080] The aversive responses of 'socially defeated' mice are resilient; aversive behavior persists for weeks and can be elicited even 4 weeks after the end of the 10 day social stress exposure. The aberrant behavior of 'socially defeated' mice is responsive to chronic anti-depressant medications. Mice treated daily for 30 days with the anti-depressant drugs, fluoxetine or imipramine, display improved social interaction behavior (i.e., spend more time in the Interaction Zone versus the Corner Zones) when once again exposed to an unfamiliar mouse. Notably, chronic, but not acute, fluoxetine treatment improves social behavior. Since social behaviors measured by the social defeat paradigm, like human depression, are differentially responsive to chronic anti-depressant therapy, this paradigm may more accurately reflect beneficial actions of novel anti-depressant therapies, providing an advantage over traditional models (such as, Forced Swim and Tail Suspension models) that respond to acute pharmacological effects of drugs that are not necessarily predictive of chronic antidepressant efficacy. [0081] A representative compound of the present invention, Compound A, is tested in the social defeat paradigm. Normal male mice or mice subjected to social defeat stress once daily for 1Od (N=8-12 C57B1/6 mice/group) are injected once daily for 29d Compound A (lmg/kg, IP) or vehicle solution (5%DMSO / 5%Tween-20 /15% PEG400/75% water). On day 30, all mice are tested for their social response to an unfamiliar mouse. Normal mice treated with Compound A once daily for 30d are healthy and normal-appearing and gained weight normally. These mice spend comparable time in the Interaction Zone as mice receiving the vehicle injection. As anticipated, mice that are subjected to 1Od of social stress showed profound social defeat behavior, spending less than half the amount of time in the vicinity of an unfamiliar mouse than normal un-stressed mice. Socially-defeated mice treated chronically with Compound A, however, exhibited a significant increase in social behavior, spending almost twice as much time in the Interaction Zone when exposed to an unfamiliar mouse compared with socially-defeated mice receiving vehicle injections. Thus, the amount of time spent in the Interaction Zone by socially-defeated mice receiving Compound A is indistinguishable from normal mice receiving vehicle injections. Thus, socially-defeated mice spend significantly more time in the distant Control Zone(s) compared with normal
(non-stressed) mice. The administration of a compound of the present invention significantly reverses this behavioral preference.
[0082] Taken together, these data demonstrate that daily administration of Compound
A induce a behavioral response in socially-stressed mice consistent with antidepressant efficacy and comparable to that elicited by anti-depressant medications such as fluoxetine.
Example 3: Effectiveness in alleviating L-dopa induced dyskinesia
[0083] Reduction in axial, orolingual and limb abnormal involuntary movements using standard Abnormal Involuntary Movement Scale (AIMS) in dyskinesic mice injected daily with the compound in combination with L-DOPA indicates that co-administration of Compounds of Formula I reduces development and expression of AIMS associated with dyskinetic behavior (orolingual, axial, and limb) and locomotor activity (locomotive AIMS). Unilateral 6-OHDA-lesioned mice are administered a Compound of Formula I (Compound A) in accordance with the following schedule:
Control: Day 1 - Day 9: Treatment with L-DOPA/benserazide
Day 10: Treatment with L-DOPA/benserazide + Evaluation of AIMs (dyskinesia)
EXPERIMENT 1 (Chronic): Development of dyskinesia
Day 1 - Day 10: Treatment with L-DOPA/benserazide plus ITI-007 ITI-007PD.
Day 1 1 : Treatment with L-DOPA/benserazide + Evaluation of AIMs (dyskinesia) EXPERIMENT 2 (Acute): Expression of dyskinesia
Day 1 - Day 10: Treatment with L-DOPA/benserazide
Day 11 : Treatment with L-DOPA/benserazide plus ITI-007 + Evaluation of AIMs (dyskinesia)
Compound A (0.3 mg/kg IP) reduces dyskinetic behaviors after chronic co-administration with levodopa (10 mg/kg IP) to unilateral 6-OHDA-lesioned mice. The compound effectively reduces (by -50%) the development of dyskinetic behaviors in PD mice (i.e., Chronic treatment group). It has a less robust but still significant effect (by -25% reduction) on established dyskinetic behaviors (i.e., Acute treatment group). Taken together, these data suggest that Compounds of Formula I have utility for the prevention and treatment of L- DOPA-induced dyskinesias in PD. In addition to reducing L -DOPA-Induced Dyskinesias, as described above, the Compounds of Formula I will also reduce PD psychosis and depression, improve poor night time sleep and reduce excessive daytime sleepiness. Example 4 - Clinical Trial for Low Dose for Sleep Maintenance Insomnia and Sleep Disorders Associated with Psychiatric and Neurological Diseases [0084] As described above, at low doses, Compounds of Formula I are primarily serotonin 5-HT2A antagonists. At higher doses, the compounds also act as a pre-synaptic partial agonist, post-synaptic antagonist at D2 dopamine receptors and inhibits the serotonin transporter. The present study evaluates a range of doses of a Compound of Formula I (Compound A) in patients with sleep maintenance insomnia (SMI). The main objectives of this study are to determine if the compound decreases wake time after sleep onset (WASO) as a measure of sleep maintenance efficacy and if the compound increases slow wave sleep
(SWS) as a biomarker for 5-HT2A brain receptor occupancy.
[0085] The study is a randomized, double-blind, complete cross-over design.
Eighteen patients experiencing SMI, aged 18 to 65, are included in the efficacy analysis. All subjects receive three single doses of Compound A and placebo, administered in the evening before overnight PSG recordings with one week washout between doses. SWS, WASO, other
PSG measures, and safety are analyzed.
[0086] Compound A dose-dependently decreases WASO (p = 0.032) and increases
SWS (p = 0.002). Compound A preserves normal sleep architecture over the course of the night. Compound A is safe and well tolerated. Compound A dose-dependently and robustly decreases WASO in patients with SMI, suggesting efficacy for improved sleep maintenance.
The magnitude of effect on WASO at the highest tested dose suggests that the unique pharmacological profile of Compounds of Formula I is useful in maintaining sleep above and beyond that provided by 5-HT2A antagonism. In addition, increases in SWS sleep suggest that significant occupancy of brain 5-HT2A receptors is occurring. Compounds of Formula I are useful for patients with SMI and for the treatment of sleep disorders associated with psychiatric and neurological diseases.
Improved Sleep as Measured by PSG (Sleep Efficiency defined as time asleep / time in bed)
Dose- Response
Outcome Trend
Measure Analysis (n=18) Mean Change from Baseline (min) p-value
Placebo 1 mg 5 mg 10 mg
SWS -3.75 0.47 5.53 8.94 p = 0.002
WASO -1.86 -12.69 -14.31 -33.22 p = 0.001 Total Sleep
-9.22 4.17 0.56 27.61 p < 0.001 Time
T° Afw1aTjkeme 9 -4.08 -1.42 -28.31 p r < 0.001
c^leep -1.94 0.82 0.14 5.80 p < 0.001
Efficiency r
[0087] The compound causes no change on latency to REM (p = 0.143) and no change in duration of REM (p = 0.124). The compound does not impair latency to fall asleep (p = 0.455). The compound increases slow wave sleep during the first half of the night (first quarter p = 0.022; second quarter p = 0.029) and increases stage 2 sleep during the second half of the night (third quarter p = 0.048, fourth quarter p = 0.004). The compound is safe and well-tolerated in patients with sleep maintenance insomnia. There are no serious adverse events. There are no dose-related adverse events or changes in safety parameters. The compound does not impair cognitive function as measured in the morning after PSG by the Digit Symbol Substitution Test (DSST), the Word Pair Associates Test (WPAT), or the Leeds Psychomotor Test.
[0088] Striatal D2 receptor occupancy in healthy volunteers using positron emission tomography is dose dependent. The doses evaluated for sleep disorder are shown to be below doses where there is high striatal D2 occupancy.
Dose 10 mg 20 mg 30 mg
% Striatal D2 Occupancy - 12 % - 20 % - 32%

Claims

1. A method for the treatment of one or more disorders involving serotonin 5-HT2A, dopamine D2 and/or serotonin reuptake transporter (SERT) pathway, comprising administering to a patient in need thereof a Compound of Formula I:
Figure imgf000039_0001
wherein X is O, -NH or -N(CH3); and Y is -O- or -C(O)- in free or pharmaceutically acceptable salt form, in a dose which selectively blocks 5-HT2A.
The method according to claim 1, wherein the compound of Formula I is selected from a group consisting of:
Figure imgf000039_0002
in free or pharmaceutically acceptable salt form.
The method according to any of claims 1-2 wherein said one or more disorders is psychosis.
4. The method according to any of claims 1-3, wherein said one or more disorders is schizophrenia.
5. The method according to any of claims 1-4, wherein said patient is a patient suffering from depression.
6. The method according to any of claims 1-5, wherein said patient is unable to tolerate the side effects of conventional antipsychotic drugs.
7. The method of claim 6, wherein said antipsychotic drugs are selected from the following: haloperidol, aripiparazole, clozapine, olanzapine, quetiapine, risperidone, and zipasidone.
8. The method according to any of claims 1-2, wherein said one or more disorders is depression and said patient is a patient suffering from psychosis or Parkinson's disease.
9. The method according to any of claims 1-2, wherein said one or more disorders is sleep disorder and said patient is suffering from depression.
10. The method according to any of claims 1-2, wherein said one or more disorders is sleep disorder and said patient is suffering from psychosis.
1 1. The method according to any of claims 1-2, wherein said one or more disorders is sleep disorder and said patient is suffering from Parkinson's disease.
12. The method according to any of claims 1-2, wherein said one or more disorders is sleep disorder and said patient is suffering from depression and psychosis or
Parkinson's disease.
13. The method according to any of claims 1-12 wherein at least one of the disorders is dyskinesia.
14. The method of claim 13 wherein the disorder is levodopa-induced dyskinesia in a patient suffering from Parkinson's disease.
15. The method according to any of claims 1-14, further comprising one or more therapeutic agents selected from compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5 -HTIa agonist, a 5-HT2a antagonist, a 5-HT2a inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker) a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin agonist, a CRH antagonist, human growth hormone, a growth hormone agonist, estrogen, an estrogen agonist, a neurokinin- 1 drug, an anti-depressant, and an antipsychotic agent, e.g., an atypical antipsychotic agent, in free or pharmaceutically acceptable salt form.
16. The method according to any of claims 1-15, further comprising one or more therapeutic agents selected from a group consisting of modafinil, armodafinil, doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals), estazolam, ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, MDL 100907 (Sanofi-Aventis, France), HY 10275 (Eli Lilly), APD 125
(Arena Pharmaceuticals, San Diego, CA), AVE8488 (Sanofi-Aventis, France), repinotan, sarizotan, eptapirone, buspirone, MN-305 (MediciNova, San Diego, CA), melatonin, ramelteon (ROZEREM®, Takeda Pharmaceuticals, Japan), VEC- 162 (Vanda Pharmaceuticals, Rockville, MD), PD-6735 (Phase II Discovery), agomelatine, lamotrigine, gabapentin, pregabalin, orexin, a 1,3-biarylurea, SB-
334867-a (GlaxoSmithKline, UK), GW649868 (GlaxoSmithKline), a benzamide derivative, Org 50081 (Organon -Netherlands), ritanserin, nefazodone, serzone, trazodone, Casopitant (GlaxoSmithKline), amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, velafaxine, chlorpromazine, haloperidol, droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone and paliperidone, in free or pharmaceutically acceptable salt form.
17. A pharmaceutical composition comprising a Compound of Formula I in free or pharmaceutically acceptable salt form as described in a method according to any of claims 1-16, in admixture with a pharmaceutically acceptable diluent or carrier for use in a method as described in any of claims 1-16.
18. A method for the treatment of one or more sleep disorders comprising administering to a patient in need thereof a Compound of Formula I:
Figure imgf000042_0001
wherein X is O, -NH or -N(CH3); and Y is -O- or -C(O)- in free or pharmaceutically acceptable salt form.
19. The method according to claim 18, wherein the compound of Formula I is selected from a group consisting of:
Figure imgf000043_0001
in free or pharmaceutically acceptable salt form.
20. The method according to any of claims 18-19, wherein the sleep disorder is sleep maintenance insomnia.
21. The method according to any of claims 18-20, further comprising one or more therapeutic agents selected from compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5 — HTIa agonist, a 5-HT2a antagonist, a 5-HT2a inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker) a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin agonist, a CRH antagonist, human growth hormone, a growth hormone agonist, estrogen, an estrogen agonist, a neurokinin- 1 drug, an anti-depressant, and an antipsychotic agent, e.g., an atypical antipsychotic agent, in free or pharmaceutically acceptable salt form.
22. The method according to any of claims 18-21, further comprising one or more therapeutic agents selected from a group consisting of modafinil, armodafinil, doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals), estazolam, ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, MDL 100907 (Sanofi-Aventis, France), HY 10275 (Eli Lilly), APD 125 (Arena Pharmaceuticals, San Diego, CA), AVE8488 (Sanofi-Aventis, France), repinotan, sarizotan, eptapirone, buspirone, MN-305 (MediciNova, San Diego, CA), melatonin, ramelteon (ROZEREM®, Takeda Pharmaceuticals, Japan), VEC- 162 (Vanda Pharmaceuticals, Rockville, MD), PD-6735 (Phase II Discovery), agomelatine, lamotrigine, gabapentin, pregabalin, orexin, a 1,3-biarylurea, SB- 334867-a (GlaxoSmithKline, UK), GW649868 (GlaxoSmithKline), a benzamide derivative, Org 50081 (Organon -Netherlands), ritanserin, nefazodone, serzone, trazodone, Casopitant (GlaxoSmithKline), amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenlzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, velafaxine, chlorpromazine, haloperidol, droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone and paliperidone, in free or pharmaceutically acceptable salt form.
23. The method according to any of claims 18-22, wherein the effective amount of a Compound of Formula I is 0.5-1 Omg.
24. The method according to any of claims 18-22, wherein the effective amount of a Compound of Formula I is 2.5-5mg.
25. The method according to any of claims 18-22, wherein the effective amount of a Compound of Formula I is less than 5mg.
26. The method according to any of claims 18-22, wherein the effective amount of a Compound of Formula I is less than 2.5mg.
27. The method of any of claims 18-36 wherein the sleep disorder is insomnia in a patient suffering from depression.
28. A pharmaceutical composition comprising a Compound of Formula I in free or pharmaceutically acceptable salt form in admixture with a pharmaceutically acceptable diluent or carrier for use in a method as described in any of claims 18-27.
29. A pharmaceutical composition in oral unit dose form comprising 10 mg or less of a Compound of Formula I:
Figure imgf000045_0001
Formula I
wherein X is O, -NH or -N(CH3); and Y is -O- or -C(O)-, in free or pharmaceutically acceptable salt form, in combination or association with a pharmaceutically acceptable diluent or carrier, provided that in the case of a salt, the weight is calculated as the free base.
30. The pharmaceutical composition according to claim 29 wherein the oral unit dose form is a tablet.
31. The pharmaceutical composition according to claim 30 wherein the oral unit dose form is a capsule.
32. The pharmaceutical composition according to any of claim 29-31 wherein the amount of Compound of Formula I is 5 mg.
33. The pharmaceutical composition according to any of claim 29-31 wherein the amount of Compound of Formula I is 2.5 mg.
34. The pharmaceutical composition according to any of claim 29-33 wherein the Compound of Formula I is
Figure imgf000046_0001
in free or pharmaceutically acceptable salt form.
35. The pharmaceutical composition according to claim 34 wherein the Compound of Formula I is in the form of the tosylate salt.
36. Use of a Compound of Formula I in the manufacture of a medicament for the treatment of one or more disorders involving serotonin 5-HT2A, dopamine D2 and/or serotonin reuptake transporter (SERT) pathway as described in a method according to any of claims 1-16.
37. Use of a Compound of Formula I in the manufacture of a medicament for the treatment of one or more sleep disorders as described in a method according to any of claims 18-27.
38. The method according to any of claims 1-16, further comprising one or more therapeutic agents selected from a group consisting of as L-dopa, co-careldopa, duodopa, stalova, Symmetrel, benzotropine, biperiden, bromocryiptine, entacapone, pergolide, pramipexole, procyclidine, ropinirole, selegiline and tolcapone.
39. The method according to any of claims 18-37, further comprising one or more therapeutic agents selected from a group consisting of as L-dopa, co-careldopa, duodopa, stalova, Symmetrel, benzotropine, biperiden, bromocryiptine, entacapone, pergolide, pramipexole, procyclidine, ropinirole, selegiline and tolcapone.
PCT/US2009/003261 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders WO2009145900A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
US12/994,560 US8598119B2 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
JP2011511638A JP6106361B2 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
CN200980128888.4A CN102105059B (en) 2008-05-27 2009-05-27 For the method and composition of sleep-disorder and other diseases
AU2009251816A AU2009251816B2 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
MX2010013020A MX2010013020A (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders.
CA2725342A CA2725342C (en) 2008-05-27 2009-05-27 Substituted heterocycle fused gamma-carbolines for sleep disorders and other disorders
KR1020197000911A KR102184038B1 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
KR1020207033595A KR102317698B1 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
KR1020167032085A KR102133073B1 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
US16/784,112 USRE48839E1 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
EP09755263A EP2320731A4 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
US14/066,987 US9168258B2 (en) 2008-05-27 2013-10-30 Methods and compositions for sleep disorders and other disorders
AU2015218433A AU2015218433B2 (en) 2008-05-27 2015-08-25 Methods and compositions for sleep disorders and other disorders
US14/885,813 US9616061B2 (en) 2008-05-27 2015-10-16 Methods and compositions for sleep disorders and other disorders
US15/467,867 US10117867B2 (en) 2008-05-27 2017-03-23 Methods and compositions for sleep disorders and other disorders
US16/165,832 US10702522B2 (en) 2008-05-27 2018-10-19 Methods and compositions for sleep disorders and other disorders
US16/921,586 US20200405713A1 (en) 2008-05-27 2020-07-06 Methods and compositions for sleep disorders and other disorders
US18/169,466 US20230355616A1 (en) 2008-05-27 2023-02-15 Methods and compositions for sleep disorders and other disorders
US18/481,170 US20240041871A1 (en) 2008-05-27 2023-10-04 Methods and compositions for sleep disorders and other disorders

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5643308P 2008-05-27 2008-05-27
US61/056,433 2008-05-27
US15503209P 2009-02-24 2009-02-24
US61/155,032 2009-02-24

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/994,560 A-371-Of-International US8598119B2 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders
US14/066,987 Division US9168258B2 (en) 2008-05-27 2013-10-30 Methods and compositions for sleep disorders and other disorders
US14/066,987 Continuation US9168258B2 (en) 2008-05-27 2013-10-30 Methods and compositions for sleep disorders and other disorders

Publications (1)

Publication Number Publication Date
WO2009145900A1 true WO2009145900A1 (en) 2009-12-03

Family

ID=41377435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/003261 WO2009145900A1 (en) 2008-05-27 2009-05-27 Methods and compositions for sleep disorders and other disorders

Country Status (10)

Country Link
US (9) US8598119B2 (en)
EP (2) EP2320731A4 (en)
JP (2) JP6106361B2 (en)
KR (4) KR102317698B1 (en)
CN (2) CN102105059B (en)
AU (1) AU2009251816B2 (en)
CA (1) CA2725342C (en)
HK (1) HK1219306A1 (en)
MX (2) MX2010013020A (en)
WO (1) WO2009145900A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133224A1 (en) * 2010-04-22 2011-10-27 Intra-Cellular Therapies, Inc. Organic compounds
WO2013155504A1 (en) 2012-04-14 2013-10-17 Intra-Cellular Therapies, Inc. Novel methods
JP2014518280A (en) * 2011-07-08 2014-07-28 イーライ リリー アンド カンパニー (Thieno [2,3-b] [1,5] benzoxazepin-4-yl) piperazin-1-yl compounds as dual acting H1 inverse agonist / 5-HT2A antagonists
WO2015154025A1 (en) 2014-04-04 2015-10-08 Intra-Cellular Therapies, Inc. Organic compounds
US9315504B2 (en) 2007-03-12 2016-04-19 Intra-Cellular Therapies, Inc. Preparation of 4-((6BR,10AS)-3-methyl-2,3,6B,9,10, 10A-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo [1,2,3-de]quinoxalin-8-(7H)-yl)-1-(4-fluorophenyl)-1-butanone or a pharmaceutically acceptable salt thereof
EP2968320A4 (en) * 2013-03-15 2016-10-05 Intra Cellular Therapies Inc Organic compounds
EP3076967A1 (en) * 2013-12-03 2016-10-12 Intra-Cellular Therapies, Inc. Novel methods
US9616061B2 (en) 2008-05-27 2017-04-11 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
WO2017132408A1 (en) 2016-01-26 2017-08-03 Intra-Cellular Therapies, Inc. Organic compounds
US9745300B2 (en) 2014-04-04 2017-08-29 Intra-Cellular Therapies, Inc. Organic compounds
WO2017165843A1 (en) 2016-03-25 2017-09-28 Intra-Cellular Therapies, Inc. Organic compounds
WO2018189646A1 (en) 2017-04-10 2018-10-18 Dr. Reddy's Laboratories Limited AMORPHOUS FORM AND SOLID DISPERSIONS OF LUMATEPERONE p-TOSYLATE
WO2019067591A1 (en) * 2017-09-26 2019-04-04 Intra-Cellular Therapies, Inc. Novel salts and crystals
EP3436455A4 (en) * 2016-03-28 2019-09-04 Intra-Cellular Therapies, Inc. Novel salts and crystals
WO2019183546A1 (en) 2018-03-23 2019-09-26 Intra-Cellular Therapies, Inc. Organic compounds
EP3436083A4 (en) * 2016-03-28 2019-11-27 Intra-Cellular Therapies, Inc. Novel compositions and methods
WO2019237037A1 (en) 2018-06-08 2019-12-12 Intra-Cellular Therapies, Inc. Novel methods
US10695345B2 (en) 2018-08-31 2020-06-30 Intra-Cellular Therapies, Inc. Pharmaceutical capsule compositions comprising lumateperone mono-tosylate
US10716786B2 (en) 2017-03-24 2020-07-21 Intra-Cellular Therapies, Inc. Transmucosal and subcutaneous compositions
US10828302B2 (en) 2016-03-10 2020-11-10 Janssen Pharmaceutica Nv Methods of treating depression using orexin-2 receptor antagonists
US10906906B2 (en) 2016-12-29 2021-02-02 Intra-Cellular Therapies, Inc. Organic compounds
US10961245B2 (en) 2016-12-29 2021-03-30 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines for treatment of central nervous system disorders
US11014925B2 (en) 2016-03-28 2021-05-25 Intra-Cellular Therapies, Inc. Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide
US11059828B2 (en) 2009-10-23 2021-07-13 Janssen Pharmaceutica Nv Disubstituted octahydropyrrolo[3,4-C]pyrroles as orexin receptor modulators
EP3765021A4 (en) * 2018-03-16 2022-03-09 Intra-Cellular Therapies, Inc. Novel methods
US11311536B2 (en) 2016-10-12 2022-04-26 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11376249B2 (en) 2017-07-26 2022-07-05 Intra-Cellular Therapies, Inc. Organic compounds
RU2776800C2 (en) * 2016-01-26 2022-07-26 Интра-Селлулар Терапиз, Инк. Pharmaceutical composition and method for treatment or prevention of disorder of central nervous system
US11427587B2 (en) 2017-07-26 2022-08-30 Intra-Cellular Therapies, Inc. Organic compounds
US11453670B2 (en) 2018-06-11 2022-09-27 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines synthesis
EP4134101A1 (en) 2019-07-07 2023-02-15 Intra-Cellular Therapies, Inc. Deuterated lumateperone for the treatment of the bipolar ii disorder
WO2023225620A1 (en) 2022-05-18 2023-11-23 Intra-Cellular Therapies, Inc. Novel methods
EP4072554A4 (en) * 2019-12-11 2023-12-20 Intra-Cellular Therapies, Inc. Organic compound
WO2024173901A1 (en) * 2023-02-17 2024-08-22 Intra-Cellular Therapies, Inc. Lumateperone and derivatives thereof for modulating the nervous system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052139A2 (en) 2006-10-25 2008-05-02 Somaxon Pharmaceuticals, Inc. Ultra low dose doxepin and methods of using the same to treat sleep disorders
WO2008070795A2 (en) * 2006-12-06 2008-06-12 Somaxon Pharmaceuticals, Inc. Combination therapy using low-dose doxepin for the improvement of sleep
PL2262505T3 (en) 2008-03-12 2015-04-30 Intra Cellular Therapies Inc Substituted heterocycle fused gamma-carbolines solid
WO2012064349A1 (en) * 2010-11-09 2012-05-18 Forest Carl A Sleep aid composition and method
CN103175973B (en) * 2013-02-26 2015-05-13 首都医科大学 Application of galanin in preparation of female depression detection tool
US11235020B2 (en) * 2013-03-13 2022-02-01 Abraham Palmer Methods and compositions for inhibiting glyoxalase 1 (GLO1)
WO2014152804A1 (en) * 2013-03-14 2014-09-25 Hyperion Biotechnology Methods and compositions for biomarkers of fatigue, fitness and physical performance capacity
DK3251699T3 (en) * 2015-01-28 2024-05-21 Univ Duke COMPOSITION COMPRISING METHYLPHENIDATE AND ONDANSETRON FOR USE IN SUBSTANCE-RELATED DISORDERS
WO2017117514A1 (en) * 2015-12-31 2017-07-06 Tung Roger D Deuterated iti-007
US9993486B1 (en) 2017-06-19 2018-06-12 Tlc Therapeutics, Llc Oral quetiapine suspension formulations with extended shelf life and enhanced bioavailability
KR102036909B1 (en) * 2017-11-28 2019-10-25 한국과학기술원 A novel pharmaceutical composition for treating dystonia
CA3094949A1 (en) 2018-03-23 2019-09-26 Intra-Cellular Therapies, Inc. Deuterated heterocycle fused gamma-carbolines
CN112585690A (en) 2018-06-21 2021-03-30 阿奎斯蒂弗医疗股份有限公司 System and method for producing individualized individual unit doses containing a pharmaceutically active substance
WO2020047241A1 (en) * 2018-08-29 2020-03-05 Intra-Cellular Therapies, Inc. Novel compositions and methods
KR20210052471A (en) 2018-08-31 2021-05-10 인트라-셀룰라 써래피스, 인코퍼레이티드. New way
CA3110997A1 (en) 2018-09-07 2020-03-12 Aquestive Therapeutics, Inc. Oral film compositions and dosage forms having precise active dissolution profiles
EP3898581A4 (en) 2018-12-17 2022-08-17 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines synthesis
US20220048910A1 (en) * 2018-12-21 2022-02-17 Intra-Cellular Therapies, Inc. Organic compounds
KR102227268B1 (en) * 2019-10-07 2021-03-12 한국과학기술원 A novel method for screening drug candidate for treating dystonia
BR112022008294A2 (en) 2019-11-01 2022-07-26 Aquestive Therapeutics Inc PRODrug COMPOSITIONS AND TREATMENT METHODS
CA3159389A1 (en) 2019-11-14 2021-05-20 Aquestive Therapeutics, Inc. Multimodal compositions comprising diazepam and methods of treatment
AU2021356875B2 (en) * 2020-10-09 2023-11-23 Jiangsu Nhwa Pharmaceutical Co., Ltd HETEROCYCLIC SUBSTITUTED FUSED γ-CARBOLINE DERIVATIVE, PREPARATION METHOD THEREFOR, INTERMEDIATE THEREOF AND USE THEREOF
WO2022155544A1 (en) 2021-01-15 2022-07-21 Aquestive Therapeutics, Inc. Prodrug compositions and methods of treatment
WO2022192476A1 (en) 2021-03-09 2022-09-15 Aquestive Therapeutics, Inc. Dosage forms having equivalent biocomparable profiles
EP4441209A1 (en) * 2021-11-29 2024-10-09 Editas Medicine, Inc. Engineered crispr/cas12a effector proteins, and uses thereof
CN115067220B (en) * 2022-06-16 2023-04-25 中国人民解放军军事科学院军事医学研究院 Dual-channel small animal fear co-emotion behavior detection system
WO2024088285A1 (en) * 2022-10-26 2024-05-02 上海枢境生物科技有限公司 MESYLATE OF HETEROCYCLIC SUBSTITUTED FUSED γ-CARBOLINE DERIVATIVE, CRYSTAL FORM AND PREPARATION METHOD THEREFOR AND USE THEREOF
WO2024145659A1 (en) 2022-12-30 2024-07-04 Intra-Cellular Therapies, Inc. Heterocycle fused gamma-carbolines acting on the serotonine 5-ht2a receptor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552017B1 (en) * 1999-06-15 2003-04-22 Bristol-Myers Squibb Pharma Company Substituted heterocycle fused gamma-carbolines
US20070203120A1 (en) * 2006-01-13 2007-08-30 Wyeth Sulfonyl Substituted 1H-Indoles as Ligands for the 5-Hydroxytryptamine Receptors

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162318A (en) * 1976-05-05 1979-07-24 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Use of trazodone and etoperidone in Parkinsonism and in other extrapyramidal syndromes characterized by tremors
HU208484B (en) 1988-08-17 1993-11-29 Chinoin Gyogyszer Es Vegyeszet Process for producing pharmaceutical composition containing acid additional salt of selegilin as active component for treating schisofrenia
US5114976A (en) 1989-01-06 1992-05-19 Norden Michael J Method for treating certain psychiatric disorders and certain psychiatric symptoms
US6713471B1 (en) 1999-06-15 2004-03-30 Bristol-Myers Squibb Pharma Company Substituted heterocycle fused gamma-carbolines
US7071186B2 (en) 1999-06-15 2006-07-04 Bristol-Myers Squibb Pharma Co. Substituted heterocycle fused gamma-carbolines
US20050222209A1 (en) 2004-04-01 2005-10-06 Zeldis Jerome B Methods and compositions for the treatment, prevention or management of dysfunctional sleep and dysfunctional sleep associated with disease
EP1848433A2 (en) 2005-01-25 2007-10-31 Celgene Corporation Methods and compositions using 4-amino-2-(3-methyl-2,6-dioxopiperidin-3-yl)-isoindole-1-3-dione
EP1919287A4 (en) 2005-08-23 2010-04-28 Intra Cellular Therapies Inc Organic compounds for treating reduced dopamine receptor signalling activity
JP2010502722A (en) 2006-09-08 2010-01-28 ブレインセルス,インコーポレイティド Combinations containing 4-acylaminopyridine derivatives
CA2679754C (en) 2007-03-12 2018-08-07 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines synthesis
BRPI0815850A2 (en) 2007-08-01 2014-10-07 Medivation Neurology Inc "METHOD FOR TREATING, SLOWING DOWN PROGRESSION, PREVENTING OR DELAYING THE DEVELOPMENT OF SCHIZOPHRENIA IN AN INDIVIDUAL, PHARMACEUTICALLY ACCEPTABLE COMPOSITION, KIT AND METHOD OF STRENGTHENING AN ANTI-RESPONSE RESPONSE"
MX2010008688A (en) 2008-02-07 2010-08-30 Schering Corp Engineered anti-tslpr antibodies.
PL2262505T3 (en) 2008-03-12 2015-04-30 Intra Cellular Therapies Inc Substituted heterocycle fused gamma-carbolines solid
KR102317698B1 (en) 2008-05-27 2021-10-25 인트라-셀룰라 써래피스, 인코퍼레이티드. Methods and compositions for sleep disorders and other disorders
MX339805B (en) 2010-04-22 2016-06-10 Intra Cellular Therapies Inc Organic compounds.
CA2870303A1 (en) 2012-04-14 2013-10-17 Intra-Cellular Therapies, Inc. Organic compounds
US9708322B2 (en) 2013-03-15 2017-07-18 Intra-Cellular Therapies, Inc. Substituted pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalines for inhibiting serotonin reuptake transporter activity
WO2015085004A1 (en) 2013-12-03 2015-06-11 Intra-Cellular Therapies, Inc. Novel methods
PL3125893T3 (en) * 2014-04-04 2024-02-12 Intra-Cellular Therapies, Inc. Deuterated heterocycle fused gamma-carbolines as antagonists of 5-ht2a receptors
CN106456638A (en) * 2014-04-04 2017-02-22 细胞内治疗公司 Organic compounds
PL3407888T3 (en) * 2016-01-26 2021-08-30 Intra-Cellular Therapies, Inc. Pyridopyrroloquinoxaline compounds, their compositions and uses
EP3436455A4 (en) * 2016-03-28 2019-09-04 Intra-Cellular Therapies, Inc. Novel salts and crystals
US11014925B2 (en) * 2016-03-28 2021-05-25 Intra-Cellular Therapies, Inc. Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide
CN110072518B (en) * 2016-10-12 2021-10-26 细胞内治疗公司 Amorphous solid dispersion
CN111093664B (en) * 2017-07-26 2023-06-02 细胞内治疗公司 Organic compound
MX2021002321A (en) * 2018-08-31 2021-04-28 Intra Cellular Therapies Inc Novel methods.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552017B1 (en) * 1999-06-15 2003-04-22 Bristol-Myers Squibb Pharma Company Substituted heterocycle fused gamma-carbolines
US20070203120A1 (en) * 2006-01-13 2007-08-30 Wyeth Sulfonyl Substituted 1H-Indoles as Ligands for the 5-Hydroxytryptamine Receptors

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221176B2 (en) 2007-03-12 2019-03-05 Intra-Cellular Therapies, Inc. Preparation of certain substituted [((6bR,10aS)-2,3,6b,7,8,9,10,10a-octahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines and pharmaceutically acceptable salts thereof
US10464938B2 (en) 2007-03-12 2019-11-05 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising ((6bR,10aS)-1-(4-fluorophenyl)-4-(3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)butan-1-one or pharmaceutically acceptable salts thereof
US10597395B2 (en) 2007-03-12 2020-03-24 Intra-Cellular Therapies, Inc. Preparation of certain substituted 1-(4-fluorophenyl)-4-(2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-YL)butan-1-ones and pharmaceutically acceptable salts thereof
US9751883B2 (en) 2007-03-12 2017-09-05 Intra-Cellular Therapies, Inc. Preparation of certain [((6BR,10AS)-2,3,6B,7,8,9,10, 10A-octahydro-1H-pyrido[3′,4′:4,5]pyrrolo [1,2,3-de]quinoxalines and pharmaceutically acceptable salts thereof
US11066407B2 (en) 2007-03-12 2021-07-20 Intra-Cellular Therapies, Inc. Preparation of certain substituted 1H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalines and pharmaceutically acceptable salts thereof
US11407751B2 (en) 2007-03-12 2022-08-09 Intra-Cellular Therapies, Inc. Hydrochloric acid salt of (6bR,10aS)-3-methyl-2,3,6b,7,8,9,10,10a-octahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxaline
US9315504B2 (en) 2007-03-12 2016-04-19 Intra-Cellular Therapies, Inc. Preparation of 4-((6BR,10AS)-3-methyl-2,3,6B,9,10, 10A-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo [1,2,3-de]quinoxalin-8-(7H)-yl)-1-(4-fluorophenyl)-1-butanone or a pharmaceutically acceptable salt thereof
US10117867B2 (en) 2008-05-27 2018-11-06 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
US10702522B2 (en) 2008-05-27 2020-07-07 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
USRE48839E1 (en) 2008-05-27 2021-12-07 Intra-Cellular Therapies, Inc Methods and compositions for sleep disorders and other disorders
US9616061B2 (en) 2008-05-27 2017-04-11 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
US11667644B2 (en) 2009-10-23 2023-06-06 Janssen Pharmaceutica Nv Disubstituted octahydropyrrolo[3,4-c]pyrroles as orexin receptor modulators
USRE48841E1 (en) 2009-10-23 2021-12-07 Janssen Pharmaceutica Nv Disubstituted octahydropyrrolo[3,4-c]pyrroles as orexin receptor modulators
US11059828B2 (en) 2009-10-23 2021-07-13 Janssen Pharmaceutica Nv Disubstituted octahydropyrrolo[3,4-C]pyrroles as orexin receptor modulators
KR101868165B1 (en) * 2010-04-22 2018-07-19 인트라-셀룰라 써래피스, 인코퍼레이티드. Organic compounds
KR20130055610A (en) * 2010-04-22 2013-05-28 인트라-셀룰라 써래피스, 인코퍼레이티드. Organic compounds
US9371324B2 (en) 2010-04-22 2016-06-21 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
JP2013525352A (en) * 2010-04-22 2013-06-20 イントラ−セルラー・セラピーズ・インコーポレイテッド Organic compounds
RU2591194C2 (en) * 2010-04-22 2016-07-10 Интра-Селлулар Терапиз, Инк. Organic compounds
CN103209704A (en) * 2010-04-22 2013-07-17 细胞内治疗公司 Organic Compounds
WO2011133224A1 (en) * 2010-04-22 2011-10-27 Intra-Cellular Therapies, Inc. Organic compounds
US8993572B2 (en) 2010-04-22 2015-03-31 Intra-Cellular Therapies, Inc. Pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines derivatives and [1,4]oxazino[2,3,4-hi]pyrido[4,3-b]indole derivatives
JP2014518280A (en) * 2011-07-08 2014-07-28 イーライ リリー アンド カンパニー (Thieno [2,3-b] [1,5] benzoxazepin-4-yl) piperazin-1-yl compounds as dual acting H1 inverse agonist / 5-HT2A antagonists
EP2836213A4 (en) * 2012-04-14 2015-09-09 Intra Cellular Therapies Inc Organic compounds
EP3791879A1 (en) 2012-04-14 2021-03-17 Intra-Cellular Therapies, Inc. Novel compositions and methods
US11053245B2 (en) 2012-04-14 2021-07-06 Intra-Cellular Therapies, Inc. Methods
US11124514B2 (en) 2012-04-14 2021-09-21 Intra-Cellular Therapies, Inc. Compositions and methods
WO2013155504A1 (en) 2012-04-14 2013-10-17 Intra-Cellular Therapies, Inc. Novel methods
EP2836212A4 (en) * 2012-04-14 2015-09-09 Intra Cellular Therapies Inc Novel compositions and methods
US11958852B2 (en) 2012-04-14 2024-04-16 Intra-Cellular Therapies, Inc. Compounds and methods
US9428506B2 (en) 2012-04-14 2016-08-30 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
US10072010B2 (en) 2013-03-15 2018-09-11 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for inhibiting serotonin reuptake transporter activity
US10472359B2 (en) 2013-03-15 2019-11-12 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-1-(4-fluorophenyl) butan-1-one for inhibiting serotonin reuptake transporter activity
US10844061B2 (en) 2013-03-15 2020-11-24 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising 4-(6BR,10AS)-3-methyl-2,3,6B,9,10,10A-hexahydro-1h, 7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-1-(4-fluorophenyl)butan-1-one and methods of treating conditions of the central nervous system
EP2968320A4 (en) * 2013-03-15 2016-10-05 Intra Cellular Therapies Inc Organic compounds
US9708322B2 (en) 2013-03-15 2017-07-18 Intra-Cellular Therapies, Inc. Substituted pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalines for inhibiting serotonin reuptake transporter activity
US11680065B2 (en) 2013-03-15 2023-06-20 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising 4-(6Br,10aS)-3-methyl-2, 3, 6b, 9, 10, 10a-hexahydro-1H, 7H-pyrido[3′, 4′, 5] pyrolo[1,2,3-de] quinoxalin-8YL)-1-(4-fluorophenyl)-butane-1-one and methods of treating conditions of the central nervous system
KR102373288B1 (en) * 2013-12-03 2022-03-10 인트라-셀룰라 써래피스, 인코퍼레이티드. Novel methods
KR20210049200A (en) * 2013-12-03 2021-05-04 인트라-셀룰라 써래피스, 인코퍼레이티드. Novel methods
KR102372145B1 (en) 2013-12-03 2022-03-07 인트라-셀룰라 써래피스, 인코퍼레이티드. Novel methods
US10322134B2 (en) 2013-12-03 2019-06-18 Intra-Cellular Therapies, Inc. Methods
EP3076967B1 (en) 2013-12-03 2021-07-28 Intra-Cellular Therapies, Inc. Methods for treating residual symptoms of schizophrenia
AU2014360452B2 (en) * 2013-12-03 2018-10-18 Intra-Cellular Therapies, Inc. Novel methods
AU2014360452C1 (en) * 2013-12-03 2019-05-16 Intra-Cellular Therapies, Inc. Novel methods
EP3076967A4 (en) * 2013-12-03 2017-05-10 Intra-Cellular Therapies, Inc. Novel methods
KR20210049199A (en) * 2013-12-03 2021-05-04 인트라-셀룰라 써래피스, 인코퍼레이티드. Novel methods
EP3666271A1 (en) 2013-12-03 2020-06-17 Intra-Cellular Therapies, Inc. Miscrospheres comprising a plga matrix for medical use
US10960009B2 (en) 2013-12-03 2021-03-30 Intra-Cellular Therapies, Inc. Methods of treating schizophrenia and depression
AU2021290277B2 (en) * 2013-12-03 2023-07-20 Intra-Cellular Therapies, Inc. Novel methods
US9956227B2 (en) 2013-12-03 2018-05-01 Intra-Cellular Therapies, Inc. Method for the treatment of residual symptoms of schizophrenia
EP3076967A1 (en) * 2013-12-03 2016-10-12 Intra-Cellular Therapies, Inc. Novel methods
US9745300B2 (en) 2014-04-04 2017-08-29 Intra-Cellular Therapies, Inc. Organic compounds
RU2728787C2 (en) * 2014-04-04 2020-07-31 Интра-Селлулар Терапиз, Инк. Organic compounds
US11560382B2 (en) 2014-04-04 2023-01-24 Intra-Cellular Therapies, Inc. Organic compounds
US10597394B2 (en) 2014-04-04 2020-03-24 Intra-Cellular Therapies, Inc. Organic compounds
EP3125893A4 (en) * 2014-04-04 2017-09-20 Intra-Cellular Therapies, Inc. Organic compounds
US10899762B2 (en) 2014-04-04 2021-01-26 Intra-Cellular Therapies, Inc. Organic compounds
WO2015154025A1 (en) 2014-04-04 2015-10-08 Intra-Cellular Therapies, Inc. Organic compounds
US10077267B2 (en) 2014-04-04 2018-09-18 Intra-Cellular Therapies, Inc. Organic compounds
RU2785871C2 (en) * 2014-04-04 2022-12-14 Интра-Селлулар Терапиз, Инк. Organic compounds
EP3838274A1 (en) 2016-01-26 2021-06-23 Intra-Cellular Therapies, Inc. Pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxaline derivative for use in the treatment of cns disorders
US11844757B2 (en) 2016-01-26 2023-12-19 Intra-Cellular Therapies, Inc. Organic compounds
WO2017132408A1 (en) 2016-01-26 2017-08-03 Intra-Cellular Therapies, Inc. Organic compounds
US10245260B2 (en) 2016-01-26 2019-04-02 Intra-Cellular Therapies, Inc. Organic compounds
US10799500B2 (en) 2016-01-26 2020-10-13 Intra-Cellular Therapies, Inc. Organic compounds
RU2776800C2 (en) * 2016-01-26 2022-07-26 Интра-Селлулар Терапиз, Инк. Pharmaceutical composition and method for treatment or prevention of disorder of central nervous system
US11241432B2 (en) 2016-03-10 2022-02-08 Janssen Pharmaceutica Nv Methods of treating depression using orexin-2 receptor antagonists
US10828302B2 (en) 2016-03-10 2020-11-10 Janssen Pharmaceutica Nv Methods of treating depression using orexin-2 receptor antagonists
EP3888656A1 (en) 2016-03-25 2021-10-06 Intra-Cellular Therapies, Inc. Deuterated heterocyclic gamma-carboline compounds and their use in the treatment or prophylaxis of a central nervous system disorder
WO2017165843A1 (en) 2016-03-25 2017-09-28 Intra-Cellular Therapies, Inc. Organic compounds
US10688097B2 (en) 2016-03-25 2020-06-23 Intra-Cellular Therapies, Inc. Organic compounds
US11096944B2 (en) 2016-03-25 2021-08-24 Intra-Cellular Therapies, Inc. Organic compounds
US10682354B2 (en) 2016-03-28 2020-06-16 Intra-Cellular Therapies, Inc. Compositions and methods
US10654854B2 (en) 2016-03-28 2020-05-19 Intra-Cellular Therapies, Inc. Salts and crystals of ITI-007
EP3436083A4 (en) * 2016-03-28 2019-11-27 Intra-Cellular Therapies, Inc. Novel compositions and methods
US11014925B2 (en) 2016-03-28 2021-05-25 Intra-Cellular Therapies, Inc. Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide
EP3436455A4 (en) * 2016-03-28 2019-09-04 Intra-Cellular Therapies, Inc. Novel salts and crystals
US11826367B2 (en) 2016-10-12 2023-11-28 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11872223B2 (en) 2016-10-12 2024-01-16 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11311536B2 (en) 2016-10-12 2022-04-26 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11331316B2 (en) 2016-10-12 2022-05-17 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US10961245B2 (en) 2016-12-29 2021-03-30 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines for treatment of central nervous system disorders
US10906906B2 (en) 2016-12-29 2021-02-02 Intra-Cellular Therapies, Inc. Organic compounds
US10716786B2 (en) 2017-03-24 2020-07-21 Intra-Cellular Therapies, Inc. Transmucosal and subcutaneous compositions
US11052083B2 (en) 2017-03-24 2021-07-06 Intra-Cellular Therapies, Inc. Transmucosal methods for treating psychiatric and neurological conditions
US11806347B2 (en) 2017-03-24 2023-11-07 Intra-Cellular Therapies, Inc. Transmucosal methods for treating psychiatric and neurological conditions
EP3609501A4 (en) * 2017-04-10 2020-08-19 Dr. Reddy's Laboratories Limited AMORPHOUS FORM AND SOLID DISPERSIONS OF LUMATEPERONEp
US11292793B2 (en) 2017-04-10 2022-04-05 Dr. Reddy's Laboratories Limited Solid dispersions of amorphous Lumateperone p-Tosylate
WO2018189646A1 (en) 2017-04-10 2018-10-18 Dr. Reddy's Laboratories Limited AMORPHOUS FORM AND SOLID DISPERSIONS OF LUMATEPERONE p-TOSYLATE
US11427587B2 (en) 2017-07-26 2022-08-30 Intra-Cellular Therapies, Inc. Organic compounds
US11376249B2 (en) 2017-07-26 2022-07-05 Intra-Cellular Therapies, Inc. Organic compounds
US11440911B2 (en) * 2017-09-26 2022-09-13 Intra-Cellular Therapies, Inc. Salts and crystals
WO2019067591A1 (en) * 2017-09-26 2019-04-04 Intra-Cellular Therapies, Inc. Novel salts and crystals
EP3765021A4 (en) * 2018-03-16 2022-03-09 Intra-Cellular Therapies, Inc. Novel methods
WO2019183546A1 (en) 2018-03-23 2019-09-26 Intra-Cellular Therapies, Inc. Organic compounds
WO2019237037A1 (en) 2018-06-08 2019-12-12 Intra-Cellular Therapies, Inc. Novel methods
US11453670B2 (en) 2018-06-11 2022-09-27 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines synthesis
US11052084B2 (en) 2018-08-31 2021-07-06 Intra-Cellular Therapies, Inc. Pharmaceutical capsule compositions comprising lumateperone mono-tosylate
US10695345B2 (en) 2018-08-31 2020-06-30 Intra-Cellular Therapies, Inc. Pharmaceutical capsule compositions comprising lumateperone mono-tosylate
EP4134101A1 (en) 2019-07-07 2023-02-15 Intra-Cellular Therapies, Inc. Deuterated lumateperone for the treatment of the bipolar ii disorder
EP4072554A4 (en) * 2019-12-11 2023-12-20 Intra-Cellular Therapies, Inc. Organic compound
WO2023225620A1 (en) 2022-05-18 2023-11-23 Intra-Cellular Therapies, Inc. Novel methods
WO2024173901A1 (en) * 2023-02-17 2024-08-22 Intra-Cellular Therapies, Inc. Lumateperone and derivatives thereof for modulating the nervous system

Also Published As

Publication number Publication date
AU2009251816A1 (en) 2009-12-03
US20190183888A1 (en) 2019-06-20
US8598119B2 (en) 2013-12-03
HK1219306A1 (en) 2017-03-31
CN105168219A (en) 2015-12-23
CA2725342A1 (en) 2009-12-03
KR102184038B1 (en) 2020-11-27
US20170189398A1 (en) 2017-07-06
US20230355616A1 (en) 2023-11-09
US10702522B2 (en) 2020-07-07
JP2011523949A (en) 2011-08-25
EP2320731A1 (en) 2011-05-18
KR102317698B1 (en) 2021-10-25
US9168258B2 (en) 2015-10-27
CN105168219B (en) 2018-11-20
AU2009251816B2 (en) 2015-12-10
KR20160135371A (en) 2016-11-25
MX2020012868A (en) 2022-06-14
US20240041871A1 (en) 2024-02-08
KR20110022631A (en) 2011-03-07
EP3085231A1 (en) 2016-10-26
US9616061B2 (en) 2017-04-11
CN102105059B (en) 2015-09-30
KR20200134341A (en) 2020-12-01
EP2320731A4 (en) 2012-09-26
KR102133073B1 (en) 2020-07-10
CA2725342C (en) 2024-02-20
US20200405713A1 (en) 2020-12-31
USRE48839E1 (en) 2021-12-07
US20110071080A1 (en) 2011-03-24
CN102105059A (en) 2011-06-22
JP6106361B2 (en) 2017-03-29
MX2010013020A (en) 2011-03-21
US20140050783A1 (en) 2014-02-20
KR20190006606A (en) 2019-01-18
JP2015157828A (en) 2015-09-03
US20160030425A1 (en) 2016-02-04
US10117867B2 (en) 2018-11-06

Similar Documents

Publication Publication Date Title
US10702522B2 (en) Methods and compositions for sleep disorders and other disorders
US11142529B2 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
JP7514534B2 (en) Benzodiazepine derivatives, compositions and methods for treating cognitive disorders
AU2008329072A1 (en) Aryl and heteroaryl fused imidazo (1,5-A) pyrazines as inhibitors of phosphodiesterase 10
WO2018130869A1 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
AU2015218433B2 (en) Methods and compositions for sleep disorders and other disorders
TW200413380A (en) Pyrrolo[1, 2-B]pyridazine compounds and their uses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128888.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09755263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2725342

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12994560

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009251816

Country of ref document: AU

Ref document number: MX/A/2010/013020

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011511638

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009755263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9128/DELNP/2010

Country of ref document: IN

Ref document number: 2009755263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009251816

Country of ref document: AU

Date of ref document: 20090527

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107029327

Country of ref document: KR

Kind code of ref document: A