WO2009145576A2 - Aldohexose epimerase and enzymatic preparation method of aldohexose epimer using the same - Google Patents

Aldohexose epimerase and enzymatic preparation method of aldohexose epimer using the same Download PDF

Info

Publication number
WO2009145576A2
WO2009145576A2 PCT/KR2009/002840 KR2009002840W WO2009145576A2 WO 2009145576 A2 WO2009145576 A2 WO 2009145576A2 KR 2009002840 W KR2009002840 W KR 2009002840W WO 2009145576 A2 WO2009145576 A2 WO 2009145576A2
Authority
WO
WIPO (PCT)
Prior art keywords
aldohexose
epimerase
galactose
udp
glucose
Prior art date
Application number
PCT/KR2009/002840
Other languages
French (fr)
Korean (ko)
Other versions
WO2009145576A3 (en
Inventor
김필
엄태국
Original Assignee
주식회사 삼양제넥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양제넥스 filed Critical 주식회사 삼양제넥스
Publication of WO2009145576A2 publication Critical patent/WO2009145576A2/en
Publication of WO2009145576A3 publication Critical patent/WO2009145576A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose

Definitions

  • the present invention relates to aldohexose epimerase, an enzymatic preparation method of aldohexose epimer using the same, and a screening method of aldohexose epimerase. More specifically, the present invention treats an aldohexose epimer by treating an aldohexose such as glucose with an epimerase such as a modified aldohexose epimerase obtained by directional molecular evolution of the wild type UDP-galactose 4-epimerase. It relates to a method for producing enzymatically and a method for screening epimerase enzyme by measuring the activity of aldohexose epimerase.
  • isomerization enzymes of sugars derived from various kinds of microorganisms are actively studied for industrial use.
  • xylose isomerase mainly used in the preparation of high fructose syrup and arabinose isomerase capable of producing tagatose, which is emerging as a functional substitute sweetener
  • the industrial potential of these enzymes is that they can catalyze the interconversion of sugars in addition to the native substrates of xylose and arabinose.
  • general properties of enzymes namely limited substrate specificity and affinity, optimal conditions, etc., are known to be a problem that must be overcome in terms of industrial applications of enzymes.
  • aldohexose epimerases present in nature include UDP-galactose-4-epimerase (EC 5.1.3.2), an epimerizing enzyme of E. coli-derived nucleic acid active substrates.
  • the catalytic site directly involved in the enzymatic activity has a space to recognize UDP to recognize UDP-galactose or UDP-glucose as a substrate and to convert the recognized substrate into UDP-glucose or UDP-galactose. Catalyzes the merization reaction.
  • This natural aldohex epimerase uses only UDP-aldohexose, which is an aldohexose activated form of UDP, as a substrate.
  • aldohexose is used as a substrate.
  • the step of converting to active form and converting UDP-aldohexose which is a product by epimerization back to aldohexose are additionally required.
  • an epimerase enzyme that recognizes aldohexose itself, which is not UDP-active, as a substrate and produces epimer aldohexose
  • food and pharmaceuticals can be efficiently and inexpensively reduced by drastically reducing the additional steps described above.
  • Alohexose used as a raw material can be obtained.
  • epimerase enzymes capable of epimerizing aldohexose itself have not been developed, and in particular, there is no known method for enzymatically preparing galactose, which is a raw material of tagatose, a high value added saccharide from glucose. not.
  • the general method of preparing aldohexose having high added value has a problem of complicated process such as using expensive raw materials or obtaining specific mutants recognized by enzymes present in nature. Therefore, the present inventors have provided an economical method for producing high value-added epimer type aldohexose from low-cost aldohexose as a raw material, for example, an enzymatic method for producing galactose from glucose, thereby providing high-value sugars at low cost. It is intended to enable efficient production.
  • the present invention does not go through a cumbersome process such as converting an inexpensive aldohexose raw material such as glucose into a UDP-active form, and converts the raw material itself into a relatively high value added monosaccharide such as galactose by treating the raw material with an epimerase enzyme.
  • a method for enzymatic preparation of a hexose epimer is provided.
  • the present invention recognizes aldohexose itself, such as glucose, which is not UDP-active, as a substrate by directional molecular evolution of UDP-galactose 4-epimerase, and as its epimer having higher utility by epimerization of the substrate.
  • novel aldohexose epimerases that can be converted.
  • the present invention also measures the amount of NADH produced after reacting a microbial cell lysate of interest with a reaction solution comprising glucose, NAD + , and ⁇ -galactose dehydrogenase, and measuring the amount of wild type UDP-galactose 4- Selecting microorganisms having aldohexose epimerase activity as compared to the amount of NADH produced in the reaction by lysate of control cells with epimerase gene, and obtaining aldohexose epimerase therefrom.
  • the present invention it is possible to provide a simple method for enzymatic preparation of an aldohexose epimer which can convert aldohexose into a relatively high value aldohexose epimer.
  • the present invention also provides an aldohexose epimerase that performs epimerization of aldohexose, such as aldohexose epimerase, for example, by directional molecular evolution, thereby enzymatic preparation of epimeric aldohexose. It can be useful for.
  • the present invention provides a method for screening aldohexose epimerase, so that it is possible to efficiently select industrially useful aldohex epimerase.
  • FIG. 1 schematically shows the evolution of UDP-galactose 4-epimerase (epimerase A) to aldohexose epimerase (epimerase B).
  • FIG. 2 is an HPLC result showing the conversion efficiency of galactose from glucose by aldohexose epimerase selected according to the example.
  • (a) is an HPLC chromatogram of glucose and galactose standards
  • (b) is an HPLC chromatogram showing peaks of galactose detected in the reaction solution by aldohexose epimerase selected according to an embodiment of the present invention.
  • 3 is a graph showing the pH-dependent activity of aldohexose epimerase selected according to an embodiment of the present invention.
  • Figure 4 is a graph showing the activity according to the temperature of aldohexose epimerase selected in accordance with an embodiment of the present invention.
  • UDP-galactose 4-epimerase is understood to refer to an enzyme that recognizes UDP-galactose or UDP-glucose as a substrate and catalyzes epimerization between them.
  • aldohexose refers to any D-aldohexose or L-aldohex that is naturally present or synthesized, such as glucose, allose, altrose, mannose, gulose, idose, galactose, talos. It is interpreted to include a source.
  • aldohexose epimerase refers to an aldohexose such as glucose, allose, altrose, mannose, gulose, idose, galactose, and talos as a substrate to be subjected to epimerization at any carbon position.
  • Enzymes that can be converted into its epimeric type aldohexose by the present invention include all mutated or naturally occurring enzymes, including aldohexose 3-epimerase, aldohexose 4-epimerase and the like. It is interpreted as.
  • the substrate of the aldohexose epimerase may be D-aldohexose or L-aldohexose.
  • One aspect of the present invention is to provide a method for enzymatic preparation of an aldohexose epimer, comprising the step of obtaining an aldohexose epimer by subjecting the aldohexose to an epimerase enzyme to epimerize it.
  • the aldohexose substrate treated with the epimerase enzyme is D-aldohexose or L- selected from the group consisting of glucose, allose, altrose, mannose, gulose, idose, galactose and talos.
  • Aldohexose preferably glucose, most preferably D-glucose.
  • high value-added monosaccharides such as galactose can be prepared by a simple epimerase enzyme treatment process without converting aldohexose such as glucose to UDP-active type.
  • aldohexose epimers can be prepared by treating aldohexose with an epimerase enzyme to C-3 epimerization or C-4 epimerization, preferably C-4 epimerization.
  • the epimerase enzyme treatment is carried out at pH 7 to 10 and at a temperature of 30 to 50 ° C., preferably at pH 8 to 10 and at a temperature of 35 to 40 ° C., most preferably. Is carried out at pH 8.6 and at a temperature of 37 ° C. If the pH is lower than 7 or higher than 10 during enzyme treatment, enzyme degeneration of epimerase may be induced, thereby lowering enzyme activity. In addition, if the temperature is lower than 30 °C the activity of the enzyme is too low, there is a problem that the process is inefficient, if it is higher than 50 °C there is a problem that the protein structure of the enzyme is rapidly changed to show little enzyme activity.
  • the epimerase enzyme according to the present invention is not particularly limited as long as it is an enzyme capable of converting aldohexose into its epimer, and includes all naturally occurring enzymes or enzymes mutated by aromatic molecular evolution.
  • the aldohexose epimerase obtained by directional molecular evolution of the wild type UDP-galactose 4-epimerase.
  • Another aspect of the present invention is to provide an aldohexose epimerase which performs epimerization of aldohexose, preferably epimerization at the carbon position 4.
  • the aldohexose epimerase according to the present invention is not particularly limited as long as it is an enzyme that performs epimerization of aldohexose, and includes enzymes naturally modified by enzymes or aromatic molecular evolution.
  • the aldohexose epimerase obtained by directional molecular evolution of the wild type UDP-galactose 4-epimerase, more preferably aldohexose epimerase having the amino acid sequence of SEQ ID NO: 3.
  • the method of directing directional molecular evolution of wild-type UDP-galactose 4-epimerase is not particularly limited, for example, to a mutagen such as error-prone PCR, chemicals or UV. Treatment, use of mutagenic host cells, or DNA shuffling.
  • Another aspect of the invention comprises the steps of (a) culturing and lysing the microorganism of interest to obtain a microbial cell lysate; And (b) reacting the cell lysate with a reaction solution comprising glucose, NAD + , and ⁇ -galactose dehydrogenase, and measuring the amount of NADH produced, which is then determined using wild type UDP-galactose 4-epimerase. Screening of aldohexose epimerase comprising selecting a microorganism having aldohexose epimerase activity and obtaining aldohexose epimerase therefrom compared to the amount of NADH produced by the control cell lysate having Provide a method.
  • step (a) is a step of obtaining a cell lysate of the microorganism of interest.
  • the microorganism of interest here is not particularly limited as long as the microorganism is expected to have aldohexose epimerase activity, and the microorganism into which the mutated UDP-galactose 4-epimerase gene is introduced or UDP-galactose 4-epi according to the present invention. It may be a microorganism obtained by mutating a microorganism having a merase gene.
  • the gene encoding the mutated UDP-galactose 4-epimerase may be one obtained by artificial mutation of the wild type UDP-galactose 4-epimerase gene or as a result of natural mutation.
  • wild-type UDP-galactose 4-epimerase genes can be used as a template to perform error-prone PCR, treatment with chemicals or mutagens such as UV, DNA shuffling, or the like.
  • the mutated UDP-galactose 4-epimerase gene can be obtained.
  • the mutated UDP-galactose 4-epimerase gene is obtained in vitro and then introduced into the microorganism by a conventional method such as transformation, or a mutant material treatment or homology to a microorganism having a wild-type gene. It may be obtained in microbial cells by applying a technique such as recombination.
  • the mutated UDP-galactose 4-epimerase gene may be transformed into a microorganism in the form of a single or a plurality of mutant genes.
  • a microbial population comprising a plurality of different variant genes may be formed.
  • the microorganism includes prokaryotic and eukaryotic cells, preferably prokaryotic cells.
  • prokaryotic cells preferably prokaryotic cells.
  • E. coli E. coli.
  • the microorganism to be screened is transfected with a UDP-galactose 4-epimerase variant gene library obtained by mutation-induced PCR of a gene encoding a wild type UDP-galactose 4-epimerase into a template.
  • Converted microorganisms preferably E. coli.
  • the UDP-galactose epimerase variant library is composed of variants of wild type UDP-galactose 4-epimerase.
  • the wild type UDP-galactose 4-epimerase may have a nucleotide sequence of SEQ ID NO: 2 derived from E. coli K-12 W3110.
  • Wild type UDP-galactose 4-epimerase (EC 5.1.3.2) has a portion that accommodates UDP at the active site as shown in FIG. 1, but variants selected by directional molecular evolution in accordance with the present invention are UDP Glucose is recognized as a substrate and does not have a recognized site and is converted to galactose.
  • step (b) is carried out by adding the microbial cell lysate obtained in step (a) to a reaction solution containing glucose, NAD + , and ⁇ -galactose dehydrogenase.
  • Aldohexose 4-epimerase activity was measured after addition and the amount of NADH produced was measured and compared to the amount of NADH produced in the reaction with the lysate of control cells with wild type UDP-galactose 4-epimerase. It is to select a microorganism having a.
  • the amount of NADH measured from the microbial cells to be screened in the reaction is increased compared to the control cells, the microbial sample is determined to have aldohexose epimerase activity.
  • the activity of aldohexose epimerase is obtained by adding cell lysate to the reaction solution containing glucose, NAD + , and ⁇ -galactose dehydrogenase, thereby converting glucose into galactose and subsequent galactose. It is assessed by measuring the amount of NADH produced through dehydrogenation of. The amount of NADH can be measured via absorbance at 340 nm.
  • the cell concentration before preparation of the cell lysate used as a source of aldohex epimerase was determined by measurement of absorbance at 600 nm, and the absorbance per unit cell was calculated to estimate specific activity. Can be.
  • aldohexose epimerase activity measured from microbial cells is higher than control compared to aldohexose epimerase activity measured from control microbial cells with wild type UDP-galactose 4-epimerase.
  • the microbial cells showing activity are selected to have variants of UDP-galactose 4-epimerase evolved into aldohexose epimerase.
  • by culturing the microorganisms selected to have aldohexose epimerase activity to purify the aldohexose epimerase, or directly to the source of aldohexose epimerase It can also be used.
  • the present invention also provides aldohexose epimerase obtained by the screening method of the present invention.
  • the aldohexose epimerase may be a glucose epimerase, most preferably glucose 4-epimerase, having a particularly high substrate specificity for glucose.
  • the aldohexose epimerase may have the amino acid sequence of SEQ ID NO: 3.
  • the aldohexose epimerase may be encoded by the nucleotide sequence of SEQ ID NO.
  • the aldohexose epimerase having the amino acid sequence represented by SEQ ID NO: 3 is mutated to Val of Met No. 1 and Arg of 313 compared to the amino acid sequence of UDP-galactose 4-epimerase of the wild type E. coli strain (SEQ ID NO: 1).
  • a nucleotide sequence of SEQ ID NO: 4, wherein the base sequence of SEQ ID NO: 4 is replaced with A of G and 937 C, relative to the nucleotide sequence (SEQ ID NO: 2) of the gene encoding UDP-galactose 4 epimerase of the wild type E. coli strain Substitution with G is included.
  • the aldohexose epimerase is obtained by molecular evolution of UDP-galactose 4 epimerase and the activity assessed by the production of galactose from glucose is 0.02 of wild type UDP-galactose 4 epimerase. mmole / min. 0.1 to 1 mmole / min. mg protein, compared to less than mg protein.
  • the invention also provides a recombinant vector comprising a polynucleotide encoding an aldohexose epimerase according to the invention.
  • vector refers to a DNA construct comprising a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host.
  • Vectors can be plasmids, phage particles, or potential genomic inserts. Once introduced into a suitable host by transformation, the vector can replicate and function independently of the host genome, or can be integrated into the genome.
  • the invention also provides a transformed microorganism obtained by introducing a recombinant vector comprising a polynucleotide encoding an aldohexose epimerase into a host cell selected from the group consisting of bacteria, yeast and fungi.
  • the transforming microorganism may preferably be transformed E. coli.
  • the present invention also cultures a microorganism transformed by a recombinant vector comprising a polynucleotide encoding an aldohexose epimerase, and isolates the aldohexose epimerase from the cultured microorganism or culture medium to aldohexose.
  • a recombinant vector comprising a polynucleotide encoding an aldohexose epimerase, and isolates the aldohexose epimerase from the cultured microorganism or culture medium to aldohexose.
  • the present invention is also directed to epidermalization from aldohexose using an aldohexose epimerase selected by the screening method according to the invention or an enzyme capable of epimerizing aldohexose among naturally occurring enzymes.
  • an aldohexose epimerase selected by the screening method according to the invention or an enzyme capable of epimerizing aldohexose among naturally occurring enzymes.
  • aldohexose epimerase is a form isolated by purification from strain culture selected as having aldohexose epimerase activity by molecular evolution or the cultured strain or strain It may be in the form of a solution of.
  • the aldohexose epimerase may have an amino acid sequence of SEQ ID NO: 3.
  • the epimerization reaction by aldohexose epimerase is carried out at a pH of 7 to 10 and a temperature of 30 to 50 ° C, preferably of a pH of 8 to 10 and a temperature of 35 to 40 ° C. Most preferably at a pH of 8.6 and a temperature of 37 ° C.
  • Mutation-induced PCR using the primers of SEQ ID NOS: 5 and 6 and the Random mutagenesis kit (CloneTech Co.) with a template of the gene galE (SEQ ID NO: 2) encoding UDP-galactose 4-epimerase of E. coli K-12 W3110 was performed to amplify the mutated galE gene at a frequency of about 2.5 mutations / kb.
  • the PCR reaction was performed 25 cycles consisting of 1 minute denaturation at 95 ° C., 30 seconds annealing at 60 ° C. and 1 minute elongation at 72 ° C.
  • the PCR product was treated with the restriction enzymes NcoI and XbaI and ligated to pTrc99A (GenBank U13872, AP Biotech. Co.) treated with the same restriction enzyme to prepare a recombinant vector.
  • the recombinant vector was mixed with competent E. coli DH5 ⁇ prepared for transformation, and the vector was introduced by applying a current for 5 seconds under a voltage of 2.5 kV with an electroporator (Gene Pulser, Bio-Rad). Transformed Escherichia coli was prepared and transformed Escherichia coli was selected by smearing in LB medium containing 20 ⁇ g / ml ampicillin. Thus, the recombinant vector was introduced into E. coli DH5 ⁇ to prepare a gene library consisting of variants of the mutated UDP-galactose 4-epimerase gene.
  • aldohexose 4-epimerase activity of aldohexose 4-epimerase was screened for screening for aldohexose 4-epimerase from the UDP-galactose 4-epimerase variant library prepared in Example 1.
  • E. coli DH5 ⁇ from the library prepared in Example 1 was plated in LB (Luria Bertani) plate medium containing ampicillin (20 ⁇ g / mL) and incubated at 37 ° C. for 16 hours to obtain colonies. The obtained colonies were transferred to a master plate and used for measuring enzymatic activity as follows.
  • Buffer A (20 ⁇ l 10 mM glucose + 0.3 mM NAD + 20 ⁇ l + ⁇ -galactose dehydrogenase (0.35U) 1 ⁇ l + Tris-HCl (50 mM, pH 8.6) 109 ⁇ l) was added.
  • Absorbance (A2) was measured at 340 nm.
  • absorbance (A3) was measured again at 340 nm, and from this, the activity per cell per unit time of aldohexose 4-epimerase was determined as (A3-A2) / A1 / 20. Calculated in minutes.
  • Aldohexose 4-epimerase activity was measured in 940 colonies as described above, and clones showing higher activity than the control group were selected as compared to the activity obtained from the control group consisting of E. coli DH5 ⁇ containing wild type galE. .
  • Dog clones were selected. The highest activity by the selected clones was 1 mmole galactose / min.mg protein.
  • Colonies selected in Example 2 were suspended in lysis buffer (Triton-X100 0.05 mM) to obtain cell lysates containing crude enzyme.
  • the cell lysate was added to a 30 mM glucose solution in Tris-HCl (pH 8.6) to 10% (v / v), and the prepared reaction solution was placed in a 1 mL vial and maintained at 37 ° C for 30 minutes. Thereafter, the vial was put on ice to stop the reaction. 10 ⁇ l of the reaction solution was injected into HPLC (Waters) equipped with an Aminex-87P column (Bio-Rad) and a refractive index (RI) detector. In the HPLC analysis, distilled water, which is a mobile phase, was flowed at a rate of 0.6 ml / min, and the column temperature was maintained at 85 ° C. to obtain a chromatogram as shown in FIG. 2.
  • Example 2 Of the clones selected in Example 2, three of the highest activity were selected and the aldohexose 4-epimerase was separated therefrom, and the base sequence and amino acid sequence were analyzed. As a result, the amino acid sequence and base sequence of the aldohexose 4-epimerase isolated from the strain showing the highest activity were identified by SEQ ID NO: 3 and 4, respectively.
  • the amino acid sequence of SEQ ID NO: 3 confirmed in the present Example is a variation of Met No. 1 to Val and 313 Arg to Gly compared to the amino acid sequence of UDP-galactose 4-epimerase of the wild type E. coli strain (SEQ ID NO: 1)
  • the nucleotide sequence of SEQ ID NO: 4 is replaced with G of No. 1 A and G of 937 C with respect to the nucleotide sequence (SEQ ID NO: 2) of the gene encoding UDP-galactose 4 epimerase of the wild type E. coli strain Included.
  • Example 2 Three clones showing the highest activity among the clones selected in Example 2 were selected to determine the optimal pH for the activity of the aldohexose 4-epimerase.
  • the measurement of aldohexose 4-epimerase activity was carried out by the method described in Example 2 except that the buffer was changed depending on pH. 50 mM phosphate-NaOH buffer at pH 7-8, 50 mM Tris-HCl at pH 8-9 and 50 mM borate-NaOH buffer at pH 9-10 were used. Specifically, 1 mM of the reaction solution was prepared by adding 50 mM glucose and 10% (v / v) of the enzyme solution derived from the clones selected above to each pH buffer to induce an epimerization reaction, and then in the reaction solution. 100 ⁇ l was mixed with 900 ⁇ l pH 8.6 Tris-HCl buffer, NAD + , 1 unit of galactose dehydrogenase to determine the amount of galactose formed in the reaction solution.
  • clone 1 black circle
  • clone 2 square
  • Clone 3 triangle
  • Galactose one of relatively high value added monosaccharides, can be prepared by decomposing expensive raw materials, lactose, which are generally components of milk. Theoretically, it is possible to prepare UDP-galactose by using UDP-galactose epimerase by attaching UDP to glucose and then removing UDP.
  • this method has a disadvantage in that the process of attaching and detaching the UDP is very cumbersome, and the use of expensive UDP increases the process cost, making it difficult to realize in reality.
  • a method of preparing aldohexose is complicated, such as using an expensive raw material or obtaining a specific variant that can be recognized by an enzyme present in nature.
  • the present invention provides an economical method for producing high value-added epimeric aldohexose from inexpensive aldohexose, for example, an enzymatic method for producing galactose from glucose, thereby providing high value sugars at low cost.
  • Industrial utility is very high because it can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to an aldohexose epimerase, an enzymatic preparation method of aldohexose epimer using the same, and a screening method of aldohexose epimerase.

Description

알도헥소오스 에피머라아제 및 이를 이용한 알도헥소오스 에피머의 효소적 제조 방법Aldohexose epimerase and enzymatic preparation method of aldohexose epimer using the same
본 발명은 알도헥소오스 에피머라아제, 이를 이용한 알도헥소오스 에피머의 효소적 제조 방법, 및 알도헥소오스 에피머라아제의 스크리닝 방법에 관한 것이다. 보다 구체적으로, 본 발명은 야생형 UDP-갈락토스 4-에피머라아제의 방향성 분자 진화에 의하여 얻어진 변이 알도헥소오스 에피머라아제와 같은 에피머라아제로 글루코스와 같은 알도헥소오스를 처리하여 알도헥소오스 에피머를 효소적으로 제조하는 방법 및 알도헥소오스 에피머라아제의 활성 측정에 의한 에피머라아제 효소의 스크리닝 방법에 관한 것이다.The present invention relates to aldohexose epimerase, an enzymatic preparation method of aldohexose epimer using the same, and a screening method of aldohexose epimerase. More specifically, the present invention treats an aldohexose epimer by treating an aldohexose such as glucose with an epimerase such as a modified aldohexose epimerase obtained by directional molecular evolution of the wild type UDP-galactose 4-epimerase. It relates to a method for producing enzymatically and a method for screening epimerase enzyme by measuring the activity of aldohexose epimerase.
최근 국제유가의 급격한 상승 및 유류 자원의 고갈에 따라 유한한 화석원료를 보다 저렴하고 무한한 생물에너지로 대체사용하고자 하는 노력이 나타나고 있다. 특히 유럽을 중심으로 바이오디젤, 바이오에탄올에 대한 수요급증과 중국경제의 팽창에 따른 원재료 품귀현상, 전략적 비축유의 최고 30%를 바이오에탄올로 전환하려는 미국의 정책, 식량 및 에너지의 무기화 경쟁 등 복합적 원인으로 인해 전반적인 곡물가격이 동반 상승하는 추세이다. 따라서, 글루코스 등 값싼 원재료로부터 갈락토스, 타가토스 등 상대적으로 부가가치가 높은 단당류를 생산할 수 있는 기술이 요구된다. Recently, due to the rapid increase in international oil prices and exhaustion of oil resources, efforts have been made to replace finite fossil raw materials with cheaper and infinite bioenergy. In particular, a combination of high demand for biodiesel and bioethanol, particularly in Europe, the shortage of raw materials due to the expansion of the Chinese economy, and the US policy to convert up to 30% of strategic reserve oil into bioethanol, and competition for weaponization of food and energy. Overall grain prices are on the rise. Therefore, there is a need for a technique capable of producing relatively high value added monosaccharides such as galactose and tagatose from cheap raw materials such as glucose.
당류 전환 기술의 하나로서 현재 다양한 종류의 미생물로부터 유래된 당의 이성화 효소가 산업적으로 이용되기 위해 활발하게 연구되고 있다. 예를 들면, 고과당 시럽의 제조에 주로 이용되는 자일로스 이성화효소와 기능성 대체 감미료로 대두되고 있는 타가토스의 생산이 가능한 아라비노스 이성화효소가 대표적이다. 이와 같은 효소의 산업적 잠재력은 본래의 기질인 자일로스와 아라비노스 외에 다양한 종류의 당의 상호전환반응을 촉매할 수 있다는 것이다. 그러나, 오랜 기간에 걸친 자연 진화의 결과로서 효소가 갖는 일반적인 특성, 즉 제한된 기질특이성과 친화도, 최적조건 등은 효소의 산업적 활용이라는 측면에서 반드시 극복해야 할 문제점으로 알려져 있다.As one of the sugar conversion techniques, isomerization enzymes of sugars derived from various kinds of microorganisms are actively studied for industrial use. For example, xylose isomerase mainly used in the preparation of high fructose syrup and arabinose isomerase capable of producing tagatose, which is emerging as a functional substitute sweetener, are typical. The industrial potential of these enzymes is that they can catalyze the interconversion of sugars in addition to the native substrates of xylose and arabinose. However, as a result of natural evolution over a long period of time, general properties of enzymes, namely limited substrate specificity and affinity, optimal conditions, etc., are known to be a problem that must be overcome in terms of industrial applications of enzymes.
천연에 존재하는 알도헥소오스 에피머라아제의 예로 대장균 유래 핵산 활성형 기질의 에피머화 효소인 UDP-갈락토스-4-에피머라아제(EC 5.1.3.2)를 들 수 있다. 상기 효소의 경우, 효소 활성에 직접 관여하는 촉매 부위는 UDP를 인식하는 공간을 가져서, UDP-갈락토스 또는 UDP-글루코스를 기질로 인식하고, 인식된 기질을 UDP-글루코스 또는 UDP-갈락토스로 전환시키는 에피머화 반응을 촉매한다. 이와 같은 천연의 알도헥소오스 에피머라아제는 UDP에 의해 활성화된 형태의 알도헥소오스인 UDP-알도헥소오스 만을 기질로 이용하므로, 이를 이용하여 알도헥소오스를 생산하기 위해서는 기질인 알도헥소오스를 UDP-활성형으로 전환시키는 단계와 에피머화에 의한 생성물인 UDP-알도헥소오스를 다시 알도헥소오스로 전환시키는 단계가 부가적으로 요구된다는 단점이 있다.Examples of aldohexose epimerases present in nature include UDP-galactose-4-epimerase (EC 5.1.3.2), an epimerizing enzyme of E. coli-derived nucleic acid active substrates. In the case of the enzyme, the catalytic site directly involved in the enzymatic activity has a space to recognize UDP to recognize UDP-galactose or UDP-glucose as a substrate and to convert the recognized substrate into UDP-glucose or UDP-galactose. Catalyzes the merization reaction. This natural aldohex epimerase uses only UDP-aldohexose, which is an aldohexose activated form of UDP, as a substrate. Thus, in order to produce aldohexose using the substrate, aldohexose is used as a substrate. There is an additional disadvantage that the step of converting to active form and converting UDP-aldohexose which is a product by epimerization back to aldohexose are additionally required.
따라서, UDP-활성형이 아닌 알도헥소오스 자체를 기질로 인식하여 에피머 알도헥소오스를 생산하는 에피머라아제 효소가 개발된다면, 상기한 부가적 단계를 획기적으로 줄임으로써 효율적이고 저렴하게 식품 및 의약품 원료로 사용되는 알오헥소오스를 얻을 수 있게 된다. 그러나, 현재까지 알도헥소오스 자체를 에피머화할 수 있는 에피머라아제 효소가 개발되지 못하고 있으며, 특히 글루코스로부터 고부가가치 당류인 타가토스의 원료가 되는 갈락토스 등을 효소적으로 제조하는 방법은 전혀 알려져 있지 않다.Therefore, if an epimerase enzyme is produced that recognizes aldohexose itself, which is not UDP-active, as a substrate and produces epimer aldohexose, food and pharmaceuticals can be efficiently and inexpensively reduced by drastically reducing the additional steps described above. Alohexose used as a raw material can be obtained. However, until now, epimerase enzymes capable of epimerizing aldohexose itself have not been developed, and in particular, there is no known method for enzymatically preparing galactose, which is a raw material of tagatose, a high value added saccharide from glucose. not.
고부가가치를 갖는 알도헥소오스의 일반적인 제조방법은 고가의 원료를 사용하거나 천연에 존재하는 효소가 인식할 수 있는 특정 변이형을 얻어야 하는 등 공정이 복잡하다는 문제가 있다. 따라서, 본 발명자들은 저렴한 알도헥소오스를 원료로 하여 고부가가치의 에피머형 알도헥소오스를 생산하는 경제적인 방법, 예를 들어 글루코스로부터 갈락토스를 생산할 수 있는 효소적 방법을 제공하여 저렴한 비용으로 고부가가치 당의 효율적인 생산을 가능하게 하고자 한다.The general method of preparing aldohexose having high added value has a problem of complicated process such as using expensive raw materials or obtaining specific mutants recognized by enzymes present in nature. Therefore, the present inventors have provided an economical method for producing high value-added epimer type aldohexose from low-cost aldohexose as a raw material, for example, an enzymatic method for producing galactose from glucose, thereby providing high-value sugars at low cost. It is intended to enable efficient production.
본 발명은 글루코스와 같은 값싼 알도헥소오스 원료를 UDP-활성형으로 전환하는 등 번거로운 공정을 거치지 않고, 원료 자체를 에피머라아제 효소로 처리하여 갈락토스와 같이 상대적으로 부가가치가 높은 단당류로 전환하는 간단한 알도헥소오스 에피머의 효소적 제조 방법을 제공한다.The present invention does not go through a cumbersome process such as converting an inexpensive aldohexose raw material such as glucose into a UDP-active form, and converts the raw material itself into a relatively high value added monosaccharide such as galactose by treating the raw material with an epimerase enzyme. Provided is a method for enzymatic preparation of a hexose epimer.
또한, 본 발명은 UDP-갈락토스 4-에피머라아제를 방향성 분자 진화시킴으로써 UDP-활성형이 아닌 글루코스와 같은 알도헥소오스 자체를 기질로 인식하고, 기질의 에피머화에 의해 보다 유용성이 높은 그의 에피머로 전환시킬 수 있는 신규한 알도헥소오스 에피머라아제를 제공한다. In addition, the present invention recognizes aldohexose itself, such as glucose, which is not UDP-active, as a substrate by directional molecular evolution of UDP-galactose 4-epimerase, and as its epimer having higher utility by epimerization of the substrate. Provided are novel aldohexose epimerases that can be converted.
또한, 본 발명은 관심있는 미생물 세포 용해액을 글루코스, NAD+, 및 β-갈락토스 디히드로게나아제를 포함하는 반응액과 반응시킨 후 생성된 NADH의 양을 측정하고, 이를 야생형 UDP-갈락토스 4-에피머라아제 유전자를 갖는 대조군 세포의 용해액에 의한 반응에서 생성된 NADH의 양과 비교하여 알도헥소오스 에피머라아제 활성을 갖는 미생물을 선발하고, 이로부터 알도헥소오스 에피머라아제를 얻는 단계를 포함하는 알도헥소오스 에피머라아제 스크리닝 방법 및 이로부터 선별된 알도헥소오스 에피머라아제를 제공한다. The present invention also measures the amount of NADH produced after reacting a microbial cell lysate of interest with a reaction solution comprising glucose, NAD + , and β-galactose dehydrogenase, and measuring the amount of wild type UDP-galactose 4- Selecting microorganisms having aldohexose epimerase activity as compared to the amount of NADH produced in the reaction by lysate of control cells with epimerase gene, and obtaining aldohexose epimerase therefrom. Provided are aldohexose epimerase screening methods and aldohexose epimerases selected therefrom.
본 발명에 따르면, 알도헥소오스를 상대적으로 부가가치가 높은 알도헥소오스 에피머로 전환할 수 있는 간단한 알도헥소오스 에피머의 효소적 제조 방법을 제공할 수 있다. 또한, 본 발명은 예를 들면 방향성 분자 진화에 의하여 변이된 알도헥소오스 에피머라아제와 같은 알도헥소오스의 에피머화를 수행하는 알도헥소오스 에피머라아제를 제공하여 에피머형 알도헥소오스의 효소적 제법에 유용하게 사용될 수 있게 한다. 또한, 본 발명은 알도헥소오스 에피머라아제를 스크리닝하는 방법을 제공하여, 산업적으로 유용한 알도헥소오스 에피머라아제를 효율적으로 선별할 수 있도록 한다.According to the present invention, it is possible to provide a simple method for enzymatic preparation of an aldohexose epimer which can convert aldohexose into a relatively high value aldohexose epimer. The present invention also provides an aldohexose epimerase that performs epimerization of aldohexose, such as aldohexose epimerase, for example, by directional molecular evolution, thereby enzymatic preparation of epimeric aldohexose. It can be useful for. In addition, the present invention provides a method for screening aldohexose epimerase, so that it is possible to efficiently select industrially useful aldohex epimerase.
도 1은 UDP-갈락토스 4-에피머라아제(에피머라아제 A)의 알도헥소오스 에피머라아제(에피머라아제 B)로의 진화를 개략적으로 도시한 도면이다. FIG. 1 schematically shows the evolution of UDP-galactose 4-epimerase (epimerase A) to aldohexose epimerase (epimerase B).
도 2는 실시예에 따라 선별된 알도헥소오스 에피머라아제에 의한 글루코스로부터 갈락토스의 전환 효율을 보여주는 HPLC 결과이다. (a)는 글루코스와 갈락토스 표준의 HPLC 크로마토그램이고, (b)는 본 발명의 실시예에 따라 선별된 알도헥소오스 에피머라아제에 의한 반응액에서 검출된 갈락토스의 피크를 보여주는 HPLC 크로마토그램이다. FIG. 2 is an HPLC result showing the conversion efficiency of galactose from glucose by aldohexose epimerase selected according to the example. (a) is an HPLC chromatogram of glucose and galactose standards, and (b) is an HPLC chromatogram showing peaks of galactose detected in the reaction solution by aldohexose epimerase selected according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따라 선별된 알도헥소오스 에피머라아제의 pH에 따른 활성을 보여주는 그래프이다. 3 is a graph showing the pH-dependent activity of aldohexose epimerase selected according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따라 선별된 알도헥소오스 에피머라아제의 온도에 따른 활성을 보여주는 그래프이다. Figure 4 is a graph showing the activity according to the temperature of aldohexose epimerase selected in accordance with an embodiment of the present invention.
본 명세서에서, "UDP-갈락토스 4-에피머라아제"는 UDP-갈락토스 또는 UDP-글루코스를 기질로 인식하여, 이들 간의 에피머화를 촉매하는 효소를 지칭하는 것으로 해석된다. As used herein, “UDP-galactose 4-epimerase” is understood to refer to an enzyme that recognizes UDP-galactose or UDP-glucose as a substrate and catalyzes epimerization between them.
본 명세서에서, "알도헥소오스"는 글루코스, 알로스, 알트로스, 만노스, 굴로스, 이도스, 갈락토스, 탈로스와 같이 천연적으로 존재하거나 또는 합성된 모든 D-알도헥소오스 또는 L-알도헥소오스를 포함하는 것으로 해석된다. As used herein, "aldohexose" refers to any D-aldohexose or L-aldohex that is naturally present or synthesized, such as glucose, allose, altrose, mannose, gulose, idose, galactose, talos. It is interpreted to include a source.
본 명세서에서, "알도헥소오스 에피머라아제"는 글루코스, 알로스, 알트로스, 만노스, 굴로스, 이도스, 갈락토스, 탈로스와 같은 알도헥소오스를 기질로 인식하여 임의의 탄소 위치에서 에피머화에 의해 그의 에피머형 알도헥소오스로 전환시킬 수 있는 효소로서 변이된 것 또는 천연적으로 존재하는 효소를 모두 포함하며, 알도헥소오스 3-에피머라아제, 알도헥소오스 4-에피머라아제 등을 포함하는 것으로 해석된다. 알도헥소오스 에피머라아제의 기질은 D-알도헥소오스 또는 L-알도헥소오스일 수 있다.In the present specification, "aldohexose epimerase" refers to an aldohexose such as glucose, allose, altrose, mannose, gulose, idose, galactose, and talos as a substrate to be subjected to epimerization at any carbon position. Enzymes that can be converted into its epimeric type aldohexose by the present invention include all mutated or naturally occurring enzymes, including aldohexose 3-epimerase, aldohexose 4-epimerase and the like. It is interpreted as. The substrate of the aldohexose epimerase may be D-aldohexose or L-aldohexose.
본 발명의 한 면은 알도헥소오스를 에피머라아제 효소로 처리하여 에피머화시킴으로써 알도헥소오스 에피머를 얻는 단계를 포함하는 알도헥소오스 에피머의 효소적 제조 방법을 제공하는 것이다.One aspect of the present invention is to provide a method for enzymatic preparation of an aldohexose epimer, comprising the step of obtaining an aldohexose epimer by subjecting the aldohexose to an epimerase enzyme to epimerize it.
본 발명에 따르면, 에피머라아제 효소로 처리되는 알도헥소오스 기질은 글루코스, 알로스, 알트로스, 만노스, 굴로스, 이도스, 갈락토스 및 탈로스로 구성된 군으로부터 선택되는 D-알도헥소오스 또는 L-알도헥소오스이며, 바람직하기는 글루코스, 가장 바람직하기는 D-글루코스인 것이다.According to the invention, the aldohexose substrate treated with the epimerase enzyme is D-aldohexose or L- selected from the group consisting of glucose, allose, altrose, mannose, gulose, idose, galactose and talos. Aldohexose, preferably glucose, most preferably D-glucose.
본 발명에 따르면, 글루코스와 같은 알도헥소오스를 UDP-활성형으로 전환하지 않고 간단한 에피머라아제 효소 처리 공정에 의하여 갈락토스와 같은 고부가가치 단당류를 제조할 수 있다.According to the present invention, high value-added monosaccharides such as galactose can be prepared by a simple epimerase enzyme treatment process without converting aldohexose such as glucose to UDP-active type.
본 발명에 따르면, 알도헥소오스를 에피머라아제 효소로 처리하여 C-3 에피머화 또는 C-4 에피머화, 바람직하기는 C-4 에피머화시켜 알도헥소오스 에피머를 제조할 수 있다. According to the present invention, aldohexose epimers can be prepared by treating aldohexose with an epimerase enzyme to C-3 epimerization or C-4 epimerization, preferably C-4 epimerization.
알도헥소오스 에피머의 효소적 제조 방법에 있어서, 에피머라아제 효소 처리는 pH 7 내지 10 및 온도 30 내지 50℃, 바람직하게는 pH 8 내지 10 및 온도 35 내지 40℃에서 수행되며, 가장 바람직하게는 pH 8.6 및 온도 37℃에서 수행되는 것이다. 효소 처리시 pH가 7 보다 낮거나 10 보다 높으면 에피머라아제의 효소 변성이 유발되어 효소 활성이 낮아질 수 있다. 또한, 온도가 30℃보다 낮으면 효소의 활성도가 너무 낮아 공정이 비효율적인 문제가 있고, 50℃보다 높으면 효소의 단백질 구조가 급격히 변하여 효소활성을 거의 나타내지 못하는 문제가 있을 수 있다.In the enzymatic preparation of aldohexose epimers, the epimerase enzyme treatment is carried out at pH 7 to 10 and at a temperature of 30 to 50 ° C., preferably at pH 8 to 10 and at a temperature of 35 to 40 ° C., most preferably. Is carried out at pH 8.6 and at a temperature of 37 ° C. If the pH is lower than 7 or higher than 10 during enzyme treatment, enzyme degeneration of epimerase may be induced, thereby lowering enzyme activity. In addition, if the temperature is lower than 30 ℃ the activity of the enzyme is too low, there is a problem that the process is inefficient, if it is higher than 50 ℃ there is a problem that the protein structure of the enzyme is rapidly changed to show little enzyme activity.
본 발명에 따른 에피머라아제 효소는 알도헥소오스를 그의 에피머로 전환할 수 있는 효소라면 특별히 제한되지 않으며, 천연적으로 존재하는 효소 또는 방향성 분자 진화에 의하여 변이된 효소를 모두 포함한다. 바람직하기는, 야생형 UDP-갈락토스 4-에피머라아제의 방향성 분자 진화에 의하여 얻어진 알도헥소오스 에피머라아제를 포함한다.The epimerase enzyme according to the present invention is not particularly limited as long as it is an enzyme capable of converting aldohexose into its epimer, and includes all naturally occurring enzymes or enzymes mutated by aromatic molecular evolution. Preferably, the aldohexose epimerase obtained by directional molecular evolution of the wild type UDP-galactose 4-epimerase.
본 발명의 다른 한 면은 알도헥소오스의 에피머화, 바람직하기는 4번 탄소 위치에서 에피머화를 수행하는 알도헥소오스 에피머라아제를 제공하는 것이다. Another aspect of the present invention is to provide an aldohexose epimerase which performs epimerization of aldohexose, preferably epimerization at the carbon position 4.
본 발명에 따른 알도헥소오스 에피머라아제는 알도헥소오스의 에피머화를 수행하는 효소라면 특별히 제한되지 않으며, 천연적으로 존재하는 효소 또는 방향성 분자 진화에 의하여 변이된 효소를 포함한다. 바람직하기는, 야생형 UDP-갈락토스 4-에피머라아제의 방향성 분자 진화에 의하여 얻어진 알도헥소오스 에피머라아제, 보다 바람직하기는 서열번호 3의 아미노산 서열을 가지는 알도헥소오스 에피머라아제를 포함한다.The aldohexose epimerase according to the present invention is not particularly limited as long as it is an enzyme that performs epimerization of aldohexose, and includes enzymes naturally modified by enzymes or aromatic molecular evolution. Preferably, the aldohexose epimerase obtained by directional molecular evolution of the wild type UDP-galactose 4-epimerase, more preferably aldohexose epimerase having the amino acid sequence of SEQ ID NO: 3.
본 발명에 있어서, 야생형 UDP-갈락토스 4-에피머라아제의 방향성 분자 진화 방법은 특별히 제한되지는 않으며, 예를 들어 변이 유발 PCR(error-prone PCR), 화학물질 또는 UV와 같은 돌연변이 유발 물질로의 처리, 돌연변이 유발 숙주 세포의 이용, 또는 DNA 셔플링에 의한 것일 수 있다.In the present invention, the method of directing directional molecular evolution of wild-type UDP-galactose 4-epimerase is not particularly limited, for example, to a mutagen such as error-prone PCR, chemicals or UV. Treatment, use of mutagenic host cells, or DNA shuffling.
본 발명의 다른 한 면은 (a) 관심있는 미생물을 배양하고 용해시켜 미생물 세포 용해액을 수득하는 단계; 및 (b) 상기 세포 용해액을 글루코스, NAD+, 및 β-갈락토스 디히드로게나아제를 포함하는 반응액과 반응시킨 후 생성된 NADH의 양을 측정하고, 이를 야생형 UDP-갈락토스 4-에피머라아제를 갖는 대조군 세포 용해액에 의해 생성된 NADH의 양과 비교하여 알도헥소오스 에피머라아제 활성을 갖는 미생물을 선발하고 이로부터 알도헥소오스 에피머라아제를 얻는 단계를 포함하는 알도헥소오스 에피머라아제의 스크리닝 방법을 제공한다.Another aspect of the invention comprises the steps of (a) culturing and lysing the microorganism of interest to obtain a microbial cell lysate; And (b) reacting the cell lysate with a reaction solution comprising glucose, NAD + , and β-galactose dehydrogenase, and measuring the amount of NADH produced, which is then determined using wild type UDP-galactose 4-epimerase. Screening of aldohexose epimerase comprising selecting a microorganism having aldohexose epimerase activity and obtaining aldohexose epimerase therefrom compared to the amount of NADH produced by the control cell lysate having Provide a method.
본 발명에 따른 알도헥소오스 에피머라아제의 스크리닝 방법에서, 단계 (a)는 관심있는 미생물의 세포 용해액을 수득하는 단계이다. 여기서 관심있는 미생물은 알도헥소오스 에피머라아제 활성을 가질 것으로 기대되는 미생물이라면 특별히 제한되지 않으며, 본 발명에 따라 변이된 UDP-갈락토스 4-에피머라아제 유전자가 도입된 미생물 또는 UDP-갈락토스 4-에피머라아제 유전자를 갖는 미생물을 변이시켜 얻어진 미생물일 수 있다. 변이된 UDP-갈락토스 4-에피머라아제를 코딩하는 유전자는 야생형 UDP-갈락토스 4-에피머라아제 유전자를 인공 돌연변이시켜 수득되는 것 또는 자연 돌연변이의 결과로 수득된 것일 수도 있다. 예를 들면, 야생형 UDP-갈락토스 4-에피머라아제 유전자를 주형으로 하여 변이 유발 PCR(error-prone PCR)을 수행하거나 화학물질 또는 UV와 같은 돌연변이 유발 물질로 처리하거나 또는 DNA 셔플링(shuffling) 등에 의해 변이된 UDP-갈락토스 4-에피머라아제 유전자를 수득할 수 있다. 또한, 상기 변이된 UDP-갈락토스 4-에피머라아제 유전자는 인 비트로(in vitro)에서 수득된 후 형질전환 등의 통상적인 방법에 의해 미생물에 도입되거나 또는 야생형 유전자를 가진 미생물에 돌연변이 물질 처리 또는 상동 재조합과 같은 기법을 적용하여 미생물 세포 내에서 수득되는 것일 수 있다. In the screening method of aldohexose epimerase according to the present invention, step (a) is a step of obtaining a cell lysate of the microorganism of interest. The microorganism of interest here is not particularly limited as long as the microorganism is expected to have aldohexose epimerase activity, and the microorganism into which the mutated UDP-galactose 4-epimerase gene is introduced or UDP-galactose 4-epi according to the present invention. It may be a microorganism obtained by mutating a microorganism having a merase gene. The gene encoding the mutated UDP-galactose 4-epimerase may be one obtained by artificial mutation of the wild type UDP-galactose 4-epimerase gene or as a result of natural mutation. For example, wild-type UDP-galactose 4-epimerase genes can be used as a template to perform error-prone PCR, treatment with chemicals or mutagens such as UV, DNA shuffling, or the like. The mutated UDP-galactose 4-epimerase gene can be obtained. In addition, the mutated UDP-galactose 4-epimerase gene is obtained in vitro and then introduced into the microorganism by a conventional method such as transformation, or a mutant material treatment or homology to a microorganism having a wild-type gene. It may be obtained in microbial cells by applying a technique such as recombination.
또한, 상기 변이된 UDP-갈락토스 4-에피머라아제 유전자는 단일 또는 복수 개의 변이 유전자의 형태로 미생물로 형질전환될 수 있다. 복수 개의 변이 유전자가 복수의 미생물에 도입되는 경우, 복수 개의 상이한 변이 유전자를 포함하는 미생물 집단이 형성될 수 있다. 상기 미생물은 원핵 세포 및 진핵 세포를 포함하며, 바람직하게는 원핵 세포이다. 상기 미생물의 일 예는 대장균이다. In addition, the mutated UDP-galactose 4-epimerase gene may be transformed into a microorganism in the form of a single or a plurality of mutant genes. When a plurality of variant genes are introduced into a plurality of microorganisms, a microbial population comprising a plurality of different variant genes may be formed. The microorganism includes prokaryotic and eukaryotic cells, preferably prokaryotic cells. One example of the microorganism is E. coli.
본 발명의 한 구체예에서, 스크리닝 대상 미생물은 야생형 UDP-갈락토스 4-에피머라아제를 코딩하는 유전자를 주형으로 변이-유발 PCR을 수행하여 수득된 UDP-갈락토스 4-에피머라아제 변이체 유전자 라이브러리로 형질전환된 미생물, 바람직하게는 대장균일 수 있다. In one embodiment of the invention, the microorganism to be screened is transfected with a UDP-galactose 4-epimerase variant gene library obtained by mutation-induced PCR of a gene encoding a wild type UDP-galactose 4-epimerase into a template. Converted microorganisms, preferably E. coli.
이 때, UDP-갈락토스 에피머라아제 변이체 라이브러리는 야생형 UDP-갈락토스 4-에피머라아제의 변이체들로 구성된다. 상기 야생형 UDP-갈락토스 4-에피머라아제는 대장균 K-12 W3110으로부터 유래된 서열번호 2의 뉴클레오티드 서열을 갖는 것일 수 있다. At this time, the UDP-galactose epimerase variant library is composed of variants of wild type UDP-galactose 4-epimerase. The wild type UDP-galactose 4-epimerase may have a nucleotide sequence of SEQ ID NO: 2 derived from E. coli K-12 W3110.
야생형 UDP-갈락토스 4-에피머라아제(EC 5.1.3.2)는 도 1에 도시된 바와 같이 활성 부위에 UDP를 수용하는 부분을 가지지만, 본 발명에 따라 방향성 분자진화에 의해 선별된 변이체는 UDP를 인식하는 부위를 갖지 않고 글루코스를 기질로 인식하여 이를 갈락토스로 전환시킨다. Wild type UDP-galactose 4-epimerase (EC 5.1.3.2) has a portion that accommodates UDP at the active site as shown in FIG. 1, but variants selected by directional molecular evolution in accordance with the present invention are UDP Glucose is recognized as a substrate and does not have a recognized site and is converted to galactose.
본 발명에 따른 알도헥소오스 에피머라아제의 스크리닝 방법에서, 단계 (b)는 단계 (a)에서 얻어진 미생물 세포 용해액을 글루코스, NAD+, 및 β-갈락토스 디히드로게나아제를 포함하는 반응액에 첨가하여 반응시킨 후 생성된 NADH의 양을 측정하고 이를 야생형 UDP-갈락토스 4-에피머라아제를 갖는 대조군 세포의 용해액에 의한 반응에서 생성된 NADH의 양과 비교하여 알도헥소오스 4-에피머라아제 활성을 갖는 미생물을 선발하는 것이다. 상기 반응에서 스크리닝 대상 미생물 세포로부터 측정된 NADH의 양이 대조군 세포에 비해 증가된 경우, 그 미생물 시료는 알도헥소오스 에피머라아제 활성을 갖는 것으로 판단된다. In the method for screening aldohexose epimerase according to the present invention, step (b) is carried out by adding the microbial cell lysate obtained in step (a) to a reaction solution containing glucose, NAD + , and β-galactose dehydrogenase. Aldohexose 4-epimerase activity was measured after addition and the amount of NADH produced was measured and compared to the amount of NADH produced in the reaction with the lysate of control cells with wild type UDP-galactose 4-epimerase. It is to select a microorganism having a. When the amount of NADH measured from the microbial cells to be screened in the reaction is increased compared to the control cells, the microbial sample is determined to have aldohexose epimerase activity.
본 발명에 따르면, 알도헥소오스 에피머라아제의 활성은 글루코스, NAD+, 및 β-갈락토스 디히드로게나아제를 포함하는 반응액에 세포 용해액을 첨가하여, 글루코스의 갈락토스로의 전환 및 뒤이은 갈락토스의 탈수소화를 통해 생성된 NADH의 양을 측정하는 것으로 평가된다. 상기 NADH의 양은 340 nm에서의 흡광도를 통하여 측정될 수 있다. 또한, 알도헥소오스 에피머라아제의 공급원(source)으로 사용되는 세포 용해액의 제조 전 세포 농도를 600 nm에서의 흡광도 측정으로 결정하여, 단위 세포당 흡광도를 산출하여 비활성(specific activity)을 추정할 수 있다. According to the present invention, the activity of aldohexose epimerase is obtained by adding cell lysate to the reaction solution containing glucose, NAD + , and β-galactose dehydrogenase, thereby converting glucose into galactose and subsequent galactose. It is assessed by measuring the amount of NADH produced through dehydrogenation of. The amount of NADH can be measured via absorbance at 340 nm. In addition, the cell concentration before preparation of the cell lysate used as a source of aldohex epimerase was determined by measurement of absorbance at 600 nm, and the absorbance per unit cell was calculated to estimate specific activity. Can be.
본 발명에 따른 방법에서, 미생물 세포로부터 측정된 알도헥소오스 에피머라아제 활성을 야생형 UDP-갈락토스 4-에피머라아제를 갖는 대조군 미생물 세포로부터 측정된 알도헥소오스 에피머라아제 활성과 비교하여 대조군보다 높은 활성을 보이는 미생물 세포는 알도헥소오스 에피머라아제로 진화된 UDP-갈락토스 4-에피머라아제의 변이체를 갖는 것으로 선별된다. 이 때 알도헥소오스 에피머라아제 활성을 갖는 것으로 선별된 미생물을 배양하여 알도헥소오스 에피머라아제를 정제하거나, 또는 배양된 미생물 또는 배양된 미생물의 용해액을 직접 알도헥소오스 에피머라아제의 공급원으로 이용할 수도 있다. In the method according to the invention, aldohexose epimerase activity measured from microbial cells is higher than control compared to aldohexose epimerase activity measured from control microbial cells with wild type UDP-galactose 4-epimerase. The microbial cells showing activity are selected to have variants of UDP-galactose 4-epimerase evolved into aldohexose epimerase. At this time, by culturing the microorganisms selected to have aldohexose epimerase activity to purify the aldohexose epimerase, or directly to the source of aldohexose epimerase It can also be used.
본 발명은 또한 본 발명의 스크리닝 방법에 의해 수득된 알도헥소오스 에피머라아제를 제공한다. The present invention also provides aldohexose epimerase obtained by the screening method of the present invention.
본 발명의 한 구체예에서, 알도헥소오스 에피머라아제는 글루코스에 대해 특히 높은 기질 특이성을 갖는 글루코스 에피머라아제, 가장 바람직하기는 글루코스 4-에피머라아제일 수 있다. In one embodiment of the invention, the aldohexose epimerase may be a glucose epimerase, most preferably glucose 4-epimerase, having a particularly high substrate specificity for glucose.
본 발명의 한 구체예에서, 알도헥소오스 에피머라아제는 서열번호 3의 아미노산 서열을 가질 수 있다. 상기 알도헥소오스 에피머라아제는 서열번호 4의 뉴클레오티드 서열에 의해 코딩될 수 있다. In one embodiment of the invention, the aldohexose epimerase may have the amino acid sequence of SEQ ID NO: 3. The aldohexose epimerase may be encoded by the nucleotide sequence of SEQ ID NO.
서열번호 3으로 나타나는 아미노산 서열을 갖는 알도헥소오스 에피머라아제는 야생형 대장균 균주의 UDP-갈락토스 4-에피머라아제의 아미노산 서열(서열번호 1) 대비 1번 Met의 Val으로의 변이 및 313번 Arg의 Gly로의 변이를 포함하며, 서열번호 4의 염기 서열은 야생형 대장균 균주의 UDP-갈락토스 4 에피머라아제를 코딩하는 유전자의 염기 서열(서열번호 2) 대비 1번 A의 G로의 치환 및 937번 C의 G로의 치환을 포함한다. The aldohexose epimerase having the amino acid sequence represented by SEQ ID NO: 3 is mutated to Val of Met No. 1 and Arg of 313 compared to the amino acid sequence of UDP-galactose 4-epimerase of the wild type E. coli strain (SEQ ID NO: 1). A nucleotide sequence of SEQ ID NO: 4, wherein the base sequence of SEQ ID NO: 4 is replaced with A of G and 937 C, relative to the nucleotide sequence (SEQ ID NO: 2) of the gene encoding UDP-galactose 4 epimerase of the wild type E. coli strain Substitution with G is included.
본 발명의 한 구체예에서, 알도헥소오스 에피머라아제는 UDP-갈락토스 4 에피머라아제의 분자 진화에 의해 수득되며, 글루코스로부터 갈락토스의 생성으로 평가된 활성이 야생형 UDP-갈락토스 4 에피머라아제의 0.02 mmole/분. mg 단백질 미만에 비해 높은 0.1 내지 1 mmole/분.mg 단백질인 것이다. In one embodiment of the invention, the aldohexose epimerase is obtained by molecular evolution of UDP-galactose 4 epimerase and the activity assessed by the production of galactose from glucose is 0.02 of wild type UDP-galactose 4 epimerase. mmole / min. 0.1 to 1 mmole / min. mg protein, compared to less than mg protein.
본 발명은 또한 본 발명에 따른 알도헥소오스 에피머라아제를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공한다.The invention also provides a recombinant vector comprising a polynucleotide encoding an aldohexose epimerase according to the invention.
본 발명에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 포함하는 DNA 작제물을 의미한다. 벡터는 플라스미드, 파아지(phage) 입자, 또는 잠재적인 게놈 삽입물일 수 있다. 형질전환에 의해 적당한 숙주 내로 도입되면, 벡터는 숙주 게놈과 독립적으로 복제하고 기능하거나, 또는 게놈에 통합될 수 있다. In the present invention, "vector" refers to a DNA construct comprising a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. Vectors can be plasmids, phage particles, or potential genomic inserts. Once introduced into a suitable host by transformation, the vector can replicate and function independently of the host genome, or can be integrated into the genome.
본 발명은 또한 알도헥소오스 에피머라아제를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 세균, 효모 및 균류(fungi)로 구성된 군으로부터 선택된 숙주 세포에 도입하여 수득되는 형질전환 미생물을 제공한다. 본 발명에서, 형질전환 미생물은 바람직하게는 형질전환 대장균일 수 있다.The invention also provides a transformed microorganism obtained by introducing a recombinant vector comprising a polynucleotide encoding an aldohexose epimerase into a host cell selected from the group consisting of bacteria, yeast and fungi. In the present invention, the transforming microorganism may preferably be transformed E. coli.
본 발명은 또한, 알도헥소오스 에피머라아제를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 미생물을 배양하고, 상기 배양된 미생물 또는 배양액으로부터 알도헥소오스 에피머라아제를 분리하여 알도헥소오스 에피머라아제를 생산하는 방법을 제공한다. The present invention also cultures a microorganism transformed by a recombinant vector comprising a polynucleotide encoding an aldohexose epimerase, and isolates the aldohexose epimerase from the cultured microorganism or culture medium to aldohexose. Provided are methods for producing epimerase.
본 발명은 또한, 본 발명에 따른 스크리닝 방법에 의해 선별된 알도헥소오스 에피머라아제 또는 천연적으로 존재하는 효소 중 알도헥소오스를 에피머화할 수 있는 효소를 이용하여 알도헥소오스로부터 에피머화에 의해 그의 에피머형 알도헥소오스를 생산하는 방법을 제공한다. The present invention is also directed to epidermalization from aldohexose using an aldohexose epimerase selected by the screening method according to the invention or an enzyme capable of epimerizing aldohexose among naturally occurring enzymes. Provided are methods for producing epimeric aldohexose thereof.
본 발명에 따른 알도헥소오스 생산방법에서, 알도헥소오스 에피머라아제는 분자 진화에 의해 알도헥소오스 에피머라아제 활성을 갖는 것으로 선별된 균주 배양으로부터 정제에 의해 분리된 형태 또는 상기 배양된 균주 또는 균주의 용해액의 형태일 수 있다. In the aldohexose production method according to the present invention, aldohexose epimerase is a form isolated by purification from strain culture selected as having aldohexose epimerase activity by molecular evolution or the cultured strain or strain It may be in the form of a solution of.
본 발명에 따른 알도헥소오스 생산방법에서, 알도헥소오스 에피머라아제는 서열번호 3의 아미노산 서열을 가질 수 있다. In the aldohexose production method according to the invention, the aldohexose epimerase may have an amino acid sequence of SEQ ID NO: 3.
본 발명에 따른 알도헥소오스 생산방법에서, 알도헥소오스 에피머라아제에 의한 에피머화 반응은 pH 7 내지 10 및 온도 30 내지 50℃, 바람직하게는 pH 8 내지 10 및 온도 35 내지 40℃에서 수행되며, 가장 바람직하게는 pH 8.6 및 온도 37℃에서 수행될 수 있다. In the aldohexose production method according to the present invention, the epimerization reaction by aldohexose epimerase is carried out at a pH of 7 to 10 and a temperature of 30 to 50 ° C, preferably of a pH of 8 to 10 and a temperature of 35 to 40 ° C. Most preferably at a pH of 8.6 and a temperature of 37 ° C.
이하, 실시예를 통해 본 발명을 보다 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명을 한정하는 것으로 해석되어서는 안 된다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to illustrate the invention and should not be construed as limiting the invention.
실시예 1. UDP-갈락토스 4-에피머라아제(EC 5.1.3.2) 유전자의 변이체 라이브러리의 제조Example 1.Preparation of variant libraries of UDP-galactose 4-epimerase (EC 5.1.3.2) gene
대장균 K-12 W3110의 UDP-갈락토스 4-에피머라아제를 코딩하는 유전자 galE(서열번호 2)를 주형으로 서열번호 5 및 6의 프라이머 및 Random mutagenesis 키트(CloneTech Co.)를 이용하여 변이-유발 PCR을 수행하여 약 2.5 돌연변이/kb의 빈도로 돌연변이가 유도된 galE 유전자를 증폭시켰다. PCR 반응은 95℃에서 1분의 변성, 60℃에서 30초의 어닐링 및 72℃에서 1분의 신장으로 구성된 사이클을 25회 수행하였다. 상기 PCR 산물을 제한효소 NcoI 및 XbaI으로 처리하고 이를 동일한 제한효소로 처리한 pTrc99A(GenBank U13872, AP Biotech. Co.)에 라이게이션시켜 재조합 벡터를 제조하였다.Mutation-induced PCR using the primers of SEQ ID NOS: 5 and 6 and the Random mutagenesis kit (CloneTech Co.) with a template of the gene galE (SEQ ID NO: 2) encoding UDP-galactose 4-epimerase of E. coli K-12 W3110 Was performed to amplify the mutated galE gene at a frequency of about 2.5 mutations / kb. The PCR reaction was performed 25 cycles consisting of 1 minute denaturation at 95 ° C., 30 seconds annealing at 60 ° C. and 1 minute elongation at 72 ° C. The PCR product was treated with the restriction enzymes NcoI and XbaI and ligated to pTrc99A (GenBank U13872, AP Biotech. Co.) treated with the same restriction enzyme to prepare a recombinant vector.
상기 재조합 벡터를 형질전환을 위해 준비된 적격(competent) 대장균 DH5α와 혼합한 후, 전기천공장치(electroporator)(Gene Pulser, Bio-Rad)로 2.5 kV의 전압 하에 5초간 전류를 인가하여 상기 벡터가 도입된 형질전환 대장균을 제조하고 암피실린 20㎍/ml를 포함하는 LB 배지에 도말하여 형질전환된 대장균을 선별하였다. 이에 의해, 상기 재조합 벡터를 대장균 DH5α에 도입하여, 변이된 UDP-갈락토스 4-에피머라아제 유전자의 변이체로 구성된 유전자 라이브러리를 제조하였다. The recombinant vector was mixed with competent E. coli DH5α prepared for transformation, and the vector was introduced by applying a current for 5 seconds under a voltage of 2.5 kV with an electroporator (Gene Pulser, Bio-Rad). Transformed Escherichia coli was prepared and transformed Escherichia coli was selected by smearing in LB medium containing 20 μg / ml ampicillin. Thus, the recombinant vector was introduced into E. coli DH5α to prepare a gene library consisting of variants of the mutated UDP-galactose 4-epimerase gene.
실시예 2. 알도헥소오스 4-에피머라아제의 스크리닝Example 2 Screening of Aldohexose 4-Epimerase
본 실시예에서는 상기 실시예 1에서 제조된 UDP-갈락토스 4-에피머라아제 변이체 라이브러리로부터 알도헥소오스 4-에피머라아제를 탐색하기 위해 알도헥소오스 4-에피머라아제의 활성을 측정하여 스크리닝하였다. In this example, the activity of aldohexose 4-epimerase was screened for screening for aldohexose 4-epimerase from the UDP-galactose 4-epimerase variant library prepared in Example 1.
알도헥소오스 4-에피머라아제 활성의 측정Determination of Aldohexose 4-epimerase Activity
실시예 1에서 제조된 라이브러리의 대장균 DH5α를 암피실린(20 ㎍/mL)을 포함하는 LB(Luria Bertani) 평판 배지에 도말하고 37℃에서 16시간 동안 배양하여 콜로니를 수득하였다. 수득된 콜로니를 마스터 플레이트(master plate)로 옮긴 후 하기와 같이 효소활성의 측정을 위해 이용하였다. E. coli DH5α from the library prepared in Example 1 was plated in LB (Luria Bertani) plate medium containing ampicillin (20 μg / mL) and incubated at 37 ° C. for 16 hours to obtain colonies. The obtained colonies were transferred to a master plate and used for measuring enzymatic activity as follows.
먼저, 96 웰 플레이트의 각 웰 당 암피실린 20 ㎍/mL 및 IPTG(Isopropyl-thiogalactoside) 0.1 mM을 포함하는 LB 배지를 50㎕ 첨가하고 각 콜로니를 접종하고 37℃ 인큐베이터에서 3시간 동안 배양한 후 600 nm에서 흡광도(A1)를 측정하였다. 그 후, 세포 용해 완충액(Triton-X 100 0.05 mM)을 10㎕ 첨가하고 37℃에서 15 내지 20분간 정치시켰다. 그 후, 완충액 A(10 mM 글루코스 20㎕ + 0.3 mM NAD+ 20㎕ + β-갈락토스 디히드로게나아제(0.35U) 1㎕ + Tris-HCl(50 mM, pH 8.6) 109㎕) 150 ㎕를 첨가한 후 340 nm에서 흡광도(A2)를 측정하였다. 상기 반응액을 37℃에서 20분간 반응시킨 후 다시 340 nm에서 흡광도(A3)를 측정하고, 이로부터 알도헥소오스 4-에피머라아제의 단위 시간당 세포당 활성을 (A3-A2)/A1/20분으로 계산하였다. First, 50 μl of LB medium containing 20 μg / ml of ampicillin and 0.1 mM of IPTG (Isopropyl-thiogalactoside) per 96 well plate was added, inoculated with each colony, and incubated for 3 hours in a 37 ° C. incubator, followed by 600 nm. Absorbance (A1) was measured at. Thereafter, 10 µl of cell lysis buffer (Triton-X 100 0.05 mM) was added and allowed to stand at 37 ° C for 15 to 20 minutes. Then 150 μl of Buffer A (20 μl 10 mM glucose + 0.3 mM NAD + 20 μl + β-galactose dehydrogenase (0.35U) 1 μl + Tris-HCl (50 mM, pH 8.6) 109 μl) was added. Absorbance (A2) was measured at 340 nm. After reacting the reaction solution at 37 ° C. for 20 minutes, absorbance (A3) was measured again at 340 nm, and from this, the activity per cell per unit time of aldohexose 4-epimerase was determined as (A3-A2) / A1 / 20. Calculated in minutes.
940개의 콜로니를 대상으로 상기와 같이 알도헥소오스 4-에피머라아제 활성을 측정하고, 이를 야생형 galE를 포함하는 대장균 DH5α로 구성된 대조군으로부터 수득된 활성과 비교하여 대조군보다 높은 활성을 보이는 클론을 선별하였다. 대조군인 야생형 galE에 의한 글루코스로부터 갈락토스로의 에피머화 반응의 활성, 즉, 알도헥소오스 4-에피머라아제의 활성은 0.02 mmole/분.mg 단백질 이하였고, 변이체 라이브러리에서 대조군보다 높은 활성을 보이는 32개의 클론을 선별하였다. 상기 선별된 클론에 의한 가장 높은 활성은 1 mmole 갈락토스/분.mg 단백질이었다. Aldohexose 4-epimerase activity was measured in 940 colonies as described above, and clones showing higher activity than the control group were selected as compared to the activity obtained from the control group consisting of E. coli DH5α containing wild type galE. . The activity of epimerization from glucose to galactose, ie, aldohexose 4-epimerase, was less than 0.02 mmole / min.mg protein in the control wild-type galE and was higher than the control in the variant library. Dog clones were selected. The highest activity by the selected clones was 1 mmole galactose / min.mg protein.
실시예 3. 방향성 분자 진화에 의해 수득된 알도헥소오스 4-에피머라아제에 의한 글루코스의 갈락토스로의 전환Example 3 Conversion of Glucose to Galactose by Aldohexose 4-Epimerase Obtained by Directed Molecular Evolution
실시예 2에서 선별된 콜로니를 용해 완충액(Triton-X100 0.05mM)에 현탁시켜 정제되지 않은 효소를 포함하는 세포 용해액을 수득하였다. 상기 세포 용해액을 Tris-HCl(pH 8.6)에 담긴 30 mM 글루코스 용액에 10 %(v/v) 첨가하여 준비된 반응액을 1mL 용량의 바이알에 넣고 37℃에서 30분간 유지시켰다. 그 후, 상기 바이알을 얼음에 넣어 반응을 중단시켰다. 상기 반응액 10㎕를 시료로 Aminex-87P 컬럼(Bio-Rad)과 굴절률(RI) 검출기를 장착한 HPLC(Waters)에 주입하여 분석하였다. 상기 HPLC 분석에서 이동상인 증류수를 0.6 ml/분의 속도로 흘려주고 컬럼의 온도는 85℃로 유지시켜, 도 2와 같은 크로마토그램을 수득하였다. Colonies selected in Example 2 were suspended in lysis buffer (Triton-X100 0.05 mM) to obtain cell lysates containing crude enzyme. The cell lysate was added to a 30 mM glucose solution in Tris-HCl (pH 8.6) to 10% (v / v), and the prepared reaction solution was placed in a 1 mL vial and maintained at 37 ° C for 30 minutes. Thereafter, the vial was put on ice to stop the reaction. 10 μl of the reaction solution was injected into HPLC (Waters) equipped with an Aminex-87P column (Bio-Rad) and a refractive index (RI) detector. In the HPLC analysis, distilled water, which is a mobile phase, was flowed at a rate of 0.6 ml / min, and the column temperature was maintained at 85 ° C. to obtain a chromatogram as shown in FIG. 2.
도 2에 표시된 바와 같이, 상기 반응액의 시료에서 글루코스의 일부가 갈락토스로 전환된 피크가 검출된 반면, 야생형 UDP-갈락토스 4-에피머라아제를 갖는 균주의 용해액을 이용한 대조군에서는 갈락토스의 피크가 검출되지 않았다. As shown in FIG. 2, a peak in which a part of glucose was converted to galactose was detected in a sample of the reaction solution, whereas a peak of galactose was found in the control group using a lysate of a strain having wild-type UDP-galactose 4-epimerase. It was not detected.
실시예 4. 선별된 알도헥소오스 4-에피머라아제의 특성파악Example 4 Characterization of Selected Aldohexose 4-Epimerase
(1) 방향성 분자 진화에 의해 수득된 알도헥소오스 4-에피머라아제의 유전 정보 분석(1) Analysis of genetic information of aldohexose 4-epimerase obtained by directional molecular evolution
실시예 2에서 선별된 클론들 중 가장 높은 활성을 보이는 3개를 선택하여 이들로부터 알도헥소오스 4-에피머라아제를 분리하여 염기 서열 및 아미노산 서열을 분석하였다. 그 결과 가장 높은 활성을 보이는 균주로부터 분리된 알도헥소오스 4-에피머라아제의 아미노산 서열 및 염기서열은 각각 서열번호 3 및 4로 확인되었다.Of the clones selected in Example 2, three of the highest activity were selected and the aldohexose 4-epimerase was separated therefrom, and the base sequence and amino acid sequence were analyzed. As a result, the amino acid sequence and base sequence of the aldohexose 4-epimerase isolated from the strain showing the highest activity were identified by SEQ ID NO: 3 and 4, respectively.
본 실시예에서 확인된 서열번호 3의 아미노산 서열은 야생형 대장균 균주의 UDP-갈락토스 4-에피머라아제의 아미노산 서열(서열번호 1) 대비 1번 Met의 Val으로의 변이 및 313번 Arg의 Gly로의 변이를 포함하며, 서열번호 4의 염기 서열은 야생형 대장균 균주의 UDP-갈락토스 4 에피머라아제를 코딩하는 유전자의 염기 서열(서열번호 2) 대비 1번 A의 G로의 치환 및 937번 C의 G로의 치환을 포함했다. The amino acid sequence of SEQ ID NO: 3 confirmed in the present Example is a variation of Met No. 1 to Val and 313 Arg to Gly compared to the amino acid sequence of UDP-galactose 4-epimerase of the wild type E. coli strain (SEQ ID NO: 1) Wherein, the nucleotide sequence of SEQ ID NO: 4 is replaced with G of No. 1 A and G of 937 C with respect to the nucleotide sequence (SEQ ID NO: 2) of the gene encoding UDP-galactose 4 epimerase of the wild type E. coli strain Included.
(2) 최적 pH 결정(2) determination of optimum pH
실시예 2에서 선별된 클론들 중 가장 높은 활성을 보이는 3개를 선택하여 알도헥소오스 4-에피머라아제의 활성을 위한 최적 pH를 확인하였다. 알도헥소오스 4-에피머라아제 활성의 측정은 pH에 따라 완충액을 달리한 것을 제외하고는 실시예 2에 기재된 방법으로 실시하였다. pH 7-8의 범위에서는 50 mM 인산염-NaOH 완충액, pH 8-9에서는 50 mM Tris-HCl, pH 9-10의 범위에서는 50 mM 붕산염-NaOH 완충액을 사용하였다. 구체적으로, 각각의 pH 완충액에 글루코스 50 mM 및 상기에서 선별된 클론으로부터 유래된 효소액 10%(v/v)를 첨가하여 반응액 1 ml를 준비하여 에피머화 반응을 유도한 후, 상기 반응액 중 100 ㎕를 900 ㎕의 pH 8.6 Tris-HCl 완충액, NAD+, 갈락토스 디히드로게나아제 1 유닛과 혼합하여 반응액에서 형성된 갈락토스의 양을 측정하였다. Three clones showing the highest activity among the clones selected in Example 2 were selected to determine the optimal pH for the activity of the aldohexose 4-epimerase. The measurement of aldohexose 4-epimerase activity was carried out by the method described in Example 2 except that the buffer was changed depending on pH. 50 mM phosphate-NaOH buffer at pH 7-8, 50 mM Tris-HCl at pH 8-9 and 50 mM borate-NaOH buffer at pH 9-10 were used. Specifically, 1 mM of the reaction solution was prepared by adding 50 mM glucose and 10% (v / v) of the enzyme solution derived from the clones selected above to each pH buffer to induce an epimerization reaction, and then in the reaction solution. 100 μl was mixed with 900 μl pH 8.6 Tris-HCl buffer, NAD + , 1 unit of galactose dehydrogenase to determine the amount of galactose formed in the reaction solution.
그 결과, 도 3에 도시된 바와 같이, 클론 1(흑색 원)은 pH 8까지 활성이 급격히 상승하고 그 이후에는 낮은 기울기로 pH 증가에 따라 활성이 증가되는 양상을 보였고, 클론 2(네모) 및 클론 3(세모)은 전반적으로 클론 1보다 낮은 활성을 보이며 pH 8.6에서 최적 활성을 보였다. As a result, as shown in FIG. 3, clone 1 (black circle) showed a sharp increase in activity up to pH 8 and then increased activity with increasing pH with low slope, and clone 2 (square) and Clone 3 (triangle) showed lower overall activity than clone 1 and showed optimal activity at pH 8.6.
(3) 최적 온도 결정 (3) determination of optimum temperature
상기 (2)에서 가장 높은 활성을 보인 클론 1을 대상으로 효소 활성을 위한 최적 온도를 확인하였다. 알도헥소오스 4-에피머라아제 활성의 측정은 반응 온도를 30-50℃로 변화시킨 것을 제외하고는 상기 (2)에 기재된 방법으로 실시하였다. 도 4에 표시된 바와 같이, 최적 온도는 37℃였다.In clone (1) showing the highest activity in the above (2) was confirmed the optimum temperature for the enzyme activity. The measurement of aldohexose 4-epimerase activity was carried out by the method described in (2) above except that the reaction temperature was changed to 30-50 ° C. As shown in Figure 4, the optimum temperature was 37 ° C.
상대적으로 부가가치가 높은 단당류 중 하나인 갈락토스는 일반적으로 우유의 성분인 고가의 원료, 유당을 분해하여 제조될 수 있다. 이론적으로는 글루코스에 UDP를 붙여 UDP-갈락토스 에피머라아제를 이용하여 효소적으로 UDP-갈락토스를 만든 다음, UDP를 제거하는 방법으로 제조하는 것이 가능하다. 그러나, 이 방법은 UDP를 붙이고 다시 떼는 과정이 매우 번거롭고 고가의 UDP 사용이 공정비용을 증가시켜 현실적으로 실현하기 힘든 단점이 있다. 이와 같이 알도헥소오스의 제조방법은 고가의 원료를 사용하거나 천연에 존재하는 효소가 인식할 수 있는 특정 변이형을 얻어야 하는 등 공정이 복잡하다는 문제가 있다. 따라서, 본 발명에서는 저렴한 알도헥소오스로부터 고부가가치의 에피머형 알도헥소오스를 생산하는 경제적인 방법, 예를 들어 글루코스로부터 갈락토스를 생산할 수 있는 효소적 방법을 제공함으로써, 저렴한 비용으로 고부가가치 당을 효율적으로 생산할 수 있게 하므로 산업적 유용성이 매우 높다. Galactose, one of relatively high value added monosaccharides, can be prepared by decomposing expensive raw materials, lactose, which are generally components of milk. Theoretically, it is possible to prepare UDP-galactose by using UDP-galactose epimerase by attaching UDP to glucose and then removing UDP. However, this method has a disadvantage in that the process of attaching and detaching the UDP is very cumbersome, and the use of expensive UDP increases the process cost, making it difficult to realize in reality. As such, there is a problem in that a method of preparing aldohexose is complicated, such as using an expensive raw material or obtaining a specific variant that can be recognized by an enzyme present in nature. Accordingly, the present invention provides an economical method for producing high value-added epimeric aldohexose from inexpensive aldohexose, for example, an enzymatic method for producing galactose from glucose, thereby providing high value sugars at low cost. Industrial utility is very high because it can be produced.

Claims (16)

  1. 알도헥소오스를 에피머라아제 효소로 처리하여 에피머화시킴으로써 알도헥소오스 에피머를 얻는 단계를 포함하는 알도헥소오스 에피머의 효소적 제조 방법.A method of enzymatic preparation of an aldohexose epimer, comprising the step of obtaining an aldohexose epimer by subjecting the aldohexose to an epimerase enzyme to epimerize it.
  2. 제1항에 있어서, 상기 알도헥소오스는 글루코스, 알로스, 알트로스, 만노스, 굴로스, 이도스, 갈락토스 및 탈로스로 구성된 군으로부터 선택되는 알도헥소오스인 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the aldohexose is an aldohexose selected from the group consisting of glucose, allose, altrose, mannose, gulose, idose, galactose, and talos.
  3. 제1항에 있어서, 상기 알도헥소오스는 D-글루코스이고, 상기 알도헥소오스 에피머는 갈락토스인 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the aldohexose is D-glucose and the aldohexose epimer is galactose.
  4. 제1항에 있어서, 상기 에피머화는 알도헥소오스의 C-4 에피머화인 것을 특징으로 하는 제조 방법. The method of claim 1, wherein the epimerization is C-4 epimerization of aldohexose.
  5. 제1항에 있어서, 상기 에피머라아제 효소 처리는 pH 7 내지 10 및 온도 30 내지 50℃에서 수행되는 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the epimerase enzyme treatment is carried out at a pH of 7 to 10 and a temperature of 30 to 50 ℃.
  6. 제1항 내지 제5항 중 어느 하나의 항에 있어서, 상기 에피머라아제 효소는 야생형 UDP-갈락토스 4-에피머라아제의 방향성 분자 진화에 의하여 얻어진 알도헥소오스 에피머라아제인 것을 특징으로 하는 제조 방법.The method according to any one of claims 1 to 5, wherein the epimerase enzyme is an aldohexose epimerase obtained by directional molecular evolution of wild type UDP-galactose 4-epimerase. .
  7. 알도헥소오스의 4번 탄소 위치에서 에피머화를 수행하는 알도헥소오스 에피머라아제.Aldohexose epimerase, which performs epimerization at the carbon position of aldohexose.
  8. 제7항에 있어서, 상기 알도헥소오스 에피머라아제는 UDP-갈락토스 4-에피머라아제의 방향성 분자 진화에 의하여 얻어지는 것을 특징으로 하는 알도헥소오스 에피머라아제.8. The aldohexose epimerase of claim 7, wherein the aldohexose epimerase is obtained by directional molecular evolution of UDP-galactose 4-epimerase.
  9. 제8항에 있어서, 상기 방향성 분자 진화는 변이 유발 PCR(error-prone PCR), 화학물질 또는 UV와 같은 돌연변이 유발 물질로의 처리, 돌연변이 유발 숙주 세포의 이용, 또는 DNA 셔플링에 의하여 이루어지는 것을 특징으로 하는 알도헥소오스 에피머라아제. The method of claim 8, wherein the directional molecular evolution is achieved by error-prone PCR, treatment with chemicals or mutagens such as UV, use of mutagenic host cells, or DNA shuffling. Aldohexose epimerase.
  10. 제8항에 있어서, 상기 알도헥소오스 에피머라아제는 서열번호 3으로 나타나는 아미노산 서열을 가지는 것을 특징으로 하는 알도헥소오스 에피머라아제.The aldohexose epimerase according to claim 8, wherein the aldohexose epimerase has an amino acid sequence represented by SEQ ID NO: 3.
  11. 제7항 내지 제10항 중 어느 하나의 항에 있어서, 상기 알도헥소오스는 글루코스, 알로스, 알트로스, 만노스, 굴로스, 이도스, 갈락토스 및 탈로스로 구성된 군으로부터 선택되는 알도헥소오스인 것을 특징으로 하는 알도헥소오스 에피머라아제.The method according to any one of claims 7 to 10, wherein the aldohexose is aldohexose selected from the group consisting of glucose, allose, altrose, mannose, gulose, idose, galactose and talos. Characterized by aldohexose epimerase.
  12. 제7항 내지 제10항 중 어느 하나의 항에 있어서, 상기 알도헥소오스 에피머라아제는 D-글루코스를 갈락토스로 에피머화하는 것을 특징으로 하는 알도헥소오스 에피머라아제. The aldohexose epimerase according to any one of claims 7 to 10, wherein the aldohexose epimerase epimerizes D-glucose into galactose.
  13. (a) 관심있는 미생물을 배양하고 용해시켜 미생물 세포 용해액을 수득하는 단계; 및 (a) culturing and lysing the microorganism of interest to obtain a microbial cell lysate; And
    (b) 상기 세포 용해액을 글루코스, NAD+, 및 β-갈락토스 디히드로게나아제를 포함하는 반응액과 반응시킨 후 생성된 NADH의 양을 측정하고, 이를 야생형 UDP-갈락토스 4-에피머라아제를 갖는 대조군 세포 용해액에 의해 생성된 NADH의 양과 비교하여 알도헥소오스 에피머라아제 활성을 갖는 미생물을 선발하고 이로부터 알도헥소오스 에피머라아제를 얻는 단계:(b) reacting the cell lysate with a reaction solution comprising glucose, NAD + , and β-galactose dehydrogenase, and then measuring the amount of NADH produced, and determining the wild type UDP-galactose 4-epimerase. Selecting microorganisms having aldohexose epimerase activity as compared to the amount of NADH produced by the control cell lysates with which the aldohexose epimerase is obtained:
    를 포함하는 알도헥소오스 에피머라아제의 스크리닝 방법.Screening method of aldohexose epimerase comprising a.
  14. 제13항에 있어서, 상기 관심있는 미생물은 변이된 UDP-갈락토스 4-에피머라아제 유전자가 도입된 미생물 또는 UDP-갈락토스 4-에피머라아제 유전자를 갖는 미생물을 변이시켜 얻어진 미생물인 것을 특징으로 하는 스크리닝 방법. The method of claim 13, wherein the microorganism of interest is a microorganism obtained by mutating a microorganism into which a mutated UDP-galactose 4-epimerase gene has been introduced or a microorganism having a UDP-galactose 4-epimerase gene. Way.
  15. 제14항에 있어서, 상기 변이는 변이 유발 PCR(error-prone PCR), 화학물질 또는 UV와 같은 돌연변이 유발 물질로의 처리, 돌연변이 유발 숙주 세포의 이용, 또는 DNA 셔플링에 의한 변이인 것을 특징으로 하는 스크리닝 방법. The method of claim 14, wherein the mutation is an error-prone PCR, treatment with a chemical or mutagenesis such as UV, use of a mutagenesis host cell, or a DNA shuffling. Screening method.
  16. 제13항 내지 제15항 중 어느 하나의 항에 기재된 방법에 따라 스크리닝된 알도헥소오스 에피머라아제.An aldohexose epimerase screened according to the method of any one of claims 13-15.
PCT/KR2009/002840 2008-05-30 2009-05-28 Aldohexose epimerase and enzymatic preparation method of aldohexose epimer using the same WO2009145576A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0051104 2008-05-30
KR20080051104 2008-05-30

Publications (2)

Publication Number Publication Date
WO2009145576A2 true WO2009145576A2 (en) 2009-12-03
WO2009145576A3 WO2009145576A3 (en) 2010-03-04

Family

ID=41377798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002840 WO2009145576A2 (en) 2008-05-30 2009-05-28 Aldohexose epimerase and enzymatic preparation method of aldohexose epimer using the same

Country Status (2)

Country Link
KR (1) KR101057873B1 (en)
WO (1) WO2009145576A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006568B1 (en) 2013-06-05 2019-08-14 Cj Cheiljedang Corporation Production method for tagatose
KR101868194B1 (en) * 2013-11-19 2018-06-18 씨제이제일제당 (주) Composition for non-phosphate sugar epimerization comprising sugar epimerase derived from thermophilic bacteria
KR20180111667A (en) 2017-03-31 2018-10-11 씨제이제일제당 (주) A composition for preparing tagatose and Methods for producing tagatose using The Same
EP3604514A4 (en) 2017-03-31 2021-01-20 Cj Cheiljedang Corporation Composition for tagatose production and method for tagatose production using same
EP3604516A4 (en) 2017-03-31 2021-01-20 Cj Cheiljedang Corporation Composition for producing tagatose and production method of tagatose using same
CN114350646B (en) * 2021-12-22 2023-08-29 北京理工大学 UDP-sugar epimerase PsUGE2 and application thereof in synthesis of arabinoside

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582910B1 (en) * 1999-05-28 2003-06-24 Joseph S. Lam WbpP and method for assay of WbpP
US20060075526A1 (en) * 1999-02-10 2006-04-06 Carlson Thomas J UDP-glucose modifiers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9710991D0 (en) 1997-05-28 1997-07-23 Danisco Enzyme

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075526A1 (en) * 1999-02-10 2006-04-06 Carlson Thomas J UDP-glucose modifiers
US6582910B1 (en) * 1999-05-28 2003-06-24 Joseph S. Lam WbpP and method for assay of WbpP

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAMES B. THODEN ET AL.: 'Crystal Structures of the Oxidized and Reduced Forms of UDP- galactose 4-Epimerase Isolated from Escherichia coli.' BIOCHEMISTRY vol. 35, 1996, pages 2557 - 2566 *
JAMES B. THODEN ET AL.: 'Molecular Structures of the S124A, S124T, and S124V Site-Direcd Mutants of UDP-galactose 4-Epimerase from Eschericia coli.' BIOCHEMISTRY vol. 36, 1997, pages 10685 - 10695 *

Also Published As

Publication number Publication date
KR20090125004A (en) 2009-12-03
KR101057873B1 (en) 2011-08-19
WO2009145576A3 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
WO2009145576A2 (en) Aldohexose epimerase and enzymatic preparation method of aldohexose epimer using the same
CN112375750B (en) Glycosyltransferase mutant and method for catalytically synthesizing rebaudioside A by using same
WO2010110599A2 (en) Novel αlpha-neoagarobiose hydrolase, and method for obtaining a monosaccharide using same
CN112159831B (en) Method for preparing nicotinamide mononucleotide
CN110396508B (en) L-pantolactone dehydrogenase derived from Nocardia cyriacetigoorgica and application thereof
KR20150076257A (en) Method for producing d-allose
CN110699373A (en) Uridine diphosphate glucose high-producing strain and application thereof
JP2022544085A (en) Psicose 3-epimerase mutant, genetically engineered fungus for expressing same, immobilized enzyme and immobilization method thereof
CN110396507B (en) L-pantolactone dehydrogenase from Cneubacter physcomitrella
CN106609249B (en) Klebsiella pneumoniae mutant bacteria and its application for producing 1,3- propylene glycol
Taran et al. Enzymatic transglycosylation of natural and modified nucleosides by immobilized thermostable nucleoside phosphorylases from Geobacillus stearothermophilus
CN117535256A (en) Carbonyl reductase and application thereof in synthesis of vitronectin
WO2021135796A1 (en) D-xylulose 4-epimerase, mutant thereof and use thereof
US8137946B2 (en) Recombinant GRAS strains expressing thermophilic arabinose isomerase as an active form and method of preparing food grade tagatose by using the same
CN112921025B (en) Mutant of epimerase, coding gene, amino acid sequence and application thereof
CN110607335A (en) Biosynthesis method of nicotinamide adenine dinucleotide compound
WO2014171635A1 (en) Novel d-sorbitol dehydrogenase and method for producing l-sorbose using same
CN110396506B (en) L-pantolactone dehydrogenase derived from Nocardia asteroids and use thereof
US9005937B2 (en) Dual cofactor specific ribitol dehydrogenase and use thereof
WO2018117773A2 (en) Recombinant strain having modified sugar metabolic pathway and method for screening sugar isomerase using same
Tan et al. Directed evolution of glycosyltransferases by a single-cell ultrahigh-throughput FACS-based screening method
CN117587086B (en) Method for preparing N1-methyl pseudouridine triphosphate
WO2014171636A1 (en) Novel ribitol dehydrogenase and method for preparing l-ribulose using same
CN113462704B (en) Biosynthetic gene cluster of plant cytokinin angustmycin, biological material of biosynthetic gene cluster and application of biosynthetic gene cluster in synthesis of angustmycin
CN116790535A (en) Glycosyltransferase mutant and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09755041

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09755041

Country of ref document: EP

Kind code of ref document: A2