WO2009145311A1 - Catalyst for fluid catalytic cracking of hydrocarbon oil and method of fluid catalytic cracking of hydrocarbon oil with the same - Google Patents

Catalyst for fluid catalytic cracking of hydrocarbon oil and method of fluid catalytic cracking of hydrocarbon oil with the same Download PDF

Info

Publication number
WO2009145311A1
WO2009145311A1 PCT/JP2009/059887 JP2009059887W WO2009145311A1 WO 2009145311 A1 WO2009145311 A1 WO 2009145311A1 JP 2009059887 W JP2009059887 W JP 2009059887W WO 2009145311 A1 WO2009145311 A1 WO 2009145311A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalytic cracking
fluid catalytic
catalyst composition
mass
Prior art date
Application number
PCT/JP2009/059887
Other languages
French (fr)
Japanese (ja)
Inventor
松本 広
誠二郎 野中
福田 盛男
小松 通郎
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to AU2009252242A priority Critical patent/AU2009252242B2/en
Priority to JP2010514560A priority patent/JP5628027B2/en
Publication of WO2009145311A1 publication Critical patent/WO2009145311A1/en

Links

Images

Classifications

    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles

Definitions

  • the present invention provides a fluid catalytic cracking catalyst for hydrocarbon oils having a high bottom resolution and a low coke yield, as well as fluid catalytic cracking of hydrocarbon oils using the same, in which gasoline and light oil fractions are obtained in high yield. Regarding the method.
  • fluidized catalytic cracking of hydrocarbon oils has been developed in order to obtain gasoline in high yield and lower the yield of coke, and fluid catalytic cracking catalysts using silica-based binders such as silica sol as binders have been developed.
  • silica-based binders such as silica sol as binders
  • a fluid catalytic cracking catalyst using a silica-based binder has been required to have higher bottom decomposability.
  • the fluid catalytic cracking catalyst is used so that the resulting product oil has the desired composition (for example, “more gasoline”, “more kerosene fraction”, etc.). I was switching and using it. Moreover, since the composition of the resulting product oil changes when the raw material oil is changed, the fluid catalytic cracking catalyst has been switched so as to obtain the desired composition of the resulting product oil.
  • the desired composition for example, “more gasoline”, “more kerosene fraction”, etc.
  • the mixing ratio (mass ratio) of the first catalyst and the second catalyst gradually changes, and finally the inside of the apparatus is changed from the first catalyst to the second catalyst. It was replaced with. At that time, there were changes in catalyst activity, conversion rate, gasoline yield, etc., but it was thought to be due to newly added catalyst or due to operating conditions of the apparatus.
  • additive catalysts added catalysts
  • these supplement the fluid catalytic cracking catalyst performance eg, NOx removal, SOx removal, metal resistance, octane number improvement, bottom resolution, etc.
  • the gasoline and diesel oil fractions were obtained in high yields, and did not satisfy high bottom resolution and low coke yields.
  • the conventional fluid catalytic cracking catalyst has a problem that a catalyst satisfying any of high gasoline yield, high light oil fraction yield, low coke yield, and high bottom cracking rate has not been developed.
  • the present invention has been made in view of such circumstances, and a gasoline and gas oil fraction can be obtained in a high yield, a high bottom cracking, and a fluid catalytic cracking catalyst for hydrocarbon oil having a low coke yield, and It aims at providing the fluid catalytic cracking method of the used hydrocarbon oil.
  • the gist of the present invention is as follows.
  • a catalyst composition comprising a catalyst composition A containing 10 to 30% by mass of a silica-based binder as zeolite and a binder, and a catalyst composition B containing 10 to 30% by mass of an aluminum compound binder as a binder.
  • the mass of the product A is W A
  • the mass of the catalyst composition B is W B
  • the mass ratio (W A : W B ) is mixed at an arbitrary ratio within the range of 10:90 to 90:10.
  • a fluid catalytic cracking catalyst for hydrocarbon oils is a fluid catalytic cracking catalyst for hydrocarbon oils.
  • the catalyst composition A and the catalyst composition B have a K value represented by the following formula (1) (each K value is represented by “K A ” and “K B ”) of 1 or more.
  • K A each K value is represented by “K A ” and “K B ”) of 1 or more.
  • K B The fluid catalytic cracking catalyst for hydrocarbon oils according to [1].
  • K A : K B 1: 0.5 to 1: 1.5 (3)
  • the K value (K m ) of the fluid catalytic cracking catalyst is higher than the K value (K A ) of the catalyst composition A and the K value (K B ) of the catalyst composition B.
  • a fluid catalytic cracking catalyst for hydrocarbon oils according to any one of [3].
  • the aluminum compound binder is at least one selected from the group consisting of the following (a) to (c): Cracking catalyst.
  • the zeolite contained in the catalyst composition A and the catalyst composition B is one or more of FAU type (faujasite type), MFI type, CHA type, and MOR type, and Any one of [1] to [7], wherein the catalyst composition A and the catalyst composition B each contain the zeolite in a range of 15 to 60% by mass on the basis of the catalyst composition. Fluid catalytic cracking catalyst of hydrocarbon oil.
  • the FAU type zeolite includes hydrogen type Y zeolite (HY), ultrastabilized Y type zeolite (USY), rare earth exchanged Y type zeolite (REY), and rare earth exchanged superstabilized Y type zeolite (REUSY).
  • [8] The fluid catalytic cracking catalyst for hydrocarbon oils according to [8].
  • [10] The fluid contact of the hydrocarbon oil according to any one of [1] to [9], wherein the catalyst composition A and the catalyst composition B contain a clay mineral in addition to the zeolite and the binder Cracking catalyst.
  • [11] A method for fluid catalytic cracking of hydrocarbon oil, wherein the fluid catalytic cracking catalyst for hydrocarbon oil according to any one of [1] to [10] is used.
  • [12] The fluid catalytic cracking method of hydrocarbon oil according to [11], wherein the hydrocarbon oil includes a residual oil.
  • the fluid catalytic cracking catalyst for hydrocarbon oils of the present invention two kinds of catalyst compositions having different oils that can be decomposed, that is, a catalyst composition A containing a silica-based binder and a catalyst composition B containing an aluminum compound binder,
  • a catalyst composition A containing a silica-based binder containing a silica-based binder
  • a catalyst composition B containing an aluminum compound binder containing an aluminum compound binder
  • the raw material oil is a heavy oil containing a large amount of poisoning metals such as vanadium and nickel
  • the alumina contained in the catalyst composition B containing the alumina compound binder is combined with the poisoning metals and detoxified.
  • the catalyst composition A containing the silica-based binder is not easily poisoned by the poisoning metal, and the high gasoline yield and the high light oil fraction yield and the high gasoline yield and the low coke yield are maintained. It is understood that it becomes high bottom decomposition.
  • the hydrocarbon oil fluid catalytic cracking catalyst includes a catalyst composition A containing 10 to 30% by mass of a silica-based binder as a zeolite and a binder, and 10 to 30% by mass as a zeolite and a binder.
  • % Of the aluminum compound binder the mass of the catalyst composition A is W A
  • the mass of the catalyst composition B is W B
  • the mass ratio (W A : W B ) is 10:90 to It is a mixture within the range of 90:10.
  • each catalyst composition will be described in detail.
  • the catalyst when the catalyst is switched from the catalyst containing the silica-based binder to the catalyst containing the aluminum compound binder or vice versa, the other catalyst is gradually added.
  • the mass ratio may be different, but the present invention is different in that a catalyst mixed at a predetermined mass ratio is always added, and the mass ratio of the catalyst composition in the apparatus is kept constant.
  • the catalyst of the present invention is a mixture of catalyst compositions having different binders, which are subjected to fluid catalytic cracking, and an additive catalyst (added catalyst added to supplement the performance of fluid catalytic cracking catalyst) ) Is different.
  • the catalyst composition A is, for example, 15 to 60% by mass of zeolite, preferably 20 to 50% by mass, 10 to 30% by mass of silica-based binder as a binder, preferably 15 to 25% by mass, and the rest excludes zeolite. Contains inorganic oxides.
  • silica-based binder As the silica-based binder, one or more of silica sol, water glass (sodium silicate), and silicate liquid can be used.
  • Silica sol can be prepared from water glass.
  • a silica sol having a SiO 2 concentration of 10 to 15% by mass is prepared by simultaneously adding water glass having a SiO 2 concentration of 12 to 23% by mass and sulfuric acid having a concentration of 20 to 30% by mass simultaneously.
  • ⁇ Zeolite >>
  • the zeolite it is possible to use a zeolite that is usually used as a catalytic cracking catalyst for hydrocarbon oils.
  • FAU type flajasite type.
  • Y type zeolite, X type zeolite, etc. One or more of MFI type (for example, ZSM-5, TS-1 etc.), CHA type (for example, chabasite, SAPO-34 etc.) and MOR type (for example, mordenite, Ca-Q etc.)
  • the FAU type is preferable.
  • the faujasite-type zeolite includes hydrogen-type Y zeolite (HY), ultra-stabilized Y-type zeolite (USY), and rare earth-exchanged Y-type zeolite (REY) in which rare earth metals are supported on HY and USY, respectively, by ion exchange. ), Rare earth exchange ultra-stabilized Y-type zeolite (REUSY).
  • inorganic oxide As inorganic oxides, activated alumina, porous silica, rare earth metal compounds, and metal scavengers (metal trapping agents) can be used in addition to clay minerals such as kaolin.
  • the rare earth metal oxide may be contained in the catalyst composition A so as to be 0.5 to 2.0 mass% as RE 2 O 3 .
  • examples of the rare earth metal include cerium (Ce), lanthanum (La), praseodymium (Pr), neodymium (Nd), and the like, and these can be supported alone or as two or more metal oxides. .
  • ultra-stabilized Y-type zeolite prepared by adding kaolin, porous silica powder, and activated alumina to the silica sol (an example of a silica-based binder) and adjusting the pH to 3 to 5 with 20 to 30% by mass sulfuric acid.
  • Add the slurry to prepare a mixed slurry.
  • the mixed slurry is spray-dried to obtain spherical particles.
  • the obtained spherical particles were washed, further contacted with an aqueous solution of rare earth metal (Rare Earth.RE) chloride, and subjected to ion exchange so that RE 2 O 3 was 0.5 to 2.0% by mass, Dry to obtain catalyst composition A.
  • the average particle size of the obtained catalyst composition A is not particularly limited as long as it can be mixed with the catalyst composition B described later, but is about 60 to 70 ⁇ m.
  • the catalyst composition B is, for example, 15 to 60% by mass of zeolite, preferably 20 to 50% by mass, 10 to 30% by mass of an aluminum compound binder as a binder, preferably 15 to 25% by mass, and the rest excludes zeolite. Contains inorganic oxides.
  • Al compound binder examples include (a) basic aluminum chloride, (b) aluminum biphosphate, and (c) alumina sol.
  • dissolved any 1 or 2 or more of crystalline aluminas, such as a dibsite, a bayerite, and a boehmite, in an acid solution can also be used.
  • the heavy aluminum phosphate is also called aluminum dihydrogen phosphate or primary aluminum phosphate, and is represented by Al (H 2 PO 4 ) 3 .
  • the alumina sol can be produced, for example, by adjusting the pH of pseudo boehmite type alumina with an acid.
  • ⁇ Zeolite and inorganic oxide >> About the zeolite and inorganic oxide which are used for the catalyst composition B, the thing similar to the above-mentioned catalyst composition A can be used, About those content, it can prepare similarly to the catalyst composition A.
  • kaolin, activated alumina, and USY slurry are added to a basic aluminum chloride solution (an example of an aluminum compound binder) having an Al 2 O 3 concentration of 20 to 25% by mass, and the slurry concentration is 35 to 45%.
  • a mixed slurry is prepared.
  • the mixed slurry is spray-dried to obtain spherical particles.
  • the spherical particles are washed, further contacted with a rare earth metal chloride aqueous solution to perform ion exchange so that the RE 2 O 3 content is 0.5 to 2.0% by mass, and then dried to obtain a catalyst composition B.
  • the average particle diameter of the obtained catalyst composition B is not particularly limited, but is about 60 to 70 ⁇ m.
  • Fluid catalytic cracking catalyst of the present invention, a catalyst composition A and the catalyst composition B, the weight of the catalyst composition A and W A, the weight of the catalyst composition B as W B, the mass ratio (W A: W B ) was mixed within the range of 10:90 to 90:10, and when the mass ratio of each catalyst composition was outside the predetermined range, each catalyst composition was used alone for fluid catalytic cracking. The difference from the case becomes small, and it becomes difficult to obtain a clear effect.
  • the mixing ratio (mass ratio) of the catalyst composition A and the catalyst composition B is such that the cracked product (particularly gasoline, LCO) obtained by cracking hydrocarbon oil with the present fluid catalytic cracking catalyst has a desired composition. (Yield) should be determined.
  • Fluid catalytic cracking method In fluid catalytic cracking using the fluid catalytic cracking catalyst of the present invention, the usual fluid catalytic cracking conditions of hydrocarbon oil can be employed, and for example, the conditions described below can be suitably employed.
  • a normal hydrocarbon feedstock such as hydrodesulfurization vacuum distillation gas oil (DSVGO) or vacuum distillation gas oil (VGO) can be used, and further, atmospheric distillation residue oil.
  • DSVGO hydrodesulfurization vacuum distillation gas oil
  • VGO vacuum distillation gas oil
  • AR atmospheric distillation residue oil
  • VR vacuum distillation residue oil
  • DSAR desulfurization atmospheric distillation residue oil
  • DSVR desulfurization vacuum distillation residue oil
  • DAO deasphaltenic oil
  • a single material or a mixture thereof can be used.
  • a residual oil containing 0.5 ppm or more of nickel and vanadium can be treated, and a residual oil catalytic cracking apparatus (Resid FCC) that uses the residual oil alone as a raw material oil.
  • RFCC residual oil catalytic cracking apparatus
  • nickel and vanadium in the residual oil adhere to the catalyst and the activity is reduced.
  • vanadium and nickel are Even if the residual oils containing 0.5 ppm or more are treated, excellent catalyst performance can be maintained.
  • the fluid catalytic cracking catalyst of the present invention can maintain the catalytic performance even when vanadium and nickel are contained in an amount of 300 ppm or more.
  • the upper limits of vanadium and nickel contained in the fluid catalytic cracking catalyst of the present invention are each about 10000 ppm.
  • reaction temperature when catalytically cracking the above hydrocarbon feedstock is preferably in the range of 470 to 550 ° C.
  • reaction pressure is generally in the range of about 1 to 3 kg / cm 2 .
  • the mass ratio of catalyst / oil is preferably in the range of 2.5 to 7.0, and the contact time is preferably in the range of 10 to 60 hr ⁇ 1 .
  • ⁇ K value >> K value is the mass of kerosene oil fraction (LCO) and heavy oil fraction (HCO), which are fractions higher than the boiling point of gasoline (about 30-220 ° C) by catalytic cracking of the feedstock oil by the method described above.
  • the conversion rate can be obtained from the mass of the raw material oil by the equation (2) and can be obtained from the conversion rate by the equation (1).
  • the K values (K A and K B ) of the catalyst composition A and the catalyst composition B are 1 or more (that is, conversion rate 50% or more), preferably 1.5 or more (that is, conversion rate 60%). Above, more preferably 2.3 or more (that is, conversion 70% or more).
  • the K value of the catalyst composition A and the catalyst composition B is less than 1 (that is, the conversion rate is less than 50%), the yield of gasoline or LCO is low, which is not practical.
  • the catalyst composition K values of A and catalyst composition B K A: K B is 1: 0.5 to 1: 1.5, preferably 1: 0.8-1: 1.2, more preferably 1: 0.9 to 1: 1.1 is preferable.
  • the K value (K m ) of the fluid catalytic cracking catalyst is preferably higher than the K value (K A ) of the catalyst composition A and the K value (K B ) of the catalyst composition B.
  • Gasoline yield G >> Gasoline yield G m of fluid catalytic cracking catalyst is higher is preferred than the gasoline yield G B gasoline yield G A and the catalyst composition B of the catalyst composition A.
  • the gasoline yield is calculated from the mass of gasoline obtained by catalytically cracking the feedstock by the above-described method and the mass of the feedstock.
  • the fluid catalytic cracking catalyst of the present invention tends to have a higher LCO yield than that of the catalyst composition A and the catalyst composition B alone, and conversely, the hydrogen yield, the C1 + C2 yield, the LPG yield. , HCO yield, and coke yield tend to be low. That is, the fluid catalytic cracking catalyst of the present invention tends to increase the yield of liquid fuel such as gasoline and LCO as compared with the catalyst composition A and the catalyst composition B alone, but gas, heavy oil, coke, etc. Yield tends to be low.
  • silica binder "Catalyst composition A 1" 2941 g of water glass having a SiO 2 concentration of 17% by mass and 1059 g of sulfuric acid having a concentration of 25% by mass are continuously added simultaneously to prepare 4000 g of silica sol (an example of a silica-based binder) having a SiO 2 concentration of 12.5% by mass. did. 800 g of kaolin, 175 g of porous silica powder, and 250 g of activated alumina are added to this silica sol on a dry basis, and 800 g of ultra-stabilized Y-type zeolite (USY) slurry adjusted to pH 3.9 with 25% by mass sulfuric acid is added and mixed. A slurry was prepared. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 ⁇ m.
  • silica sol an example of a silica-based binder
  • the obtained spherical particles were washed, and further contacted with an aqueous solution of rare earth metal (Rare Earth.RE) chloride (including cerium and lanthanum chlorides, the same applies hereinafter) to give 1.0% by mass as RE 2 O 3.
  • Rare Earth.RE rare earth metal
  • the catalyst composition A 1 was prepared by drying with a dryer at 135 ° C.
  • the composition of the catalyst composition A 1 is 20% by mass of SiO 2 derived from silica sol, 32% by mass of kaolin, 7% by mass of SiO 2 derived from porous silica powder, 10% by mass of activated alumina, and 30% by mass of USY. Met.
  • Table 1 shows properties of the catalyst composition A 1 .
  • "Catalyst composition A 2" 2941 g of water glass having a SiO 2 concentration of 17% by mass and 1059 g of sulfuric acid having a concentration of 25% by mass are continuously added simultaneously to prepare 4000 g of silica sol (an example of a silica-based binder) having a SiO 2 concentration of 12.5% by mass. did.
  • catalyst composition A 2 The obtained spherical particles were washed and then dried with a dryer at 135 ° C. to prepare catalyst composition A 2 .
  • Catalyst composition A 3 800 g of kaolin, 175 g of porous silica powder, and 250 g of activated alumina were added to 2941 g of water glass (an example of a silica-based binder) having a SiO 2 concentration of 17% by mass, and further adjusted to pH 3.9 with 25% by mass sulfuric acid. 800 g of ultra-stabilized REY-type zeolite (REUSY) slurry was added as a Y-type zeolite to prepare a mixed slurry. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 ⁇ m.
  • REUSY REY-type zeolite
  • catalyst composition A 3 The obtained spherical particles were washed and then dried with a dryer at 135 ° C. to prepare catalyst composition A 3 .
  • This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 ⁇ m.
  • the spherical particles were washed and further contacted with an aqueous rare earth metal chloride solution to exchange ions so that the RE 2 O 3 was 1.0% by mass.
  • the composition of the obtained catalyst composition B 1 was 14% by mass of Al 2 O 3 derived from the basic aluminum chloride solution, 41% by mass of kaolin, 13% by mass of activated alumina, and 32% by mass of USY. Also shows the properties of the catalyst composition B 1 in Table 2.
  • Catalyst composition B 2 To 1201 g of a basic aluminum chloride solution (an example of an aluminum compound binder) having an Al 2 O 3 concentration of 23.3 mass%, 840 g of kaolin, 260 g of activated alumina, and 640 g of REUSY slurry as Y-type zeolite are added, and the slurry concentration is 43. % Mixed slurry was prepared. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 ⁇ m. After washing the spherical particles, to prepare a catalyst composition B 2 and dried at 135 ° C. The dryer. Here, the properties of the catalyst composition B 2 in Table 2.
  • Catalyst composition B 3 An alumina sol (an example of an aluminum compound binder) was prepared by adding pH 3.0 to 63% nitric acid in 2400 g of an aqueous pseudoboehmite type alumina (Catapal-A manufactured by Sasol) having an Al 2 O 3 concentration of 12.5% by mass. To this alumina sol, 840 g of kaolin, 260 g of activated alumina, and 640 g of REUSY slurry as Y-type zeolite were added to prepare a mixed slurry having a slurry concentration of 43%. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 ⁇ m.
  • the spherical particles were calcined at 600 ° C. with an electric furnace to prepare catalyst composition B 3 .
  • Catalyst composition B 4" To 1723 g of 17.4 mass% aluminum biphosphate solution (an example of an aluminum compound binder), 840 g of kaolin, 260 g of activated alumina, and 640 g of REUSY slurry as Y-type zeolite are added, and a mixed slurry having a slurry concentration of 43% is obtained. Prepared. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 ⁇ m. The spherical particles were calcined at 600 ° C. in an electric furnace to prepare catalyst composition B 4 .
  • the catalyst composition A 1 was fluidized catalytic cracking catalyst 4.
  • the catalyst composition B 1 was designated as fluid catalytic cracking catalyst 5.
  • the fluid catalytic cracking catalysts 1 to 5 were subjected to catalytic cracking reaction tests using the pilot reaction test apparatus (manufactured by ARCO) under the same feedstock and the same reaction conditions.
  • the pilot reaction test apparatus is a circulating fluidized bed in which a catalyst circulates in the apparatus and alternately repeats reaction and catalyst regeneration, and imitates a fluid catalytic cracking apparatus used on a commercial scale.
  • cyclic metal deposition is performed so that the fluid catalytic cracking catalysts 1 to 5 contain 4000 mass ppm of vanadium octylate as V and 2000 mass ppm of nickel octylate as Ni on a mass basis.
  • Pretreatment was performed by (cyclic metal deposition. CMD) method.
  • the CMD method refers to impregnating a small amount of vanadium and nickel into a fluid catalytic cracking catalyst and regenerating the fluid catalytic cracking catalyst at a high temperature, so that vanadium and nickel are added to the fluid catalytic cracking catalyst at a target concentration.
  • Example 3 A 2 -B 3 >> (Example 7: Catalyst 11) The catalyst composition A 2 and the catalyst composition B 3 were mixed so that the mass ratio was 70:30 on a dry basis to prepare a fluid catalytic cracking catalyst 11. (Example 8: Catalyst 12) Catalyst composition A 2 and catalyst composition B 3 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 12. (Example 9: Catalyst 13) Catalyst composition A 2 and catalyst composition B 3 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 13.
  • Example 4 A 2 -B 4 >> (Example 10: Catalyst 15) Catalyst composition A 2 and catalyst composition B 4 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 15. (Example 11: Catalyst 16) Catalyst composition A 2 and catalyst composition B 4 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 16. (Example 12: Catalyst 17) Catalyst composition A 2 and catalyst composition B 4 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 17.
  • Example 5 A 3 -B 2 >> (Example 13: Catalyst 19) Catalyst composition A 3 and catalyst composition B 2 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 19. (Example 14: Catalyst 20) Catalyst composition A 3 and catalyst composition B 2 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 20. (Example 15: Catalyst 21) Catalyst composition A 3 and catalyst composition B 2 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 21.
  • Test Example 6 The fluid catalytic cracking catalysts 14 and 22 and 23 to 25 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 9 shows the reaction results. As shown in Table 9, in the catalysts 23 to 25, “gasoline” and “LCO” were obtained in a high yield and “HCO” and “coke” were obtained in a low yield for each calculated value. .
  • Example 7 A 3 -B 4 >> (Example 19: Catalyst 26) Catalyst composition A 3 and catalyst composition B 4 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 26. (Example 20: Catalyst 27) Catalyst composition A 3 and catalyst composition B 4 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 27. (Example 21: Catalyst 28) A catalyst composition A 3 and the catalyst composition B 4, the mass ratio on a dry basis are mixed so that the 30:70, to prepare a fluid catalytic cracking catalyst 28.
  • Test Example 7 The fluid catalytic cracking catalysts 18 and 22 and 26 to 28 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 10 shows the reaction results. As shown in Table 10, with respect to the calculated values, the catalysts 26 to 28 obtained “gasoline” and “LCO” in high yields, and “HCO” and “coke” in low yields. .
  • Test Example 8 The fluid catalytic cracking catalysts 9 and 22 and 29 to 31 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 11 shows the reaction results. As shown in Table 11, the measured values and calculated values of “gasoline”, “LCO”, “HCO” and “coke” of the catalysts 29 to 31 were almost equal.
  • Test Example 9 The fluid catalytic cracking catalysts 10 and 14 and 32 to 34 were subjected to fluid catalytic cracking in the same manner as in Test Example 1.
  • Table 12 shows the reaction results. As shown in Table 12, the measured values and calculated values of “gasoline”, “LCO”, “HCO” and “coke” of the catalysts 32 to 34 were almost equal.
  • the fluid catalytic cracking catalyst obtained by mixing the catalyst composition A containing the silica-based binder according to the present invention and the catalyst composition B containing the aluminum compound binder in a mass ratio of 10:90 to 90:10 is as follows.
  • “gasoline” and “LPG” are obtained in high yield, and “HCO” and “coke” tend to be in low yield.
  • the alumina contained in the catalyst composition B containing the alumina compound binder is combined with the poisoned metal such as vanadium or nickel to be detoxified, so that the catalyst composition A containing the silica-based binder is made of the poisoned metal. It becomes difficult to be poisoned, and it is understood that high gasoline yield and high light oil fraction yield and high bottom cracking are obtained while maintaining high gasoline yield and low coke yield.
  • the present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible.
  • the fluid catalytic cracking catalyst of the present invention is constituted by combining these, the scope of the right of the present invention is also included.
  • a fluid catalytic cracking catalyst is produced by combining one type of catalyst composition A containing a silica-based binder and one type of catalyst composition B containing an aluminum compound binder. You may comprise a fluid catalytic cracking catalyst combining the thing A and / or the catalyst composition B as 2 or more types.

Abstract

A catalyst for the fluid catalytic cracking of hydrocarbon oils is provided with which gasoline and a gas oil fraction can be obtained in high yield and a high degree of bottom cracking and a low coke yield are attained. A catalyst composition (A) comprising a zeolite and 10-30 mass% silica-based binder was mixed with a catalyst composition (B) comprising a zeolite and 10-30 mass% aluminum-compound binder, in a mass proportion (WA:WB) of from 10:90 to 90:10, provided that WA is the mass of the catalyst composition (A) and WB is the mass of the catalyst composition (B).

Description

炭化水素油の流動接触分解触媒及びそれを用いた炭化水素油の流動接触分解方法Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same
 本発明は、ガソリン及び軽油留分が高収率で得られると共に、高ボトム分解能、かつ、低コーク収率である炭化水素油の流動接触分解触媒及びそれを用いた炭化水素油の流動接触分解方法に関する。 The present invention provides a fluid catalytic cracking catalyst for hydrocarbon oils having a high bottom resolution and a low coke yield, as well as fluid catalytic cracking of hydrocarbon oils using the same, in which gasoline and light oil fractions are obtained in high yield. Regarding the method.
 従来、炭化水素油の流動接触分解において、ガソリンを高収率で得ると共に、コークの収率を低くするために、結合剤としてシリカゾル等のシリカ系バインダーを用いた流動接触分解触媒が開発されている(例えば、特許文献1参照)。しかしながら、シリカ系バインダーを用いた流動接触分解触媒においては、より高いボトム分解性が求められていた。 In the past, fluidized catalytic cracking of hydrocarbon oils has been developed in order to obtain gasoline in high yield and lower the yield of coke, and fluid catalytic cracking catalysts using silica-based binders such as silica sol as binders have been developed. (For example, refer to Patent Document 1). However, a fluid catalytic cracking catalyst using a silica-based binder has been required to have higher bottom decomposability.
 また、ガソリン及び灯軽油留分(灯油留分及び軽油留分。Light Cycle Oil。以下、「LCO」ともいう)を高収率で得ると共に、ボトムの分解能を高くする、すなわち、重質留分(Heavy Cycle Oil。以下、「HCO」ともいう)を低収率にするために、結合剤として塩基性塩化アルミニウム等のアルミナ化合物バインダーを用いた流動接触分解触媒が開発されている(例えば、特許文献2参照)。しかしながら、アルミナ化合物バインダーを用いた流動接触分解触媒においては、コークをより低収率にすることが求められていた。 Also, gasoline and kerosene fraction (kerose fraction and diesel fraction. Light Cycle Oil; hereinafter referred to as “LCO”) can be obtained in high yield and the bottom resolution is increased, that is, heavy fraction In order to achieve a low yield of (Heavy Cycle Oil; hereinafter also referred to as “HCO”), fluid catalytic cracking catalysts using an alumina compound binder such as basic aluminum chloride as a binder have been developed (for example, patents) Reference 2). However, in a fluid catalytic cracking catalyst using an alumina compound binder, it has been required to make coke a lower yield.
 ここで、流動接触分解装置(実装置)においては、得られる生成油が求める組成(例えば、「ガソリンを多く」、「灯軽油留分を多く」等)になるように、流動接触分解触媒を切り替えて使用していた。また、原料油が替わると、得られる生成油の組成が変わるため、得られる生成油が求める組成になるように、流動接触分解触媒を切り替えていた。その際には、(1)シリカ系バインダーを含む触媒から他のシリカ系バインダーを含む触媒に切り替える場合、(2)アルミニウム化合物バインダーを含む触媒から他のアルミニウム化合物バインダーを含む触媒に切り替える場合、(3)シリカ系バインダーを含む触媒からアルミニウム化合物バインダーを含む触媒へ切り替える場合、(4)アルミニウム化合物バインダーを含む触媒からシリカ系バインダーを含む触媒へ切り替える場合がある。ここで、触媒を切り替える場合には、まず装置内の第1の触媒の一部を取り出し、次にその取り出し量と同じ量の第2の触媒を装置内へ投入する。この場合、流動接触分解装置内では、第1の触媒と第2の触媒との混合比(質量比)が徐々に変化して、最終的には装置内が第1の触媒から第2の触媒に置き替えていた。その際には、触媒活性、転化率、ガソリン収率等の変化はあったが、新たに添加した触媒に起因するもの、又は、装置の運転条件に起因するものであると考えられていた。 Here, in the fluid catalytic cracking device (actual device), the fluid catalytic cracking catalyst is used so that the resulting product oil has the desired composition (for example, “more gasoline”, “more kerosene fraction”, etc.). I was switching and using it. Moreover, since the composition of the resulting product oil changes when the raw material oil is changed, the fluid catalytic cracking catalyst has been switched so as to obtain the desired composition of the resulting product oil. In that case, (1) When switching from a catalyst containing a silica-based binder to a catalyst containing another silica-based binder, (2) When switching from a catalyst containing an aluminum compound binder to a catalyst containing another aluminum compound binder, 3) When switching from a catalyst containing a silica-based binder to a catalyst containing an aluminum compound binder, (4) sometimes switching from a catalyst containing an aluminum compound binder to a catalyst containing a silica-based binder. Here, when switching the catalyst, first, a part of the first catalyst in the apparatus is taken out, and then the second catalyst having the same amount as that taken out is put into the apparatus. In this case, in the fluid catalytic cracking apparatus, the mixing ratio (mass ratio) of the first catalyst and the second catalyst gradually changes, and finally the inside of the apparatus is changed from the first catalyst to the second catalyst. It was replaced with. At that time, there were changes in catalyst activity, conversion rate, gasoline yield, etc., but it was thought to be due to newly added catalyst or due to operating conditions of the apparatus.
 また、流動接触分解触媒に添加されるアディティブ触媒(添加触媒)があるが、これらは流動接触分解触媒の性能(例えば、脱NOx、脱SOx、耐メタル性、オクタン価向上、ボトム分解能など)を補うものであり、ガソリン及び軽油留分を高収率で得ると共に、高ボトム分解能、かつ、低コーク収率を満たすものではなかった。 In addition, there are additive catalysts (added catalysts) that are added to the fluid catalytic cracking catalyst. These supplement the fluid catalytic cracking catalyst performance (eg, NOx removal, SOx removal, metal resistance, octane number improvement, bottom resolution, etc.). However, the gasoline and diesel oil fractions were obtained in high yields, and did not satisfy high bottom resolution and low coke yields.
特開2007-748号公報JP 2007-748 A 特開2006-142273号公報JP 2006-142273 A
 しかしながら、従来の流動接触分解触媒では、高ガソリン収率、高軽油留分収率、低コーク収率、及び、高ボトム分解率のいずれをも満たす触媒が開発されていないという問題があった。 However, the conventional fluid catalytic cracking catalyst has a problem that a catalyst satisfying any of high gasoline yield, high light oil fraction yield, low coke yield, and high bottom cracking rate has not been developed.
 本発明はかかる事情に鑑みてなされたもので、ガソリン及び軽油留分が高収率で得られると共に、高ボトム分解、及び、低コーク収率である炭化水素油の流動接触分解触媒及びそれを用いた炭化水素油の流動接触分解方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a gasoline and gas oil fraction can be obtained in a high yield, a high bottom cracking, and a fluid catalytic cracking catalyst for hydrocarbon oil having a low coke yield, and It aims at providing the fluid catalytic cracking method of the used hydrocarbon oil.
 すなわち、本発明の要旨は、以下の通りである。
[1]ゼオライト及び結合剤として10~30質量%のシリカ系バインダーを含む触媒組成物Aと、ゼオライト及び結合剤として10~30質量%のアルミニウム化合物バインダーを含む触媒組成物Bとを、触媒組成物Aの質量をWAとし、触媒組成物Bの質量をWBとして、質量比(WA:WB)が10:90~90:10の範囲内の任意の割合で混合したことを特徴とする炭化水素油の流動接触分解触媒。
[2]前記触媒組成物A及び前記触媒組成物Bは、下記式(1)に示すK値(それぞれのK値は「KA」、「KB」で表す)が1以上であることを特徴とする[1]の炭化水素油の流動接触分解触媒。
That is, the gist of the present invention is as follows.
[1] A catalyst composition comprising a catalyst composition A containing 10 to 30% by mass of a silica-based binder as zeolite and a binder, and a catalyst composition B containing 10 to 30% by mass of an aluminum compound binder as a binder. The mass of the product A is W A , the mass of the catalyst composition B is W B , and the mass ratio (W A : W B ) is mixed at an arbitrary ratio within the range of 10:90 to 90:10. A fluid catalytic cracking catalyst for hydrocarbon oils.
[2] The catalyst composition A and the catalyst composition B have a K value represented by the following formula (1) (each K value is represented by “K A ” and “K B ”) of 1 or more. The fluid catalytic cracking catalyst for hydrocarbon oils according to [1].
   K=転化率/(100-転化率)・・・(1)
   なお、転化率は、下記式(2)で示される。
K = conversion / (100−conversion) (1)
In addition, a conversion rate is shown by following formula (2).
   転化率(質量%)=(a-b)/a×100・・・(2)
 ここで、aは原料油の質量、bは灯軽油留分及び重質留分の合計の質量である。
[3]前記触媒組成物A及び前記触媒組成物BのK値は下記式(3)に示す関係にあることを特徴とする[1]又は[2]の炭化水素油の流動接触分解触媒。
Conversion (mass%) = (ab) / a × 100 (2)
Here, a is the mass of the raw material oil, and b is the total mass of the kerosene oil fraction and the heavy fraction.
[3] The fluid catalytic cracking catalyst for hydrocarbon oils according to [1] or [2], wherein the K values of the catalyst composition A and the catalyst composition B have a relationship represented by the following formula (3).
   KA:KB=1:0.5~1:1.5・・・(3)
[4]前記流動接触分解触媒のK値(Km)が、前記触媒組成物AのK値(KA)及び前記触媒組成物BのK値(KB)よりも高いことを特徴とする[1]~[3]のいずれかの炭化水素油の流動接触分解触媒。
[5]流動接触分解触媒のガソリン収率Gmが、触媒組成物Aのガソリン収率GA及び触媒組成物Bのガソリン収率GBよりも高いことを特徴とする[1]~[4]のいずれかの炭化水素油の流動接触分解触媒。
[6]前記シリカ系バインダーがシリカゾル、水ガラス、及び、ケイ酸液のいずれか1又は2以上であることを特徴とする[1]~[5]のいずれかの炭化水素油の流動接触分解触媒。
[7]前記アルミニウム化合物バインダーが、下記(a)~(c)からなる群から選ばれる少なくとも1種であることを特徴とする[1]~[6]のいずれかの炭化水素油の流動接触分解触媒。
(a)塩基性塩化アルミニウム。
(b)重リン酸アルミニウム。
(c)アルミナゾル。
[8]前記触媒組成物A及び前記触媒組成物Bに含まれるゼオライトは、FAU型(フォージャサイト型)、MFI型、CHA型、及びMOR型のいずれか1又は2以上であり、しかも、前記触媒組成物A及び前記触媒組成物Bには、触媒組成基準で、前記ゼオライトが15~60質量%の範囲でそれぞれ含まれていることを特徴とする[1]~[7]のいずれかの炭化水素油の流動接触分解触媒。
[9]前記FAU型のゼオライトは、水素型Y型ゼオライト(HY)、超安定化Y型ゼオライト(USY)、レアアース交換Y型ゼオライト(REY)、レアアース交換超安定化Y型ゼオライト(REUSY)のいずれかであることを特徴とする[8]の炭化水素油の流動接触分解触媒。
[10]触媒組成物A及び前記触媒組成物Bは、前記ゼオライト及び前記結合剤以外に、粘土鉱物を含むことを特徴とする[1]~[9]のいずれかの炭化水素油の流動接触分解触媒。
[11][1]~[10]のいずれかの炭化水素油の流動接触分解触媒を使用することを特徴とする炭化水素油の流動接触分解方法。
[12]前記炭化水素油が残渣油を含むことを特徴とする[11]の炭化水素油の流動接触分解方法。
[13]前記炭化水素油には、バナジウム及びニッケルがそれぞれ0.5ppm以上含まれていることを特徴とする[12]の炭化水素油の流動接触分解方法。
[14]前記流動接触分解触媒には、バナジウム及びニッケルがそれぞれ300ppm以上含まれていることを特徴とする[11]~[13]のいずれかに記載の炭化水素油の流動接触分解方法。
K A : K B = 1: 0.5 to 1: 1.5 (3)
[4] The K value (K m ) of the fluid catalytic cracking catalyst is higher than the K value (K A ) of the catalyst composition A and the K value (K B ) of the catalyst composition B. [1] A fluid catalytic cracking catalyst for hydrocarbon oils according to any one of [3].
[5] Gasoline yield G m of fluid catalytic cracking catalyst, and wherein the higher than the gasoline yield G B gasoline yield G A and the catalyst composition B of the catalyst composition A [1] ~ [4 ] The fluid catalytic cracking catalyst of any hydrocarbon oil.
[6] Fluid catalytic cracking of the hydrocarbon oil according to any one of [1] to [5], wherein the silica-based binder is one or more of silica sol, water glass, and silicic acid liquid catalyst.
[7] The fluid contact of the hydrocarbon oil according to any one of [1] to [6], wherein the aluminum compound binder is at least one selected from the group consisting of the following (a) to (c): Cracking catalyst.
(A) Basic aluminum chloride.
(B) Aluminum biphosphate.
(C) Alumina sol.
[8] The zeolite contained in the catalyst composition A and the catalyst composition B is one or more of FAU type (faujasite type), MFI type, CHA type, and MOR type, and Any one of [1] to [7], wherein the catalyst composition A and the catalyst composition B each contain the zeolite in a range of 15 to 60% by mass on the basis of the catalyst composition. Fluid catalytic cracking catalyst of hydrocarbon oil.
[9] The FAU type zeolite includes hydrogen type Y zeolite (HY), ultrastabilized Y type zeolite (USY), rare earth exchanged Y type zeolite (REY), and rare earth exchanged superstabilized Y type zeolite (REUSY). [8] The fluid catalytic cracking catalyst for hydrocarbon oils according to [8].
[10] The fluid contact of the hydrocarbon oil according to any one of [1] to [9], wherein the catalyst composition A and the catalyst composition B contain a clay mineral in addition to the zeolite and the binder Cracking catalyst.
[11] A method for fluid catalytic cracking of hydrocarbon oil, wherein the fluid catalytic cracking catalyst for hydrocarbon oil according to any one of [1] to [10] is used.
[12] The fluid catalytic cracking method of hydrocarbon oil according to [11], wherein the hydrocarbon oil includes a residual oil.
[13] The fluid catalytic cracking method of hydrocarbon oil according to [12], wherein the hydrocarbon oil contains 0.5 ppm or more of vanadium and nickel.
[14] The fluid catalytic cracking method for hydrocarbon oils according to any one of [11] to [13], wherein the fluid catalytic cracking catalyst contains 300 ppm or more of vanadium and nickel, respectively.
 本発明の炭化水素油の流動接触分解触媒においては、分解できる油が異なる2種の触媒組成物、すなわち、シリカ系バインダーを含む触媒組成物Aと、アルミニウム化合物バインダーを含む触媒組成物Bとが混合されているので、炭化水素油を流動接触分解する際には、一方の触媒組成物が分解した油を他方の触媒組成物が分解可能となるため、分解される油がより軽質化されて、ガソリン及び軽油留分が高収率で得られ、また、コークが低収率となり、更には、ボトムの分解能を高く、すなわち、重質留分の生成を抑えることができる。 In the fluid catalytic cracking catalyst for hydrocarbon oils of the present invention, two kinds of catalyst compositions having different oils that can be decomposed, that is, a catalyst composition A containing a silica-based binder and a catalyst composition B containing an aluminum compound binder, As a result, when hydrocracking hydrocarbon oil by fluid catalytic cracking, the oil decomposed by one catalyst composition can be decomposed by the other catalyst composition. In addition, gasoline and light oil fractions can be obtained in high yield, coke can be obtained in low yield, and bottom resolution can be increased, that is, production of heavy fractions can be suppressed.
 特に、原料油がバナジウムやニッケル等の被毒金属を多く含む重質油である場合には、アルミナ化合物バインダーを含む触媒組成物Bに含まれるアルミナが該被毒金属と結合して無毒化することにより、シリカ系バインダーを含む触媒組成物Aが前記被毒金属により被毒され難くなり、高ガソリン収率及び低コーク収率を保持したまま、高ガソリン収率及び高軽油留分収率並びに高ボトム分解になると解される。 In particular, when the raw material oil is a heavy oil containing a large amount of poisoning metals such as vanadium and nickel, the alumina contained in the catalyst composition B containing the alumina compound binder is combined with the poisoning metals and detoxified. As a result, the catalyst composition A containing the silica-based binder is not easily poisoned by the poisoning metal, and the high gasoline yield and the high light oil fraction yield and the high gasoline yield and the low coke yield are maintained. It is understood that it becomes high bottom decomposition.
本発明の一実施例に係るK値のグラフである。It is a graph of K value which concerns on one Example of this invention. 本発明の一実施例に係るガソリン収率のグラフである。It is a graph of the gasoline yield which concerns on one Example of this invention.
 本発明の一実施の形態に係る炭化水素油の流動接触分解触媒は、ゼオライト及び結合剤として10~30質量%のシリカ系バインダーを含む触媒組成物Aと、ゼオライト及び結合剤として10~30質量%のアルミニウム化合物バインダーを含む触媒組成物Bとを、触媒組成物Aの質量をWAとし、触媒組成物Bの質量をWBとして、質量比(WA:WB)が10:90~90:10の範囲内で混合したものである。以下、それぞれの触媒組成物について詳しく説明する。 The hydrocarbon oil fluid catalytic cracking catalyst according to one embodiment of the present invention includes a catalyst composition A containing 10 to 30% by mass of a silica-based binder as a zeolite and a binder, and 10 to 30% by mass as a zeolite and a binder. % Of the aluminum compound binder, the mass of the catalyst composition A is W A , the mass of the catalyst composition B is W B , and the mass ratio (W A : W B ) is 10:90 to It is a mixture within the range of 90:10. Hereinafter, each catalyst composition will be described in detail.
 なお、流動接触分解装置(実装置)においては、シリカ系バインダーを含む触媒からアルミニウム化合物バインダーを含む触媒又はその逆へと触媒を切り替える際には、他方の触媒が徐々に追加されるため前記した質量比になる場合があるが、本発明においては、所定の質量比で混合された触媒を常時追加する点で異なり、装置内の触媒組成物の質量比は一定に保たれる。 In the fluid catalytic cracking device (actual device), when the catalyst is switched from the catalyst containing the silica-based binder to the catalyst containing the aluminum compound binder or vice versa, the other catalyst is gradually added. The mass ratio may be different, but the present invention is different in that a catalyst mixed at a predetermined mass ratio is always added, and the mass ratio of the catalyst composition in the apparatus is kept constant.
 また、本発明の触媒はバインダーが異なる触媒組成物を混合したものであって、それらは流動接触分解をおこなうものであり、流動接触分解触媒の性能を補うために添加されるアディティブ触媒(添加触媒)とは異なる。
[触媒組成物Aについて]
 触媒組成物Aは、例えば、ゼオライトを15~60質量%、好ましくは20~50質量%、結合剤としてシリカ系バインダーを10~30質量%、好ましくは15~25質量%、残りはゼオライトを除く無機酸化物を含んでいる。
《シリカ系バインダー》
 シリカ系バインダーとしては、シリカゾル、水ガラス(ケイ酸ナトリウム)、及び、ケイ酸液のいずれか1又は2以上を使用することができる。また、シリカゾルは水ガラスから作製することができる。また、例えば、SiO2濃度が10~15質量%のシリカゾルは、SiO2濃度が12~23質量%の水ガラスと、濃度20~30質量%の硫酸とを同時に連続的に加えて調製することができる。
《ゼオライト》
 ここで、ゼオライトとしては、通常、炭化水素油の接触分解触媒に使用されるゼオライトを用いることが可能で、例えば、FAU型(フォージャサイト型。例えば、Y型ゼオライト、X型ゼオライト等)、MFI型(例えば、ZSM-5、TS-1等)、CHA型(。例えば、チャバサイト、SAPO-34等)、及びMOR型(例えば、モルデナイト、Ca-Q等)のいずれか1又は2以上であり、特にFAU型が好ましい。フォージャサイト型のゼオライトは、水素型Y型ゼオライト(HY)、超安定化Y型ゼオライト(USY)や、HY及びUSYにそれぞれ希土類金属をイオン交換等により担持させたレアアース交換Y型ゼオライト(REY)、レアアース交換超安定化Y型ゼオライト(REUSY)がある。
Further, the catalyst of the present invention is a mixture of catalyst compositions having different binders, which are subjected to fluid catalytic cracking, and an additive catalyst (added catalyst added to supplement the performance of fluid catalytic cracking catalyst) ) Is different.
[Catalyst composition A]
The catalyst composition A is, for example, 15 to 60% by mass of zeolite, preferably 20 to 50% by mass, 10 to 30% by mass of silica-based binder as a binder, preferably 15 to 25% by mass, and the rest excludes zeolite. Contains inorganic oxides.
<Silica-based binder>
As the silica-based binder, one or more of silica sol, water glass (sodium silicate), and silicate liquid can be used. Silica sol can be prepared from water glass. For example, a silica sol having a SiO 2 concentration of 10 to 15% by mass is prepared by simultaneously adding water glass having a SiO 2 concentration of 12 to 23% by mass and sulfuric acid having a concentration of 20 to 30% by mass simultaneously. Can do.
<< Zeolite >>
Here, as the zeolite, it is possible to use a zeolite that is usually used as a catalytic cracking catalyst for hydrocarbon oils. For example, FAU type (faujasite type. For example, Y type zeolite, X type zeolite, etc.) One or more of MFI type (for example, ZSM-5, TS-1 etc.), CHA type (for example, chabasite, SAPO-34 etc.) and MOR type (for example, mordenite, Ca-Q etc.) In particular, the FAU type is preferable. The faujasite-type zeolite includes hydrogen-type Y zeolite (HY), ultra-stabilized Y-type zeolite (USY), and rare earth-exchanged Y-type zeolite (REY) in which rare earth metals are supported on HY and USY, respectively, by ion exchange. ), Rare earth exchange ultra-stabilized Y-type zeolite (REUSY).
 触媒組成物Aに対するゼオライトの含有量が、15質量%未満では分解活性が低くなる傾向にあり、また、60質量%を超えると嵩密度が高くなると共に強度が低くなる傾向にある。
《無機酸化物》
 無機酸化物としては、カオリンなどの粘土鉱物の他に、活性アルミナ、多孔性シリカ、希土類金属化合物、及び金属補足剤(メタルトラップ剤)を使用することができる。
When the content of the zeolite with respect to the catalyst composition A is less than 15% by mass, the decomposition activity tends to be low, and when it exceeds 60% by mass, the bulk density tends to be high and the strength tends to be low.
<Inorganic oxide>
As inorganic oxides, activated alumina, porous silica, rare earth metal compounds, and metal scavengers (metal trapping agents) can be used in addition to clay minerals such as kaolin.
 希土類金属酸化物は、触媒組成物Aに、RE23として0.5~2.0質量%となるように含まれてもよい。ここで、希土類金属としては、セリウム(Ce)、ランタン(La)、プラセオジウム(Pr)、及びネオジム(Nd)等が挙げられ、これらは単独ないし2種以上の金属酸化物として担持することができる。 The rare earth metal oxide may be contained in the catalyst composition A so as to be 0.5 to 2.0 mass% as RE 2 O 3 . Here, examples of the rare earth metal include cerium (Ce), lanthanum (La), praseodymium (Pr), neodymium (Nd), and the like, and these can be supported alone or as two or more metal oxides. .
 触媒組成物Aの製造方法の一例を以下に示す。まず、前記したシリカゾル(シリカ系バインダーの一例)に、カオリン、多孔性シリカ粉、及び活性アルミナを加え、更に20~30質量%硫酸でpH3~5に調製した超安定化Y型ゼオライト(USY)スラリーを加えて、混合スラリーを調製する。この混合スラリーを噴霧乾燥して球状粒子を得る。得られた球状粒子を洗浄し、更に希土類金属(Rare Earth。RE)塩化物の水溶液と接触させて、RE23として0.5~2.0質量%となるようにイオン交換した後、乾燥して、触媒組成物Aを得る。得られた触媒組成物Aの平均粒子径は、後述する触媒組成物Bと混合できる範囲であれば特に制限されないが、60~70μm程度である。
[触媒組成物Bについて]
 触媒組成物Bは、例えば、ゼオライトを15~60質量%、好ましくは20~50質量%、結合剤としてアルミニウム化合物バインダーを10~30質量%、好ましくは15~25質量%、残りはゼオライトを除く無機酸化物を含んでいる。
《アルミニウム化合物バインダー》
 アルミニウム化合物バインダーとしては、(a)塩基性塩化アルミニウム、(b)重リン酸アルミニウム、(c)アルミナゾルがある。また、アルミニウム化合物バインダーとして、ジブサイト、バイアライト、ベーマイト等の結晶性アルミナのいずれか1又は2以上を酸溶液中に溶解させた溶液を使用することもできる。
An example of the manufacturing method of the catalyst composition A is shown below. First, ultra-stabilized Y-type zeolite (USY) prepared by adding kaolin, porous silica powder, and activated alumina to the silica sol (an example of a silica-based binder) and adjusting the pH to 3 to 5 with 20 to 30% by mass sulfuric acid. Add the slurry to prepare a mixed slurry. The mixed slurry is spray-dried to obtain spherical particles. The obtained spherical particles were washed, further contacted with an aqueous solution of rare earth metal (Rare Earth.RE) chloride, and subjected to ion exchange so that RE 2 O 3 was 0.5 to 2.0% by mass, Dry to obtain catalyst composition A. The average particle size of the obtained catalyst composition A is not particularly limited as long as it can be mixed with the catalyst composition B described later, but is about 60 to 70 μm.
[Catalyst composition B]
The catalyst composition B is, for example, 15 to 60% by mass of zeolite, preferably 20 to 50% by mass, 10 to 30% by mass of an aluminum compound binder as a binder, preferably 15 to 25% by mass, and the rest excludes zeolite. Contains inorganic oxides.
《Aluminum compound binder》
Examples of the aluminum compound binder include (a) basic aluminum chloride, (b) aluminum biphosphate, and (c) alumina sol. Moreover, as an aluminum compound binder, the solution which melt | dissolved any 1 or 2 or more of crystalline aluminas, such as a dibsite, a bayerite, and a boehmite, in an acid solution can also be used.
 ここで、塩基性塩化アルミニウムは式4で示される。 Here, basic aluminum chloride is represented by Formula 4.
     [Al2(OH)nCl6-nm・・・(4)
(ただし、0<n<6、1≦m≦10、好ましくは4.8≦n≦5.3、3≦m≦7である。なお、mは、自然数を示す。)
 重リン酸アルミニウムは、リン酸二水素アルミニウム、第一リン酸アルミニウムともいわれ、Al(H2PO43で示される。アルミナゾルは、例えば、擬ベーマイト型アルミナを酸でpH調整して作製することができる。
《ゼオライト及び無機酸化物》
 触媒組成物Bに使用されるゼオライト及び無機酸化物については、前記した触媒組成物Aと同様のものが使用でき、それらの含有量についても触媒組成物Aと同様に調製することができる。
[Al 2 (OH) n Cl 6-n ] m (4)
(However, 0 <n <6, 1 ≦ m ≦ 10, preferably 4.8 ≦ n ≦ 5.3, 3 ≦ m ≦ 7, where m represents a natural number.)
The heavy aluminum phosphate is also called aluminum dihydrogen phosphate or primary aluminum phosphate, and is represented by Al (H 2 PO 4 ) 3 . The alumina sol can be produced, for example, by adjusting the pH of pseudo boehmite type alumina with an acid.
<< Zeolite and inorganic oxide >>
About the zeolite and inorganic oxide which are used for the catalyst composition B, the thing similar to the above-mentioned catalyst composition A can be used, About those content, it can prepare similarly to the catalyst composition A.
 触媒組成物Bの製造方法の一例を以下に示す。まず、例えば、Al23濃度が20~25質量%の塩基性塩化アルミニウム溶液(アルミニウム化合物バインダーの一例)に、カオリン、活性アルミナ、USYスラリーを加えて、スラリー濃度が35~45%である混合スラリーを調製する。この混合スラリーを噴霧乾燥して球状粒子を得る。この球状粒子を洗浄し、更に希土類金属塩化物水溶液と接触させてRE23として0.5~2.0質量%となるようにイオン交換した後、乾燥して触媒組成物Bを得る。得られた触媒組成物Bの平均粒子径は、特に制限されないが、60~70μm程度である。
[流動接触分解触媒]
 本発明の流動接触分解触媒は、触媒組成物Aと触媒組成物Bとを、触媒組成物Aの質量をWAとし、触媒組成物Bの質量をWBとして、質量比(WA:WB)が10:90~90:10の範囲内で混合したものであって、各触媒組成物の質量割合が所定範囲外の場合には、各触媒組成物を単独で流動接触分解に用いた場合との差異が小さくなり、明確な効果が得られ難くなる。なお、触媒組成物Aと触媒組成物Bとの混合割合(質量比)は、炭化水素油を本流動接触分解触媒により分解して得られる分解生成物(特に、ガソリン、LCO)が所望の組成(収率)となるように決めるのがよい。
[流動接触分解方法]
 本発明の流動接触分解触媒を使用した流動接触分解においては、通常の炭化水素油の流動接触分解条件を採用することができ、例えば、以下に述べる条件が好適に採用できる。
An example of the manufacturing method of the catalyst composition B is shown below. First, for example, kaolin, activated alumina, and USY slurry are added to a basic aluminum chloride solution (an example of an aluminum compound binder) having an Al 2 O 3 concentration of 20 to 25% by mass, and the slurry concentration is 35 to 45%. A mixed slurry is prepared. The mixed slurry is spray-dried to obtain spherical particles. The spherical particles are washed, further contacted with a rare earth metal chloride aqueous solution to perform ion exchange so that the RE 2 O 3 content is 0.5 to 2.0% by mass, and then dried to obtain a catalyst composition B. The average particle diameter of the obtained catalyst composition B is not particularly limited, but is about 60 to 70 μm.
[Fluid catalytic cracking catalyst]
Fluid catalytic cracking catalyst of the present invention, a catalyst composition A and the catalyst composition B, the weight of the catalyst composition A and W A, the weight of the catalyst composition B as W B, the mass ratio (W A: W B ) was mixed within the range of 10:90 to 90:10, and when the mass ratio of each catalyst composition was outside the predetermined range, each catalyst composition was used alone for fluid catalytic cracking. The difference from the case becomes small, and it becomes difficult to obtain a clear effect. The mixing ratio (mass ratio) of the catalyst composition A and the catalyst composition B is such that the cracked product (particularly gasoline, LCO) obtained by cracking hydrocarbon oil with the present fluid catalytic cracking catalyst has a desired composition. (Yield) should be determined.
[Fluid catalytic cracking method]
In fluid catalytic cracking using the fluid catalytic cracking catalyst of the present invention, the usual fluid catalytic cracking conditions of hydrocarbon oil can be employed, and for example, the conditions described below can be suitably employed.
 接触分解に使用される原料油としては、通常の炭化水素原料油、例えば、水素化脱硫減圧蒸留軽油(DSVGO)や、減圧蒸留軽油(VGO)を用いることができ、更に、常圧蒸留残渣油(AR)、減圧蒸留残渣油(VR)、脱硫常圧蒸留残渣油(DSAR)、脱硫減圧蒸留残渣油(DSVR)、脱アスファルテン油(DAO)等の残渣油も使用することができ、これらの単独又は混合したものも使用できる。なお、本発明の流動接触分解触媒においては、ニッケル及びバナジウムがそれぞれ0.5ppm以上含まれている残渣油も処理可能であり、原料油として残渣油を単独で用いる残渣油接触分解装置(Resid FCC。RFCC)にも使用できる。ここで、従来の流動接触分解触媒をRFCCで使用した場合には、残渣油中のニッケル及びバナジウムが触媒に付着して活性が低下するが、本発明の流動接触分解触媒では、バナジウム及びニッケルがそれぞれ0.5ppm以上含有している残渣油を処理しても、優れた触媒性能を保持できる。また、本発明の流動接触分解触媒は、バナジウム及びニッケルがそれぞれ300ppm以上含有されていても触媒性能を保持できる。本発明の流動接触分解触媒に含有されるバナジウム及びニッケルの上限は、それぞれ10000ppm程度である。 As the feedstock used for the catalytic cracking, a normal hydrocarbon feedstock such as hydrodesulfurization vacuum distillation gas oil (DSVGO) or vacuum distillation gas oil (VGO) can be used, and further, atmospheric distillation residue oil. (AR), vacuum distillation residue oil (VR), desulfurization atmospheric distillation residue oil (DSAR), desulfurization vacuum distillation residue oil (DSVR), deasphaltenic oil (DAO), and other residual oils can be used. A single material or a mixture thereof can be used. In the fluid catalytic cracking catalyst of the present invention, a residual oil containing 0.5 ppm or more of nickel and vanadium can be treated, and a residual oil catalytic cracking apparatus (Resid FCC) that uses the residual oil alone as a raw material oil. RFCC). Here, when a conventional fluid catalytic cracking catalyst is used in RFCC, nickel and vanadium in the residual oil adhere to the catalyst and the activity is reduced. However, in the fluid catalytic cracking catalyst of the present invention, vanadium and nickel are Even if the residual oils containing 0.5 ppm or more are treated, excellent catalyst performance can be maintained. Further, the fluid catalytic cracking catalyst of the present invention can maintain the catalytic performance even when vanadium and nickel are contained in an amount of 300 ppm or more. The upper limits of vanadium and nickel contained in the fluid catalytic cracking catalyst of the present invention are each about 10000 ppm.
 また、前述の炭化水素原料油を接触分解する際の反応温度は470~550℃の範囲が好適に採用され、反応圧力は一般的にはおよそ1~3kg/cm2の範囲が好適であり、触媒/油の質量比(触媒/油比)は2.5~7.0の範囲が好ましく、更に接触時間は10~60hr-1の範囲が好ましい。
《K値》
 K値は、前記した方法で原料油を接触分解して、ガソリンの沸点(30~220℃程度)以上の留分である灯軽油留分(LCO)と重質油留分(HCO)の質量を測定し、原料油の質量とから式(2)により転化率を求め、転化率から式(1)により求めることができる。
Further, the reaction temperature when catalytically cracking the above hydrocarbon feedstock is preferably in the range of 470 to 550 ° C., and the reaction pressure is generally in the range of about 1 to 3 kg / cm 2 . The mass ratio of catalyst / oil (catalyst / oil ratio) is preferably in the range of 2.5 to 7.0, and the contact time is preferably in the range of 10 to 60 hr −1 .
<< K value >>
K value is the mass of kerosene oil fraction (LCO) and heavy oil fraction (HCO), which are fractions higher than the boiling point of gasoline (about 30-220 ° C) by catalytic cracking of the feedstock oil by the method described above. And the conversion rate can be obtained from the mass of the raw material oil by the equation (2) and can be obtained from the conversion rate by the equation (1).
   K=転化率/(100-転化率)・・・(1)
   転化率(質量%)=(a-b)/a×100・・・(2)
   但し、aは原料油の質量、bは灯軽油留分及び重質留分の合計の質量である。
K = conversion / (100−conversion) (1)
Conversion (mass%) = (ab) / a × 100 (2)
However, a is the mass of raw material oil, b is the total mass of a kerosene oil fraction and a heavy fraction.
 ここで、触媒組成物A及び触媒組成物BのK値(それぞれKA、KB)は、1以上(すなわち、転化率50%以上)、好ましくは1.5以上(すなわち、転化率60%以上)、より好ましくは2.3以上(すなわち、転化率70%以上)がよい。触媒組成物A及び触媒組成物BのK値が、1未満(すなわち、転化率50%未満)の場合には、ガソリンやLCOの収率が低いため実用的でない。 Here, the K values (K A and K B ) of the catalyst composition A and the catalyst composition B are 1 or more (that is, conversion rate 50% or more), preferably 1.5 or more (that is, conversion rate 60%). Above, more preferably 2.3 or more (that is, conversion 70% or more). When the K value of the catalyst composition A and the catalyst composition B is less than 1 (that is, the conversion rate is less than 50%), the yield of gasoline or LCO is low, which is not practical.
 また、触媒組成物A及び触媒組成物BのK値はKA:KBが1:0.5~1:1.5、好ましくは1:0.8~1:1.2、より好ましくは1:0.9~1:1.1がよい。ここで、KA:KB<1:0.5の場合及びKA:KB>1:1.5の場合には、両触媒組成物のK値の差が大きすぎるため、KA及びKBを超えることが難しくなる。 Further, the catalyst composition K values of A and catalyst composition B K A: K B is 1: 0.5 to 1: 1.5, preferably 1: 0.8-1: 1.2, more preferably 1: 0.9 to 1: 1.1 is preferable. Here, K A: K B <1 : 0.5 in the case and K A: K B> 1: In the case of 1.5, since the difference in K values of both the catalyst composition is too high, K A and it is difficult to exceed K B.
 更に、流動接触分解触媒のK値(Km)が、触媒組成物AのK値(KA)及び触媒組成物BのK値(KB)よりも高いのが好ましい。
《ガソリン収率G》
 流動接触分解触媒のガソリン収率Gmが、触媒組成物Aのガソリン収率GA及び触媒組成物Bのガソリン収率GBよりも高いのが好ましい。ここで、ガソリン収率は、前記した方法で原料油を接触分解し、得られたガソリンの質量と、原料油の質量とから計算される。
Further, the K value (K m ) of the fluid catalytic cracking catalyst is preferably higher than the K value (K A ) of the catalyst composition A and the K value (K B ) of the catalyst composition B.
<< Gasoline yield G >>
Gasoline yield G m of fluid catalytic cracking catalyst is higher is preferred than the gasoline yield G B gasoline yield G A and the catalyst composition B of the catalyst composition A. Here, the gasoline yield is calculated from the mass of gasoline obtained by catalytically cracking the feedstock by the above-described method and the mass of the feedstock.
 また、本発明の流動接触分解触媒は、触媒組成物A及び触媒組成物Bの単独のものよりもLCO収率が高くなる傾向にあり、逆に、水素収率、C1+C2収率、LPG収率、HCO収率、及びコーク収率が低くなる傾向にある。すなわち、本発明の流動接触分解触媒は、触媒組成物A及び触媒組成物Bの単独よりも、ガソリンやLCOなどの液体燃料の収率が増える傾向にあるが、ガスや重質油、コークなどの収率は低くなる傾向にある。 Further, the fluid catalytic cracking catalyst of the present invention tends to have a higher LCO yield than that of the catalyst composition A and the catalyst composition B alone, and conversely, the hydrogen yield, the C1 + C2 yield, the LPG yield. , HCO yield, and coke yield tend to be low. That is, the fluid catalytic cracking catalyst of the present invention tends to increase the yield of liquid fuel such as gasoline and LCO as compared with the catalyst composition A and the catalyst composition B alone, but gas, heavy oil, coke, etc. Yield tends to be low.
[シリカ系バインダーの作製]
《触媒組成物A1
 SiO2濃度が17質量%の水ガラス2941gと、濃度25質量%の硫酸1059gとを同時に連続的に加えて、SiO2濃度が12.5質量%のシリカゾル(シリカ系バインダーの一例)4000gを調製した。このシリカゾルに乾燥基準でカオリン800g、多孔性シリカ粉175g、及び活性アルミナ250gを加え、更に25質量%の硫酸でpH3.9に調製した超安定化Y型ゼオライト(USY)スラリー800gを加えて混合スラリーを調製した。この混合スラリーを噴霧乾燥して平均粒子径60μmの球状粒子を得た。
[Preparation of silica binder]
"Catalyst composition A 1"
2941 g of water glass having a SiO 2 concentration of 17% by mass and 1059 g of sulfuric acid having a concentration of 25% by mass are continuously added simultaneously to prepare 4000 g of silica sol (an example of a silica-based binder) having a SiO 2 concentration of 12.5% by mass. did. 800 g of kaolin, 175 g of porous silica powder, and 250 g of activated alumina are added to this silica sol on a dry basis, and 800 g of ultra-stabilized Y-type zeolite (USY) slurry adjusted to pH 3.9 with 25% by mass sulfuric acid is added and mixed. A slurry was prepared. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 μm.
 得られた球状粒子を洗浄し、更に希土類金属(Rare Earth。RE)塩化物の水溶液(セリウム及びランタンの塩化物を含む。以下同様)と接触させて、RE23として1.0質量%となるようにイオン交換した後、135℃の乾燥機で乾燥して、触媒組成物A1を調製した。 The obtained spherical particles were washed, and further contacted with an aqueous solution of rare earth metal (Rare Earth.RE) chloride (including cerium and lanthanum chlorides, the same applies hereinafter) to give 1.0% by mass as RE 2 O 3. After ion exchange so as to be, the catalyst composition A 1 was prepared by drying with a dryer at 135 ° C.
 触媒組成物A1の組成は、シリカゾル由来のSiO2が20質量%、カオリンが32質量%、多孔性シリカ粉由来のSiO2が7質量%、活性アルミナが10質量%、USYが30質量%であった。ここで、表1に触媒組成物A1の性状を示す。
《触媒組成物A2
 SiO2濃度が17質量%の水ガラス2941gと、濃度25質量%の硫酸1059gとを同時に連続的に加えて、SiO2濃度が12.5質量%のシリカゾル(シリカ系バインダーの一例)4000gを調製した。このシリカゾルに乾燥基準でカオリン800g、多孔性シリカ粉175g、及び活性アルミナ250gを加え、更に25質量%硫酸でpH3.9に調製した超安定化REY型ゼオライト(REUSY)スラリーをY型ゼオライトとして800gを加えて混合スラリーを調製した。この混合スラリーを噴霧乾燥して平均粒子径60μmの球状粒子を得た。
The composition of the catalyst composition A 1 is 20% by mass of SiO 2 derived from silica sol, 32% by mass of kaolin, 7% by mass of SiO 2 derived from porous silica powder, 10% by mass of activated alumina, and 30% by mass of USY. Met. Here, Table 1 shows properties of the catalyst composition A 1 .
"Catalyst composition A 2"
2941 g of water glass having a SiO 2 concentration of 17% by mass and 1059 g of sulfuric acid having a concentration of 25% by mass are continuously added simultaneously to prepare 4000 g of silica sol (an example of a silica-based binder) having a SiO 2 concentration of 12.5% by mass. did. To this silica sol, 800 g of kaolin, 175 g of porous silica powder, and 250 g of activated alumina were added on a dry basis, and 800 g of ultra-stabilized REY zeolite (REUSY) slurry prepared to pH 3.9 with 25% by mass sulfuric acid as Y zeolite. Was added to prepare a mixed slurry. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 μm.
 得られた球状粒子を洗浄した後、135℃の乾燥機で乾燥して、触媒組成物A2を調製した。ここで、表1に触媒組成物A2の性状を示す。
《触媒組成物A3
 SiO2濃度が17質量%の水ガラス(シリカ系バインダーの一例)2941gに乾燥基準でカオリン800g、多孔性シリカ粉175g、及び活性アルミナ250gを加え、更に25質量%硫酸でpH3.9に調製した超安定化REY型ゼオライト(REUSY)スラリーをY型ゼオライトとして800gを加えて混合スラリーを調製した。この混合スラリーを噴霧乾燥して平均粒子径60μmの球状粒子を得た。
The obtained spherical particles were washed and then dried with a dryer at 135 ° C. to prepare catalyst composition A 2 . Here, the properties of the catalyst composition A 2 in Table 1.
"Catalyst composition A 3"
800 g of kaolin, 175 g of porous silica powder, and 250 g of activated alumina were added to 2941 g of water glass (an example of a silica-based binder) having a SiO 2 concentration of 17% by mass, and further adjusted to pH 3.9 with 25% by mass sulfuric acid. 800 g of ultra-stabilized REY-type zeolite (REUSY) slurry was added as a Y-type zeolite to prepare a mixed slurry. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 μm.
 得られた球状粒子を洗浄した後、135℃の乾燥機で乾燥して、触媒組成物A3を調製した。ここで、表1に触媒組成物A3の組成の性状を示す。 The obtained spherical particles were washed and then dried with a dryer at 135 ° C. to prepare catalyst composition A 3 . Here, the properties of the composition of the catalyst composition A 3 in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 但し、比表面積はBET法で、嵩比重はUOP法254-65でそれぞれ測定した。また、焼成減量は、1000℃で1時間焼成した際の減量された質量を示す。(以下同様)
[アルミニウム化合物バインダーの作製]
《触媒組成物B1
 Al23濃度が23.3質量%の塩基性塩化アルミニウム溶液(アルミニウム化合物バインダーの一例)1201gに、カオリン840g、活性アルミナ260g、USYスラリー640gを加えて、スラリー濃度が41%である混合スラリーを調製した。この混合スラリーを噴霧乾燥して平均粒子径60μmの球状粒子を得た。この球状粒子を洗浄し、更に希土類金属塩化物水溶液と接触させてRE23として1.0質量%となるようにイオン交換した後、乾燥機により135℃で乾燥して触媒組成物B1を調製した。得られた触媒組成物B1の組成は、塩基性塩化アルミニウム溶液由来のAl23が14質量%、カオリンが41質量%、活性アルミナが13質量%、USYが32質量%であった。また、表2に触媒組成物B1の性状を示す。
《触媒組成物B2
 Al23濃度が23.3質量%の塩基性塩化アルミニウム溶液(アルミニウム化合物バインダーの一例)1201gに、カオリン840g、活性アルミナ260g、REUSYスラリーをY型ゼオライトとして640gを加えて、スラリー濃度が43%である混合スラリーを調製した。この混合スラリーを噴霧乾燥して平均粒子径60μmの球状粒子を得た。この球状粒子を洗浄した後、乾燥機により135℃で乾燥して触媒組成物B2を調製した。ここで、表2に触媒組成物B2の性状を示す。
《触媒組成物B3
 Al23濃度が12.5質量%の擬ベーマイト型アルミナ(Sasol社製Catapal-A)水溶液2400gに63%硝酸でpH3.0にしてアルミナゾル(アルミニウム化合物バインダーの一例)を調製した。このアルミナゾルに、カオリン840g、活性アルミナ260g、REUSYスラリーをY型ゼオライトとして640gを加えて、スラリー濃度が43%である混合スラリーを調製した。この混合スラリーを噴霧乾燥して平均粒子径60μmの球状粒子を得た。この球状粒子を電気炉により600℃で焼成して触媒組成物B3を調製した。ここで、表2に触媒組成物B3の性状を示す。
《触媒組成物B4
 17.4質量%の重リン酸アルミニウム溶液(アルミニウム化合物バインダーの一例)1723gに、カオリン840g、活性アルミナ260g、REUSYスラリーをY型ゼオライトとして640gを加えて、スラリー濃度が43%である混合スラリーを調製した。この混合スラリーを噴霧乾燥して平均粒子径60μmの球状粒子を得た。この球状粒子を電気炉により600℃で焼成して触媒組成物B4を調製した。ここで、表2に触媒組成物B4の性状を示す。
The specific surface area was measured by the BET method, and the bulk specific gravity was measured by the UOP method 254-65. Further, the weight loss by firing indicates the weight reduced when firing at 1000 ° C. for 1 hour. (The same applies hereinafter)
[Preparation of aluminum compound binder]
"Catalyst composition B 1"
A mixed slurry in which 840 g of kaolin, 260 g of activated alumina, and 640 g of USY slurry are added to 1201 g of a basic aluminum chloride solution (an example of an aluminum compound binder) having an Al 2 O 3 concentration of 23.3 mass%, and the slurry concentration is 41%. Was prepared. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 μm. The spherical particles were washed and further contacted with an aqueous rare earth metal chloride solution to exchange ions so that the RE 2 O 3 was 1.0% by mass. Prepared. The composition of the obtained catalyst composition B 1 was 14% by mass of Al 2 O 3 derived from the basic aluminum chloride solution, 41% by mass of kaolin, 13% by mass of activated alumina, and 32% by mass of USY. Also shows the properties of the catalyst composition B 1 in Table 2.
"Catalyst composition B 2"
To 1201 g of a basic aluminum chloride solution (an example of an aluminum compound binder) having an Al 2 O 3 concentration of 23.3 mass%, 840 g of kaolin, 260 g of activated alumina, and 640 g of REUSY slurry as Y-type zeolite are added, and the slurry concentration is 43. % Mixed slurry was prepared. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 μm. After washing the spherical particles, to prepare a catalyst composition B 2 and dried at 135 ° C. The dryer. Here, the properties of the catalyst composition B 2 in Table 2.
"Catalyst composition B 3"
An alumina sol (an example of an aluminum compound binder) was prepared by adding pH 3.0 to 63% nitric acid in 2400 g of an aqueous pseudoboehmite type alumina (Catapal-A manufactured by Sasol) having an Al 2 O 3 concentration of 12.5% by mass. To this alumina sol, 840 g of kaolin, 260 g of activated alumina, and 640 g of REUSY slurry as Y-type zeolite were added to prepare a mixed slurry having a slurry concentration of 43%. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 μm. The spherical particles were calcined at 600 ° C. with an electric furnace to prepare catalyst composition B 3 . Here, the properties of the catalyst composition B 3 in Table 2.
"Catalyst composition B 4"
To 1723 g of 17.4 mass% aluminum biphosphate solution (an example of an aluminum compound binder), 840 g of kaolin, 260 g of activated alumina, and 640 g of REUSY slurry as Y-type zeolite are added, and a mixed slurry having a slurry concentration of 43% is obtained. Prepared. This mixed slurry was spray-dried to obtain spherical particles having an average particle size of 60 μm. The spherical particles were calcined at 600 ° C. in an electric furnace to prepare catalyst composition B 4 . Here, the properties of the catalyst composition B 4 in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
《実験例1:A1-B1
(実施例1:触媒1)
 触媒組成物A1と触媒組成物B1とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒1を調製した。
(実施例2:触媒2)
 触媒組成物A1と触媒組成物B1とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒2を調製した。
(実施例3:触媒3)
 触媒組成物A1と触媒組成物B1とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒3を調製した。
(比較例1:触媒4)
 触媒組成物A1を流動接触分解触媒4とした。
(比較例2:触媒5)
 触媒組成物B1を流動接触分解触媒5とした。
(試験例1)
 流動接触分解触媒1~5について、パイロット反応試験装置(ARCO社製)を用い、同一原料油、同一反応条件下でそれぞれ接触分解反応試験を行った。パイロット反応試験装置は触媒が装置内を循環しながら反応と触媒再生を交互に繰り返す循環式流動床であり、商業規模で使用される流動接触分解装置を模したものである。(以下の実施例も同様である)
 まず、反応試験前に、流動接触分解触媒1~5に、質量基準でオクチル酸バナジウムをVとして4000質量ppm、また、オクチル酸ニッケルをNiとして2000質量ppm含有されるようにサイクリックメタルデポジション(cyclic metal deposition。CMD)法により前処理を行った。ここで、CMD法とは、少量のバナジウム及びニッケルを流動接触分解触媒に含浸することと、高温で流動接触分解触媒を再生することを繰り返して、流動接触分解触媒にバナジウム及びニッケルを目的濃度となるまで堆積させた後、400~800℃の高温で酸化還元を繰り返す方法であり、商業規模で使用される流動接触分解装置を模したものである。(以下の実施例も同様である)
 ここで、表3に示す反応条件により流動接触分解を行った。表4、図1、図2にその反応結果を示す。ここで、表4において、触媒1~3の計算値とは、触媒4(すなわち、触媒組成物A1のみ)と、触媒5(すなわち、触媒組成物B1のみ)のそれぞれの反応試験結果から各触媒の混合率により算出(加重平均)したものである(以下の実施例についても同様である)。但し、各K値については、転化率より計算した。
<< Experimental example 1: A 1 -B 1 >>
(Example 1: Catalyst 1)
Catalyst composition A 1 and catalyst composition B 1 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 1.
(Example 2: Catalyst 2)
Catalyst composition A 1 and catalyst composition B 1 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 2.
(Example 3: Catalyst 3)
Catalyst composition A 1 and catalyst composition B 1 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 3.
(Comparative Example 1: Catalyst 4)
The catalyst composition A 1 was fluidized catalytic cracking catalyst 4.
(Comparative Example 2: Catalyst 5)
The catalyst composition B 1 was designated as fluid catalytic cracking catalyst 5.
(Test Example 1)
The fluid catalytic cracking catalysts 1 to 5 were subjected to catalytic cracking reaction tests using the pilot reaction test apparatus (manufactured by ARCO) under the same feedstock and the same reaction conditions. The pilot reaction test apparatus is a circulating fluidized bed in which a catalyst circulates in the apparatus and alternately repeats reaction and catalyst regeneration, and imitates a fluid catalytic cracking apparatus used on a commercial scale. (The following examples are also the same)
First, before the reaction test, cyclic metal deposition is performed so that the fluid catalytic cracking catalysts 1 to 5 contain 4000 mass ppm of vanadium octylate as V and 2000 mass ppm of nickel octylate as Ni on a mass basis. Pretreatment was performed by (cyclic metal deposition. CMD) method. Here, the CMD method refers to impregnating a small amount of vanadium and nickel into a fluid catalytic cracking catalyst and regenerating the fluid catalytic cracking catalyst at a high temperature, so that vanadium and nickel are added to the fluid catalytic cracking catalyst at a target concentration. This is a method of repeatedly oxidizing and reducing at a high temperature of 400 to 800 ° C. after being deposited until it becomes, and imitating a fluid catalytic cracking apparatus used on a commercial scale. (The following examples are also the same)
Here, fluid catalytic cracking was performed under the reaction conditions shown in Table 3. The reaction results are shown in Table 4, FIG. 1 and FIG. Here, in Table 4, the calculated values of the catalysts 1 to 3 are based on the reaction test results of the catalyst 4 (that is, the catalyst composition A 1 only) and the catalyst 5 (that is, the catalyst composition B 1 only). It is calculated (weighted average) based on the mixing ratio of each catalyst (the same applies to the following examples). However, each K value was calculated from the conversion rate.
 また、表4におけるK値について図1に図示し、ガソリン収率について図2に図示した。なお、図1、図2において、「■」印は実測値を示し、●印は「計算値」を示す。
表4に示すように、触媒1~3は、各計算値に対して、「ガソリン」及び「LCO」が高収率で得られると共に、「HCO」及び「コーク」が低収率となった。また、図1より、触媒組成物A1が10~40質量%の場合(すなわち、WA:WB=10:90~40:60の場合)に、触媒1のK値(Km)が触媒組成物A1のK値(KA)及び触媒組成物B1のK値(KB)よりも高くなっている。図2より、触媒組成物A1が10~90質量%の場合(すなわち、WA:WB=10:90~90:10の場合)に、触媒1のガソリン収率が触媒組成物A1及び触媒組成物B1のそれぞれのガソリン収率よりも高くなっている。
The K values in Table 4 are shown in FIG. 1, and the gasoline yield is shown in FIG. In FIG. 1 and FIG. 2, “■” indicates an actually measured value, and ● indicates a “calculated value”.
As shown in Table 4, with respect to each calculated value, the catalysts 1 to 3 obtained “gasoline” and “LCO” in high yields, and “HCO” and “coke” obtained low yields. . Further, as shown in FIG. 1, when the catalyst composition A 1 is 10 to 40% by mass (ie, when W A : W B = 10: 90 to 40:60), the K value (K m ) of the catalyst 1 is K value of the catalyst composition a 1 (K a) and a K value of the catalyst composition B 1 (K B) is higher than. From FIG. 2, when the catalyst composition A1 is 10 to 90% by mass (that is, when W A : W B = 10: 90 to 90:10), the gasoline yield of the catalyst 1 is the catalyst composition A 1 and The gasoline yield of each of the catalyst compositions B 1 is higher.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 但し、
 ・転化率(質量%)=(a-b)/a×100
     a:原料油の質量
     b:灯軽油留分(LCO)及び重質留分(HCO)の合計の質量
 ・K値=転化率/(100-転化率)
 ・水素(質量%)=c/a×100
     c:生成ガス中の水素の質量
 ・C1+C2(質量%)=d/a×100
     d:生成ガス中のC1(メタン)、C2(エタン、エチレン)の質量
 ・LPG(液化石油ガス、質量%)=e/a×100
     e:生成ガス中のプロパン、プロピレン、ブタン、及びブチレンの質量
 ・ガソリン(質量%)=f/a×100
     f:生成油中のガソリン(沸点範囲:C5(ブタン)の沸点(20℃)~204℃)の質量
 ・LCO(質量%)=g/a×100
     g:生成油中のライトサイクルオイル(沸点範囲:204~343℃)の質量
 ・HCO(質量%)=h/a×100
     h:生成油中のヘビーサイクルオイル(沸点範囲:343℃以上)の質量
 ・コーク(質量%)=i/a×100
     i:触媒混合物上に析出したコーク質量
 以下の実施例についても同様である。
《実験例2:A2-B2
(実施例4:触媒6)
 触媒組成物A2と触媒組成物B2とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒6を調製した。
(実施例5:触媒7)
 触媒組成物A2と触媒組成物B2とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒7を調製した。
(実施例6:触媒8)
 触媒組成物A2と触媒組成物B2とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒8を調製した。
(比較例3:触媒9)
 触媒組成物A2を流動接触分解触媒9とした。
(比較例4:触媒10)
 触媒組成物B2を流動接触分解触媒10とした。
(試験例2)
 流動接触分解触媒6~10について、試験例1と同様に流動接触分解を行った。表5にその反応結果を示す。表5に示すように、触媒6~8は、各計算値に対して、「ガソリン」及び「LPG」が高収率で得られると共に、「HCO」及び「コーク」が低収率となった。
However,
Conversion (mass%) = (ab) / a × 100
a: Mass of feed oil b: Total mass of kerosene oil fraction (LCO) and heavy fraction (HCO) K value = conversion rate / (100-conversion rate)
・ Hydrogen (mass%) = c / a × 100
c: Mass of hydrogen in the generated gas C1 + C2 (mass%) = d / a × 100
d: Mass of C1 (methane) and C2 (ethane, ethylene) in the product gas LPG (liquefied petroleum gas, mass%) = e / a × 100
e: Mass of propane, propylene, butane, and butylene in the product gas. Gasoline (mass%) = f / a × 100
f: Mass of gasoline (boiling range: boiling point of C5 (butane) (20 ° C.) to 204 ° C.) in the produced oil) LCO (mass%) = g / a × 100
g: Mass of light cycle oil (boiling point range: 204 to 343 ° C.) in the product oil HCO (mass%) = h / a × 100
h: Mass of heavy cycle oil (boiling point range: 343 ° C. or higher) in the product oil Coke (mass%) = i / a × 100
i: Coke mass deposited on catalyst mixture The same applies to the following examples.
<< Experimental example 2: A 2 -B 2 >>
(Example 4: Catalyst 6)
Catalyst composition A 2 and catalyst composition B 2 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 6.
(Example 5: Catalyst 7)
Catalyst composition A 2 and catalyst composition B 2 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 7.
(Example 6: Catalyst 8)
Catalyst composition A 2 and catalyst composition B 2 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 8.
(Comparative Example 3: Catalyst 9)
The catalyst composition A 2 was fluid catalytic cracking catalyst 9.
(Comparative Example 4: Catalyst 10)
The catalyst composition B 2 was fluid catalytic cracking catalyst 10.
(Test Example 2)
The fluid catalytic cracking catalysts 6 to 10 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 5 shows the reaction results. As shown in Table 5, with respect to each calculated value, the catalysts 6 to 8 obtained “gasoline” and “LPG” in high yields, and “HCO” and “coke” obtained low yields. .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
《実験例3:A2-B3
(実施例7:触媒11)
 触媒組成物A2と触媒組成物B3とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒11を調製した。
(実施例8:触媒12)
 触媒組成物A2と触媒組成物B3とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒12を調製した。
(実施例9:触媒13)
 触媒組成物A2と触媒組成物B3とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒13を調製した。
(比較例5:触媒14)
 触媒組成物B3を流動接触分解触媒14とした。
(試験例3)
 流動接触分解触媒9及び11~14について、試験例1と同様に流動接触分解を行った。表6にその反応結果を示す。表6に示すように、触媒11~13は、各計算値に対して、「添加率」、「LPG」及び「ガソリン」が高収率で得られると共に、「HCO」及び「コーク」が低収率となった。
<< Experimental Example 3: A 2 -B 3 >>
(Example 7: Catalyst 11)
The catalyst composition A 2 and the catalyst composition B 3 were mixed so that the mass ratio was 70:30 on a dry basis to prepare a fluid catalytic cracking catalyst 11.
(Example 8: Catalyst 12)
Catalyst composition A 2 and catalyst composition B 3 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 12.
(Example 9: Catalyst 13)
Catalyst composition A 2 and catalyst composition B 3 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 13.
(Comparative Example 5: Catalyst 14)
The catalyst composition B 3 was used as the fluid catalytic cracking catalyst 14.
(Test Example 3)
The fluid catalytic cracking catalysts 9 and 11 to 14 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 6 shows the reaction results. As shown in Table 6, with respect to each calculated value, the catalysts 11 to 13 can obtain “addition rate”, “LPG”, and “gasoline” in high yield, and have low “HCO” and “coke”. Yield.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
《実験例4:A2-B4
(実施例10:触媒15)
 触媒組成物A2と触媒組成物B4とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒15を調製した。
(実施例11:触媒16)
 触媒組成物A2と触媒組成物B4とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒16を調製した。
(実施例12:触媒17)
 触媒組成物A2と触媒組成物B4とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒17を調製した。
(比較例6:触媒18)
 触媒組成物B4を流動接触分解触媒18とした。
(試験例4)
 流動接触分解触媒9及び15~18について、試験例1と同様に流動接触分解を行った。表6にその反応結果を示す。表7に示すように、触媒15~17は、各計算値に対して、「添加率」、「LPG」及び「ガソリン」が高収率で得られると共に、「水素」、「C1+C2」、「LCO」、「HCO」及び「コーク」が低収率となった。
<< Experimental Example 4: A 2 -B 4 >>
(Example 10: Catalyst 15)
Catalyst composition A 2 and catalyst composition B 4 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 15.
(Example 11: Catalyst 16)
Catalyst composition A 2 and catalyst composition B 4 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 16.
(Example 12: Catalyst 17)
Catalyst composition A 2 and catalyst composition B 4 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 17.
(Comparative Example 6: Catalyst 18)
The catalyst composition B 4 was used as the fluid catalytic cracking catalyst 18.
(Test Example 4)
The fluid catalytic cracking catalysts 9 and 15 to 18 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 6 shows the reaction results. As shown in Table 7, for the catalysts 15 to 17, “addition rate”, “LPG” and “gasoline” were obtained in high yield for each calculated value, and “hydrogen”, “C1 + C2”, “ “LCO”, “HCO” and “Coke” resulted in low yields.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
《実験例5:A3-B2
(実施例13:触媒19)
 触媒組成物A3と触媒組成物B2とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒19を調製した。
(実施例14:触媒20)
 触媒組成物A3と触媒組成物B2とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒20を調製した。
(実施例15:触媒21)
 触媒組成物A3と触媒組成物B2とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒21を調製した。
(比較例7:触媒22)
 触媒組成物A3を流動接触分解触媒22とした。
(試験例5)
 流動接触分解触媒10及び19~22について、試験例1と同様に流動接触分解を行った。表8に示すように、触媒19~21は、各計算値に対して、「ガソリン」及び「LCO」が高収率で得られると共に、「HCO」及び「コーク」が低収率となった。
<< Experimental Example 5: A 3 -B 2 >>
(Example 13: Catalyst 19)
Catalyst composition A 3 and catalyst composition B 2 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 19.
(Example 14: Catalyst 20)
Catalyst composition A 3 and catalyst composition B 2 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 20.
(Example 15: Catalyst 21)
Catalyst composition A 3 and catalyst composition B 2 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 21.
(Comparative Example 7: Catalyst 22)
The catalyst composition A 3 was used as a fluid catalytic cracking catalyst 22.
(Test Example 5)
The fluid catalytic cracking catalysts 10 and 19 to 22 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. As shown in Table 8, in the catalysts 19 to 21, “gasoline” and “LCO” were obtained in high yield and “HCO” and “coke” were low in yield for each calculated value. .
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
《実験例6:A3-B3
(比較例16:触媒23)
 触媒組成物A3と触媒組成物B3とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒23を調製した。
(実施例17:触媒24)
 触媒組成物A3と触媒組成物B3とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒24を調製した。
(実施例18:触媒25)
 触媒組成物A3と触媒組成物B3とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒25を調製した。
(試験例6)
 流動接触分解触媒14及び22と23~25について、試験例1と同様に流動接触分解を行った。表9に反応結果を示す。表9に示すように、触媒23~25は、各計算値に対して、「ガソリン」及び「LCO」が高収率で得られると共に、「HCO」及び「コーク」が低収率となった。
<< Experiment 6: A 3 -B 3 >>
(Comparative Example 16: Catalyst 23)
Catalyst composition A 3 and catalyst composition B 3 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 23.
(Example 17: Catalyst 24)
A catalyst composition A 3 and the catalyst composition B 3, the mass ratio on a dry basis are mixed so that the ratio of 50:50 to prepare a fluid catalytic cracking catalyst 24.
(Example 18: Catalyst 25)
Catalyst composition A 3 and catalyst composition B 3 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 25.
(Test Example 6)
The fluid catalytic cracking catalysts 14 and 22 and 23 to 25 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 9 shows the reaction results. As shown in Table 9, in the catalysts 23 to 25, “gasoline” and “LCO” were obtained in a high yield and “HCO” and “coke” were obtained in a low yield for each calculated value. .
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
《実験例7:A3-B4
(実施例19:触媒26)
 触媒組成物A3と触媒組成物B4とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒26を調製した。
(実施例20:触媒27)
 触媒組成物A3と触媒組成物B4とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒27を調製した。
(実施例21:触媒28)
 触媒組成物A3と触媒組成物B4とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒28を調製した。
(試験例7)
 流動接触分解触媒18及び22と26~28について、試験例1と同様に流動接触分解を行った。表10に反応結果を示す。表10に示すように、触媒26~28は、各計算値に対して、「ガソリン」及び「LCO」が高収率で得られると共に、「HCO」及び「コーク」が低収率となった。
<< Experimental Example 7: A 3 -B 4 >>
(Example 19: Catalyst 26)
Catalyst composition A 3 and catalyst composition B 4 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 26.
(Example 20: Catalyst 27)
Catalyst composition A 3 and catalyst composition B 4 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 27.
(Example 21: Catalyst 28)
A catalyst composition A 3 and the catalyst composition B 4, the mass ratio on a dry basis are mixed so that the 30:70, to prepare a fluid catalytic cracking catalyst 28.
(Test Example 7)
The fluid catalytic cracking catalysts 18 and 22 and 26 to 28 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 10 shows the reaction results. As shown in Table 10, with respect to the calculated values, the catalysts 26 to 28 obtained “gasoline” and “LCO” in high yields, and “HCO” and “coke” in low yields. .
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
《実験例8:A2-A3
(比較例8:触媒29)
 触媒組成物A2と触媒組成物A3とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒26を調製した。
(比較例9:触媒30)
 触媒組成物A2と触媒組成物A3とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒27を調製した。
(比較例10:触媒31)
 触媒組成物A2と触媒組成物A3とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒28を調製した。
(試験例8)
 流動接触分解触媒9及び22と29~31について、試験例1と同様に流動接触分解を行った。表11に反応結果を示す。表11に示すように、触媒29~31の「ガソリン」、「LCO」、「HCO」及び「コーク」の収率は、それぞれの測定値と計算値がほぼ等しくなった。
<< Experiment 8: A 2 -A 3 >>
(Comparative Example 8: Catalyst 29)
The catalyst composition A 2 and the catalyst composition A 3 were mixed so that the mass ratio was 70:30 on a dry basis to prepare a fluid catalytic cracking catalyst 26.
(Comparative Example 9: Catalyst 30)
Catalyst composition A 2 and catalyst composition A 3 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 27.
(Comparative Example 10: Catalyst 31)
The catalyst composition A 2 and the catalyst composition A 3 were mixed so that the mass ratio was 30:70 on a dry basis to prepare a fluid catalytic cracking catalyst 28.
(Test Example 8)
The fluid catalytic cracking catalysts 9 and 22 and 29 to 31 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 11 shows the reaction results. As shown in Table 11, the measured values and calculated values of “gasoline”, “LCO”, “HCO” and “coke” of the catalysts 29 to 31 were almost equal.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
《実験例9:B2-B3
(比較例11:触媒32)
 触媒組成物B2と触媒組成物B3とを、乾燥基準で質量比が70:30となるように混合し、流動接触分解触媒26を調製した。
(比較例12:触媒33)
 触媒組成物B2と触媒組成物B3とを、乾燥基準で質量比が50:50となるように混合し、流動接触分解触媒27を調製した。
(比較例13:触媒34)
 触媒組成物B2と触媒組成物B3とを、乾燥基準で質量比が30:70となるように混合し、流動接触分解触媒28を調製した。
(試験例9)
 流動接触分解触媒10及び14と32~34について、試験例1と同様に流動接触分解を行った。表12に反応結果を示す。表12に示すように、触媒32~34の「ガソリン」、「LCO」、「HCO」及び「コーク」の収率は、それぞれの測定値と計算値がほぼ等しくなった。
<< Experimental Example 9: B 2 -B 3 >>
(Comparative Example 11: Catalyst 32)
Catalyst composition B 2 and catalyst composition B 3 were mixed so that the mass ratio was 70:30 on a dry basis to prepare fluid catalytic cracking catalyst 26.
(Comparative Example 12: Catalyst 33)
Catalyst composition B 2 and catalyst composition B 3 were mixed so that the mass ratio was 50:50 on a dry basis to prepare fluid catalytic cracking catalyst 27.
(Comparative Example 13: Catalyst 34)
Catalyst composition B 2 and catalyst composition B 3 were mixed so that the mass ratio was 30:70 on a dry basis to prepare fluid catalytic cracking catalyst 28.
(Test Example 9)
The fluid catalytic cracking catalysts 10 and 14 and 32 to 34 were subjected to fluid catalytic cracking in the same manner as in Test Example 1. Table 12 shows the reaction results. As shown in Table 12, the measured values and calculated values of “gasoline”, “LCO”, “HCO” and “coke” of the catalysts 32 to 34 were almost equal.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以上、本発明であるシリカ系バインダーを含む触媒組成物Aと、アルミニウム化合物バインダーを含む触媒組成物Bとを、質量比が10:90~90:10の範囲内で混合した流動接触分解触媒は、触媒組成物A単独の触媒、触媒組成物B単独の触媒、及び、2種のシリカ系バインダーを含む触媒組成物を混合した触媒、及び、2種のアルミニウム化合物バインダーを含む触媒組成物を混合した触媒のいずれよりも計算値と比較して「ガソリン」及び「LPG」が高収率で得られると共に、「HCO」及び「コーク」が低収率となる傾向にある。これは、アルミナ化合物バインダーを含む触媒組成物Bに含まれるアルミナが、バナジウムやニッケル等の被毒金属と結合して無毒化することにより、シリカ系バインダーを含む触媒組成物Aが被毒金属により被毒され難くなり、高ガソリン収率及び低コーク収率を保持したまま、高ガソリン収率及び高軽油留分収率並びに高ボトム分解になると解される。 As described above, the fluid catalytic cracking catalyst obtained by mixing the catalyst composition A containing the silica-based binder according to the present invention and the catalyst composition B containing the aluminum compound binder in a mass ratio of 10:90 to 90:10 is as follows. A catalyst comprising a catalyst composition A alone, a catalyst comprising a catalyst composition B alone, a catalyst composition comprising two silica-based binders, and a catalyst composition comprising two aluminum compound binders. Compared to the calculated values of any of the catalysts prepared, “gasoline” and “LPG” are obtained in high yield, and “HCO” and “coke” tend to be in low yield. This is because the alumina contained in the catalyst composition B containing the alumina compound binder is combined with the poisoned metal such as vanadium or nickel to be detoxified, so that the catalyst composition A containing the silica-based binder is made of the poisoned metal. It becomes difficult to be poisoned, and it is understood that high gasoline yield and high light oil fraction yield and high bottom cracking are obtained while maintaining high gasoline yield and low coke yield.
 本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の流動接触分解触媒を構成する場合も本発明の権利範囲に含まれる。 The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. When the fluid catalytic cracking catalyst of the present invention is constituted by combining these, the scope of the right of the present invention is also included.
 例えば、前記実施例においては、シリカ系バインダーを含む触媒組成物Aの1種と、アルミニウム化合物バインダーを含む触媒組成物Bの1種を組み合わせて流動接触分解触媒を製造しているが、触媒組成物A及び/又は触媒組成物Bを2種以上として組み合わせて流動接触分解触媒を構成してもよい。 For example, in the above embodiment, a fluid catalytic cracking catalyst is produced by combining one type of catalyst composition A containing a silica-based binder and one type of catalyst composition B containing an aluminum compound binder. You may comprise a fluid catalytic cracking catalyst combining the thing A and / or the catalyst composition B as 2 or more types.

Claims (14)

  1.  ゼオライト及び結合剤として10~30質量%のシリカ系バインダーを含む触媒組成物Aと、ゼオライト及び結合剤として10~30質量%のアルミニウム化合物バインダーを含む触媒組成物Bとを、触媒組成物Aの質量をWAとし、触媒組成物Bの質量をWBとして、質量比(WA:WB)が10:90~90:10の範囲内で混合したことを特徴とする炭化水素油の流動接触分解触媒。 Catalyst composition A containing 10-30% by weight of silica-based binder as zeolite and binder, and Catalyst composition B containing 10-30% by weight of aluminum compound binder as zeolite and binder, Flow of hydrocarbon oil, characterized in that the mass is W A , the mass of catalyst composition B is W B , and the mass ratio (W A : W B ) is mixed within the range of 10:90 to 90:10 Catalytic cracking catalyst.
  2.  前記触媒組成物A及び前記触媒組成物Bは、下記式(1)に示すK値(それぞれのK値は「KA」、「KB」で表す)が1以上であることを特徴とする請求項1記載の炭化水素油の流動接触分解触媒。
       K=転化率/(100-転化率)・・・(1)
       なお、転化率は、下記式(2)で示される。
       転化率(質量%)=(a-b)/a×100・・・(2)
     ここで、aは原料油の質量、bは灯軽油留分及び重質留分の合計の質量である。
    The catalyst composition A and the catalyst composition B have a K value represented by the following formula (1) (each K value is represented by “K A ” and “K B ”) of 1 or more. The fluid catalytic cracking catalyst of hydrocarbon oil according to claim 1.
    K = conversion / (100−conversion) (1)
    In addition, a conversion rate is shown by following formula (2).
    Conversion (mass%) = (ab) / a × 100 (2)
    Here, a is the mass of the raw material oil, and b is the total mass of the kerosene oil fraction and the heavy fraction.
  3.  前記触媒組成物A及び前記触媒組成物BのK値は下記式(3)に示す関係にあることを特徴とする請求項2記載の炭化水素油の流動接触分解触媒。
       KA:KB=1:0.5~1:1.5・・・(3)
    3. The fluid catalytic cracking catalyst for hydrocarbon oil according to claim 2, wherein the K values of the catalyst composition A and the catalyst composition B have a relationship represented by the following formula (3).
    K A : K B = 1: 0.5 to 1: 1.5 (3)
  4.  前記流動接触分解触媒のK値(Kmで表す)で表すが、前記触媒組成物AのK値(KA)及び前記触媒組成物BのK値(KB)よりも高いことを特徴とする請求項1~3のいずれかに記載の炭化水素油の流動接触分解触媒。 Wherein represents a K value of fluid catalytic cracking catalyst (expressed in K m), and wherein the higher than K value of the catalyst composition A (K A) and a K value of the catalyst composition B (K B) The fluid catalytic cracking catalyst for hydrocarbon oil according to any one of claims 1 to 3.
  5.  流動接触分解触媒のガソリン収率(Gmで表す)が、触媒組成物Aのガソリン収率(GAで表す)及び触媒組成物Bのガソリン収率(GBで表す)よりも高いことを特徴とする請求項1~4のいずれかに記載の炭化水素油の流動接触分解触媒。 Gasoline yield fluid catalytic cracking catalyst (represented by G m) is higher than the gasoline yield (expressed in G A) and gasoline yield of the catalyst composition B of the catalyst composition A (represented by G B) The fluid catalytic cracking catalyst for hydrocarbon oils according to any one of claims 1 to 4.
  6.  前記シリカ系バインダーがシリカゾル、水ガラス、及び、酸性ケイ酸液のいずれか1又は2以上であることを特徴とする請求項1~5のいずれかに記載の流動接触分解触媒。 The fluid catalytic cracking catalyst according to any one of claims 1 to 5, wherein the silica-based binder is one or more of silica sol, water glass, and acidic silicate liquid.
  7.  前記アルミニウム化合物バインダーが、下記(a)~(c)からなる群から選ばれる少なくとも1種であることを特徴とする請求項1~6のいずれかに記載の流動接触分解触媒。
    (a)塩基性塩化アルミニウム。
    (b)重リン酸アルミニウム。
    (c)アルミナゾル。
    The fluid catalytic cracking catalyst according to any one of claims 1 to 6, wherein the aluminum compound binder is at least one selected from the group consisting of the following (a) to (c).
    (A) Basic aluminum chloride.
    (B) Aluminum biphosphate.
    (C) Alumina sol.
  8.  前記触媒組成物A及び前記触媒組成物Bに含まれるゼオライトは、FAU型(フォージャサイト型)、MFI型、CHA型、及びMOR型のいずれか1種又は2種以上であり、しかも、前記触媒組成物A及び前記触媒組成物Bには、触媒組成基準で、前記ゼオライトが15~60質量%の範囲でそれぞれ含まれていることを特徴とする請求項1~7のいずれかに記載の炭化水素油の流動接触分解触媒。 The zeolite contained in the catalyst composition A and the catalyst composition B is one or more of FAU type (faujasite type), MFI type, CHA type, and MOR type, and The catalyst composition A and the catalyst composition B contain the zeolite in a range of 15 to 60% by mass on the basis of the catalyst composition, respectively. Fluid catalytic cracking catalyst for hydrocarbon oils.
  9.  前記FAU型のゼオライトは、水素型Y型ゼオライト(HY)、超安定化Y型ゼオライト(USY)、レアアース交換Y型ゼオライト(REY)、レアアース交換超安定化Y型ゼオライト(REUSY)のいずれかであることを特徴とする請求項8記載の炭化水素油の流動接触分解触媒。 The FAU type zeolite is any one of hydrogen type Y zeolite (HY), ultra-stabilized Y type zeolite (USY), rare earth exchanged Y type zeolite (REY), and rare earth exchanged super stabilized Y type zeolite (REUSY). The fluid catalytic cracking catalyst for hydrocarbon oil according to claim 8, wherein the catalyst is fluid catalytic cracking catalyst.
  10.  前記触媒組成物A及び前記触媒組成物Bは、前記ゼオライト及び前記結合剤以外に、粘土鉱物を含むことを特徴とする請求項1~9のいずれかに記載の炭化水素油の流動接触分解触媒。 The fluid catalytic cracking catalyst for hydrocarbon oil according to any one of claims 1 to 9, wherein the catalyst composition A and the catalyst composition B contain clay minerals in addition to the zeolite and the binder. .
  11.  請求項1~10のいずれかに記載の炭化水素油の流動接触分解触媒を使用することを特徴とする炭化水素油の流動接触分解方法。 A fluid catalytic cracking method for hydrocarbon oil, characterized in that the fluid catalytic cracking catalyst for hydrocarbon oil according to any one of claims 1 to 10 is used.
  12.  前記炭化水素油が残渣油を含むことを特徴とする請求項11記載の炭化水素油の流動接触分解方法。 12. The fluid catalytic cracking method of hydrocarbon oil according to claim 11, wherein the hydrocarbon oil contains residual oil.
  13.  前記炭化水素油には、バナジウム及びニッケルがそれぞれ0.5ppm以上含まれていることを特徴とする請求項12に記載の炭化水素油の流動接触分解方法。 The fluid catalytic cracking method for hydrocarbon oil according to claim 12, wherein the hydrocarbon oil contains 0.5 ppm or more of vanadium and nickel, respectively.
  14.  前記流動接触分解触媒には、バナジウム及びニッケルがそれぞれ300ppm以上含まれていることを特徴とする請求項11~13のいずれかに記載の炭化水素油の流動接触分解方法。 14. The fluid catalytic cracking method for hydrocarbon oil according to claim 11, wherein the fluid catalytic cracking catalyst contains 300 ppm or more of vanadium and nickel, respectively.
PCT/JP2009/059887 2008-05-30 2009-05-29 Catalyst for fluid catalytic cracking of hydrocarbon oil and method of fluid catalytic cracking of hydrocarbon oil with the same WO2009145311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2009252242A AU2009252242B2 (en) 2008-05-30 2009-05-29 Catalyst for fluid catalytic cracking of hydrocarbon oil and method of fluid catalytic cracking of hydrocarbon oil with the same
JP2010514560A JP5628027B2 (en) 2008-05-30 2009-05-29 Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-143035 2008-05-30
JP2008143035 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009145311A1 true WO2009145311A1 (en) 2009-12-03

Family

ID=41377180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059887 WO2009145311A1 (en) 2008-05-30 2009-05-29 Catalyst for fluid catalytic cracking of hydrocarbon oil and method of fluid catalytic cracking of hydrocarbon oil with the same

Country Status (7)

Country Link
JP (1) JP5628027B2 (en)
KR (1) KR101566185B1 (en)
AU (1) AU2009252242B2 (en)
MY (1) MY153881A (en)
SG (1) SG2014012801A (en)
TW (1) TWI465288B (en)
WO (1) WO2009145311A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061409A (en) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center Method for manufacturing catalytic cracking catalyst
JP2012061410A (en) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center Method for manufacturing catalytic cracking catalyst
JP2012061408A (en) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center Method for manufacturing catalytic cracking catalyst
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
KR20160135727A (en) 2014-03-17 2016-11-28 니끼 쇼꾸바이 카세이 가부시키가이샤 Device for testing catalyst for use fluid catalytic cracking
WO2020044859A1 (en) * 2018-08-29 2020-03-05 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
JP2020142229A (en) * 2019-02-28 2020-09-10 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
US11731114B2 (en) 2018-08-29 2023-08-22 Jgc Catalysts And Chemicals Ltd. Fluid catalytic cracking catalyst for hydrocarbon oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069636A1 (en) 2022-09-27 2024-04-04 Hindustan Petroleum Corporation Limited A catalyst composition for catalytic cracking of paraffin rich feed into light olefins

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157579A (en) * 1984-12-27 1986-07-17 モ−ビル オイル コ−ポレ−ション Catalytic cracking of faujasite type zeolite and zeolite beta blend
JPS6295384A (en) * 1985-10-18 1987-05-01 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ Method for cracking hydrocarbon stock material
JPH06501876A (en) * 1990-08-06 1994-03-03 シーレ カオリン カンパニー Method for improving physical properties and catalytic properties of fluidized cracking catalysts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7805841A (en) * 1978-05-30 1979-12-04 Shell Int Research PROCESS FOR THE PREPARATION OF GASOLINE.
AU582404B2 (en) * 1984-12-27 1989-03-23 Mobil Oil Corporation Catalytic cracking with a mixture of faujasite-type zeolites and zeolite beta
US4740292A (en) * 1985-09-12 1988-04-26 Mobil Oil Corporation Catalytic cracking with a mixture of faujasite-type zeolite and zeolite beta
US4946814A (en) * 1989-03-10 1990-08-07 Thiele-Kaolin Company Process for improving the physical and catalytic properties of fluid cracking catalysts
BR0100680A (en) * 2001-02-21 2002-11-05 Petroleo Brasileiro Sa Multiparticulate catalytic compositions for fluid catalytic cracking (fcc), fluid catalytic cracking (fcc) process and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157579A (en) * 1984-12-27 1986-07-17 モ−ビル オイル コ−ポレ−ション Catalytic cracking of faujasite type zeolite and zeolite beta blend
JPS6295384A (en) * 1985-10-18 1987-05-01 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ Method for cracking hydrocarbon stock material
JPH06501876A (en) * 1990-08-06 1994-03-03 シーレ カオリン カンパニー Method for improving physical properties and catalytic properties of fluidized cracking catalysts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061409A (en) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center Method for manufacturing catalytic cracking catalyst
JP2012061410A (en) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center Method for manufacturing catalytic cracking catalyst
JP2012061408A (en) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center Method for manufacturing catalytic cracking catalyst
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
KR20150044910A (en) 2012-08-17 2015-04-27 닛키 쇼쿠바이카세이 가부시키가이샤 Catalyst for hydrocarbon catalytic cracking
AU2013303687B2 (en) * 2012-08-17 2016-10-20 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
US9731281B2 (en) 2012-08-17 2017-08-15 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
KR20160135727A (en) 2014-03-17 2016-11-28 니끼 쇼꾸바이 카세이 가부시키가이샤 Device for testing catalyst for use fluid catalytic cracking
WO2020044859A1 (en) * 2018-08-29 2020-03-05 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
US11731114B2 (en) 2018-08-29 2023-08-22 Jgc Catalysts And Chemicals Ltd. Fluid catalytic cracking catalyst for hydrocarbon oil
JP2020142229A (en) * 2019-02-28 2020-09-10 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
JP7123864B2 (en) 2019-02-28 2022-08-23 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil

Also Published As

Publication number Publication date
KR20110007622A (en) 2011-01-24
AU2009252242A1 (en) 2009-12-03
AU2009252242B2 (en) 2013-11-28
TW201004706A (en) 2010-02-01
SG2014012801A (en) 2014-05-29
TWI465288B (en) 2014-12-21
MY153881A (en) 2015-04-15
JP5628027B2 (en) 2014-11-19
JPWO2009145311A1 (en) 2011-10-20
KR101566185B1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP5628027B2 (en) Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same
EP2604340B1 (en) Gasoline sulfur reductions catalyst for fluid catalytic cracking process
JP5390833B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
TWI650176B (en) Fcc catalyst compositions containing boron oxide and phosphorus
WO2018213406A1 (en) Bottoms upgrading and low coke fluid catalytic cracking catalyst
JP7046763B2 (en) Fluid cracking catalyst for hydrocarbon oil
JP5283745B2 (en) Process for producing desulfurization catalyst for catalytic cracking gasoline
JP7178829B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
WO2022040303A1 (en) Fluid catalytic cracking catalyst composition for enhanced butylenes yields with metal passivation functionality
US11731114B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
JP2016010765A (en) Catalytic cracking catalyst for hydrocarbon oil and catalytic cracking method of hydrocarbon oil
JP7123864B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
WO2020044859A1 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
JP4859358B2 (en) Catalytic cracking gasoline desulfurization catalyst and catalytic cracking gasoline desulfurization method using the same
JP2016193424A (en) Contact decomposition catalyst for hydrocarbon oil, manufacturing method of contact decomposition catalyst for hydrocarbon oil and contact decomposition method of hydrocarbon oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009252242

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8702/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107028560

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009252242

Country of ref document: AU

Date of ref document: 20090529

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09754819

Country of ref document: EP

Kind code of ref document: A1