WO2009145112A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
WO2009145112A1
WO2009145112A1 PCT/JP2009/059379 JP2009059379W WO2009145112A1 WO 2009145112 A1 WO2009145112 A1 WO 2009145112A1 JP 2009059379 W JP2009059379 W JP 2009059379W WO 2009145112 A1 WO2009145112 A1 WO 2009145112A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
linear motor
slide table
absorbing mechanism
displacement absorbing
Prior art date
Application number
PCT/JP2009/059379
Other languages
French (fr)
Japanese (ja)
Inventor
廣昭 望月
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to JP2010514454A priority Critical patent/JPWO2009145112A1/en
Publication of WO2009145112A1 publication Critical patent/WO2009145112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to a linear motor that obtains a thrust for linear movement of a mover by a magnetic field generated in a magnet and a current flowing in the coil, and in particular, a pair of slide tables to which a coil is attached are arranged on both sides of the coil.
  • the present invention relates to a linear motor guided by a guide unit.
  • This type of linear motor includes a fixed member having a magnet in which N-pole and S-pole magnetic poles are alternately arranged in one axis direction, a slide table having a three-phase coil facing the magnet via a magnetic clearance, A pair of linear guides for guiding the slide table to linearly move in a uniaxial direction with respect to the fixed member in a state in which the clearance between the magnet and the coil is kept constant.
  • Each linear guide is attached to a fixed member, a track rail attached to the slide table, and a movable block assembled to the track rail so as to be linearly movable, and interposed between the track rail and the movable block so as to allow rolling motion.
  • a plurality of balls are attached to a fixed member, a track rail attached to the slide table, and a movable block assembled to the track rail so as to be linearly movable, and interposed between the track rail and the movable block so as to allow rolling motion.
  • a thrust for linear movement of the slide table is generated by the magnetic field generated in the magnet and the current flowing in the coil.
  • the thrust of the linear motor is proportional to the product of the magnetic flux density B generated in the magnet and the current I flowing through the coil.
  • Patent Document 1 discloses a linear motor in which heat dissipation means for preventing heat generation of the coil from being transmitted to the slide table is provided between the coil and the slide table (Patent Document 1). ).
  • an object of the present invention is to provide a new linear motor capable of preventing an internal load from acting on the linear guide when the slide table is thermally expanded due to heat generation of the coil.
  • the invention described in claim 1 is directed to a first member having a magnet in which N-pole and S-pole magnetic poles are alternately arranged in a uniaxial direction, and opposed to the magnet via a gap.
  • the second member moves linearly relative to the first member in the uniaxial direction with the coil, the second member to which the coil is attached, and the coil and the magnet maintaining the clearance.
  • the displacement absorbing mechanism includes a first attachment body attached to the upper surface of the guide portion or the upper surface of the first member, and the second A second attachment body attached to the lower surface of the member or the lower surface of the guide portion, and interposed between the first attachment body and the second attachment body, and the second member is thermally expanded in the width direction.
  • a shear deformation layer including at least one rubber layer that undergoes shear deformation.
  • the second mounting body and the shear deformation layer have a counterbore for forming a seating surface of a bolt on the first mounting body.
  • a hole is opened, and the first attachment body is attached to the upper surface of the guide portion or the upper surface of the first member by a bolt passed through the counterbore hole, and the second attachment body includes the second attachment body.
  • a mounting screw or a mounting hole for mounting the lower surface of the member or the lower surface of the guide portion to the second mounting body is formed.
  • the vertical rigidity of the displacement absorbing mechanism is equal to or greater than the vertical rigidity of the guide portion.
  • the invention according to claim 5 is the linear motor according to claim 1 or 2, wherein the displacement absorbing mechanism is disposed between the upper surface of the guide portion and the lower surface of the second member, and the guide portion is A track rail coupled to the upper surface of the first member; a moving block coupled to the lower surface of the displacement absorbing mechanism and assembled to the track rail so as to be relatively linearly movable; and the track rail and the movement And a plurality of rolling elements interposed between the blocks so as to allow rolling motion.
  • the displacement absorbing mechanism is attached to only one of the pair of guide portions arranged with the coil interposed therebetween. It is characterized by being able to.
  • the displacement absorbing mechanism is provided between the first member or the second member and the guide portion to relieve the force acting in the width direction from the second member to the guide portion, the second member is thermally expanded by the heat generated by the coil. However, it is possible to prevent an internal load from acting on the guide portion.
  • the displacement absorbing mechanism since the displacement absorbing mechanism has a vertical rigidity that can secure a clearance in which the linear motor operates, the displacement absorbing mechanism is compressed in the vertical direction without adversely affecting the operation of the linear motor.
  • the perspective view of the linear motor of one Embodiment of this invention Front view of the linear motor Top view of magnet Three-phase coil and core perspective view Perspective view of linear guide (including partial cross-sectional view) Perspective view of laminated rubber and linear guide Perspective view of laminated rubber Detailed view of laminated rubber ((a) shows a plan view, (b) shows a side view) Side view showing laminated rubber with suction force Conceptual diagram showing the rigidity of laminated rubber Side view showing laminated rubber with shear deformation
  • the perspective view which shows the other example of the laminated rubber attached to the side of a linear guide Graph comparing the rigidity of linear guide and laminated rubber Diagram showing the mounting position of the displacement sensor to the linear motor Graph showing temperature rise of three-phase coil Graph showing slide table displacement Graph showing slide table displacement
  • FIG. 1 is a perspective view of the linear motor
  • FIG. 2 is a front view of the linear motor as viewed from the moving direction of the slide table.
  • the linear motor is a single-axis actuator and linearly moves the slide table 2 with respect to the fixed member 1.
  • a plurality of N-pole and S-pole magnets 3 are alternately arranged in the uniaxial direction on the fixed member 1.
  • the three-phase coil 4 coupled to the lower surface of the slide table 2 (more precisely, the core 5 inserted into the three-phase coil 4) faces the magnet 3 via a gap g where a magnetic field acts.
  • the magnetic field generated in the magnet 3 and the three-phase alternating current flowing in the three-phase coil 4 generate a thrust that causes the slide table 2 to move linearly.
  • the fixing member 1 has an elongated bottom plate 1a in a uniaxial direction and a pair of side wall portions 1b provided at both ends in the width direction of the bottom plate 1a.
  • a linear guide 6 as a guide portion is attached to the upper surface of each of the pair of side wall portions 1b.
  • the linear guide 6 includes a track block 7 and a moving block 8 assembled to the track rail 7 so as to be capable of relative movement, and a plurality of balls 9 interposed between the track rail 7 and the moving block 8 so as to be capable of rolling motion (see FIG. 5). And).
  • the track rail 7 extends elongated along the side wall 1b.
  • FIG. 3 is a plan view of a plurality of magnets 3 arranged on the fixing member 1.
  • N-pole or S-pole magnets 3a and 3b are alternately arranged at a constant pitch.
  • Each magnet 3a, 3b consists of a plate-like permanent magnet elongated in the width direction.
  • N or S poles are magnetized on the surfaces of the magnets 3a and 3b.
  • the magnets 3a and 3b are formed in a parallelogram.
  • the magnet 3 is covered with a cover plate 3c as necessary.
  • the slide table 2 is formed in a rectangular shape that is elongated in the width direction.
  • the moving blocks 8 of the linear guide 6 are attached to both ends in the width direction of the slide table 2.
  • Two moving blocks 8 are assembled with respect to one track rail 7, and the slide table 2 is supported by the moving blocks 8 at the four corners.
  • a notch 2a to which the moving block 8 is attached is formed at the corner of one end in the width direction of the slide table 2.
  • the laminated rubber 10 as a displacement absorbing mechanism is accommodated in the notch 2a.
  • One end in the width direction of the slide table 2 is attached to the moving block 8 via a laminated rubber 10.
  • the other end in the width direction of the slide table 2 is directly attached to the upper surface of the moving block 8.
  • a through hole (not shown) for attaching the slide table 2 to the moving block 8 or the laminated rubber 10 is formed in the slide table 2.
  • the slide table 2 can be attached to the moving block 8 or the laminated rubber 10 by passing a bolt through the through hole and tightening the bolt into the screw hole of the moving block 8 or the laminated rubber 10.
  • FIG. 4 is a perspective view of the three-phase coil 4 and the core 5.
  • the material of the core 5 is a magnetic material such as silicon steel.
  • the core 5 has three comb teeth 5 a that strengthen the magnetic field generated in the three-phase coil 4.
  • the U / V / W phase three-phase coil 4 includes three coils 4 a wound around three comb teeth 5 a of a core 5.
  • the three coils 4a are arranged in the moving direction of the slide table.
  • a radiating fin that releases heat generated from the three-phase coil 4 to the atmosphere may be attached to the core 5.
  • the current flowing through the three-phase coil 4 is controlled by a servo driver.
  • a linear scale for detecting the position of the slide table 2 is attached to the fixed member 1.
  • the servo driver feeds back the position information and speed information of the slide table 2 detected by the linear scale, calculates a difference from the target value, and adjusts the position of the three-phase coil 4 so that the position and speed of the slide table 2 approach the target value. Controls three-phase alternating current.
  • FIG. 5 shows a perspective view of the linear guide 6.
  • the linear guide 6 is interposed between the upper surface of the side wall portion 1 b of the fixing member 1 and the lower surface of the slide table 2.
  • a track rail 7 is attached to the upper surface of the side wall 1 b of the fixing member 1.
  • a plurality of mounting holes 7b are formed in the track rail 7 at a predetermined pitch in the longitudinal direction. By passing a bolt through the mounting hole 7b and screwing the bolt into the screw hole of the side wall 1b of the fixing member 1, the track rail 7 is fixed to the side wall 1b.
  • the track rail 7 is formed with a plurality of ball rolling grooves 7a on which the balls 9 roll along the longitudinal direction.
  • the cross-sectional shape of the ball rolling groove 7a is a circular arc groove shape made of a single arc slightly larger than the radius of the ball 9, or a Gothic arch groove shape made of two arcs.
  • the ball rolling groove 7 a is formed not only on the side surface of the track rail 7 but also on the upper surface of the track rail 7. By forming the ball rolling groove 7 a on the upper surface of the track rail 7, the vertical rigidity of the linear guide 6 can be increased.
  • the moving block 8 is formed in a bowl shape straddling the track rail 7.
  • a load ball rolling groove 8a facing the ball rolling groove 7a of the track rail 7 is formed, and a ball circulation path including the load ball rolling groove 8a is formed.
  • the ball circulation path includes a ball return path 13 extending in parallel with the load ball rolling groove 8a, and a U-shaped direction change path 14 connecting the end of the load ball rolling groove 8a and the end of the ball return path 13.
  • the whole is formed in a circuit shape.
  • a plurality of balls 9 are arranged and accommodated in the ball circulation path.
  • the heat generated by the three-phase coil 4 is transmitted to the linear guide 6 via the slide table 2. For this reason, a linear guide 6 that can withstand high temperatures is used.
  • a stainless steel plate is used for the end plate 15 in which the direction changing path 14 is formed, and a stainless steel plate is also used for the holding plate 16 that prevents the balls 9 from falling off.
  • FIG. 6 is a perspective view of the linear guide 6 and the laminated rubber 10 attached to the upper surface of the linear guide 6.
  • the laminated rubber 10 is obtained by laminating a metal plate and a rubber layer.
  • the laminated rubber 10 includes a first attachment body 21 attached to the upper surface of the moving block 8, a second attachment body 22 attached to the lower surface of the slide table 2, and the first attachment body 21 and the second attachment body 22. And a shear deformation layer 23 interposed therebetween.
  • the shear deformation layer 23 is composed of two upper and lower rubber layers 24 and a metal plate 25 interposed between the rubber layers 24.
  • FIG. 7 and 8 show detailed views of the laminated rubber 10.
  • FIG. The second mounting body 22 and the shear deformation layer 23 of the laminated rubber 10 are provided with counterbore holes 22b for exposing the bolt bearing surface 22a to the first mounting body 21.
  • the counterbore 22b is formed at a position corresponding to the screw hole 8b (see FIG. 5) of the moving block 8.
  • the first mounting body 21 is provided with a through hole 21a through which a screw portion of a bolt is passed in order to fasten the first mounting body 21 to the moving block 8.
  • the first attachment body 21 is attached to the upper surface of the moving block 8 by a bolt passed through the counterbored hole 22b.
  • the inner diameter of the counter bore 22b is larger than the outer diameter of the bolt head.
  • a clearance enough to deform the shear deformation layer 23 is formed around the head of the bolt.
  • the head of the bolt also functions as a stopper when the shear deformation layer 23 undergoes shear deformation by a predetermined amount or more. That is, the head portion of the bolt comes into contact with the shear deformation layer 23 that has undergone shear deformation for a predetermined amount or more, and the shear deformation of the shear deformation layer 23 for a predetermined amount or more is prevented.
  • a mounting screw 22 c for fastening the slide table 2 to the second mounting body 22 is also formed on the second mounting body 22.
  • the mounting screw 22c is formed outside the counterbore hole 22b at a position away from the upper surface of the moving block 8. Instead of the mounting screw 22c, a through hole through which a bolt is inserted may be formed.
  • the laminated rubber 10 When attaching the laminated rubber 10 to the linear guide 6, the laminated rubber 10 is first placed on the moving block 8, bolts are passed through the counterbored holes 22 b of the laminated rubber 10, and the first attachment body 21 of the laminated rubber 10 is moved to the moving block 8. Fasten to the top surface. At this time, the shear deformation layer 23 and the second attachment body 22 are not fastened to the moving block 8. Next, the slide table 2 is placed on the upper surface of the laminated rubber 10, a bolt is passed through the mounting hole of the slide table 2, the bolt is screwed into the mounting screw 22c of the second mounting body 22, and the slide table 2 is mounted on the second mounting body. Fasten to 22.
  • the laminated rubber 10 By forming counterbored holes 22b in the laminated rubber 10, when the laminated rubber 10 and the slide table 2 are attached to the moving block 8, screwing from above is possible, and the laminated rubber 10 and the slide table 2 can be easily attached. become. Moreover, the laminated rubber 10 can be spread over the entire upper surface of the moving block 8 in a limited space. As shown in FIG. 9, the rigidity in the vertical direction of the laminated rubber 10 is related to (area A of the rubber layer 24) / (surface area S around the rubber layer 24). The horizontal rigidity of the laminated rubber is related to (the horizontal length L of the rubber layer 24) / the total thickness t of the rubber layer 24. By forming counterbored holes in the laminated rubber 10, the degree of freedom in designing the laminated rubber 10 is widened, and it is easy to increase the vertical rigidity and reduce the horizontal rigidity of the laminated rubber 10.
  • the rubber layer 24 of the laminated rubber 10 and the first and second attachment bodies 21 and 22 and the rubber layer 24 and the metal plate 25 are vulcanized and bonded.
  • the surfaces of the metal first and second mounting bodies 21 and 22 and the metal plate 25 are roughened by shot blasting, these are inserted into a mold, rubber is press-fitted into the mold cavity, and pressure is applied to the rubber. These can be vulcanized and bonded by vulcanization while adding. In addition, you may adhere
  • FIG. 10 shows the deformation of the laminated rubber 10 when a vertical suction force is applied
  • FIG. 11 shows the deformation of the laminated rubber 10 when a horizontal shear force is applied.
  • the vertical rigidity of the laminated rubber 10 is such that when a suction force acts between the three-phase coil 4 and the magnet 3, a clearance that allows the linear motor to operate can be secured between the three-phase coil 4 and the magnet 3. Set high.
  • g is set minutely.
  • the vertical rigidity of the laminated rubber 10 is set so that the amount of change in the clearance g falls within a predetermined range so that the core 5 and the magnet 3 do not come into contact with each other due to the attractive force.
  • the vertical direction of the laminated rubber 10 is increased.
  • Directional rigidity can be increased.
  • the thickness of the rubber layer 24 is set to 0.5 to 1.5 mm, for example, and the thickness of the metal plate is set to about 0.5 to 1.5 mm, for example.
  • the cross-sectional areas of the rubber layer 24 and the metal plate 25 are matched to the area of the upper surface of the moving block 8. If the rubber layer 24 is formed in one layer, the rigidity can be further increased, but the amount of shear deformation in the horizontal direction is reduced.
  • the rubber layer 24 is made into two layers.
  • the spring constant of the laminated rubber 10 in the compression direction can be set to, for example, 100,000 to 200,000 N / mm, which is equal to or greater than the spring constant of the linear guide 6 in the compression direction.
  • the laminated rubber 10 undergoes shear deformation in the horizontal direction when the slide table 2 is thermally expanded.
  • the spring constant in the shear direction is set to, for example, 500 to 2000 N / mm which is 1/100 or less of the spring constant in the compression direction so that the laminated rubber 10 is easily sheared.
  • the amount of shear deformation in the horizontal direction can be made 100 times or more larger than the amount of compression in the vertical direction.
  • the slide table expands by 0.1 to 0.2 mm, for example. Since the allowable deformation amount of the ball 9 incorporated in the linear guide 6 is about several tens of ⁇ m, if the thermal expansion amount of the slide table 2 acts on the ball 9 as it is, the life of the ball 9 is extremely shortened.
  • the spring constant in the shear direction of the laminated rubber 10 is set so that the load applied to the ball 9 is less than the allowable load.
  • the allowable load of the ball 9 is calculated from the static load rating or the dynamic load rating of the linear guide 6.
  • the laminated rubber 10 is attached to only one linear guide 6.
  • the slide table 2 is directly fixed to the moving block 8 on the remaining moving block 8 of the linear guide 6 without using the laminated rubber 10. For this reason, the rigidity (see FIG. 1) with respect to the yawing moment of the slide table 2 is kept high.
  • the laminated rubber 10 shown in FIG. 6 is characterized by high vertical rigidity and large horizontal shear deformation. For this reason, the slide table 2 can be guided with high rigidity in the vertical direction, and mounting errors of the two parallel track rails 7 can be absorbed. In addition, when the heavy slide table 2 is attached to the laminated rubber 10, the rubber layer 24 reduces the impact, so that the slide table 2 can be easily attached. Therefore, this laminated rubber 10 may be used not only as a linear motor but also as a displacement absorbing mechanism for an actuator having two parallel track rails 7.
  • FIG. 12 shows a modified example of the laminated rubber 10 applied to the actuator.
  • the laminated rubber 10 may be attached to the side surface of the moving block 8 so that the rigidity-soft property can be selected between the vertical direction and the horizontal direction according to the application.
  • FIG. 13 shows a conceptual diagram of the spring characteristics of the laminated rubber 10 in the compression direction and shear direction.
  • the rigidity of the laminated rubber 10 in the compression direction is higher than the rigidity of the linear guide 6 in the compression direction.
  • the rigidity of the laminated rubber 10 in the shear direction is lower than the rigidity of the linear guide 6 in the compression direction.
  • the laminated rubber 10 was interposed between the slide table 2 and the moving block 8.
  • a current was passed through the three-phase coil 4 to operate the linear motor.
  • the three-phase coil 4 rose to about 110 ° C. over time.
  • FIG. 16 shows the relationship between the elapsed time and the slide table 2 and the moving block 8 in the horizontal direction.
  • the moving block 8 On the side where the moving block 8 is directly fixed to the slide table 2 (the left side in FIG. 14), neither the moving block 8 nor the table is displaced significantly in the horizontal direction over time (subscripts in FIG. 16, B). reference).
  • the slide table 2 and the moving block 8 On the other hand, on the side where the laminated rubber 10 is interposed (the right side in FIG. 14), the slide table 2 and the moving block 8 are displaced by 140 ⁇ m in the horizontal direction as time elapses with the thermal expansion of the slide table 2 (FIG. 16). , A subscript).
  • FIG. 17 shows the displacement in the vertical direction of the slide table 2 on the side where the moving block 8 is directly fixed to the slide table 2 (left side E in FIG. 14) and the side where the laminated rubber 10 is interposed (right side C in FIG. 14). ) And a central portion (center D in FIG. 14). It was found that the central part of the slide table 2 was displaced downward immediately after passing the current through the three-phase coil 4. The attraction force between the three-phase coil 4 and the magnet 3 was the largest at the center of the slide table 2 and was such that the center of the slide table 2 was deformed. On the right and left sides of the slide table 2, the vertical displacement did not change much over time. It can be seen that the laminated rubber 10 has sufficient vertical rigidity.
  • the horizontal displacement of 140 ⁇ m acts on the linear guide 6 by the displacement of the slide table 2 in the horizontal direction of 140 ⁇ m.
  • an internal stress of about 22 kN is generated in the linear guide 6.
  • the laminated rubber 10 undergoes shear deformation and absorbs horizontal displacement, so that only a 20 ⁇ m displacement acts on the linear guide 6.
  • the function of the laminated rubber 10 as a displacement absorbing mechanism could be sufficiently confirmed.
  • an orthogonal linear guide combined so that a pair of track rails are orthogonal may be used.
  • the orthogonal linear guide has a structure in which the moving blocks 8 of the pair of linear guides are back-to-back so that the track rails are orthogonal. If the clearance between the coil and the magnet can be secured by the rigidity in the vertical direction, the displacement absorbing mechanism is not provided between the upper surface of the linear guide and the lower surface of the slide table, but between the upper surface of the fixed member and the lower surface of the track rail. May be.
  • a roller can be used instead of a ball for the rolling element of the linear guide. If a roller is used, the rigidity of the linear guide can be increased.
  • SYMBOLS 1 Fixed member, 2 ... Slide table, 3 ... Magnet, 4 ... Three-phase coil, 5 ... Core, 6 ... Linear guide (guide part), 7 ... Track rail, 7a ... Ball rolling groove, 8 ... Moving block, 8a ... Loaded ball rolling groove, 9 ... Ball (rolling element), 10 ... Laminated rubber (displacement absorption mechanism), 13 ... Ball return path, 14 ... Direction change path, 21 ... First mounting body, 22b ... Counterbore hole , 22c ... mounting screw, 22a ... seating surface, 22 ... second mounting body, 23 ... shear deformation layer, 24 ... rubber layer, 25 ... metal plate

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)

Abstract

A linear motor configured such that an internal load is prevented from acting on a linear guide when a slide table is thermally expanded by heat generated from a coil. A displacement absorbing mechanism (10) consisting of multi-layer rubber is mounted between the upper surface of a linear guide (6) and the lower surface of a slide table (2).  The displacement absorbing mechanism (10) has vertical rigidity which can, when attraction force acts between a coil (4) and a magnet (3), secure a gap, in which a liner motor operates, between the coil (4) and the magnet (3).  Also, when heat is generated from the coil (4) to cause the slide table (2) to thermally expand in the lateral direction thereof, the displacement absorbing mechanism (10) deforms under shear to relax a force acting from the slide table (2) to the linear guide (6).

Description

リニアモータLinear motor
 本発明は、マグネットに発生する磁界とコイルに流れる電流によって可動子が直線運動するための推力を得るリニアモータに関し、特にコイルが取り付けられるスライドテーブルの直線運動をコイルの両側に配置される一対の案内部で案内するリニアモータに関する。 The present invention relates to a linear motor that obtains a thrust for linear movement of a mover by a magnetic field generated in a magnet and a current flowing in the coil, and in particular, a pair of slide tables to which a coil is attached are arranged on both sides of the coil. The present invention relates to a linear motor guided by a guide unit.
 この種のリニアモータは、N極及びS極の磁極が一軸方向に交互に配列されたマグネットを有する固定部材と、マグネットに磁気的なすきまを介して対向する三相コイルを有するスライドテーブルと、マグネットとコイルとの間のすきまを一定に保った状態で、スライドテーブルが固定部材に対して一軸方向に直線運動するのを案内する一対のリニアガイドと、を備える。各リニアガイドは、固定部材に取り付けられる軌道レールと、スライドテーブルに取り付けられると共に、軌道レールに直線運動可能に組み付けられる移動ブロックと、軌道レールと移動ブロックとの間に転がり運動可能に介在される複数のボールと、を備える。 This type of linear motor includes a fixed member having a magnet in which N-pole and S-pole magnetic poles are alternately arranged in one axis direction, a slide table having a three-phase coil facing the magnet via a magnetic clearance, A pair of linear guides for guiding the slide table to linearly move in a uniaxial direction with respect to the fixed member in a state in which the clearance between the magnet and the coil is kept constant. Each linear guide is attached to a fixed member, a track rail attached to the slide table, and a movable block assembled to the track rail so as to be linearly movable, and interposed between the track rail and the movable block so as to allow rolling motion. A plurality of balls.
 三相コイルに三相交流電流を流すと、マグネットに発生する磁界とコイルに流れる電流によって、スライドテーブルが直線運動するための推力が発生する。リニアモータの推力は、磁石に発生する磁束密度Bとコイルに流す電流Iの積に比例する。コイルに流す電流Iを大きくすることによって、推力を大きくすることができ、スライドテーブルを高速で移動させることができる。しかし、電流Iを大きくすると、電流の二乗に比例するジュール熱が発生し、コイルが発熱する。コイルの発熱がスライドテーブルに伝わると、スライドテーブルが熱膨張する。スライドテーブルの熱膨張量は、固定部材の熱膨張量よりも大きいので、スライドテーブルの幅方向の両側に配置される一対のリニアガイドに内部荷重が発生する。リニアガイドの軌道レールと移動ブロックとの間に介在されるボールが変形するので、リニアガイドの動きとか寿命に悪影響を及ぼす。 When a three-phase alternating current is passed through a three-phase coil, a thrust for linear movement of the slide table is generated by the magnetic field generated in the magnet and the current flowing in the coil. The thrust of the linear motor is proportional to the product of the magnetic flux density B generated in the magnet and the current I flowing through the coil. By increasing the current I flowing through the coil, the thrust can be increased and the slide table can be moved at high speed. However, when the current I is increased, Joule heat proportional to the square of the current is generated, and the coil generates heat. When the heat generated by the coil is transmitted to the slide table, the slide table is thermally expanded. Since the thermal expansion amount of the slide table is larger than the thermal expansion amount of the fixing member, an internal load is generated in the pair of linear guides arranged on both sides in the width direction of the slide table. Since the ball interposed between the track rail of the linear guide and the moving block is deformed, the movement and life of the linear guide are adversely affected.
 この問題を解決するために、特許文献1には、コイルとスライドテーブルとの間にコイルの発熱がスライドテーブルに伝わるのを防止する放熱手段を設けたリニアモータが開示されている(特許文献1)。 In order to solve this problem, Patent Document 1 discloses a linear motor in which heat dissipation means for preventing heat generation of the coil from being transmitted to the slide table is provided between the coil and the slide table (Patent Document 1). ).
特開2008-67492号公報(2頁、請求項1参照)JP 2008-67492 A (see page 2, claim 1)
 特許文献1に記載のように、従来のこの種のリニアモータにおいては、コイルに発生する熱をいかにしてスライドテーブルに伝えないかの工夫がなされてきた。スライドテーブルに熱が伝わり、スライドテーブルが熱膨張したときの対策はなされていなかった。なぜならば、この種のリニアモータにおいては、コイルとマグネットとの間に吸引力が働いても、これらの間に微小なすきまを確保する必要があったからである。すなわち、スライドテーブルを案内する部分の垂直方向の剛性を高くし、すきまを確保する必要性から、垂直方向の剛性の高いリニアガイドを用い、リニアガイドの軌道レールを直接固定部材の上面に結合し、リニアガイドの移動ブロックを直接スライドテーブルの下面に結合していたからである。 As described in Patent Document 1, in the conventional linear motor of this type, there has been devised how heat generated in the coil is not transmitted to the slide table. No measures were taken when heat was transferred to the slide table and the slide table thermally expanded. This is because, in this type of linear motor, even if an attractive force is applied between the coil and the magnet, it is necessary to ensure a minute gap between them. In other words, since the vertical rigidity of the part that guides the slide table needs to be increased and a clearance is required, a linear guide with a high vertical rigidity is used, and the track rail of the linear guide is directly coupled to the upper surface of the fixing member. This is because the moving block of the linear guide is directly coupled to the lower surface of the slide table.
 そこで本発明は、コイルの発熱によってスライドテーブルが熱膨張したとき、リニアガイドに内部荷重が働くのを防止できる新たなリニアモータを提供することを目的とする。 Therefore, an object of the present invention is to provide a new linear motor capable of preventing an internal load from acting on the linear guide when the slide table is thermally expanded due to heat generation of the coil.
 上記課題を解決するために、請求項1に記載の発明は、N極及びS極の磁極が一軸方向に交互に配列されたマグネットを有する第一部材と、前記マグネットにすきまを介して対向するコイルと、前記コイルが取り付けられる第二部材と、前記コイルと前記マグネットとが前記すきまを保った状態で前記第二部材が前記第一部材に対して前記一軸方向に相対的に直線運動するのを案内すると共に、前記コイルを挟んで前記第二部材の幅方向の両側に配置される一対の案内部と、前記一軸方向を水平面内に配置した状態において、前記一対の案内部の少なくとも一方の上面と前記第二部材の下面との間、又は前記第一部材の上面と前記一対の案内部の少なくとも一方の下面との間に介在される変位吸収機構と、を備え、前記変位吸収機構は、前記コイルと前記マグネットとの間に吸引力が働いたとき、リニアモータが作動するすきまを確保できる垂直方向の剛性を持つと共に、前記コイルが発熱し、前記第二部材が前記幅方向に熱膨張するとき、前記第二部材から前記案内部に前記幅方向に作用する力を緩和するように変形するリニアモータである。 In order to solve the above problems, the invention described in claim 1 is directed to a first member having a magnet in which N-pole and S-pole magnetic poles are alternately arranged in a uniaxial direction, and opposed to the magnet via a gap. The second member moves linearly relative to the first member in the uniaxial direction with the coil, the second member to which the coil is attached, and the coil and the magnet maintaining the clearance. And a pair of guide portions disposed on both sides in the width direction of the second member across the coil, and at least one of the pair of guide portions in a state where the uniaxial direction is disposed in a horizontal plane A displacement absorbing mechanism interposed between the upper surface and the lower surface of the second member, or between the upper surface of the first member and at least one lower surface of the pair of guide portions, the displacement absorbing mechanism comprising: ,in front When an attractive force acts between the coil and the magnet, it has a vertical rigidity that can secure a clearance for the linear motor to operate, the coil generates heat, and the second member expands in the width direction. In this case, the linear motor is deformed so as to relieve the force acting in the width direction from the second member to the guide portion.
 請求項2に記載の発明は、請求項1に記載のリニアモータにおいて、前記変位吸収機構は、前記案内部の上面又は前記第一部材の上面に取り付けられる第一の取付け体と、前記第二部材の下面又は前記案内部の下面に取り付けられる第二の取付け体と、前記第一の取付け体と前記第二の取付け体との間に介在され、前記第二部材が前記幅方向に熱膨張するとき、せん断変形する少なくとも一つのゴム層を含むせん断変形層と、を有することを特徴とする。 According to a second aspect of the present invention, in the linear motor according to the first aspect, the displacement absorbing mechanism includes a first attachment body attached to the upper surface of the guide portion or the upper surface of the first member, and the second A second attachment body attached to the lower surface of the member or the lower surface of the guide portion, and interposed between the first attachment body and the second attachment body, and the second member is thermally expanded in the width direction. And a shear deformation layer including at least one rubber layer that undergoes shear deformation.
 請求項3に記載の発明は、請求項2に記載のリニアモータにおいて、前記第二の取付け体及び前記せん断変形層には、前記第一の取付け体にボルトの座面を形成するためのザグリ孔が開けられ、前記第一の取付け体は、前記ザグリ孔に通されたボルトによって前記案内部の上面又は前記第一部材の上面に取り付けられ、前記第二の取付け体には、前記第二部材の下面又は前記案内部の下面を前記第二の取付け体に取り付けるための取付けねじ又は取付け孔が形成されることを特徴とする。 According to a third aspect of the present invention, in the linear motor of the second aspect, the second mounting body and the shear deformation layer have a counterbore for forming a seating surface of a bolt on the first mounting body. A hole is opened, and the first attachment body is attached to the upper surface of the guide portion or the upper surface of the first member by a bolt passed through the counterbore hole, and the second attachment body includes the second attachment body. A mounting screw or a mounting hole for mounting the lower surface of the member or the lower surface of the guide portion to the second mounting body is formed.
 請求項4に記載の発明は、請求項2又は3に記載のリニアモータにおいて、前記変位吸収機構の垂直方向の剛性は、前記案内部の垂直方向の剛性と同等以上であることを特徴とする。 According to a fourth aspect of the present invention, in the linear motor according to the second or third aspect, the vertical rigidity of the displacement absorbing mechanism is equal to or greater than the vertical rigidity of the guide portion. .
 請求項5に記載の発明は、請求項1又は2に記載のリニアモータにおいて、前記変位吸収機構は、前記案内部の上面と前記第二部材の下面との間に配置され、前記案内部は、前記第一部材の上面に結合される軌道レールと、前記変位吸収機構の下面に結合されると共に、前記軌道レールに相対的に直線運動可能に組み付けられる移動ブロックと、前記軌道レールと前記移動ブロックとの間に転がり運動可能に介在される複数の転動体と、を有することを特徴とする。 The invention according to claim 5 is the linear motor according to claim 1 or 2, wherein the displacement absorbing mechanism is disposed between the upper surface of the guide portion and the lower surface of the second member, and the guide portion is A track rail coupled to the upper surface of the first member; a moving block coupled to the lower surface of the displacement absorbing mechanism and assembled to the track rail so as to be relatively linearly movable; and the track rail and the movement And a plurality of rolling elements interposed between the blocks so as to allow rolling motion.
 請求項6に記載の発明は、請求項1又は2に記載のリニアモータにおいて、前記変位吸収機構は、前記コイルを挟んで配置される一対の前記案内部のうち、一方の案内部にのみ取り付けられることを特徴とする。 According to a sixth aspect of the present invention, in the linear motor according to the first or second aspect, the displacement absorbing mechanism is attached to only one of the pair of guide portions arranged with the coil interposed therebetween. It is characterized by being able to.
 第一部材又は第二部材と案内部との間に、第二部材から案内部に幅方向に作用する力を緩和する変位吸収機構を設けるので、コイルの発熱によって第二部材が熱膨張しても、案内部に内部荷重が働くのを防止できる。しかも、この変位吸収機構は、リニアモータが作動するすきまを確保できる垂直方向の剛性を持つので、変位吸収機構が垂直方向に圧縮されて、リニアモータの作動に悪影響を及ぼすこともない。 Since a displacement absorbing mechanism is provided between the first member or the second member and the guide portion to relieve the force acting in the width direction from the second member to the guide portion, the second member is thermally expanded by the heat generated by the coil. However, it is possible to prevent an internal load from acting on the guide portion. In addition, since the displacement absorbing mechanism has a vertical rigidity that can secure a clearance in which the linear motor operates, the displacement absorbing mechanism is compressed in the vertical direction without adversely affecting the operation of the linear motor.
本発明の一実施形態のリニアモータの斜視図The perspective view of the linear motor of one Embodiment of this invention 上記リニアモータの正面図Front view of the linear motor マグネットの平面図Top view of magnet 三相コイル及びコアの斜視図Three-phase coil and core perspective view リニアガイドの斜視図(一部断面図も含む)Perspective view of linear guide (including partial cross-sectional view) 積層ゴム及びリニアガイドの斜視図Perspective view of laminated rubber and linear guide 積層ゴムの斜視図Perspective view of laminated rubber 積層ゴムの詳細図(図中(a)は平面図を示し、(b)は側面図を示す)Detailed view of laminated rubber ((a) shows a plan view, (b) shows a side view) 吸引力が作用した積層ゴムを示す側面図Side view showing laminated rubber with suction force 積層ゴムの剛性を示す概念図Conceptual diagram showing the rigidity of laminated rubber せん断変形した積層ゴムを示す側面図Side view showing laminated rubber with shear deformation リニアガイドの側面に取り付けられた積層ゴムの他の例を示す斜視図The perspective view which shows the other example of the laminated rubber attached to the side of a linear guide リニアガイドと積層ゴムとの剛性を比較したグラフGraph comparing the rigidity of linear guide and laminated rubber リニアモータへの変位センサの取付け位置を示す図Diagram showing the mounting position of the displacement sensor to the linear motor 三相コイルの温度の上昇を示すグラフGraph showing temperature rise of three-phase coil スライドテーブルの変位を示すグラフGraph showing slide table displacement スライドテーブルの変位を示すグラフGraph showing slide table displacement
 以下、添付図面に基づいて本発明の一実施形態のリニアモータを詳細に説明する。図1及び図2は本発明の一実施形態におけるリニアモータを示す。図1はリニアモータの斜視図を示し、図2はスライドテーブルの移動方向からみたリニアモータの正面図を示す。リニアモータは、一軸のアクチュエータで、固定部材1に対してスライドテーブル2を直線運動させる。固定部材1には、N極及びS極の複数のマグネット3が一軸方向に交互に配列される。スライドテーブル2の下面に結合される三相コイル4(正確にいえば三相コイル4に挿入されるコア5)は、マグネット3に磁界が作用するすきまgを介して対向する。マグネット3に発生する磁界と三相コイル4に流れる三相交流電流によって、スライドテーブル2を直線運動させる推力が発生する。 Hereinafter, a linear motor according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show a linear motor according to an embodiment of the present invention. FIG. 1 is a perspective view of the linear motor, and FIG. 2 is a front view of the linear motor as viewed from the moving direction of the slide table. The linear motor is a single-axis actuator and linearly moves the slide table 2 with respect to the fixed member 1. A plurality of N-pole and S-pole magnets 3 are alternately arranged in the uniaxial direction on the fixed member 1. The three-phase coil 4 coupled to the lower surface of the slide table 2 (more precisely, the core 5 inserted into the three-phase coil 4) faces the magnet 3 via a gap g where a magnetic field acts. The magnetic field generated in the magnet 3 and the three-phase alternating current flowing in the three-phase coil 4 generate a thrust that causes the slide table 2 to move linearly.
 固定部材1は、一軸方向に細長く伸び底部プレート1aと、底部プレート1aの幅方向の両端部に設けられる一対の側壁部1bとを有する。一対の側壁部1bそれぞれの上面には、案内部であるリニアガイド6が取り付けられる。リニアガイド6は、軌道レール7と軌道レール7に相対運動可能に組み付けられる移動ブロック8と、軌道レール7と移動ブロック8との間に転がり運動可能に介在された複数のボール9(図5参照)と、を備える。軌道レール7は、側壁部1bに沿って細長く伸びる。 The fixing member 1 has an elongated bottom plate 1a in a uniaxial direction and a pair of side wall portions 1b provided at both ends in the width direction of the bottom plate 1a. A linear guide 6 as a guide portion is attached to the upper surface of each of the pair of side wall portions 1b. The linear guide 6 includes a track block 7 and a moving block 8 assembled to the track rail 7 so as to be capable of relative movement, and a plurality of balls 9 interposed between the track rail 7 and the moving block 8 so as to be capable of rolling motion (see FIG. 5). And). The track rail 7 extends elongated along the side wall 1b.
 図3は、固定部材1に配列される複数のマグネット3の平面図を示す。固定部材1の底部プレート1aの上面には、N極又はS極のマグネット3a,3bが交互に一定のピッチで配列される。各マグネット3a,3bは幅方向に細長い板状の永久磁石からなる。各マグネット3a,3bの表面には、N極又はS極が着磁される。一軸方向に配列された複数のマグネット3に発生する磁界を正弦波に近付けるために、各マグネット3a,3bは平行四辺形に形成される。必要に応じてマグネット3はカバープレート3cで覆われる。 FIG. 3 is a plan view of a plurality of magnets 3 arranged on the fixing member 1. On the upper surface of the bottom plate 1a of the fixing member 1, N-pole or S- pole magnets 3a and 3b are alternately arranged at a constant pitch. Each magnet 3a, 3b consists of a plate-like permanent magnet elongated in the width direction. N or S poles are magnetized on the surfaces of the magnets 3a and 3b. In order to make the magnetic field generated in the plurality of magnets 3 arranged in the uniaxial direction approach a sine wave, the magnets 3a and 3b are formed in a parallelogram. The magnet 3 is covered with a cover plate 3c as necessary.
 図1及び図2に示されるように、スライドテーブル2は、幅方向に細長く伸びる矩形状に形成される。スライドテーブル2の幅方向の両端部には、リニアガイド6の移動ブロック8が取り付けられる。一本の軌道レール7について二つの移動ブロック8が組み付けられていて、スライドテーブル2はその四隅を移動ブロック8によって支持されている。 As shown in FIGS. 1 and 2, the slide table 2 is formed in a rectangular shape that is elongated in the width direction. The moving blocks 8 of the linear guide 6 are attached to both ends in the width direction of the slide table 2. Two moving blocks 8 are assembled with respect to one track rail 7, and the slide table 2 is supported by the moving blocks 8 at the four corners.
 スライドテーブル2の幅方向の一方の端部の角には、移動ブロック8が取り付けられる切欠き2aが形成される。この切欠き2aに変位吸収機構である積層ゴム10が収容される。スライドテーブル2の幅方向の一方の端部は、積層ゴム10を介して移動ブロック8に取り付けられる。スライドテーブル2の幅方向の他方の端部は、直接移動ブロック8の上面に取り付けられる。スライドテーブル2には、スライドテーブル2を移動ブロック8又は積層ゴム10に取り付けるための通し穴(図示せず)が形成される。通し穴にボルトを通し、ボルトを移動ブロック8又は積層ゴム10のねじ孔に締め付けることで、スライドテーブル2を移動ブロック8又は積層ゴム10に取り付けることができる。 At the corner of one end in the width direction of the slide table 2, a notch 2a to which the moving block 8 is attached is formed. The laminated rubber 10 as a displacement absorbing mechanism is accommodated in the notch 2a. One end in the width direction of the slide table 2 is attached to the moving block 8 via a laminated rubber 10. The other end in the width direction of the slide table 2 is directly attached to the upper surface of the moving block 8. A through hole (not shown) for attaching the slide table 2 to the moving block 8 or the laminated rubber 10 is formed in the slide table 2. The slide table 2 can be attached to the moving block 8 or the laminated rubber 10 by passing a bolt through the through hole and tightening the bolt into the screw hole of the moving block 8 or the laminated rubber 10.
 スライドテーブル2の下面の中央部には、電機子となる三相コイル4及びコア5が取り付けられる。図4は三相コイル4及びコア5の斜視図を示す。コア5の材質は、ケイ素鋼等の磁性体である。コア5は、三相コイル4に発生する磁界を強める三つの櫛歯5aを有する。U・V・W相の三相コイル4は、コア5の三つの櫛歯5aの周囲に巻かれる三つのコイル4aからなる。三つのコイル4aはスライドテーブルの移動方向に並べられる。コア5に三相コイル4から発生する熱を大気に逃がす放熱フィンを取り付けてもよい。三相コイル4に120°ずつ位相が異なる三相交流電流を流すと、三相コイル4に発生する磁界とマグネット3に発生する磁界の作用により推力が発生する。 A three-phase coil 4 and a core 5 serving as armatures are attached to the center of the lower surface of the slide table 2. FIG. 4 is a perspective view of the three-phase coil 4 and the core 5. The material of the core 5 is a magnetic material such as silicon steel. The core 5 has three comb teeth 5 a that strengthen the magnetic field generated in the three-phase coil 4. The U / V / W phase three-phase coil 4 includes three coils 4 a wound around three comb teeth 5 a of a core 5. The three coils 4a are arranged in the moving direction of the slide table. A radiating fin that releases heat generated from the three-phase coil 4 to the atmosphere may be attached to the core 5. When a three-phase alternating current having a phase difference of 120 ° is passed through the three-phase coil 4, thrust is generated by the action of the magnetic field generated in the three-phase coil 4 and the magnetic field generated in the magnet 3.
 三相コイル4に流れる電流は、サーボドライバによって制御される。固定部材1にはスライドテーブル2の位置を検出するリニアスケールが取り付けられる。サーボドライバは、リニアスケールが検出したスライドテーブル2の位置情報及び速度情報をフィードバックし、目標値との差分を算出し、スライドテーブル2の位置及び速度が目標値に近づくように三相コイル4の三相交流電流を制御する。 The current flowing through the three-phase coil 4 is controlled by a servo driver. A linear scale for detecting the position of the slide table 2 is attached to the fixed member 1. The servo driver feeds back the position information and speed information of the slide table 2 detected by the linear scale, calculates a difference from the target value, and adjusts the position of the three-phase coil 4 so that the position and speed of the slide table 2 approach the target value. Controls three-phase alternating current.
 図5は、リニアガイド6の斜視図を示す。リニアガイド6は、固定部材1の側壁部1bの上面とスライドテーブル2の下面との間に介在される。固定部材1の側壁部1bの上面に軌道レール7が取り付けられる。軌道レール7には、長手方向に所定のピッチで複数の取付け孔7bが開けられる。取付け孔7bにボルトを通し、ボルトを固定部材1の側壁部1bのねじ孔にねじ込むことによって、軌道レール7が側壁部1bに固定される。軌道レール7には、長手方向に沿ってボール9が転がる複数条のボール転走溝7aが形成される。ボール転走溝7aの断面形状は、ボール9の半径よりも僅かに大きい単一の円弧からなるサーキュラーアーク溝形状であるか、二つの円弧からなるゴシックアーチ溝形状である。ボール転走溝7aは、軌道レール7の側面だけでなく、軌道レール7の上面にも形成されている。軌道レール7の上面にボール転走溝7aを形成することで、リニアガイド6の垂直方向の剛性を高めることができる。 FIG. 5 shows a perspective view of the linear guide 6. The linear guide 6 is interposed between the upper surface of the side wall portion 1 b of the fixing member 1 and the lower surface of the slide table 2. A track rail 7 is attached to the upper surface of the side wall 1 b of the fixing member 1. A plurality of mounting holes 7b are formed in the track rail 7 at a predetermined pitch in the longitudinal direction. By passing a bolt through the mounting hole 7b and screwing the bolt into the screw hole of the side wall 1b of the fixing member 1, the track rail 7 is fixed to the side wall 1b. The track rail 7 is formed with a plurality of ball rolling grooves 7a on which the balls 9 roll along the longitudinal direction. The cross-sectional shape of the ball rolling groove 7a is a circular arc groove shape made of a single arc slightly larger than the radius of the ball 9, or a Gothic arch groove shape made of two arcs. The ball rolling groove 7 a is formed not only on the side surface of the track rail 7 but also on the upper surface of the track rail 7. By forming the ball rolling groove 7 a on the upper surface of the track rail 7, the vertical rigidity of the linear guide 6 can be increased.
 移動ブロック8は、軌道レール7を跨る鞍形状に形成される。移動ブロック8には、軌道レール7のボール転走溝7aに対向する負荷ボール転走溝8aが形成されると共に、負荷ボール転走溝8aを含むボール循環路が形成される。ボール循環経路は、負荷ボール転走溝8aと平行に伸びるボール戻し路13と、負荷ボール転走溝8aの端部とボール戻し路13の端部とを接続するU字状の方向転換路14と、から構成され、全体がサーキット状に形成される。ボール循環経路には複数のボール9が配列・収容される。 The moving block 8 is formed in a bowl shape straddling the track rail 7. In the moving block 8, a load ball rolling groove 8a facing the ball rolling groove 7a of the track rail 7 is formed, and a ball circulation path including the load ball rolling groove 8a is formed. The ball circulation path includes a ball return path 13 extending in parallel with the load ball rolling groove 8a, and a U-shaped direction change path 14 connecting the end of the load ball rolling groove 8a and the end of the ball return path 13. The whole is formed in a circuit shape. A plurality of balls 9 are arranged and accommodated in the ball circulation path.
 軌道レール7に対して移動ブロック8を相対的に移動させると、軌道レール7のボール転走溝7aと移動ブロック8の負荷ボール転走溝8aとの間に介在されたボールが転がり運動する。負荷ボール転走溝8aの一端まで転がったボール9は、方向転換路14に導かれ、ボール戻し路13及び反対側の方向転換路14を経由した後、負荷ボール転走溝8aの他端に戻される。軌道レール7と移動ブロック8との間にボール9を介在させることよって、軌道レール7に対して移動ブロック8が移動するときの抵抗を低減できる。 When the moving block 8 is moved relative to the track rail 7, the ball interposed between the ball rolling groove 7a of the track rail 7 and the load ball rolling groove 8a of the moving block 8 rolls. The ball 9 that has rolled to one end of the loaded ball rolling groove 8a is guided to the direction changing path 14, passes through the ball return path 13 and the opposite direction changing path 14, and then to the other end of the loaded ball rolling groove 8a. Returned. By interposing the ball 9 between the track rail 7 and the moving block 8, the resistance when the moving block 8 moves with respect to the track rail 7 can be reduced.
 リニアガイド6には、三相コイル4の発熱がスライドテーブル2を介して伝わる。このため、リニアガイド6には高温に耐えられるものが用いられる。具体的には、方向転換路14が形成されるエンドプレート15にはステンレス製のものが用いられ、ボール9の脱落を防止する保持プレート16にもステンレス製のものが用いられる。 The heat generated by the three-phase coil 4 is transmitted to the linear guide 6 via the slide table 2. For this reason, a linear guide 6 that can withstand high temperatures is used. Specifically, a stainless steel plate is used for the end plate 15 in which the direction changing path 14 is formed, and a stainless steel plate is also used for the holding plate 16 that prevents the balls 9 from falling off.
 図6は、リニアガイド6及びリニアガイド6の上面に取り付けられる積層ゴム10の斜視図を示す。積層ゴム10は、金属板とゴム層とを積層させたものである。積層ゴム10は、移動ブロック8の上面に取り付けられる第一の取付け体21と、スライドテーブル2の下面に取り付けられる第二の取付け体22と、第一の取付け体21と第二の取付け体22との間に介在されるせん断変形層23と、から構成される。せん断変形層23は、上下二層のゴム層24と、ゴム層24間に介在される金属板25と、から構成される。 FIG. 6 is a perspective view of the linear guide 6 and the laminated rubber 10 attached to the upper surface of the linear guide 6. The laminated rubber 10 is obtained by laminating a metal plate and a rubber layer. The laminated rubber 10 includes a first attachment body 21 attached to the upper surface of the moving block 8, a second attachment body 22 attached to the lower surface of the slide table 2, and the first attachment body 21 and the second attachment body 22. And a shear deformation layer 23 interposed therebetween. The shear deformation layer 23 is composed of two upper and lower rubber layers 24 and a metal plate 25 interposed between the rubber layers 24.
 図7及び図8は、積層ゴム10の詳細図を示す。積層ゴム10の第二の取付け体22及びせん断変形層23には、第一の取付け体21にボルトの座面22aを露出させるためのザグリ孔22bが開けられる。このザグリ孔22bは移動ブロック8のねじ孔8b(図5参照)に対応した位置に形成される。第一の取付け体21には、第一の取付け体21を移動ブロック8に締結するためボルトのねじ部が通される通し孔21aが開けられる。第一の取付け体21は、ザグリ孔22bに通されたボルトによって移動ブロック8の上面に取り付けられる。 7 and 8 show detailed views of the laminated rubber 10. FIG. The second mounting body 22 and the shear deformation layer 23 of the laminated rubber 10 are provided with counterbore holes 22b for exposing the bolt bearing surface 22a to the first mounting body 21. The counterbore 22b is formed at a position corresponding to the screw hole 8b (see FIG. 5) of the moving block 8. The first mounting body 21 is provided with a through hole 21a through which a screw portion of a bolt is passed in order to fasten the first mounting body 21 to the moving block 8. The first attachment body 21 is attached to the upper surface of the moving block 8 by a bolt passed through the counterbored hole 22b.
 ザグル孔22bの内径はボルトの頭部の外径よりも大きい。ボルトの頭部の周囲には、せん断変形層23が変形できる程度のすきまが開けられる。ボルトの頭部は、せん断変形層23が所定量以上せん断変形したときのストッパとしても機能する。すなわち、ボルトの頭部が所定量以上せん断変形したせん断変形層23に当接し、せん断変形層23の所定量以上のせん断変形を防止する。 The inner diameter of the counter bore 22b is larger than the outer diameter of the bolt head. A clearance enough to deform the shear deformation layer 23 is formed around the head of the bolt. The head of the bolt also functions as a stopper when the shear deformation layer 23 undergoes shear deformation by a predetermined amount or more. That is, the head portion of the bolt comes into contact with the shear deformation layer 23 that has undergone shear deformation for a predetermined amount or more, and the shear deformation of the shear deformation layer 23 for a predetermined amount or more is prevented.
 第二の取付け体22には、スライドテーブル2を第二の取付け体22に締結するための取付けねじ22cも形成される。取付けねじ22cはザグリ孔22bの外側に、移動ブロック8の上面から外れた位置に形成される。取付けねじ22cの替わりに、ボルトが挿通される通し孔が形成されてもよい。 A mounting screw 22 c for fastening the slide table 2 to the second mounting body 22 is also formed on the second mounting body 22. The mounting screw 22c is formed outside the counterbore hole 22b at a position away from the upper surface of the moving block 8. Instead of the mounting screw 22c, a through hole through which a bolt is inserted may be formed.
 積層ゴム10をリニアガイド6に取り付けるときは、まず移動ブロック8上に積層ゴム10を載せ、積層ゴム10のザグリ孔22bにボルトを通し、積層ゴム10の第一の取付け体21を移動ブロック8の上面に締結する。このとき、せん断変形層23及び第二の取付け体22は移動ブロック8に締結されていない。次に、積層ゴム10の上面にスライドテーブル2を載せ、スライドテーブル2の取付け孔にボルトを通し、ボルトを第二の取付け体22の取付けねじ22cにねじ込み、スライドテーブル2を第二の取付け体22に締結する。 When attaching the laminated rubber 10 to the linear guide 6, the laminated rubber 10 is first placed on the moving block 8, bolts are passed through the counterbored holes 22 b of the laminated rubber 10, and the first attachment body 21 of the laminated rubber 10 is moved to the moving block 8. Fasten to the top surface. At this time, the shear deformation layer 23 and the second attachment body 22 are not fastened to the moving block 8. Next, the slide table 2 is placed on the upper surface of the laminated rubber 10, a bolt is passed through the mounting hole of the slide table 2, the bolt is screwed into the mounting screw 22c of the second mounting body 22, and the slide table 2 is mounted on the second mounting body. Fasten to 22.
 積層ゴム10にザグリ孔22bを形成することで、移動ブロック8に積層ゴム10及びスライドテーブル2を取り付けるときに、上方からのねじ止めが可能になり、積層ゴム10及びスライドテーブル2の取付けが容易になる。しかも、限られたスペースの移動ブロック8の上面の一面に渡って積層ゴム10を広げることができる。図9に示されるように、積層ゴム10の垂直方向の剛性は、(ゴム層24の面積A)/(ゴム層24の周囲の表面積S)に関係がある。また、積層ゴムの水平方向の剛性は、(ゴム層24の水平方向の長さL)/ゴム層24の総厚みtに関係がある。積層ゴム10にザグリ孔を形成することで、積層ゴム10の設計の自由度が広がり、積層ゴム10の垂直方向の剛性を高く、水平方向の剛性を低くするのが容易になる。 By forming counterbored holes 22b in the laminated rubber 10, when the laminated rubber 10 and the slide table 2 are attached to the moving block 8, screwing from above is possible, and the laminated rubber 10 and the slide table 2 can be easily attached. become. Moreover, the laminated rubber 10 can be spread over the entire upper surface of the moving block 8 in a limited space. As shown in FIG. 9, the rigidity in the vertical direction of the laminated rubber 10 is related to (area A of the rubber layer 24) / (surface area S around the rubber layer 24). The horizontal rigidity of the laminated rubber is related to (the horizontal length L of the rubber layer 24) / the total thickness t of the rubber layer 24. By forming counterbored holes in the laminated rubber 10, the degree of freedom in designing the laminated rubber 10 is widened, and it is easy to increase the vertical rigidity and reduce the horizontal rigidity of the laminated rubber 10.
 積層ゴム10のゴム層24と第一及び第二の取付け体21,22、及びゴム層24と金属板25とは加硫接着される。金属製の第一及び第二の取付け体21,22、及び金属板25の表面をショットブラストによって粗くし、金型にこれらをインサートし、ゴムを金型のキャビティに圧入し、ゴムに圧力を加えながら加硫することで、これらを加硫接着することができる。なお、ゴム層24と金属板25とを接着剤を用いて接着してもよい。 The rubber layer 24 of the laminated rubber 10 and the first and second attachment bodies 21 and 22 and the rubber layer 24 and the metal plate 25 are vulcanized and bonded. The surfaces of the metal first and second mounting bodies 21 and 22 and the metal plate 25 are roughened by shot blasting, these are inserted into a mold, rubber is press-fitted into the mold cavity, and pressure is applied to the rubber. These can be vulcanized and bonded by vulcanization while adding. In addition, you may adhere | attach the rubber layer 24 and the metal plate 25 using an adhesive agent.
 図10は、垂直方向の吸引力が作用したときの積層ゴム10の変形を示し、図11は、水平方向のせん断力が作用したときの積層ゴム10の変形を示す。積層ゴム10の垂直方向の剛性は、三相コイル4とマグネット3との間に吸引力が作用したとき、三相コイル4とマグネット3との間にリニアモータが作動できるすきまが確保できるように高く設定される。三相コイル4とマグネット3との間のすきまを小さくすればするほど、リニアモータの推力を高くすることができるので、三相コイル4(正確にはコア5)とマグネット3との間のすきまgは微小に設定される。吸引力によってコア5とマグネット3が接触しないように、積層ゴム10の垂直方向の剛性は、すきまgの変化量が所定の範囲内に収まるように設定される。 FIG. 10 shows the deformation of the laminated rubber 10 when a vertical suction force is applied, and FIG. 11 shows the deformation of the laminated rubber 10 when a horizontal shear force is applied. The vertical rigidity of the laminated rubber 10 is such that when a suction force acts between the three-phase coil 4 and the magnet 3, a clearance that allows the linear motor to operate can be secured between the three-phase coil 4 and the magnet 3. Set high. The smaller the clearance between the three-phase coil 4 and the magnet 3, the higher the thrust of the linear motor, so the clearance between the three-phase coil 4 (more precisely, the core 5) and the magnet 3. g is set minutely. The vertical rigidity of the laminated rubber 10 is set so that the amount of change in the clearance g falls within a predetermined range so that the core 5 and the magnet 3 do not come into contact with each other due to the attractive force.
 ここで、積層ゴム10のゴム層24の厚みを薄くしたり、ゴム層24の断面積を大きくしたり、ゴム層24の間に金属板25を介在させたりすることで、積層ゴム10の垂直方向の剛性を高くすることができる。この実施形態では、ゴム層24の厚みは例えば0.5~1.5mmに設定され、金属板の厚みは例えば0.5~1.5mm程度に設定される。ゴム層24及び金属板25の断面積は、移動ブロック8の上面の面積に合わせられる。ゴム層24を一層にするとより剛性を高めることができるが、水平方向のせん断変形量が小さくなってしまう。せん断変形量を大きくとるために、ゴム層24は二層にされる。以上により、積層ゴム10の圧縮方向のばね定数を、リニアガイド6の圧縮方向のばね定数と同等以上の例えば10万~20万N/mmに設定することができる。リニアガイド6の圧縮方向のばね定数をk1、積層ゴム10の圧縮方向のばね定数をk2とすると、リニアガイド6と積層ゴム10を直列に繋いだ全体のばね定数kは、1/k=1/k1+1/k2で表わされる。積層ゴム10のばね定数をリニアガイド6のばね定数と同等以上にすることで、全体のばね定数の低下を抑制できる。 Here, by reducing the thickness of the rubber layer 24 of the laminated rubber 10, increasing the cross-sectional area of the rubber layer 24, or interposing the metal plate 25 between the rubber layers 24, the vertical direction of the laminated rubber 10 is increased. Directional rigidity can be increased. In this embodiment, the thickness of the rubber layer 24 is set to 0.5 to 1.5 mm, for example, and the thickness of the metal plate is set to about 0.5 to 1.5 mm, for example. The cross-sectional areas of the rubber layer 24 and the metal plate 25 are matched to the area of the upper surface of the moving block 8. If the rubber layer 24 is formed in one layer, the rigidity can be further increased, but the amount of shear deformation in the horizontal direction is reduced. In order to increase the amount of shear deformation, the rubber layer 24 is made into two layers. As described above, the spring constant of the laminated rubber 10 in the compression direction can be set to, for example, 100,000 to 200,000 N / mm, which is equal to or greater than the spring constant of the linear guide 6 in the compression direction. When the spring constant in the compression direction of the linear guide 6 is k1 and the spring constant in the compression direction of the laminated rubber 10 is k2, the overall spring constant k connecting the linear guide 6 and the laminated rubber 10 in series is 1 / k = 1. / K1 + 1 / k2. By making the spring constant of the laminated rubber 10 equal to or greater than the spring constant of the linear guide 6, it is possible to suppress a decrease in the overall spring constant.
 図11に示されるように、積層ゴム10は、スライドテーブル2が熱膨張したときに水平方向にせん断変形する。積層ゴム10がせん断変形し易いように、せん断方向のばね定数は、圧縮方向のばね定数の1/100以下の例えば500~2000N/mmに設定される。これにより、水平方向のせん断変形量を垂直方向の圧縮量よりも100倍以上大きくとれることになる。 As shown in FIG. 11, the laminated rubber 10 undergoes shear deformation in the horizontal direction when the slide table 2 is thermally expanded. The spring constant in the shear direction is set to, for example, 500 to 2000 N / mm which is 1/100 or less of the spring constant in the compression direction so that the laminated rubber 10 is easily sheared. Thereby, the amount of shear deformation in the horizontal direction can be made 100 times or more larger than the amount of compression in the vertical direction.
 三相コイル4の発熱によってスライドテーブル2が100℃以上温度上昇すると、スライドテーブルは例えば0.1~0.2mm熱膨張する。リニアガイド6に組み込まれるボール9の許容変形量は数十μm程度であるから、スライドテーブル2の熱膨張量がそのままボール9に作用すると、ボール9の寿命が極端に短くなってしまう。移動ブロック8とスライドテーブル2との間に積層ゴム10を介在させることで、スライドテーブル2が熱膨張しても、スライドテーブル2から移動ブロック8に伝わるスライドテーブル2の幅方向の力を緩和することができる。積層ゴム10のせん断方向のばね定数は、ボール9にかかる荷重が許容荷重以下になるように設定される。ボール9の許容荷重はリニアガイド6の静定格荷重又は動定格荷重から算出される。 When the temperature of the slide table 2 rises by 100 ° C. or more due to the heat generated by the three-phase coil 4, the slide table expands by 0.1 to 0.2 mm, for example. Since the allowable deformation amount of the ball 9 incorporated in the linear guide 6 is about several tens of μm, if the thermal expansion amount of the slide table 2 acts on the ball 9 as it is, the life of the ball 9 is extremely shortened. By interposing the laminated rubber 10 between the moving block 8 and the slide table 2, even if the slide table 2 is thermally expanded, the force in the width direction of the slide table 2 transmitted from the slide table 2 to the moving block 8 is reduced. be able to. The spring constant in the shear direction of the laminated rubber 10 is set so that the load applied to the ball 9 is less than the allowable load. The allowable load of the ball 9 is calculated from the static load rating or the dynamic load rating of the linear guide 6.
 図2に示されるように、左右一対のリニアガイド6のうち、積層ゴム10が取り付けられるのは一方のリニアガイド6のみである。残りのリニアガイド6の移動ブロック8には、積層ゴム10を介することなく、スライドテーブル2が移動ブロック8に直接的に固定される。このため、スライドテーブル2のヨーイングモーメントに対する剛性(図1参照)は高く維持される。 As shown in FIG. 2, of the pair of left and right linear guides 6, the laminated rubber 10 is attached to only one linear guide 6. The slide table 2 is directly fixed to the moving block 8 on the remaining moving block 8 of the linear guide 6 without using the laminated rubber 10. For this reason, the rigidity (see FIG. 1) with respect to the yawing moment of the slide table 2 is kept high.
 なお、図6に示される積層ゴム10は、垂直方向の剛性が高く、水平方向のせん断変形量を大きくとれるという特徴を持つ。このため、スライドテーブル2を垂直方向に剛性高く案内すると共に、二本の平行な軌道レール7の取付け誤差を吸収することもできる。また、重量物のスライドテーブル2を積層ゴム10に取り付けるとき、ゴム層24が衝撃を緩和するので、スライドテーブル2の取り付けが容易になるという効果もある。したがって、この積層ゴム10は、リニアモータだけでなく、二本の平行な軌道レール7を有するアクチュエータの変位吸収機構として用いられてもよい。 Note that the laminated rubber 10 shown in FIG. 6 is characterized by high vertical rigidity and large horizontal shear deformation. For this reason, the slide table 2 can be guided with high rigidity in the vertical direction, and mounting errors of the two parallel track rails 7 can be absorbed. In addition, when the heavy slide table 2 is attached to the laminated rubber 10, the rubber layer 24 reduces the impact, so that the slide table 2 can be easily attached. Therefore, this laminated rubber 10 may be used not only as a linear motor but also as a displacement absorbing mechanism for an actuator having two parallel track rails 7.
 図12は、アクチュエータに適用した積層ゴム10の変形例を示す。リニアガイド6が組み込まれるアクチュエータの用途によっては、リニアガイド6の水平方向の剛性を高く、垂直方向の剛性を弱くしたい場合がある。用途に合わせて剛性―軟性の特性を垂直方向、水平方向と選定できるように、積層ゴム10は、移動ブロック8の側面に取り付けられてもよい。 FIG. 12 shows a modified example of the laminated rubber 10 applied to the actuator. Depending on the application of the actuator in which the linear guide 6 is incorporated, it may be desired to increase the horizontal rigidity of the linear guide 6 and weaken the vertical rigidity. The laminated rubber 10 may be attached to the side surface of the moving block 8 so that the rigidity-soft property can be selected between the vertical direction and the horizontal direction according to the application.
 圧縮方向のばね定数15万N/mm,せん断方向のばね定数1250N/mmの積層ゴム10を作成した。図13は、積層ゴム10の圧縮方向及びせん断方向のばね特性の概念図を示す。積層ゴム10の圧縮方向の剛性は、リニアガイド6の圧縮方向の剛性よりも高い。積層ゴム10のせん断方向の剛性は、リニアガイド6の圧縮方向の剛性よりも低い。 A laminated rubber 10 having a spring constant of 150,000 N / mm in the compression direction and a spring constant of 1250 N / mm in the shear direction was prepared. FIG. 13 shows a conceptual diagram of the spring characteristics of the laminated rubber 10 in the compression direction and shear direction. The rigidity of the laminated rubber 10 in the compression direction is higher than the rigidity of the linear guide 6 in the compression direction. The rigidity of the laminated rubber 10 in the shear direction is lower than the rigidity of the linear guide 6 in the compression direction.
 そして、図14に示されるように、積層ゴム10をスライドテーブル2と移動ブロック8との間に介在させた。三相コイル4に電流を流し、リニアモータを作動させた。図15に示されるように、時間の経過に伴い、三相コイル4は約110℃まで上昇した。 Then, as shown in FIG. 14, the laminated rubber 10 was interposed between the slide table 2 and the moving block 8. A current was passed through the three-phase coil 4 to operate the linear motor. As shown in FIG. 15, the three-phase coil 4 rose to about 110 ° C. over time.
 次に、三相コイル4の温度上昇に伴い、スライドテーブル2及びリニアガイド6がどのように水平方向に変位するかを測定した。 Next, it was measured how the slide table 2 and the linear guide 6 were displaced in the horizontal direction as the temperature of the three-phase coil 4 increased.
 図16は、経過時間とスライドテーブル2及び移動ブロック8及びの水平方向の関係を示す。スライドテーブル2に移動ブロック8が直接固定される側(図14の左側)では、時間が経過しても、移動ブロック8及びテーブル共に水平方向にあまり変位しなかった(図16、Bの添え字参照)。一方、積層ゴム10が介在される側(図14の右側)では、スライドテーブル2の熱膨張に伴って、時間の経過と共にスライドテーブル2及び移動ブロック8が140μmも水平方向に変位した(図16、Aの添え字参照)。 FIG. 16 shows the relationship between the elapsed time and the slide table 2 and the moving block 8 in the horizontal direction. On the side where the moving block 8 is directly fixed to the slide table 2 (the left side in FIG. 14), neither the moving block 8 nor the table is displaced significantly in the horizontal direction over time (subscripts in FIG. 16, B). reference). On the other hand, on the side where the laminated rubber 10 is interposed (the right side in FIG. 14), the slide table 2 and the moving block 8 are displaced by 140 μm in the horizontal direction as time elapses with the thermal expansion of the slide table 2 (FIG. 16). , A subscript).
 次に、三相コイル4の温度上昇に伴い、スライドテーブル2がどのように垂直方向に変位するかを測定した。 Next, it was measured how the slide table 2 was displaced in the vertical direction as the temperature of the three-phase coil 4 increased.
 図17は、スライドテーブル2の垂直方向の変位を、スライドテーブル2に移動ブロック8が直接固定される側(図14の左側E)と、積層ゴム10が介在される側(図14の右側C)と、中央部(図14の中央D)とで比較したグラフである。三相コイル4に電流を流した直後に、スライドテーブル2の中央部が下側に変位するのがわかった。三相コイル4とマグネット3との間の吸引力はスライドテーブル2の中央部が最も大きく、スライドテーブル2の中央部を変形させるほどであった。スライドテーブル2の右側と左側では、時間が経過しても、垂直方向の変位はあまり変化しなかった。積層ゴム10に十分な垂直方向の剛性があることがわかる。 17 shows the displacement in the vertical direction of the slide table 2 on the side where the moving block 8 is directly fixed to the slide table 2 (left side E in FIG. 14) and the side where the laminated rubber 10 is interposed (right side C in FIG. 14). ) And a central portion (center D in FIG. 14). It was found that the central part of the slide table 2 was displaced downward immediately after passing the current through the three-phase coil 4. The attraction force between the three-phase coil 4 and the magnet 3 was the largest at the center of the slide table 2 and was such that the center of the slide table 2 was deformed. On the right and left sides of the slide table 2, the vertical displacement did not change much over time. It can be seen that the laminated rubber 10 has sufficient vertical rigidity.
 ここで、積層ゴム10を設けない場合、スライドテーブル2が140μm水平方向に変位することによって、リニアガイド6には140μmの水平方向の変位が作用する。これにより、リニアガイド6には約22kNの内部応力が発生する。しかし、積層ゴム10を設けることによって、積層ゴム10がせん断変形し、水平方向の変位を吸収するので、リニアガイド6には20μmの変位しか作用しなくなる。このとき、リニアガイド6には1/10程度の約2.3kNの内部応力しか発生しない。積層ゴム10の変位吸収機構としての機能を十分に確認することができた。 Here, when the laminated rubber 10 is not provided, the horizontal displacement of 140 μm acts on the linear guide 6 by the displacement of the slide table 2 in the horizontal direction of 140 μm. As a result, an internal stress of about 22 kN is generated in the linear guide 6. However, by providing the laminated rubber 10, the laminated rubber 10 undergoes shear deformation and absorbs horizontal displacement, so that only a 20 μm displacement acts on the linear guide 6. At this time, only an internal stress of about 2.3 kN, which is about 1/10, is generated in the linear guide 6. The function of the laminated rubber 10 as a displacement absorbing mechanism could be sufficiently confirmed.
 なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で種々変更できる。例えば、ゴム製の変位吸収機構の替わりに、一対の軌道レールが直交するように組み合わせた直交リニアガイドを用いてもよい。直交リニアガイドは、一対のリニアガイドの移動ブロック8を軌道レールが直交するように背面合わせにした構造を持つ。変位吸収機構は、その垂直方向の剛性によってコイルとマグネットとの間のすきまを確保できれば、リニアガイドの上面とスライドテーブルの下面ではなく、固定部材の上面と軌道レールの下面との間に設けられてもよい。さらに、リニアガイドの転動体にはボールの替わりにローラを用いることができる。ローラを用いれば、リニアガイドの剛性を高くすることができる。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, instead of a rubber-made displacement absorbing mechanism, an orthogonal linear guide combined so that a pair of track rails are orthogonal may be used. The orthogonal linear guide has a structure in which the moving blocks 8 of the pair of linear guides are back-to-back so that the track rails are orthogonal. If the clearance between the coil and the magnet can be secured by the rigidity in the vertical direction, the displacement absorbing mechanism is not provided between the upper surface of the linear guide and the lower surface of the slide table, but between the upper surface of the fixed member and the lower surface of the track rail. May be. Furthermore, a roller can be used instead of a ball for the rolling element of the linear guide. If a roller is used, the rigidity of the linear guide can be increased.
 本明細書は、2008年5月30日出願の特願2008-143262に基づく。この内容はすべてここに含めておく。 This specification is based on Japanese Patent Application No. 2008-143262 filed on May 30, 2008. All this content is included here.
1…固定部材,2…スライドテーブル,3…マグネット,4…三相コイル,5…コア,6…リニアガイド(案内部),7…軌道レール,7a…ボール転走溝,8…移動ブロック,8a…負荷ボール転走溝,9…ボール(転動体),10…積層ゴム(変位吸収機構),13…ボール戻し路,14…方向転換路,21…第一の取付け体,22b…ザグリ孔,22c…取付けねじ,22a…座面,22…第二の取付け体,23…せん断変形層,24…ゴム層,25…金属板 DESCRIPTION OF SYMBOLS 1 ... Fixed member, 2 ... Slide table, 3 ... Magnet, 4 ... Three-phase coil, 5 ... Core, 6 ... Linear guide (guide part), 7 ... Track rail, 7a ... Ball rolling groove, 8 ... Moving block, 8a ... Loaded ball rolling groove, 9 ... Ball (rolling element), 10 ... Laminated rubber (displacement absorption mechanism), 13 ... Ball return path, 14 ... Direction change path, 21 ... First mounting body, 22b ... Counterbore hole , 22c ... mounting screw, 22a ... seating surface, 22 ... second mounting body, 23 ... shear deformation layer, 24 ... rubber layer, 25 ... metal plate

Claims (6)

  1.  N極及びS極の磁極が一軸方向に交互に配列されたマグネットを有する第一部材と、
     前記マグネットにすきまを介して対向するコイルと、
     前記コイルが取り付けられる第二部材と、
     前記コイルと前記マグネットとが前記すきまを保った状態で前記第二部材が前記第一部材に対して前記一軸方向に相対的に直線運動するのを案内すると共に、前記コイルを挟んで前記第二部材の幅方向の両側に配置される一対の案内部と、
     前記一軸方向を水平面内に配置した状態において、前記一対の案内部の少なくとも一方の上面と前記第二部材の下面との間、又は前記第一部材の上面と前記一対の案内部の少なくとも一方の下面との間に介在される変位吸収機構と、を備え、
     前記変位吸収機構は、前記コイルと前記マグネットとの間に吸引力が働いたとき、リニアモータが作動するすきまを確保できる垂直方向の剛性を持つと共に、
     前記コイルが発熱し、前記第二部材が前記幅方向に熱膨張するとき、前記第二部材から前記案内部に前記幅方向に作用する力を緩和するように変形するリニアモータ。
    A first member having a magnet in which N-pole and S-pole magnetic poles are alternately arranged in one axis direction;
    A coil facing the magnet via a gap;
    A second member to which the coil is attached;
    The second member guides the linear movement relative to the first member relative to the first member in a state where the coil and the magnet maintain the clearance, and the second member is sandwiched by the second member. A pair of guide portions disposed on both sides in the width direction of the member;
    In a state where the uniaxial direction is arranged in a horizontal plane, between at least one upper surface of the pair of guide portions and the lower surface of the second member, or at least one of the upper surface of the first member and the pair of guide portions. A displacement absorbing mechanism interposed between the lower surface,
    The displacement absorbing mechanism has a vertical rigidity capable of ensuring a clearance for operating the linear motor when an attractive force is applied between the coil and the magnet.
    A linear motor that deforms so as to relieve a force acting in the width direction from the second member to the guide portion when the coil generates heat and the second member thermally expands in the width direction.
  2.  前記変位吸収機構は、
     前記案内部の上面又は前記第一部材の上面に取り付けられる第一の取付け体と、
     前記第二部材の下面又は前記案内部の下面に取り付けられる第二の取付け体と、
     前記第一の取付け体と前記第二の取付け体との間に介在され、前記第二部材が前記幅方向に熱膨張するとき、せん断変形する少なくとも一つのゴム層を含むせん断変形層と、を有することを特徴とする請求項1に記載のリニアモータ。
    The displacement absorbing mechanism is
    A first attachment body attached to the upper surface of the guide portion or the upper surface of the first member;
    A second attachment body attached to the lower surface of the second member or the lower surface of the guide portion;
    A shear deformation layer interposed between the first attachment body and the second attachment body and including at least one rubber layer that undergoes shear deformation when the second member is thermally expanded in the width direction; The linear motor according to claim 1, wherein the linear motor is provided.
  3.  前記第二の取付け体及び前記せん断変形層には、前記第一の取付け体にボルトの座面を形成するためのザグリ孔が開けられ、
     前記第一の取付け体は、前記ザグリ孔に通されたボルトによって前記案内部の上面又は前記第一部材の上面に取り付けられ、
     前記第二の取付け体には、前記第二部材の下面又は前記案内部の下面を前記第二の取付け体に取り付けるための取付けねじ又は取付け孔が形成されることを特徴とする請求項2に記載のリニアモータ。
    In the second attachment body and the shear deformation layer, a counterbore hole for forming a seating surface of a bolt in the first attachment body is formed,
    The first attachment body is attached to the upper surface of the guide portion or the upper surface of the first member by a bolt passed through the counterbore hole,
    The mounting screw or mounting hole for mounting the lower surface of the second member or the lower surface of the guide portion to the second mounting body is formed in the second mounting body. The linear motor described.
  4.  前記変位吸収機構の垂直方向の剛性は、前記案内部の垂直方向の剛性と同等以上であることを特徴とする請求項2又は3に記載のリニアモータ。 4. The linear motor according to claim 2, wherein the vertical rigidity of the displacement absorbing mechanism is equal to or greater than the vertical rigidity of the guide portion.
  5.  前記変位吸収機構は、前記案内部の上面と前記第二部材の下面との間に配置され、
     前記案内部は、
     前記第一部材の上面に結合される軌道レールと、
     前記変位吸収機構の下面に結合されると共に、前記軌道レールに相対的に直線運動可能に組み付けられる移動ブロックと、
     前記軌道レールと前記移動ブロックとの間に転がり運動可能に介在される複数の転動体と、を有することを特徴とする請求項1又は2に記載のリニアモータ。
    The displacement absorbing mechanism is disposed between the upper surface of the guide portion and the lower surface of the second member,
    The guide part is
    A track rail coupled to the upper surface of the first member;
    A moving block coupled to the lower surface of the displacement absorbing mechanism and assembled to the track rail so as to be relatively linearly movable;
    The linear motor according to claim 1, further comprising a plurality of rolling elements interposed between the track rail and the moving block so as to be capable of rolling motion.
  6.  前記変位吸収機構は、前記コイルを挟んで配置される一対の前記案内部のうち、一方の案内部にのみ取り付けられることを特徴とする請求項1又は2に記載のリニアモータ。 3. The linear motor according to claim 1, wherein the displacement absorbing mechanism is attached only to one guide portion of the pair of guide portions arranged with the coil interposed therebetween.
PCT/JP2009/059379 2008-05-30 2009-05-21 Linear motor WO2009145112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010514454A JPWO2009145112A1 (en) 2008-05-30 2009-05-21 Linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008143262 2008-05-30
JP2008-143262 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009145112A1 true WO2009145112A1 (en) 2009-12-03

Family

ID=41376990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059379 WO2009145112A1 (en) 2008-05-30 2009-05-21 Linear motor

Country Status (3)

Country Link
JP (1) JPWO2009145112A1 (en)
TW (1) TW201008089A (en)
WO (1) WO2009145112A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177450A (en) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd Linear motion device and electronic component mounting apparatus
KR101812079B1 (en) 2010-11-15 2017-12-27 에스엠시 가부시키가이샤 Linear actuator
WO2024034272A1 (en) * 2022-08-09 2024-02-15 株式会社鷺宮製作所 Linear motor actuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202785A1 (en) * 2014-02-17 2015-08-20 Robert Bosch Gmbh Linear motion device with elastic housing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088981A (en) * 2001-09-28 2004-03-18 Thk Co Ltd Drive guide
WO2007055208A1 (en) * 2005-11-08 2007-05-18 Thk Co., Ltd. Movement guiding device, relative movement system, and displacement absorbing mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088981A (en) * 2001-09-28 2004-03-18 Thk Co Ltd Drive guide
WO2007055208A1 (en) * 2005-11-08 2007-05-18 Thk Co., Ltd. Movement guiding device, relative movement system, and displacement absorbing mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177450A (en) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd Linear motion device and electronic component mounting apparatus
KR101812079B1 (en) 2010-11-15 2017-12-27 에스엠시 가부시키가이샤 Linear actuator
WO2024034272A1 (en) * 2022-08-09 2024-02-15 株式会社鷺宮製作所 Linear motor actuator

Also Published As

Publication number Publication date
JPWO2009145112A1 (en) 2011-10-13
TW201008089A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
KR101189295B1 (en) Linear motor actuator
US7586219B2 (en) Drive guide apparatus
TWI233249B (en) Linear motor actuator
WO2009145112A1 (en) Linear motor
JP2008178250A (en) Pressing mechanism of ultrasonic resonator and ultrasonic motor
US20100127578A1 (en) X-y table actuator
JP2004088981A (en) Drive guide
JP5468897B2 (en) Drive guide device
US20040256918A1 (en) Linear motor glide assembly
US10193431B2 (en) Linear motor
JP2018078668A (en) Linear motor
KR20060013565A (en) Vibration damping material and motion guide device where the material is assembled
JP4488929B2 (en) Linear motor actuator
KR100981829B1 (en) transfer table of linear motor system formed composite material
JP2011035993A (en) Linear motor actuator
JP2010088225A (en) Linear motor actuator
JP5296997B2 (en) Drive guide device
JP7093271B2 (en) Slide device with protective sheet
JP2022157862A (en) linear actuator
JP2013106498A (en) Linear motion device
JP2020178529A (en) Linear motor and manufacturing method of article
JP5258234B2 (en) Linear motor actuator
JP2013007455A (en) Expansion absorbing device for linear guide device, and table apparatus including the expansion absorbing device
JP2007192357A (en) Axial fine-movement mechanism with rotating mechanism and rough and fine-movement positioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754620

Country of ref document: EP

Kind code of ref document: A1