WO2009145256A1 - Optical system, head-mounted type projector, and recursive penetrating element - Google Patents

Optical system, head-mounted type projector, and recursive penetrating element Download PDF

Info

Publication number
WO2009145256A1
WO2009145256A1 PCT/JP2009/059772 JP2009059772W WO2009145256A1 WO 2009145256 A1 WO2009145256 A1 WO 2009145256A1 JP 2009059772 W JP2009059772 W JP 2009059772W WO 2009145256 A1 WO2009145256 A1 WO 2009145256A1
Authority
WO
WIPO (PCT)
Prior art keywords
retrotransmissive
mirror
semi
projector
light
Prior art date
Application number
PCT/JP2009/059772
Other languages
French (fr)
Japanese (ja)
Inventor
竜吾 木島
Original Assignee
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岐阜大学 filed Critical 国立大学法人岐阜大学
Publication of WO2009145256A1 publication Critical patent/WO2009145256A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the present invention relates to an optical system, a head-mounted projector, and a retrotransmissive element.
  • the optical elements can be generally divided into refractive optical systems and reflective optical systems except for special ones such as hologram optical elements.
  • a theoretical system is established centering on the refractive and reflective optical systems that are the basic elements, and each of the above basic elements is used independently.
  • Various optical devices configured by combining or combining them have been proposed. However, the point that the optical element is limited to these two types of systems is the biggest restriction when the optical system is configured.
  • a refractive optical system is a system in which optical elements are arranged in a line and light is passed through them in order.
  • the traveling direction of light does not change.
  • the reflective optical system can change the traveling direction of light.
  • a beam splitter composed of a half mirror or a prism may be used.
  • a head mounted projector if the projector 10 is placed at a human viewpoint position 12 and an image can be projected onto the screen 14, the shape of the screen 14 is a curved surface. This is advantageous because the observed image is not distorted.
  • the projector 10 and the human viewpoint interfere with each other, so that the exit pupil of the projector 10 cannot be installed at the viewpoint position 12.
  • the beam splitter 16 if the beam splitter 16 is placed in front of the human eye, that is, in front of the observation viewpoint A, the interference in the space is eliminated.
  • head-mounted projectors arranged in this way are known.
  • the beam splitter 16 that is, a transmissive mirror such as a half mirror folds the space. Since the projector 10 overlaps the human pupil (observation viewpoint A) in the folded space, the above operation principle is satisfied. Even in this case, it is necessary to devise arrangement of the optical elements.
  • FIG. 17 shows the same operating principle as FIG. However, since the light path to the screen 14 is blocked by the projector 10, a complete real image cannot be observed.
  • An object of the present invention is suitable for a novel optical system, a head-mounted projector, and the optical system described above, in which a screen is not required by converting a virtual image despite the use of a projector for forming a real image. It is to provide a retrotransmissive element that can be used.
  • a projector and a retrotransmissive element disposed so as to face the projector, and is a surface opposite to the incident surface of the retrotransmissive element.
  • a retro-transmission element that changes the direction of the light in a direction symmetric with respect to the retro-transmission axis and emits the light, and incident light of an unreal image projected from the projector is transmitted through the retro-transmission element.
  • the image formation position of the real image is set on the side opposite to the incident surface of the light beam (a position away from the surface opposite to the incident surface), the light beam incident on the incident surface from the projector is still a real image. Not. For this reason, the light beam before forming a real image is called an “unreal image”.
  • the light rays incident on the retrotransmissive material pass through the material.
  • the light emitted from the retrotransmissive material is axisymmetric with respect to the incident light.
  • the axis at this time is a retro-transmission axis.
  • the normal line G of the beam splitter is the retrotransmission axis. If the beam splitter is a semi-transparent curved mirror, the normal line at each position of the curved surface is the retrotransmission axis.
  • the curved mirror when the curved mirror is miniaturized and formed as a Fresnel reflecting mirror, the normal line of each reflecting mirror is the retrotransmission axis.
  • the intersection line of the two orthogonal mirrors is the retrotransmission axis.
  • the projector makes the light flux (unreal image) incident on the retrotransmissive element.
  • the group of rays that are converging toward the real image position are spread apart by the retrotransmission element, but allow the rays to pass to the side opposite to the incident surface of the retrotransmission element.
  • the traveling direction of light does not change.
  • the angle for convergence is the angle for spreading.
  • these ray bundles conversely, form a virtual image.
  • This virtual image exists in a symmetrical position with respect to the original real image and the retrotransmissive surface.
  • the retrotransmissive element does not change the traveling direction of the light flux despite the fact that the space is folded and the real image is converted into the virtual image. For this reason, light enters the observer's pupil. Therefore, the observer can observe the image.
  • the beam splitter 16 mentioned in the background art is the same as the retrotransmissive element of the present invention in that the space is folded back, but is different from the retrotransmissive element of the present invention in that the traveling direction of the light beam is changed. It is preferable that all the optical systems in the present embodiment are composed of reflective elements.
  • the above optical system it is possible to convert a non-real image (light bundle) into a real image / virtual image by the retrotransmissive element, although a projector for forming a real image is used. For this reason, the observer can observe the light beam retroreflected by the retrotransmissive element as a virtual image, and can eliminate the need for a screen.
  • the retrotransmissive element is preferably curved. According to the above optical system, since the retrotransmissive element is curved, the focal position of the virtual image can be moved distally or proximally as compared with the case where the retrotransmissive element is not curved, A wide field of view or a narrow field of view can be obtained.
  • the optical system is provided on a support body mounted on the user's head, and the user visually recognizes a virtual image due to retroreflected light.
  • a head mounted projector in which a retrotransmissive element is arranged with respect to a support.
  • the above head-mounted projector it is possible to convert a non-real image (light bundle) into a real image / virtual image by the retrotransmissive element, even though a projector for forming a real image is used. For this reason, the observer can observe the light beam retroreflected by the retrotransparent element as a virtual image. Therefore, a screen can be dispensed with.
  • the transparent layer, the first surface of the transparent layer, or the semi-reflective layer provided inside the transparent layer, and the first of the transparent layer are provided.
  • a plurality of retroreflective elements provided in the second surface opposite to the surface of the transparent surface and reflecting the light toward the semi-reflective layer.
  • the retroreflective elements are discretely arranged.
  • a retrotransparent element is provided.
  • the traveling direction of the light beam is changed to a direction symmetric with respect to the retrotransmissive axis. It can be ejected from the element.
  • a retro-transmission element that can be suitably used in the above-described optical system and head-mounted projector.
  • the retrotransmissive element described above folds the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before imaging into a virtual image. Therefore, a new element can be added as an element constituting the optical system.
  • the semi-reflective layer is preferably curved. According to the retrotransmissive element, the focal position of the virtual image when the non-real image (light bundle) incident on the retrotransmissive element passes to the side opposite to the incident surface because the semi-reflective layer is curved. Can be moved distally or proximally, and a wide or narrow field of view can be obtained.
  • the semi-reflective layer is curved in a concave shape
  • the reflective surface of the semi-reflective layer is formed as a concave mirror
  • the light beam that passes through the semi-reflective layer and is reflected by the retroreflective element is reflected on the reflective surface.
  • the light is reflected, passes through the transparent layer, and is emitted to the outside.
  • the semi-reflective layer is curved in a concave shape, the reflective surface of the semi-reflective layer is formed into a concave mirror, and the light reflected by the retroreflective element after passing through the semi-reflective layer is reflected. The light is further reflected by the surface, passes through the transparent layer, and is emitted to the outside. Thereby, an effect equivalent to said retrotransmissive element can be realized.
  • the semi-reflective layer is curved into a convex shape
  • the reflective surface of the semi-reflective layer is formed as a convex mirror
  • the light incident on the transparent layer is reflected by the reflective surface.
  • the light is reflected, passes through the semi-reflective layer, and is emitted to the outside.
  • the semi-reflective layer is curved in a convex shape, the reflective surface of the semi-reflective layer is formed on the convex mirror, and the light incident on the transparent layer is reflected by the reflective surface, and further retroreflective.
  • the light is reflected by the conductive element, passes through the semi-reflective layer, and is emitted to the outside.
  • the plate-shaped element body is formed with a void group in which a plurality of voids are arranged in a dotted line and a circle,
  • a retrotransmissive element in which a plurality of gap groups are arranged concentrically and the wall surface of the gap is a mirror surface.
  • a plurality of circular gaps having different diameters are formed concentrically with respect to the plate-shaped element body, and the wall surfaces of the gaps are mirror surfaces.
  • a retrotransmissive element in which the gap has a pair of open ends opened on both sides of the element body, and at least one of the open ends is closed.
  • the void is preferably a through hole.
  • a plurality of gaps extending in the thickness direction of the element body are randomly arranged in the plate-like element body, and two surfaces are provided on the inner surface of the gap.
  • An orthogonal mirror is formed, and the two-surface orthogonal mirror is composed of a first mirror surface and a second mirror surface that are orthogonal to each other, and an intersection line between the first mirror surface and the second mirror surface is arranged along the thickness direction of the element body.
  • a retrotransparent element is provided.
  • the void is preferably a through hole.
  • the element body has a curved surface, and the intersecting line of the two-surface orthogonal matching mirror is arranged along the normal direction of the curved surface.
  • a two-plane orthogonal mirror is arranged in the element body, and the retrotransmission axis is set according to the location. It is preferable to add.
  • a retrotransmissive element an element having retrotransparency
  • the mirror folds the space symmetrically with respect to the mirror surface. This is because the mirror folds the incident light beam in the normal direction of the mirror surface. For this reason, both the real object in front of the mirror as viewed from the observer and the real image projected by the projector are observed as a virtual image existing on the opposite side of the observer with respect to the mirror. The virtual image that can be observed by the observer is observed as a virtual image on the side opposite to the observer with respect to the mirror.
  • the retroreflective element forms the light flux emitted from the object and the projected real image as a real image at the original position, despite the fact that the incident light is folded back in the normal direction in the same manner as the mirror.
  • the difference between the retroreflection and the mirror is that the light beam is folded in a plane that is in-plane folding, that is, in a plane orthogonal to the normal of the incident surface of the retroreflective element.
  • the space is also folded by the in-plane folding, the space is folded twice in total. Therefore, the retroreflective element has an effect of not folding the space.
  • FIG. 1 shows the presence / absence of “in-plane folding” and “folding in the normal H direction” in the transparent plate 10, the mirror 11, the retroreflective element 12, and the retrotransmissive element 13.
  • In-plane folding refers to folding of light rays in a plane orthogonal to the normal H of the incident surface.
  • the normal H direction refers to the normal direction on the incident surface of each member.
  • ⁇ (+1) indicates no folding
  • ⁇ ( ⁇ 1)” indicates folding.
  • (a), (b), and (c) in the transparent plate 10, the mirror 11, the retroreflective element 12, and the retrotransmissive element 13 show a perspective view, a plan view, and a side view of each member. In the perspective view, the plan view, and the side view, the traveling direction of the light ray K in each member is shown.
  • a black circle in FIG. 1B indicates an incident point of the light ray K in each member.
  • (Row, Column) (1, 1) is the transparent plate 10 that is not folded in any of the in-plane and normal directions.
  • (Row, Column) (1, ⁇ 1) is a mirror that has no in-plane fold and has fold (simple reflection) in the normal H direction. As a result, the mirror converts the real image into a virtual image.
  • the unreal image is folded back by the mirror surface that is the incident surface, and a real image is formed in front of the mirror surface as viewed from the observer.
  • the unreal image is converted into concentration and spread by folding in-plane, and forms a virtual image after being folded.
  • action which an unreal image is converted into a virtual image is described below as real image virtual image conversion.
  • the light bundle of the unreal image travels in the direction opposite to the incident direction. Then, a virtual image is formed at the original position where the real image existed when there was no retroreflective element. Further, in the case of the retrotransmissive element 13, the light beam of the unreal image is formed at a position where the plane orthogonal to the normal line of the retrotransmissive element 13 is folded back symmetrically to form a virtual image.
  • the retroreflective element can be suitably used for the optical system and the head-mounted projector.
  • the retrotransmissive element described above folds back the space, allows a part of the incident light beam to pass therethrough, and passes it to the side surface opposite to the incident surface. From this point, the retrotransmissive element is a new optical element that does not change the traveling direction of light and converts an unreal image (light bundle) before image formation into a virtual image. As a result, a new element can be added as an element constituting the optical system.
  • (A), (b) is a fragmentary sectional view of a retrotransmissive element.
  • (A), (b) is a fragmentary sectional view of the retroreflective element which concerns on other embodiment.
  • the perspective view which shows the outline of the retrotransmissive element which concerns on 3rd Embodiment of this invention.
  • (A), (b) is explanatory drawing of the optical path in the retrotransmissive element of 3rd Embodiment.
  • (A) is a perspective view which shows the outline of the retrotransmissive element based on 4th Embodiment of this invention, (b) is explanatory drawing of an optical path.
  • (A) is a perspective view which shows the outline of the retrotransmissive element which concerns on the modification of 4th Embodiment, (b) is explanatory drawing of an optical path.
  • (A) is sectional drawing which shows the outline of the retrotransmissive element which concerns on other embodiment of a retrotransmissive element.
  • (A) is explanatory drawing of the optical path by the retrotransmissive element which concerns on 3rd Embodiment, (b), (c) is explanatory drawing of the optical path by the retrotransmissive element which concerns on other embodiment. Sectional drawing which shows the outline of the retrotransmissive element which concerns on other embodiment.
  • (A) is a top view of the head mounted projector which concerns on 8th Embodiment of this invention
  • (b) is explanatory drawing of an optical system.
  • Explanatory drawing which shows the outline of the conventional head mounted projector.
  • Explanatory drawing which shows the outline of the conventional head mounted projector.
  • Explanatory drawing which shows the outline of the conventional head mounted projector.
  • the optical system is composed of a projector 20 and a plate-like retro-transmissive element 13 disposed to face the projector 20.
  • the retrotransmissive element 13 is arranged between the position where the light beam projected by the projector 20 forms an image and the projector 20.
  • the projection point 20a of the projector 20 is a position optically conjugate with the observer's observation viewpoint A, and is disposed outside the observer's visual field.
  • the projector 20 originally forms a real image in the direction in which the real image is projected.
  • the retrotransmissive element 13 is disposed between the image forming position of the real image and the projector 20. From this, the observer can observe the light beam projected from the projector 20 as a virtual image on the projector 20 side of the retro-transmissive element 13 from the observation viewpoint A by space folding and real image virtual image conversion.
  • the retrotransmissive element 13 includes a transparent solid layer 30 as a transparent layer, a plurality of retroreflective elements 32, and a flat semi-reflective layer 40. It consists of.
  • the transparent solid layer 30 is formed in a flat plate shape.
  • the retroreflective elements 32 are discretely arranged on the first surface of the transparent solid layer 30.
  • the semi-reflective layer 40 is composed of a half mirror, and is formed as a beam splitter laminated on the second surface of the transparent solid layer 30.
  • the normal line of the semi-reflective layer 40 (half mirror) is the retro-transmission axis G of the retro-transmission element 13.
  • the semi-reflective layer 40 is provided on the boundary surface with the transparent solid layer 30, but may be provided inside the transparent solid layer 30.
  • the configuration of the retrotransmissive element 13 is simplified to show the optical path of the light beam K.
  • the transparent solid layer 30 is made of a transparent material.
  • a transparent material transparent plastics, such as an acrylic resin, or glass can be mentioned, for example.
  • the retroreflective element 32 is composed of a corner cube prism.
  • the corner cube prism is made of the same transparent material as the transparent solid layer 30 and has retroreflectivity.
  • the size of the corner cube prism is preferably set to a minute size of mm units or micro units.
  • a fine processing technique such as known photolithography, LIGA using X-rays, or nanoimprinting is used.
  • a coating layer 33 made of a metal film is formed by aluminum vapor deposition or the like in order to improve the total reflection of light rays.
  • the coating layer 33 may be formed of a silver vapor deposition film or a chromium vapor deposition film in addition to the aluminum vapor deposition film.
  • the accuracy of retroreflection by the retroreflective element 32 is the accuracy of retrotransmission.
  • the degree of freedom of arrangement of the retroreflective elements 32 is extremely high.
  • a part of the light beam K (incident light) incident on the surface (incident surface) of the semi-reflective layer 40 is transmitted through the semi-reflective layer 40 and enters the transparent solid layer 30, and the retroreflective element 32 (corner cube). Retroreflects on the reflective surface. A part of the retroreflected light beam K is further reflected by the semi-reflective layer 40. Thereafter, a part of the retroreflected light beam K passes through the transparent solid layer 30 and is emitted from the surface between the adjacent retroreflective elements 32 to the outside from the surface opposite to the incident surface of the retrotransmissive element 13. .
  • the configuration of the retrotransmissive element 13 is simplified to show the optical path of the light beam K. That is, the light ray K (incident light) incident between the adjacent retroreflective elements 32 passes through the transparent solid layer 30 and travels toward the semi-reflective layer 40.
  • the surface of the retrotransmissive element 13 facing the projector 20 may be either the transparent solid layer 30 or the semi-reflective layer 40.
  • the light beam K (incident light) projected from the projector 20 is folded back by the retroreflective element 32 and the semi-reflective layer 40 of the retrotransmissive element 13. That is, the light ray K is retro-transmitted by the retroreflective element 32 and the semi-reflective layer 40, and the reflected light is imaged on the side opposite to the incident surface of the retrotransmissive element 13.
  • the optical system includes a projector 20 and a retrotransmissive element 13 disposed so as to face the projector 20.
  • the incident light of the unreal image projected from the projector 20 is retro-transmitted through the retro-transmissive element 13.
  • a virtual image is formed on the side opposite to the incident surface of the retrotransmissive element 13 by the retroreflective light.
  • the observer can observe the light beam retroreflected by the retrotransmissive element 13 as a virtual image.
  • a screen can be made unnecessary even though the projector is used.
  • the retrotransmissive element 13 includes a transparent solid layer 30 (transparent layer) and a semi-reflective layer 40 provided on the first surface of the transparent solid layer 30.
  • the transparent solid layer 30 has a second surface opposite to the first surface.
  • a plurality of retroreflective elements 32 are discretely formed on the second surface of the transparent solid layer 30 in order to reflect light rays toward the semi-reflective layer 40.
  • the retrotransmissive element 13 changes the direction of incident light in a symmetric direction with respect to the retrotransmission axis G when transmitting incident light (incident light) to a surface opposite to the incident surface. (Retro-transparency).
  • the retrotransmissive element 13 of the present embodiment can be suitably employed in the above-described optical system.
  • the retrotransmissive element 13 turns back the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element 13 is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before image formation into a virtual image. Therefore, a new element can be added as an element constituting the optical system.
  • the projector 20 is disposed outside the observer's field of view, but may be disposed within the observer's field of view.
  • the light beam projected from the projector 20 is converted into a real image / virtual image by the retrotransmissive element 13.
  • the observer can see a complete virtual image without blocking the light beam projected from the projector 20.
  • this embodiment is advantageous in that a complete virtual image that is not obstructed can be observed.
  • FIG. 17 in which only an incomplete real image can be observed
  • the observation viewpoint A of the observer is arranged on the optical axis of the projector 20, but in actuality, the observer is coaxial with the exit pupil of the projector 20 so as not to dazzle the observer.
  • the eyes are arranged.
  • the projector 20 shown in FIG. 3B is shown large for convenience of explanation, but the diameter of the penlight is sufficient.
  • the retrotransmissive element 13 has a flat element body 41.
  • the element body 41 is formed with a plurality of through holes 42 as voids.
  • the through hole 42 is formed of a minute hole having a right-angled triangle in cross section.
  • the through holes 42 penetrate the element body 41 in the thickness direction and are randomly arranged.
  • the element body 41 may be either a transparent body or a non-transparent body.
  • a corner mirror 43 is formed on the inner surface of the through hole 42.
  • the corner mirror 43 is a two-surface orthogonal mirror that includes a first mirror surface 44 and a second mirror surface 45 that are orthogonal to each other.
  • the corner mirror 43 is formed as a surface mirror by the metal film described in the first embodiment.
  • the intersecting line (recursive transmission axis G) between the first mirror surface 44 and the second mirror surface 45 is arranged along the thickness direction of the element body 41.
  • the retrotransmission axis G is arranged orthogonal to the plane of the element body 41.
  • the direction of the retrotransmission axis G coincides with the normal direction of the surface of the element body 41.
  • the size of the through hole 42 is preferably set to a minute size of mm units or micro units.
  • FIG. 8A the light beam incident from the first surface of the element body 41 is reflected in the order of the first mirror surface 44 and the second mirror surface 45 or in the order of the second mirror surface 45 and the first mirror surface 44. Then, the light is emitted from the second surface of the element body 41 to the outside.
  • FIG. 8B is an enlarged view of the through hole 42 of the element body 41 in plan view. The light beam incident on the element body 41 is reflected as shown by the arrow in FIG. That is, the retrotransmissive element 13 provided with the corner mirror 43 exhibits retrotransparency.
  • the retrotransmissive element 13 has a flat element body 41.
  • a plurality of through holes 42 (air gaps) penetrating in the thickness direction of the element body 41 are randomly arranged.
  • a corner mirror 43 two-surface orthogonal alignment mirror
  • an intersection line (recursive transmission axis G) between the first mirror surface 44 and the second mirror surface 45 is arranged along the thickness direction of the element body 41.
  • the retrotransmissive element 13 turns back the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element 13 is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before image formation into a virtual image. As a result, a new element can be added as an element constituting the optical system.
  • the retrotransmissive element 13 of this embodiment is employed in the optical system of the first embodiment as compared to the case where the through holes 42 are not randomly arranged.
  • the degree of freedom of the arrangement relationship between the projector 20 and the retrotransmissive element 13 is improved.
  • the retrotransmissive element 13 has a flat element body 41.
  • a plurality of voids 50 that is, through holes are formed in the element body 41.
  • the plurality of gaps 50 are arranged in a dotted line shape and in a circular shape.
  • a plurality of gap groups 52 are formed in the element body 41.
  • the plurality of gap groups 52 are all arranged concentrically.
  • the gap 50 has a wall surface 54 formed on a mirror surface.
  • the size of the gap 50 is preferably set to a minute size of mm units or micro units.
  • the interval between adjacent gap groups 52 is preferably set to mm units or micro units.
  • the mirror surface of the wall surface 54 is formed as a surface mirror by the metal film described in the first embodiment.
  • the optical system employing the retrotransmissive element 13 is premised on passing the light beam projected from the projector 20 through a small region such as the exit pupil of the projector 20 or the observer's pupil. Therefore, the projector 20 and the retrotransmissive element 13 are arranged so that the optical axis of the projector 20 and the concentric axis of the gap group 52 are coaxial. In this case, the concentric axis of the gap group 52 is the retrotransmission axis G.
  • FIG. 9B is a cross-sectional view showing the gap 50 of the element body 41 in an enlarged manner.
  • the optical system is formed as described above, the light incident from the first surface of the element body 41 is reflected by the wall surface 54 (mirror surface) of each gap 50 as shown by the arrow in FIG. The light is emitted from the second surface of the element body 41 to the outside. In this way, the retrotransmissive element 13 exhibits retrotransparency.
  • the retrotransmissive element 13 turns back the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element 13 is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before image formation into a virtual image. As a result, a new element can be added as an element constituting an optical system that is combined in a line.
  • the retrotransmissive element 13 has an element body 41.
  • a plurality of circular voids 60 are formed in the element body 41.
  • the plurality of gaps 60 have different diameters and are formed concentrically.
  • the gap 60 has a wall surface 62 formed on a mirror surface. The mirror surface should just be formed in the wall surface 62 of a larger diameter at least among a pair of wall surface which forms each space
  • the width in the radial direction of the gap is preferably set to a minute size of mm units or micro units.
  • the interval between adjacent gaps 60 is preferably set to mm units or micro units.
  • the mirror surface of the wall surface 62 is formed as a surface mirror by the metal film described in the first embodiment.
  • a transparent plate 64 that closes the first opening end of the gap 60 is laminated on the element body 41. In the present embodiment, the first open end of the gap 60 is closed by the transparent plate 64. Instead of this, a pair of transparent plates may be laminated on both surfaces of the element body 41 to close both of the pair of open ends of the gap 60.
  • the optical system that employs the retrotransmissive element 13 transmits the light bundle projected from the projector 20 to a small area such as the exit pupil of the projector 20 or the observer's pupil, as in the fourth embodiment. It is assumed that you pass. Therefore, the projector 20 and the retrotransmissive element 13 are arranged so that the optical axis of the projector 20 and the concentric axis of the gap group 52 are coaxial.
  • FIG. 10B is an enlarged sectional view showing the gap 60 of the element body 41.
  • the light beam incident from the first surface of the element body 41 is reflected by the wall surface 62 (mirror surface) of each gap 60 as shown by the arrow in FIG. Later, the light is emitted from the second surface of the element body 41 to the outside through the transparent plate 64. In this way, the retrotransmissive element 13 exhibits retrotransparency.
  • FIG. 6A a sixth embodiment of the present invention will be described with reference to FIG.
  • This embodiment embodies claim 6.
  • the retrotransmissive element 13 described with reference to FIGS. 5A, 5B, 6A, and 6B is curved.
  • the transparent solid layer 30 and the semi-reflective layer 40 constituting the retrotransmissive element 13 are both curved.
  • 11A and 11B for convenience of explanation, a cross-sectional view of the retrotransmissive element 13 is simply shown as in FIGS. 4A and 4B.
  • the retrotransmissive element 13 is arranged with the semi-reflective layer 40 facing the projector 20. Both the semi-reflective layer 40 and the transparent solid layer 30 of the retrotransmissive element 13 are curved in a convex shape toward the projector 20. As a result, the reflective surface (mirror surface) of the semi-reflective layer 40 becomes concave, and functions as a concave mirror in which the surface facing the observation viewpoint A is recessed.
  • the light beam incident on the retrotransmissive element 13 from the projector 20 is retroreflected by the retroreflective element 32 and then reflected by the reflection surface of the semi-reflective layer 40 functioning as a concave mirror.
  • the concave mirror function the focal point of the virtual image is moved more distally than in the case where the retrotransmissive element 13 has a planar shape. For this reason, the observer can see a virtual image with a wide visual field.
  • the curved surface in this case, it is possible to use a spherical surface, a rotating hyperboloid, a paraboloid, or the like that easily obtains optical conjugation between the exit pupil of the projector 20 and the human pupil.
  • the curved surface of the present embodiment has an effect of moving the focal position distally (distantly). For this reason, in order to suppress the disturbance of the imaging, it is preferable that the curvature of the curved surface is uniform in the distribution region of the light bundle that constitutes the pixel and is incident on the observer's pupil.
  • both the transparent solid layer 30 and the semi-reflective layer 40 of the retrotransmissive element 13 are curved along the same direction, some of the light rays that have passed through the semi-reflective layer 40 are retroreflective element 32.
  • the retroreflected light beam is reflected by the reflecting surface (concave mirror), passes through the transparent solid layer 30, and is emitted from the retrotransmissive element 13 toward the observation viewpoint A.
  • the focal position of the virtual image formed by passing the unreal image (light bundle) incident on the retrotransmissive element 13 through the surface opposite to the incident surface can be moved distally. Therefore, a wide visual field can be obtained.
  • the curved surface in this case, it is possible to use a spherical surface, a rotating hyperboloid, a paraboloid, or the like that easily obtains optical conjugation between the exit pupil of the projector 20 and the human pupil.
  • the curved surface of this embodiment has the effect of moving the focal position far away. For this reason, it is preferable to make the curvature of the curved surface uniform from the viewpoint of not disturbing the image formation in the distribution region of the light bundle that constitutes the pixel and enters the pupil of the observer.
  • the retrotransmissive element 13 is arranged with the transparent solid layer 30 facing the projector 20.
  • the retrotransmissive element 13 has the semi-reflective layer 40 and the transparent solid layer 30 curved in a convex shape toward the projector 20.
  • the reflective surface of the semi-reflective layer 40 is formed as a convex mirror.
  • the optical system is formed with the convex surface of the retrotransmissive element 13 facing the projector 20.
  • the light beam incident on the transparent solid layer 30 from the projector 20 is reflected by the reflective surface of the semi-reflective layer 40 that is a convex mirror, and then retroreflected by the retroreflective element 32.
  • a part of the retroreflected light beam passes through the semi-reflective layer 40 and is emitted from the retrotransmissive element 13 toward the observation viewpoint A.
  • FIGS. 14 (a) and 14 (b) an eighth embodiment of the present invention will be described with reference to FIGS. 14 (a) and 14 (b).
  • the optical system of the present invention is embodied in a head-mounted projector.
  • the head-mounted projector 100 is provided on the spectacle frame 110.
  • the eyeglass frame 110 includes a pair of rims 112 that support the pair of retro-transmissive elements 13, a bridge 114 that connects the rims 112, and a temple 118 that is attached to the rim 112 via a hinge 116.
  • a projector 20 is attached to each rim 112 via a bracket 120.
  • the projector 20 is disposed in front of the rim 12 (direction seen by the observer).
  • the projector 20 is disposed at a position optically conjugate with the observation viewpoint A of the observer with respect to the retrotransmissive element 13. Further, as shown in FIG.
  • the projector 20 is disposed outside the visual field of the observer when viewed from the observation viewpoint A.
  • the same configuration as that of the sixth embodiment is adopted, but the same configuration as that of the seventh embodiment may be adopted, or other than the sixth and seventh embodiments. You may employ
  • the head-mounted projector includes a spectacle frame 110 attached to the user's head as a support.
  • the optical system is supported on the spectacle frame 110.
  • the retrotransmissive element 13 is arranged on the eyeglass frame 110 (support) so that a virtual image by the retroreflective light can be visually recognized by the user.
  • the head-mounted projector 100 can eliminate the need for a screen by performing virtual image conversion in spite of using a projector for forming a real image.
  • a corner cube prism is provided as the retroreflective element 32 on the surface of the transparent solid layer 30 of the retrotransmissive element 13.
  • a plurality of glass beads may be discretely formed on the transparent solid layer 30 as shown in FIG. In this case, part of the glass beads is embedded in the transparent solid layer 30.
  • the refractive index of the glass beads is preferably a high optical refractive index of about 2.
  • a coating layer 33 is formed on the outer surface of the glass beads. The coating layer 33 is formed by vapor-depositing a metal thin film made of the same material as the metal thin film formed on the outer surface of the corner cube. In this case as well, the glass beads retroreflect light rays as in the corner cube.
  • the entire corner cube prism may be embedded in the transparent solid layer 30. Further, as shown in FIG. 6B, the entire glass beads may be embedded in the transparent solid layer 30.
  • a retrotransmissive element 13 in which the transparent solid layer 30 is omitted may be used.
  • the retroreflective elements 32 are supported in a state where the retroreflective elements 32 are discretely arranged by a lattice-like or net-like support member 70.
  • a gap layer 65 as a transparent layer is provided between the retroreflective element 32 and the semi-reflective layer 40 (beam splitter).
  • an interval holding member 80 is provided between the support member 70 and the semi-reflective layer 40 to ensure an appropriate interval therebetween.
  • a gap layer 65 is formed between the retroreflective element 32 and the semi-reflective layer 40.
  • the cross-sectional shape of the through hole 42 is a right triangle. However, if a corner mirror is formed on the inner surface of the through hole, the cross-sectional shape of the through hole 42 is a square cross section or a multi-section cross section. You may change to a square. In short, the cross-sectional shape of the through hole 42 may be a cross-sectional shape in which at least two mirror surfaces are orthogonal to each other.
  • a hole (bore) blocking the first opening end of the through hole 42 is used instead of the through hole 42 as a gap in the element body 41, or both open ends of the through hole 42 are formed. It may be closed with a transparent plate. In either case, since the corner mirror is formed on the wall surface surrounding the gap, the same effects as in FIG.
  • the retrotransmissive element 13 is curved in order to obtain a wide field of view.
  • the retrotransmissive element 13 may be curved in the opposite direction to FIG. .
  • the focal position of the virtual image is moved proximally with respect to the retrotransmissive element 13 as compared with the flat retrotransparent element 13.
  • a virtual image can be enlarged.
  • the retrotransmissive element 13 is arranged with the semi-reflective layer 40 facing the projector 20, and the semi-reflective layer 40 and the transparent solid layer 30 are curved in a convex shape toward the observation viewpoint A. Yes.
  • the reflective surface (mirror surface) of the semi-reflective layer 40 functions as a convex mirror.
  • the retrotransmissive element 13 is curved in order to obtain a wide field of view.
  • the retrotransmissive element 13 may be curved in the direction opposite to that in FIG. .
  • the focal position of the virtual image is moved proximally with respect to the retrotransmissive element 13 as compared with the flat retrotransmissive element 13. For this reason, a virtual image can be enlarged.
  • the retrotransmissive element 13 is arranged with the transparent solid layer 30 facing the projector 20 and curved in a convex shape with the semi-reflective layer 40 and the transparent solid layer 30 facing the observation viewpoint A. ing.
  • the reflective surface (mirror surface) of the semi-reflective layer 40 functions as a concave mirror.
  • the mirror may be further miniaturized using a Fresnel reflecting mirror (Fresnel semi-transmissive mirror 90).
  • a Fresnel reflecting mirror (Fresnel semi-transmissive mirror 90).
  • the physical shape and the optical shape can be considered separately.
  • the freedom degree of design improves. That is, instead of using the semi-reflective layer 40 as a curved mirror as shown in FIGS. 11A and 11B, a Fresnel semi-transmissive mirror 90 is used as a semi-reflective layer (beam splitter) as shown in FIG. it can.
  • the same optical effect as when the semi-reflective layer 40 is curved, that is, the spread or convergence of light rays can be obtained.
  • the Fresnel semi-transmissive mirror 90 is formed with a plurality of miniaturized annular zone surfaces 90a. For this reason, the Fresnel semi-transmission mirror 90 has a retro-transmission axis G that faces in different directions on each annular surface 90a.
  • each corner mirror 43 is arranged so as to be orthogonal to the plane of the element body 41. ing. In this case, like the plane mirror, the space is simply folded as shown by the arrow in FIG.
  • the retrotransmissive element 13 shown in FIGS. 12A to 12C is simply indicated by a straight line or a curve for convenience of explanation.
  • an element body 41 having a curved surface may be used instead of the flat element body 41.
  • a spherical surface a rotating hyperboloid, a paraboloid, or the like that can easily obtain optical conjugation between the exit pupil of the projector 20 and the human pupil can be used.
  • FIG. 12B for example, when the element body 41 has the spherical surface U, the light rays from the outside are reflected by the spherical surface U along the retrotransmission axis G perpendicular to the spherical surface U. It has an optical path. Similarly, the light beam from the inside (from the lower side of FIG. 12B) has an optical path as reflected by the spherical surface U.
  • the plurality of corner mirrors 43 (corner mirror array) arranged along the curved surface and having the retro-transmission axis G perpendicular to the curved surface allows the light rays incident on the retro-transmission element 13 to pass through the thickness of the retro-transmission element 13. It is made to pass in the direction and to the surface opposite to the incident surface. From this point, the corner mirror 43 does not change the traveling direction of the incident light. However, the traveling direction of the light beam in this case is opposite to that of the curved mirror.
  • the arrow indicated by the dotted line in FIG. 12B indicates the traveling direction of the light beam in the case of the curved mirror, that is, the reflection direction of the light beam reflected by the curved surface.
  • the retrotransmissive element 13 is not shown in FIG. 12C, even if the incident surface of the retrotransmissive element 13 is a plane or a curved surface.
  • the direction of the axis G may be set to an arbitrary direction. In this case, like the Fresnel lens and the reflecting mirror, the physical shape and the shape in the optical sense can be considered separately.
  • the present invention is embodied in the spectacle frame 110 as a support for supporting the optical system, but may be embodied in a helmet or the like, for example.
  • the retrotransmissive element 13 and the projector 20 are attached to the helmet.
  • the present invention may be embodied in a member attached to the head such as a headgear or a headband.

Abstract

Provided is an optical system comprising a projector (20) and a recursive penetrating element (13) arranged to face the projector (20).  The optical system causes the incident light of an unreal image projected from the projector (20), to penetrate recursively through the recursive penetrating element (13).  As a result, a virtual image is formed on the side opposite to the incidence face of the recursive penetrating element (13) by the light having recursively penetrated.  An observer can observe the optical beam caused to penetrate recursively by the recursive penetrating element (13), as a virtual image.

Description

光学系、頭部搭載型プロジェクタ、及び再帰透過性素子Optical system, head mounted projector, and retrotransmissive element
 本発明は、光学系、頭部搭載型プロジェクタ、及び再帰透過性素子に関する。 The present invention relates to an optical system, a head-mounted projector, and a retrotransmissive element.
 光学素子は、一般に、ホログラム光学素子などの特殊なものを除き、屈折光学系及び反射光学系に分けることができる。光学系を構成したり、シミュレーションを用いて詳細に設計したりするため、基本要素である屈折光学系及び反射光学系を中心に理論的な体系を成立させ、上記の基本要素をそれぞれ単独で用いたり、組み合わせたりして構成された様々な光学装置が提案されている。しかしながら、光学素子がこれらの2種類の系に限られている点が、光学系を構成する場合の最大の制約となっている。 The optical elements can be generally divided into refractive optical systems and reflective optical systems except for special ones such as hologram optical elements. In order to construct an optical system or to design in detail using simulation, a theoretical system is established centering on the refractive and reflective optical systems that are the basic elements, and each of the above basic elements is used independently. Various optical devices configured by combining or combining them have been proposed. However, the point that the optical element is limited to these two types of systems is the biggest restriction when the optical system is configured.
 屈折光学系は、光学素子を一列に並べてそれらに光を順に通していく系である。屈折光学系の場合、光の進行方向は変わらない。一方、反射光学系は、光の進行方向を変えることができる。光学機器の設計のため、動作原理を決定した後、2種類の光学系を組み合わせ、空間で干渉しないように各光学素子の位置を決める。この出願に関する技術が非特許文献1に開示されている。 A refractive optical system is a system in which optical elements are arranged in a line and light is passed through them in order. In the case of a refractive optical system, the traveling direction of light does not change. On the other hand, the reflective optical system can change the traveling direction of light. For the design of optical equipment, after determining the operating principle, the two optical systems are combined, and the position of each optical element is determined so as not to interfere in space. A technique related to this application is disclosed in Non-Patent Document 1.
 機械の場合と同じように、空間の干渉は、複数の光学素子間の位置関係を大きく制約する。このため、光学機器の動作原理が決定しても、各光学素子を所望の位置に配置できない場合がある。これを解消・緩和するため、ハーフミラー又はプリズムからなるビームスプリッタを用いることがある。 As in the case of machines, spatial interference greatly restricts the positional relationship between multiple optical elements. For this reason, even if the operating principle of the optical device is determined, there are cases where the optical elements cannot be arranged at desired positions. In order to solve and alleviate this, a beam splitter composed of a half mirror or a prism may be used.
 例えば、図15に示すように、頭部搭載型プロジェクタ(HMD)は、プロジェクタ10を人の視点位置12に置き、映像をスクリーン14に投影することができれば、スクリーン14の形状が曲面であっても観察される像に歪みが生じないため、好都合である。しかしながら、実際には、プロジェクタ10と人の視点とが干渉するため、視点位置12にプロジェクタ10の射出瞳を設置することはできない。その点、図16に示すように、人の眼の前、即ち、観察視点Aよりも前方にビームスプリッタ16を置けば、空間の干渉は解消される。従来より、このように配置した頭部搭載型プロジェクタは公知である。 For example, as shown in FIG. 15, in a head mounted projector (HMD), if the projector 10 is placed at a human viewpoint position 12 and an image can be projected onto the screen 14, the shape of the screen 14 is a curved surface. This is advantageous because the observed image is not distorted. However, in practice, the projector 10 and the human viewpoint interfere with each other, so that the exit pupil of the projector 10 cannot be installed at the viewpoint position 12. In that regard, as shown in FIG. 16, if the beam splitter 16 is placed in front of the human eye, that is, in front of the observation viewpoint A, the interference in the space is eliminated. Conventionally, head-mounted projectors arranged in this way are known.
 ここで、ビームスプリッタ16、即ち、ハーフミラーのような透過性を持つ鏡は、空間を折り返す。折り返された空間中でプロジェクタ10が人の瞳(観察視点A)に重なるため、上記の動作原理が満たされる。この場合においても、光学素子の配置には工夫が必要となる。図17は、図16と同じ動作原理を示す。しかしながら、プロジェクタ10によりスクリーン14までの光路が遮られてしまうため、完全な実像を観察することはできない。 Here, the beam splitter 16, that is, a transmissive mirror such as a half mirror folds the space. Since the projector 10 overlaps the human pupil (observation viewpoint A) in the folded space, the above operation principle is satisfied. Even in this case, it is necessary to devise arrangement of the optical elements. FIG. 17 shows the same operating principle as FIG. However, since the light path to the screen 14 is blocked by the projector 10, a complete real image cannot be observed.
 従来のプロジェクタを有する光学系の場合、スクリーンを必要とするだけでなく、スクリーンの設置箇所についても考慮する必要がある。このことから、プロジェクタを使用する光学系において、スクリーンを必要としない光学系が求められている。 In the case of an optical system having a conventional projector, it is necessary to consider not only the screen but also the installation location of the screen. For this reason, an optical system that does not require a screen is required in an optical system that uses a projector.
 本発明の目的は、実像形成のためのプロジェクタを使用するにも関わらず、虚像変換することによりスクリーンが不要となる新規な光学系、頭部搭載型プロジェクタ、及び上記の光学系にて好適に使用することのできる再帰透過性素子を提供することにある。 An object of the present invention is suitable for a novel optical system, a head-mounted projector, and the optical system described above, in which a screen is not required by converting a virtual image despite the use of a projector for forming a real image. It is to provide a retrotransmissive element that can be used.
 上記の課題を解決するため、本発明の第一の態様によれば、プロジェクタと、プロジェクタと対向して配置された再帰透過性素子であって、再帰透過性素子の入射面と反対側の面に入射光を透過させる際、再帰透過軸に関して対称な方向に光の向きを変えて射出させる再帰透過性素子とを備え、プロジェクタから投射された未実像の入射光を、再帰透過性素子を介して再帰透過させることにより、像が形成される光学系が提供される。 In order to solve the above problems, according to a first aspect of the present invention, there is provided a projector and a retrotransmissive element disposed so as to face the projector, and is a surface opposite to the incident surface of the retrotransmissive element. When transmitting incident light, a retro-transmission element that changes the direction of the light in a direction symmetric with respect to the retro-transmission axis and emits the light, and incident light of an unreal image projected from the projector is transmitted through the retro-transmission element. Thus, an optical system in which an image is formed can be provided.
 実像の結像位置が光線束の入射面と反対側(入射面とは反対側の面よりも離れた位置)に設定された場合、プロジェクタから入射面に入射された光線束は未だ実像になっていない。このため、実像を形成する前の光線束を「未実像」という。 When the image formation position of the real image is set on the side opposite to the incident surface of the light beam (a position away from the surface opposite to the incident surface), the light beam incident on the incident surface from the projector is still a real image. Not. For this reason, the light beam before forming a real image is called an “unreal image”.
 また、再帰透過性素材に入射した光線は素材を透過する。しかしながら、再帰透過性素材が無かった場合と比較した場合、再帰透過性素材から射出される光は入射光に対し軸対称になっている。このときの軸が再帰透過軸である。例えば、図4~図6に示す再帰反射性素子32と平面ビームスプリッタ(半反射層40)とを用いた構造の場合、ビームスプリッタの法線Gが再帰透過軸である。ビームスプリッタが半透過曲面鏡であれば、曲面の各位置における法線が再帰透過軸である。更に、曲面鏡を微細化してフレネル反射鏡として形成した場合も、各反射鏡の法線が再帰透過軸である。図7及び図8に示す直交2面鏡(コーナーミラー)を用いた構造の場合、直交する2つの鏡の交線が再帰透過軸である。又、この場合、図13に示すように、再帰透過軸の配置を場所により変更することで、曲面鏡の場合と同様の光学的効果が得られる。 In addition, the light rays incident on the retrotransmissive material pass through the material. However, when compared with the case where there is no retrotransmissive material, the light emitted from the retrotransmissive material is axisymmetric with respect to the incident light. The axis at this time is a retro-transmission axis. For example, in the structure using the retroreflective element 32 and the planar beam splitter (semi-reflective layer 40) shown in FIGS. 4 to 6, the normal line G of the beam splitter is the retrotransmission axis. If the beam splitter is a semi-transparent curved mirror, the normal line at each position of the curved surface is the retrotransmission axis. Further, when the curved mirror is miniaturized and formed as a Fresnel reflecting mirror, the normal line of each reflecting mirror is the retrotransmission axis. In the case of the structure using the orthogonal two-sided mirror (corner mirror) shown in FIGS. 7 and 8, the intersection line of the two orthogonal mirrors is the retrotransmission axis. Further, in this case, as shown in FIG. 13, by changing the arrangement of the retrotransmission axes depending on the location, the same optical effect as in the case of the curved mirror can be obtained.
 上記の構成により、プロジェクタは、光線束(未実像)を再帰透過性素子に入射する。実像位置に向けて収束しつつある光線群は、再帰透過素子により逆に散開するが、再帰透過性素子の入射面と反対側に光線を通過させる。この意味では、光の進行方向は変わらない。収束のための角度は、逆に散開のための角度となる。このため、これらの光線束は逆に虚像を形成する。この虚像は、本来の実像と再帰透過面に対して対称な位置に存在する。すなわち、再帰透過性素子は空間を折り返し、実像を虚像に変換するにもかかわらず、光線束の進行方向を変えない。このため、観察者の瞳に光が入射する。よって、観察者は、像を観察することができる。 With the above configuration, the projector makes the light flux (unreal image) incident on the retrotransmissive element. The group of rays that are converging toward the real image position are spread apart by the retrotransmission element, but allow the rays to pass to the side opposite to the incident surface of the retrotransmission element. In this sense, the traveling direction of light does not change. Conversely, the angle for convergence is the angle for spreading. For this reason, these ray bundles, conversely, form a virtual image. This virtual image exists in a symmetrical position with respect to the original real image and the retrotransmissive surface. In other words, the retrotransmissive element does not change the traveling direction of the light flux despite the fact that the space is folded and the real image is converted into the virtual image. For this reason, light enters the observer's pupil. Therefore, the observer can observe the image.
 背景技術で挙げたビームスプリッタ16は、空間を折り返すという点では本発明の再帰透過性素子と同じであるが、光線の進行方向を変える点で本発明の再帰透過性素子とは異なる。本実施形態での光学系は、全て反射系の素子からなることが好ましい。 The beam splitter 16 mentioned in the background art is the same as the retrotransmissive element of the present invention in that the space is folded back, but is different from the retrotransmissive element of the present invention in that the traveling direction of the light beam is changed. It is preferable that all the optical systems in the present embodiment are composed of reflective elements.
 上記の光学系によれば、実像形成のためのプロジェクタを使用するにも関わらず、再帰透過性素子により、未実像(光線束)を実像虚像変換することができる。このため、再帰透過性素子により再帰透過された光線を、観察者は虚像として観察することができ、スクリーンを不要とすることができる。 According to the above optical system, it is possible to convert a non-real image (light bundle) into a real image / virtual image by the retrotransmissive element, although a projector for forming a real image is used. For this reason, the observer can observe the light beam retroreflected by the retrotransmissive element as a virtual image, and can eliminate the need for a screen.
 上記の光学系において、再帰透過性素子が湾曲されていることが好ましい。
 上記の光学系によれば、再帰透過性素子が湾曲されていることにより、湾曲されていない場合に比して、虚像の焦点位置を遠位に、或いは近位に移動させることができると共に、広視野又は狭視野を得ることができる。
In the above optical system, the retrotransmissive element is preferably curved.
According to the above optical system, since the retrotransmissive element is curved, the focal position of the virtual image can be moved distally or proximally as compared with the case where the retrotransmissive element is not curved, A wide field of view or a narrow field of view can be obtained.
 上記の課題を解決するため、本発明の第二の態様によれば、上記の光学系が使用者の頭部に装着される支持体に設けられ、再帰透過した光による虚像を使用者が視認できるように、支持体に対して再帰透過性素子が配置されている頭部搭載型プロジェクタが提供される。 In order to solve the above problem, according to the second aspect of the present invention, the optical system is provided on a support body mounted on the user's head, and the user visually recognizes a virtual image due to retroreflected light. In order to be able to do so, there is provided a head mounted projector in which a retrotransmissive element is arranged with respect to a support.
 上記の頭部搭載型プロジェクタによれば、実像形成のためのプロジェクタを使用するにも関わらず、再帰透過性素子により、未実像(光線束)を実像虚像変換することができる。このため、再帰透過性素子により再帰透過された光線を、観察者は虚像として観察することができる。よって、スクリーンを不要とすることができる。 According to the above head-mounted projector, it is possible to convert a non-real image (light bundle) into a real image / virtual image by the retrotransmissive element, even though a projector for forming a real image is used. For this reason, the observer can observe the light beam retroreflected by the retrotransparent element as a virtual image. Therefore, a screen can be dispensed with.
 上記の課題を解決するため、本発明の第三の態様によれば、透明層と、透明層の第1の面、又は透明層の内部に設けられた半反射層と、透明層の第1の面と反対側の第2の面、又は透明層の内部に設けられ、光線を半反射層に向けて反射させる複数の再帰反射性素子とを備え、再帰反射性素子は離散的に配置されている再帰透過性素子が提供される。 In order to solve the above problems, according to the third aspect of the present invention, the transparent layer, the first surface of the transparent layer, or the semi-reflective layer provided inside the transparent layer, and the first of the transparent layer are provided. And a plurality of retroreflective elements provided in the second surface opposite to the surface of the transparent surface and reflecting the light toward the semi-reflective layer. The retroreflective elements are discretely arranged. A retrotransparent element is provided.
 上記の再帰透過性素子によれば、入射光を再帰透過性素子の入射面とは反対側の面へ透過させる際、光線の進行方向を再帰透過軸に対し対称な方向に変えて再帰透過性素子から射出することができる。こうした再帰透過性を利用することにより、上記の光学系、並びに頭部搭載型プロジェクタに好適に採用できる再帰透過性素子を提供することができる。 According to the retrotransmissive element, when the incident light is transmitted to the surface opposite to the incident surface of the retrotransmissive element, the traveling direction of the light beam is changed to a direction symmetric with respect to the retrotransmissive axis. It can be ejected from the element. By using such retro-transparency, it is possible to provide a retro-transmission element that can be suitably used in the above-described optical system and head-mounted projector.
 又、上記の再帰透過性素子は、空間を折り返し、入射した光線の一部を通過させて、入射面と反対側の面へ通過させる。この点から、再帰透過性素子は、入射光の進行方向を変えず、かつ結像前の未実像(光線束)を虚像に変換する新たな光学素子である。よって、光学系を構成する要素として新しい要素を付加することができる。 In addition, the retrotransmissive element described above folds the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before imaging into a virtual image. Therefore, a new element can be added as an element constituting the optical system.
 上記の再帰透過性素子において、半反射層が湾曲されていることが好ましい。
 上記の再帰透過性素子によれば、半反射層が湾曲されていることにより、再帰透過性素子に入射された未実像(光線束)が入射面と反対側へ通過した際の虚像の焦点位置を遠位、或いは近位に移動させることができると共に、広視野又は、狭視野を得ることができる。
In the retrotransmissive element, the semi-reflective layer is preferably curved.
According to the retrotransmissive element, the focal position of the virtual image when the non-real image (light bundle) incident on the retrotransmissive element passes to the side opposite to the incident surface because the semi-reflective layer is curved. Can be moved distally or proximally, and a wide or narrow field of view can be obtained.
 上記の再帰透過性素子において、半反射層が凹型に湾曲されて、半反射層の反射面が凹面鏡として形成され、半反射層を通過して再帰反射性素子で反射された光線が反射面で反射し、透明層を通過して外部に射出されることが好ましい。 In the retroreflective element, the semi-reflective layer is curved in a concave shape, the reflective surface of the semi-reflective layer is formed as a concave mirror, and the light beam that passes through the semi-reflective layer and is reflected by the retroreflective element is reflected on the reflective surface. Preferably, the light is reflected, passes through the transparent layer, and is emitted to the outside.
 上記の再帰透過性素子によれば、半反射層が凹型に湾曲されて、半反射層の反射面が凹面鏡に形成され、半反射層を通過してから再帰反射性素子で反射した光線が反射面で更に反射されて、透明層を通過して外部に射出される。これにより、上記の再帰透過性素子と同等の作用効果を実現することができる。 According to the retroreflective element, the semi-reflective layer is curved in a concave shape, the reflective surface of the semi-reflective layer is formed into a concave mirror, and the light reflected by the retroreflective element after passing through the semi-reflective layer is reflected. The light is further reflected by the surface, passes through the transparent layer, and is emitted to the outside. Thereby, an effect equivalent to said retrotransmissive element can be realized.
 上記の再帰透過性素子において、半反射層が凸型に湾曲されて、半反射層の反射面が凸面鏡として形成され、透明層に入射した光線が反射面で反射し、更に再帰反射性素子で反射し、半反射層を通過して外部に射出されることが好ましい。 In the retroreflective element, the semi-reflective layer is curved into a convex shape, the reflective surface of the semi-reflective layer is formed as a convex mirror, and the light incident on the transparent layer is reflected by the reflective surface. Preferably, the light is reflected, passes through the semi-reflective layer, and is emitted to the outside.
 上記の再帰透過性素子によれば、半反射層が凸型に湾曲されて、半反射層の反射面が凸面鏡に形成され、透明層へ入射した光線が反射面で反射して、更に再帰反射性素子で反射されて、半反射層を通過して外部に射出される。これにより、上記の再帰透過性素子と同等の作用効果を実現することができる。 According to the retrotransmissive element, the semi-reflective layer is curved in a convex shape, the reflective surface of the semi-reflective layer is formed on the convex mirror, and the light incident on the transparent layer is reflected by the reflective surface, and further retroreflective. The light is reflected by the conductive element, passes through the semi-reflective layer, and is emitted to the outside. Thereby, an effect equivalent to said retrotransmissive element can be realized.
 上記の課題を解決するため、本発明の第四の態様によれば、板状の素子本体には、複数の空隙を点線状にかつ、円状に配置してなる空隙群が形成され、更に、複数の空隙群が同心円状に配置され、空隙の壁面が鏡面である再帰透過性素子が提供される。 In order to solve the above-described problem, according to the fourth aspect of the present invention, the plate-shaped element body is formed with a void group in which a plurality of voids are arranged in a dotted line and a circle, There is provided a retrotransmissive element in which a plurality of gap groups are arranged concentrically and the wall surface of the gap is a mirror surface.
 上記の課題を解決するため、本発明の第五の態様によれば、板状の素子本体に対して、径の異なる複数の円状の空隙が同心円状に形成され、空隙の壁面は鏡面であり、空隙は素子本体の両面に開口する一対の開口端を有し、両開口端のうちの少なくとも一方は閉塞されている再帰透過性素子が提供される。 In order to solve the above problems, according to the fifth aspect of the present invention, a plurality of circular gaps having different diameters are formed concentrically with respect to the plate-shaped element body, and the wall surfaces of the gaps are mirror surfaces. There is provided a retrotransmissive element in which the gap has a pair of open ends opened on both sides of the element body, and at least one of the open ends is closed.
 上記の再帰透過性素子において、空隙が透孔であることが好ましい。
 上記の課題を解決するため、本発明の第六の態様によれば、板状の素子本体には、素子本体の厚み方向に延びる複数の空隙がランダムに配置され、空隙の内面には2面直交合わせ鏡が形成され、2面直交合わせ鏡は互いに直交する第1鏡面と第2鏡面とから構成され、第1鏡面と第2鏡面との交線が素子本体の厚み方向に沿って配置されている再帰透過性素子が提供される。
In the retrotransmissive element, the void is preferably a through hole.
In order to solve the above problems, according to the sixth aspect of the present invention, a plurality of gaps extending in the thickness direction of the element body are randomly arranged in the plate-like element body, and two surfaces are provided on the inner surface of the gap. An orthogonal mirror is formed, and the two-surface orthogonal mirror is composed of a first mirror surface and a second mirror surface that are orthogonal to each other, and an intersection line between the first mirror surface and the second mirror surface is arranged along the thickness direction of the element body. A retrotransparent element is provided.
 上記の再帰透過性素子において、空隙が透孔であることが好ましい。
 上記の再帰透過性素子において、素子本体は曲面を有し、2面直交合わせ鏡の交線が曲面の法線方向に沿って配置されていることが好ましい。
In the retrotransmissive element, the void is preferably a through hole.
In the retrotransmissive element, it is preferable that the element body has a curved surface, and the intersecting line of the two-surface orthogonal matching mirror is arranged along the normal direction of the curved surface.
 上記の再帰透過性素子において、素子本体に2面直交合わせ鏡が配置され、再帰透過軸が場所に応じて設定されることで、再帰透過性に加えて、光線の散開又は収束の光学特性が付加されることが好ましい。 In the retrotransparent element, a two-plane orthogonal mirror is arranged in the element body, and the retrotransmission axis is set according to the location. It is preferable to add.
 ここで、鏡、再帰反射性素子、及び再帰透過性を有する素子(以下、再帰透過性素子という)に関する「折り返し」について説明する。
 (空間の折り返し)
 鏡は、鏡面を基準として空間を対称に折り返している。これは、鏡が、入射する光線を鏡面の法線方向に折り返すからである。このため、観察者から見て鏡の手前にある実物体も、プロジェクタにより投影された実像も、鏡に対して観察者と反対側に存在する虚像として観察される。観察者が観察できる虚像は、鏡に対して観察者と反対側にある虚像のまま観察される。
Here, “folding” regarding a mirror, a retroreflective element, and an element having retrotransparency (hereinafter referred to as a retrotransmissive element) will be described.
(Space wrapping)
The mirror folds the space symmetrically with respect to the mirror surface. This is because the mirror folds the incident light beam in the normal direction of the mirror surface. For this reason, both the real object in front of the mirror as viewed from the observer and the real image projected by the projector are observed as a virtual image existing on the opposite side of the observer with respect to the mirror. The virtual image that can be observed by the observer is observed as a virtual image on the side opposite to the observer with respect to the mirror.
 一方、再帰反射性素子は、鏡と同じように入射する光線を法線方向に折り返すにも関わらず、物体から射出される光線束や投影された実像を元の位置に実像として結像させる。再帰反射と鏡とが異なる点は、面内の折り返し、すなわち、再帰反射性素子の入射面の法線と直交する平面において光線を折り返すことである。このように、面内の折り返しによっても空間が折り返されるため、空間は、計2回折り返される。よって、再帰反射性素子は、空間を折り返さない効果を有する。 On the other hand, the retroreflective element forms the light flux emitted from the object and the projected real image as a real image at the original position, despite the fact that the incident light is folded back in the normal direction in the same manner as the mirror. The difference between the retroreflection and the mirror is that the light beam is folded in a plane that is in-plane folding, that is, in a plane orthogonal to the normal of the incident surface of the retroreflective element. Thus, since the space is also folded by the in-plane folding, the space is folded twice in total. Therefore, the retroreflective element has an effect of not folding the space.
 「面内の折り返し」は、結像点に集中する光線束を結像点から出た光のように開散光線束に変え、逆に、物体や結像点から出た開散光線束を集中して結像させる効果を有する。
 図1は、透明板10、鏡11、再帰反射性素子12、及び再帰透過性素子13における「面内の折り返し」と「法線H方向の折り返し」の有無を示す。
“Folding in the plane” changes the beam bundle concentrated at the image point to a divergent beam beam like light emitted from the image point, and conversely concentrates the beam beam emitted from the object or image point. Has the effect of image formation.
FIG. 1 shows the presence / absence of “in-plane folding” and “folding in the normal H direction” in the transparent plate 10, the mirror 11, the retroreflective element 12, and the retrotransmissive element 13.
 面内の折り返しとは、入射面の法線Hと直交する平面における光線の折り返しをいう。法線H方向は、各部材の入射面における法線方向を指す。
 図1において、「×(+1)」が折り返し無し、「×(-1)」が折り返し有りを示す。図1中、透明板10、鏡11、再帰反射性素子12、及び再帰透過性素子13における(a)、(b)及び(c)は各部材の斜視図、平面図及び側面図を示す。また、斜視図、平面図及び側面図において、各部材における光線Kの進行方向が示されている。図1の(b)における黒丸は、各部材における光線Kの入射点を示す。
In-plane folding refers to folding of light rays in a plane orthogonal to the normal H of the incident surface. The normal H direction refers to the normal direction on the incident surface of each member.
In FIG. 1, “× (+1)” indicates no folding, and “× (−1)” indicates folding. In FIG. 1, (a), (b), and (c) in the transparent plate 10, the mirror 11, the retroreflective element 12, and the retrotransmissive element 13 show a perspective view, a plan view, and a side view of each member. In the perspective view, the plan view, and the side view, the traveling direction of the light ray K in each member is shown. A black circle in FIG. 1B indicates an incident point of the light ray K in each member.
 (行,列)=(1,1)は、面内、及び法線方向のいずれにも折り返しがない透明板10である。
 (行,列)=(1,-1)は、面内の折り返しが無く、法線H方向の折り返し(単純反射)がある鏡である。この結果、鏡は、実像を虚像に変換する。
(Row, Column) = (1, 1) is the transparent plate 10 that is not folded in any of the in-plane and normal directions.
(Row, Column) = (1, −1) is a mirror that has no in-plane fold and has fold (simple reflection) in the normal H direction. As a result, the mirror converts the real image into a virtual image.
 (行,列)=(-1,-1)は、面内の折り返しがあり、法線H方向の折り返しもある再帰反射性素子12を示す。この場合、上述したように、面内の折り返しのため、結果として空間を折り返すことなく、集中光と拡散光とを変換する。このため、実像は、元の位置において再び実像を結ぶ。再帰反射性素子12から見て観察できる虚像は、虚像位置に実像を結ぶ。 (Row, column) = (− 1, −1) indicates the retroreflective element 12 with in-plane folding and with normal H-direction folding. In this case, as described above, because of the in-plane folding, the concentrated light and the diffused light are converted without folding the space as a result. For this reason, the real image is formed again at the original position. The virtual image that can be observed when viewed from the retroreflective element 12 forms a real image at the virtual image position.
 (行,列)=(-1,1)は、再帰透過性素子13を示す。図1及び図2に示すように、再帰透過性素子13は、法線H方向の折り返しを行わずに、面内の折り返しのみを行う。 (Row, column) = (− 1, 1) indicates the retrotransmissive element 13. As shown in FIGS. 1 and 2, the retrotransmissive element 13 performs only in-plane folding without performing folding in the normal H direction.
 (実像虚像変換)
 実像の結像位置が光線束の入射面と反対側(入射面と反対側の面よりも離れた位置)に設定される場合、入射面に入射された光線束は未だ実像になっていない。このため、実像を形成する前の光線束を、説明の便宜上、「未実像」として以下に記載する。
(Real image to virtual image conversion)
When the imaging position of the real image is set on the side opposite to the incident surface of the light beam (a position away from the surface opposite to the incident surface), the light beam incident on the incident surface is not yet a real image. For this reason, the light bundle before forming a real image is described below as an “unreal image” for convenience of explanation.
 鏡11の場合、未実像は入射面である鏡面で折り返されて、観察者から見て鏡面の手前において実像を形成する。
 再帰反射性素子12及び再帰透過性素子13の場合、未実像は、面内の折り返しにより、集中と散開とが変換されて、折り返された後は虚像を形成する。このように、未実像が虚像に変換される作用を実像虚像変換として以下に記載する。
In the case of the mirror 11, the unreal image is folded back by the mirror surface that is the incident surface, and a real image is formed in front of the mirror surface as viewed from the observer.
In the case of the retroreflective element 12 and the retrotransmissive element 13, the unreal image is converted into concentration and spread by folding in-plane, and forms a virtual image after being folded. Thus, the effect | action which an unreal image is converted into a virtual image is described below as real image virtual image conversion.
 再帰反射性素子12の場合、未実像の光線束は入射方向と逆方向に進む。そして、再帰反射性素子の無い場合に実像が存在していた元の位置に虚像を結像する。又、再帰透過性素子13の場合は、未実像の光線束が再帰透過性素子13の法線に直交する平面を対称に折り返された位置で結像されて、虚像が形成される。 In the case of the retroreflective element 12, the light bundle of the unreal image travels in the direction opposite to the incident direction. Then, a virtual image is formed at the original position where the real image existed when there was no retroreflective element. Further, in the case of the retrotransmissive element 13, the light beam of the unreal image is formed at a position where the plane orthogonal to the normal line of the retrotransmissive element 13 is folded back symmetrically to form a virtual image.
 上記の再帰透過性素子によれば、上記の光学系、並びに上記の頭部搭載型プロジェクタに好適に採用できる。又、上記の再帰透過性素子は、空間を折り返し、入射した光線の一部を通過させて、入射面とは反対側の側面へ通過させる。この点から、上記の再帰透過性素子は、光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に変換する新たな光学素子である。この結果、光学系を構成する要素として新しい要素を付加することができる。 The retroreflective element can be suitably used for the optical system and the head-mounted projector. In addition, the retrotransmissive element described above folds back the space, allows a part of the incident light beam to pass therethrough, and passes it to the side surface opposite to the incident surface. From this point, the retrotransmissive element is a new optical element that does not change the traveling direction of light and converts an unreal image (light bundle) before image formation into a virtual image. As a result, a new element can be added as an element constituting the optical system.
透明板、鏡、再帰反射性素子、再帰透過性素子の空間の折り返しの有無の説明図であり、(a)は各部材の斜視図、(b)は各部材の平面図、(c)は各部材の側面図。It is explanatory drawing of the presence or absence of the folding | turning of the space of a transparent plate, a mirror, a retroreflective element, and a retrotransmissive element, (a) is a perspective view of each member, (b) is a top view of each member, (c) is The side view of each member. 再帰反射性素子による空間の折り返しを説明するための斜視図。The perspective view for demonstrating the return of the space by a retroreflective element. (a)は本発明の第1実施形態に係る光学系の説明図、(b)は本発明の第2実施形態に係る光学系の説明図。(A) is explanatory drawing of the optical system which concerns on 1st Embodiment of this invention, (b) is explanatory drawing of the optical system which concerns on 2nd Embodiment of this invention. (a)、(b)、(c)は再帰透過性素子の概略を示す断面図。(A), (b), (c) is sectional drawing which shows the outline of a retrotransmissive element. (a)、(b)は再帰透過性素子の部分断面図。(A), (b) is a fragmentary sectional view of a retrotransmissive element. (a)、(b)は他の実施形態に係る再帰透過性素子の部分断面図。(A), (b) is a fragmentary sectional view of the retroreflective element which concerns on other embodiment. 本発明の第3実施形態に係る再帰透過性素子の概略を示す斜視図。The perspective view which shows the outline of the retrotransmissive element which concerns on 3rd Embodiment of this invention. (a)、(b)は第3実施形態の再帰透過性素子における光路の説明図。(A), (b) is explanatory drawing of the optical path in the retrotransmissive element of 3rd Embodiment. (a)は本発明の第4実施形態に係る再帰透過性素子の概略を示す斜視図、(b)は光路の説明図。(A) is a perspective view which shows the outline of the retrotransmissive element based on 4th Embodiment of this invention, (b) is explanatory drawing of an optical path. (a)は第4実施形態の変形例に係る再帰透過性素子の概略を示す斜視図、(b)は光路の説明図。(A) is a perspective view which shows the outline of the retrotransmissive element which concerns on the modification of 4th Embodiment, (b) is explanatory drawing of an optical path. (a)、(b)は再帰透過性素子の他の実施形態に係る再帰透過性素子の概略を示す断面図。(A), (b) is sectional drawing which shows the outline of the retrotransmissive element which concerns on other embodiment of a retrotransmissive element. (a)は第3実施形態に係る再帰透過性素子による光路の説明図、(b)、(c)は他の実施形態に係る再帰透過性素子による光路の説明図。(A) is explanatory drawing of the optical path by the retrotransmissive element which concerns on 3rd Embodiment, (b), (c) is explanatory drawing of the optical path by the retrotransmissive element which concerns on other embodiment. 他の実施形態に係る再帰透過性素子の概略を示す断面図。Sectional drawing which shows the outline of the retrotransmissive element which concerns on other embodiment. (a)は本発明の第8実施形態に係る頭部搭載型プロジェクタの平面図、(b)は光学系の説明図。(A) is a top view of the head mounted projector which concerns on 8th Embodiment of this invention, (b) is explanatory drawing of an optical system. 従来の頭部搭載型プロジェクタの概略を示す説明図。Explanatory drawing which shows the outline of the conventional head mounted projector. 従来の頭部搭載型プロジェクタの概略を示す説明図。Explanatory drawing which shows the outline of the conventional head mounted projector. 従来の頭部搭載型プロジェクタの概略を示す説明図。Explanatory drawing which shows the outline of the conventional head mounted projector.
 (第1実施形態)
 以下、本発明の光学系を具体化した一実施形態について図3~図6を参照して説明する。
(First embodiment)
Hereinafter, an embodiment embodying the optical system of the present invention will be described with reference to FIGS.
 図3(a)に示すように、光学系は、プロジェクタ20と、プロジェクタ20と対向して配置された平板状の再帰透過性素子13とから構成されている。再帰透過性素子13は、プロジェクタ20により投射された光線を結像させる位置とプロジェクタ20との間に配置されている。プロジェクタ20の投影点20aは、観察者の観察視点Aと光学共役な位置であり、かつ観察者の視野の外側に配置されている。 As shown in FIG. 3A, the optical system is composed of a projector 20 and a plate-like retro-transmissive element 13 disposed to face the projector 20. The retrotransmissive element 13 is arranged between the position where the light beam projected by the projector 20 forms an image and the projector 20. The projection point 20a of the projector 20 is a position optically conjugate with the observer's observation viewpoint A, and is disposed outside the observer's visual field.
 プロジェクタ20は、本来、実像を投影した方向に実像を結ぶ。本発明によれば、再帰透過性素子13が、実像の結像位置とプロジェクタ20との間に配置される。このことから、観察者は、観察視点Aから、空間の折り返しと実像虚像変換とにより、再帰透過性素子13のプロジェクタ20側において、プロジェクタ20から投射された光線を虚像として観察することができる。 The projector 20 originally forms a real image in the direction in which the real image is projected. According to the present invention, the retrotransmissive element 13 is disposed between the image forming position of the real image and the projector 20. From this, the observer can observe the light beam projected from the projector 20 as a virtual image on the projector 20 side of the retro-transmissive element 13 from the observation viewpoint A by space folding and real image virtual image conversion.
 図4(a)及び図5(a)に示すように、再帰透過性素子13は、透明層としての透明充実体層30と、複数の再帰反射性素子32と、平板状の半反射層40とからなる。透明充実体層30は、平板状に形成されている。再帰反射性素子32は、透明充実体層30の第1の面上に離散的に配置されている。半反射層40はハーフミラーからなり、透明充実体層30の第2の面上に積層されたビームスプリッタとして形成されている。本実施形態では、半反射層40(ハーフミラー)の法線が再帰透過性素子13の再帰透過軸Gである。半反射層40は透明充実体層30との境界面に設けられているが、透明充実体層30の内部に設けられてもよい。説明の便宜上、図4(a)では、光線Kの光路を示すため、再帰透過性素子13の構成が簡略化されている。 As shown in FIG. 4A and FIG. 5A, the retrotransmissive element 13 includes a transparent solid layer 30 as a transparent layer, a plurality of retroreflective elements 32, and a flat semi-reflective layer 40. It consists of. The transparent solid layer 30 is formed in a flat plate shape. The retroreflective elements 32 are discretely arranged on the first surface of the transparent solid layer 30. The semi-reflective layer 40 is composed of a half mirror, and is formed as a beam splitter laminated on the second surface of the transparent solid layer 30. In the present embodiment, the normal line of the semi-reflective layer 40 (half mirror) is the retro-transmission axis G of the retro-transmission element 13. The semi-reflective layer 40 is provided on the boundary surface with the transparent solid layer 30, but may be provided inside the transparent solid layer 30. For convenience of explanation, in FIG. 4A, the configuration of the retrotransmissive element 13 is simplified to show the optical path of the light beam K.
 透明充実体層30は、透明材質から形成されている。透明材質として、例えば、アクリル樹脂等の透明プラスチック、又はガラスを挙げることができる。
 再帰反射性素子32は、コーナーキューブプリズムから構成されている。コーナーキューブプリズムは、透明充実体層30と同質の透明材質からなり、再帰反射性を有する。コーナーキューブプリズムの大きさは、好ましくは、mm単位、又はマイクロ単位の微小な大きさに設定されている。
The transparent solid layer 30 is made of a transparent material. As a transparent material, transparent plastics, such as an acrylic resin, or glass can be mentioned, for example.
The retroreflective element 32 is composed of a corner cube prism. The corner cube prism is made of the same transparent material as the transparent solid layer 30 and has retroreflectivity. The size of the corner cube prism is preferably set to a minute size of mm units or micro units.
 透明充実体層30上にコーナーキューブプリズムを形成するには、公知のフォトリソグラフィ、X線を用いたLIGA、ナノインプリント等の微細加工技術が用いられる。コーナーキューブプリズムの外面には、光線の全反射性を高めるため、アルミ蒸着等により金属膜からなるコーティング層33が形成されている。コーティング層33は、アルミ蒸着膜以外にも、銀蒸着膜やクロム蒸着膜により形成してもよい。再帰反射性素子32による再帰反射の精度は、再帰透過の精度となる。透明充実体層30上において、再帰反射性素子32の配置の自由度は極めて高い。 In order to form the corner cube prism on the transparent solid layer 30, a fine processing technique such as known photolithography, LIGA using X-rays, or nanoimprinting is used. On the outer surface of the corner cube prism, a coating layer 33 made of a metal film is formed by aluminum vapor deposition or the like in order to improve the total reflection of light rays. The coating layer 33 may be formed of a silver vapor deposition film or a chromium vapor deposition film in addition to the aluminum vapor deposition film. The accuracy of retroreflection by the retroreflective element 32 is the accuracy of retrotransmission. On the transparent solid layer 30, the degree of freedom of arrangement of the retroreflective elements 32 is extremely high.
 半反射層40の表面(入射面)に入射した光線K(入射光)の一部は、半反射層40を透過して透明充実体層30内に入り、再帰反射性素子32(コーナーキューブ)の反射面で再帰反射する。再帰反射した光線Kの一部は、半反射層40で更に反射される。その後、再帰反射した光線Kの一部は、透明充実体層30を透過して隣接する再帰反射性素子32間から、再帰透過性素子13の入射面と反対側の面から外部に射出される。 A part of the light beam K (incident light) incident on the surface (incident surface) of the semi-reflective layer 40 is transmitted through the semi-reflective layer 40 and enters the transparent solid layer 30, and the retroreflective element 32 (corner cube). Retroreflects on the reflective surface. A part of the retroreflected light beam K is further reflected by the semi-reflective layer 40. Thereafter, a part of the retroreflected light beam K passes through the transparent solid layer 30 and is emitted from the surface between the adjacent retroreflective elements 32 to the outside from the surface opposite to the incident surface of the retrotransmissive element 13. .
 図4(a)を参照して、半反射層40の表面から光線Kが入射する場合を上述した。しかしながら、図4(b)に示すように、透明充実体層30の表面(入射面)に光線Kが入射する場合、再帰透過性素子13の性質は以下のようになる。説明の便宜上、図4(b)では、光線Kの光路を示すため、再帰透過性素子13の構成が簡略化されている。すなわち、隣接する再帰反射性素子32間から入射した光線K(入射光)は、透明充実体層30を通過して半反射層40に向かう。続いて、光線Kの一部は、半反射層40の反射面で反射された後、透明充実体層30上の再帰反射性素子32で再帰反射する。再帰反射した光線Kの一部は、透明充実体層30及び半反射層40を透過して、再帰透過性素子13の入射面と反対側の面から外部へ射出される。このように、再帰透過性素子13のプロジェクタ20に対向する面は、透明充実体層30及び半反射層40のいずれであってもよい。 The case where the light ray K is incident from the surface of the semi-reflective layer 40 has been described above with reference to FIG. However, as shown in FIG. 4B, when the light beam K is incident on the surface (incident surface) of the transparent solid layer 30, the properties of the retrotransmissive element 13 are as follows. For convenience of explanation, in FIG. 4B, the configuration of the retrotransmissive element 13 is simplified to show the optical path of the light beam K. That is, the light ray K (incident light) incident between the adjacent retroreflective elements 32 passes through the transparent solid layer 30 and travels toward the semi-reflective layer 40. Subsequently, a part of the light beam K is reflected by the reflecting surface of the semi-reflective layer 40 and then retroreflected by the retroreflective element 32 on the transparent solid layer 30. A part of the retroreflected light beam K passes through the transparent solid layer 30 and the semi-reflective layer 40 and is emitted to the outside from the surface opposite to the incident surface of the retrotransmissive element 13. As described above, the surface of the retrotransmissive element 13 facing the projector 20 may be either the transparent solid layer 30 or the semi-reflective layer 40.
 このようにして、プロジェクタ20から投射された光線K(入射光)は、再帰透過性素子13の再帰反射性素子32及び半反射層40でそれぞれ折り返される。すなわち、光線Kが再帰反射性素子32及び半反射層40で再帰透過させられて、再帰透過性素子13の入射面と反対側において反射光が結像される。 In this way, the light beam K (incident light) projected from the projector 20 is folded back by the retroreflective element 32 and the semi-reflective layer 40 of the retrotransmissive element 13. That is, the light ray K is retro-transmitted by the retroreflective element 32 and the semi-reflective layer 40, and the reflected light is imaged on the side opposite to the incident surface of the retrotransmissive element 13.
 上記の光学系及び再帰透過性素子13によれば以下のような効果が得られる。
 (1)光学系は、プロジェクタ20と、プロジェクタ20と対向して配置された再帰透過性素子13を備えている。この光学系によれば、プロジェクタ20から投射された未実像の入射光が、再帰透過性素子13を介して再帰透過させられる。これにより、再帰透過した光によって、再帰透過性素子13の入射面とは反対側において虚像が形成される。このように、実像形成のためのプロジェクタ20を使用するにも関わらず、未実像(光線束)を再帰透過性素子13により実像虚像変換することができる。このため、観察者は、再帰透過性素子13により再帰透過された光線を虚像として観察することができる。この結果、プロジェクタを使用するにも関わらずスクリーンを不要とすることができる。
According to the optical system and the retrotransmissive element 13, the following effects can be obtained.
(1) The optical system includes a projector 20 and a retrotransmissive element 13 disposed so as to face the projector 20. According to this optical system, the incident light of the unreal image projected from the projector 20 is retro-transmitted through the retro-transmissive element 13. Thereby, a virtual image is formed on the side opposite to the incident surface of the retrotransmissive element 13 by the retroreflective light. As described above, it is possible to convert an unreal image (light bundle) into a real image / virtual image by the retrotransmissive element 13 in spite of using the projector 20 for forming a real image. For this reason, the observer can observe the light beam retroreflected by the retrotransmissive element 13 as a virtual image. As a result, a screen can be made unnecessary even though the projector is used.
 (2)再帰透過性素子13は、透明充実体層30(透明層)と、透明充実体層30の第1の面に設けられた半反射層40とを有している。透明充実体層30は、第1の面と反対側に第2の面を有している。透明充実体層30の第2の面上には、光線を半反射層40に向けて反射させるため、複数の再帰反射性素子32が離散的に形成されている。 (2) The retrotransmissive element 13 includes a transparent solid layer 30 (transparent layer) and a semi-reflective layer 40 provided on the first surface of the transparent solid layer 30. The transparent solid layer 30 has a second surface opposite to the first surface. A plurality of retroreflective elements 32 are discretely formed on the second surface of the transparent solid layer 30 in order to reflect light rays toward the semi-reflective layer 40.
 この構成によれば、再帰透過性素子13は、入射した光(入射光)を入射面と反対側の面へ透過させる際に、再帰透過軸Gに関して対称な方向に入射光の向きを変える性質(再帰透過性)を有することができる。この結果、前述の光学系において、本実施形態の再帰透過性素子13を好適に採用することができる。 According to this configuration, the retrotransmissive element 13 changes the direction of incident light in a symmetric direction with respect to the retrotransmission axis G when transmitting incident light (incident light) to a surface opposite to the incident surface. (Retro-transparency). As a result, the retrotransmissive element 13 of the present embodiment can be suitably employed in the above-described optical system.
 このように、再帰透過性素子13は、空間を折り返し、入射した光線の一部を通過させて、入射面と反対側の面へ通過させる。この点から、再帰透過性素子13は、入射光の進行方向を変えず、かつ結像前の未実像(光線束)を虚像に変換する新たな光学素子である。従って、光学系を構成する要素として新しい要素を付加することができる。 As described above, the retrotransmissive element 13 turns back the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element 13 is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before image formation into a virtual image. Therefore, a new element can be added as an element constituting the optical system.
 (第2実施形態)
 次に、本発明の第2実施形態について図3(b)を参照して説明する。本実施形態を含む以下の実施形態では、既に説明された他の実施形態と同一又は類似の構成について同一符号を付し、その詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In the following embodiments including this embodiment, the same reference numerals are given to the same or similar configurations as those of the other embodiments already described, and detailed description thereof will be omitted.
 第1実施形態において、プロジェクタ20を観察者の視野外に配置したが、観察者の視野内に配置してもよい。例えば、図3(b)に示すように、プロジェクタ20を観察者の視野内に配置しても、プロジェクタ20から投射された光線束は、再帰透過性素子13により実像虚像変換される。その結果、プロジェクタ20から投射された光線が遮られることなく、観察者は、完全な虚像を見ることができる。本実施形態は、不完全な実像しか観察できない図17に示す従来例に比較すると、遮られることのない完全な虚像を観察できる点で有利となる。図3(b)の例では、プロジェクタ20の光軸上に観察者の観察視点Aを配置したが、観察者にとって眩しくないように、実際には、プロジェクタ20の射出瞳と同軸上に観察者の眼を配置している。図3(b)のプロジェクタ20は、説明の便宜上、大きく図示されているが、ペンライト程度の径の大きさで十分である。 In the first embodiment, the projector 20 is disposed outside the observer's field of view, but may be disposed within the observer's field of view. For example, as shown in FIG. 3B, even if the projector 20 is arranged in the field of view of the observer, the light beam projected from the projector 20 is converted into a real image / virtual image by the retrotransmissive element 13. As a result, the observer can see a complete virtual image without blocking the light beam projected from the projector 20. Compared with the conventional example shown in FIG. 17 in which only an incomplete real image can be observed, this embodiment is advantageous in that a complete virtual image that is not obstructed can be observed. In the example of FIG. 3B, the observation viewpoint A of the observer is arranged on the optical axis of the projector 20, but in actuality, the observer is coaxial with the exit pupil of the projector 20 so as not to dazzle the observer. The eyes are arranged. The projector 20 shown in FIG. 3B is shown large for convenience of explanation, but the diameter of the penlight is sufficient.
 (第3実施形態)
 次に、本発明の第3実施形態に係る再帰透過性素子13の別の実施形態について図7及び図8を参照して説明する。
(Third embodiment)
Next, another embodiment of the retrotransmissive element 13 according to the third embodiment of the present invention will be described with reference to FIGS.
 図7に示すように、再帰透過性素子13は、平板状の素子本体41を有している。素子本体41には、空隙としての複数の透孔42が形成されている。透孔42は、断面直角三角形をなす微小の孔からなる。透孔42は、素子本体41においてその厚み方向に貫通すると共にランダムに配置されている。素子本体41は、透明体及び非透明体のいずれであってもよい。 As shown in FIG. 7, the retrotransmissive element 13 has a flat element body 41. The element body 41 is formed with a plurality of through holes 42 as voids. The through hole 42 is formed of a minute hole having a right-angled triangle in cross section. The through holes 42 penetrate the element body 41 in the thickness direction and are randomly arranged. The element body 41 may be either a transparent body or a non-transparent body.
 図8(a)に示すように、透孔42の内面には、コーナーミラー43が形成されている。コーナーミラー43は、互いに直交する第1鏡面44と第2鏡面45とから構成された2面直交合わせ鏡である。コーナーミラー43は、第1実施形態で説明した金属膜により表面ミラーとして形成されている。 As shown in FIG. 8A, a corner mirror 43 is formed on the inner surface of the through hole 42. The corner mirror 43 is a two-surface orthogonal mirror that includes a first mirror surface 44 and a second mirror surface 45 that are orthogonal to each other. The corner mirror 43 is formed as a surface mirror by the metal film described in the first embodiment.
 第1鏡面44と第2鏡面45との交線(再帰透過軸G)は、素子本体41の厚み方向に沿って配置されている。再帰透過軸Gは、素子本体41の平面と直交して配置されている。再帰透過軸Gの向きは、素子本体41の表面の法線方向に一致している。透孔42の大きさは、好ましくは、mm単位、又はマイクロ単位の微小な大きさに設定されている。 The intersecting line (recursive transmission axis G) between the first mirror surface 44 and the second mirror surface 45 is arranged along the thickness direction of the element body 41. The retrotransmission axis G is arranged orthogonal to the plane of the element body 41. The direction of the retrotransmission axis G coincides with the normal direction of the surface of the element body 41. The size of the through hole 42 is preferably set to a minute size of mm units or micro units.
 図8(a)に示すように、素子本体41の第1の面から入射した光線は、第1鏡面44、第2鏡面45の順に又は第2鏡面45、第1鏡面44の順に反射されて、素子本体41の第2の面から外部へ射出される。図8(b)は、素子本体41の透孔42を平面視した拡大図である。素子本体41に入射した光線は、図8(b)の矢印に示すように反射される。即ち、コーナーミラー43を備えた再帰透過性素子13は再帰透過性を示す。 As shown in FIG. 8A, the light beam incident from the first surface of the element body 41 is reflected in the order of the first mirror surface 44 and the second mirror surface 45 or in the order of the second mirror surface 45 and the first mirror surface 44. Then, the light is emitted from the second surface of the element body 41 to the outside. FIG. 8B is an enlarged view of the through hole 42 of the element body 41 in plan view. The light beam incident on the element body 41 is reflected as shown by the arrow in FIG. That is, the retrotransmissive element 13 provided with the corner mirror 43 exhibits retrotransparency.
 本実施形態によって発揮される効果について、以下に記載する。
 (1)再帰透過性素子13は、平板状の素子本体41を有している。素子本体41には、素子本体41の厚み方向に貫通する複数の透孔42(空隙)がランダムに配置されている。透孔42の内面には、互いに直交する第1鏡面44と第2鏡面45とから構成されたコーナーミラー43(2面直交合わせ鏡)が形成されている。又、第1鏡面44と第2鏡面45の交線(再帰透過軸G)は、素子本体41の厚み方向に沿って配置されている。
The effects exhibited by this embodiment will be described below.
(1) The retrotransmissive element 13 has a flat element body 41. In the element body 41, a plurality of through holes 42 (air gaps) penetrating in the thickness direction of the element body 41 are randomly arranged. On the inner surface of the through-hole 42, a corner mirror 43 (two-surface orthogonal alignment mirror) composed of a first mirror surface 44 and a second mirror surface 45 that are orthogonal to each other is formed. Further, an intersection line (recursive transmission axis G) between the first mirror surface 44 and the second mirror surface 45 is arranged along the thickness direction of the element body 41.
 再帰透過性素子13は、空間を折り返し、入射した光線の一部を通過させて、入射面と反対側の面へ通過させる。この点から、再帰透過性素子13は、入射光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に変換する新たな光学素子である。この結果、光学系を構成する要素として新しい要素を付加することができる。 The retrotransmissive element 13 turns back the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element 13 is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before image formation into a virtual image. As a result, a new element can be added as an element constituting the optical system.
 又、透孔42がランダムに配置されているため、本実施形態の再帰透過性素子13を第1実施形態の光学系に採用した場合、透孔42がランダムに配置されていない場合に比して、プロジェクタ20と再帰透過性素子13との配置関係の自由度が向上する。 In addition, since the through holes 42 are randomly arranged, the retrotransmissive element 13 of this embodiment is employed in the optical system of the first embodiment as compared to the case where the through holes 42 are not randomly arranged. Thus, the degree of freedom of the arrangement relationship between the projector 20 and the retrotransmissive element 13 is improved.
 (第4実施形態)
 次に、本発明の第4実施形態に係る再帰透過性素子13の別の実施形態について図9(a)、(b)を参照して説明する。
(Fourth embodiment)
Next, another embodiment of the retrotransmissive element 13 according to the fourth embodiment of the present invention will be described with reference to FIGS.
 図9(a)に示すように、再帰透過性素子13は、平板状の素子本体41を有している。素子本体41には、複数の空隙50、すなわち透孔が形成されている。複数の空隙50は、点線状にかつ、円状に配置されている。これにより、素子本体41には、複数の空隙群52が形成されている。また、複数の空隙群52はいずれも同心円状に配置されている。空隙50は、鏡面に形成された壁面54を有している。空隙50の大きさは、好ましくは、mm単位、又はマイクロ単位の微小な大きさに設定されている。隣接する空隙群52の間隔は、好ましくは、mm単位、又はマイクロ単位に設定されている。壁面54の鏡面は、第1実施形態で説明した金属膜により表面ミラーとして形成されている。 As shown in FIG. 9A, the retrotransmissive element 13 has a flat element body 41. A plurality of voids 50, that is, through holes are formed in the element body 41. The plurality of gaps 50 are arranged in a dotted line shape and in a circular shape. Thereby, a plurality of gap groups 52 are formed in the element body 41. The plurality of gap groups 52 are all arranged concentrically. The gap 50 has a wall surface 54 formed on a mirror surface. The size of the gap 50 is preferably set to a minute size of mm units or micro units. The interval between adjacent gap groups 52 is preferably set to mm units or micro units. The mirror surface of the wall surface 54 is formed as a surface mirror by the metal film described in the first embodiment.
 本実施形態において、再帰透過性素子13を採用する光学系は、プロジェクタ20から投射される光線束を、プロジェクタ20の射出瞳や観察者の瞳等の小さい領域を通ることを前提としている。そのため、プロジェクタ20の光軸と空隙群52の同心軸とが同軸となるように、プロジェクタ20と再帰透過性素子13とが配置されている。この場合、空隙群52の同心軸が再帰透過軸Gである。 In the present embodiment, the optical system employing the retrotransmissive element 13 is premised on passing the light beam projected from the projector 20 through a small region such as the exit pupil of the projector 20 or the observer's pupil. Therefore, the projector 20 and the retrotransmissive element 13 are arranged so that the optical axis of the projector 20 and the concentric axis of the gap group 52 are coaxial. In this case, the concentric axis of the gap group 52 is the retrotransmission axis G.
 図9(b)は、素子本体41の空隙50を拡大して示す断面図である。
 上述したように光学系を形成した場合、素子本体41の第1の面から入射した光線は、図9(b)の矢印に示すように、各空隙50の壁面54(鏡面)で反射されて、素子本体41の第2の面から外部へ射出される。このようにして、再帰透過性素子13は再帰透過性を示す。
FIG. 9B is a cross-sectional view showing the gap 50 of the element body 41 in an enlarged manner.
When the optical system is formed as described above, the light incident from the first surface of the element body 41 is reflected by the wall surface 54 (mirror surface) of each gap 50 as shown by the arrow in FIG. The light is emitted from the second surface of the element body 41 to the outside. In this way, the retrotransmissive element 13 exhibits retrotransparency.
 本実施形態においても、再帰透過性素子13は、空間を折り返し、入射した光線の一部を通過させて、入射面と反対側の面へ通過させる。この点から、再帰透過性素子13は、入射光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に変換する新たな光学素子である。この結果、一列に並べて組み合わされる光学系を構成する要素として新しい要素を付加することができる。 Also in this embodiment, the retrotransmissive element 13 turns back the space, passes a part of the incident light beam, and passes it to the surface opposite to the incident surface. From this point, the retrotransmissive element 13 is a new optical element that does not change the traveling direction of incident light and converts an unreal image (light bundle) before image formation into a virtual image. As a result, a new element can be added as an element constituting an optical system that is combined in a line.
 (第5実施形態)
 次に、第4実施形態の変形例である本発明の第5実施形態について図10(a)、(b)を参照して説明する。
(Fifth embodiment)
Next, a fifth embodiment of the present invention, which is a modification of the fourth embodiment, will be described with reference to FIGS. 10 (a) and 10 (b).
 図10(a)に示すように、再帰透過性素子13は、素子本体41を有している。素子本体41には、複数の円状の空隙60が形成されている。複数の空隙60は、それぞれ異なる径を有し、同心円状にそれぞれ形成されている。空隙60は、鏡面に形成された壁面62を有している。鏡面は、各空隙60を形成する一対の壁面のうち、少なくとも径の大きい方の壁面62に形成されていればよい。 As shown in FIG. 10A, the retrotransmissive element 13 has an element body 41. A plurality of circular voids 60 are formed in the element body 41. The plurality of gaps 60 have different diameters and are formed concentrically. The gap 60 has a wall surface 62 formed on a mirror surface. The mirror surface should just be formed in the wall surface 62 of a larger diameter at least among a pair of wall surface which forms each space | gap 60. FIG.
 空隙の径方向の幅は、好ましくは、mm単位、又はマイクロ単位の微小な大きさに設定されている。又、隣接する空隙60の間隔は、好ましくは、mm単位、又はマイクロ単位に設定されている。壁面62の鏡面は、第1実施形態で説明した金属膜により表面ミラーとして形成されている。素子本体41には、空隙60の第1の開口端を閉塞する透明板64が積層されている。本実施形態において、空隙60の第1の開口端は透明板64により閉塞されている。これに代えて、素子本体41の両面に一対の透明板を積層することにより、空隙60の一対の開口端のうちの両方を閉塞するようにしてもよい。 The width in the radial direction of the gap is preferably set to a minute size of mm units or micro units. The interval between adjacent gaps 60 is preferably set to mm units or micro units. The mirror surface of the wall surface 62 is formed as a surface mirror by the metal film described in the first embodiment. A transparent plate 64 that closes the first opening end of the gap 60 is laminated on the element body 41. In the present embodiment, the first open end of the gap 60 is closed by the transparent plate 64. Instead of this, a pair of transparent plates may be laminated on both surfaces of the element body 41 to close both of the pair of open ends of the gap 60.
 本実施形態において、再帰透過性素子13を採用する光学系は、第4実施形態と同様に、プロジェクタ20から投射される光線束を、プロジェクタ20の射出瞳や観察者の瞳等の小さい領域を通ることを前提としている。そのため、プロジェクタ20の光軸と空隙群52の同心軸とが同軸となるように、プロジェクタ20と再帰透過性素子13とが配置されている。 In the present embodiment, the optical system that employs the retrotransmissive element 13 transmits the light bundle projected from the projector 20 to a small area such as the exit pupil of the projector 20 or the observer's pupil, as in the fourth embodiment. It is assumed that you pass. Therefore, the projector 20 and the retrotransmissive element 13 are arranged so that the optical axis of the projector 20 and the concentric axis of the gap group 52 are coaxial.
 図10(b)は、素子本体41の空隙60を拡大して示す断面図である。
 上述したように光学系を形成した場合、素子本体41の第1の面から入射した光線は、図10(b)の矢印に示すように、各空隙60の壁面62(鏡面)で反射された後に、透明板64を介して、素子本体41の第2の面から外部へ射出される。このようにして、再帰透過性素子13は再帰透過性を示す。
FIG. 10B is an enlarged sectional view showing the gap 60 of the element body 41.
When the optical system is formed as described above, the light beam incident from the first surface of the element body 41 is reflected by the wall surface 62 (mirror surface) of each gap 60 as shown by the arrow in FIG. Later, the light is emitted from the second surface of the element body 41 to the outside through the transparent plate 64. In this way, the retrotransmissive element 13 exhibits retrotransparency.
 本実施形態の再帰透過性素子13の作用効果は、第4実施形態と同様である。
 (第6実施形態)
 次に、本発明の第6実施形態について図11(a)を参照して説明する。本実施形態は、請求項6を具体化したものである。本実施形態は、図5(a)、(b)、図6(a)、(b)で説明した再帰透過性素子13を湾曲したものである。このため、再帰透過性素子13を構成する透明充実体層30と半反射層40とが共に湾曲されている。図11(a)、(b)は、説明の便宜上、再帰透過性素子13の断面図を図4(a)、(b)と同様に簡略して示す。
The operational effects of the retrotransmissive element 13 of the present embodiment are the same as those of the fourth embodiment.
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIG. This embodiment embodies claim 6. In the present embodiment, the retrotransmissive element 13 described with reference to FIGS. 5A, 5B, 6A, and 6B is curved. For this reason, the transparent solid layer 30 and the semi-reflective layer 40 constituting the retrotransmissive element 13 are both curved. 11A and 11B, for convenience of explanation, a cross-sectional view of the retrotransmissive element 13 is simply shown as in FIGS. 4A and 4B.
 図11(a)に示すように、再帰透過性素子13は、半反射層40をプロジェクタ20に向けて配置されている。再帰透過性素子13の半反射層40と透明充実体層30とが共に、プロジェクタ20に向けて凸状に湾曲している。この結果、半反射層40の反射面(鏡面)が凹型となり、観察視点Aに向く面を凹ませた凹面鏡として機能する。 As shown in FIG. 11A, the retrotransmissive element 13 is arranged with the semi-reflective layer 40 facing the projector 20. Both the semi-reflective layer 40 and the transparent solid layer 30 of the retrotransmissive element 13 are curved in a convex shape toward the projector 20. As a result, the reflective surface (mirror surface) of the semi-reflective layer 40 becomes concave, and functions as a concave mirror in which the surface facing the observation viewpoint A is recessed.
 この場合、プロジェクタ20から再帰透過性素子13に入射した光線は、再帰反射性素子32で再帰反射された後、凹面鏡として機能する半反射層40の反射面で反射される。この凹面鏡機能によれば、再帰透過性素子13が平面形状である場合よりも、虚像の焦点は遠位に移動される。このため、観察者は、虚像を広視野で見ることができる。 In this case, the light beam incident on the retrotransmissive element 13 from the projector 20 is retroreflected by the retroreflective element 32 and then reflected by the reflection surface of the semi-reflective layer 40 functioning as a concave mirror. According to the concave mirror function, the focal point of the virtual image is moved more distally than in the case where the retrotransmissive element 13 has a planar shape. For this reason, the observer can see a virtual image with a wide visual field.
 この場合の曲面としては、プロジェクタ20の射出瞳と人の瞳との光学共役を得易い球面、回転双曲面、放物面等が利用可能である。本実施形態の曲面は、焦点位置を遠位(遠方)に移動させる効果がある。このため、結像の乱れを抑えるには、画素を構成すると共に観察者の瞳に入射される光線束の分布領域では、上記曲面の曲率を均一にすることが好ましい。 As the curved surface in this case, it is possible to use a spherical surface, a rotating hyperboloid, a paraboloid, or the like that easily obtains optical conjugation between the exit pupil of the projector 20 and the human pupil. The curved surface of the present embodiment has an effect of moving the focal position distally (distantly). For this reason, in order to suppress the disturbance of the imaging, it is preferable that the curvature of the curved surface is uniform in the distribution region of the light bundle that constitutes the pixel and is incident on the observer's pupil.
 このように、再帰透過性素子13の透明充実体層30及び半反射層40が共に同方向に沿って湾曲しているため、半反射層40を通過した一部の光線が再帰反射性素子32で再帰反射されると、再帰反射された光線は、反射面(凹面鏡)で反射されてから透明充実体層30を通過して、再帰透過性素子13から観察視点Aに向けて外部に射出される。 Thus, since both the transparent solid layer 30 and the semi-reflective layer 40 of the retrotransmissive element 13 are curved along the same direction, some of the light rays that have passed through the semi-reflective layer 40 are retroreflective element 32. When the light is retroreflected, the retroreflected light beam is reflected by the reflecting surface (concave mirror), passes through the transparent solid layer 30, and is emitted from the retrotransmissive element 13 toward the observation viewpoint A. The
 このため、再帰透過性素子13に入射された未実像(光線束)が入射面と反対側の面を通過して形成される虚像の焦点位置を遠位に移動させることができる。よって、広い視野を得ることができる。 For this reason, the focal position of the virtual image formed by passing the unreal image (light bundle) incident on the retrotransmissive element 13 through the surface opposite to the incident surface can be moved distally. Therefore, a wide visual field can be obtained.
 (第7実施形態)
 次に、本発明の第7実施形態について図11(b)を参照して説明する。本実施形態は、請求項7を具体化したものである。本実施形態においても、図5(a)、(b)、図6(a)、(b)で説明した再帰透過性素子13の透明充実体層30と半反射層40とが共に湾曲されている。
(Seventh embodiment)
Next, a seventh embodiment of the present invention will be described with reference to FIG. This embodiment embodies claim 7. Also in this embodiment, the transparent solid layer 30 and the semi-reflective layer 40 of the retrotransmissive element 13 described in FIGS. 5A, 5B, 6A, and 6B are both curved. Yes.
 この場合の曲面としては、プロジェクタ20の射出瞳と人の瞳との光学共役が得易い球面、回転双曲面、放物面等が利用可能である。本実施形態の曲面は、焦点位置を遠方に移動させる効果がある。このため、画素を構成すると共に観察者の瞳に入る光線束の分布領域では、結像を乱さないとの観点から、上記曲面の曲率を均一にすることが好ましい。 As the curved surface in this case, it is possible to use a spherical surface, a rotating hyperboloid, a paraboloid, or the like that easily obtains optical conjugation between the exit pupil of the projector 20 and the human pupil. The curved surface of this embodiment has the effect of moving the focal position far away. For this reason, it is preferable to make the curvature of the curved surface uniform from the viewpoint of not disturbing the image formation in the distribution region of the light bundle that constitutes the pixel and enters the pupil of the observer.
 図11(b)に示すように、再帰透過性素子13は、透明充実体層30をプロジェクタ20に向けて配置されている。再帰透過性素子13は、半反射層40及び透明充実体層30をプロジェクタ20に向けて凸状に湾曲している。このため、半反射層40の反射面が凸面鏡として形成されている。本実施形態において、光学系は、再帰透過性素子13の凸面をプロジェクタ20に向けた状態で形成されている。 As shown in FIG. 11B, the retrotransmissive element 13 is arranged with the transparent solid layer 30 facing the projector 20. The retrotransmissive element 13 has the semi-reflective layer 40 and the transparent solid layer 30 curved in a convex shape toward the projector 20. For this reason, the reflective surface of the semi-reflective layer 40 is formed as a convex mirror. In the present embodiment, the optical system is formed with the convex surface of the retrotransmissive element 13 facing the projector 20.
 この場合、プロジェクタ20から透明充実体層30に入射した光線は、凸面鏡である半反射層40の反射面で反射してから、更に再帰反射性素子32で再帰反射する。そして、再帰反射した光線の一部が半反射層40を通過して、再帰透過性素子13から観察視点Aに向けて外部に射出される。 In this case, the light beam incident on the transparent solid layer 30 from the projector 20 is reflected by the reflective surface of the semi-reflective layer 40 that is a convex mirror, and then retroreflected by the retroreflective element 32. A part of the retroreflected light beam passes through the semi-reflective layer 40 and is emitted from the retrotransmissive element 13 toward the observation viewpoint A.
 この凸面鏡機能により、虚像の焦点が遠方に移動されるため、観察者は、虚像を広視野で見ることができる。
 (第8実施形態)
 次に、本発明の第8実施形態について図14(a)、(b)を参照して説明する。ここでは、本発明の光学系を頭部搭載型プロジェクタに具体化している。
Since the focal point of the virtual image is moved far away by this convex mirror function, the observer can see the virtual image in a wide field of view.
(Eighth embodiment)
Next, an eighth embodiment of the present invention will be described with reference to FIGS. 14 (a) and 14 (b). Here, the optical system of the present invention is embodied in a head-mounted projector.
 図14(a)に示すように、頭部搭載型プロジェクタ100は、メガネフレーム110に設けられている。メガネフレーム110は、一対の再帰透過性素子13を支持する一対のリム112と、リム112を連結するブリッジ114と、リム112にヒンジ116を介して取付けられたテンプル118とを備えている。各リム112には、ブラケット120を介してプロジェクタ20が取付けられている。プロジェクタ20は、リム12の前方(観察者が見る方向)に配置されている。プロジェクタ20は、再帰透過性素子13に対して観察者の観察視点Aと光学共役な位置に配置されている。また、図14(b)に示すように、プロジェクタ20は、観察視点Aから見たときに観察者の視野外に配置されている。本実施形態の再帰透過性素子13では、第6実施形態と同じ構成を採用したが、第7実施形態と同じ構成を採用してもよく、或いは、第6、第7実施形態以外の他の実施形態の構成を採用してもよい。 As shown in FIG. 14A, the head-mounted projector 100 is provided on the spectacle frame 110. The eyeglass frame 110 includes a pair of rims 112 that support the pair of retro-transmissive elements 13, a bridge 114 that connects the rims 112, and a temple 118 that is attached to the rim 112 via a hinge 116. A projector 20 is attached to each rim 112 via a bracket 120. The projector 20 is disposed in front of the rim 12 (direction seen by the observer). The projector 20 is disposed at a position optically conjugate with the observation viewpoint A of the observer with respect to the retrotransmissive element 13. Further, as shown in FIG. 14B, the projector 20 is disposed outside the visual field of the observer when viewed from the observation viewpoint A. In the retrotransmissive element 13 of the present embodiment, the same configuration as that of the sixth embodiment is adopted, but the same configuration as that of the seventh embodiment may be adopted, or other than the sixth and seventh embodiments. You may employ | adopt the structure of embodiment.
 頭部搭載型プロジェクタは、使用者の頭部に装着されるメガネフレーム110を支持体として備えている。メガネフレーム110には、上記の光学系が支持されている。再帰透過性素子13は、メガネフレーム110(支持体)において、再帰透過した光による虚像を使用者により視認可能に配置されている。この結果、頭部搭載型プロジェクタ100は、実像形成のためのプロジェクタを使用するにも関わらず、虚像変換することによりスクリーンを不要とすることができる。 The head-mounted projector includes a spectacle frame 110 attached to the user's head as a support. The optical system is supported on the spectacle frame 110. The retrotransmissive element 13 is arranged on the eyeglass frame 110 (support) so that a virtual image by the retroreflective light can be visually recognized by the user. As a result, the head-mounted projector 100 can eliminate the need for a screen by performing virtual image conversion in spite of using a projector for forming a real image.
 なお、前記各実施形態を次のように変更してもよい。
 図5(a)に示す実施形態において、再帰透過性素子13の透明充実体層30の表面に、再帰反射性素子32としてコーナーキューブプリズムを設けていた。これに代えて、図5(b)に示すように、透明充実体層30に複数のガラスビーズを離散的に形成してもよい。この場合、透明充実体層30には、ガラスビーズの一部が埋設している。この場合、ガラスビーズの屈折率は、2前後の光高屈折率であることが好ましい。ガラスビーズの外面には、コーティング層33が形成されている。コーティング層33は、コーナーキューブの外面に形成された金属薄膜と同材質の金属薄膜を蒸着して形成されている。この場合も、コーナーキューブと同様に、ガラスビーズが光線を再帰反射する。
In addition, you may change each said embodiment as follows.
In the embodiment shown in FIG. 5A, a corner cube prism is provided as the retroreflective element 32 on the surface of the transparent solid layer 30 of the retrotransmissive element 13. Instead, a plurality of glass beads may be discretely formed on the transparent solid layer 30 as shown in FIG. In this case, part of the glass beads is embedded in the transparent solid layer 30. In this case, the refractive index of the glass beads is preferably a high optical refractive index of about 2. A coating layer 33 is formed on the outer surface of the glass beads. The coating layer 33 is formed by vapor-depositing a metal thin film made of the same material as the metal thin film formed on the outer surface of the corner cube. In this case as well, the glass beads retroreflect light rays as in the corner cube.
 図6(a)に示すように、コーナーキューブプリズムの全体を透明充実体層30内に埋設させてもよい。また、図6(b)に示すように、ガラスビーズの全体を透明充実体層30内に埋設させてもよい。 As shown in FIG. 6A, the entire corner cube prism may be embedded in the transparent solid layer 30. Further, as shown in FIG. 6B, the entire glass beads may be embedded in the transparent solid layer 30.
 図4、図5の実施形態において、図4(c)に示すように、透明充実体層30を省略した再帰透過性素子13を用いてもよい。具体的には、再帰反射性素子32が、格子状又は網状の支持部材70により離散的に配置した状態で支持されている。また、再帰反射性素子32と半反射層40(ビームスプリッタ)との間には、透明層としての空隙層65が設けられている。この場合、支持部材70と半反射層40との間には、両者の間に適宜の間隔を確保するための間隔保持部材80が設けられている。これにより、再帰反射性素子32と半反射層40と間には空隙層65が形成される。 4 and 5, as shown in FIG. 4C, a retrotransmissive element 13 in which the transparent solid layer 30 is omitted may be used. Specifically, the retroreflective elements 32 are supported in a state where the retroreflective elements 32 are discretely arranged by a lattice-like or net-like support member 70. Further, a gap layer 65 as a transparent layer is provided between the retroreflective element 32 and the semi-reflective layer 40 (beam splitter). In this case, an interval holding member 80 is provided between the support member 70 and the semi-reflective layer 40 to ensure an appropriate interval therebetween. Thereby, a gap layer 65 is formed between the retroreflective element 32 and the semi-reflective layer 40.
 図7に示す実施形態において、透孔42の断面形状が直角三角形であったが、透孔の内面にコーナーミラーが形成されるのであれば、透孔42の断面形状を断面正方形、又は断面多角形に変更してもよい。要するに、透孔42の断面形状は、少なくとも2つの鏡面が互いに直交する断面形状であればよい。 In the embodiment shown in FIG. 7, the cross-sectional shape of the through hole 42 is a right triangle. However, if a corner mirror is formed on the inner surface of the through hole, the cross-sectional shape of the through hole 42 is a square cross section or a multi-section cross section. You may change to a square. In short, the cross-sectional shape of the through hole 42 may be a cross-sectional shape in which at least two mirror surfaces are orthogonal to each other.
 図7に示す実施形態において、素子本体41に空隙として透孔42に代えて、透孔42の第1の開口端を塞いだ穴(ボア)を用いたり、透孔42の両方の開口端を透明板で塞いだりしてもよい。いずれの場合も、空隙を囲む壁面にはコーナーミラーが形成されているため、図7と同様の作用効果を奏する。 In the embodiment shown in FIG. 7, a hole (bore) blocking the first opening end of the through hole 42 is used instead of the through hole 42 as a gap in the element body 41, or both open ends of the through hole 42 are formed. It may be closed with a transparent plate. In either case, since the corner mirror is formed on the wall surface surrounding the gap, the same effects as in FIG.
 第6実施形態において、広視野を得るために再帰透過性素子13を湾曲させていたが、狭視野を得るため、図11(a)と逆向きに再帰透過性素子13を湾曲させてもよい。この場合、平板状の再帰透過性素子13に比して、虚像の焦点位置が再帰透過性素子13に対し近位に移動される。このため、虚像を大きくすることができる。具体的には、再帰透過性素子13は、半反射層40をプロジェクタ20に向けて配置されるとともに、半反射層40及び透明充実体層30を観察視点Aに向けて凸状に湾曲されている。この結果、半反射層40の反射面(鏡面)が凸面鏡として機能する。 In the sixth embodiment, the retrotransmissive element 13 is curved in order to obtain a wide field of view. However, in order to obtain a narrow field of view, the retrotransmissive element 13 may be curved in the opposite direction to FIG. . In this case, the focal position of the virtual image is moved proximally with respect to the retrotransmissive element 13 as compared with the flat retrotransparent element 13. For this reason, a virtual image can be enlarged. Specifically, the retrotransmissive element 13 is arranged with the semi-reflective layer 40 facing the projector 20, and the semi-reflective layer 40 and the transparent solid layer 30 are curved in a convex shape toward the observation viewpoint A. Yes. As a result, the reflective surface (mirror surface) of the semi-reflective layer 40 functions as a convex mirror.
 第7実施形態において、広視野を得るために再帰透過性素子13を湾曲させていたが、狭視野を得るため、図11(b)と逆向きに再帰透過性素子13を湾曲させてもよい。この場合も、平板状の再帰透過性素子13に比して、虚像の焦点位置が再帰透過性素子13に対して近位に移動される。このため、虚像を大きくすることができる。具体的には、再帰透過性素子13は、透明充実体層30をプロジェクタ20に向けて配置されるとともに、半反射層40及び透明充実体層30を観察視点Aに向けて凸状に湾曲されている。この結果、半反射層40の反射面(鏡面)が凹面鏡として機能する。 In the seventh embodiment, the retrotransmissive element 13 is curved in order to obtain a wide field of view. However, in order to obtain a narrow field of view, the retrotransmissive element 13 may be curved in the direction opposite to that in FIG. . Also in this case, the focal position of the virtual image is moved proximally with respect to the retrotransmissive element 13 as compared with the flat retrotransmissive element 13. For this reason, a virtual image can be enlarged. Specifically, the retrotransmissive element 13 is arranged with the transparent solid layer 30 facing the projector 20 and curved in a convex shape with the semi-reflective layer 40 and the transparent solid layer 30 facing the observation viewpoint A. ing. As a result, the reflective surface (mirror surface) of the semi-reflective layer 40 functions as a concave mirror.
 第6及び第7実施形態において、図13に示すように、フレネル反射鏡(フレネル半透過鏡90)を用いて鏡を更に微細化してもよい。この場合、微細構造によれば、物理的な形状と光学的な意味での形状とを分けて考えることができる。このため、設計の自由度が向上する。すなわち、図11(a)、(b)に示すように半反射層40を曲面鏡として用いる代わりに、図13に示すように半反射層(ビームスプリッタ)としてフレネル半透過鏡90を用いることができる。この場合、半反射層40を曲面化した場合と同様の光学的効果、すなわち、光線の散開又は収束を得ることができる。フレネル半透過鏡90には、微細化された複数の輪帯面90aが形成されている。このため、フレネル半透過鏡90は、各輪帯面90aにおいて互いに異なる方向に向く再帰透過軸Gを有する。 In the sixth and seventh embodiments, as shown in FIG. 13, the mirror may be further miniaturized using a Fresnel reflecting mirror (Fresnel semi-transmissive mirror 90). In this case, according to the fine structure, the physical shape and the optical shape can be considered separately. For this reason, the freedom degree of design improves. That is, instead of using the semi-reflective layer 40 as a curved mirror as shown in FIGS. 11A and 11B, a Fresnel semi-transmissive mirror 90 is used as a semi-reflective layer (beam splitter) as shown in FIG. it can. In this case, the same optical effect as when the semi-reflective layer 40 is curved, that is, the spread or convergence of light rays can be obtained. The Fresnel semi-transmissive mirror 90 is formed with a plurality of miniaturized annular zone surfaces 90a. For this reason, the Fresnel semi-transmission mirror 90 has a retro-transmission axis G that faces in different directions on each annular surface 90a.
 図7及び図8に示す第3実施形態では、図12(a)に示すように、各コーナーミラー43の交線(再帰透過軸G)が、素子本体41の平面と直交するように配置されている。この場合、平面鏡と同様に、図12(a)の矢印で示すように、空間は単純に折り返される。図12(a)~(c)の再帰透過性素子13は、説明の便宜上、単に直線又は曲線で示されている。 In the third embodiment shown in FIG. 7 and FIG. 8, as shown in FIG. 12A, the intersection line (recursive transmission axis G) of each corner mirror 43 is arranged so as to be orthogonal to the plane of the element body 41. ing. In this case, like the plane mirror, the space is simply folded as shown by the arrow in FIG. The retrotransmissive element 13 shown in FIGS. 12A to 12C is simply indicated by a straight line or a curve for convenience of explanation.
 第3実施形態において、平板状の素子本体41に代えて、曲面を有する素子本体41を用いてもよい。この場合の曲面としては、プロジェクタ20の射出瞳と人の瞳との光学共役が得易い球面、回転双曲面、放物面等が利用可能である。この結果、図12(b)に示すように、例えば、素子本体41が球面Uを有する場合、外部からの光線は、球面Uに対し垂直な再帰透過軸Gに沿って、球面Uで反射されたように光路を有する。同様に、内部から(図12(b)の下方から)の光線も、球面Uで反射されたように光路を有する。 In the third embodiment, an element body 41 having a curved surface may be used instead of the flat element body 41. As the curved surface in this case, a spherical surface, a rotating hyperboloid, a paraboloid, or the like that can easily obtain optical conjugation between the exit pupil of the projector 20 and the human pupil can be used. As a result, as shown in FIG. 12B, for example, when the element body 41 has the spherical surface U, the light rays from the outside are reflected by the spherical surface U along the retrotransmission axis G perpendicular to the spherical surface U. It has an optical path. Similarly, the light beam from the inside (from the lower side of FIG. 12B) has an optical path as reflected by the spherical surface U.
 このように、曲面に沿って配置され、曲面に垂直な再帰透過軸Gを有する複数のコーナーミラー43(コーナーミラーアレイ)は、再帰透過性素子13に入射した光線を再帰透過性素子13の厚み方向に通過させて、入射面と反対側の面へ通過させる。この点から、コーナーミラー43は、入射光の進行方向を変えない。但し、この場合の光線の進行方向は、曲面鏡の場合とは逆方向となる。図12(b)の点線で示す矢印は、曲面鏡の場合の光線の進行方向、即ち、曲面で反射した光線の反射方向を示している。 As described above, the plurality of corner mirrors 43 (corner mirror array) arranged along the curved surface and having the retro-transmission axis G perpendicular to the curved surface allows the light rays incident on the retro-transmission element 13 to pass through the thickness of the retro-transmission element 13. It is made to pass in the direction and to the surface opposite to the incident surface. From this point, the corner mirror 43 does not change the traveling direction of the incident light. However, the traveling direction of the light beam in this case is opposite to that of the curved mirror. The arrow indicated by the dotted line in FIG. 12B indicates the traveling direction of the light beam in the case of the curved mirror, that is, the reflection direction of the light beam reflected by the curved surface.
 又、再帰透過性素子13において、図12(c)では示さないが、再帰透過性素子13のコーナーミラー43について、再帰透過性素子13の入射面が平面、或いは曲面であっても、再帰透過軸Gの方向を任意の方向に設定してもよい。この場合、フレネルレンズや反射鏡と同様に、物理形状と光学的な意味での形状とを分けて考えることができる。 Further, although not shown in FIG. 12C, the retrotransmissive element 13 is not shown in FIG. 12C, even if the incident surface of the retrotransmissive element 13 is a plane or a curved surface. The direction of the axis G may be set to an arbitrary direction. In this case, like the Fresnel lens and the reflecting mirror, the physical shape and the shape in the optical sense can be considered separately.
 第8実施形態において、本発明は、光学系を支持する支持体をメガネフレーム110に具体化したが、例えば、ヘルメット等に具体化してもよい。この場合、ヘルメットに、再帰透過性素子13及びプロジェクタ20が取り付けられる。又、本発明は、ヘルメット以外にも、例えば、ヘッドギヤやヘッドバンド等のように頭に取り付けられる部材に具体化してもよい。 In the eighth embodiment, the present invention is embodied in the spectacle frame 110 as a support for supporting the optical system, but may be embodied in a helmet or the like, for example. In this case, the retrotransmissive element 13 and the projector 20 are attached to the helmet. In addition to the helmet, the present invention may be embodied in a member attached to the head such as a headgear or a headband.

Claims (14)

  1. プロジェクタと、
     前記プロジェクタと対向して配置された再帰透過性素子であって、前記再帰透過性素子の入射面と反対側の面に入射光を透過させる際、再帰透過軸に関して対称な方向に光の向きを変えて射出させる再帰透過性素子とを備え、
     前記プロジェクタから投射された未実像の入射光を、前記再帰透過性素子を介して再帰透過させることにより、像が形成されることを特徴とする光学系。
    A projector,
    A retro-transmissive element disposed opposite to the projector, wherein when incident light is transmitted through a surface opposite to the incident surface of the retro-transmissive element, the direction of the light is symmetric with respect to the retro-transmission axis. With retro-transparent elements to change and inject,
    An optical system characterized in that an image is formed by retroreflecting incident light of an unreal image projected from the projector through the retrotransmissive element.
  2. 前記再帰透過性素子が湾曲されていることを特徴とする請求項1に記載の光学系。 The optical system according to claim 1, wherein the retrotransmissive element is curved.
  3. 請求項1又は請求項2に記載の光学系が使用者の頭部に装着される支持体に設けられ、
     前記再帰透過した光による虚像を前記使用者が視認できるように、前記支持体に対して前記再帰透過性素子が配置されていることを特徴とする頭部搭載型プロジェクタ。
    The optical system according to claim 1 or 2 is provided on a support body to be mounted on a user's head,
    A head-mounted projector, wherein the retrotransmissive element is disposed on the support so that the user can visually recognize a virtual image by the retrotransmissive light.
  4. 透明層と、
     前記透明層の第1の面、又は前記透明層の内部に設けられた半反射層と、
     前記透明層の第1の面と反対側の第2の面、又は前記透明層の内部に設けられ、光線を前記半反射層に向けて反射させる複数の再帰反射性素子とを備え、
     前記再帰反射性素子は離散的に配置されていることを特徴とする再帰透過性素子。
    A transparent layer,
    A first surface of the transparent layer, or a semi-reflective layer provided inside the transparent layer;
    A second surface opposite to the first surface of the transparent layer, or a plurality of retroreflective elements provided inside the transparent layer and reflecting light rays toward the semi-reflective layer;
    The retrotransmissive element is characterized in that the retroreflective elements are discretely arranged.
  5. 前記半反射層が湾曲されていることを特徴とする請求項4に記載の再帰透過性素子。 The retrotransmissive element according to claim 4, wherein the semi-reflective layer is curved.
  6. 前記半反射層が凹型に湾曲されて、前記半反射層の反射面が凹面鏡として形成され、
     前記半反射層を通過して前記再帰反射性素子で反射された光線が前記反射面で反射し、前記透明層を通過して外部に射出されることを特徴とする請求項5に記載の再帰透過性素子。
    The semi-reflective layer is curved in a concave shape, and the reflective surface of the semi-reflective layer is formed as a concave mirror;
    The light beam reflected by the retroreflective element after passing through the semi-reflective layer is reflected by the reflective surface, passes through the transparent layer, and is emitted to the outside. Transparent element.
  7. 前記半反射層が凸型に湾曲されて、前記半反射層の反射面が凸面鏡として形成され、
     前記透明層に入射した光線が前記反射面で反射し、更に前記再帰反射性素子で反射し、前記半反射層を通過して外部に射出されることを特徴とする請求項5に記載の再帰透過性素子。
    The semi-reflective layer is curved into a convex shape, and the reflective surface of the semi-reflective layer is formed as a convex mirror;
    The light beam incident on the transparent layer is reflected by the reflective surface, further reflected by the retroreflective element, passes through the semi-reflective layer, and is emitted to the outside. Transparent element.
  8. 板状の素子本体には、複数の空隙を点線状にかつ、円状に配置してなる空隙群が形成され、更に、複数の空隙群が同心円状に配置され、前記空隙の壁面が鏡面であることを特徴とする再帰透過性素子。 In the plate-shaped element body, a plurality of voids are formed in a dotted line shape and a circular shape, and a plurality of void groups are concentrically arranged, and the wall surface of the void is a mirror surface. A retrotransparent element characterized by being.
  9. 板状の素子本体に対して、径の異なる複数の円状の空隙が同心円状に形成され、前記空隙の壁面は鏡面であり、前記空隙は前記素子本体の両面に開口する一対の開口端を有し、前記両開口端のうちの少なくとも一方は閉塞されていることを特徴とする再帰透過性素子。 A plurality of circular gaps having different diameters are formed concentrically with respect to the plate-shaped element body, the wall surface of the gap is a mirror surface, and the gap has a pair of opening ends that open on both sides of the element body. And at least one of the open ends is closed.
  10. 前記空隙が透孔であることを特徴とする請求項8又は請求項9に記載の再帰透過性素子。 The retrotransmissive element according to claim 8, wherein the void is a through hole.
  11. 板状の素子本体には、前記素子本体の厚み方向に延びる複数の空隙がランダムに配置され、
     前記空隙の内面には2面直交合わせ鏡が形成され、前記2面直交合わせ鏡は互いに直交する第1鏡面と第2鏡面とから構成され、前記第1鏡面と第2鏡面との交線が前記素子本体の厚み方向に沿って配置されていることを特徴とする再帰透過性素子。
    In the plate-shaped element body, a plurality of gaps extending in the thickness direction of the element body are randomly arranged,
    A two-surface orthogonal mirror is formed on the inner surface of the gap, and the two-surface orthogonal mirror is composed of a first mirror surface and a second mirror surface that are orthogonal to each other, and the line of intersection between the first mirror surface and the second mirror surface is A retrotransmissible element, which is disposed along the thickness direction of the element body.
  12. 前記空隙が透孔であることを特徴とする請求項11に記載の再帰透過性素子。 The retrotransmissive element according to claim 11, wherein the void is a through hole.
  13. 前記素子本体は曲面を有し、前記2面直交合わせ鏡の交線が前記曲面の法線方向に沿って配置されていることを特徴とする請求項11又は請求項12に記載の再帰透過性素子。 The retrotransmissivity according to claim 11 or 12, wherein the element body has a curved surface, and an intersecting line of the two-plane orthogonal alignment mirrors is arranged along a normal direction of the curved surface. element.
  14. 前記素子本体に前記2面直交合わせ鏡が配置され、再帰透過軸が場所に応じて設定されることで、再帰透過性に加えて、光線の散開又は収束の光学特性が付加されることを特徴とする請求項11乃至請求項13のいずれか1項に記載の再帰透過性素子。 The two-plane orthogonal mirror is disposed in the element body, and the retrotransmission axis is set according to the location, so that in addition to the retrotransmission, optical characteristics of light spreading or convergence are added. The retrotransparent element according to any one of claims 11 to 13.
PCT/JP2009/059772 2008-05-30 2009-05-28 Optical system, head-mounted type projector, and recursive penetrating element WO2009145256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008143496A JP2009288696A (en) 2008-05-30 2008-05-30 Optical system, head-mounted projector, and retro-transmitting element
JP2008-143496 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009145256A1 true WO2009145256A1 (en) 2009-12-03

Family

ID=41377126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059772 WO2009145256A1 (en) 2008-05-30 2009-05-28 Optical system, head-mounted type projector, and recursive penetrating element

Country Status (2)

Country Link
JP (1) JP2009288696A (en)
WO (1) WO2009145256A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634328B2 (en) * 2016-03-31 2020-01-22 株式会社ジャパンディスプレイ Display device
JP6930593B2 (en) 2017-09-22 2021-09-01 株式会社ニコン Image display device and image display system
JP6793372B2 (en) * 2017-10-30 2020-12-02 ピクシーダストテクノロジーズ株式会社 Retinal projection device, retinal projection system
JP2019197564A (en) * 2019-07-03 2019-11-14 株式会社東芝 Wearable terminal, system, and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535692A (en) * 1999-01-11 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー Retroreflector based on cube corner cavity and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535692A (en) * 1999-01-11 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー Retroreflector based on cube corner cavity and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYUGO KIJIMA ET AL.: "Saiki Tokasei Sozai o Mochiita Kyozo Toeishiki Tobu Tosaigata Projector -Dosa Genri to Shoki Jisso", IEICE TECHNICAL REPORT, TECHNICAL REPORT OF IEICE, vol. 108, no. 77, 26 May 2008 (2008-05-26), pages 7 - 12 *

Also Published As

Publication number Publication date
JP2009288696A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US11867906B2 (en) Wearable AR system and AR display device
JP7177475B2 (en) Display device and display method of aerial image
US10031339B2 (en) Spatially multiplexed lens for head mounted display
US5418584A (en) Retroreflective array virtual image projection screen
TW528886B (en) Viewing optical system, image display apparatus comprising the same, and helmet-type viewing optical device
JP5059937B2 (en) Display device
US10690914B2 (en) Optical projection device for display means such as augmented reality glasses
KR20190016869A (en) Optical window system and see-through type display apparatus including the same
WO2010131622A1 (en) Display device
JP6670431B2 (en) Imaging optics and smart glasses
JPH10504115A (en) Head mounted display optics
US11536963B2 (en) Optical device for augmented reality having improved light efficiency
JP2019521384A (en) Head-mounted imager using optical coupling
WO2009145256A1 (en) Optical system, head-mounted type projector, and recursive penetrating element
JP2005062314A (en) Retroreflective optical screen and observation device using the same
WO2021109618A1 (en) Near-eye display device
CN111290128B (en) Optical system, display device and intelligent glasses
WO2005109071A1 (en) Wide angle viewing device
WO2021197060A1 (en) Head-mounted display device
US8186837B2 (en) Wide angle display device
CN107272203B (en) Refractive, diffractive and reflective head-mounted display optical system
JP2005062313A (en) Retroreflective optical screen and observation device using the same
WO1996003670A1 (en) An apparatus for displaying an image
KR102582246B1 (en) Optical system of augment reality glasses
KR102399901B1 (en) See-through type head mounted display with optical eye-box expansion means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754764

Country of ref document: EP

Kind code of ref document: A1